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1. Introduction

1.1. Motivation

Natural catastrophes pose one of the largest risks to non-life insurance companies. How-

ever, if the severity or frequency of claims is underestimated, an insurer may not withhold

sufficient capital to pay incurring losses and might even default. Therefore, it is of utter

importance to obtain good estimates of future claims and the insurer’s risk. For this pur-

pose a variety of claim models exists. In non-life insurance many of these models build on

the so called collective risk model (cf. Bowers et al. (1997, p.367)), which consists of two

components: Firstly, a claim arrival process Φ, which models the frequency of claims, and,

secondly, a claim size distribution FY , which models the severity of claims. Note that in

this work we will not distinguish between claims and losses although in reality the total loss

is sometimes only known several years after a claim was made (e.g. in case of liability or

health insurance).

The claim arrival process Φ is often given by a point process as an increasing sequence

of events 0 ≤ S1 ≤ S2 ≤ ... (cf. Embrechts et al. (1997, p.222)). In the following

work we will regularly denote the number of events of a point process Φ in [t1, t2) as

Φ(t1, t2) = |{Si ∈ [t1, t2) : i ∈ N}| for t1 < t2 and Φ(t) := Φ(0, t) for 0 < t.

In addition to the claim occurrences, the claim sizes (Yi)i∈N are assumed to be positive,

independently and identically distributed (iid) random variables having a common non-

lattice distribution function FY . Then, the aggregate claims up to time t are given by (cf.

Embrechts et al. (1997, p.23) or Bowers et al. (1997, p.367))

L(t) =

Φ(t)∑
i=1

Yi. (1.1)

A crucial quantity in insurance risk modeling is the probability of default, which is not

only important from a theoretical point of view but also a practically one. For instance, the

European Insurance and Occupational Pensions Authority (EIOPA) requires all European

insurers to assess and constrain their one-year-default probability to 0.5%. This requirement

is vital to the European regulatory insurance regime Solvency II, which will be in force from

January 2016 on (cf. European Parliament (2015)). In general, the ruin probability Ψ at

time t is the probability of an insurer’s surplus process U(t, u) falling below zero at time

t <∞, i.e.

Ψ(t, u) = P(U(t, u) < 0), (1.2)
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where in the classical risk model the surplus U(t, u) is given as (cf. Bowers et al. (1997,

p.399))

U(t, u) = u+ ct− L(t), t ≥ 0, (1.3)

where u ≥ 0 denotes initial capital and c > 0 the premium income rate.

In this work, we will exclusively focus on modeling the frequency component Φ of the ag-

gregate claims process. Once a model for Φ is fixed, suitable loss distributions may be fitted

by employing Maximum Likelihood methods, the method of moments or other methods to

the empirical loss data. Frequently used loss distributions are the Log-Normal, Exponential,

Gamma or Pareto distribution. One might as well consider the Fréchet, Gumbel, Weibull,

Burr, Generalized Pareto or log-α-Stable distribution to be able to fit heavy tails, which

are particularly present in catastrophe losses. Applications for some of these distributions

may be found in Chernobai et al. (2005), McNeil (1997) or Beirlant et al. (2001).

1.1.1. Examples for collective risk models and point processes

A very prominent example for a collective risk model is the Crámer-Lundberg model (cf.

Embrechts et al. (1997, p.22)). In this model all claim sizes are assumed to be independent

of Φ, whereas Φ follows a homogeneous Poisson process with rate λ > 0:

Definition 1.1 (Poisson process). (Durrett (2012, p.103)) Let λ(x) be a non-negative real

valued measurable function. A point process Φ is called inhomogeneous Poisson process, if

(i) Φ(0) = 0,

(ii) Φ(t) has independent increments, and

(iii) Φ(t)− Φ(s) is Poisson with mean
∫ t
s λ(x)dx

for any s < t. If λ(x) is constant, we call Φ a homogeneous Poisson process.

There are two main advantages of modeling claim arrivals with a homogeneous Poisson

process: Firstly, the theoretical justification of the Poisson distribution due to the Poisson

approximation (the frequency of very rare events is approximately Poisson distributed, cf.

Klenke (2006, p.79)) and, secondly, its simplicity. For example, parameter estimation is

straightforward e.g. by means of Maximum-Likelihood methods, the distribution of L(t) is

the well known Compound-Poisson distribution (cf. Heilmann (1988, p.95)) and quantities

of interest as the expected value, E[L(t)], or variance, var(L(t)), are known in closed form.

Moreover, several approximations and closed-form solutions for special cases of ruin prob-

abilities exist (cf. Embrechts et al. (1997, p.28) and Heilmann (1988, p.245-268)).

Nonetheless, the Crámer-Lundberg model exhibits major drawbacks: Most crucially, the

assumption of a constant intensity λ > 0 of the claim arrival process makes it impossible

to model any kind of seasonal behavior (e.g. for snow storms, which only occur in winter

time), trends (e.g. the frequency of cyber attacks has increased heavily over the last few
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decades), or overdispersion. The latter describes the property of a probability distribution

exhibiting a larger variance than expected value. This is not possible for claim numbers in

the Crámer-Lundberg model since the expected value of the Poisson distribution equals its

variance, i.e. E[Φ(t)] = var(Φ(t)) = λt.

In response to these shortcomings, a variety of extensions of the Crámer-Lundberg model

were developed. For example, Boudreault et al. (2014) and Baumgartner et al. (2015) ana-

lyze collective risk models that incorporate dependent severity and frequency components.

Focussing only on the frequency component, Chernobai et al. (2005) add an oscillatory

component by considering Φ to be an inhomogeneous Poisson process with a deterministic

sinusoidal intensity function λ(t) = a+b2π ·sin(2π(t−c)), for which the constants a, b, c > 0

are fitted to a given dataset by least squares estimation. Clearly, their model is able to in-

clude a trend, as well.

To allow for overdispersion, the Negative Binomial distribution represents a natural ex-

tension of the Poisson distribution: It incorporates a dispersion parameter r ∈ N such that

the probability mass function (pmf) for X ∼ NB(r, p) is given by (cf. Evans et al. (2010))

P(X = k) =

(
k + r − 1

k

)
pk(1− p)r. (1.4)

Here, k ∈ N0 represents the number of successes which occur in a sequence of indepen-

dent Bernoulli trails with probability p ∈ (0, 1) before a target number of failures r ∈ N
is reached. One may reparametrize the distribution in terms of its mean m = r p

1−p . In

this case we have E[X] = m and var(X) = m
(
1 + m

r

)
. Thus, r may be interpreted as a

dispersion parameter accounting for a larger variance var(X) > E[X]. Also, by substituting(
k+r−1
k

)
= Γ(k+r)

Γ(k+1)Γ(r) with the Gamma function Γ(·) one may extend the distribution for a

real parameter r > 0. Moreover, the Negative Binomial distribution converges to a Poisson

distribution with intensity m as r → ∞ (cf. Hilbe (2007)). Nevertheless, as Eastoe and

Tawn (2010) point out, a model that assumes the number of events in a certain time win-

dow (e.g. one year) to be Negative Binomially distributed does not only lack a theoretical

justification, but is also highly inflexible, as it can not easily be extended to a point process

(although Gregoire (1983) shows the existence of Negative Binomial processes).

Another class of point processes is given by Poisson-cluster processes, which model clus-

ters of events at every point of a Poisson processes (cf. e.g. Onof et al. (2000)). These

processes are a special case of Cox processes. The latter were introduced by Cox (1955) as

doubly stochastic Poisson processes with random intensity function λ(t). One main assump-

tion of Poisson-cluster processes is the irregular (i.e. not cyclical) occurrence of bursts of

events. However, as we will show in sections 1.3 and 4.3, natural catastrophes like tropical

cyclones or hail occur in rather regular bursts, i.e. the distance between bursts is compar-

atively stable. Therefore, it is reasonable to allow for other background rhythms, which is

done by Møller and Torrisi (2005) in the form of Generalized Shot Noise Cox processes.
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1.1.2. Overview of the thesis

In this work we will analyze two datasets: Mainly, we will analyze data from the interna-

tional catastrophe database EM-DAT (Guha-Sapir et al. (2014)) that report the occurrence

of tropical cyclones in Africa, Americas, Asia and Oceania. In section 1.2 we will fit a

homogeneous Poisson process to the empirical data, which will underline the shortcomings

of this model. Therefore, in section 1.3 the empirical data will be reviewed more intensively.

This will motivate the application of the GLO model from Bingmer et al. (2011), which will

be analyzed in section 2.1.

Additionally, in section 4.3 we will analyze the occurrence and claim sizes of hail damage

of a large German insurance company. This application will illustrate the particular use of

the GLO model for risk management in insurance companies.

The remainder of the work will be concerned with developing a Bayesian estimation

framework for the GLO model. In chapter 2 we will provide the necessary mathematical

background for the estimation procedure: We will introduce basic notations and give a

short introduction to Bayesian inference and computational methods. The Bayesian esti-

mation framework for the GLO process will be developed in chapter 3. Since the estimation

procedure will rely on a Markov chain Monte Carlo (MCMC) algorithm with several in-

put parameters, we will present methods how to choose these parameters and assess the

influence of the input parameters on the estimation procedure. Moreover, for nine different

parameter combinations we will analyze the estimation precision of the proposed estimators.

At the end, in chapter 4 the inference framework will be applied to the data and open

questions and possible extensions of the inference framework and the model itself will be

discussed. Also, we show how to forecast the future occurrence of events by using samples

from the MCMC algorithm. Chapter 5 concludes. Additional details about the data set

are reported in the appendix.

All data evaluations and simulations were performed with the statistical software RStudio

(version 0.98.1028), which bases on R version 3.0.2. We mainly employed a Mac Mini with

2.6 GHz Intel Core i7, 16 GB RAM and Mac OS X Yosemite 10.10.4. To compute the

estimation errors in section 3.4.4 we performed simulations on a Mac Pro with 2.7 GHz 12

Core Intel, 32 GB RAM and Mac OS X Yosemite 10.10.2.
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1.2. Fit of the Poisson process

The sample data set consists of the occurrence times S
(continent)
1 , ..., S

(continent)
ncontinent (in days) of

tropical cyclones for the continents Africa, Americas, Asia and Oceania. For simplicity we

will drop the continent-index in the following, since the data is analyzed for each continent

separately. The data was generously made available by EM-DAT (Guha-Sapir et al. (2014);

for more information about EM-DAT and the data format see chapter A, p. 105, in the

appendices). In this section we will review the fit to a homogeneous Poisson process.

For a homogeneous Poisson process with intensity λ > 0 the Inter-Event-Interval (IEI)

distribution is given by an Exponential distribution with rate λ, Exp(λ) (cf. Durrett (2012,

p.97)). Therefore, we employ the Maximum-Likelihood estimator (MLE) of the Exponential

distribution to estimate the parameter λ. In particular, the probability density function

(pdf) of Exp(λ) is given as

fExp(λ)(x) = λe−λx. (1.5)

Therefore, the log-Likelihood function is given as

`(λ; IEI) =

n−1∑
i=1

(log λ− λ IEIi) , (1.6)

where IEI = (S2 − S1, S3 − S2, ...., Sn − Sn−1). Since ∂`
∂λ2 (λ) = −n−1

λ2 < 0, the MLE is the

solution of

∂`

∂λ
(λ) =

n− 1

λ
−
n−1∑
i=1

IEIi = 0, (1.7)

which is

λ̂ML =

(
1

n− 1

n−1∑
i=1

IEIi

)−1

=
(
IEI

)−1
. (1.8)

The resulting estimates λ̂ML are reported in Table 1.1. Additionally, we compare the sample

variance

s2(IEI) :=
1

n− 2

n−1∑
i=1

(
IEIi − IEI

)2
(1.9)

with the theoretical variance λ̂−2
ML of the fitted distribution: For all continents the sample

variance is substantially larger.

Moreover, the fitted Exponential distribution does not provide a good fit to the empirical

IEI distributions as Figure 1.1 shows. In conclusion, the model lacks important characteris-

tics of the data like a large variance and two-peaked density and, therefore, is inappropriate.
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Continent MLE, λ̂ML Theoretical variance, λ̂−2
ML Sample variance, s2(IEI)

Africa 0.008 16485.5 30730.5
Americas 0.036 757 4826.3

Asia 0.060 277.3 1077.8
Oceania 0.011 8228.9 17431.2

Table 1.1.: Tropical cyclones: ML estimates, theoretical and sample variance of the Poisson
model
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Figure 1.1.: IEI distributions of tropical cyclones (empirical density (grey/black) and fitted
exponential density (red, dotted)) for (A) Africa, (B) Americas, (C) Asia and
(D) Oceania.
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1.3. Observations in empirical data

In this section the data is analyzed more intensively using rasterplots, inter-event-interval

distributions and autocorrelation histograms. For this purpose we mainly follow the method-

ology of Bingmer (2012).

Rasterplots: In these plots the raw data is shown: For each event a bar is plotted at

its time of occurrence. Figure 1.2 shows the rasterplots of the occurrence times of tropical

cyclones in Africa, Americas, Asia and Oceania. Clearly, tropical cyclones tend to occur

in bursts, i.e. moments of increased cyclone activity are followed by moments without any

cyclones. These bursts are rather large in Americas and Asia and small in Africa and Ocea-

nia. Furthermore, in all four continents the number of events per burst is not constant and

usually larger than one and the bursts seem to follow a very rhythmic behavior.

Time (in years)

1980 1982 1984 1986 1988 1990

2002 2004 2006 2008 2010 2012 2014

(A) Africa

Time (in years)

1980 1982 1984 1986 1988 1990

2002 2004 2006 2008 2010 2012 2014

(B) Americas

Time (in years)

1980 1982 1984 1986 1988 1990

2002 2004 2006 2008 2010 2012 2014

(C) Asia

Time (in years)

1980 1982 1984 1986 1988 1990

2002 2004 2006 2008 2010 2012 2014

(D) Oceania

Figure 1.2.: Rasterplots of tropical cyclones in (A) Africa, (B) Americas, (C) Asia and (D)
Oceania.

Inter-Event-Interval distribution: In Figure 1.3 the histograms with a density kernel

estimate of the empirical IEI distribution of tropical cyclones is shown. Clearly, the IEI

distributions exhibit two peaks. Intuitively, the first peak corresponds to small IEIs within

bursts whereas the second peak corresponds to large IEIs between different neighboring

bursts.
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Figure 1.3.: IEI distributions of tropical cyclones in (A) Africa, (B) Americas, (C) Asia and
(D) Oceania.

Autocorrelation histogram: An autocorrelation histogram (ACH) is very useful to

analyze the oscillatory behavior of point processes. It is essentially a histogram of the dis-

tances Sj − Si of all pairs of event times (Si, Sj) and, thus, an estimate for the ACF of

a point process (cf. Remark 2.6). For a more detailed introduction to ACHs and their

properties see e.g. Moore et al. (1966) or Perkel et al. (1967). Also, Bingmer (2012, p.65-

73) and Bingmer et al. (2011) show how to interpret ACHs in the context of the GLO model.

To give an example for an ACH, consider a very rhythmic process that deterministically

produces an event in time steps of size µ > 0. For a realization of this process the ACH

intuitively exhibits peaks at kµ, k ∈ Z, and equals zero otherwise. Consequently, regular

processes exhibit multiple, repetitive peaks. Furthermore, for bursty processes there exists

a peak near zero, since intervals between events belonging to the same burst are usually

quite small. The visual inspection of the ACHs of tropical cyclones in Figure 1.4 clearly

indicates a regular (oscillatory) and bursty occurrence behavior.
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Figure 1.4.: ACHs of tropical cyclones in (A) Africa, (B) Americas, (C) Asia and (D) Ocea-
nia.

In conclusion, all figures indicate a bursty and regular occurrence behavior of tropical

cyclones. An explanation for these properties is given by the creation process of tropical

cyclones: According to Gray (1968), Gray (1975) and Gray (1979) several conditions have

to be in place to allow a tropical cyclone to evolve. Among these are warm ocean waters

(a maximum sea surface temperature of at least 26.5◦C) whereas the atmosphere needs

to cool down rapidly with increasing height to allow releasing the heat of condensation

which powers the tropical cyclone. Moreover, high humidity and a pre-existing system of

disturbed weather is necessary. For an overview about the genesis of tropical cyclones we

also refer to Henderson-Sellers et al. (1998). Clearly, it is not common to have all necessary

conditions fulfilled at the very same time. In fact, there are only distinctive months in dis-

tinctive regions in which tropical cyclones can develop (mainly summer time in equatorial

areas). This explains why bursts of tropical cyclones occur regularly. Since the conditions

normally last for some time, during that time many cyclones occur, which in turn explains

the burstiness.
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To conclude, the data exhibits properties that can not be found in Poisson processes,

namely regularly occurring bursts. However, the GLO model proposed by Bingmer et al.

(2011) is able to model this particular occurrence behavior as it is shown in the next chapter.
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2. Preliminaries

In the following chapter, firstly, we will review the definition and some basic properties of

the GLO-process as it is introduced in Bingmer et al. (2011). In the second and third part

of the chapter Bayesian inference and computational methods for Bayesian inference will

be presented.

2.1. The GLO model

In the following we will review the GLO model as it is introduced in Bingmer et al. (2011).

For the construction of a Bayesian estimation framework it will be sufficient to focus on

the basic definitions and general characteristics of the process. For a more in-depth intro-

duction and discussion of the GLO process and its properties we refer to Bingmer (2012).

An introduction to the theory of point processes can be found for example in Daley and

Vere-Jones (1988), König and Schmidt (1992) or Cox and Isham (1980).

The GLO process builds on an oscillatory background rhythm that follows a random

walk and places a Poisson distributed number of events around every beat of this rhythm

according to a Gaussian distribution. Due to the dominant role of the Gaussian distribution

in this model the process is called ”Gaussian Locking to a free Oscillator” – GLO. It is very

similar to the ELO (”Exponential Locking to a free Oscillator”), which contains the same

background rhythm but distributes events at beats with exponentially decreasing firing

intensity (cf. Schneider (2008)). The GLO process is constructed in 3 steps:

1. Background rhythm: The background rhythm consists of random background

beats B = (Bk)k∈Z that follow a stationary random walk with normally distributed

increments Bk+1 −Bk ∼ N (µ, σ2
1).

2. Number of events: The number of events Pk at beat Bk is assumed to be Poisson

distributed with firing rate γ > 0, Pk ∼ Pois(γ).

3. Event variation: At every beat Bk all events Sk,1, ...., Sk,Pk are normally distributed

around the beat with independent increments, i.e.

Sk,i = Bk + Zk,i with Zk,i
iid∼ N (0, σ2

2). (2.1)

All random variables Zi1,i2 , Pi3 are independent for all i1, i3 ∈ Z and i2 ∈ N and independent

of the random walk (Bk)k∈Z. If Φ is a GLO process, we denote Φ ∼ GLO(µ, σ1, σ2, γ).

11



B1 B2 B3 B4

B2 − B1 ~ N(µ, σ1
2)

N(B2, σ2
2)

P2 = 2 P3 = 2 P4 = 1

S2,1 S2,2 S3,1 S3,2 S4,1

1. Background Beat

2. Number of Events

3. Distribution of Events

Figure 2.1.: Construction of the GLO process: The background rhythm (blue) has normally
distributed increments Bk+1 − Bk ∼ N (µ, σ2

1). At each beat Bk the number
of events Pk (blue) is Poisson distributed, Pk ∼ Pois(γ), and every event Sk,i
(red) is placed around its birth beat Bk according to N (Bk, σ

2
2).

The stationary random walk: The construction of a random walk (Bk)k∈Z in step

1 is as follows: At first, we construct a random walk with B′1 = 0 and independent and

normally distributed increments B′k+1 −B′k,(
B′k+1 −B′k

) iid∼ N (µ, σ2
1), for k ∈ Z. (2.2)

Stationarity is achieved by setting the origin of the time axis at random. This is done by

taking a large boundary a and setting B1 to the first time that (B′k)k∈Z reaches a. Then,

the steps of the stationary random walk are given as (cf. Bingmer (2012, p.17))

Bk := lim
a→∞

B′k+τa−1 − a, for k ∈ Z, (2.3)

where τa is the time at which the random walk first reaches the height a, or ∞,

τa := inf{k ∈ Z : B′k > a}. (2.4)

Bingmer (2012, p.31) shows that with this construction the GLO process is a stationary

process. However, note that conditional on knowing one or more beats the intensity of the

process is not constant any more.

Remark 2.1 (Non-bursty mode and stationarity). Bingmer et al. (2011) also allow for a

non-bursty mode, in which the random number of events at one beat is Bernoulli-distributed,

Pk ∼ Bern(γ), γ ∈ [0, 1]. However, we do not consider this mode in this work since the

given dataset exhibits clusters of events with more than one event, i.e. the process is clearly

bursty (cf. section 1.3). Nonetheless, in section 4.4.4 we will describe how the non-bursty

mode may be embedded into the estimation framework.
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The GLO model was first introduced by Bingmer et al. (2011) particularly for the purpose

of modeling the behavior of neuronal spike trains. Therefore, it is possible to distinguish

between regular and irregular as well as between bursty and non-bursty processes. A reg-

ular (irregular) spike train exhibits (lacks of) dominant rhythmic activity and oscillation,

whereas in bursty spike trains events tend to occur in clusters, i.e. in times of high intensity,

which are followed by periods without any events. With respect to this definition of reg-

ularity the Poisson process is an irregular, non-bursty process (cf. Bingmer (2012, p.52)).

The parameters of a GLO process directly indicate its level of regularity and burstiness: µ

and σ1 describe the mean increment and variability of the background rhythm. γ is the

firing rate (average number of events per burst) whereas σ2 represents the burst width. In

the following we will denote the parameter vector as η = (µ, σ1, σ2, γ).

Remark 2.2 (GLO simulation). Bingmer (2012, p.41 and p.137) develops an algorithm

(Algorithm 1) to simulate events of a GLO process in the time interval [0, T ]. This algorithm

also allows us to also save the simulated (original) beat locations and labels (i.e. markers

that indicate to which beat each event belongs; for a thorough definition see chapter 3).

In order to ensure stationarity of the simulated background rhythm the algorithm starts

simulating beats at −K0µ. We set K0 = 30000 to allow the process to converge to station-

arity. Then, only beats in the interval [−K,T + K] with K > 0 are considered to place

events in [0, T ]. However, if K is very small and σ2 large, there may exist beats outside

[−K,T +K] that place events in [0, T ] but are not considered.

Therefore, Bingmer (2012, p.39-42) introduces a precision parameter ε > 0 that controls

the size of the interval [−K(ε), T+K(ε)] in which beats are considered. By choosing K(ε) =

F−1
N (0,σ2

2)
(1−ε) the probability that beats larger than T+K(ε) place events in [0, T ] is bounded

by ε and analogously the probability that beats smaller than −K(ε) place events in [0, T ] is

bounded by ε. We choose ε = 10−9 to ensure a very high precision of the simulation

procedure. Both values, K0 = 30000 and ε = 10−9, remain fixed throughout the remaining

chapters whenever the simulation algorithm is employed.

To illustrate the behavior of a typical GLO process we employ the aforementioned algo-

rithm to simulate events in [0, 13000] with parameters η = (364, 20, 20, 5). In Figure 2.2 we

show the resulting autocorrelation histogram (ACH) and inter-event-interval (IEI) distribu-

tion. As it is typical for bursty processes (cf. Bingmer (2012, chapter 3)) the ACH exhibits

a narrow peak near zero due to small intervals within bursts. Moreover, this peak is fol-

lowed by clear, repetitive peaks, which indicate the oscillatory behavior. Analogously, the

IEI distribution exhibits two peaks: one (small) peak representing intervals within bursts

and one (large) peak representing intervals between bursts. Note that these peaks tend to

move together for more irregular processes (cf. Bingmer (2012, chapter 3)).
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Figure 2.2.: (A) ACH and (B) IEI distribution of a simulated GLO process with parameters
µ = 364, σ1 = 20, σ2 = 20 and γ = 5.

Since the model is constructed to describe regular oscillations with distinguishable bursts,

σ1/µ and σ2/µ should be small. Particularly if σ1/µ < 1/3, the process very likely maintains

the property of monotone increasing beat locations (in this case P(Bk+1−Bk < 0) < 0.0014,

cf. Bingmer (2012, p.23)).

In the following we will present several representations and properties of the GLO process,

which are helpful to assess its characteristics in the context of collective risk models. We

start with the representation of the GLO as a Cox process:

Proposition 2.1. (Bingmer (2012, p.34)) Φ ∼ GLO(µ, σ1, σ2, γ) is a Cox process with

random intensity

λ(t) = γ
∑
k∈Z

fN (Bk,σ
2
2)(t), (2.5)

i.e. Φ is a Poisson process ϕ(· | Λ) with intensity measure

Λ =

∫
A
λ(t) dt, A ∈ B(R). (2.6)

From Proposition 2.1 it can easily be inferred that for σ2 →∞ the intensity of the process

converges to a constant since

lim
σ2→∞

∂λ(t)

∂t
= lim

σ2→∞

γ

σ2

√
2π

∑
k∈Z
−(t−Bk)

σ2
2

exp

(
−(t−Bk)2

2σ2
2

)
= 0. (2.7)

This observation gives an intuition about the following convergence behavior:

Proposition 2.2 (Convergence to Poisson process). (Bingmer (2012, p.35-36))

Let Φ ∼ GLO(µ, σ1, σ2, γ) with arbitrary µ ∈ R, σ1, γ > 0. Then, if σ2 tends to infinity, the

GLO Φ converges weakly to a Poisson process with intensity λ = γ/µ.
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When considering a collective risk model

L(t1, t2) =

Φ(t1,t2)∑
i=1

Yi (2.8)

it is important to assess the number of events in (t1, t2], t2 > t1, which is for the GLO

process given as

Φ(t1, t2) =
∑
k∈Z

Pk∑
i=1

1{Sk,i∈(t1,t2]}. (2.9)

Then, if we assume the claim severities Yi to be independent from their frequency Φ, the

expected aggregate claims in (t1, t2] are given as

E[L(t1, t2)] = E

Φ(t1,t2)∑
i=1

Yi

 = E[Φ(t1, t2)]E[Y1] (2.10)

by employing Wald’s theorem (cf. Klenke (2006, p.99)). Moreover, the variance is by the

theorem of Blackwell-Girshick (cf. Klenke (2006, p.103)) given as

var(L(t1, t2)) = var

Φ(t1,t2)∑
i=1

Yi

 = E[Y1]2var(Φ(t1, t2)) + E[Φ(t1, t2)]var(Y1). (2.11)

Therefore, it may be useful to compute the expected value and variance of Φ(t1, t2).

Remark 2.3. For a homogeneous Poisson process ϕ with intensity λ the number of events

in (t1, t2] is ϕ(t1, t2) ∼ Pois((t2−t1)λ). According to Proposition 2.2 for the GLO we obtain

L
(
Φ(t1, t2)

)
→ Pois((t2 − t1)γ/µ) if σ2 →∞.

Additionally, we obtain a similar convergence behavior for σ2 → 0: In this case the event

times converge weakly to the beat locations, i.e. for all k ∈ Z and i = 1, ..., Pk (we apply the

dominated convergence theorem, cf. Klenke (2006, p.135))

lim
σ2↓0

P(Sk,i ∈ (t1, t2]) = E
[

lim
σ2↓0

P (Bk + Zk,i ∈ (t1, t2] | Bk)
]

= P(Bk ∈ (t1, t2]). (2.12)

Due to the conditional independence of the events it follows that the characteristic function

of Φ(t1, t2) converges: For all u ∈ R we have (in this case i is the imaginary unit):

lim
σ2↓0

E
[
eiuΦ(t1,t2) | B

]
= lim

σ2↓0
E

[∏
k∈Z

E
[
e
iu
∑Pk
j=1 1{Sk,j∈(t1,t2]} | Pk,B

]
| B

]
(2.13)

= E

∏
k∈Z

Pk∏
j=1

E
[
eiu1{Bk∈(t1,t2]} | B

]
| B

 = E
[
eiu

∑
k∈Z

∑Pk
j=1 1{Bk∈(t1,t2]} | B

]
. (2.14)
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Since
∑

k∈Z
∑Pk

i=1 1{Bk∈(t1,t2]} is conditional on the background rhythm B the superposition

of thinned Poisson distributions (cf. Proposition 2.1 and below), we have

lim
σ2↓0
L (Φ(t1, t2) | B) = Pois

(
γ
∑
k∈Z

1{Bk∈(t1,t2]}

)
. (2.15)

Therefore, if σ2 is sufficiently small and the number of beats in (t1, t2] is known, we can

expect Φ(t1, t2) to be approximately Poisson distributed. If the beats are unknown, the un-

conditional limiting probability for observing v ∈ N0 events in (t1, t2] is

lim
σ2→0

P(Φ(t1, t2) = v) =

∫
RZ

(
γ
∑

k∈Z 1{bk∈(t1,t2]}
)v

v!
e−γ

∑
k∈Z 1{bk∈(t1,t2]}dPB(b), (2.16)

which may be computed e.g. by means of (Markov Chain) Monte Carlo methods.

Proposition 2.2 and Remark 2.3 give an intuition about the distribution of the number of

GLO events for very large and very small burst width σ2. However, σ2 may in general not

be large or small enough to obtain good approximations. Nonetheless, we can still calculate

the conditional distribution and expectation of Φ(t1, t2):

Bingmer (2012, p.32) shows that a priori the expected intensity of the process is given as

E[Φ(0, 1)] =
γ

µ
. (2.17)

However, in this work we assume to have already observed a number of events. Therefore,

we are interested in distributional properties of Φ(t1, t2) conditional on background beats.

For this purpose, we firstly focus on one beat Bk with Poisson distributed number of events

Pk ∼ Pois(γ). The number of events that Bk places in (t1, t2] is given by

Φk(t1, t2) :=

Pk∑
i=1

1{Sk,i∈(t1,t2]}. (2.18)

Clearly, L
(
1{Sk,i∈(t1,t2]} | Bk

)
= Bernoulli (νk(t1, t2)) with

νk(t1, t2) := FN (Bk,σ
2
2)(t2)− FN (Bk,σ

2
2)(t1). (2.19)

Moreover, we may interpret Pk as the number of events in (0, 1] originating from a homo-

geneous Poisson process with intensity γ.

Assume that Bk is known. Then, due to the thinning property of the Poisson distribution

(see Durrett (2012, p. 106)) Φk(t1, t2) exhibits the same distribution as the number of events

in (0, 1] of a homogeneous Poisson process with intensity γ νk(t1, t2). Since conditional on

B the processes Φk(t1, t2) and Φl(t1, t2), l 6= k ∈ Z, are independent, we may interpret

Φ(t1, t2) =
∑

k∈Z Φk(t1, t2) as the superposition of independent Poisson processes with

intensities γ νk(t1, t2), k ∈ Z. Thus, Φ(t1, t2) is conditional on B Poisson distributed.
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Proposition 2.3 (Number of events). Let Φ ∼ GLO(µ, σ1, σ2, γ). Then, the number of

events in (t1, t2] is conditional on the background rhythm Poisson distributed,

L (Φ(t1, t2) | B) = Pois

(
γ
∑
k∈Z

(
FN (Bk,σ

2
2)(t2)− FN (Bk,σ

2
2)(t1)

))
. (2.20)

Proof. This follows directly from the construction of Φ(t1, t2) given above and the super-

position property of homogeneous Poisson processes (see Durrett (2012, p.108)).

As Bingmer (2012, p.34) points out, this property also follows from the representation of

the GLO process as a Cox process by conditioning the random intensity measure Λ on the

beats B (cf. Proposition 2.1).

According to Proposition 2.3 the expected value and variance of Φ(t1, t2) conditional on

the beats is given by γ
∑

k∈Z νk(t1, t2). However, the summands Φk(t1, t2) are uncondition-

ally not independent any more and, thus, Φ(t1, t2) is unconditionally not Poisson distributed

and may exhibit a different expectation and variance, i.e. E[Φ(t1, t2)] 6= var(Φ(t1, t2)).

To give an intuition about the unconditional moments, we will in the following calculate

the expected number of events conditional on N beats, E[Φ(t1, t2) | B1, ..., BN ].

Lemma 2.1 (Expected number of events). Let Φ ∼ GLO(µ, σ1, σ2, γ). Then, the expected

number of events in (t1, t2] conditional on B1, ..., BN is given by

E[Φ(t1, t2) | B1, ..., BN ] = γ
N∑
k=1

(
FN (Bk,σ

2
2)(t2)− FN (Bk,σ

2
2)(t1)

)
+ γ

∑
k∈{−1,−2,...}

(
FN (B1+kµ,σ2

2+|k|σ2
1)(t2)− FN (B1+kµ,σ2

2+|k|σ2
1)(t1)

)
+ γ

∑
k∈{1,2,...}

(
FN (BN+kµ,σ2

2+|k|σ2
1)(t2)− FN (BN+kµ,σ2

2+|k|σ2
1)(t1)

)
. (2.21)

Proof. We employ the theorem of monotone convergence (cf. Klenke (2006, p.91)), the

independence between Pk and Sk,1, ..., Sk,Pk (conditional on Bk) and Wald’s theorem (cf.

Klenke (2006, p.99)), which yields

E[Φ(t1, t2) | B1, ..., BN ]

= E

[∑
k∈Z

Pk∑
i=1

1{Sk,i∈(t1,t2]} | B1, ..., BN

]
(2.22)

=
∑
k∈Z

E

[
E

[
Pk∑
i=1

1{Sk,i∈(t1,t2]} | B1, ..., BN , Bk

]
| B1, ..., BN

]
(2.23)

=
∑
k∈Z

E [Pk]E
[
E
[
1{Sk,1∈(t1,t2]} | B1, ..., BN , Bk

]
| B1, ..., BN

]
. (2.24)
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Therefore,

E[Φ(t1, t2) | B1, ..., BN ] = γ
N∑
k=1

(
FN (Bk,σ

2
2)(t2)− FN (Bk,σ

2
2)(t1)

)
(2.25)

+γ
∑

k∈Z\{1,...,N}

E
[∫ t2

t1

1√
2πσ2

e
− 1

2σ2
2

(Bk−x)2

dx | B1, ..., BN

]
.

Now, we will use the random walk structure of the background rhythm, which gives

L(Bk | B1, ..., BN ) = N
(
B1 + (k − 1)µ, |k − 1|σ2

1

)
, for k < 1, (2.26)

and L(Bk | B1, ..., BN ) = N
(
BN + (k −N)µ, |k −N |σ2

1

)
, for k > N, (2.27)

since the random walk is Markovian and its increments are iid N (µ, σ2
1), i.e.

Bk = B1 − (B1 −B0)︸ ︷︷ ︸
∼N (µ,σ2

1)

− (B0 −B−1)︸ ︷︷ ︸
∼N (µ,σ2

1)

−....− (Bk+1 −Bk)︸ ︷︷ ︸
∼N (µ,σ2

1)

, for k < 1, (2.28)

and Bk = BN +BN+1 −BN︸ ︷︷ ︸
∼N (µ,σ2

1)

+BN+2 −BN+1︸ ︷︷ ︸
∼N (µ,σ2

1)

...+Bk −Bk−1︸ ︷︷ ︸
∼N (µ,σ2

1)

, for k > N. (2.29)

Let k < 1. As a next step we can identify the distribution of
(
Bk−x√

2σ2

)2
conditional on B1:

It is known (cf. Tiku (2004)) that for Y ∼ N (
√
δ, 1) we have Y 2 ∼ χ2

1(δ), which is a non-

central chi-squared distribution with one degree of freedom and non-centrality parameter

δ. Thus,

Y 2
k :=

 Bk−x√
2σ2√

var
(
Bk−x√

2σ2

)


2

=

 Bk−x√
2σ2√
|k−1|σ2

1

2σ2
2


2

=

(
Bk − x√
|k − 1|σ2

1

)2

∼ χ2
1(δk) (2.30)

with non-centrality parameter

δk = (E [Yk])
2 =

(B1 + (k − 1)µ− x)2

|k − 1|σ2
1

. (2.31)

Moreover, we may apply the fact that for a random variable Y 2 ∼ χ2
1(δ) the moment

generating function is given by (cf. Tiku (2004))

E
[
euY

2
]

=
1√

1− 2u
e

δu
1−2u , for u < 1/2. (2.32)
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Thus,

E

[
e
−
(
Bk−x√

2σ2

)2

| B1

]
= E

[
e
− |k−1|σ2

1
2σ2

2
Y 2
k | B1

]
=

1√
1 + 2

|k−1|σ2
1

2σ2
2

exp

− δk
|k−1|σ2

1

2σ2
2

1 + 2
|k−1|σ2

1

2σ2
2

 (2.33)

=
σ2√

σ2
2 + |k − 1|σ2

1

exp

[
−(B1 + (k − 1)µ− x)2

2(σ2
2 + |k − 1|σ2

1)

]
(2.34)

and we obtain with the dominated convergence theorem (Klenke (2006, p.170))

E
[∫ t2

t1

1√
2πσ2

e
− 1

2σ2
2

(Bk−x)2

dx | B1

]
=

∫ t2

t1

1√
2πσ2

E

[
e
−
(
Bk−x√

2σ2

)2

| B1

]
dx (2.35)

=
σ2√

σ2
2 + |k − 1|σ2

1

∫ t2

t1

1√
2πσ2

e
− (B1+(k−1)µ−x)2

2(σ2
2+|k−1|σ2

1) dx (2.36)

=

∫ t2

t1

1√
2π(σ2

2 + |k − 1|σ2
1)
e
− (B1+(k−1)µ−x)2

2(σ2
2+|k−1|σ2

1) dx (2.37)

= FN (B1+(k−1)µ,σ2
2+|k−1|σ2

1)(t2)− FN (B1+(k−1)µ,σ2
2+|k−1|σ2

1)(t1). (2.38)

The calculation is analog for k > N . By shifting the summation index one yields the form

of (2.21).

Remark 2.4. The proof of Lemma 2.1 shows that conditional on one beat B1 the probability

that an event of beat Bk is placed in (t1, t2] is given by

P(S1,i ∈ (t1, t2] | B1) = FN (B1+(k−1)µ,σ2
2+|k−1|σ2

1)(t2)− FN (B1+(k−1)µ,σ2
2+|k−1|σ2

1)(t1), (2.39)

thus, L(S1,i | B1) = N (B1 + (k − 1)µ, σ2
2 + |k − 1|σ2

1).

This allows for an intuitive interpretation of E[Φ(t1, t2) | B1, ..., BN ]: For every beat the

mean number of events at one beat is weighted by the probability that the beat places an

event in (t1, t2].
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Remark 2.5 (Variance). The second moment of Φ(t1, t2) conditional on B1, ..., BN is given

as

E
[
Φ(t1, t2)2 | B1, ..., BN

]
(2.40)

= E

(∑
k∈Z

Pk∑
i=1

1{Sk,i∈(t1,t2]}

)2

| B1, ..., BN

 (2.41)

= E

∑
k∈Z

(
Pk∑
i=1

1{Sk,i∈(t1,t2]}

)2

| B1, ..., BN


+ E

∑
k∈Z

∑
l∈Z\{k}

Pk∑
i=1

Pl∑
j=1

1{Sk,i∈(t1,t2]}1{Sl,j∈(t1,t2]} | B1, ..., BN

 (2.42)

=
∑
k∈Z

(
E

( Pk∑
i=1

1{Sk,i∈(t1,t2]}

)2

| B1, ..., BN


︸ ︷︷ ︸

(A)

+
∑

l∈Z\{k}

E

 Pk∑
i=1

Pl∑
j=1

1{Sk,i,Sl,j∈(t1,t2]} | B1, ..., BN


︸ ︷︷ ︸

(B)

)
. (2.43)

It is straightforward to adopt the proof of Wald’s theorem given by Klenke (2006, p.99-

100) for (A) and (B) since Pk, Pl and 1{Sk,i,Sl,j∈(t1,t2]} are independent for l 6= k and

1{Sk,i1 ,Sl,j1∈(t1,t2]} and 1{Sk,i2 ,Sl,j2∈(t1,t2]} are conditional on Bk and Bl independent and

identically distributed for all i1, i2 ∈ {1, ..., Pk}, j1, j2 ∈ {1, ..., Pl}. Thus, for the first

expectation (A) in (2.43) it follows that

E

( Pk∑
i=1

1{Sk,i∈(t1,t2]}

)2

| B1, ..., BN

 (2.44)

= γE [νk(t1, t2) | B1, ..., BN ]

+ E

E
 Pk∑
i=1

∑
j=1,...,Pk

j 6=i

1{Sk,i∈(t1,t2]}1{Sk,j∈(t1,t2]} | B1, ..., BN , Bk

 | B1, ..., BN

 (2.45)

= γE [νk(t1, t2) | B1, ..., BN ] + E [Pk(Pk − 1)]E
[
νk(t1, t2)2 | B1, ..., BN

]
(2.46)

= γE [νk(t1, t2) | B1, ..., BN ] + γ2E
[
νk(t1, t2)2 | B1, ..., BN

]
, (2.47)

where νk(t1, t2) = P(Sk,1 ∈ (t1, t2] | Bk) =
∫ t2
t1

1√
2πσ2

e
− 1

2σ2
2

(Bk−x)2

dx.
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Furthermore, for the second expectation (B) in (2.43) it similarly follows that

E

 Pk∑
i=1

Pl∑
j=1

1{Sk,i,Sl,j∈(t1,t2]} | B1, ..., BN

 (2.48)

= E

E
 Pk∑
i=1

Pl∑
j=1

1{Sk,i,Sl,j∈(t1,t2]} | B1, ..., BN , Bk, Bl

 | B1, ..., BN

 (2.49)

= E [PkPl]E
[
E
[
1{Sk,1,Sl,1∈(t1,t2]} | B1, ..., BN , Bk, Bl

]
| B1, ..., BN

]
(2.50)

= γ2E
[∫ t2

t1

1√
2πσ2

e
− 1

2σ2
2

(Bk−x)2

dx

∫ t2

t1

1√
2πσ2

e
− 1

2σ2
2

(Bl−x)2

dx | B1, ..., BN

]
. (2.51)

However, since Bk and Bl are not independent, the integrals in Equation (2.51) are condi-

tional on B1, ..., BN not independent for k, l /∈ {1, ..., N}, which makes it difficult to find an

analytical solution for the second moment.

Remark 2.6 (Parameter estimation). Given n ∈ N observed events S1, ..., Sn of a GLO

process we would like to estimate the four parameters η = (µ, σ1, σ2, γ). However, we did

neither observe the background rhythm B nor do we know which events belong to the same

burst and are, thus, not able to write down the likelihood function for η. Therefore, it is not

possible to compute a Maximum-Likelihood estimate for η.

Bingmer et al. (2011) suggest to fit the theoretical to the empirical intensities. For this

purpose, they show that the autocorrelation function (ACF) for the GLO is given as

f(l) = γ
∑
k∈Z

fN (kµ,|k|σ2
1+2σ2

2)(l). (2.52)

Note, that in contrast to the ACF for a time series the ACF for point processes corresponds

to the intensity of events at time l conditioned on an event at time 0 (cf. Gerstein and

Kiang (1960)), whereas the ACF for a time series is the correlation between two events

with lag l (cf. Brockwell and Davis (2010) and Definition 2.5, p. 33). Since the autocorre-

lation histogram (ACH) (after standardizing, cf. Bingmer (2012, p.71)) is an estimate for

the ACF of a point process, Bingmer et al. (2011) propose to fit the empirical ACH to the

ACF by minimizing the weighted residual sum of squares.

However, this procedure exhibits several shortcomings: Firstly, and most importantly, the

obtained estimates do not meet a thorough theoretical justification as, in contrast, Maximum-

Likelihood estimates are consistent and asymptotically unbiased and Bayesian estimates

result as subjective beliefs from Bayes’ theorem. Secondly, the procedure leads to large es-

timation errors for large σ2/µ or low firing rates γ. Thirdly, the uncertainty about true

parameter values can only be assessed in two ways: As a first approach, the fitting rou-

tine of the R-function nls() provides estimates for the standard errors. However, these are

underestimating the true variability most of the time (cf. Bingmer (2012, p.95)). Thus,
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Bingmer et al. (2011) propose the use of bootstrap methods to obtain confidence intervals.

Nonetheless, this is rather time consuming and exposed to additional estimation errors itself.

Furthermore, the fitting method is not able to cover extensions of the GLO model that e.g.

allow for overdispersed number of events at bursts: Since the ACF of the GLO is defined

for l > 0 as (cf. Bingmer (2012, p.67))

f(l) = lim
δ1,δ2→0+

E[Φ(l, l + δ1) | Φ(−δ2, 0] > 0]

δ1
(2.53)

= lim
δ1,δ2→0+

E[
∑

k∈Z
∑Pk

i=1 δBk+Zk,i(l, l + δ1) | Φ(−δ2, 0] > 0]

δ1
, (2.54)

regardless of var(Pk) only the average burst size E[Pk] is considered in the ACF. Finally,

forecasting future events, which is an important tool for risk management in general, is not

possible with ACH estimates since historical beats for observed events are not estimated.

To conclude, in addition to the successful modeling of neuronal activity the GLO model

exhibits many attractive features for modeling claim arrivals as well: It constructs a full

point process, does generally not restrict the expected value or variance of the number of

events in a given time window and is particularly suitable for seasonal events. Moreover,

with increasing burst width it converges to a homogeneous Poisson process and it is straight-

forward to extend the model with e.g. Negative Binomially distributed number of events

per burst or trends (we will suggest several extensions in section 4.4).

However, there does not exist a coherent and flexible theoretical framework for parameter

estimation. Addressing this issue, in the next chapter we will review methods of Bayesian

inference in order to develop a Bayesian estimation framework for the parameters of the

GLO model.

2.2. Bayesian inference and conjugate priors

The main idea of Bayesian inference is to assess someone’s subjective belief about un-

known quantities of a model. Thus, probabilities are seen as subjective and interpreted

conditional on available information. This contrasts the classical (frequentist) approach, in

which probabilities are seen as limiting frequencies under infinite hypothetical replications

of the situation under consideration, i.e. model parameters are considered as fixed, albeit

unknown, constants (cf. Wakefield (2013, p.22-23) or Chu and Zhao (2011, p.244)).

To perform a Bayesian analysis one has to assign a prior distribution π(ϑ) to the pa-

rameter (vector) ϑ, which represents a person’s belief (or knowledge) about the value of ϑ

before having observed any data. When new information is obtained, the prior knowledge is

revised. By combining the prior π(ϑ) and the likelihood L(ϑ;S) = p(S | ϑ) of the observed

data S the posterior distribution p(ϑ | S) can be calculated by employing Bayes’ theorem
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(cf. e.g. Hoff (2009, p.2) or Koch (2007, p.31)):

p(ϑ | S) =
L(ϑ;S)π(ϑ)∫

Θ L(v;S)π(v) dv
, (2.55)

where Θ is a parameter-space for ϑ. The posterior distribution represents the updated belief

about ϑ after having observed the data S. Since the normalizing constant
∫

Θ L(v;S)π(v) dv

does not contain any information about ϑ, it is frequently omitted, in which case Bayes’

theorem is represented by

p(ϑ | S) ∝ L(ϑ;S)π(ϑ), (2.56)

where ∝ denotes proportionality. A justification for the use of Bayes’ theorem can be found

in the results of Cox (1946), Cox (1961) or Savage (1972), who show that it provides an

optimal method for updating a person’s belief about ϑ given the new information S.

To obtain analytically tractable posterior distributions, the concept of conjugancy is

immensely helpful:

Definition 2.1 (Conjugate). (Hoff (2009, p.38)) A class P of prior distributions for ϑ is

called conjugate for a sampling model p(S | ϑ) if

π(ϑ) ∈ P ⇒ p(ϑ | S) ∈ P. (2.57)

Thus, if one chooses a conjugate prior, the posterior distribution will originate from the

same distributional family. Example 1 shows that a Gamma prior for the precision ψ (which

is the inverse of the variance σ2) and a Normal prior for the mean µ of a Normal distribution

are its conjugate priors. In this work we parametrize the Gamma distribution in terms of

its shape α > 0 and rate β > 0, such that the expected value is α/β and the pdf is given by

fGa(α,β)(x) =
βα

Γ(α)
xα−1e−βx, for x > 0, (2.58)

where Γ(x) =
∫∞

0 tx−1e−tdt is the Gamma function.

Note that in calculations as well as algorithms we mostly parametrize the Normal distri-

bution in terms of its precision ψ = σ−2, particularly to exploit conjugacy. However, we use

σ2 and ψ−1 interchangeably and report priors, posterior distributions and estimates in terms

of the variance or standard deviation, since these are generally more intuitive to interpret

and often desired to estimate. Because precision and variance are deterministically linked,

i.e. ψ = 1/σ2, samples can be transformed easily. Moreover, the inverse-Gamma distribu-

tion provides a straightforward link between the priors for ψ and σ2, i.e. if ψ ∼ Ga(α, β),

then σ2 is inverse-Gamma distributed, σ2 = ψ−1 ∼ IGa(α, β), with pdf

fIGa(α,β)(x) =
βα

Γ(α)
x−α−1 exp

[
−β
α

]
, for x > 0. (2.59)
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Example 1 (Joint inference for the normal distribution). (cf. Hoff (2009, p.73-75))

Let S = (S1, ...., Sn) be n ∈ N independent, identically and normally distributed observa-

tions, i.e. S1, ..., Sn
iid∼ N (µ, ψ−1), and suppose that a priori ψ and µ are independent and

the prior distributions are µ ∼ N
(
µµ, σ

2
µ

)
and ψ ∼ Ga(α, β). Then, by Bayes’ theorem the

joint posterior distribution is proportional to

p(µ, ψ | S) (2.60)

∝ fN (µµ,σ2
µ)(µ)× fGa(α,β)(ψ)×

n∏
i=1

fN (µ,ψ−1)(Si) (2.61)

∝ ψn/2+α−1 exp

[
− 1

2σ2
µ

(µ− µµ)2 − βψ − ψ

2

n∑
i=1

(Si − µ)2

]
. (2.62)

One can easily identify the full conditional posterior densities: For µ one yields

p(µ | ψ,S) ∝ p(µ, ψ | S) ∝ exp

[
− 1

2σ2
µ

(µ− µµ)2 − ψ

2

n∑
i=1

(Si − µ)2

]
(2.63)

∝ exp

[
−ψ

2

(
n∑
i=1

(Si − S)2 + n(S − µ)2

)
− 1

2σ2
µ

(µ− µµ)2

]
(2.64)

∝ exp

[
−1

2

(
µ2

(
nψ +

1

σ2
µ

)
− 2µ

(
nSψ +

µµ
σ2
µ

))]
(2.65)

∝ exp

[
−1

2

(
µ2a− 2µb

)]
(2.66)

∝ exp

[
−a

2

(
µ2 − 2µ

b

a

)]
∝ exp

[
−a

2

(
µ− b

a

)2
]
, (2.67)

which is proportional to the density of a normal distribution with variance 1/a,

1

a
:=

1

nψ + 1
σ2
µ

=
1

n
σ2 + 1

σ2
µ

=
σ2σ2

µ

nσ2
µ + σ2

, (2.68)

and expected value b/a,

b

a
:=

nSψ +
µµ
σ2
µ

a
=

(
nS
σ2

+
µµ
σ2
µ

)
σ2σ2

µ

nσ2
µ + σ2

=
nσ2

µ

nσ2
µ + σ2

S +
σ2

nσ2
µ + σ2

µµ. (2.69)

Thus, the conditional posterior expectation of the parameter µ is a weighted average of the

sample mean S and the prior expectation µµ, whereas S gains more weight with increasing

number of observations.
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The full conditional posterior distribution of ψ is proportional to

p(ψ | µ,S) ∝ p(ψ, µ | S)

∝ ψα+n/2−1 exp

[
− 1

2σ2
µ

(µ− µµ)2 − βψ − ψ

2

n∑
i=1

(Si − µ)2

]

∝ ψα+n/2−1 exp

[
−ψ

(
β +

1

2

n∑
i=1

(Si − µ)2

)]
, (2.70)

which is proportional to the density of a Ga
(
α+ n

2 , β + 1
2

∑n
i=1(Si − µ)2

)
distribution. The

conditional posterior expectation is a weighted average analogously to that of µ:

E[ψ | µ,S] =
α+ n

2

β + 1
2

∑n
i=1(Si − µ)2

(2.71)

=
β

β + 1
2

∑n
i=1(Si − µ)2

α

β
+

1
2

∑n
i=1(Si − µ)2

β + 1
2

∑n
i=1(Si − µ)2

n∑n
i=1(Si − µ)2

. (2.72)

However, the full conditional posterior distribution of µ depends on ψ and vice versa,

thus, one has to compute the marginal posterior distributions to obtain posterior knowledge

about the single parameters itself. These are given by

p(µ | S) =

∫ ∞
0

p(µ, ψ | S) dψ (2.73)

and p(ψ | S) =

∫ ∞
−∞

p(µ, ψ | S) dµ. (2.74)

An alternative way to gain posterior information about single parameters without solving

the integrals in (2.73) and (2.74) analytically but drawing samples from p(µ | ψ,S) and

p(ψ | µ,S) is Gibbs sampling, which will be described in section 2.3.

Remark 2.7 (Consistency). Example 1 shows that for Bayesian inference for a Normal

distribution the conditional posterior distribution of µ shrinks towards S with increasing

sample size: The conditional posterior mean converges to S and the variance converges to

zero. This phenomenon is consistent with the Bernstein-von Mises theorem which states

that in the limit of infinite trials the posterior distribution converges independently of the

initial prior to a Gaussian distribution around the true parameter.

This theorem is sometimes referred to as consistency of Bayesian estimates (cf. Wakefield

(2013, p.90)). However, the first proof of the theorem was only given in finite probability

spaces (cf. Doob (1949)) and, moreover, the theorem is proven to be almost surely wrong

in infinite probability spaces (cf. Freedman (1965)). Thus, prior distributions do generally

matter, even in the case of many observations.
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2.3. MCMC Methods

Often the joint posterior distribution p(ϑ | S) is not a standard distribution and, thus,

difficult to handle. If at least p(ϑ | S) were a distribution one could take samples from,

Monte Carlo approximations for posterior quantities such as the posterior mean, variance

or credible intervals could be computed. However, many, particularly multidimensional,

posterior distributions are not easy to sample from.

In these situations, it may be easier to employ Markov chain Monte Carlo (MCMC)

methods. Essentially, a MCMC algorithm constructs a Markov chain with equilibrium

distribution p(ϑ | S). If the chain converges, it is convenient to discard the first BI iterations

of the chain (the so called burn-in phase) until convergence is reached and to consider the

remaining samples as samples from p(ϑ | S) (cf. Koch (2007, p.218) and Roberts and

Rosenthal (2004, p.22)). In this work the length of the burn-in phase BI will be identified

by visual inspection, examples are given in section 2.3.4. In the following we will shortly

review two frequently used MCMC-methods, which will also be employed in the Bayesian

inference framework for the GLO described in chapter 3.

2.3.1. Gibbs sampling

The Gibbs sampler was introduced by Geman and Geman (1984) in the context of Bayesian

image analysis. Its main idea is to decompose the parameter space by sampling from the

full conditional distributions of the posterior distribution:

Definition 2.2 (Full Conditional Posterior Distribution). For the k-th component of a

parameter vector ϑ = (ϑ1, ..., ϑd), k ∈ {1, ..., d}, the full conditional posterior distribution

(FCPD) is the posterior distribution (density) of the k-th component given everything else

and can be computed with Bayes’ theorem as follows:

p(ϑk | ϑ−k,S) =
p(ϑ1, ..., ϑd | S)

p(ϑ1, ..., ϑk−1, ϑk+1, ..., ϑd | S)
(2.75)

∝ p(ϑ1, ..., ϑd | S), (2.76)

where ϑ−k := (ϑ1, ϑ2, ...., ϑk−1, ϑk+1, ..., ϑd).

Since the denominator on the right-hand side of (2.75) corresponds to a normalizing con-

stant, the FCPD for ϑk is found such that in the joint posterior density p(ϑ1, ..., ϑd | S) only

the component ϑk is considered being variable (cf. Koch (2007, p.217-218)). In Example 1

we already obtained the FCPDs for µ and ψ in a similar way.
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Algorithm 2.1 (Gibbs sampler). (Koch (2007, p.218)) The Gibbs sampler begins with

arbitrary starting values ϑ
(0)
1 , ...., ϑ

(0)
d . Then random values are sequentially drawn from the

FCPDs of ϑ1, ..., ϑd to complete one iteration. Hence, in the (r + 1)-th iteration one draws

ϑ
(r+1)
1 from p(ϑ1 | ϑ(r)

2 , ...., ϑ
(r)
d ,S),

ϑ
(r+1)
2 from p(ϑ2 | ϑ(r+1)

1 , ϑ
(r)
3 , ...., ϑ

(r)
d ,S),

...

ϑ
(r+1)
d from p(ϑd | ϑ

(r+1)
1 , ϑ

(r+1)
2 , ...., ϑ

(r+1)
d−1 ,S).

In many situations it is possible to draw samples from FCPDs, particularly if conjugate

priors are used. However, once that is not possible for one or more components of ϑ, one can

not employ the Gibbs sampling algorithm. In these cases, the Metropolis-Hastings (MH)

algorithm represents an alternative way to sample from the posterior distribution.

2.3.2. The Metropolis-Hastings algorithm

Suppose that we have already obtained sample values
{
ϑ(1), ..., ϑ(r)

}
from the posterior

distribution p(ϑ | S) and would like to add a new value ϑ(r+1) ∈
{
ϑ(r), ϑ′

}
for some ϑ′ ∈ Θ.

Should we add ϑ′ or another instance of ϑ(r)? Intuitively, if p(ϑ′ | S) > p(ϑ(r) | S), we

would want more instances of ϑ′ than of ϑ(r) in the sample set, and vice versa. Thus, it is

reasonable to require the ratio of the number of instances of ϑ′ relative to the number of

instances of ϑ(r) to match the ratio of the posterior distributions, which by Bayes’ theorem

is equal to

z =
p(ϑ′ | S)

p(ϑ(r) | S)
=
p(S | ϑ′)π(ϑ′)

p(S)

p(S)

p(S | ϑ(r))π(ϑ(r))
=

p(S | ϑ′)π(ϑ′)

p(S | ϑ(r))π(ϑ(r))
. (2.77)

Note that the normalizing constants do not appear on the right-hand side of equation

(2.77). Thus, it is sufficient to calculate posterior densities only proportional to constants.

Additionally, the Metropolis-Hastings (MH) algorithm, which was first introduced by

Metropolis et al. (1953) and subsequently generalized by Hastings (1970), also takes into

account the proposal distribution q
(
ϑ | ϑ(r)

)
for ϑ′ given ϑ(r):

Algorithm 2.2 (Metropolis-Hastings). (Wakefield (2013, p.123))

In the (r + 1)-th iteration

1) propose a new value ϑ′ ∼ q
(
ϑ | ϑ(r)

)
,

2) accept this value, i.e. set ϑ(r+1) = ϑ′, with probability

pacc = min

{
1, z × q(ϑ(r) | ϑ′)

q(ϑ′ | ϑ(r))

}
= min

{
1,

p(ϑ′ | S)

p(ϑ(r) | S)
× q(ϑ(r) | ϑ′)
q(ϑ′ | ϑ(r))

}
, (2.78)

and set ϑ(r+1) = ϑ(r), otherwise.
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An important special case of proposal distributions are symmetric proposal distributions:

If the proposal distribution satisfies q(x | y) = q(y | x) for all x, y ∈ Θ, the acceptance

probability (2.78) reduces to pacc = min{1, z}. In this case the algorithm is simply called

Metropolis algorithm (cf. Wakefield (2013, p.123)).

The MH algorithm represents a rather simple method to sample from a posterior distri-

bution. However, it also exhibits one major drawback in comparison to the Gibbs sampler

since the proposal distribution has to be chosen: Clearly, if the proposal distribution is

far off the posterior distribution, the simulated Markov chain tends to stay in the same

realizations for long times and, thus, maintains very slow convergence.

By applying MCMC algorithms one expects that the distribution of the random vector

ϑ(r) converges to the target distribution p(ϑ | S) if r → ∞, which is indeed true under

certain conditions (cf. Geman and Geman (1984) and Roberts and Smith (1994), more

references can be found in Hoff (2009, p.104)). However, assessing the convergence speed and

accuracy in general is difficult and, thus, one often relies on methods of MCMC diagnostics

instead. Several convergence conditions and diagnostic methods are described in the next

two sections.

2.3.3. MCMC convergence

Clearly, there may be two major drawbacks when employing Markov chain Monte Carlo

methods: slow convergence and no convergence at all. The latter issue may be addressed by

the theory of Markov chains and their stationary distributions. Therefore, in this section we

will firstly summarize some basic results about (finite) Markov chains in discrete time and

state space and show that in this case Gibbs and MH algorithm both produce Markov chains

with p(ϑ | S) as their stationary distribution. A more detailed introduction to Markov

chains may be found in Durrett (2012) or Häggström (2002). Secondly, we will present the

convergence conditions given by Roberts and Smith (1994) which hold for arbitrary state

spaces. However, for the sake of simplicity we will avoid any measure-theoretical details

arising with the non-discrete case and refer to Roberts and Smith (1994) and Roberts and

Rosenthal (2004) for further details.

Definition 2.3 (Markov chain). (Durrett (2012, p.2)) (ϑ(0), ϑ(1), ...) is a discrete time

Markov chain with state space Θ and transition matrix P if for any y, x, xr−1, ..., x0 ∈ Θ

P(ϑ(r+1) = y | ϑ(r) = x, ϑ(r−1) = xr−1, ..., ϑ
(0) = x0) = P (x, y). (2.79)

It is straightforward to show that the two MCMC methods presented in section 2.3

construct a Markov chain since ϑ(r+1) depends only on ϑ(r): For the MH algorithm a

move from state x ∈ Θ to y ∈ Θ is proposed with probability q(y | x) and is accepted with

probability pacc(y | x) = min
{

1, p̃(y)
p̃(x) ×

q(x|y)
q(y|x)

}
, where p̃(ϑ) := p(ϑ | S). Thus, the transition

probability is given by

P (x, y) = q(y | x)pacc(y | x). (2.80)
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In the case of the Gibbs sampler updating dimension k we have y = (y1, ..., yd) with

yi = xi for all i ∈ {1, ..., d}\{k}. We can think of yk as being proposed according to

the FCPD q(yk | x) = p̃ (yk | x−k) and accepted with the corresponding MH acceptance

probability pacc(y | x), which is

p̃(y)

p̃(x)

q(x | y)

q(y | x)
=
p̃(yk | y−k)p̃(y−k)
p̃(xk | x−k)p̃(x−k)

p̃(xk | y−k)
p̃(yk | x−k)

=
p̃(yk | x−k)p̃(x−k)
p̃(xk | x−k)p̃(x−k)

p̃(xk | x−k)
p̃(yk | x−k)

= 1.

(2.81)

Therefore, the Gibbs sampler is essentially a MH algorithm with special proposal distri-

bution and it is sufficient to develop convergence criteria for the MH algorithm. Moreover,

this justifies to use both, Gibbs and MH updating steps, in one MCMC algorithm, e.g. a

MH step to update dimension l and a Gibbs step to update dimension k.

Definition 2.4 (Irreducibility and aperiodicity). (Durrett (2012, p.17, 29)) A Markov

chain (ϑ(0), ϑ(1), ...) with state space Θ and transition matrix P is

a) irreducible if for all x, y ∈ Θ there exist n ∈ N such that Pn(x, y) > 0,

b) aperiodic if all states x ∈ Θ have period 1, i.e. the greatest common divisor is 1.

Lemma 2.2. (Durrett (2012, p.29))
(
ϑ(0), ϑ(1), ...

)
is aperiodic, if P (x, x) > 0 for all x ∈ Θ.

Theorem 2.1 (Convergence Theorem). (Durrett (2012, p.31)) A distribution p̃ is defined

to be stationary for a Markov chain with transition matrix P , if∑
x∈Θ

p̃(x)P (x, y) = p̃(y). (2.82)

Let (ϑ(0), ϑ(1), ....) be an irreducible, aperiodic Markov chain with transition matrix P and

stationary distribution p̃(ϑ). Then as n→∞, Pn(ϑ(0), y)→ p̃(y).

If p(ϑ | S) is discrete, it is straightforward to show that the MH algorithm constructs a

Markov chain with stationary distribution p(ϑ | S):

Lemma 2.3 (Stationary distribution of the MH algorithm). Let (ϑ(0), ϑ(1), ..., ) be a Markov

chain that is constructed by the MH algorithm (Algorithm 2.2). Then p(ϑ | S) is stationary

for the chain.

Proof. We show that the MH algorithm constructs a Markov chain that is reversible with

respect to p̃(x) = p(ϑ | S), i.e. that p̃(x)P (x, y) = p̃(y)P (y, x):

Suppose, that p̃(y)q(x | y) ≤ p̃(x)q(y | x). Then,

p̃(x)P (x, y) = p̃(x) q(y | x) pacc(y | x) = p̃(x) q(y | x)× p̃(y)

p̃(x)
× q(x | y)

q(y | x)
(2.83)

= p̃(y) q(x | y) (2.84)

= p̃(y) q(x | y) pacc(x | y) = p̃(y)P (y, x). (2.85)
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Due to symmetry, the calculation is analog for p̃(y)q(x | y) > p̃(x)q(y | x). Therefore,∑
x∈Θ

p̃(x)P (x, y) =
∑
x∈Θ

p̃(y)P (y, x) = p̃(y)
∑
x∈Θ

P (y, x) = p̃(y). (2.86)

According to Lemma 2.3 it is sufficient to show that a particular MH algorithm is aperiodic

and p̃-irreducible in order to obtain convergence. This will be done by the next two theorems

for both the MH algorithm and Gibbs sampler, that also apply to the general (non-discrete)

case.

Theorem 2.2 (Convergence of the MH algorithm). (Roberts and Smith (1994, p.215))

i) If q is aperiodic or P
(
ϑ(r) = ϑ(r−1)

)
> 0 for some r ≥ 1, then the MH algorithm is

aperiodic.

ii) If q is p̃-irreducible and q(y | x) = 0 if, and only if, q(x | y) = 0, then the MH

algorithm is p̃-irreducible.

If the MH algorithm is aperiodic and p̃-irreducible with stationary distribution p̃, then the

Markov chain’s distribution converges to p̃.

Theorem 2.3 (Convergence of the Gibbs sampler). (Roberts and Smith (1994, p.213)) Let

p̃(ϑ) be a mgf or pdf with respect to the d-dimensional Lebesgue-measure which is l.s.c at 0,

i.e. for all ϑ0 ∈ Θ with p̃(ϑ0) > 0 there exists an open neighborhood Nϑ0 3 ϑ0 and ε > 0

such that for all ϑ ∈ Nϑ0 we have p̃(ϑ) ≥ ε > 0.

Furthermore, let
∫
p̃(ϑ) dϑi be locally bounded for i = 1, ..., d and Θ be connected. Then,

the Markov chain’s distribution converges to p̃.

Remark 2.8. The conditions from Theorem 2.3 are comparably weak: With p̃ being l.s.c

at 0 the transition kernel of the Gibbs sampler (the FCPD) is well-defined, since it implies

that
∫
p̃(ϑ) dϑi > 0 (cf. Definition 2.2). Moreover, together with locally bounded

∫
p̃(x) dxi

aperiodicity is established (cf. Roberts and Smith (1994, p.212)). The chain is irreducible

if, additionally, Θ is connected (cf. Roberts and Smith (1994, p.213)).

Neither Theorem 2.2 nor Theorem 2.3 include any assumptions about the initial state

ϑ(0) in order to guarantee convergence. Nonetheless, it may take a lot of time for the chain

to converge if ϑ(0) lies in a region A ⊂ Θ with small probability mass p̃(A). Put differently,

until now we have only inferred conditions under which the distribution of Gibbs or MH

samples converges to the posterior distribution, however, the respective convergence rate

may be intolerably small.
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Addressing this issue, Gelman et al. (1996) obtain convergence rates and efficient proposal

distributions for the Metropolis algorithm for simulating from a normal distribution. Their

results suggest to calibrate the proposal distribution q such that the average acceptance

rate of the algorithm is roughly 1/4. However, in case of much more complicated target

densities there exist, to the best of my knowledge, no general rules how to choose q and,

thus, it is easier to rely on visual diagnostics. For this purpose we will outline some possible

ways how to identify and avoid slow convergence in the following section.

2.3.4. MCMC diagnostics

While introducing the MH algorithm in section 2.3.2 we already noticed that slow conver-

gence may result from employing unsuitable proposal distributions, in particular if proposed

values lie in regions with small probability mass of p(ϑ | S). In this case, the MH algorithm

tends to get ”stuck”. To give an example we will show how both Gibbs and MH algorithm

may be implemented in the setting of Example 1. The results will highlight the differ-

ence between good and bad mixing behavior and the importance of choosing appropriate

proposal distributions for the MH algorithm:

Example 2 (Joint inference for the parameters of a normal distribution (con’t)). In the

setting of Example 1, p. 23, the Gibbs sampler takes the following form:

0) Set r = 0. Choose arbitrary starting values µ(0) and ψ(0).

1) Draw µ(r+1) ∼ N (c, 1/a), where

a = nψ(r) +
1

σ2
µ

(2.87)

and c =
nσ2

µ

nσ2
µ + (ψ(r))−1

S +
(ψ(r))−1

nσ2
µ + (ψ(r))−1

µµ. (2.88)

2) Draw ψ(r+1) ∼ Ga
(
α+ n

2 , β + 1
2

∑n
i=1

(
Si − µ(r+1)

)2)
.

Set r = r + 1 and go to 1).

Alternatively, we may apply the Metropolis-Hastings algorithm. As proposal distribu-

tions we choose N
(
µ(r), σ2

prop

)
and Exp(λ) for the (r+1)-th update of µ and ψ, respectively.

Note that N
(
µ(r), σ2

prop

)
is a symmetric proposal distribution, whereas Exp(λ) is not. The

MH algorithm is given by

0) Set r = 0. Choose arbitrary starting values µ(0) and ψ(0).

1) Propose a new value for the mean, µ′ ∼ N
(
µ(r), σ2

prop

)
.

Let U
(r)
1 ∼ unif(0, 1) and accept µ′, i.e. set µ(r+1) = µ′, if

U
(r)
1 ≤ min

1,
fN (c,1/a)(µ

′)

fN (c,1/a)

(
µ(r)

) × fN(µ′,σ2
prop)

(
µ(r)

)
fN(µ(r),σ2

prop)
(µ′)

 (2.89)

= min

{
1, exp

[
−a

2

((
µ′
)2 − (µ(r)

)2
− 2c

(
µ′ − µ(r)

))]}
, (2.90)
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otherwise set µ(r+1) = µ(r).

2) Propose a new value for the precision, ψ′ ∼ Exp(λ).

Let U
(r)
2 ∼ unif(0, 1) and accept ψ′, i.e. set ψ(r+1) = ψ′, if

U
(r)
2 ≤ min

{
1,

fGa(α̃,β̃)(ψ
′)

fGa(α̃,β̃)

(
ψ(r)

) × fExp(λ)

(
ψ(r)

)
fExp(λ) (ψ′)

}
(2.91)

= min

{
1,

(
ψ′

ψ(r)

)α̃−1

e(β̃−λ)(ψ(r)−ψ′)

}
, (2.92)

where α̃ = α+ n
2 and β̃ = β + 1

2

∑n
i=1

(
Si − µ(r+1)

)2
, otherwise set ψ(r+1) = ψ(r).

Set r = r + 1 and go to 1).

We applied both algorithms to a dataset of 100 samples that were independently drawn

from N (µ0, σ
2
0). The parameter calibration is reported in Table 2.1.

True sample parameters

µ0 50.5
σ0 30.5

Prior parameters for µ

µµ 25
σµ 50

Prior parameters for ψ

α 3
β 50

Parameters for the MCMC algorithms

R 100000

µ(0) 30× µ0

ψ(0) σ−2
0 /5

σprop 5
λ 10

Table 2.1.: Example 1: True parameters for data simulation, prior distributions and MCMC
algorithms.

In Figure 2.3 the prior distributions are shown. Clearly, the prior expectations for µ

and σ2 are much smaller than the true parameters, i.e. E[µ] = 25 < 50.5 = µ0 and

E[σ2] = 25 < σ2
0 = 930.25. Nonetheless, we might expect the posterior distribution to

approach the true parameters µ0 and σ2
0 since the number of observations is quite large (cf.

the conditional distributions in Example 1, p. 23, and Remark 2.7, p. 25). To be able to

analyze the convergence behavior of the MCMC algorithms, we initialize both algorithms

rather far away from the true parameter values, i.e. µ(0) > µ0 and ψ(0) < ψ0 = σ−2
0 .

Note that for the MH algorithm we choose a proposal distribution for µ(r+1) that is

symmetric around the latest sample µ(r) and exhibits a small variance.
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For the precision ψ(r+1) we choose an Exp(10)-distribution, thus, independent of ψ(r) the

average proposed value for ψ(r+1) is 1/10 = 0.1. This is far away from the true precision,

which is ψ0 = σ−2
0 ≈ 0.0011. Therefore, we may expect the MH algorithm to exhibit small

acceptance probabilities, thus, to move very slowly (particularly in the precision’s compo-

nent) and to exhibit rather high autocorrelations.
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Figure 2.3.: Example 2: Prior beliefs for (A) µ and (B) σ2.

We applied both algorithms to sample R = 100000 values for both parameters. Figures

2.4 and 2.5 analyze the evolution of the simulated Markov chains. Firstly, we show trace

plots of the first few samples (to identify the burn-in period BI) and a trace plot of following

samples (to check for stationarity and trends). Secondly, we plot the sample autocorrelation

function (ACF) based on all samples after the burn-in period. The ACF for a time series

(ϑ(r))r∈H is defined as follows:

Definition 2.5 ((Sample) Autocorrelation function). (Cowpertwait and Metcalfe (2009,

p.33-34)) For a stochastic process
(
ϑ(r)

)
r∈H , with H = R or H = Z, the autocorrelation

function (ACF) at time r ∈ H and lag l > 0 is given by

f(l, r) =
cov
(
ϑ(r+l), ϑ(r)

)√
var
(
ϑ(r+l)

)
var
(
ϑ(r)

) . (2.93)

If the process
(
ϑ(r)

)
is weak-sense stationary, i.e. E

[
ϑ(r)

]
= E

[
ϑ(0)

]
and cov

(
ϑ(r+l), ϑ(r)

)
=

cov
(
ϑ(l), ϑ(0)

)
for all r ∈ H, l > 0, the ACF is time-independent, i.e. f(l, r) ≡ f(l).

For samples ϑ =
(
ϑ(1), ...., ϑ(R)

)
of a weak-sense stationary time series the ACF can be

approximated by the sample ACF, which is given as

f̂(l) =
1
R

∑R−l
r=1

(
ϑ(r) − ϑ

) (
ϑ(r+l) − ϑ

)
1
R

∑R
r=1

(
ϑ(r) − ϑ

) (
ϑ(r) − ϑ

) . (2.94)
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As shown in Hoff (2009, p.102) the variance of a MCMC estimate for the posterior mean is

equal to the (standard) Monte Carlo variance plus a (generally positive) term that depends

on the correlation of samples within the Markov chain. Thus, the higher the autocorrela-

tion of the chain, the worse the approximation is. This highlights the importance of a fast

decreasing ACF for obtaining a good posterior approximation.
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Figure 2.4.: Example 2: Gibbs sampler: Trace plots and ACF for (A)-(C) µ and (D)-(F) σ.

Clearly, the Gibbs sampler exhibits desirable properties: Due to a very small burn-in

period (we set BI = 10, however, one might even suspect it to equal 1) we may assume

that the chain has achieved stationarity at least after 10 iterations. Moreover, samples are

uncorrelated if taken after the burn-in period and the chain does not get stuck in distinc-

tive regions of the parameter space and exhibits no long-term trend. In summary, the chain

exhibits a very good mixing behavior.

Contrarily, for the MH algorithm we obtain a Markov chain that is poorly mixing : The

burn-in period is very large (we set BI = 700), samples for µ are significantly correlated

for lags smaller than 10 and samples for σ are extremely correlated for all lags up to l = 50

and larger. Nonetheless, the histograms of samples for both parameters (constructed with

every 10th observation after the burn-in period for µ and every observation after the burn-

in period for σ = ψ−1/2) exhibit very similar properties to these obtained with the Gibbs

sampler, in particular the posterior means are equal. The samples’ histograms, including

density approximations (with Gaussian kernel), the posterior means and true parameters

are shown in Figure 2.6.
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Figure 2.5.: Example 2: MH algorithm: Trace plots and ACF for (A)-(C) µ and (D)-(F) σ.
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In conclusion, we may assume that both algorithms achieved stationarity. However, Gibbs

sampling obtained a very well mixing Markov chain with a small burn-in period, whereas

samples from the MH algorithm are poorly mixing but may still be used to obtain an

approximation for the posterior distribution.
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3. Bayesian inference in the GLO process

In this chapter we assume the following underlying setting: In the observation window

[0, T ] we observed the occurrence (or arrival/event) times S := (S1, ..., Sn), Si ≤ Si+1, of

n ∈ N events that originated from N ∈ N beats from a GLO process Φ ∼ GLO(µ, σ1, σ2, γ).

Unfortunately, we did neither observe these beats B := (B1, ..., BN ) nor do we know how

many or which events belong to which beat. We will occasionally call the events originating

from one beat the beat’s event family.

In the following we will construct a Bayesian framework that enables us to obtain posterior

information about the beats, their event-families and the parameters of the GLO process.

For this purpose we introduce labels J = (J1, ...., Jn) that link events to beats: For every

event Si, i = 1, ...., n, and beat Bk, k = 1, ..., N, label Ji equals k if event Si originates from

beat Bk. Moreover, nk counts the number of events originating from Bk:

nk := |{i ∈ {1, ..., n} : Ji = k}| , for k = 1, ..., N. (3.1)

3.1. Bayesian framework

We consider a parameter vector that is (4+n+N)-dimensional and consists of the parameters

of the GLO model, beat locations and labels:

ϑ := (µ, ψ1, ψ2, γ, B1, ..., BN , J1, ..., Jn) . (3.2)

Note that similar to Example 1, p. 23, we will work with the precisions ψ1 and ψ2 instead

of σ1 and σ2 to be able to employ conjugate priors. Nonetheless, in the end we will be inter-

ested in estimates for σ1 and σ2 since these are more straightforward to interpret. Moreover,

from MCMC posterior samples ψ
(1)
i , ..., ψ

(R)
i we can easily obtain samples σ

(r)
i =

(
ψ

(r)
i

)−1/2
,

r = 1, ..., R, i = 1, 2.

Note that, although the (unobserved) beats and labels are not parameters in the GLO

model, we still treat them as if they were parameters whose posterior distribution we wanted

to compute. This method is called data augmentation and is widely used in models that

deal with unobserved data. For example, Scott (1999) applies this method for a hidden

Markov model and Loza-Reyes et al. (2014) for mixture models augmented with allocation

variables. For more examples and a more general introduction to data augmentation we

refer to Tanner and Wong (1987).
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Since the event times, Si, and numbers of events per burst, Pk, are independent, the

likelihood can be split into two parts. Recall from section 2.1 that, firstly, for every beat

Bk the number of events, Pk ∼ Pois(γ), is drawn and, secondly, the events are distributed

around the beat with independent normally distributed increments with variance σ2
2. If the

GLO process exhibits a large variance σ2
2 or beats near the limits of the observation window

[0, T ], we may not for all beats Bk, k ∈ {1, ..., N}, observe all Pk events, but in fact only

nk ≤ Pk.

Nevertheless, due to the thinning property of the Poisson distribution (see Durrett (2012,

p. 106) and section 2.1) nk is still Poisson distributed with parameter

γk := γ P(Sk,1 ∈ [0, T ]) = γ
(
FN (Bk,σ

2
2)(T )− FN (Bk,σ

2
2)(0)

)
︸ ︷︷ ︸

=:νk

, (3.3)

which is also used in Proposition 2.3, p. 17. Since all observed events are restricted to

[0, T ], we have Si ∼ N (BJi , σ
2
2 | [0, T ]) with pdf (cf. Griffiths (2002))

fN (BJi ,σ
2
2 |[0,T ])(x) = ν−1

Ji
fN (BJi ,σ

2
2)(x) =

ν−1
Ji√

2πσ2

e
− 1

2σ2
2
(x−BJi)

2

, (3.4)

for 0 ≤ x ≤ T and 0 otherwise. Note that in the definition of the GLO process the i-th event

at beat Bk is denoted as Sk,i. However, here we count the observed events in increasing

(chronological) order and denote Si for the i-th observed event.

In conclusion, the likelihood is given by

L(ϑ;S) =
n∏
i=1

fN (BJi ,σ
2
2 |[0,T ])(Si)×

N∏
k=1

fPois(γk)(nk)

=
N∏
k=1

∏
i:Ji=k

ν−1
k fN (Bk,ψ

−1
2 )(Si)×

N∏
k=1

γnkk
nk!

e−γk

=

(
ψ2

2π

)n/2 N∏
k=1

(νk)
−nk exp

 −ψ2

2

∑
i:Ji=k

(Si −Bk)2

× γn N∏
k=1

νnkk
nk!

e−νkγ . (3.5)

In order to simplify the calculations, we will from now on assume the following conjugate

prior distributions:

1. µ ∼ N
(
µµ, σ

2
µ

)
2. ψ1 ∼ Ga (αψ1 , βψ1)

3. ψ2 ∼ Ga (αψ2 , βψ2)

4. γ ∼ Ga (αγ , βγ)
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Since in the GLO model the background rhythm is based on a stationary random walk,

we have L (Bk+1 −Bk | µ, ψ1) = N
(
µ, ψ−1

1

)
. Moreover, the ”true” distribution of B1 is

endogenously given by the asymptotic residual waiting time (see Bingmer (2012, p.25-27)).

However, a priori we assume B1 to be independently distributed according to a flat nor-

mal distribution, B1 ∼ N (µB1 , σ
2
B1

) because, firstly, given any other beat B1 is normally

distributed, secondly, B1 will mostly be determined by the first few observations since we

can choose the prior to be rather uninformative, and, thirdly, with this assumption we can

substantially simplify calculations.

For Ji we do not know of one particular conjugate prior distribution, thus, we will a priori

either assume L(Ji) = unif({1, ..., N}) or L(Ji) = Binomial(N, i/n).

All priors are a priori assumed to be independent. All prior assumptions as well as other

possible priors will be discussed more extensively in section 3.3 and and the influence of

the prior choice in section 3.4.1. With the specified prior distributions the joint posterior

distribution is proportional to

p(ϑ | S) ∝ L(ϑ;S)fN(µµ,σ2
µ)

(µ)fGa(αψ1
,βψ1)(ψ1)fGa(αψ2

,βψ2)(ψ2)fGa(αγ ,βγ)(γ)

× fN
(
µB1

,σ2
B1

)(B1)

N∏
k=2

fN(µ,ψ−1
1 )(Bk −Bk−1)

n∏
i=1

π(Ji). (3.6)

Since this distribution is not straightforward to work with, we will calculate the param-

eter’s FCPDs in the following and present ways how to perform Gibbs or MH updates. To

simplify notations we will analogously to ϑ−k denote with ϑ−µ the vector of all components

of the parameter vector ϑ except for µ, with ϑ−Bk the vector of all components except for

Bk, and so forth.

Lemma 3.1 (FCPD of γ). Let a priori γ ∼ Ga(αγ , βγ). Then, the full conditional posterior

distribution of γ is given by

L (γ | ϑ−γ ,S) = Ga

(
αγ + n, βγ +

N∑
k=1

νk

)
, (3.7)

where

νk := FN (Bk,ψ
−1
2 )(T )− FN (Bk,ψ

−1
2 )(0). (3.8)

Proof. According to Bayes’ theorem the FCPD is proportional to

p(γ | ϑ−γ ,S) ∝ L(ϑ;S) p(µ, ψ1, ψ2, γ,B,J ) (3.9)

∝ γαγ+n−1e−βγγ
N∏
k=1

νnkk
nk!

e−νkγ ∝ γαγ+n−1 exp

[
−γ

(
βγ +

N∑
k=1

νk

)]
, (3.10)

which is proportional to the pdf of Ga
(
αγ + n, βγ +

∑N
k=1 νk

)
.
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Lemma 3.2 (FCPD of µ). Let a priori µ ∼ N
(
µµ, σ

2
µ

)
and π(B1) independent of µ. Then,

the full conditional posterior distribution of µ is given by

L (µ | ϑ−µ,S) = N

(
ψ1
∑N

k=2(Bk −Bk−1) + σ−2
µ µµ

ψ1(N − 1) + σ−2
µ

,
1

ψ1(N − 1) + σ−2
µ

)
. (3.11)

Proof. According to Bayes’ theorem the FCPD is proportional to

p(µ | ϑ−µ,S) ∝ L(ϑ;S) p(µ, ψ1, ψ2, γ,B,J ) (3.12)

∝ p(B | µ, ψ1)π(µ). (3.13)

By rewriting p(B | µ, ψ1) in terms of the increments of the random walk we obtain

p(µ | ϑ−µ,S) ∝ π(µ) π(B1)
N∏
k=2

fN(µ,ψ2
1)(Bk −Bk−1) (3.14)

∝ exp

[
−1

2

(
ψ1

N∑
k=2

(Bk −Bk−1 − µ)2 +
1

σ2
µ

(µ− µµ)2

)]
. (3.15)

Similar to Example 1, p. 23, with a := ψ1(N−1)+σ−2
µ and b := ψ1

∑N
k=2(Bk−Bk−1)+σ−2

µ µµ
and c ∈ R independent of µ equation (3.15) is proportional to

exp

[
−1

2

(
aµ2 − 2bµ+ c

)]
∝ exp

[
−a

2

(
µ− b

a

)2
]
, (3.16)

which is proportional to the pdf of a normal distribution with variance

1

a
=

1

ψ1(N − 1) + σ−2
µ

(3.17)

and mean

b

a
=

1

ψ1(N − 1) + σ−2
µ

(
ψ1

N∑
k=2

(Bk −Bk−1) + σ−2
µ µµ

)
(3.18)

=
σ2
µ(N − 1)

ψ−1
1 + σ2

µ(N − 1)

1

N − 1

N∑
k=2

(Bk −Bk−1) +
ψ−1

1

ψ−1
1 + σ2

µ(N − 1)
µµ. (3.19)

Lemma 3.3 (FCPD of ψ1). Let a priori ψ1 ∼ Ga(αψ1 , βψ1) and π(B1) independent of ψ1.

Then, the full conditional posterior distribution of ψ1 is given by

L (ψ1 | ϑ−ψ1 ,S) = Ga

(
αψ1 +

N − 1

2
, βψ1 +

1

2

N∑
k=2

(Bk −Bk−1 − µ)2

)
. (3.20)
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Proof. According to Bayes’ theorem the FCPD is (similar to Lemma 3.2) proportional to

p(ψ1 | ϑ−ψ1 ,S) ∝ L(ϑ;S) p(µ, ψ1, ψ2, γ,B,J ) (3.21)

∝ p(B | µ, ψ1) π(ψ1) (3.22)

∝
(
ψ1√
2π

)(N−1)/2

exp

[
−1

2

(
ψ1

N∑
k=2

(Bk −Bk−1 − µ)2

)
− βψ1ψ1

]
ψ
αψ1
−1

1

(3.23)

∝ ψαψ1
+(N−1)/2−1

1 exp

[
−ψ1

(
βψ1 +

1

2

N∑
k=2

(Bk −Bk−1 − µ)2

)]
, (3.24)

which is proportional to the pdf of Ga
(
αψ1 + N−1

2 , βψ1 + 1
2

∑N
k=2(Bk −Bk−1 − µ)2

)
.

The beats require Bayesian inference for the truncated normal distribution. A Gibbs

sampling approach for this problem is described by Griffiths (2002). The author introduces

latent variables z1, ..., zn that are distributed according to a non-truncated normal distribu-

tion and deterministically linked to the truncated observations S1, .., Sn. In the following

we will adopt this idea and adjust the estimation framework to fit to the GLO process.

Lemma 3.4 (FCPD of ψ2). Let a priori ψ2 ∼ Ga(αψ2 , βψ2). Then, a Gibbs update for ψ
(r)
2

is given by

(1) Compute zi, i = 1, ..., n, by

zi = BJi +
(
ψ

(r)
2

)−1/2
F−1
N (0,1)


FN (0,1)

(
Si−BJi(
ψ

(r)
2

)−1/2

)
− FN (0,1)

(
0−BJi(
ψ

(r)
2

)−1/2

)

FN (0,1)

(
T−BJi(
ψ

(r)
2

)−1/2

)
− FN (0,1)

(
0−BJi(
ψ

(r)
2

)−1/2

)
 .

(3.25)

(2) Draw ψ
(r+1)
2 from Ga

(
αψ2 + n

2 , βψ2 + 1
2

∑n
i=1(zi −BJi)2

)
.

Proof. In the following we will denote by F := FN (0,1) the pdf of the standard Normal dis-

tribution. Let zi
iid∼ N

(
BJi , ψ

−1
2

)
, i = 1, .., n. One may draw samples zi from N (BJi , ψ

−1
2 )

and Si from N
(
BJi , ψ

−1
2 | [0, T ]

)
by independently drawing uniformly distributed random

variables U1, ..., Un ∼ unif(0, 1) and calculating

zi = BJi + ψ
−1/2
2 F−1(Ui) (3.26)

and

Si = BJi + ψ
−1/2
2 F−1

[
F

(
0−BJi
ψ
−1/2
2

)
+ Ui

(
F

(
T −BJi
ψ
−1/2
2

)
− F

(
0−BJi
ψ
−1/2
2

))]
. (3.27)
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The latter result can be found for example in Albert and Chib (1996). Hence, given

values for BJi , ψ2 and Si, a value for Ui can be calculated by equation (3.27). Then, the

corresponding value for zi can be computed from equation (3.26) and is given by equation

(3.25). Thus, to sample from the FCPD of ψ2 one can use Bayes’ theorem in the following

way (we denote Z := (z1, ..., zn)):

p(ψ2 | ϑ−ψ2 ,S) ∝ p(ψ2,Z | S,B) (3.28)

∝ p(S | ψ2,B,Z) p(ψ2,Z | B) (3.29)

∝ p(S | ψ2,B,Z) p(Z | ψ2,B) π(ψ2). (3.30)

Now, π(S | ψ2,B,Z) = 1 if equation (3.25) holds for all i = 1, .., n and in this case we get

p(ψ2 | ϑ−ψ2 ,S) ∝ p(Z | ψ2,B) π(ψ2) (3.31)

∝ ψn/22 exp

[
−ψ2

2

n∑
i=1

(zi −BJi)2

]
× ψαψ2

−1

2 exp [−ψ2βψ2 ] (3.32)

∝ ψαψ2
+n/2−1

2 exp

[
−ψ2

(
βψ2 +

1

2

n∑
i=1

(zi −BJi)2

)]
, (3.33)

which is proportional to the pdf of Ga
(
αψ2 + n

2 , βψ2 + 1
2

∑n
i=1(zi −BJi)2

)
.

Lemma 3.5 (FCPD of B). Let a priori B1 ∼ N
(
µB1 , σ

2
B1

)
. Then, a Gibbs update for beat

B
(r)
k is given by

(1) Compute z
(k)
j , j = 1, ..., nk, by evaluating

z
(k)
j = B

(r)
k + ψ

−1/2
2 F−1

N (0,1)

FN (0,1)

(
Sij−B

(r)
k

ψ
−1/2
2

)
− FN (0,1)

(
0−B(r)

k

ψ
−1/2
2

)
FN (0,1)

(
T−B(r)

k

ψ
−1/2
2

)
− FN (0,1)

(
0−B(r)

k

ψ
−1/2
2

)
 , (3.34)

where {ij : j = 1, ..., nk} = {i ∈ {1, ..., n} : Ji = k}.

(2) If k = 1 draw B
(r+1)
1 from

N

(
σ−2
B1
µB1 + ψ1(B2 − µ) + ψ2

∑n1
j=1 z

(1)
j

ψ1 + n1ψ2 + σ−2
B1

,
1

ψ1 + n1ψ2 + σ−2
B1

)
. (3.35)

If k ∈ {2, ..., N − 1} draw B
(r+1)
k from

N

 1

2ψ1 + nkψ2

ψ1(Bk+1 +Bk−1) + ψ2

nk∑
j=1

z
(k)
j

 ,
1

2ψ1 + nkψ2

 . (3.36)
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If k = N draw B
(r+1)
N from

N

 1

ψ1 + nNψ2

ψ1(BN−1 + µ) + ψ2

nN∑
j=1

z
(N)
j )

 ,
1

ψ1 + nNψ2

 . (3.37)

Proof. Let k ∈ {2, ..., N − 1}. The FCPD for Bk is given by

p (Bk | ϑ−Bk ,S) ∝ L(ϑ;S) p(µ, ψ1, ψ2, γ,B,J ) (3.38)

∝ L(ϑ;S) p(Bk+1 | µ, ψ1, Bk) p(Bk | µ, ψ1, Bk−1), (3.39)

since only the likelihood and the beats around Bk depend on Bk, which is due to the

independence of the increments of a random walk. Then, we have

p(Bk | ϑ−Bk ,S)

∝
∏
i:Ji=k

ν−1
k fN(Bk,ψ−1

2 )(Si) fN(µ,ψ−1
1 )(Bk+1 −Bk) fN(µ,ψ−1

1 )(Bk −Bk−1) (3.40)

∝
∏
i:Ji=k

ν−1
k fN(Bk,ψ−1

2 )(Si) fN(Bk,ψ−1
1 )(Bk+1 − µ)fN(Bk,ψ−1

1 )(Bk−1 + µ), (3.41)

where

νk := FN(Bk,ψ−1
2 )(T )− FN(Bk,ψ−1

2 )(0). (3.42)

Now, Bk only appears in the mean of the single densities, hence, this setting is similar to

inference for the posterior mean of truncated normal distributions with flat prior π(Bk) ∝ 1

and known variance. However, in this case not all distributions are truncated at the same

points. In fact, the joint distribution (3.41) includes nk densities that are truncated such

that 0 ≤ Si ≤ T , while the two densities for the beats are not truncated. Therefore, we

adopt the idea from Lemma 3.4 and change it slightly to fit to the considered problem:

We introduce latent random variables z
(k)
1 , ..., z

(k)
nk with z

(k)
1 , ..., z

(k)
nk

iid∼ N
(
Bk, ψ

−1
2

)
and

define Z(k) :=
(
z

(k)
1 , .., z

(k)
nk

)
. Note that we do not need latent variables for the non-

truncated observations. Furthermore, let {i1, .., ink} = {i : Ji = k} be the labels of the

beat’s event-family S(k) := (Si1 , ..., Sink ). Analogously to Lemma 3.4 sampling from zj and

Sij via inversion of the cdf is straightforward and yields the relationship that is given by

equation (3.34). Moreover, with Bayes’ theorem we obtain

p(Bk | ϑ−Bk ,S)

∝ p
(
S(k) | Z(k), µ, ψ1, ψ2, Bk−1, Bk, Bk+1

)
p
(
Z(k), µ, ψ1, ψ2, γ, Bk−1, Bk, Bk+1

)
(3.43)

∝ p
(
S(k) | Z(k), Bk

)
p(Bk+1 | Bk, µ, ψ1) p

(
µ, ψ1, Bk−1, Bk,Z(k)

)
(3.44)

∝ p
(
S(k) | Z(k), Bk

)
p(Bk+1 | Bk, µ, ψ1) p(Bk | Bk−1, µ, ψ1) p

(
Z(k) | Bk, µ, ψ1

)
. (3.45)
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Clearly, p
(
S(k) | Z(k), Bk

)
= 1 if equation (3.34) holds for all j = 1, .., nk and in this case

we yield

p(Bk | ϑ−Bk ,S)

∝ p(Bk+1 | Bk, µ, ψ1) p(Bk | Bk−1, µ, ψ1) p
(
Z(k) | Bk, µ, ψ1

)
(3.46)

∝ fN(µ,ψ−1
1 )(Bk+1 −Bk) fN(µ,ψ−1

1 )(Bk −Bk−1)

nk∏
j=1

fN(Bk,ψ−1
2 )

(
z

(k)
j

)
(3.47)

∝ exp

−1

2

ψ1(Bk+1 −Bk − µ)2 + ψ1(Bk −Bk−1 − µ)2 + ψ2

nk∑
j=1

(
z

(k)
j −Bk

)2


(3.48)

∝ exp

[
−1

2

(
aB2

k − 2bBk + c
)]
∝ exp

[
−a

2

(
Bk −

b

a

)2
]
, (3.49)

where a = 2ψ1 + nkψ2 and b = ψ1(Bk+1 + Bk−1) + ψ2
∑nk

j=1 z
(k)
j and c ∈ R. Thus, Bk is a

posteriori conditionally on Z, µ, ψ1 and ψ2 normally distributed with variance

1

a
=

1

2ψ1 + nkψ2
(3.50)

and mean

b

a
=

1

2ψ1 + nkψ2

ψ1(Bk+1 +Bk−1) + ψ2

nk∑
j=1

z
(k)
j

 . (3.51)

For k = 1 we obtain (if equation (3.34) holds for all j = 1, .., n1)

p(B1 | ϑ−B1 ,S) ∝ fN(µ,σ2
1)(B2 −B1) fN

(
µB1

,σ2
B1

)(B1)

n1∏
j=1

fN(B1,σ2
2)

(
z

(1)
j

)
(3.52)

∝ exp

−1

2

ψ1(B2 −B1 − µ)2 + ψ2

n1∑
j=1

(
z

(1)
j −B1

)2
+ σ−2

B1
(B1 − µB1)2


(3.53)

∝ exp

[
−a

2

(
B1 −

b

a

)2
]
, (3.54)

with a = ψ1 +n1ψ2 +σ−2
B1

and b = σ−2
B1
µB1 +ψ1(B2−µ) +ψ2

∑n1
j=1 z

(1)
j , which yields (3.35).
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Analogously, if k = N , the FCPD is (if equation (3.34) holds for all j = 1, .., nN )

p(BN | ϑ−BN ,S) ∝ fN(µ,ψ−1
1 )(BN −BN−1)

nN∏
j=1

fN(BN ,σ2
2)

(
z

(N)
j

)
(3.55)

∝ exp

−1

2

ψ1(BN −BN−1 − µ)2 + ψ2

nN∑
j=1

(
z

(N)
j −BN

)2

 (3.56)

∝ exp

[
−a

2

(
BN −

b

a

)2
]
, (3.57)

where a = ψ1 + nNψ2 and b = ψ1(BN−1 + µ) + ψ2
∑nN

j=1 z
(N)
j , which yields (3.37).

Lemma 3.6 (FCPD of J ). Let π1(·), ..., πn(·) be the independent prior distributions for

labels J1, ..., Jn. Then, the FCPD of Ji, i = 1, ..., n, is proportional to

p (Ji | ϑ−Ji ,S) ∝ exp

[
−ψ2

2
(Si −BJi)2 − νJiγ

]
×
ν
nJi−1

Ji

nJi !
× πi(Ji). (3.58)

To sample from this distribution, we will make use of the Metropolis-Hastings algorithm,

which yields the following updating procedure:

(1) For J
(r)
i = k propose a switch to beat k′, where k′ is uniformly distributed among

surrounding beats in distance ∆(switch), i.e. k′ ∼ unif(Vk) with

Vk :=
{

max{k −∆(switch), 1}, ...,min{k + ∆(switch), N}
}
. (3.59)

(2) If k′ 6= k, accept the new beat, i.e. set J
(r+1)
i = k′, with probability

p(switch)
acc (k′ | k) = min {1, p̃} , (3.60)

where

p̃ = exp

[
−ψ2

2

(
B2
k′ −B2

k + 2Si(Bk −Bk′)
)]
× nk
nk′ + 1

× π(k′)

π(k)
× |Vk|
|Vk′ |

.

Otherwise, set J
(r+1)
i = k.

Proof. The FCPD is proportional to

p(Ji | ϑ−Ji ,S) ∝ L(ϑ;S) p(µ, ψ1, ψ2, γ,B,J ) (3.61)

∝ L(ϑ;S) p(B | µ, ψ1) π(µ, ψ1, ψ2, γ,J ) (3.62)

∝ ν−1
Ji
fN(BJi ,ψ

−1
2 )(Si)× fPois(γ νJi )(nJi)× π(Ji) (3.63)

∝ ν−1
Ji

exp

[
−ψ2

2
(Si −BJi)2

]
×
ν
nJi
Ji

nJi !
exp [−νJiγ]× π(Ji). (3.64)
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If k = k′, we have p
(switch)
acc = 1 (cf. Algorithm 2.2). In contrast, a switch from J

(r)
i = k to

J
(r+1)
i = k′ with k′ 6= k affects both nk and nk′ , thus, the acceptance probability is given

by p
(switch)
acc (k′ | k) = min {1, p̃} with

p̃ =
ν−1
k′

ν−1
k

×
exp

[
−ψ2

2 (Si −Bk′)2
]
× ν

nk−1

k
(nk−1)! ×

ν
nk′+1

k′
(nk′+1)! exp [−(νk′ + νk)γ]× π(k′)

exp
[
−ψ2

2 (Si −Bk)2
]
× ν

nk
k
nk! ×

ν
nk′
k′
nk′ !

exp [−(νk′ + νk)γ]× π(k)

× |Vk
′ |−1

|Vk|−1

=
νk
νk′
× exp

[
−ψ2

2

(
(Si −Bk′)2 − (Si −Bk)2

)]
×

νnk−1
k ν

nk′+1
k′ nk! nk′ !

νnkk ν
nk′
k′ (nk − 1)! (nk′ + 1)!

× π(k′) |Vk|
π(k) |Vk′ |

=
νk
νk′
× exp

[
−ψ2

2

(
B2
k′ −B2

k + 2Si(Bk −Bk′)
)]
× νk′ nk
νk (nk′ + 1)

× π(k′) |Vk|
π(k) |Vk′ |

= exp

[
−ψ2

2

(
B2
k′ −B2

k + 2Si(Bk −Bk′)
)]
× nk
nk′ + 1

× π(k′)

π(k)
× |Vk|
|Vk′ |

. (3.65)

3.2. Estimation procedure

With the FCPDs and updating steps derived in section 3.1 the complete MCMC algorithm

for sampling from p(ϑ | S) is given as follows:

Algorithm 3.1 (Complete MCMC procedure). Firstly, values for the following quantities

have to be chosen:

• Number of MCMC-iterations: R ∈ N, Number of beats: N ∈ N\{1}

• Prior parameters for γ : αγ > 0, βγ > 0

• Prior parameters for µ : µµ ∈ R, σµ > 0

• Prior parameters for ψ1 : αψ1 > 0, αψ1 > 0

• Prior parameters for ψ2 : αψ2 > 0, αψ2 > 0

• Prior parameters for B1 : µB1 ∈ R, σB1 > 0

• Update parameters for J :

– πi(·) (prior distribution for Ji)

– n(switch) = max{1, bnp(switch)e} ∈ {1, ..., n} (number of labels to be updated)

– ∆(switch) ∈ {1, ..., d(n− 1)/2e} (MH proposal step-size)

Then, the MCMC procedure for sampling from p(ϑ | S) is as follows:

0) Set initial values for µ(0), ψ
(0)
1 , ψ

(0)
2 , γ(0), B

(0)
1 , ..., B

(0)
N , J

(0)
1 , ..., J (0)

n and r = 0.
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1) Update γ: Draw γ(r+1) ∼ Ga

(
αγ + n, βγ +

N∑
k=1

ν
(r)
k

)

2) Update µ: Draw

µ(r+1) ∼ N

ψ(r)
1

∑N
k=2

(
B

(r)
k −B

(r)
k−1

)
+ σ−2

µ µµ

ψ
(r)
1 (N − 1) + σ−2

µ

,
1

ψ
(r)
1 (N − 1) + σ−2

µ


3) Update ψ1: Draw

ψ
(r+1)
1 ∼ Ga

(
αψ1 +

N − 1

2
, βψ1 +

1

2

N∑
k=2

(
B

(r)
k −B

(r)
k−1 − µ

(r+1)
)2
)

4) Update ψ2:

4.1) Compute zi, i = 1, ..., n, by

zi = B
(r)
Ji

+
(
ψ

(r)
2

)−1/2
F−1
N (0,1)


FN (0,1)

(
Si−B

(r)
Ji(

ψ
(r)
2

)−1/2

)
− FN (0,1)

(
0−B(r)

Ji(
ψ

(r)
2

)−1/2

)

FN (0,1)

(
T−B(r)

Ji(
ψ

(r)
2

)−1/2

)
− FN (0,1)

(
0−B(r)

Ji(
ψ

(r)
2

)−1/2

)


4.2) Draw

ψ
(r+1)
2 ∼ Ga

(
αψ2 +

n

2
, βψ2 +

1

2

n∑
i=1

(
zi −B(r)

Ji

)2
)

5) Update B1:

5.1) Compute zj , j = 1, ..., n
(r)
1 , by evaluating

zj = B
(r)
1 +

(
ψ

(r+1)
2

)−1/2
F−1
N (0,1)


FN (0,1)

(
Sij−B

(r)
1(

ψ
(r+1)
2

)−1/2

)
− FN (0,1)

(
0−B(r)

1(
ψ

(r+1)
2

)−1/2

)

FN (0,1)

(
T−B(r)

1(
ψ

(r+1)
2

)−1/2

)
− FN (0,1)

(
0−B(r)

1(
ψ

(r+1)
2

)−1/2

)
 ,

where
{
ij : j = 1, ..., n

(r)
1

}
=
{
i ∈ {1, ..., n} : J

(r)
i = 1

}
.

5.2) Draw

B
(r+1)
1 ∼ N

σ−2
B1
µB1 + ψ

(r+1)
1

(
B

(r)
2 − µ(r+1)

)
+ ψ

(r+1)
2

∑n
(r)
1
j=1 zj

ψ
(r+1)
1 + n

(r)
1 ψ

(r+1)
2 + σ−2

B1

,
1

ψ
(r+1)
1 + n

(r)
1 ψ

(r+1)
2 + σ−2

B1


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6) For k = 2, ..., N − 1 update Bk:

6.1) Compute zj , j = 1, ..., n
(r)
k , by evaluating

zj = B
(r)
k +

(
ψ

(r+1)
2

)−1/2
F−1
N (0,1)


FN (0,1)

(
Sij−B

(r)
k(

ψ
(r+1)
2

)−1/2

)
− FN (0,1)

(
0−B(r)

k(
ψ

(r+1)
2

)−1/2

)

FN (0,1)

(
T−B(r)

k(
ψ

(r+1)
2

)−1/2

)
− FN (0,1)

(
0−B(r)

k(
ψ

(r+1)
2

)−1/2

)


where
{
ij : j = 1, ..., n

(r)
k

}
=
{
i ∈ {1, ..., n} : J

(r)
i = k

}
.

6.2) Draw

B
(r+1)
k ∼ N

ψ(r+1)
1

(
B

(r)
k+1 +B

(r+1)
k−1

)
+ ψ

(r+1)
2

∑n
(r)
k
j=1 zj

2ψ
(r+1)
1 + n

(r)
k ψ

(r+1)
2

,
1

2ψ
(r+1)
1 + n

(r)
k ψ

(r+1)
2


7) Update BN :

7.1) Compute zj , j = 1, ..., n
(r)
N , by evaluating

zj = B
(r)
N +

(
ψ

(r+1)
2

)−1/2
F−1
N (0,1)


FN (0,1)

(
Sij−B

(r)
N(

ψ
(r+1)
2

)−1/2

)
− FN (0,1)

(
0−B(r)

N(
ψ

(r+1)
2

)−1/2

)

FN (0,1)

(
T−B(r)

N(
ψ

(r+1)
2

)−1/2

)
− FN (0,1)

(
0−B(r)

N(
ψ

(r+1)
2

)−1/2

)


where
{
ij : j = 1, ..., n

(r)
N

}
=
{
i ∈ {1, ..., n} : J

(r)
i = N

}
.

7.2) Draw

B
(r+1)
N ∼ N

ψ(r+1)
1

(
B

(r+1)
N−1 + µ(r+1)

)
+ ψ

(r+1)
2

∑n
(r)
N
j=1 zj

ψ
(r+1)
1 + n

(r)
N ψ

(r+1)
2

,
1

ψ
(r+1)
1 + n

(r)
N ψ

(r+1)
2


8) Draw H ⊆ {1, ..., n}, |H| = n(switch), randomly without replacing. For each i ∈ H update Ji:

8.1) For J
(r)
i = k draw k′ ∼ unif(Vk) with

Vk =
{

max{k −∆(switch), 1}, ...,min{k + ∆(switch), N}
}

8.2) If k′ 6= k, set J
(r+1)
i = k′ with probability p(switch)

acc (k′ | k) = min {1, p̃} , where

p̃ = exp

[
−ψ

(r+1)
2

2

((
B

(r+1)
k′

)2
−
(
B

(r+1)
k

)2
+ 2Si

(
B

(r+1)
k −B(r+1)

k′

))] n∗k
n∗k′ + 1

π(k′)

π(k)

|Vk|
|Vk′ |

.

Otherwise, set J
(r+1)
i = k.

9) Set r = r + 1. If r < R: Go to 1), else: stop.

Note, that during the execution of step 8) the size of beat Bk’s family, nk, may change.

However, always the latest (updated) value of nk should be used, which we denote by n∗k.
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Proposition 3.1 (Convergence). The distribution of the Markov chain constructed by Al-

gorithm 3.1 converges to the target distribution p(ϑ | S).

Proof. Firstly, we will focus on updating step 8) for the labels: If n(switch) < n, J
(r)
i is not

updated with positive probability, thus P(J
(r+1)
i = k | J (r)

i = k) > 0. If n(switch) = n, Ji is

updated in each iteration. In this case, since k ∈ Vk, we have

P
(
J

(r+1)
i = k | J (r)

i = k
)

= |Vk|−1 p(switch)
acc (k | k) = |Vk|−1 > 0. (3.66)

Thus, this step is aperiodic according to Lemma 2.2, p. 29, for all i = 1, ..., n. Moreover,

the proposal distribution is irreducible because it reaches any state k∗ ∈ {1, ..., N} from any

state k ∈ {1, ..., N} after x ≥ d|k∗ − k|/∆(switch)e iterations with positive probability, and

we have that k′ /∈ Vk if, and only if, k /∈ Vk′ . Thus, the updates of all label components Ji
satisfy Theorem 2.2, p. 30.

Secondly, we analyze the remaining Gibbs updates. Therefore, we focus on the compo-

nents ϑ−J := (ϑ1, ϑ2, ..., ϑ4+N ) and treat the labels J = (ϑ4+N+1, ..., ϑ4+N+n) as given.

Therefore, joint prior density is given by

π(ϑ−J ) := fN(µµ,σ2
µ)

(µ)fGa(αψ1
,βψ1)(ψ1)fGa(αψ2

,βψ2)(ψ2)fGa(αγ ,βγ)(γ)

× fN
(
µB1

,σ2
B1

)(B1)

N∏
k=2

fN(µ,ψ−1
1 )(Bk −Bk−1) (3.67)

and the target distribution is given by the joint posterior distribution (cf. equation (3.6)),

p̃(ϑ−J ) := p(ϑ−J | S,J ) =
p(S | ϑ−J ,J )π(ϑ−J )∫

Θ−J
p(S | ϑ−J ,J )π(ϑ−J ) dϑ−J

. (3.68)

According to Theorem 2.3, p. 30, it is sufficient to proof that a) the target distribution p̃

is l.s.c. at 0, b)
∫
p̃(ϑ−J )dϑi is locally bounded and c) that Θ−J := Θ1,...,4+N is connected.

The last condition is fulfilled since

Θ−J = (−∞,∞)︸ ︷︷ ︸
(µ)

× (0,∞)︸ ︷︷ ︸
(ψ1)

× (0,∞)︸ ︷︷ ︸
(ψ2)

× (0,∞)︸ ︷︷ ︸
(γ)

× (−∞,∞)N︸ ︷︷ ︸
(B1,...,BN )

. (3.69)

Now, recall that p(S | ϑ−J ,J )π(ϑ−J ) is the product of continuous Lebesgue densities,

thus, continuous and positive on Θ−J . It follows
∫

Θ−J
p(S | ϑ−J ,J )π(ϑ−J ) dϑ−J > 0,

hence, p̃(ϑ−J ) is well-defined on Θ−J and l.s.c. at 0, which is condition a).

To show that condition b) holds let i ∈ {1, ..., 4 + N}, ϑ0 ∈ Θ−J ,−i and Fi(ϑ−J ,−i) :=∫
p̃(ϑ−J )dϑi. We need to show that there exists M > 0 and an open neighborhood Nϑ0 ⊂

Θ−J ,−i containing ϑ0 such that |Fi(ϑ)| ≤M for all ϑ ∈ Nϑ0 . This property follows directly

since all FCPDs are well-defined (cf. Lemmas 3.2 to 3.5). For example, take i = 1 and

arbitrary ϑ0 ∈ (0,∞)3 × (−∞,∞)N . Then, ϑ1 (which is µ) only appears in N parts of the
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joint prior and we have for all ϑ ∈ Nϑ0 (cf. Lemma 3.2)

F1(ϑ) =

∫ ∞
−∞

p(S | ϑ−J ,J )π(ϑ−J )∫
Θ−J

p(S | ϑ−J ,J )π(ϑ−J ) dϑ−J
dϑ1 (3.70)

≤ C
∫ ∞
−∞

fN(µµ,σ2
µ)

(µ)
N∏
k=2

fN(µ,ψ−1
1 )(Bk −Bk−1)︸ ︷︷ ︸

=g(µ)

dµ, (3.71)

where C > 0 is a positive constant. Since g(µ) can be normalized with C̃ > 0 such that

C̃g(µ) is the density of a normal distribution (namely the FCPD of µ, cf. Lemma 3.2), we

get |F1(ϑ)| ≤ CC̃ for all ϑ ∈ Nϑ0 . The calculation is analog for all other components.

Remark 3.1 (Numerical stability). Some steps of the MCMC algorithm (Algorithm 3.1)

are prone to numerical instability issues. This affects particularly the updates for B1, ..., BN
and ψ2, since in these steps the quantile and cumulative probability function of the normal

density is employed. To give an example, if BJi > 0 is very large in comparison to Si,

than both FN (0,1)

(
Si−BJi
ψ
−1/2
2

)
and FN (0,1)

(
0−BJi
ψ
−1/2
2

)
may approximately be zero (cf. equation

(3.25)). However, if the algorithm sets both to zero, for the latent variable zi in step 4.1)

we yield

|zi| ≈

∣∣∣∣∣∣∣∣BJi + ψ
−1/2
2 lim

x→0
F−1
N (0,1)

 x

FN (0,1)

(
T−BJi
ψ
−1/2
2

)
− FN (0,1)

(
0−BJi
ψ
−1/2
2

)

∣∣∣∣∣∣∣∣ =∞. (3.72)

Therefore, the parameter values should be restricted in the numerical procedure.

3.2.1. Choice of initial values

To complete the estimation procedure we need to set need initial values for all components

of ϑ(0). Initial values in areas with large probability mass of the target distribution p̃ are

vital to shorten burn-in periods, as Example 2, p. 31, demonstrates. Since one may expect

good (frequentists’ ) point estimates for the parameters to exhibit a large probability/den-

sity (as indicated by Example 1, p. 23, and Remark 2.7, p. 25), we will in the following

propose several procedures to obtain first estimates for the parameters.

As a first approach, we require to determine beat locations and number of beats by visual

inspection. Based on these, events are matched to their nearest beat and initial values for

the other parameters are given by their Maximum-Likelihood estimates or inverse of the

corrected sample variance (since ψ1 = σ−2
1 and ψ2 = σ−2

2 ).

Algorithm 3.2 (Simple guess of initial values).

1) Choose B
(0)
1 , ..., B

(0)
N and N by visual inspection.
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2) Set µ(0) = 1
N−1

∑N
k=2

(
B

(0)
k −B

(0)
k−1

)
and ψ

(0)
1 =

(
1

N−2

∑N
k=2

(
B

(0)
k −B

(0)
k−1 − µ

(0)
)2
)−1

.

3) Set

J
(0)
i := arg min

k∈{1,...,N}

∣∣∣B(0)
k − Si

∣∣∣ for i = 1, ..., n. (3.73)

4) Set ψ
(0)
2 =

(
1
n

∑n
i=1

(
Si −B(0)

Ji

)2
)−1

and γ(0) = 1
N

∑N
k=1

∣∣∣{i ∈ {1, ..., n} : J
(0)
i = k

}∣∣∣.
Algorithm 3.2 is straightforward to implement and may provide very good estimates if the

initial values for beats and number of beats fit. Nonetheless, particularly visual estimation

of the beat locations may be rather time consuming and prone to unsystematic (subjective)

failures. Alternatively, one may, firstly, estimate N visually and, secondly, partition [0, T ]

into N subintervals and place one beat in the middle of each of these intervals. Then, step

1) of Algorithm 3.2 is replaced by the following two steps:

1.1) Choose N by visual inspection.

1.2) Set B
(0)
k = T

2N + (k − 1) TN for k = 1, ..., N .

Nevertheless, this procedure will provide very poor parameter estimates if N does not

fit or the intervals’ mid points do not fit to the beat locations. Hence, we may consider

an algorithm that estimates the beat locations based on estimates for µ, σ1 and σ2. The

algorithm builds on a kernel density estimator (KDE) which estimates the pdf of S under

the assumption that S consists of iid samples from one distribution (an introduction to

KDEs may be found in Parzen (1962) or Silverman (1986)). Thus, for events S originating

from a GLO process we expect the KDE to exhibit peaks at every burst and pits between

bursts. Furthermore, since the events are normally distributed around the beats, the choice

of a Gaussian kernel is reasonable.

Algorithm 3.3 (Estimating beat locations). (Mohapatra (2013))

1) Compute the kernel density estimate (KDE) of S with a Gaussian kernel and band-

width σ.

2) Identify the turnpoints (maxima and minima) of the KDE with the R function turn-

points().

3) For every turnpoint x (starting with the global maximum of the KDE) consider the

interval I(a, b) = [x+ µ− aσ1 − bσ2, x+ µ+ aσ1 + bσ2]:

Let a = 1 and b = 0.

If there exist turnpoints in I(a, b): Identify the respective turnpoint as beat that fits

best to the background rhythm.

Otherwise: Increase the interval size with default values for a and b. If for all default

values there does not exist a turnpoint in I(a, b), locate an additional beat at x+ µ.
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Since in the GLO model events are distributed with variance σ2
2, it is convenient to choose

σ = σ2 as bandwidth. However, we may increase (decrease) σ in order to decrease (increase)

the resulting estimated number of beats, N .

With Algorithm 3.3 it is possible to obtain initial values for N and B(0). Moreover,

J (0) may be set analogously to step 3) in Algorithm 3.2. However, Algorithm 3.3 requires

estimates for µ, σ1 and σ2 as input parameters. These may be obtained by applying the

ACH estimation procedure developed in Bingmer et al. (2011) by fitting the empirical ACH

to the theoretical ACF of the GLO model (cf. Remark 2.6). In conclusion, we obtain the

following procedure:

Algorithm 3.4 (Complex guess of initial values).

1) Obtain η̂ACH =
(
µ(0), σ

(0)
1 , σ

(0)
2 , γ(0)

)
as proposed by Bingmer et al. (2011).

2) Set ψ
(0)
1 =

(
σ

(0)
1

)−2
and ψ

(0)
2 =

(
σ

(0)
2

)−2
.

3) Apply Algorithm 3.3 with η̂ACH to obtain values for N and B
(0)
1 , ..., B

(0)
N .

4) Set

J
(0)
i := arg min

k∈{1,...,N}

∣∣∣B(0)
k − Si

∣∣∣ . (3.74)

3.2.2. What N is best?

Clearly, the number of beats, N , is a very crucial parameter to the whole estimation pro-

cedure. However, it is not straightforward to extend the Bayesian estimation framework

in order to estimate N , since for different N1 6= N2 the parameter vector exhibits a differ-

ent dimension, i.e. 4+n+N1 6= 4+n+N2. Hence, we essentially deal with different models.

To distinguish between one GLO model with different fixed numbers of beats, we define

by GLON (µ, σ1, σ2, γ) one GLO process GLO(µ, σ1, σ2, γ) with the property that every

event Si ∈ [0, T ] originates from one of N beats. Furthermore, we interpret GLON as

the hypothesis that the (observed) events S = (S1, ..., Sn) originate from N beats and are

distributed according to a GLO process. There exist several possibilities how to evaluate

different hypotheses GLON1 , ...,GLONh , which we will shortly review in the following:

A) Bayes Factors:

The standard Bayesian solution to test and select one hypothesis GLON1 against its

complementary hypothesis GLON0 is to compute the Bayes factor (cf. Lewis and

Raftery (1997))

B =

(
p(GLON1 | S)

p(GLON0 | S)

)/(
p(GLON1)

p(GLON0)

)
=
p(S | GLON1)

p(S | GLON0)
, (3.75)
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which can be seen as the likelihood ratio of the two hypotheses. Essentially, it describes

if the observations S have increased or decreased the odds on hypothesis GLON1 rel-

ative to hypothesis GLON0 (cf. Chu and Zhao (2011, p.245)).

However, for the GLO model it is rather difficult to evaluate (3.75) since the integral

(which is often referred to as evidence for GLON given S)

Z = p(S | GLON ) =

∫
Θ
L(ϑ;S | GLON )π(ϑ | GLON ) dϑ, (3.76)

where we denote by L(ϑ;S | GLON ) = p(S | ϑ,GLON ) the likelihood function

under hypothesis GLON , can not be solved analytically. However, note that Z =

Eπ(ϑ|GLON ) [L(ϑ;S | GLON )]. Thus, a simple Monte Carlo estimator may be given by

Ẑ =
1

R

R∑
r=1

L
(
ϑ(r);S | GLON

)
, (3.77)

where ϑ(1), ..., ϑ(R) are samples from the joint prior distribution π(ϑ | GLON ). How-

ever, this estimator is prone to extreme estimation errors and, thus, requires huge

computational effort (see Lewis and Raftery (1997) and references therein).

Moreover, it is not straightforward to use MCMC methods to estimate (3.76) since the

MCMC algorithm aims to draw samples of ϑ that are distributed as p(ϑ | S,GLON ).

Nonetheless, Newton and Raftery (1994) point out that

L(ϑ;S | GLON )× π(ϑ | GLON ) = Z × p(ϑ | S,GLON ). (3.78)

By rearranging (3.78) they yield the harmonic mean of the samples ϑ(1), ...., ϑ(R) that

are drawn from p(ϑ | S,GLON ) as an estimator for Z, e.g.

Ẑ∗ =

[
1

R

R∑
r=1

1

L
(
ϑ(r);S | GLON

) ]−1

. (3.79)

However, Ẑ∗ is prone to domination by a few outlying terms with abnormally small

values of L
(
ϑ(r);S | GLON

)
. Exemplary simulations indicate that due to this reason

the harmonic mean estimator is not of particular use for the GLO model. For a proper

discussion about the harmonic mean estimator and other more elaborate estimators

for Z that employ MCMC methods we refer to Weinberg (2012) and references therein.

A different approach to estimate Z is given by RJMCMC methods:

B) Reversible jump Markov chain Monte Carlo (RJMCMC) algorithms:

Green (1995) first introduced the RJMCMC algorithm as an integrative approach to

deal with the hypothesis selection problem. The main idea of the algorithm is the

following: Additionally to a simple MCMC algorithm the RJMCMC jumps between
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different parameter spaces. To contain the dimension-mismatch for different models

GLON1 , ...,GLONh additional pseudo random variables are introduced. During the

simulation the algorithm proposes visits to other hypotheses and accepts these visits

analogously to the MH algorithm (cf. section 2.3.2). Then, p(GLON | S) can be

approximated by the time the simulated Markov chain stays in hypothesis GLON .

For example, Chu and Zhao (2011) apply the RJMCMC algorithm for a change-point

model. In their model events occur according to a homogeneous Poisson process with

intensity λ. However, λ is able to change at k change-points, thus, under each hypoth-

esis Hk, k = 1, ..., h, there exist k change-points. The locations of the change-points

as well as the Bayes factors are estimated via a RJMCMC algorithm. For a more

detailed introduction to RJMCMC methods see e.g. Hastie and Green (2012).

In the context of the GLO model one may e.g. propose an additional beat near

the largest burst (to increase N) or propose to delete the beat with the smallest

family (to decrease N). Nonetheless, implementing the RJMCMC algorithm does

not only require to carefully choose additional quantities which affect the mixing

properties of the algorithm, as for example a proposal distribution. It is also related

to supplementary computational effort.

C) Means for model selection:

A rather straightforward method is given by, firstly, applying the Bayesian estimation

procedure (Algorithm 3.1) for several fixed N1, ..., Nh and, secondly, computing mea-

sures that assess the Goodness of Fit of the models GLON1 , ...,GLONh . Then, the

respective number of beats should be chosen that maximizes the Goodness of Fit.

The natural measure for the Goodness of Fit in Bayesian models is the aforementioned

Bayes Factor. However, we may also consider means for model selection from the

frequentist world, in which ϑ is seen as a fixed parameter with estimate ϑ̂. In this

world the central quantity for model selection is the (maximized) likelihood function:

For example, Akaike’s information criterion (AIC) is given as

AIC (GLON ) = −2
(

logL
(
ϑ̂;S | GLON

)
− logL

(
ϑ̂s;S | GLOs

))
+ 2p, (3.80)

where p is the number of estimated parameters in the model and GLOs is the full

(saturated) model (cf. deLeeuw (1992)). The first part of the AIC is called deviance,

i.e.

D = −2
(

logL
(
ϑ̂;S | GLON

)
− logL

(
ϑ̂s;S | GLOs

))
, (3.81)

and assesses the fit of the model to the data, whereas the second part (2p) accounts

for model complexity. From the perspective of this measure the smaller the AIC is,

the better is the Goodness of Fit.
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Spiegelhalter et al. (2002) extend the idea of the AIC to Bayesian inference and propose

to use the deviance information criterion (DIC) for Bayesian model selection, i.e.

DIC (GLON ) = Eϑ|S [D] + pD, (3.82)

where in this context D = −2
(

logL (ϑ;S | GLON )− logL
(
ϑ̂s;S | GLOs

))
is a ran-

dom variable and pD a measure for the complexity of the model (the analog to 2p in

the AIC). Hence, the DIC can be interpreted as the a posteriori expected deviance

modified by an additional complexity parameter.

Since DIC (GLON ) is straightforward to estimate with MCMC samples, we will rely on

this measure to choose a value for N . However, the additive term logL
(
ϑ̂s;S | GLOs

)
is

irrelevant for model selection, thus, we will drop this term.

Moreover, we assume that only small changes in the value of N will be considered (because

a first estimate may easily be found by visual inspection or Algorithm 3.3). Since these

changes will be small relative to the total number of parameters (which is 4 + N + n),

the changes of the model complexity, pD, would be small. Therefore, and for the sake of

simplicity, we will drop pD. In conclusion, the choice of N will be based on the maximization

of the expected log-likelihood, i.e.

Eϑ|S [logL(ϑ;S | GLON )] , (3.83)

which will be approximate with samples ϑ(1), ..., ϑ(R) from the posterior distribution by

`(GLON ) :=
1

R

R∑
r=1

logL
(
ϑ(r);S | GLON

)
. (3.84)

3.3. Choice of priors

3.3.1. Non-informative and informative priors

Generally, one distinguishes between proper and improper prior distributions: While the

first are proper distributions on their own, the latter may not integrate to one, like e.g.

π = 1(0,∞). However, improper priors may still lead to proper posterior distributions. As

an example, the posterior distribution for the mean µ of a normal distribution with known

variance σ2 and prior π(µ) ∝ 1 is given as

p(µ | S) =
L(µ;S)π(µ)∫∞

−∞ L(v;S)π(v)dv

=
1∫∞

−∞
∏n
i=1 fN (v,σ2)(Si)dv

n∏
i=1

fN (µ,σ2)(Si). (3.85)

Improper priors are mostly motivated by the idea of non-informative priors. A very intuitive

non-informative prior is given by the flat prior π = 1Θ. However, flat priors are not
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necessarily the most non-informative priors. For a discussion about the non-informativeness

of (flat) priors we refer to Zhu and Lu (2004). It may also be desirable for a non-informative

prior to be invariant under reparametrization. For this reason, Jeffreys (1946) showed that

the use of

π(ϑ) ∝ |I(ϑ)|1/2, (3.86)

where I(ϑ) is Fisher’s expected information, leads to a prior that is in fact invariant under

reparametrization of ϑ. This prior is called Jeffreys prior. Other families of prior distri-

butions include e.g. the Maximum Entropy Prior, that maximizes uncertainty (cf. Koch

(2007, p.57-58)). For an overview of non-informative priors we refer to Yang and Berger

(1998).

Still, the informativeness of informative priors can also be controlled: In case of a Normal

prior the prior is more informative (i.e. it gains more weight in the posterior distribution)

the smaller the prior variance is (cf. Example 1, p. 23), whereas for Gamma priors the

prior is more informative the larger the parameters are. An example for the latter is given

by the FCPD of γ in the GLO model, i.e. (cf. Lemma 3.1)

p(γ | ϑ−γ ,S) = Ga

(
αγ + n, βγ +

N∑
k=1

νk

)
. (3.87)

Analogously to the Normal distribution, the less data there are (the smaller n and
∑N

k=1 νk)

and the larger the prior parameters αγ and βγ are, the more influence the data has on the

posterior distribution and e.g. on the conditional posterior mean, which is

E[γ | ϑ−γ ,S] =
αγ + n

βγ +
∑N

k=1 νk
=

βγ

βγ +
∑N

k=1 νk

αγ
βγ︸︷︷︸

=E[γ]

+

∑N
k=1 νk

βγ +
∑N

k=1 νk

n∑N
k=1 νk

. (3.88)

Hence, the posterior mean converges to the prior mean, E[γ | ϑ−γ ,S] → E[γ], for βγ → ∞
and the prior influence vanishes, E[γ | ϑ−γ ,S]→ n∑N

k=1 νk
, for βγ → 0.

In Table 3.1 the conjugate and Jeffreys priors and the resulting posterior distributions

for µ, ψ1, ψ2, γ and B1 are reported (as references we refer to Yang and Berger (1998) and

Koch (2007, p.57)). Note that for ψ2 and B1 the posterior distribution denotes the sampling

distribution for the second step of the Gibbs sampling procedure described in Lemma 3.4

and Lemma 3.5, respectively. Although the Jeffreys prior for ψ1, ψ2 and γ exhibits a similar

form as the Gamma distribution, it does not integrate to one. Nonetheless, it is possible

to use the reported parameters as input parameters in Algorithm 3.1 since the resulting

posterior distributions are proper distributions. The fully specified parameters for the

conjugate prior and respective posterior distributions can be found in Lemmas 3.2 to 3.5.

Note that due to the invariance property of the Jeffreys prior in case of π(ψ1) ∝ ψ−1
1 and

π(ψ2) ∝ ψ−1
2 we have π(σ1) ∝ σ−1

1 and π(σ2) ∝ σ−1
2 , respectively.
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3.3.2. Priors for the labels

To complete the Bayesian estimation framework we also need to assign a prior to the labels

J = (J1, ..., Jn). For this purpose, we assume that the labels are a priori independent from

each other and from all other parameters, i.e.

π(µ, ψ1, ψ2, γ, B1, J1, ..., Jn) = π(µ)π(ψ1)π(ψ2)π(γ)π(B1)π(J1)× ...× π(Jn). (3.89)

This assumption simplifies the calculations substantially, although, it may not completely

be fulfilled in the GLO model since other parameter values might provide information about

the labels. For example, if σ2/µ = ψ
−1/2
2 /µ and σ1/µ = ψ

−1/2
1 /µ are very small, the la-

bels J1, ..., Jn will very likely be monotone increasing, which may not be true otherwise.

Nevertheless, simulation studies suggest that the independence assumption still leads to

reasonable estimators (cf. section 3.4).

A proper prior for label Ji should take values in {1, ..., N}. Moreover, it seems natural

that a priori E[Ji] should be increasing with increasing i, i.e. E[Ji] ≤ E[Ji+1], since we

assume the observations to be sorted, i.e. Si ≤ Si+1. Therefore, a binomial prior with

parameters Bin
(
N, in

)
might represent an appropriate choice, i.e.

π(Ji) =

(
N

Ji

)(
i

n

)Ji (n− i
n

)N−Ji
, (3.90)

which yields E[Ji] = iN
n . However, this prior restricts the value of Jn to N a.s.. On the one

hand, this may be an advantage since it anchors the last observation Sn to the last beat

BN . On the other hand, if N is too large, BN can not be pushed out of the observation

window [0, T ].

An alternative to the binomial prior is given by a uniform prior, Ji ∼ unif({1, ..., N}),
which might also be interpreted as non-informative prior. In general, it is also possible to

simply assign arbitrary probability weights wi,1, ...., wi,N with
∑N

l=1wi,l = 1 for every label

Ji, i ∈ {1, ..., n}.

3.4. Estimation characteristics and precision

The estimation procedure depends on several input parameters, namely (the parameters of)

the prior distributions, initial values for the parameters, ϑ(0), and the number of beats, N .

In this section we will analyze the influence of these quantities on the parameter estimates

and the mixing behavior of the MCMC algorithm. Moreover, we will analyze the general

estimation precision of the Bayesian estimates.

To enhance comparability between the estimation errors, we will focus on the mean

absolute relative error (MRE):
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For an estimator η̂ = (η̂1, ...., η̂d) with realizations η̂(1), ..., η̂(M) and true parameter value

η0 = (η1,0, ..., ηd,0) the MRE of component p ∈ {1, ..., d} is given as

MRE(η̂p) =
1

M

M∑
m=1

∣∣∣η̂(m)
p − ηp,0

∣∣∣
ηp,0

. (3.91)

Moreover, the overall relative error (ORE) of η̂ is given as the sum of its components’

MREs, i.e.

ORE(η̂) =

d∑
p=1

MRE(η̂p). (3.92)

For the remaining work we will particularly focus on two very intuitive estimators arising

from the posterior distribution, namely the a posteriori expectation and median value of

the parameters. These are given as

η̂Mean = (µ̂Mean, σ̂1,Mean, σ̂2,Mean, γ̂Mean) (3.93)

=
(
E[µ | S], E[σ1 | S], E[σ2 | S], E[γ | S]

)
(3.94)

and η̂Median = (µ̂Median, σ̂1,Median, σ̂2,Median, γ̂Median) (3.95)

=
(
p−1
µ|S(0.5), p−1

σ1|S(0.5), p−1
σ2|S(0.5), p−1

γ|S(0.5)
)
. (3.96)

To simulate GLO processes and, thus, realizations of the aforementioned estimators we

will employ Algorithm 1 from Bingmer (2012, p.41 and p.137), which was already reviewed

in section 2.1. Since we can save the original (simulated) beat locations B0 and labels J0,

we are able to use these to calculate (sample) moment estimates (ME) for the parameters,

which are given as

µ̂ME =
1

N − 1

N∑
k=2

(Bk,0 −Bk−1,0) , (3.97)

σ̂1,ME =

√√√√ 1

N − 2

N∑
k=2

(Bk,0 −Bk−1,0 − µ̂ME)2, (3.98)

σ̂2,ME =

√√√√ 1

n

n∑
i=1

(
Si −BJi,0,0

)2
, (3.99)

γ̂ME =
1

N

N∑
k=1

|{i ∈ {1, ..., n} : Ji,0 = k}| . (3.100)

Since the moment estimates base on the true beats and labels, they represent benchmark

parameter estimates and allow us to evaluate other parameter estimates.
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Furthermore, in this section we will compare Bayesian posterior means η̂Mean and medi-

ans η̂Median with the ACH estimates from Bingmer et al. (2011). For this purpose we will

calculate ACH estimates η̂ACH with Algorithm A.10 from Bingmer (2012, p.141) with a bin

size of δ = 10 and analysis window (0, 25, ...., 500) to incorporate the first peak of the ACH

(we refer to Bingmer (2012, p.80ff.) for more details about the ACH-fitting procedure). In

the following these input parameters will remain fixed.

Moreover, we will set ∆(switch) = 2 and p(switch) = 0.9 for the MH updates of the labels in

the MCMC algorithm. Thus, in every iteration we update n(switch) = max{1, bnp(switch)e}
labels and during every update we propose a switch from beat Bk to Bk′ with k′ ∼ unif(Vk)

and Vk = {max{k − 2, 1}, ...,min{k + 2, N}}. These values for ∆(switch) and p(switch) are

calibrated to yield an average acceptance probability of roughly 1/4 for typical processes

analyzed in this work as proposed by Gelman et al. (1996) for MH algorithms for Normal

models (cf. section 2.3.3). However, the acceptance probability varies a lot since for regular

processes the labels are likely to remain constant during the simulation, whereas for irreg-

ular processes there is far more uncertainty in the labels. The proposed values for ∆(switch)

and p(switch) will remain unchanged for all next examples and the data analysis in chapter 4.

In the following, we will, firstly, analyze three exemplary GLO processes that exhibit a

different level of regularity. Focussing on the ORE of the posterior means and medians

and the mixing properties of the MCMC samples, we will assess the impact of the prior

distribution, the number of beats and the impact of initial values. Secondly, we will examine

the general estimation error of posterior means and medians for nine different parameter

combinations based on a simulation study. We start by giving an example of a perfectly

working estimation procedure:

Example 3. In this example we analyze events from a GLO process with parameters η0 =

(µ0, σ1,0, σ2,0, γ0) = (364, 20, 10, 10) in the time window [0, 13000]. This particular GLO

instance, which we call Test-Data 1, exhibits N0 = 36 beats and n = 351 events. A rasterplot

is shown in Figure 3.1. One can clearly distinguish between different bursts due to a very

regular background beat and a small burst width.

0 2000 4000 6000 8000 10000 12000

Time

Figure 3.1.: Test-Data 1: Rasterplot.

For the simulated events we employ the MCMC algorithm (Algorithm 3.1) with Jeffreys

priors for all parameters µ, ψ1, ψ2, γ, B1 and Binomial priors for the labels J (cf. section

3.3). The true parameter values and original beat locations and labels are taken as initial

values to draw R = 40000 posterior samples for ϑ. An overview of the input parameters is

given in Table 3.2. Moreover, we report the burn-in period, BI, and computation time (in
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minutes) for the MCMC procedure on a Mac Mini with 2.6 GHz Intel Core i7, 16 GB RAM

and Mac OS X Yosemite 10.10.4.

Prior for µ, ψ1, ψ2, γ, B1 Jeffreys

Prior for J Binomial

p(switch) 0.9

∆(switch) 2

No. of iterations, R 40000

burn-in period, BI 20

Computation time 31 min

Table 3.2.: Example 3: Input parameters, burn-in period and computation time.

As shown in Figure 3.2 the posterior samples exhibit very small levels of autocorrela-

tion and a visually very well mixing chain. The initial labels remain constant during the

full simulation, which is reasonable since we already initialized the algorithm with the true

(original) labels and parameter values.
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Figure 3.2.: Example 3: Test-Data 1: (A)-(D) Sample ACFs and (E)-(H) trace plots for
µ, ψ1, ψ2, γ.

Method/Estimate µ̂ σ̂1 σ̂2 γ̂ ORE

True values, η0 364 20 10 10 -
Moment estimates, η̂ME 360.81 19.64 9.30 9.75 0.12
Posterior means, η̂Mean 360.76 18.07 9.20 9.76 0.21
Posterior medians, η̂Median 360.76 17.87 9.19 9.75 0.22
ACH estimates, η̂ACH 360.33 10.31 12.12 7.33 0.97

Table 3.3.: Test-Data 1: Parameter estimates in Example 3.
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In Table 3.3 the posterior parameter means η̂Mean and medians η̂Median (computed with

all samples after the burn-in period BI = 20), moment estimates (ME) and the ACH esti-

mates are reported. Clearly, both, posterior means and medians, provide almost identical,

very good estimates with a smaller overall estimation error than the ACH estimates.

Example 4. In this example we analyze events from a GLO process with parameters

η0 = (µ0, σ1,0, σ2,0, γ0) = (364, 20, 50, 10) in the time window [0, 13000]. This particular

GLO instance, which we call Test-Data 2, exhibits N0 = 37 beats and n = 349 events. The

rasterplot in Figure 3.3 shows that the main difference to Test-Data 1 is a larger burst width.

0 2000 4000 6000 8000 10000 12000

Time

Figure 3.3.: Test-Data 2: Rasterplot.

For the Bayesian estimation we follow the same procedure with the same input parameters

as in Example 3. Particularly, we assume Jeffreys priors for all parameters and Binomial

priors for the labels.

Prior for µ, ψ1, ψ2, γ, B1 Jeffreys

Prior for J Binomial

p(switch) 0.9

∆(switch) 2

No. of iterations, R 40000

Burn-in period, BI 20

Computation time 32.3 min

Table 3.4.: Example 4: Input parameters, burn-in period and computation time.

Similarly as in Example 3 the sample ACFs of the posterior samples for ψ2 and γ exhibit

a rapidly declining structure. However, the sample ACFs for µ, ψ1 and all beat locations B
indicate a rather slow mixing chain (cf. Figures 3.4 and 3.5). (Note that ”autocorrelation

of the samples” always corresponds to the autocorrelation of the MCMC (posterior) samples

ϑ
(BI+1)
j , ..., ϑ

(R)
j of one parameter ϑj after a burn-in period of length BI ∈ N, BI < R.)

The reason for this increased autocorrelation is given by the updating procedure for the

beats: As described in Algorithm 3.1, the (r+1)-th sample for beat Bk is distributed as

B
(r+1)
k ∼ N

ψ(r+1)
1

(
B

(r)
k+1 +B

(r+1)
k−1

)
+ ψ

(r+1)
2

∑n
(r)
k
j=1 zj

2ψ
(r+1)
1 + n

(r)
k ψ

(r+1)
2

,
1

2ψ
(r+1)
1 + n

(r)
k ψ

(r+1)
2

 ,
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where zj are the rescaled event locations (cf. Lemma 3.5, p. 3.5). Clearly, if σ2 increases,

ψ2 = σ−2
2 decreases and the expected value E

[
B

(r+1)
k | ϑ−Bk ,S

]
depends more on the sur-

rounding beats B
(r)
k+1 and B

(r+1)
k−1 . However, the latter are updated in an analogous way.

Therefore, the expected value of B(r+1) depends more on B(r), thus, the autocorrelation of

the beat locations increases. Since the FCPDs of µ and ψ1 only depend on the beat locations

and prior parameters, their autocorrelations increase as well.
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Figure 3.4.: Example 4: Test-Data 2: (A)-(D) Sample ACFs and (E)-(H) trace plots for
µ, ψ1, ψ2, γ.
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Figure 3.5.: Example 4: Test-Data 2: Sample ACF for (A) B1, (B) B11, (C) B21, (D) B31.

In Table 3.5 the posterior parameter means and medians (computed with all samples after

a burn-in period of BI = 20 samples), moment estimates and ACH estimates are reported.

As in Example 3, both the posterior means and medians for σ2 and γ are very good esti-

mates. Moreover, despite the high autocorrelations, this is also true for the posterior mean

and median of µ. Nevertheless, the estimate for σ1 exhibits an increased estimation error.

This observation is typical for high values of σ1 and may be due to the high autocorrelation

resulting as described above or due to the prior parameters (cf. section 3.4.1).
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Method/Estimator µ̂ σ̂1 σ̂2 γ̂ ORE

True values, η0 364 20 50 10 -
Moment estimates, η̂ME 361.81 18.87 51.67 9.43 0.15
Posterior means, η̂Mean 361.19 24.37 51.33 9.71 0.28
Posterior medians, η̂Median 361.32 23.76 51.27 9.70 0.25
ACH estimates, η̂ACH 367.39 0.002 59.35 8.95 1.30

Table 3.5.: Test-Data 2: Parameter estimates in Example 4.

Example 5. In this example we analyze events from a GLO process with parameters η0 =

(µ0, σ1,0, σ2,0, γ0) = (364, 5, 200, 5) in the time window [0, 13000]. This particular GLO

instance, which we call Test-Data 3, exhibits N0 = 39 beats and n = 185 events. A rasterplot

is shown in Figure 3.6. In contrast to Test-Data 2 the background rhythm is even more

regular while the events are distributed much more irregularly.

0 2000 4000 6000 8000 10000 12000

Time

Figure 3.6.: Test-Data 3: Rasterplot.

For the Bayesian estimation we follow the same procedure with the same input parame-

ters as in the last two Examples 3 and 4. Particularly, we assume Jeffreys priors for all

parameters and Binomial priors for the labels.

Prior for µ, ψ1, ψ2, γ, B1 Jeffreys

Prior for J Binomial

p(switch) 0.9

∆(switch) 2

No. of iterations, R 40000

Burn-in period, BI 1250

Computation time 17.6 min

Table 3.6.: Example 5: Input parameters, burn-in period and computation time.

However, in this example only the γ-component exhibits good mixing properties. All other

parameters µ, ψ1, ψ2 and all beat locations B exhibit large autocorrelations (cf. Figures 3.7

and 3.8). Moreover, we can observe a very large burn-in period BI = 1250 which results

from the beat locations moving together at the beginning of the simulation. Apparently, the

posterior probability is larger for beats being more close to each other. In Table 3.7 the pos-

terior parameter means and medians (computed with all samples after the burn-in period),

moment estimates (ME) and ACH estimates are reported.
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Figure 3.7.: Example 5: Test-Data 3: (A)-(D) Sample ACFs and (E)-(H) trace plots for
µ, ψ1, ψ2, γ.
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Figure 3.8.: Example 5: Test-Data 3: Sample ACF for (A) B1, (B) B11, (C) B21, (D) B31.

Analogously to the mixing properties only γ is estimated well. Regarding the other param-

eters, σ1 is overestimated and, thus, its estimates capture some variability that is missing

in in the estimates for σ2, which is underestimated. The only difference between posterior

means and medians is the posterior median of σ1, which is slightly smaller. Thus, the ORE

for η̂Median is slightly smaller. In comparison to the ACH estimates we see no improvement

in terms of the overall estimation error.

Method/Estimate µ̂ σ̂1 σ̂2 γ̂ ORE

True values, η0 364 5 200 5 -
Moment estimates, η̂ME 363.32 6.28 191.98 4.74 0.35
η̂Mean 332.86 28.81 129.82 4.79 5.24
η̂Median 332.27 19.53 127.08 4.78 3.40
ACH 312.66 0.68 93.71 4.23 1.69

Table 3.7.: Test-Data 3: Parameter estimates in Example 5.
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Nonetheless, the reported point estimates exclude vital information about the posterior

probabilities: Clearly, a posteriori there are two areas with a high density for σ1. These are

approximately [0, 20] and [30, 60], as Figure 3.9 shows. In other words, a posteriori it is

unsure if σ1 is small or large. This phenomenon might occur due to a discrepancy between

the prior distribution and the data. To address this possibility we will change the prior

distribution in Example 6.
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Figure 3.9.: Example 5: Test-Data 3: Posterior distribution of σ1.

3.4.1. Influence of prior distributions

As it is shown in section 3.3 the impact of the prior distributions for µ, ψ1, ψ2, γ, B1 on

the posterior distribution depends on the parameters of the prior distribution: For the

Normal distribution the impact is larger the smaller the prior variance is, whereas for the

Gamma distribution the impact is larger the larger the prior parameters are. To restrict the

prior influence one may choose the (non-informative) Jeffreys prior. However, if we assume

a Jeffreys prior for both ψ1 and ψ2, we a priori think of σ1 and σ2 as being identically

distributed. As a comparison between Examples 5 and 6 shows, this may result in large

autocorrelations and estimation errors, which are smaller for different prior parameters:

Example 6. In this example we analyze Test-Data 3 and follow the same procedure as in

Example 5 with exactly one difference: For the Gamma prior of ψ1 we set αψ1 = 10 instead

of αψ1 = 0. We can a priori informally think of ψ1 to be Ga(αψ1 , βψ1) distributed and

ψ2 to be Ga(αψ2 , βψ2) distributed. Since for Y ∼ Ga(α, β) the expected value is given by

E[Y ] = α/β, with αψ1 > αψ2 and βψ1 = βψ2 we a priori expect ψ1 to exceed ψ2, which in

turn implicates σ2 to exceed σ1.

However, since βψ1 = βψ2 = 0 the prior expectation does not exist. Thus, we may recall

that the conditional expected value of ψ1 is given as (cf. Lemma 3.3, p. 40)

E [ψ1 | ϑ−ψ1 ,S] =
2αψ1 + (N − 1)

2βψ1 +
∑N

k=2 (Bk −Bk−1 − µ)2
. (3.101)
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Thus, with increasing αψ1 the conditional expectation of ψ1 increases, whereas the expecta-

tion of σ1 decreases.

Prior for µ, π(µ) ∝ 1 (Jeffreys)

Prior for ψ1, π(ψ1) Ga(10, 0)

Prior for ψ2, π(ψ2) Ga(0, 0) (Jeffreys)

Prior for γ, π(γ) Ga(1/2, 0) (Jeffreys)

Prior for B1, π(B1) ∝ 1 (Jeffreys)

Prior for J1, π(Ji) Bin(N, i/n) (Binomial)

p(switch) 0.9

∆(switch) 2

No. of iterations, R 40000

Burn-in period, BI 1250

Computation time 17.3 min

Table 3.8.: Example 6: Input parameters, burn-in period and computation time.

In comparison to Example 5, with αψ1 = 10 we are able to substantially improve the mix-

ing behavior of ψ1 and also yield slightly smaller autocorrelations for ψ2. As intended the

posterior distribution of σ1 does no longer exhibit two peaks but only one. This fact supports

the hypothesis that the poor mixing behavior of σ1 and the two-peaked density in Example 5

results from a discrepancy between prior distribution and data. However, here the burn-in

period is still very large and all beats and µ exhibit extremely large autocorrelations.
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Figure 3.10.: Example 6: Test-Data 3: (A)-(D) Sample ACFs and (E)-(H) trace plots for
µ, ψ1, ψ2, γ.
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Figure 3.11.: Example 6: Test-Data 3: Sample ACF for (A) B1, (B) B11, (C) B21, (D) B31.
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Figure 3.12.: Example 6: Test-Data 3: Posterior distribution of σ1.

In Table 3.9 the posterior parameter means and medians (computed with all samples af-

ter the burn-in period), moment estimates (ME) and ACH estimates are reported. Also, we

include the estimates from Example 5. Clearly, the major improvement in comparison to

Example 5 is a much better estimate for σ1, which is also reflected by better mixing proper-

ties of ψ1. Consequently, the overall relative error decreases enormously.

Method/Estimate µ̂ σ̂1 σ̂2 γ̂ ORE `(GLON )

True values, η0 364 5 200 5 - -
Moment estimates, η̂ME 363.32 6.28 191.98 4.74 0.35 -
Posterior means, η̂Mean 336.29 3.09 142.52 4.84 0.78 - 1254.44
Posterior medians, η̂Median 333.89 2.97 138.92 4.83 0.83 - 1254.44
Posterior means, η̂Mean (Ex. 5) 332.86 28.81 129.82 4.79 5.24 - 1235.87
Posterior medians, η̂Median (Ex. 5) 332.27 19.53 127.08 4.78 3.40 - 1235.87
ACH estimates, η̂ACH 312.66 0.68 93.71 4.23 1.69 -

Table 3.9.: Test-Data 3: Parameter estimates in Example 6.

Moreover, we report the expected log-Likelihood `(GLON ) = Eϑ|S [logL(ϑ;S | GLON )] (cf.

section 3.2.2). Although the estimation precision is better, `(GLON ) is smaller for αψ1 = 10

than for αψ1 = 0 (Example 5).
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As Example 6 shows, always choosing the Jeffreys prior does not necessarily lead to the

smallest estimation error. Particularly for very different σ1 and σ2 the posterior distribution

tends to increase both parameters if both exhibit the same prior distribution. In this case,

with different prior parameters the large difference between σ1 and σ2 may be accounted for.

Moreover, a smaller estimation error due to a change in the prior may not necessarily be

reflected in the expected log-likelihood. Contrarily, in Example 6 the expected log-likelihood

even decreases. However, in Remark 3.2.2, p. 52, we introduced the expected log-likelihood

`(GLON ) as a means for model selection whereas a change in the prior distribution does

not change the underlying model but only the a priori belief about the parameters. Thus,

we can not expect `(GLON ) to be maximized by the respective choice of prior distributions

that lead to ORE-minimizing posterior parameter means.

Concisely, Example 6 shows that prior distributions may serve as a kind of anchor for the

posterior distribution. This is also true for the Binomial prior for the labels J : As pointed

out in section 3.3, we mainly distinguish between the Binomial and Uniform prior. Whereas

with the first the last event is fixed to the last event, the latter allows the last event a priori

to originate from the first beat with the same probability as from the last beat. For large

σ2 this may cause serious problems for the MCMC procedure: While for Test-Data 1 and 2

the posterior distributions with a uniform label prior correspond to these with a Binomial

prior from Examples 3 and 4, the MCMC procedure for Test-Data 3 essentially fails:

Example 7. In this example we analyze Test-Data 3 and follow the same procedure as in

Example 5 with exactly one difference: For all labels Ji, i = 1, ..., n, we assume that a priori

Ji ∼ unif({1, ..., N}). In other words, for every event Si we a priori believe that Si is placed

by any beat Bk, k = 1, ..., N, with the same probability.

True parameter values η0 = (µ0, σ1,0, σ2,0, γ0) = (364, 5, 200, 5)

Prior for µ, ψ1, ψ2, γ, B1 Jeffreys

Prior for J Uniform

p(switch) 0.9

∆(switch) 2

No. of iterations, R 40000

Computation time 19.43 min

Table 3.10.: Example 7: Input parameters and computation time.

Figure 3.13 shows the first 10000 MCMC samples of µ, σ1, σ2 and γ. Apparently, at

some point σ2 explodes (as motivated in Remark 3.1, p. 50, in the implementation of the

MCMC algorithm we restrict σ2 ≤ 105 to avoid problems due to numerical instability).
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Figure 3.13.: Example 7: Test-Data 3: Evolution of (A) µ, (B) σ1, (C) σ2 and (D) γ.

To analyze the reason for this behavior, recall from Lemma 3.6, p. 45, that the acceptance

probability for a change of label Ji from Ji = k to k′ is given by p
(switch)
acc (k′ | k) = min {1, p̃} ,

where

p̃ = exp

[
−ψ2

2

(
B2
k′ −B2

k + 2Si(Bk −Bk′)
)]
× nk
nk′ + 1

× π(k′)

π(k)
× |Vk|
|Vk′ |

.

In this example we have ψ2,0 = σ−2
2,0 = 200−2 = 2.5 × 10−5 and π(k) = π(k′) = 1/N .

Therefore,

p̃ ≈ nk
nk′ + 1

× |Vk|
|Vk′ |

. (3.102)

Moreover, for all k ∈ {1, ..., N : 1 + ∆(switch) < k < N −∆(switch)} we have |Vk| = |Vk′ |
(cf. Lemma 3.6, p. 45). Therefore, the acceptance probability does hardly depend on the

location of the respective event Si, current beat Bk or proposed beat Bk′, but only on the

current number of events at beats Bk and Bk′, i.e. nk and nk′, respectively. Particularly,

the more events there are at the current beat Bk in comparison to the proposed beat Bk′ the

larger is the acceptance probability for a switch. As a result, labels are (after the burn-in

period of BI = 4500) a posteriori nearly uniformly distributed, as Figure 3.14 shows.
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Figure 3.14.: Example 7: Test-Data 3: Posterior pmf of (A) J1, (B) J26,..., (H) J176.

In other words, it is for every event almost equally likely to originate from any beat

B1, ..., BN . Therefore, the distances between beats and their families increase enormously,

i.e.
∑n

i=1(Si −BJi)2 is large. Now, recall from Lemma 3.4, p. 41, that ψ2 is updated as

ψ2 ∼ Ga

(
αψ2 +

n

2
, βψ2 +

1

2

n∑
i=1

(zi −BJi)2

)
, (3.103)

where zi are the rescaled event locations. Since
∑n

i=1(Si − BJi)
2 increases substantially,∑n

i=1(zi − BJi)2 also increases (in most cases the rescaling will rather increase than sub-

stantially decrease the distances to the beats), thus E[ψ2 | ϑ−ψ2 ,S] further decreases.

Analogously, νk = FN (Bk,ψ
−1
2 )(T )− FN (Bk,ψ

−1
2 )(0) decreases for decreasing ψ2. Since γ is

updated by (cf. Lemma 3.1, p. 39)

γ ∼ Ga

(
αγ + n, βγ +

N∑
k=1

νk

)
, (3.104)

E[γ | ϑ−γ ,S] increases with decreasing ψ2.

3.4.2. Influence of N

Clearly, if N is too small, the beats have to incorporate more events than they originally

placed. Thus, γ̂ increases but also the beat locations will not always coincide with the mid

of an observed burst. Thus, σ̂1 and σ̂2 increase, as Example 8 illustrates. Contrarily, for too

large N the parameters are underestimated. More examples that illustrate the influence of

N can be found in section 4.1.

71



Example 8. In this example we analyze Test-Data 1. Recall from Example 3 that Test-Data

1 exhibits N0 = 36 beats and n = 351 events and is very regular. Here, we assume the same

Jeffreys and Binomial priors as in Example 3 and also use the original parameter values

η0 as initial values. However, we set different initial values B(0) and J (0): Instead of the

original values we, firstly, choose N = 30, secondly, set the beats to the mids of equidistant

intervals,

B
(0)
k =

T

2N
+ (k − 1)

T

N
for k = 1, ..., N, (3.105)

and, thirdly, choose similar to Algorithm 3.2 (Simple guess of initial values) the nearest

beat for every event, i.e.

J
(0)
i := arg min

k∈{1,...,N}

∣∣∣B(0)
k − Si

∣∣∣ for i = 1, ..., n. (3.106)

In Table 3.11 the posterior means and medians (computed with all samples after a burn-

in period of BI = 100 samples), ME and ACH estimates as well as the estimates from

Example 3 with correct number of beats, N0 = 36, are reported. In comparison to Example

3 all posterior means and medians substantially increase.

Method/Estimate µ̂ σ̂1 σ̂2 γ̂ ORE `(GLON )

True values, η0 364 20 10 10 - -
Moment estimates, η̂ME 360.81 19.64 9.30 9.75 0.12 -
Posterior means, η̂Mean 439.23 115.86 95.17 12.01 13.72 - 2168.8
Posterior medians, η̂Median 439.22 114.46 94.48 12.00 13.58 - 2168.8
Posterior means, η̂Mean (Ex. 3) 360.76 18.07 9.20 9.76 0.21 - 1363.8
Posterior medians, η̂Median (Ex. 3) 360.76 17.87 9.19 9.75 0.22 - 1363.8
ACH estimates, η̂ACH 360.33 10.31 12.12 7.33 0.97 -

Table 3.11.: Test-Data 1: Parameter estimates in Example 8.
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Figure 3.15.: Example 8: Test-Data 1: Observed events (solid), posterior beat densities
(dashed) and labels (colors).
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Moreover, we report the expected log-Likelihood `(GLON ) = Eϑ|S [logL(ϑ;S | GLON )] (cf.

section 3.2.2), which is substantially smaller for N = 30 than the expected log-likelihood for

the correct N = N0 = 36 in Example 3. Thus, in this example `(GLON ) is suitable to

evaluate what value for N provides the better model.

Figure 3.15 shows the posterior distributions of all beats (dashed) together with the ob-

served event locations (solid). The beats are deterministically colored in blue and green

(starting with blue). The events’ color corresponds to the posterior labels: If the posterior

probability for event Si originating from beat Bk is larger or equal to a threshold value of

80%, i.e. P(Ji = k | S) ≥ 0.8, the bar of event Si is colored in the same color as beat Bk
(green or blue). If there does not exist any k ∈ {1, ..., N} with P(Ji = k | S) ≥ 0.8, Si is

colored black.

As expected there exist several beats that cover two bursts in their event-families (e.g.

beats B2, B6, B10, B23) or exhibit two peaks in their posterior distribution (e.g. beats

B11,...,B15). Moreover, for five bursts of events (four bursts between 5000 and 7000 and

one burst roughly at 10500) it is not sure to which beats they belong (with respect to the

threshold of 80%).

3.4.3. Influence of initial values

Similar to the other input parameters of the algorithm the initial values ϑ(0) do also influ-

ence the estimation precision. To assess their impact we apply Algorithm 3.2 (Simple guess

of initial values) and choose the correct N = N0, i.e. we divide [0, T ] into N0 equidistant

intervals, set B(0) to the mids of these and set J (0) according to the nearest beat for every

event, which is also done in Example 8. For the remaining parameters we take the sample

estimates as proposed in Algorithm 3.2.

However, for all Test-Data 1, 2 and 3 we still obtain exactly the same mixing behavior

and posterior distributions as with the original values as initial values. This indicates that

even by choosing the initial values with this simple and straightforward method the MCMC

procedure works properly. Moreover, the burn-in periods do not change, although, we can

identify a large jump from the initial value to the first simulated value if the initial value

has low probability mass.

3.4.4. Estimation precision

In the following we will analyze the general estimation precision of the posterior parameter

means and medians for a given parameter combination η0 = (µ0, σ1,0, σ2,0, γ0). For this pur-

pose we consider nine different parameter constellations which are reported in Table 3.12.

Note that combination f corresponds to the true parameter values of Test-Data 3 in Exam-

ples 5, 6 and 7. Since µ is a scaling parameter for the whole process, we fix µ0 = 364, which

is a typical value for the mean distance between bursts of tropical cyclones. Our baseline

calibration is combination b which represents a regular GLO process with beats that very
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likely exhibit observable bursts of events since for γ = 5 we have P(Pk = 0) = e−5 ≈ 0.007.

Starting with this parameter combination we increase the irregularity of the process and

vary the firing rate γ0. We are particularly interested in large values for σ2,0 and the influ-

ence of low firing rates γ0 since these lead to high estimation errors of the ACH estimates

(cf. Bingmer (2012, p.96)).

Combination µ0 σ1,0 σ2,0 γ0

a 364 5 50 1
b 364 5 50 5
c 364 5 50 10
d 364 5 50 20
e 364 5 100 5
f 364 5 200 5
g 364 15 50 5
h 364 50 50 5
i 364 100 50 5

Table 3.12.: Exemplary parameter combinations used for simulation study.

Moreover, to assess the impact of different record times T we analyze all combinations in

three different sets with different values for T , which can be found in Table 3.13. We will

call one distinct parameter combination together with one value for T a setting. Thus, we

have 9× 3 = 27 settings.

Set I II III

Record time, T 8000 13000 23000

No. of simulations, M 1000 1000 1000

No. of MCMC iterations, R 30000 30000 30000

Burn-in period, BI 20 20 20

Table 3.13.: Exemplary record time, number of simulations and MCMC iterations and burn-
in period used for simulation study.

For every setting we repeat the following steps for m = 1, ....,M :

1) Simulate events S(m) of a process Φ ∼ GLO(µ0, σ1,0, σ2,0, γ0) in [0, T ].

2) Draw samples from the posterior distribution by applying the MCMC algorithm (Al-

gorithm 3.1) with input parameters from Table 3.14

3) Calculate the estimates η̂
(m)
Mean and η̂

(m)
Median based on the last R−BI MCMC samples.

With this procedure we obtain M realizations of the estimators η̂Mean and η̂Median and

are able to calculate the MREs and ORE as described at the beginning of the section.

Moreover, we compute the MREs and OREs of the corresponding ACH estimates η̂ACH by

following the same procedure.
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Initial values, ϑ(0) True parameter values η0 and
simulated (original) beats and labels

Prior for µ, ψ1, ψ2, γ, B1 Jeffreys

Prior for J Binomial

p(switch) 0.9

∆(switch) 2

Table 3.14.: Input parameters for MCMC algorithm in simulation study.

Firstly, we compare the ORE of η̂Mean and η̂Median in Figure 3.16. Clearly, only for

rather regular processes (combinations a to d) there is a noticeable difference between

ORE(η̂Mean) and ORE(η̂Median). Since the average overall error of η̂Median of all settings,

ORE(η̂Median) = 4.2, is slightly smaller than ORE(η̂Mean) = 4.5, we will focus on η̂Median in

the following.
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Figure 3.16.: log10 ORE for η̂Mean (green) and η̂Median (black) in simulation study for
T = 8000 (4), T = 13000 (©) and T = 23000 (×).

As Figure 3.17 shows, the MREs for σ1 are comparably large, whereas µ exhibits the

smallest estimation errors. Moreover, for most combinations the impact of the record time,

T , on the MREs is rather small. Only in case of a low firing rate γ0 (combination a), very

large burst width σ2,0 (combination f) or irregular background rhythm and large burst

width (combination h) there is a substantial improvement for large T . For the largest

considered record time T = 23000 the estimation error of γ̂Median does not change by much

for different combinations, whereas for the other parameters the MRE is particularly large in

case of a large burst width (combinations e and f). Interestingly, in case of T = 23000 only

the estimation error for µ̂Median increases noticeably for an irregular background rhythm

(combinations h and i).

75



−
3

−
2

−
1

0
1

Parameter combination

lo
g 1

0M
R

E
(µ̂

)

a b c d e f g h i

●

● ● ●

●
●

●

●

●

(A) log10 MRE (µ̂Median)

−
3

−
2

−
1

0
1

Parameter combination

lo
g 1

0 
M

R
E

(σ
1̂)

a b c d e f g h i

●

●
●

●

●
●

●

● ●

(B) log10 MRE (σ̂1,Median)

−
3

−
2

−
1

0
1

Parameter combination

lo
g 1

0 
M

R
E

(σ
2̂)

a b c d e f g h i

●

●
●

●

● ●

● ●
●

(C) log10 MRE (σ̂2,Median)

−
3

−
2

−
1

0
1

Parameter combination

lo
g 1

0 
M

R
E

(γ̂
)

a b c d e f g h i

●

●
●

●

● ● ● ● ●

(D) log10 MRE (γ̂Median)

Figure 3.17.: log10 MRE for (A) µ̂Median, (B) σ̂1,Median, (C) σ̂2,Median and (D) γ̂Median in
simulation study for T = 8000 (4), T = 13000 (©) and T = 23000 (×).

As shown in Figure 3.18, the estimation precision of the ACH estimates can be improved

substantially, in particular for µ and σ1, in case of a small firing rate γ0 (combination a).

Moreover, there are considerable improvements for all parameters in case of large burst

widths σ2,0 (combinations e and f) and an irregular background rhythm (combination i).

The OREs, shown in Figure 3.19, emphasize these findings. Generally, there is no setting in

which the ACH estimates exhibit a considerably smaller estimation error than the posterior

medians.

Additionally in Table 3.15 we report for every setting the average number of observed

(simulated) events, n, the average number of observed (simulated) beats, N and the average

computation time (in minutes) per GLO simulation (on a Mac Pro with 2.7 GHz 12 Core

Intel, 32 GB RAM and Mac OS X Yosemite 10.10.2). Furthermore, we report the number

of failures relative to the number of simulations, M . Since we restrict σ2 ≤ 105 in the

implementation of the MCMC algorithm (cf. Remark 3.1, p. 50, and Example 7, p. 69),

we interpret one estimation procedure as being failed if either maxi=1,...,4 η̂i ≥ 105 or one

estimate is missing (reported as NA; in R this is possible if values get to small or large

for employed functions like e.g. rgamma). Note that we neither include the failures of the

Bayesian estimation nor failures of the ACH estimation (aborts of the fitting algorithm) in

Figures 3.16 to 3.19.
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Figure 3.18.: log10 MRE for η̂Median (black) and η̂ACH (red) in simulation study for T = 8000
(4), T = 13000 (©) and T = 23000 (×) for (A) µ, (B) σ1, (C) σ2 and (D) γ.

0
20

40
60

80

Parameter combination

lo
g 1

0 
O

R
E

(η̂
)

a b c d e f g h i

● ● ● ● ● ● ● ● ●

●

● ● ●

● ●

● ●
●

Figure 3.19.: log10 ORE for η̂Median (black) and η̂ACH (red) in simulation study for T = 8000
(4), T = 13000 (©) and T = 23000 (×).
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T Combination n N Computation time No. of failures/M

8000 a 109.70 22.28 9.09 0.001

8000 b 109.60 22.24 9.03 0.001

8000 c 110.19 22.56 9.16 0.009

8000 d 220.13 22.39 16.62 0

8000 e 439.22 22.49 31.73 0

8000 f 109.62 22.28 9.01 0.007

8000 g 109.43 22.18 8.99 0.019

8000 h 110.20 23.19 9.20 0.020

8000 i 22.19 20.75 2.67 0.061

13000 a 179.09 35.99 15.35 0

13000 b 177.94 36.01 14.80 0.001

13000 c 178.85 36.29 15.05 0.008

13000 d 356.82 36.12 27.40 0

13000 e 714.52 36.23 52.72 0

13000 f 178.25 35.97 14.95 0.001

13000 g 178.11 35.95 14.83 0.010

13000 h 178.90 36.90 15.17 0.006

13000 i 35.59 34.59 4.29 0.009

23000 a 316.91 63.48 26.75 0

23000 b 315.83 63.47 26.56 0

23000 c 315.73 63.77 26.67 0.003

23000 d 632.62 63.59 49.43 0

23000 e 1264.69 63.71 95.27 0

23000 f 315.02 63.44 26.49 0

23000 g 316.01 63.51 26.42 0.003

23000 h 316.29 64.41 26.77 0.003

23000 i 62.83 62.15 7.52 0.002

Table 3.15.: Average number of events, beats, computation time (in minutes) and average
relative number of failures in simulation study.

Figure 3.20A shows that the average computation time is nearly linearly increasing with

n + N . This is very intuitive since the number of calculation steps does not change with

varying size of observations, n, or beats, N , except for N update steps for the beats,

max{1, bnp(switch)e} update steps for the labels, and n calculations for latent variables for

the update of ψ2.

Moreover, the number of failures is very sensitive for the record time, as Figure 3.20B

shows. Nonetheless, for the typical record time T = 13000 (or larger) there are no combi-

nations with more than 1% failures.
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Figure 3.20.: (A) Average computation time (in minutes) and (B) relative number of failures
in simulation study.
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4. Data analysis, forecasting and further

questions

4.1. Data analysis for tropical cyclones

In this section we will apply the Bayesian estimation procedure to the data of tropical cy-

clones in Africa, Americas, Asia and Oceania that were analyzed in sections 1.2 and 1.3. For

this purpose, we will employ the MCMC procedure (Algorithm 3.1) with input parameters

as reported in Table 4.1. Particularly, we assume Jeffreys prior for all parameters since we

do not have any prior information about the occurrence behavior of tropical cyclones.

Prior for µ, ψ1, ψ2, γ, B1 Jeffreys

Prior for J Binomial

Initial values ACH estimates η̂ACH,
(Complex/Simple guess of initial values)

p(switch) 0.9

∆(switch) 2

No. of iterations, R 35000

Table 4.1.: Input parameters for estimation procedure for tropical cyclones.

To obtain initial values we follow Algorithm 3.4 (Complex guess of initial values), i.e. we

use the ACH estimates η̂ACH as initial values for µ(0), ψ
(0)
1 , ψ

(0)
2 and γ(0), employ Algorithm

3.3 (Estimating beat locations) to obtain B(0), N , and set J (0) such that all events are

linked to their nearest beat. We will determine the ACH estimates as described in section

3.4. Regarding the KDE bandwidth σ in Algorithm 3.3 we will, firstly, set σ = σ̂2,ACH

and, secondly, analyze if a different bandwidth leads to a better model with respect to the

expected log-likelihood `(GLON ). If we are not able to find a bandwidth that yields a

particular value for N , we set

B
(0)
k =

T

2N
+ (k − 1)

T

N
(4.1)

as described in section 3.2 (Simple guess). The goodness of fit of the fitted GLO model

will be judged by visual inspection of the posterior beat distributions and GLO simulations.
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4.1.1. Africa

The dataset incorporates n = 97 reports of tropical cyclones in Africa, for which we obtain

the ACH estimates η̂ACH = (366.07, 7.43, 46.64, 2.7).

However, by choosing σ = σ̂2,ACH = 46.64 as bandwidth, we obtain N = 30 beats and

abnormally large autocorrelations and parameter estimates. This indicates, that N is too

small. Thus, we vary the bandwidth σ. The resulting values for N are plotted in Figure

4.1. Apparently, N = 35 is the largest value that Algorithm 3.3 is able to find given the

ACH estimates for the other parameters.

0 10 20 30 40 50

30
32

34

σ

N

Figure 4.1.: Tropical cyclones in Africa: Different bandwidths σ with resulting N .

σ/Method N `(GLON ) BI µ̂Median σ̂1,Median σ̂2,Median γ̂Median

(Simple guess) 36 - 915.83 200 415.72 572.05 126.15 2.85

10 35 - 595.19 100 366.67 6.06 50.56 2.89

23 34 - 893.19 100 448.98 546.08 129.38 3.02

σ̂2,ACH = 46.64 30 −∞ 100 152.9× 104 373.8× 104 105 1296.58

Table 4.2.: Tropical cyclones in Africa: Bandwidth, number of beats, expected log-
likelihood, burn-in period and posterior parameter medians.

We employ the fitting procedure with bandwidths σ = 10 and σ = 23 and compare the

resulting expected log-likelihoods in Table 4.2. Apparently, `(GLON ) is larger for N = 35.

To check if N is still too small, we also apply the estimation procedure for N = 36, which

leads to a smaller expected log-likelihood. Therefore, N = 35 provides the best fit among

the three considered values for N . We do not check for the existence of other local minima

of `(GLON )(N) since the resulting estimates for N = 35 are reasonable:

Figure 4.2B indicates that N = 35 is correct by showing the posterior distribution of all

beats together with the observed event locations. As in Example 8, the events’ color corre-

sponds to the posterior labels: If P(Ji = k | S) ≥ 0.8, event Si is colored in the same color as

beat Bk (green or blue). If there does not exist any k ∈ {1, ..., N} with P(Ji = k | S) ≥ 0.8,

Si is colored black. Additionally, in Figure 4.2C we show a GLO simulation with the pos-

terior medians. Visually the estimates are able to reproduce the observed pattern.
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(B) Observed events (solid), posterior beat densities (dashed) and labels (colors) (N = 35)
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(C) GLO simulation with η̂Median (N = 35)

Figure 4.2.: Tropical cyclones in Africa: (A) Data, (B) posterior beat densities and (C)
simulation.

4.1.2. Americas

The dataset incorporates n = 443 reports of tropical cyclones in Americas, for which we

obtain the ACH estimates η̂ACH = (364.27, 0.21, 42.23, 14.75). Figure 4.3 depicts several

bandwidths with resulting values for N . According to the expected log-likelihood N = 34

provides the best model as reported in Table 4.3. Figures 4.4B and 4.4C indicate that

the beat locations are estimated reasonable and the resulting posterior medians are able to

reproduce the observed occurrence pattern.

σ/Method N `(GLON ) BI µ̂Median σ̂1,Median σ̂2,Median γ̂Median

(Simple guess) 35 - 2459.88 200 357.02 42.93 39.77 12.99

5 34 - 2457.65 200 367.41 20.07 40.7 13.35

10 33 - 2490.38 200 380.69 55.16 43.31 13.83

σ̂2,ACH = 42.23 31 - 2583.58 100 417.2 103.76 53.66 14.78

Table 4.3.: Tropical cyclones in Americas: Bandwidth, number of beats, expected log-
likelihood, burn-in period and posterior parameter medians.
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Figure 4.3.: Tropical cyclones in Americas: Different bandwidths σ with resulting N .
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(B) Observed events (solid), posterior beat densities (dashed) and labels (colors) (N = 34)
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(C) GLO simulation with η̂Median (N = 34)

Figure 4.4.: Tropical cyclones in Americas: (A) Data, (B) posterior beat densities and (C)
simulation.

However, the simulated bursts appear to be slightly larger than the observed. Moreover,

the observed numbers of events per burst are much more variable than the simulated. In

particular, if we take n̂k :=
∣∣∣ {i ∈ {1, ..., n} : p−1

Ji|S(0.5) = k}
∣∣∣ as estimate for the number of

events in burst k ∈ {1, ..., N}, the sample mean is n̂ = 13.03, whereas the sample variance

is s2(n̂) = 99.79. This indicates that, firstly, large bursts have a larger influence on the
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posterior estimate and, secondly, in contrast to a Poisson distribution the variance of the

number of events in bursts may be larger than the expected value. This motivates a differ-

ent distribution for Pk like e.g. the Negative Binomial distribution.

4.1.3. Asia

The dataset incorporates n = 741 reports of tropical cyclones in Asia, for which we obtain

the following ACH estimates: η̂ACH = (370.98, 1.07, 74.04, 22.73). For every bandwidth

σ ≤ 100 we obtain N = 34 (which may be due to the small ACH estimate for σ1). However,

the expected log-likelihood is larger for N = 35, as reported in Table 4.4.

σ/Method N `(GLON ) BI µ̂Median σ̂1,Median σ̂2,Median γ̂Median

(Simple guess) 36 - 4243.38 100 345.66 74.70 63.91 20.73

(Simple guess) 35 - 4242.62 100 355.80 53.42 63.87 21.31

σ̂2,ACH = 74.04 34 - 4245.39 100 366.38 18.25 64.54 21.95

Table 4.4.: Tropical cyclones in Asia: Bandwidth, number of beats, expected log-likelihood,
burn-in period and posterior parameter medians.

Since there exist several very large bursts with unusually many beats, these additional

events are incorporated by additional beats with N = 35 (cf. Figure 4.5). Nonetheless, the

GLO simulation with η̂Median from N = 35 (cf. Figure 4.6B) is able to reproduce the ob-

served occurrence pattern and, thus, indicates that the parameter estimates are reasonable.
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(A) Observed events (solid), posterior beat densities (dashed) and labels (colors) (N = 34)
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(B) Observed events (solid), posterior beat densities (dashed) and labels (colors) (N = 35)

Figure 4.5.: Tropical cyclones in Asia: Posterior beats for (A) N = 34 and (B) N = 35.
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(B) GLO simulation with η̂Median (N = 35)

Figure 4.6.: Tropical cyclones in Asia: (A) Data and (B) simulation.

4.1.4. Oceania

The dataset incorporates n = 137 reports of tropical cyclones in Oceania, for which we

obtain the following ACH estimates: η̂ACH = (364.37, 1.89, 60.29, 3.98). According to the

expected log-likelihood N = 35 provides the best model. The estimates are reported in

Table 4.5. Figures 4.8B and 4.8C indicate that the beat locations are estimated reasonably

and the fitted model is able to reproduce the observed occurrence pattern.

σ/Method N `(GLON ) BI µ̂Median σ̂1,Median σ̂2,Median γ̂Median

(Simple guess) 36 - 968.19 100 377.82 200.58 53.32 3.96

σ̂2,ACH = 60.29 35 - 819.42 100 365.33 6.58 56.12 4.06

σ̂2,ACH/2 = 30.15 34 - 864.56 100 389.26 126.62 56.55 4.22

Table 4.5.: Tropical cyclones in Oceania: Bandwidth, number of beats, expected log-
likelihood, burn-in period and posterior parameter medians.
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Figure 4.7.: Tropical cyclones in Oceania: Different bandwidths σ with resulting N .
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(C) GLO simulation with η̂Median (N = 35)

Figure 4.8.: Tropical cyclones in Oceania: (A) Data, (B) posterior beat densities and (C)
simulation.

4.2. Forecasting

For insurance companies it is of great interest to forecast future events after having observed

events S ∈ [0, T ]n. Thus, particularly to illustrate the use of the GLO model in combination

with the Bayesian estimation framework for risk management purposes, in this section we

will give approximations for two possible quantities of interest:

4.2.1 the expected number of events in (t1, t2], T ≤ t1 < t2, i.e. E[Φ(t1, t2) | S],

4.2.2 the probability of a default at time t > T .

In general, a posteriori and conditional on ϑ we know the following:

1. n ∈ N events S1, ..., Sn are located in [0, T ] and were placed by the beats B1, ..., BN .

2. Beat Bk placed nk events in [0, T ] and ∆k := P ∗k − nk events in (−∞, 0) ∪ (T,∞),

where P ∗k is lower-truncated Poisson distributed, P ∗k ∼ Pois(γ | {nk, nk + 1, ...}).

3. All beats Bk with k /∈ {1, ..., N} place events in (−∞, 0) ∪ (T,∞) only.
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Therefore, not only events Sk,i with k /∈ {1, ..., N} but also beats Bk with k /∈ {1, ..., N}
exhibit a posteriori a truncated distribution. However, for the sake of simplicity we will omit

the truncation at several points in the following. Thus, we will only obtain approximations

for the quantities of interest. Nonetheless, these approximations are very accurate if the

GLO process is regular (i.e. if σ2/µ and σ1/µ are small), since then it is very probable

that beats Bk with k /∈ {1, ..., N} and corresponding events are not in [0, T ] as indicated by

Remark 4.1 and Remark 2.3, p. 15, respectively.

Remark 4.1 (Truncation of the background rhythm). For the distribution of beat BN+1

we have to distinguish between two cases:

1) If BN+1 places no events, i.e. PN+1 = 0, then BN+1 is able to be located in [0, T ],

thus, BN+1 ∼ N (BN + µ, σ2
1).

2) If BN+1 does place events, i.e. PN+1 > 0, then BN+1 can not be in

[−maxZN+1, T −minZN+1] , (4.2)

where minZN+1 := mini=1,...,Pk ZN+1,i and maxZN+1 := maxi=1,...,Pk ZN+1,i and

ZN+1,1, ..., ZN+1,Pk
iid∼ N (0, σ2

2), since otherwise there would exist an additional event

SN+1,i = BN+1 + ZN+1,i ∈ [0, T ]. Thus, BN+1 ∼ N (BN + µ, σ2
1 | IN+1), where

IN+1 := R\ [−maxZN+1, T −minZN+1] . (4.3)

Therefore,

P(BN+1 ∈ [a, b] | S)

= P(BN+1 ∈ [a, b], PN+1 = 0 | S) + P(BN+1 ∈ [a, b], PN+1 > 0 | S) (4.4)

= e−γ
∫ b

a
fN (BN+µ,σ2

1)(u) du+
(
1− e−γ

) ∫ b

a
fN (BN+µ,σ2

1 |IN+1)(u) du, (4.5)

where the density of the truncated normal distribution is given as (cf. Griffiths (2002))

fN (BN+µ,σ2
1 |IN+1)(x) =

fN (BN+µ,σ2
1)(x)∫

IN+1
fN (BN+µ,σ2

1)(u) du
, (4.6)

for x ∈ IN+1 and 0 otherwise. This is similar for all beats Bk with k /∈ {1, ..., N}. Moreover,

if BN + µ > T −minZN+1, we have∫
IN+1

fN (BN+µ,σ2
1)(u) du→ 0, for σ1 → 0. (4.7)

Thus, for small σ1 the truncation does not noticeably change the distribution, i.e.

fN (BN+µ,σ2
1 |IN+1) ≈ fN (BN+µ,σ2

1). Similarly, minZN+1 weakly converges to zero if σ2 ap-

proaches zero. Hence, in case of small σ1 and σ2, and BN + µ ≥ T + ε with sufficiently

large ε > 0, we may approximate the forecast by carrying on the background rhythm without

accounting for the truncation, i.e. by taking BN+1 ∼ N(BN + µ, σ2
1).

87



4.2.1. The a posteriori expected number of events

Firstly, we will focus on the expected number of events in (t1, t2] with T ≤ t1 < t2. For this

purpose, we obtain from Lemma 2.1, p. 17, that conditional on knowing B1, ..., BN and the

parameter values η, the expected number of events in (t1, t2] is given by

E[Φ(t1, t2) | B1, ..., BN , η] = γ
N∑
k=1

(
FN (Bk,σ

2
2)(t2)− FN (Bk,σ

2
2)(t1)

)
(4.8)

+ γ
∑

k∈{−1,−2,...}

(
FN (B1+kµ,σ2

2+|k|σ2
1)(t2)− FN (B1+kµ,σ2

2+|k|σ2
1)(t1)

)
+ γ

∑
k∈{1,2,...}

(
FN (BN+kµ,σ2

2+|k|σ2
1)(t2)− FN (BN+kµ,σ2

2+|k|σ2
1)(t1)

)
.

If we do not account for the truncation of beats Bk, k /∈ {1, ..., N}, and corresponding

events, the a posteriori expected number of events in (t1, t2] can similarly be approximated

by

E[Φ(t1, t2) | S] = E [E [Φ(t1, t2) | ϑ,S] | S] = E

[
E

[∑
k∈Z

Pk∑
i=1

1{Sk,i∈(t1,t2]} | ϑ,S

]
| S

]
(4.9)

≈
N∑
k=1

E[P ∗k − nk | S] E
[
FN (Bk,σ

2
2 |(−∞,0)∪(T,∞))(t2)− FN (Bk,σ

2
2 |(−∞,0)∪(T,∞))(t1) | S

]
+ E

[
γ

∑
k∈{1,2,...}

(
FN (B1−kµ,σ2

2+|k|σ2
1)(t2)− FN (B1−kµ,σ2

2+|k|σ2
1)(t1)

)
+ γ

∑
k∈{1,2,...}

(
FN (BN+kµ,σ2

2+|k|σ2
1)(t2)− FN (BN+kµ,σ2

2+|k|σ2
1)(t1)

)
| S
]
. (4.10)

The pmf of the lower-truncated Poisson distribution P ∗k ∼ Pois(γ | {nk, nk + 1, ...}) is

given as

P(P ∗k = u) =
1

P(Pk ≥ nk)
γk

k!
e−γ , for k ≥ nk, (4.11)

where Pk ∼ Pois(γ). Thus, for the expected value we yield

E[P ∗k | γ, nk] =
1

1− FPois(γ)(nk − 1)

∞∑
k=nk

k
γk

k!
e−γ (4.12)

=
1

1− FPois(γ)(nk − 1)

( ∞∑
k=0

k
γk

k!
e−γ −

nk−1∑
k=0

k
γk

k!
e−γ

)
(4.13)

= γ
1− FPois(γ)(nk − 2)

1− FPois(γ)(nk − 1)
. (4.14)
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Therefore, to approximate E[Φ(t1, t2) | S] we can use samples ϑ(1), ..., ϑ(R) from the

posterior distribution and evaluate

E[Φ(t1, t2) | S]

≈ 1

R

R∑
l=1

[
N∑
k=1

γ(r)
1− FPois(γ(r))

(
n

(r)
k − 2

)
1− FPois(γ(r))

(
n

(r)
k − 1

) − n(r)
k

 (4.15)

×

(
F
N
(
B

(r)
k ,
(
σ

(r)
2

)2
|(−∞,0)∪(T,∞)

)(t2)− F
N
(
B

(r)
k ,
(
σ

(r)
2

)2
|(−∞,0)∪(T,∞)

)(t1)

)

+ γ(r)
∑

k∈{1,2,...}

(
F
N
(
B

(r)
1 −kµ(r),

(
σ

(r)
2

)2
+k
(
σ

(r)
1

)2
)(t2)− F

N
(
B

(r)
1 −kµ(r),

(
σ

(r)
2

)2
+k
(
σ

(r)
1

)2
)(t1)

)

+ γ(r)
∑

k∈{1,2,...}

(
F
N
(
B

(r)
N +kµ(r),

(
σ

(r)
2

)2
+k
(
σ

(r)
1

)2
)(t2)− F

N
(
B

(r)
N +kµ(r),

(
σ

(r)
2

)2
+k
(
σ

(r)
1

)2
)(t1)

)]
.

Note that we do not account for the truncation of new beats Bk, k /∈ {1, ..., N}, and

corresponding events. Thus, the resulting approximation is accurate only for small σ1 and

σ2, and if P(BN + µ ≥ T + ε | S) is large with sufficiently large ε > 0, as stated above.

4.2.2. The a posteriori probability of default

Secondly, we will focus on the a posteriori probability of default at time t > T , i.e.

ΨT (t, u) = P (u+ c(t− T )− L(T, t) < 0 | S) , (4.16)

where u ≥ 0 denotes the initial capital at time T , c > 0 the premium income rate and

L(T, t) =
∑Φ(T,t)

i=1 Yi the aggregate claims occurring in (T, t]. Moreover, we assume that

Y1, Y2, ... are independent and identically distributed according to FY and independent

from Φ. It follows that

ΨT (t, u) = E
[
1{u+c(t−T )−L(T,t)<0} | S

]
(4.17)

= E
[
E
[
1{

u+c(t−T )<
∑Φ(T,t)
i=1 Yi

} | ϑ,S
]
| S
]
, (4.18)

which can be approximated by means of Monte-Carlo methods as follows: For every sample

ϑ(r) from the posterior distribution simulate M ∈ N second parts of the observed GLO pro-

cess and claim sizes Yi. In other words, for all r = 1, ..., R and m = 1, ...,M draw samples

for Φ(T, t) and Y1, ...., YΦ(T,t) conditionally on S and ϑ(r).

Recall from Proposition 2.3, p. 17, that

L (Φ(T, t) | B) = Pois

(
γ
∑
k∈Z

∫ t

T
fN (Bk,σ

2
2)(u) du

)
. (4.19)
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However, for beats Bk with k ∈ {1, ..., N} a posteriori we already know how many events

were placed in [0, T ]. The remaining number of events is given by ∆k as defined above.

Since conditional on the background rhythm the event locations are independent, we can

sample the number of events placed by Bk, k ∈ {1, ..., N}, independently from the events

originating from Bk, k /∈ {1, ..., N}. We propose the following procedure for every posterior

sample r = 1, ..., R and iteration m = 1, ...,M :

1) For all beats B
(r)
k , k ∈ {1, ..., N}, draw

P
(r,m)
k ∼ Pois

(
γ(r) |

{
n

(r)
k , n

(r)
k+1, ...

})
(4.20)

and place ∆k = P
(r,m)
k − n(r)

k iid events outside of [0, T ], i.e.

S
(r,m)

k,n
(r)
k +1

, ..., S
(r,m)

k,P
(r,m)
k

∼ N
(
B

(r)
k ,
(
σ

(r)
2

)2
| (−∞, 0) ∪ (T,∞)

)
. (4.21)

2) Carry on the background rhythm in both directions, i.e. model two random walks:

The first starts in B
(r)
N with mean increment µ(r) and ends when it reaches the height

t + K. The second starts in B
(r)
1 with mean increment −µ(r) and ends when it is

below T −K.

3) Draw the number of events in (T, t] originating from beats
{
B

(r)
k : k /∈ {1, ..., N}

}
, i.e.

Q(r,m) ∼ Pois

γ(r)
∑

k/∈{1,...,N}

∫ t

T
f
N
(
B

(r)
k ,
(
σ

(r)
2

)2
|(−∞,0)∪(T,∞)

)(u) du

 (4.22)

4) Set Φ(r,m)(T, t) = Q(r,m)+
∣∣∣{ S(r,m)

k,j ∈ (T, t] : k ∈ {1, ..., N}, j ∈
{
n

(r)
k + 1, ..., P

(r,m)
k

}}∣∣∣.
5) Draw claim sizes Y1, ..., YΦ(r,m)(T,t)

iid∼ FY .

6) Evaluate h(r,m) = 1{
u+c(t−T )<

∑Φ(r,m)(T,t)
i=1 Yi

}.

Then, the probability of default can be approximated by

ΨT (t, u) ≈ 1

MR

R∑
r=1

M∑
m=1

h(r,m). (4.23)

Note that during this procedure we only account for the truncation of events but not for

the newly simulated background rhythm. Thus, the resulting approximation is accurate

only if σ1 and σ2 are small and P(BN + µ ≥ T + ε | S) is large with sufficiently large ε > 0,

as stated above.
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Remark 4.2 (Simulation parameters). K should be chosen such that both the probability

that beats outside [T −K, t + K] place events in (T, t] and the probability that the random

walk jumps back from beats outside [T − K, t + K] into (T, t] are small. Moreover, when

applying the simulation procedure it will be useful to determine constants k1 and kN that

correspond to the number of beats to cross T −K and t+K, respectively. Here we present

guidelines for choosing these parameters, which are similar to the guidelines for the GLO

simulation algorithm from Bingmer (2012, p.41 and p.137). For this purpose, we will nei-

ther consider the truncation of events nor beats.

Firstly, we focus on the probability that beats place events in (T, t]: Suppose that there is a

beat at t+K ′. The location of a random event originating at this beat is S ∼ N (t+K ′, σ2
2),

thus, we want P(S ≤ t) ≤ ε for a small ε ∈ (0, 1). It follows that

K ′ ≥ −qεσ2, (4.24)

where qε = F−1
N (0,1)(ε) is the ε-quantile of the standard Normal distribution.

Secondly, we analyze the random walk. As Bingmer (2012, p.39-40) shows by applying

results for ruin probabilities of random walks, the probability that a random walk that is

started at 0 with mean increment −µ < 0 and variance σ2
1 crosses a > 0 is bounded by

ε ∈ (0, 1) if

a ≥ σ2
1

2µ
log ε =: K ′′. (4.25)

This is the same situation as having a random walk that is started at t + K ′′ with µ > 0

and determining K ′′ such the random walk jumps below t only with probability ε. Therefore,

with K = max{K ′, K ′′} in our setting we may consider all beats in the interval

[T −K, t+K] , (4.26)

Finally, we obtain the number of beats to cross T−K and t+K: First, focus on t+K and

the upper random walk, that starts at BN . Thus, BN+k−BN ∼ N (kµ, kσ2
1). kN ∈ N should

be the smallest index value, such that the probability for the random walk to be smaller than

t + K is smaller or equal than ε ∈ (0, 1). As Bingmer (2012, p.42) shows, this value is

given by

kN ≥
2(t+K −BN )µ+ q2

εσ
2
1

2µ2
+

1

2µ

√
q2
εσ

2
1(4(t+K −BN ) + q2

εσ
2
1. (4.27)

Similarly, the value for k1 can be obtained, which is given as

k1 ≥
2(B1 − (T −K))µ+ q2

εσ
2
1

2µ2
+

1

2µ

√
q2
εσ

2
1(4(B1 − (T −K)) + q2

εσ
2
1. (4.28)

Therefore, in step 2) we may simulate BN+1, ..., BN+kN and B0, ..., B−k1+1.
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4.3. A collective risk model for hail claims

In this section we will review a dataset of claims that were caused by hail damage of one

of the six largest (according to premium income in 2014) insurance companies in Germany.

Every datapoint corresponds to one particular day and the total claim size occurring at that

day. To exclude trends due to (premium) growth of the company, we adjust the original

(daily) claim sizes Y
(y)
i in year y by the latest total premiums in 2014, c2014, such that

Y ′
(y)
i = Y

(y)
i c2014/cy is the premium-adjusted claim size. Due to reasons of information

privacy the dates are reported in days starting at an unknown past date and instead of

the premium-adjusted claim size Y ′i we only consider the normalized log-premium-adjusted

claim size (in the following simply called claim size)

Ỹi =
log Y ′i − logY ′√

s2(logY ′)
. (4.29)

Moreover, claims were made at almost every day in the dataset. However, in this example

we will only analyze events with a premium-adjusted claim size Y ′i that exceeds a certain

threshold value α > 0, the Peaks over Threshold (POT) process. This type of process is

often considered in Extreme-Value theory (cf. Embrechts et al. (1997, p.352)). There are a

few reasons for using the POT process: Firstly, for the business risk of an insurance company

only large claims are relevant. Secondly, one may also interpret the POT as the occurrence

times of claims made in context of an Excess of loss-reinsurance agreement. In this case

the insurance company claims a loss to a reinsurer if the loss exceeds a certain thresh-

old. Thirdly, and most practically, the POT exhibits the regular structure of a bursty GLO

process as the rasterplot in Figure 4.10A and the ACH in Figure 4.9 indicate for α = 100000.

Although the firing rate apparently increases, we will ignore this trend for the sake of

simplicity (in section 4.4.2 we will discuss how trends may be embedded in the GLO model).

We choose α = 100000, which roughly corresponds to the 90.6%-quantile of the data, thus,

we only analyze the roughly 10% largest premium-adjusted claims. Since the claims are

aggregated over one day, we may assume that the POT’s claims are direct and fast responses

to events with a large impact and, thus, indicate the true occurrence of large hail events.
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Figure 4.9.: Occurrence of Hail in Germany: ACH of the POT process for α = 100000.
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In a first step, we obtain R = 35000 MCMC posterior samples by employing the same

fitting procedure as in section 4.1, particularly with Jeffreys and Binomial priors. The

ACH estimates are η̂ACH = (360.84, 0.0001, 47.79, 23.32). By comparing the expected log-

likelihood for different values for N we yield N = 21 as optimal value and the corresponding

parameter estimates reported in Table 4.6. The fit to the data is appropriate as Figure 4.10

indicates.

σ N `(GLON ) BI µ̂Median σ̂1,Median σ̂2,Median γ̂Median

(Simple guess) 22 - 2347.15 100 342.82 79.65 36.88 21.6

(Simple guess) 21 - 2346.29 100 360.31 32.11 36.91 22.76

σ̂2,ACH = 47.79 20 - 2522.06 100 373.19 25.35 55.51 23.22

Table 4.6.: Occurrence of hail in Germany: Bandwidth, number of beats, expected log-
likelihood, burn-in period and posterior parameter medians.
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(A) Observed events (with α = 100000)

0 1000 2000 3000 4000 5000 6000 7000

Time

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21

(B) Observed events (solid), posterior beat densities (dashed) and labels (colors) (N = 21)

0 1000 2000 3000 4000 5000 6000 7000

Time

(C) GLO simulation with η̂Median (N = 21)

Figure 4.10.: Occurrence of hail in Germany: (A) Data, (B) posterior beat densities and
(C) simulation.
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In a second step, we fit the corresponding claim sizes of the POT process to a loss dis-

tribution. For this purpose we consider the Exponential, Log-Normal and shifted Gamma

distribution. The latter is given by the distribution of Ỹ + κ where Ỹ ∼ Ga(α, β) and

κ ∈ R. The parameters of all three distributions are fitted by the method of moments and

the empirical and fitted densities are shown in Figure 4.11.
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Figure 4.11.: Claim sizes due to hail in Germany: Empirical (black/grey) and fitted shifted
Gamma (red), Log-Normal (blue) and Exponential (green) distribution.

Since in this work we focus on the claim arrival process, we do not need an optimal fit of

the claim size distribution and evaluate the three distributions only visually by comparing

the (fitted) theoretical and empirical densities. Despite of the additional third parameter,

the shifted Gamma distribution exhibits only a slightly better fit than the Log-Normal

distribution. Since both indicate a better fit than the Exponential distribution, we choose

the Log-Normal distribution with fitted parameters m = 0.69 and s = 0.29, i.e. we assume

that log Ỹ1, ..., log Ỹn
iid∼ N (m, s2). However, note that due to the truncation of the process

left-truncated loss distributions may provide a better fit. Several of these are analyzed in

Chernobai et al. (2005).

4.3.1. Forecasting the probability of default

In order to illustrate the use of the GLO model for risk management purposes and to com-

pare it to the often used homogeneous Poisson process we apply the forecasting method for

the probability of default which was proposed in section 4.2.2. For this purpose we assume

that an insurance company in fact observed the claims shown in Figure 4.12 that were sim-

ulated according to a GLO process in the time window [0, T ], where the parameter values

are the estimates η̂Median (with N = 21) for the occurrence of hail in section 4.3. However,

the company is uncertain about the true parameter values (and past beat locations and

labels) of the GLO process.
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Figure 4.12.: Rasterplot of simulated data.

Furthermore, we suppose that the insurance company knows, that the claim sizes are

independent, identically and log-normally distributed with parameters m = 0.69 and s =

0.29 as the fitted claim sizes due to hail from section 4.3 (i.e., we do not consider parameter

uncertainty for the claim sizes). At time T we assume arbitrary values for the company’s

initial capital u ≥ 0 and the continuous premium payments c ≥ 0 as reported in Table 4.7.

Record times, T Initial capital, u Premium rate, c Sample size, M

6721, 6850, 6950, 7159 12 40/364 150

Table 4.7.: Exemplary values for the surplus process.

For the analysis we will consider the same observed events but, however, truncate these

at four different values T ∈ T := {6721, 6850, 6950, 7159}. For every T ∈ T we apply the

following procedure:

Firstly, we apply the MCMC algorithm (Algorithm 3.1) analogously to section 4.3 (with

Jeffreys and Binomial priors and the true parameter values as initial values) to obtain

R = 20000 samples (after a burn-in period of BI = 100) from the posterior distribution.

Secondly, we apply the Monte Carlo procedure described in section 4.2.2 to approximate

the a posteriori probability of default (PD) at time t > T , ΨT (t, u). Particularly, we do not

account for the truncation of the background rhythm since the true values of σ1 and σ2 are

rather small and P(BN + µ− T > ε) is sufficiently large with large ε > 0 for all T ∈ T (cf.

Remark 4.1).

Additionally, we fit the events to a homogeneous Poisson process ϕ. To obtain compara-

bility to ΨT (t, u), we also account for parameter uncertainty. Since the inter-event-intervals

IEI1, ..., IEIn−1 are independent and Exp(λ)-distributed under the Poisson process-hypo-

thesis, we perform a Bayesian estimation with a Jeffreys prior for λ. Fisher’s expected

information is for the Exp(λ)-distribution given as I(λ) = E
[
−∂2 logL(λ;IEI1)

∂λ2

]
= λ−2, thus,

the Jeffreys prior is given as π(λ) ∝ λ−1. Therefore, λ is a posteriori distributed as

p(λ | IEI) ∝ 1

λ

n−1∏
i=1

λe−λIEIi = λn−2e−λ
∑n−1
i=1 IEIi , (4.30)

which is proportional to a Ga(n− 1,
∑n−1

i=1 IEIi) distribution.
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Moreover, due to the memorylessness of the Exponential distribution, the number of

events in (T, t] is conditional on λ given as ϕ(T, t) ∼ Pois(λ(t−T )). Hence, to approximate

the a posteriori probability of default, ΨT (t, u)(Pois), we draw R = 30000 posterior samples

for λ ∼ Ga(n−1,
∑n−1

i=1 IEIi). Then, for each of these samples we draw M = 120 samples of

ϕ(T, t), claim sizes Y1, ..., Yϕ(T,t) and evaluate h(r,m) similar to the procedure in section 4.2.2.
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Figure 4.13.: Upper part : A posteriori probability of default for the GLO (solid, black) and
homogeneous Poisson process (solid, red) beginning (A)/(D) after bursts, (B)
between bursts and (C) before a burst. Lower part : Observed events (solid),
forecasted beat densities (dashed) and labels (colors).

In Figure 4.13 the resulting PDs are shown. As one might expect, ΨT (t, u) increases

substantially at the time a beat might occur, and decreases when the occurrence of events

becomes unlikely and premiums increase the insurer’s capital. If the observation window

ends directly after bursts (Figures 4.13A and 4.13D), ΨT (t, u) starts with a steep peak since

events might be placed near T by beats from inside the observation window. This peak is

rather small if T is between two bursts (Figures 4.13B). If, however, T is located directly
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before a burst (Figure 4.13C), ΨT (t, u) immediately increases with a very large peak since

the insurer was not able to save premiums before the first events occur.

In contrast, ΨT (t, u)(Pois) is monotone increasing with time, since the arrival process ex-

hibits a constant intensity. Therefore, ΨT (t, u)(Pois) is smaller than ΨT (t, u) in bursty times,

and larger in times without any (GLO) events if the forecast begins directly after or be-

tween bursts (Figures 4.13A, 4.13B and 4.13D). If, however, T is immediately followed by

a burst (Figure 4.13C), ΨT (t, u) is larger than ΨT (t, u)(Pois) for the first few years since the

insurer’s losses are immediately very large compared to the insurer’s capital (initial surplus

and premiums).

To conclude, an insurance company that is exposed to claims that arrive according to a

GLO process is particularly exposed to bursty periods with many claims. Moreover, the

probability of default considerably depends on the location of the latest burst in relation

to the beginning of the forecast. If, nonetheless, the claim arrivals are modeled with a

homogeneous Poisson process, the oscillatory behavior of claim arrivals is not accounted for

and, thus, the PD is largely underestimated in bursty times.

4.4. Possible model extensions

In this section we will discuss several possible model extensions for the GLO and analyze

how they might by incorporated in the Bayesian estimation framework.

4.4.1. Negative Binomial distribution

For some processes in section 4.1 we observed a larger variance than mean of the number

of events in bursts. In other words, the size of the beats’ families were overdispersed.

Therefore, a Negative Binomial distribution (cf. section 1.1.1) might be more preferable

than the Poisson distribution, i.e. Pk ∼ NB(r, p) with pmf

P(Pk = l) =

(
l + r − 1

l

)
pl(1− p)r. (4.31)

However, incorporating the Negative Binomial distribution in the Bayesian framework is

not straightforward since there is no standard distribution serving as conjugate prior. One

may consider two possible ways how to perform Bayesian inference in a Negative Binomial

model:

First, one may calculate the posterior distribution for a certain prior distribution as it is

done in Ganji et al. (2013). However, their resulting posterior distribution is a non-standard

distribution, for which it is not clear how to sample from. Thus, their results may be used

by employing the Metropolis-Hastings algorithm.

Second, we may employ the following Lemma:
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Lemma 4.1. (Liu and Dey (2007)) If L(P | γ) = Pois(γ) and γ ∼ Ga(r, 1−p
p ), then

L(P ) = NB(r, p).

Thus, in the MCMC algorithm one may estimate r and p conditionally on γ. This method

is called hierarchical Bayes method. For example, Liu and Dey (2007) review Bayesian

analysis of several hierarchical non-standard Poisson regression models. They incorporate

the Negative Binomial model as a special case. However, for being able to employ the

hierarchical Bayes method with Gibbs updating steps, one needs to find conjugate priors

for the Gamma distribution which can be sampled from. This is straightforward for the first

but harder for the second parameter (cf. Yang and Berger (1998)). Addressing this issue,

Moala et al. (2013) and Son and Oh (2006) present ways how to employ MCMC methods

in case of non-informative priors for the parameters of the Gamma distribution, whereas

Pradhan and Kundu (2011) develop a Gibbs sampling procedure for informative priors.

4.4.2. Trends

It is straightforward to include a trend e.g. for Pk (as one can e.g. observe in section 4.3

for the occurrence of hail in Germany). For example, one may propose a model similar to

General Linear Models (GLMs) with

L (Pk | γk) = Pois(γk) and log(γk) = γ0 + βBk. (4.32)

An introduction to Bayesian inference for GLMs may be found in Wakefield (2013, p.273ff.).

However, in such a model it is difficult to find conjugate prior distributions that one can

sample from and, thus, it may be necessary to employ the Metropolis-Hastings algorithm.

4.4.3. Non-Gaussian distributions

For both the background rhythm as well as the event distribution one may consider other

distributions. By changing the distribution of beat increments one may e.g. allow for

heavy tails (for example with a t (student) distribution). Alternatively, one may employ

distributions that take only positive values, like the Exponential, Log-Normal or Weibull

distribution, such that beat locations are monotone increasing and the background rhythm

follows a renewal process. Then, the updating procedure in the MCMC procedure (Algo-

rithm 3.1, p. 46) can easily be adapted by employing conjugate priors or MH updates.

4.4.4. Non-bursty mode

Recall from Remark 2.1, p. 12, that Bingmer et al. (2011) allow for a non-bursty mode, in

which the random number of events in one burst is Bernoulli-distributed, Pk ∼ Bernoulli(γ)

with γ ∈ [0, 1]. By assuming a uniform, Jeffreys or Beta prior for γ we yield the Beta

distribution as posterior distribution (cf. Yang and Berger (1998) and Hoff (2009, p.37-38)).

Therefore, we can apply the Bayesian estimation framework for such a model by replacing

the Gamma distribution in step 1) in the MCMC procedure (Algorithm 3.1, p. 46) with the

respective Beta distribution and replacing the Poisson distribution in the remaining steps

with the Bernoulli distribution.
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4.4.5. Modeling catastrophes and claims

In this work we applied the GLO model for two different types of events: the occurrence

of catastrophes (namely tropical cyclones, cf. section 4.1) and the occurrence of claims

(due to hail damage, cf. section 4.3). However, it is also possible to model both, bursts

of catastrophes and claims caused by the catastrophes, in one model. A straightforward

extension of the GLO model might be given as follows:

1. Background rhythm: The beats Bk, k ∈ Z, follow a stationary random walk.

2. Number of events: The number of events Pk at beat Bk is Poisson distributed,

Pk ∼ Pois(γ0).

3. Event variation: At every beat Bk all events are distributed around the beat with

independent increments, i.e. Sk,i = Bk + Zk,i with Zk,i
iid∼ N (0, σ2

2).

4. Number of claims: For every event Sk,i there occur Gk,i ∼ Pois(γ1) claims.

5. Claim variation: At every event Sk,i all claims are distributed with positive, inde-

pendent increments, i.e.

Ck,i,j = Sk,i +Wk,i,j with Wk,i,j
iid∼ FC . (4.33)

All random variables Zi1,i2 , Pi3 , Gi4,i5 ,Wi6,i7,i8 are independent for all i1, i3, i4, i6 ∈ Z and

i2, i5, i7, i8 ∈ N. The Bayesian framework may easily be extended for this model since it

essentially consists of an inner and outer GLO process.

4.4.6. Multivariate GLOs

The data suggests that tropical cyclones do not occur independently for different continents.

In other words, the occurrence of an event (or burst) at some place increases (or decreases)

the probability of an event (or burst) at a different place. For example, bursts in Americas

seem to occur in times of low firing rates in Africa, as Figure 4.14 shows. Therefore, it is of

great interest to model the joint behavior of several GLO processes.

The following methods may provide first leads about how to construct multivariate GLO

processes: Bäuerle and Grübel (2005) discuss several methods for the construction of mul-

tivariate point processes with Poisson marginals and propose a class of models where events

are produced by thinning and shifts from a homogeneous Poisson process. Such an external

mechanism is avoided by Bäuerle and Grübel (2008) who assume that event intensities of

the components are interacting.
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Figure 4.14.: Tropical cyclones in Africa and Americas: Rasterplot.

Furthermore, Pfeifer and Nešlehová (2004) review the construction of dependent Poisson

variables by employing copulas, which are able to model various kinds of dependence struc-

tures (particularly, for any joint distribution function F with marginals F1, ..., Fn there

exists a copula C such that F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)), cf. Embrechts et al.

(2002)). They propose to construct dependent Poisson processes by either introducing

multi-dimensional, dependent event-time points or dependent counting variables.
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5. Conclusion

This work proposed to employ the (bursty) GLO model from Bingmer et al. (2011) to

model the occurrence of tropical cyclones in Africa, Americas, Asia and Oceania. The GLO

process is a doubly stochastic point process that is particularly suited to describe regularity

and burstiness of a process. It builds on a stationary background process which is modeled

as a stationary random walk. At every beat there is a Poisson distributed number of events.

These events are distributed with independent, normally distributed increments around the

beats. The GLO model is very easy to interpret in regard to the regularity of a process

since it only uses four parameters: µ and σ1 describe, respectively, the mean increment and

variability of the background rhythm. γ is the average burst size (or firing rate), whereas

σ2 represents the burst width.

However, the background rhythm of a GLO process is not observable, which complicates

the estimation procedure. Since the likelihood-function is not available in closed-form,

Bingmer et al. (2011) propose to fit the four parameters by fitting the theoretical autocor-

relation function (ACF) of the model to the empirical autocorrelation histogram (ACH)

with a nonlinear least squares algorithm. Nonetheless, the resulting estimates exhibit large

errors for small firing rates γ or irregular background rhythms (large σ1/µ). Furthermore,

it is not clear how to apply the fitting procedure for several extensions of the GLO model,

and it is not straightforward to develop a forecasting method since beat locations need to

be estimated with additional algorithms. Therefore, in this work we developed a different,

Bayesian estimation framework for the GLO model.

In contrast to Frequentist inference, Bayesian inference assesses someone’s subjective be-

lief about an unknown parameter value. Therefore, parameters are interpreted as random

variables. Before observations are made (a priori) someone’s belief about the parame-

ter value is expressed by the prior distribution π(ϑ). After observations S were made (a

posteriori) the posterior distribution p(ϑ | S) incorporates the new knowledge about the

parameter and can be calculated by employing Bayes’ theorem.

In the context of the GLO model not only the four parameters µ, σ1, σ2 and γ but also

the beat locations B and the labels J are unknown and, thus, need to be estimated. The

labels indicate to which beat the events belong, i.e. Ji = k if event Si originates from beat

Bk. Moreover, we do not know from how many beats the events originated. Therefore, we

suggested to fix a certain number of beats, N ∈ N, and presented methods how to evaluate

which value for N leads to the best model. Particularly, we proposed to maximize the

expected log-likelihood-function for this purpose.

101



Since it is not possible to calculate the marginal posterior distributions in closed-form,

we developed a Markov chain Monte Carlo (MCMC) algorithm that builds on Gibbs (cf.

Geman and Geman (1984)) and Metropolis-Hastings updates (cf. Metropolis et al. (1953)

and Hastings (1970)) to sample values from the posterior distribution. We showed that

the distribution of the samples converges to the target posterior distribution and presented

methods how to choose initial values for the algorithm to achieve convergence very fast.

Furthermore, for typical applications the algorithm is very robust with respect to the initial

values.

Addressing the choice of a prior distribution, we reviewed several possible prior distribu-

tions and, particularly, distinguished between conjugate and Jeffreys priors. Whereas the

first are proper distributions like e.g. the Normal distribution, the Jeffreys prior is propor-

tional to the inverse of Fisher’s expected distribution. This prior may not always integrate

to one but, however, is generally invariant under reparametrization. Thus, it may be seen

as non-informative. Moreover, its application still yields proper posterior distribution for

the GLO model.

Therefore, the Jeffreys prior may be used whenever there is no prior information (or be-

lief) about the observed phenomenon. However, we showed that in certain cases, in which

σ1 is very different from σ2, assuming the Jeffreys prior for both of these parameters leads

to high estimation errors: If a priori σ1 and σ2 are identically distributed, there exists a

discrepancy between data and the prior assumption, thus, the posterior distribution of σ1

or σ2 may exhibit two peaks and the MCMC samples may be highly correlated. In such

cases we suggested to assume different priors.

For label Ji we proposed to use a Binomial prior, i.e. Ji ∼ Bin(N, i/n). With this as-

sumption, we have Jn = N a.s., thus, the last label serves as anchor between random walk

and events. If this link does not exist, e.g. with a uniform prior, Ji ∼ unif({1, ..., N}), we

yield similar posterior distributions if the process is regular, but, however, the estimation

procedure fails if the process is very irregular. Therefore, the Binomial prior represents a

superior choice.

The posterior mean or median may serve as a Bayesian point estimate. For both, we an-

alyzed the general estimation precision with a simulation study that covered nine different

parameter combinations and three different record times. Generally, the estimation errors

for σ1 are larger than for the other parameters and the estimation precision of the posterior

median is slightly better than for the posterior mean. In comparison to the ACH estimates

from Bingmer et al. (2011) the posterior median yields a substantial improvement of the

estimation precision for small firing rates γ, highly irregular background rhythms (large

σ1/µ) and large burst widths σ2.
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To assess the future development of the process after observing events we developed a

forecasting framework. Particularly, we derived (Markov chain) Monte Carlo methods that

approximate the a posteriori expected number of events in (t1, t2] and the a posteriori prob-

ability of default ΨT (t, u) of an insurance company. The latter builds on the commonly used

collective risk model (cf. Bowers et al. (1997, p.367)), in which iid claims Y1, Y2, ...
iid∼ FY

occur according to a GLO process. The aggregate claims in (T, t] are given as

L(t) =

Φ(T,t)∑
i=1

Yi. (5.1)

Then, ΨT (t, u) is the posteriori probability that L(t) is larger than the insurer’s capital.

By applying the model and forecasting framework to a GLO process which is calibrated

on large claims due to hail damage of a major German insurance company, we illustrated

that ΨT (t, u) exhibits a oscillatory behavior if Φ follows a GLO process. Moreover, if one

bases the forecasting on a homogeneous Poisson process, which is the standard type of ar-

rival process in risk theory (cf. Embrechts et al. (1997, p.22)), the probability of default is

largely underestimated in bursty times.

Additionally, we suggested several extensions of the GLO model that are possible to in-

corporate in the Bayesian estimation framework, like e.g. Negative Binomially distributed

numbers of events in bursts. However, for some of these some effort is still needed to derive

the appropriate theoretical background and/or MCMC updates. Furthermore, determining

the expected-log-likelihood-maximizing number of beats, N , often takes a lot of computa-

tion time. Therefore, the MCMC updating procedure may be embedded into a reversible

jump Markov chain Monte Carlo (RJMCMC) algorithm (cf. Green (1995)) to estimate the

parameters and N simultaneously.

In conclusion, we developed a Bayesian framework to estimate the parameters and (past)

beats of a GLO process. By applying a Markov chain Monte Carlo algorithm we were able

to sample from the posterior distribution and, thereby, yielded a very good estimation pre-

cision by using the posterior medians as parameter estimates. For insurance companies, the

developed forecasting framework is able to substantially improve actuarial risk management

if events occur in oscillatory bursts.
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A. The sample data set

In sections 1.2, 1.3 and 4.1 we analyzed the occurrence times of tropical cyclones in differ-

ent continents. The corresponding data originates from the international disaster database

EM-DAT (cf. Guha-Sapir et al. (2014)), which is maintained by the Centre for Research

on the Epidemiology of Disasters (CRED) at the School of Public Health of the Université

catholique de Louvain located in Brussels, Belgium. The data is compiled from various

sources, including UN agencies, non-governmental organizations, insurance companies, re-

search instituted and press agencies, and can be accessed via www.emdat.be in an aggregated

form.

The database not only includes the dates of occurrences but also information about

the country, number of deaths, missing, injured, homeless and affected persons and the

estimated total damage (i.e., damage to property, crops and livestock). For a disaster to be

entered into the database at least one of the following criteria must be fulfilled:

a) 10 or more people reported killed.

b) 100 or more people reported affected.

c) Declaration of a state of emergency.

d) Call for international assistance.

Since EM-DAT is a country-level database, the same disaster may be entered several times

if it affects several countries. However, we still consider all these events. This is justified if

taking the perspective of an insurance company that insured people in both countries. To

obtain a simple point processes we applied the following procedure to the dates of occurrence

for one disaster type (tropical cyclones) regarding one continent (Africa, Americas, Asia or

Oceania):

1) Restrict the dataset to events occurring in 1980 or later since data for events dating

back too far is unreliable.

2) Map all existing dates of occurrences to the number of days elapsed since 31.12.1979;

for example 01.01.1980 7→ 1, 10.01.1980 7→ 10, 01.02.1980 7→ 32 and so forth. We call

d a mapped date.

3) Interpolate missing data: Assume that d1, ..., dM are all (existing and missing) mapped

dates, which are ordered by occurrence date. Let dp be missing and dl and du the

next neighboring dates that exist, l < p < u. Then, we set d̂p = dl + du−dl
u−l (p− l). If

there do not exist such two neighbors, we set d̂p equal to the next existing neighbor.
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B. List of Abbreviations

ACF autocorrelation function

ACH autocorrelation histogram

AIC Akaike’s information criterion

a.s. almost surely

cdf cumulative density function

DIC deviance information criterion

FCPD full conditional posterior distribution (density)

IEI Inter-Event-Interval

iid independent and identically distributed

KDE kernel density estimate

MCMC Markov chain Monte Carlo

ME moment estimate

MH Metropolis Hastings

MLE Maximum-Likelihood estimate

PD probability of default

pdf probability density function

pmf probability mass function

RJMCMC reversible jump Markov chain Monte Carlo

rv random variable
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