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Zusammenfassung

Reaktionsdiffusionssysteme wurden in der \asgenheit immer wieder mit groflem Interesse
untersucht. Dabei betrachtete man meist die falga zwei Themengebiete: Einerseits Reaktions-
diffusionssysteme und ihre Rolle bei der Morgénese, der Entwicklung von lebenden Zellen und
andererseits Reaktionsdiffusionssysteme im kikkauf Muster, die durch sie begriindet werden.

Zu diesen gehoren einfache Punkt- und Streifenmuster bis hin zu komplexen Mustern, wie man sie
an Tierfellen sehen kann. Bei diesen Untersuchumhgschrankte man sich meist auf die ein- oder
zweidimensionalen Varianten dieser Systeme.

Ziel dieser Arbeit ist das Entwerfen einer Amdeng zum Konfigurieren, Simulieren und Visuali-
sieren von einfachen dreidimensionalen Realdiliffusionssystemen. Eine solche Anwendung ist
hilfreich zur Untersuchung von rdumlichen Effektermetabolischen Prozesn. Weiterhin ist zu
hoffen, durch sie die Entstehung von dreidimensionalen Mustern verfolgen und erklaren zu kon-
nen.

Um dieses Ziel zu erreichen, wurde die folgenibegangsweise gewahlZunachst wurde unter-

sucht welche Vorarbeit auf den einzelnen Teilgem schon geleistet wurde. Die Konfiguration

des dreidimensionalen Reaktionsvolumens gleicht dabei am ehesten einer Modellierungsapplikati-
on, denn ein Grof3teil der Konfigurierungsarbeitdas Platzieren von Elementen (Molekthlkon-
zentrationen, Kandlen oder Merabhen) in das Reaktionsvolumedm geeignete Methoden zur
Eingabe zu finden, wurden gebrauchliche Modellierungsapplikationen untersucht, um herauszu-
finden, wie diese die Aufgabe I6sen. Ein weitéreil der Analyse beschéftigte sich dann mit der
Suche nach einem geeigneten Dateiformat fé@rSieicherung der Konfigurationsdaten. Aufgrund

des Zieles, ein existierendes Dateiformat zaveaden, um unter Umstéanden auch Anwendungen
von Drittanbietern nutzen zu kdnnen, kamen die XML Dialekte CellML und SBML in Frage.
Durch die weite Verbreitung von SBML und einachvollziehbarere Struktur wurde letztendlich
SBML gewahlt. Daraufhin wurde analysiert, lolee Reaktionsdiffusionssysteme in der Vergan-
genheit untersucht worden sind. Ein integraler &wsdtieil des Simulationskerns ist eine Integrier-
einheit. Daher beschéftigte sidie Analyse auch mit verschiedenen Methoden zum Integrieren.
SchlieB3lich wurden haufig genutzte Volumenwasierungsalgorithmen und —bibliotheken unter-
sucht.

Die durch die Analyse gewonnenen Voruberlgggn wurden dann in einer Konzeptionsphase
weitergefuhrt. Als Kernpunkt stand hier die Erweiterbarkeit im Vordergrund. Da sowohl die zu
untersuchenden Reaktionsdiffusionssysteme einfagbhémdert werden sollten, als auch die unter-
schiedliche Darstellung der Sifationsdaten unterstiitzt werden sollte, wurde ein Pluginsystem
konzipiert. Weiterhin wurde in dieser Phase bessglosdas Gesamtprojekt in die Teile Konfigu-
ration, Simulation und Visualisieng zu unterteilen. Die Idee hierbei war, der logischen Struktur
zu folgen, im ersten Schritt eine Konfiguration emstellen, diese in einem zweiten Schritt zu si-
mulieren und schlief3lich in einem drittenh@tt die Simulationsdaten anzuzeigen.



Figure 1: Visualisierung einer Brusselator Simulation (50x50x50)

Auf der Basis von C++, erweiteum das Windowing Toolkit Qt und die Scenengraph-API O-
penSceneGraph, ist daraufhin eine prototypidoff@ementierung in dreTeilen entstanden. Fur

die Konfiguration wurde die Anwendung ,configtiom unit“ erstellt. Diese Applikation erlaubt

das Festlegen aller Parameter, die fur die Sinauldendtigt werden. Dazu gehéren das Festlegen
der Grol3e des Reaktionsvolumens, das Auswatks zu simulierenden Reaktionsdiffusionssys-
tems und das Einfugen von verschiedenen Elésne{Molekiihlkonzentrationen, Kanélen und
Membranen) in das Reaktionsvolumen. Aufgrued dusgewahlten Dateifoates (SBML level 2)

ist es moglich, diese Konfiguration mit dem Programm JDesigner nachtréglich noch zu erweitern.
JDesigner erlaubt das visuelle Festlegen von Reaktionsnetzwerken.

Das zweite Programm, dass umgesetzt wusledie Anwendung ,simulation unit®. Dieses be-
rechnet aufgrund der Konfigurati solange neue Iterationens llier Benutzer das Berechnen ab-
bricht. Dabei stehen in der prototypischen Fahlmi Simulationsmodi zur Verfiigung: zum einen

das Simulieren einfacher Diffusion, zum anderen das Simulieren des Brusselator Reaktions-
diffusionssystem (ein einfaches Reaktionsdiffussystem bestehend aus Diffusion und vier Re-
aktionsgleichungen) und schlie3lich ein Simwiagmodus, der die mittels JDesigner veranderten
Konfigurationen durch die Systems Biology Workbench (SBW) an das Programm Jarnac zum
Berechnen weiterleitet.

Die letzte der drei implementten Anwendungen (“visualization unit“) hat die Aufgabe der Visu-
alisierung der Simulationsergebnisse. Dafi@hen zwei Ausfihrungsmodi zur Verfligung. Zum
einen ist es moglich, mit diesem Programm die Simulationsergebnisse aus einem vorherigen Lauf
des Simulationsprogramms wiederzugeben (didbedus wird in dieser Arbeit auch ,offline"
Visualisierung genannt, da die Simulation von disualisierung entkoppeist). Zum anderen ist

es auch moglich, die Visualisierung im ,ordihModus auszufiihren. Idiesem Fall wird eine
Konfiguration verwendet, um dat Simulation und Visualisieing alternierend auszufuhren. Bei-

de Ausfilhrungsmodi haben ihre Vor- und Nachiddie ,Offline* Visualisierung ist recht schnell,



bendtigt allerdings recht viel verfliigbaren Speiplarz auf der Festplatte. Dadurch, dass die ein-
zelnen lterationen auf Festplatte abgespeichertemelidt es allerdings auch mdglich, diese 6fters
und in beliebiger Reihenfolge wiederzugebennBgonline* Modus werden im Allgemeinen kei-
ne Daten auf die Festplatte geschrieben, demnaek isicht mdglich zu einer vorherigen Iteration
zurlickzukehren (es sei denn man beginnt enméuder Simulation durch Neuinitialisieren mit der
urspriinglichen Konfiguration). Beiden Ausfihrung&tngemein ist, dass der Benutzer die Art der
Visualisierung frei wahlen kann. Dartbemaus konnen die gewingeh Informationen noch
genauer spezifiziert werden. Durch die Defontivon Clipvolumen (diese erlauben ein ,Zurecht-
schneiden” der Anzeige, so dass auch innemegk&iren angezeigt werden kdnnen) kann die An-
zeige vereinfacht werden und bestimmte Gebg#nauer beobachtet werden. Weiterhin ermog-
licht ein Andern des Schwellenwertes, fiir demzBeispiel die Oberflachen generiert werden, das
Hervorheben anderer Strukturiem Reaktionsvolumen. Normalerweise wird dieser Schwellenwert
automatisch durch den Simulationskern ,gesahabasierend auf dem Minimum-, Maximum-
und Mittelwert der aktuellen Iteration. Die Abiiing auf Seite 71 demonisiit wie die Verande-
rung des Schwellenwertesedhusgabe beeinflusst.

Figure 2: Visualisierung einer Brusselator Simulation (100x100x100)

Die Abbildungen dieses Abschnittes demonstrigtienVisualisierungsmoglichkeiten der Visuali-
sierungsapplikation.

Schlisselwoérter: Reaktions-Diffusions-Systeme, Simulation, Volumenvisualisierung



Abstract

Reaction-diffusion systems have been widely stddhrough the years. They are suspected of
being a vital part in the creation of life. Alsgaction-diffusion processes give rise to the formation

of complex patterns ranging from spots to stripeRbyrinth like constructs. Since skin patterns

on animals (like seen on cheetahs, zebras or tropical fish) can be recreated using reaction-diffusion
simulations, the formation of these skin patterns is alleged to reaction-diffusion processes.

The research of reaction-diffusion systems was mostiiricted to their one- and two-dimensional
variants. The aim of this thesis is to extend tieaearch to the three-dimensional case. Therefore
the creation of a program suite for the confagion, simulation and visualization of three-
dimensional reaction-diffusion systems will be ddsen. In order to support a wide range of reac-
tion-diffusion systems a plug-in system will lbescribed that allows providing new reaction-
equations. Employing the Systems Biology Workbench it will also be possible to visually design
reaction networks and simulating them. A similar plug-in system will be used for the visualization
of three-dimensional reaction-diffusion simutets. This will allow extending the existing visuali-
zation modes in the near future. The prototypiplementation of the visualization will contain
standard volume-visualization algorithms presenthe simulation data through voxel-sets, gener-
ated iso-surfaces or textures.

Keywords: reaction-diffusion systems, simulation, volume-visualization
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1 Introduction

1.1 Motivation

Reaction-diffusion systems have been studied since the invention of the first digital computers. In
the 1950s Alan Turing proposed that reaction-diffusion processes might be responsible for
morphogenesis (i.e. the evolutionary developmenthefstructure of an organism or part of an
organism). He and many other researchers geaetion-diffusion systems and the possibility of
creating patterns using reaction-diffusion systejuge some thought. Most of the work in this
area has been concerned with two-dimensional systems.

The range of patterns attributéa reaction-diffusion systems range from spots, stripes, spirals to
labyrinth-like constructdo patterns as seen on animal skins. This thesis will try and show how
these patterns will behave in the three-dimensional case. Possible benefits from this work might be
information about the way these patterns form.

The mathematical principles will probably extenthea easily from the one- and two-dimensional
case. Challenges will probably ariseatiigh the volume-visualization.

1.2 Problem

This section will state the problem that is to be solved in this thesis. The process of formulating
this problem was done in close cooperation whk authors advisors Dipl.-Wirtsch.-Inform.
Daniel F. Abawi and Dipl.-Biol. Jens Barthads It was also acknowledged by Prof. Herbert
Sauro of the Keck Graduate Institute.

The title for this thesis will be:

Three-Dimensional Configuration, SimulationdaVisualization of Simple Biochemical Re-
action-Diffusion Systems

The thesis is to be placed in the following biological background:

In biological systems, molecules of diffaraspecies diffuse within the reaction compart-
ments and interact with each other, ultimgtelving rise to such complex structures like
living cells. In order to investigate the fortian of sub cellular structures and patterns (e.g.
signal transduction) or spatial effects in tagolic processes, it would be helpful to use
simulations of such reactiorifflision systems. Pattern forti@n has been extensively stud-
ied in two dimensions. However, the extendb three-dimensional reaction-diffusion sys-
tems poses some challenges to the visatédiz of the processes being simulated.

This background is met by the following definitibor the scope of this #sis: The aim of this

thesis is the specification and development gbathms and methods for the three-dimensional
configuration, simulation and vialization of biochemical reaction-diffusion systems consisting of

a small number of molecules and reactions. rAfte initial review of existing literature about
2D/3D reaction-diffusion systems, a 3D simulat@lgorithm (PDE solver), based on an existing
2D-simulation algorithm for reaction-diffusion systemvritten by Prof. Herbert Sauro, has to be
developed. In a succeeding step, this algorithm has to be optimized for high performance. A proto-
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typic 3D configuration tool for the initial state tife system has to be developed. This basic tool
should enable the user to define and storeldbation of molecules, membranes and channels
within the reaction space of usesfohed size. A suitable data structure has to be defined for the
representation of the reaction space. The mainsfeéuhis thesis is the specification and proto-
typic implementation of a suitable reaction space visualization component for the display of the
simulation results. In particular, the possibility3i visualization during course of the simulation

has to be investigated. During the developnphase, the quality and usability of the visualiza-
tions has to be evaluated in user tests. The simulation, configuration and visualization prototypes
should be compliant with the Systems Biology Mleench to ensure compatibility with software
from other authors. The thesis is carried outlose cooperation with Prof. Herbert Sauro at the
Keck Graduate Institute, Claremont, CA, USA. Do¢his international@operation the thesis will

be written in English.

1.3 Structure of this thesis

This section will detail how the chapters will be stured. The last part will then take a glimpse
into the threefold-ness of the project.

The first chapter is meant as an introductory chafitbegins with a motivational part, continues
with stating the problem of the project and finally ends in this explanation of the structure of this
thesis. Chapter two will explain the main terms thoe thesis. It will shortly give explanations /
definitions for reaction-diffusion, volume-visuadition and the Systems Biology Workbench. With
these definitions it will be easy to follow what thiesis is about. In chapter three there will be the
analysis of work previously done in this field. Since three-dimensional reaction-diffusion simula-
tors are hard to find the chapter will be dividetbia part for the configuration, the simulation and
finally the visualization of three-dimensional reaction-diffusion systems. Chapter four then will
contain the conception of the thesis. It will, agaénseparated into the three parts (configuration,
simulation and visualization), detail the concefpisrealizing the project. The fifth chapter will

talk about the implementation side of this prajétwill explain the architecture of the software
system. Also an idea for an optimization of gaulation-core will be given. There will be a sec-
tion on problems that were encountered and solVkd chapter ends with a section on limitations

of the system. In Chapter six an evaluation learfound. It will ascertain whether the introduced
concepts were the right concept to meet the problem defined here. After that chapter seven will
contain a final summary of the project along with an outlook of how the project might be contin-
ued in the next future. Finally an appendix setivas added that contaimere information about

the included program CD, some examples, thersehdefinitions used and the bibliography.

Perhaps here is the right place to introduce theadfittze threefold-ness of this project. In order to
obtain three-dimensional visualizations of te&ac-diffusion systems the following tasks have to
be done. First of all, before a simulation can tpleee, a configuration has to be created that de-
tails how the simulation is supposed to be rogrand what it should simulate. Secondly, before
any data can be visualized there have to be somef simulation results. This leads ultimately to
the three parts: configuration, simulation and aimation. The whole project then exists though
following these three parts beginning with confafion, and then simulation alternated with visu-
alization.
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2 Terminology

This first section will introduce the central tertios this project. These explanations will by no
means be exhaustive and so references will be given and it will be referred to later chapters. First
there will be a short description of the reactiofitdion process. Next then there will be a descrip-

tion and categorization of volume-visualization. Aasla last major point in this section the Sys-

tem Biology Workbench (SBW), and the file faetm\SBML and its role in SBW will be intro-
duced.

2.1 Reaction-Diffusion-Systems

Reaction-diffusion systems have been widely stuthedughout the years. Since the aim of this
thesis is the configuration, simulation and wal&zation of three-dimensional reaction-diffusion
systems the first thing to do is to defiwhat a reaction-diffusion system is.

As defined in [Mur01] wherever there is an assemblage of elements (Here elements could stand for
cells, bacteria, chemicals ..each element will move around ammrandom way (also known as
Brownian motion). As a result of the elemersmdom motion the elements spread out. If this
individual random motion results in a regular roatiof the group that regular motion is called
diffusion. Though there might be interactiontvaeen the elements in which case the overall
movement is not simple diffusion. It is velmard to derive the overall movement from knowledge

of the individual elements movements. Insteadaalel of the global behavior is derived by look-

ing at element density or concentration.

In other words reaction-diffusion is a process where two or more elements diffuse over a surface
(or volume in the three-dimensional case) and resttt one another to produce stable patterns.
Thereby a variety of spot and stripe patternshmproduced. In nature these patterns can be seen
on skin patterns of various animals like zebtaspards and such. This definition was derived
from [Tur92].

Since reaction-diffusion systems pose the starting point for many researchers there is no shortage
of references. The author found [MurQ1], [Tur5p[ur91] and [Har93] most insightful. In this
thesis reaction-diffusion systems will be further analyzed in section 3.3.1 and 4.3.1.

2.2 Volume-Visualization

The visualization of data preserving three-dimensional spatial structures is vallede-
visualization Here images are created from scalar or vector datasets defined on higher dimensional
grids i.e. a multidimensional dataset is projeatetb the image plane. A good general introduc-

tion can be found in [Fol90], [Enc97] and [Owé990lume-visualization is commonly used in
medical environments (computer-aided tonagpdny (CT), nuclear magnetic resonance (NMR),
single photon emission computed tomography (SPECT)) or in the visualization of meteorological
data. Volume-visualization is still a task th&guires tremendous resources from the graphics
hardware. Thus specialized hardware or evenaisigre employed. Due to the rapid development

of hardware in the PC sector slowly these two areas begin to merge. See also [Eng00].
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In the case of visualizing three-dimensional reaction-diffusion simulations the demand on the
hardware is an order higher than for regular afigation of volume datalhe reason for this is,

that each iteration of the simulation will result in a new dataset. Thus the kind of volume data pre-
sent is animated volume data. [GutO1] presents a way to use three-dimensional wavelet transforms
and motion compensation techniques to achieve interactive frame-rates visualizing animated vol-
ume data on a single PC.

Volume-visualization algorithms are mainly died into direct-volume-rendering, interactive
methods and surface-fitting algorithms. For an amalgcommonly used algorithms see section
3.4.2 and [EIv92].

2.3 Systems Biology Workbench (SBW)

The Systems Biology Workbench (SBW) was devedbwéh the goal to create a software frame-
work that allows arbitrary components to coomitate with each other. The components should
not be restricted to any particufarogramming language or operating system.

SBW Mod

W Module SBW Broker |

Areiq
Buipuig ++2

Matlab
Binding
Library

BW Module

Figure 3: SBW message flow

“Figure 3: SBW message flow” displays the normal message flow through the SBW Framework.
The core of SBW is the SBW broker. As soorthesfirst SBW module is started on a client ma-
chine the broker is started along with it. After that the full functionality of all registered / running
modules is available to the started module. Access to remote modules is also possible.

Enabling a component for use in the SBW framewstairly easy done with minimal changes to
the existing program code. This is possible thiobmding libraries which exist for a variety of
programming languages including C, C++, Deld#iVA, Python, Perl and Matlab. Once the ap-
plication component is SBW-enabled it hasanstaccess to a variety of new functionality.

Available SBW-modules include simulation-, modeling- and optimization-modules. These can be
easily accessed via the binding libraries. (Theylmqueried either by name or by category.). A
full list of currently available modules can be foundai://www.sbw-sbml.org/
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SBW-modules have adopted the Systems BiologykiaLanguage (SBML) as their native file
format for saving model information. An example fbe seamless integration of features from one
application into another appétion using SBML can be seen on the example of JDesigner and
Jarnac. “JDesigner is a visual tool for the layouteaction networks, cluding metabolic, signal
transduction and gene regular netis. ...” (JDesigner Help file version 1.91c). Jarnac is a pro-
gramming language for numerical analysis. dis tspecial capabilities for analyzing biological
models which are usually entered in script form.a¥ernative is to input the model to analyze via
SBW. Since JDesigner contains no simulation engirean pass the model to Jarnac which in turn
simulates the model and returns the data. Thetsewdd then be displayed via JDesigner. This
workflow is displayed in Figure 4.
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Figure 4: JDesigner using Jarnac to simulaté visualize a Lorenz attractor (Herbert Sauro)

For more information regarding SBML see also chapter 3.2.2.2.
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3 Analysis

This chapter will discuss previous work done in the field of reaction-diffusion systems, simulation
and visualization. This will help to createébatter understanding towardstidividual tasks that
have to be completed in order configure, sirteund visualize simple three-dimensional reaction-
diffusion systems. The next section will detail the structure for this chapter.

3.1 Threefold-ness: Configuration, Simulation and
Visualization

This chapter and the following two are structured around the three topics, configuration, simula-
tion and visualization.

The sectionConfigurationwill analyze common tasks such iaserting an element into a three-
dimensional scene, a task very common to modelpmications. In addition, file formats are dis-
cussed particular with regard to saving configuration data.

Under the heading ddimulation,previous work on reaction-diffusion systems will be discussed,
including methods that are available to solve thaction-diffusion equations, in particular the
Euler and Runge-Kutta methods.

The section titled/isualizationwill first take a closer look at available rendering APIs. A second
step then takes a look at available volume-aligation libraries. And finally commonly used
methods for volume-visualization will be presented.

A final section will wrap up the whole chapter and look at the project as a whole.

3.2 Configuration

The configuration unit will perform mainly three task he first task is to guide the user through
the process of specifying the required paramdtershe simulation (e.g. dimension of the reac-
tion-volume, the parameters for the reaction s&e&ruse). A second task is the insertion of spe-
cies, membranes and channels into the reactiaimmband finally the serialization of the configu-
ration to an external file.

The analysis for the configuration unit willdes on two things. A first part will discuss how
common modeling applications handle the taskinskrting elements into a three-dimensional
space. Thus a comparison of common input metaphors will help to adopt a “natural” input meta-
phor for this case.

A final part will analyze the serialization of the configuration. It will focus on the comparison of a
proprietary file format versus the use of a common exchangeable file format.
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3.2.1 Input metaphors

This section takes a closer look how welbwn modeling applications such as Maga3ds mak
and Rhinocerdstreat the tasks of inserting objects iatthree-dimensional environment. This will
help to provide a solid basis for the configuratbf the reaction-volume in this case. The analysis
will include the most common modeling operations:

¢ Insertion of an object — as an example a box was inserted with each of the three programs
once into the origin of the sceramd once onto a specific position.

¢ Changing of parameters — here the previousserted box was moved around, or the di-
mensions were changed.

e Deleting of an object — a final task to simply delete the object.

The next three subchapters will explain how eggtiieation performed the three tasks. In a com-
parison-section afterwards will be compiled whammon features were and these will be set as
goals.

3.2.1.1 3ds max 6

The above specified operations have been tesithdavstreaming trial veien of 3ds max version
6.

Inserting an element with 3ds max 6 works thiéofeing way; first the user selects the kind of
object to create from an object pane. After selecting the element (here a box) a property pane ap-
pears that allows a user to directly specify #alues. Alternatively 3ds max 6 uses a three point
metaphor, of first selecting two diagonal pointstios base surface and then selecting the height.

Modifying the parameters of the box can be done either by changing the property-values in the
property pane, or by using move and scale tools.

Deleting works intuitively by pressing delete on a selected object. A script language can also be
used to perform all the desired operations.

3.2.1.2 Maya 5 PLE

The operations have been tested on the Ma@aPersonal Learning Edition available from the
Alias website.

Creating primitive objects with Maya is possibletlire following two ways. First of all, one can

simply select “Create Cube” whighill instantly place a box into ghorigin of the current scene.

There it can be modified either through scale or move tools, or via input in a parameter pane. The
other possibility is to select a box item displagebctly behind the “Create Cube” menu. If that

one is selected an advanced property panel pops up and allows a user to enter all parameters for the
cube.

The box is modified as already mentioned with move or scale tools or through changing parame-
ters in a property pane.

Deleting an element works by selecting an Obfagain via mouse input or menu-command) and
pressing “Delete” (or selecting the menu command “File\Delete”).

® Maya is a registered traderk of the Alias Systems Corp.
®3ds max is a registered trademark of the Autodesk Inc.
" Rhinoceros is a registered tradeiof Robert McNeel & Assoc.
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For all options there is also a rich scriptingdaage which makes it possible to write custom
scripts that simplify any tasks the user might have.

3.2.1.3 Rhinoceros

All operations were tested on the evaluation werif Rhinoceros version 3.0 released on Nov.
26" 2003.

For inserting boxes Rhinoceros provides threertisemodes. Method one defines the base sur-
face through specifying two diagonal cornensl dhe height through mouse movement. Method
two specifies first the center of the base surthem allows defining the dimensions of the base
surface through mouse movement, and finally hbight is defined again through mouse move-
ment. The last method allows specifying the base surface through three points and finally the
height through mouse movement. AlternativelyirRlceros allows users to specify each point
through an input console.

Modifying the parameters of the box for example through scaling or moving follows the same
strategy. Either the corresponding action is setédtom toolbar or menu, and then specified
through mouse input, or console input achieves the same result.

Consequently the delete action is executedddgcting the desired object and pressing “delete” or
through selection and deletion of the object using the console.

3.2.14 Comparison

After seeing how commonly used applications handle the simple task of inserting and modifying
elements this is what seems to be the best wénamdling it in this case. First of all there will be
specialized insertion tools for each kind of elements that can be inserted (i.e. channels, membranes
and species). All tools will work in a similar wa@nce activated the insert tool can be moved over

the reaction-volume and elements can be inserteshpposition (if no other element is present on

that location). Alternatively a pane will appeidwat allows the specification of all parameters
through user input.

To modify an inserted object the user will Hiowed to select the object by mouse selection. For
the selected elements a specialized property palh@ppear. This pane will allow moving and
deleting the element. Alternatively mouse inpilt allow changing the properties of an element.

Although all modeling applications supported a@ielanguage there will be no support for a
script language for the configuration. A script langgigor the simple tasks of insertion, modifying
and deleting of elements would foaer complicate the application.

3.2.2 Serialization

This chapter will first state the immediate pod#gibs for storing the configuration data. Therefore
it will look at the following file formats irorder to be better able to compare them.

3.2.2.1 Binary File Format

Binary file formats have been extensively usedhe past mainly because of two reasons. One
reason is the time needed for the execution of the serialization algorithms. It is very fast to block-
write huge amounts of data into a file with only a minimum of needed transformation. The other
reason is the ease of implementation. Writing or reading files in a binary format is certainly not as
demanding for the programmer thgarsing / writing xml streams.
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The major drawback of binary files is that it ischtharder to use the files across different operat-
ing systems or even applications. And of cols®ry data is by definition not human-readable
which makes it a bad choice foprdfiguration data. A final drawbadk that format changes often
mean that a complete rewrite of the saving routine (even if it is a minor change) is necessary.

3.2.2.2 CellML
According to the specification of CellML (c.f. [Cue03]) this language is:

. an XML-based language for describingdaexchanging models of cellular and sub-
cellular processes. MathML embedded in CellML documents is used to define the underly-
ing mathematics of models. Models conefsa network of re-usable components, each
with variables and equations manipulating those variables. Models may import other
models to create systems of increasing derity. Metadata may be embedded in CellML
documents using RDF.

Upon examining the specification closer it tuma that CellML is based upon connected compo-
nents, whereby components are abstract objects that provide interfaces and hide information. Each
component consists of:

e private and / or public interfaces
e unit definitions

e variable definitions (All variables have to bssigned appropriate physical units. This is
being done to ensure consistency.)

e underlying mathematics (formulated using MatHiyland

meta-data (usually defined using RIpF

To share information across several componeamisnections are used. These connect the inter-
faces of the two components and thus allow sharing of information and variables. A model then is
for CellML a container for components, connectionsits and meta-data. Figure 5 displays the
CellML model structure. (The picture was taken from [Nie04]).

8 MathML is a markup language as defined uridar://www.w3.0rg/TR/200/REC-MathML2-20010221

® short for Resource Description Framework, a language defined in “RDF Model and Syntax Recommenda-
tion” for more information sekttp://www.w3c.org/RDFandhttp://www.w3c.org/1999/REC-rdf-syntax-
19990222/
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Figure 5: Structure of a CellML model specification (from [Nie04])

According to [Fin04]: “Unlike SBML, CellML exjicitly attacks the model integration problem.

Like SBML, however, CellML can only encompasdiraited range of models that exclude for
example, discrete-event systems. CellML is less widely used than the more pragmatically driven
SBML”".

3.2.2.3 Systems Biology Markup Language (SBML)

The Systems Biology Markup Language (SBMLjistandardized XML dialect for representing
models of biochemical reactionta@rks. This allows for model® be freely exchanged over a
wide variety of programs. (An updated list gipéications currently supporting SBML can be
found at:http://www.sbml.org)

Simple networks of biochemical reactions dsuaonsist of the following components: reactant
species, product species, reactions, rate laws, anchgts in the rate laws. To analyze or simu-
late a network further componeritave to be specified, such asrgmartments for species or units

for the various quantities. These elements have baptured to build the basic structure of an
SBML file (of SBML level 2 c.f. [Fin0O3a] page 3):

Beginning of model definition:

list of function definitions(optional)
list of unit definitions (optional)

list of compartments (optional)

list of species (optional)

list of parameters (optional)

list of rules (optional)

list of reactions (optional)

list of events (optional)

End of model definition

This structure is meant to support basic biocltaimetwork models andperations available in
existing analysis/simulation tools. The SBML stadaas developed in the context of interacting
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with a number of existing simulation packagegnce it is widely accepted through a variety of
existing tools. For more information about SBML see also [Huc03].

Of course SBML is still work in progress, onetbe current shortcomings of SBML Level 2 is,

that it is not possible to add spatial informatiorthe model description. SBML however provides

a tag called an annotation which permits extensions to be added to SBML. SBML allows each
element to be annotated. This enables developers to save structured information until the desired
feature (like spatial data) finds its way inte tspecifications. A good example as to how the anno-
tations can be used to save and load comipigut information can be found in [Sau03b].

In order to simplify the handling of SBML to a vide variety of users a support library was created.
This library is called “libSBML"” and is avaitde for Java and C++ on Linux-, Windows-, Solaris-

and MacOS-systems. This library handles the creation or processing of SBML documents. One
very interesting feature is for example the cosi® of mathematical formulas from MathML to
post-fix notation or vice versa. That simplifies the work with SBML documents a lot. With
[Bor03] a comprehensive manual was providedcddtly even an SBW-module was created that
provided the [ibSBML functionality to every oth&BW-module. This development may help to
further spread SBML throughout the community.

3.2.2.4 Comparison

Given the discussion on binary formats it would sesafie to eliminate this option as a means for
saving configuration data. A better possibility &aving the files would be a markup language.
This would ensure a human readablénterchangeable format. As the analysis of the CellML
specification ([Cue03]) showed: the CellML formsitquite complex. Furthermore a configuration

file represented in that format would not bentfé project much, since hardly any software exists
that would provide complementary features. atternative XML-dialect SBML level 2 seems to

be a better choice, since embedding the basicqumation elements into a valid SBML structure

(as described in the last section) involves hardly any overhead. A configuration file could be saved
using SBML like this:

The configured reaction-volume, in which thacgon-diffusion simulation will be performed, can
be seen as a compartment. All additional parammetencerning the whole reaction-volume, such
as the diffusion rates of the species X and Y, theimrathat should be performed or the step size
of the integrator for the simulation would be stored as annotations of that compartment.

Finally all elements that can be inserted, nigntiee species X and Y, the membranes or the can-
nels could be saved as species. For exampder the SBML element representing species X there
would be annotations for each inserted species X with its position and concentration.

Of course saving the information that way would involve quite some overhead for XML parsing
and writing. Also XML documents tend to get biggghan binary documents containing the same
amount of information. So what would be the adages compared to thergile serialization into

a binary format. First of all it would be musimpler exchanging the cagtiration files over dif-
ferent countries or systems. This is due ® filked UTF-8 encoding of the SBML dialect. Sec-
ondly and perhaps more importantly it would alltve configuration to behanged by another
application. The idea here would be to creaténitial configuration file with the configuration

unit and then pass that file on to another apptioathat is able to read SBML. This application
might then be able to specify the reactions mmcie comfortably than it will be possible through
the configuration unit.

9 The author is aware of the fact that very largelXdcuments tend to get confusing, still in most cases
XML dialects are human readable.
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3.3 Simulation

Tasks for the simulation unit would be threefold again. First reading and validating the configura-
tion file which will initialize the simulation unit. Tén the simulator will continue to perform the
next two steps until the user aborts:

e perform a simulation step,
e Return the simulation data / store simulation data to file.

The main focus for the analysis will be the sintiola part. The first thing to be researched is pre-
vious work on reaction-diffusion systems. Anotkiging to research would be what kind of inte-
grator a custom written simulator should usedekision here should lependent on the factors
runtime and stability. Although these factors migatcomplementary at least the available possi-
bilities should be analyzed.

3.3.1 Reaction-Diffusion Systems

Here previous work on reaction-diffusion syssemill be recapitulated. The focus hereby is on
researchers that contributed their work on pattern formation in connection to reaction-diffusion
systems. Most influential for thigork is certainly the research of:

e Alan Turing,
e Hans Meinhardt and
e Greg Turk

This section will also take a closer look at the program “llya” - a reaction diffusion simulator writ-
ten by Herbert Sauro in 1997. As already statethe problem definition (section 1.2) this pro-
gram will represent the basis for the simulation unit to be developed here.

3.3.1.1 The chemical basis of Morphogenesis

Most influential for this project is certainly tiveork of Alan Turing [Tur52]. He was the first to
introduce the idea that chemical substances caadt with one another and diffuse through an
embryo to create stable patters. In his 1952 paper on the chemical basis of morphogenesis he dis-
cusses at length the break down and formationhefmicals due to reactions between different
molecules in a reaction-diffusion system. He pegsoseveral reaction-diffusion systems and con-
tinues to describe one such system with linear ima¢erms. This system is then solved in dis-

crete and continuous form. These (discrete) systam still used whenevdrcomes to simulate
reaction-diffusion. The equations for a twpecies reaction-diffusion system for a one-
dimensional ring of cells in his paper look like this:

%: F.(X,y)+ D,VX
2:/ (1.1)
5: F,(xy)+DVy

The functionsF, and F, take the concentrations of X andaY the given time and let them react

according to their respective chemical formulas. The consfaptand D, are the diffusity con-
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stants of species X or species Y. They determine how fast the species diffuse. THX terivy

stards for the neighboring elements of the curvent y. In the one-dimensional case this will be
x-1 andx+1 for x andy-1 andy+1 for y. This will result in a change of concentration from a unit
with higher concentration to the neighimgy unit with a lower concentration.

Finally a dappling pattern produced by the expldireaction-diffusion system is displayed that is
reminiscent of the spots on cows. It is presented in Figure 6.

N
)

Figure 6: "Dappling” patt ern presented in [Tur52]

A continuation of Turing’s studies can be found[liep03]. Here Leppanen et al. describe the
formation of two-dimensional Spatio-temporgatterns employing a generic Turing model. The
authors expect this work to bring insight sxent biological finding of temporal patterns on ani-
mal skin.

3.3.1.2 Biological principles for pattern formation

In a series of essays Meinhardt describes in [Meltd biological principles for pattern formation.
In the first part he details the activator-inhibitor reaction.ativator in this sense is a substance
that “... has a non-linear positive feedback on its1g@roduction rate. Its autocatalysis is slowed
down by a long rangingnhibitor. A necessary condition for the foation of a stable pattern is
that the inhibitor diffuses much faster than the activator and kherger half life. In other ranges
of parameters oscillations and traveling wagas occur. These modes will be discussed further
below in connection with the patterns on the sheflmollusks.” (c.f. [Mei01] patternl) He then
points out that a pattern emerges wheneversibe of the activator-inhibitor-reaction-field be-
comes larger than the range of the activataraliy he demonstrates how the nervous system of
Drosophilacan be explained through such a system.

Meinhardt then continues to explain the formation of periodic structures. He mentions for example
that stripes, a pattern often encountered, cafotmeed whenever the “..rate of activator auto-
catalysis saturates at high concentrations. Thislatb to a limitation of the inhibitor production.
More cells become activated at a lower level whificient inhibitor is produced. In other word,

the activated regions have the tendency to enl&x@eever, in order to become activated; a close
neighborhood to non-activated cells is essential wiicch the inhibitor can be dumped. Both re-
quirements, large activated patches and actlineighborhood of non-activated cells, seems to
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contradict each other. This is, however, n@t tlase. In a stripe-like activation pattern, each acti-
vated cell has an activated neighbod non-activated cells are close by. Stripe formation is a very
frequent phenomenon at very differefgvelopmental situations. ...” (c.f. [Mei0O1] pattern 2) In a
later part of this chapter Meinhardt then expdahow source density might be applied together
with the activator-inhibitor reaction to generateistures close to each other. This is explained on
the example of head, foot and tentacle formation in the freshwater lggtinp. For an interesting
discussion on the activator-inhibitor theory see also [Har93].

In earlier work Meinhardt described (togetheithwother researchers such as Bard and Murray)
how reaction-diffusion systems can be used toterteo-dimensional patterns such as spots and
stripes. Meinhardt is especially known for prapgsa stripe generatingaction-diffusion system.
This work was done in 1982 and employs a-fthemical reaction-diffusion system which is
stated as this:

2
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In this set of equations the chemicglsandg, represent the present of one stripe color or another
(e.g. black or white).r” is a concentration that makes stinat only one color is present at each
individual location, while the chemicats ands; limit the stripes in their width. Meinhardt even
gives the source code for simulation of these systems. [Mei82].
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Figure 7: Pattern formation by lateral activation. Stable stripes are formed (from [Mei82])
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For a thorough understanding of the activator-inhibitor principle and its connection with Turing’'s
paper the author recommends [Har93].

3.3.1.3 Generating Textures using Reaction-Diffusion

In [Tur91] Greg Turk describes how reaction-dgfilon systems can be used to generate textures.
He even gives an algorithm to apply these textaresrbitrary surfaces. In fact these reaction-
diffusion systems are simulated on the surface making slight changes on the diffusion-coefficients
and thus allowing for a smooth tare that is not “stretched” on the surface. This idea is described

in more detail in his thesis [Tur92].

Erudrd_strlpcs t.h_Ln _lines

mived_spots squirrel

broken_lires bumpy_=tripes

Figure 8: A variety of patterns createdwith Turk's Cascade system (from [Tur92])

In order to generate all kinds wfxtures (such as patterns seen regularly on animal skin as giraffes,
cheetahs or various fish) a cascade of reaction-diffusion systems is used. This means that after
running a first reaction-diffusion system the statérozen and then these altered concentrations

are taken for the initialization of the next rgan-diffusion system. As for the actual reaction-
diffusion systems simulated the activator-intub systems as introduced by Turing [Tur52] or
Meinhardt [Mei82] are used. Figure 8 displaysatvpatterns are to be expected using cascading
reaction-diffusion systems.
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3.3.14 Ilya — a reaction diffusion simulator

As mentioned before llya was written in 1997 Hgrbert M. Sauro. It simulates the Brusselator
Reaction-Diffusion scheme for two-dimensibneeaction-volumes with fixed resolutions:
100x100, 150x150, 200x200 and 300x300 elements.

llya employs a simple Euler integrator tlsatves the following equation for each cell element:
VX=X, =A% + Xy + X 0t X o
VEY=Yor =AY+ Yoy + Yaat ¥
Xshange, :(A+ X; 1y— Bx - )gj)+ rQv? x
Yonange, = ( BX; 1= X, 2y)+rDV?y

(1.3)

The terms in the brackets represent the reactiontieqaahat can optionally be disabled in order
to simulate diffusion only. For more information the Brusselator scheme (c.f. [Nic77]) see also
section 4.3.1.2. The constantepresents a scaling factor that determines how strongly diffusion
influences the whole update step. These changebeviipplied to the original data set during the
integration step. And another simulation run will be performed.
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Figure 9: Screenshot of ILYA showing a simulation run (300x306)
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llya allows the configuration dhe initial concentration set orgfthanging of the current concen-
tration set at each point in time. Therefore a new concentration is simply “painted” over the old
one. This concept can't be applied to the three-dimensional case though.

3.3.2 Integrators

The most time consuming part of a reaction-diffusion simulator is the integration of the reaction-
diffusion equations. Two main issues arise in the choice of a suitable integrator, the stability of the
method and the time it takes to integrate. A key parameter in any integrator is the step-size. This is
the time step taken to move to the next timenpoihe higher the step-size the faster the integra-
tion will advance, however this also leads to gregistiability in the solution. In this project three
integrators were considered:

e Euler integrator
e 2"order Runge Kutta Integrator
e 4" order Runge Kutta Integrator

The Euler integrator uses the formula:

Yo = Yo+ Stepsize € x (1.4)

Using Euler integration the derivative informatisnonly evaluated once at the beginning of the
interval. Thus the step’s error is of order

O( stepsize) (1.5)

. Although the Euler method is fairly simple to implement it is less accurate and less stable than
the other methods mentioned here.

The second order Runge-Kutta method (or midpoint method) is defined through the formulas:
k, = stepsize { %
. 1 : 1
k, = setpsize ,;<+E stepsize, qu 1 K (1.6)

yn+l = yn + k2 + q StepSifé
This method has second-order accuracy (obtained through using a first derivative to find the mid-

point, and then the derivative of the midpoint to get the next value).

The most often used formula is the fourth-orBenge-Kutta formula which uses the following set
of formulas:
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k, = stepsize { % )

k, = stepsize [ x+ stepsm? Mﬁj
2 2
k, = stepsize ( ,;(+Ste—25|z? ,y+k—22j (1.7)

k, = stepsize { x+ stepsizegy kK

k k k. .k i

=y +24+ 24+ 31 24 O stepsi
yn+l yn 6 3 3 6 ( p @

This method would be superior to the midpointtmod, if a twice times larger step-size can be
used - which is often the case.

In order to improve Runge Kutta integrators further a next step would be to apply adaptive step-
size control. Here the basic idea would be to nreathe error of the integration by taking a step
twice, once as a full step and next independesiyjwo half steps. The difference of these two
evaluations can then be applied (together witbonfidence parameter) to calculate a new step-
size.

Other integrator methods like Richardson-extragaieand predictor-corrector methods have been
rejected because (i) in this case evaluation efrdaction-diffusion function is rather cheap and
moderate accuracy (smaller th#f™°) is sufficient (because the computed values will be needed
only to perform a color lookup) and (ii) the function will be evaluated by table-lookups.

For further discussion of these integrators a#l & Richardson extrapolation and predictor-
corrector methods see [Pre99]. An interesting description on how to achieve a stable simulator can
also be found with [Mon02].

3.4 Visualization

The fourth part of this chapter will deal withetlanalysis for the visualization of the simulation
data. Basic tasks for this unit will be acquiring s®ulation data, preparing the data for display,
and finally rendering of the data.

What has to be considered here is what rengefiPl to use, what sorts of visualization algo-
rithms should be used in the visualization procass, what sort of visualization libraries are al-
ready available and would suit this project.

3.4.1 3D Rendering APIs

This section will take a closer look at the most common rendering APls - namely OpenGL and
Direct3D. Furthermore an OpenGL library called OpenSceneGraph will also be analyzed as it
gives OpenGL advanced features timight be vital for this project.

Another rendering and scene-graph API will notdigcussed here — namely Java3D. Although
that APl is known for its thorough specification and platform independence it turned out in a pre-
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vious project that a huge amount of memory is needad an overall slower runtime (compared

to a project implemented using C++/OpenGL) is tekpected. Since it is to be expected that the
simulation data will already place a big stress on the memory (the reason for that lies in the three-
dimensional structure of the reaction-volume) Java3D seems not to be the right choice.

3.4.1.1 Direct3D

DirectX is a set of low-level APIs that contaicemponents for two- and three-dimensional graph-
ics, sound effects and music, input devices andar&ed applications. One advantage of using
DirectX is that all of the low-level APIs folle the same concept. Normally a developer would
encounter many different APIs following differesbftware design patterns. Direct3D was ac-
quired by Microsoft in 1996. The API is defthéhrough its COM interfaces, help files and sample
code.

DirectX is an integral part of the Windows co&nce all modern graphics cards come along with
DirectX drivers very good performance can b@exted. This strong support from graphics card
manufacturers leads to the fact that new featwitde added to DirectX regularly. Recent addi-
tions to the graphics APl were a shadinggiaage and changes in animated meshes.

The Direct3D core follows the traditional renderipigeline but allows programmable extensions
for pixel shaders (controlling pixel shading) wertex shaders (manipulating object geometry).
Finally the current version of Direct3D (versi®rc) allows also for the following features:

¢ bump mapping (allows to simulate a rough surface in 3D scenes),
e anti-aliasing (allows to reduce the appearance of stair-step pixels),

e vertex blending (allows to create effects sucrasoth joints and bulging muscles in charac-
ter animations) and

¢ tweening (allows blending of two provided position or normal streams)

An additional interesting feature is multiplemtor support. For details see also [Mic02].

3.4.1.2 OpenGL

OpenGL (standing for “Open Graphics Library”) was developed as an industry standard by the
OpenGL Architectural Review Board (ARB) after the initial version was developed by SGI.
Founded in 1992 the ARB controls the definitiorOgenGL. The current version 1.5 was released

on July 28' 2003. One big advantage for using Operi§that is was built for compatibility across
hardware and operating systems. Thus an Opeagplication might theoretically be ported to any
system.

OpenGL is basically a software interface fymaphics hardware that renders multidimensional
objects into a frame-buffer. It can be seen as# shachine whose attributes control how sets of
vertices and normals are to be rendered. fitogramming model used for OpenGL is through
include- and library-files.

Interesting features for OpenGL are:
e support for picking

¢ hardware independent z-buffer access and

2 This hints at the project “Pacman3D” (c.f. [PadOPjere the game “Pacmiawas reimplemented based
on a 3D environment using Java3D. There memory demands and runtime of Java3D was much slower than
what could have been achieved using C++ and OpenGL.
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e accumulation buffers

Although OpenGL does not support as many fioms as DirectX there exist a multitude on util-
ity libraries that extend the features of OpenGL.

On September™ 2004 the ARB released the specifioatiof OpenGL version 2.0. The main
changes involved are:

e programmable shading is now supponéth the OpenGL Shading Language
e multiple render targets are supported
e textures no longer are restricted to textures with power-of-two dimensions

e Separate stencil functionality might be used for front and back faces of primitives. With that
step performance of shadow volume and ConsttiSolid Geometry rendering algorithms is
improved.

For the full specification see [Seg04].

3.4.1.2.1 OpenSceneGraph

One high-level API built on top of OpenGL is Opee8eGraph (OSG). It is an object oriented
framework built on top of OpenGL. Its intentiontes “free the developer from implementing and
optimizing low level graphics calls, and proviseny additional utilities for rapid development of
graphics applications.” (c.f. [Bur04]) OpersheGraph was started by Don Burns in 1998. The
aim of the project at that time was to port af@ener based application from IRIX to a Linux PC.
Robert Osfield began 1999 to port the sceng@lyelement to Windows. Since then a lot of work
has been put into a project and it has gottert aflattention throughout the world. The current
version is 0.9.7.

OSG as the name implies implements a scene-graph API. A scene-graph is an acyclic, directed
graph of nodes. Nodes in this regard corresporabjects like triangle meshes, lights or transfor-
mation objects. An image is rendered by traversing the tree. Thereby each node affects the render-
ing process. Thus the traversing of the tree caseka as changing the states of the OpenGL state
machine.

The major drawback of OpenSceneGraph atpttesent state is documentation. Available docu-
mentation is mostly restricted to source caimple examples and support through a news-group.
Nonetheless the features of OSG are convincing:

e an extensive scene-graph API
e support for various file formats
e support for picking

e platform independency

3.4.1.3 Comparison

After introducing these available three APIs this section evaluates how these APIs perform. There-
fore a small visualization application was implemented for each of these APIs to be able to com-
pare them. The sample application worked dhrae-dimensional field of concentrations (double
values) of size 50x50x50. For each element a ofhmit length was generated. For each cube a
color representing the concentration was assigned. Furthermore the pasitidin of each cube

was determined by the position of the concdimnaelement in the three-dimensional data-set.
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Here the results for the categori@siplementation time, memory consumption, cooperation
with the window toolkit andoverall runtime:

Implementation time: The implementation time is a critical factor for a project like this since

the implementation period of the thesis followstdct schedule. As expected writing the ap-
plication for the high-level scene-graph APlé®ceneGraph was doneyweuickly. Ignor-

ing all higher level functiongind using only low level OpenGL functions took somewhat
longer. The end of that scale was represented by Direct3D. The reason for that was using the
COM concept. Although Direct3D is thoroughiytegrated into the Windows core, even sup-
ported with Wizards by Visual Studio (the Widaalready sets up the display context inserted

an example mesh) writing the actual visualization core took much longer compared to
OpenGL and OSG.

Memory consumptiort As already indicated at the beging of the chapter, memory con-
sumption may turn out to be the deciding factor. With cubic reaction-volumes storing at least
the concentrations a large amount of memorglisady allocated and can't be released. In

this category the results showed the opposite result than the last heading. Under Direct3D a
constant amount of memory was needed. A slightly higher amount of memory was needed for
OpenGL although here too the amount needasl eonstant. OpenSceneGraph was at the end

of the scale. Although OSG provides for reference counting and thus rudimentary memory
management there seems to be an issue neidasing that memory. The memory was re-
leased though not at expected times. This delagls from time to time to instabilities of the
application.

Cooperation with the windowing toolkit: Of course the rendering window won't stand
alone it needs to be accompanied by a usendty GUI. Thus under this heading it will be
compared how the individual APIs work talger with windowing toolkits (windowing tool-
kits tested here were Gtk+, Qt, FOX, MEGd Win Forms). The platform independent API
OpenGL works seamlessly with every window tailEach toolkit had a dedicated object
that provided the GL context. OpenSceneGrapl ifibased on OpenGL could also be made
to work with any of these toolkits. The intatjon is not as seamless as with OpenGL since
the existing toolkit objects have to be altbrdightly. Helpful here are the support on the
OSG mailing list, or example implementatioms the OSG web site. Direct3D as a proprie-
tary APIl was supported only by MFC and WAorms. The support here was very convincing
though; Wizards helped setting up the rendering context and even generated example source
code.

Runtime: The importance of the overall runtime needed to generate a frame can readily be
seen. Of course this factor will be dependamither factors such as the memory consump-
tion. Astonishingly here all three APIs lay vaslpse together. There was a slight better per-
formance for Direct3D, followed by @pGL and lastly OpenSceneGraph.

Overall OpenSceneGraph will be chosen for thigmt. The main reason for this is the ease im-
plementing the concepts, while maintaining thegilallity of platform independence. Additionally
OSG supports features like picking or support for many file-formats out of the box. This will help
to save much time. Furthermore as OSG is base@penGL it would always be possible to fall
back to OpenGL just in case, that a certainaligation type would not be possible with OSG due
to memory or runtime restrictions. Finally in a prior project (c.f. [AMIO4]) good experiences were
made using this API.
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3.4.2 Volume-Visualization Algorithms

In this section the most common volume-visuaian algorithms will be considered. As men-
tioned in section 2.2 classic volume-visualization algorithms can be divided into the three catego-
ries:

e direct volume rendering,
e interactive methods
o surface fitting algorithms

This categorization shall be usedfurther structure this section.

3.4.2.1 Direct Volume Rendering (DVR)

Algorithms falling in this category directly rendeetata elements intodlscreen space, without
creating geometric objects for them. So for eactdeeed image (i.e. each time the view has been
changed) the whole dataset will be traverd®dR algorithms achieve good results visualizing
gases, fluids or clouds. Common to DVR algorithms is that the user will first have to specify a
color map and opacity map for the data. The nroportant algorithms in this category are:

e Ray-casting

Ray casting is the most used DVR algorithmHagh-quality images. The algorithm will cast

rays for each pixel. If a data-point is hitgiets the assigned color information. Should color
information be present the values are accumulated. A ray stops if it leaves the data-area or the
accumulated color information reach a maximum value. There are various versions of this ba-
sic algorithm. These are mainly concerned witw the color and opacity information are
gathered once a ray hits an object.

In [Fri96] is described how a pseudo-color ageh can be used to apply ray-casting to the
visualization of vector fields. The usual representation for vector fields was the introduction
of objects tangential to the vector field.

Kaneda et al. describe in [Kan96] an approsxchhe problem of improving interactive vol-

ume rendering with adjustable color maps. Here basis images are calculated based on a fixed
viewpoint and independent from a color-mapindshese basis images allows for interactive
change of color maps. These will applied onlyhe basis image and thus allow for a interac-

tive observation system.

e Splatting

Splatting will first compute each voxel's contribution to the image and accumulate them.
Each voxel will then be given a color an opaatycording to the user defined maps. Then
they are projected into the image space (using Footprint methods). The contribution of a voxel
will be higher the closer it is to the center tbke data projection. See also [Enc97] and
[Owe99] for details.

e V-buffer rendering

This algorithm is an extension of the Z-Buffdgorithm to volume-visualization. It was de-
scribed in detail in [Ups88]. He the cells of the dataset will be processed into which a cell
projects before moving into the next cell. Té¢wlected data will be accumulated until either
opacity reaches one or the entire cell has been traversed.
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3.4.2.2 Interactive Methods

Traditionally algorithms in this category were ugedprovide the user with a possibility for the
efficient exploration of large datasets. Thereby a loss of information was accepted as long as an
interactive speed could be achieved. The most common algorithms are:

e Wireframe Contours:

As implied by the name this algorithm generated lines for the desired iso-value only. While
this algorithm is undoubtedly one of the fastdgorithms it displayed minimal information in
the generated image.

e Sweeping plane

For this algorithm the volume was rendered transpt. The user could specify one or more
pseudo-color sweeping planes through this volume. This made it a very good algorithm for
the interactive exploring of datasets. Thowfhcourse the information the image provided
was limited to the colorsn the “sweeping”-planes.

e Maximum Voxel

The idea for this algorithm is to resample the maximum value behind each pixel. Therefore
nearest-neighbor resampling was used. While dhysrithm still achieved interactive speeds
it allowed for no shading and grayscale display only.

3.4.2.3 Surface-fitting algorithms (SF)

Surface-fitting algorithms allow the user to input eetiinold value. This value will then be used to

find a surface in the dataset which will thendigplayed. As opposed to DVR methods a geomet-

ric model representing the object will be createldus each new view can be created very fast
without another traversal of the original datagehew traversal will only be needed if a different
threshold is chosen or a new data set has to be displayed. One assumption is made by the algo-
rithms presented here; it assumes that the datarasented in a structured grid. This assumption
should not be a difficulty however, since each collection of data can be represented as a structured
grid. Instead of using these Cartesian lattices €aal. argue in [Car03] that it would be more
efficient to use body-centered cubic lattices. AltHohgre too a large number of cells is involved

it is shown that their model is competitive to the below described Marching Cubes algorithm on
Cartesian grids.

The most prominent surface-fitting algorithms are:
e contour tracking,

The basic idea behind contour tracking is the filhy. First two slices of data are read into
the memory. As a next step the algorithm detectlosed contour irespect to the threshold
value inputted by the user foramslide. Then the contours adjacent slices are connected
(usually by triangles) and rendered.

e cuberille / opaque cubes,

The “Cuberille” algorithm also known as opaque cube algorithm was first introduced by
Herman and Liu in [Her79]. In a first step thkgorithm classifies all data points as either be-
longing to the object or not. In a next stepvalkels (generated from the data points) belong-

ing to the object are rendered. Thus the surfackefined by the surfaces of the outer voxel.

Since the number of generated surfaces is immense (because of the fact that cubes are gener-
ated for each data point belonging to the object) this algorithm is hardly used.
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e marching cubes,

The Marching Cube (MC) algorithm is one the most common used volume-visualization
algorithms. MC works on the assumption that the datapresented in a structured grid (for
example a three-dimensional array). The first feliges of the data-set a read into the mem-

ory. In a next step grid cells are examiribdt contain four vertices from both middle slices
(slices 2 and 3 of the four slices taken in the fitep). According to the value of the data set

and the selected threshold each vertex will nowlassified as inside or outside of the object.
Based on this classification one can then decide how many triangles are needed for the iso-
surface. This is being done by using a tabtklp on a table containing the edge information.

The exact positions of the triangle-vertices on the edges are next calculated via linear interpo-
lation. From these positions the normals on these vertices cab are determined. These steps will
be continued until the whole volume has beatessed. First described was this algorithm in
[Lor87]. Good explanations can also be found in [Enc97]. See [Bor97] for a complete repre-
sentation of the edge tables alonighwveome example applications.

e marching tetrahedra

The marching cube algorithm that was previowddgcribed has a problem with ambiguity in
special cases. If one cube has marked vertices diagonal to unmarked vertices it cannot be de-
cided whether to separate these vertices aotmect them. Marching Tetrahedra is one pos-
sibility to clarify these ambiguities. Each cubedigided into tetrahedra. It is no problem to
separate marked and unmarked edges by a single plane in tetrahedra. Similar to the marching
cube algorithm, marching tetrahedra also works via classification of the possible triangula-
tions (again via table lookup). The only draashk of this algorithm is that through introduc-

tion of edges inside a cube twice as manygies will be generated than with the marching

cube algorithm.

To further improve the algorithm [Zho97] describes a multi-resolutipproach. Here the
volume data is subdivided recursively and represented by binary trees. Using an error based
model these trees are used by recursivelynfusiifferent levels togher. This reduces the
number of voxels needed to construct the rmadele promising to preserve the topology of

the model.

¢ dividing cubes,

Since the marching cube algorithm often generaisgles that are smaller than a pixel there

is another algorithm exploiting that fact — the dividing cubes algorithm. Dividing Cubes is
similar to Marching Cube in that the usétl specifies a threshold value for which a surface

is searched. Dividing cube begins with thassification of the vertices of each cube. In the
case that this classification indicates a cut wWithsurface the algorithm projects the cube into
the image space and checks for the size. Shouldl#@rger than a pixel, the cube will be di-
vided into eight sub-cubes. Otherwise it willalitly be drawn (projected into image space)
via for example the painters-algorithm or z-buffer algorithm. Thus dividing cubes does not
compute real surfaces. Rather directly “surfacentsbiare created. This also leads to the act
that the surface has to be recomputed each time a different view is selected. For a more de-
tailed description of the dividing cubes algorithm see [Ebe04].

3.4.3 Volume-Visualization Libraries

This section will analyze what libraries andoltats are currently available for volume-
visualization. This analysis will take ingard commercial as well as open source products.
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e AVS/EXxpress

According to the vendor, AVS/Express is therldts leading visualization toolkit. In the
white paper [AVS04] some of the featuresAfS/Express are detailed. Among it is stated
that over 800 graphical operations are supportedastdeveloped to meet the design goals of
supporting parallel rendering on PC Windows #eatture, supporting all display configura-
tions (such as CAVE, HoloBench, PowerWailbasuch), supporting any application domains
(CFD, Telecoms, Qil & Gas, Medical among otheadlow using a component library for de-
ployment and creating a visualization environingructure instead of just a low level graph-
ics library.

Interesting about AVS/Express is that it supports high-level primitives. These primitives man-
age raw triangle data that would be used awvel over. Otherwise a visualization of large iso-
surfaces would result in one OpenGL commandradach other and then disregarding these
information. These high level primitives exiet tri-stripes, tubes and bitmaps.

The only demonstration application that wasikble to the author proved that examples
throughout various domains could be rawmde convincingly even on average desktop-
computers. Sadly it gave no real insight alibatinternal structures of AVS/Express. The au-
thor has no doubt however that this toolkit wbpkove a valuable asset in displaying three-
dimensional reaction-diffusion systems.

e IRIS Exploref®

Another commercial visualization library is the IRIS Explorer. The vendor describes the IRIS
Explorer as follows: “IRIS Explorer is a development tool that enables you to easily build
visualization applications.” (fronRIS Explorer Demonstration).

Instead of a programming library the IRIS Expldeea visual tool that works in the following
way. Datasets, visualization methods amitiexing devices are represented as modules (new
modules can be written in FORTRAN, C a@d+ to enhance existing capabilities). These
modules will be selected from a librarian and placed on a map editor. There the individual
modules will be visually connected. This will result in the visualization application.

e VisiQuest

VisiQuest* represents the last volume-visualizatimol that has beemnalyzed from the
category of commercial volume-visualization libraries. Similar to the IRIS Explorer it also
provides a dataflow based application interfta allows for an easy way to develop visu-
alization applications. Herébaut 300 different visualization modules are available. VisiQuest
is available for Unix platforms, Windows systems and Mac OSX.

e OpenDX®

OpenDX represents the open source versionefiBM Visualization Data Explorer. It pro-
vides the developer with two possibilities eithecdh be chosen to use a workflow tool simi-

lar to the one described for the IRIS Explo@r the developer can access the available visu-
alization modes through accessing the library directly. This makes it an interesting choice for
all kinds of volume-visualization. The onlyadvback here is that a Windows version is only
available through Cygwin. And even then aSKrver is necessaryhis makes OpenDX not
really usable in a Windows environment.

13 Information about the Iris Explorer was obtained by visitfrign://www.nag.co.uk
14 VisiQuest is a trademaié AccuSoft Corporation
15 Information about OpenDX can be obtained fromp://www.opendx.org
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e vtk'® short for Visualization Toolkit is a freelgvailable C++ class library for 3D graphics
and visualization. The idea behind vtk is to wetéully object oriented toolkit, that abstracts
from the window toolkit on one side and thadering API on the other. Instead of the scene
graph paradigm, vtk follows the data-flowrpdigm. The vtk supports visualization tech-
nigques for scalar, vector and tensor visudiiwa Furthermore modeling algorithms such as
decimation, implicit modeling, extrusion andktigre cutting. Finally for creating visual dis-
plays it supports Delaunay triangulation, splattimgl glyphing. For further information about
vtk see [Kit04] and [Sch96].

One example for the usage of vtk in research can be found in [Pek01]. In [Ahr00] the problem
of the scientific visualization of extremely large time-varying datasets is being addressed.
Here too vtk is being used to provide a ab#, portable way for achieving these visualiza-
tions.

e OpenVL'": OpenVL is a utility library for handlingolume data. In its current stage it sup-
ports handling, mapping and manipulating vo&u data. Volume-visualization support is
planned in a later stage.

3.5 Conclusion

This final section will conclude the chapter “Analysis”. The last three sections described previous
work needed to configure, simulate and viegathree-dimensional reaction-diffusion systems.
The task for this section is now to show tdognections between the individual parts.

The analysis of different modeling applicaticasishown a way of inserting elements into a three-
dimensional space. For this project this three-dsi@nal space is the reaction-volume that is to be
populated by concentrations of two kinds of edes, membranes and channels. This configura-
tion of elements will in a next step be serializeh an external file. Therefore the serialization

into a binary format, the CellML format ordhSBML format was considered. Because of the
straight-forward specification and strong support by other applications SBML seemed to be the
right choice as the storage format for the configuration data.

This configuration data is passed to the simulation-core. The third section of this chapter dis-
cussed what sort of system the simulation-cbhmukl simulate. Here the system proposed by Alan
Turing in [Tur52] seemed to be the right atmmi Although Euler Integration is known to make
errors on larger step sizes it might work fine in this case. Here parameters will be restricted to a
workable range. It seems to be more important for this case to ensure fast integration that works
for most cases. Should the integration fail, a meisihahas to be provided to lower the integration

step size. After that a successful simulatibnwdd be achievable in every case and end with the
generation of simulation-data.

What is left is the display of the simulation-datderefore the fourth section of this chapter dis-
cussed the available rendering APIs. OpenSceaqGas high level languageemed to be the

right choice and was selected. What was left was to examine common volume-visualization algo-
rithms. Here several algorithms from all thregtegories (direct volume rendering, interactive
methods and surface-fitting algorithms) should be ém@nted. A final part of the fourth section
presented some available volume-visualization tibsa This was done to check common features

in these libraries and to think about a possiblegiratigon of these libraries into this project. The

16 Details can be found undeérttp:/public.kitware.com/VTK/
17 See alsdittp://openvl.sourceforge.net/
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only visualization library usable in a Windows ewviment that has a chance of being integrated
seems to be vitk.
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4 Conception

After the last chapter analyzed what has been defwe, this chapter will create a concept for the
project. This chapter will define what has todmne in order to configuresimulate and visualize
simple three-dimensional reaction-diffusion systeirhis conception will be based on the problem
stated in section 1.2. The structure of this chapiébe defined in the nd introductory section.

4.1 Threefold-ness: Configuration, Simulation and
Visualization

As the last chapter, this chapter will be sematanto the sections configuration, simulation and
visualization. The interconnectedness of theviiadial parts will not be forgotten. Therefore the
problem stated in section 1.2 will be examinemkel and requirements compiled, that each of the
parts has to fulfill, in order to find a solutidor the problem. For the individual parts that means
the following.

4.1.1 Configuration

For the configuration part the problem states that:

“... a prototypic 3D configuration tool for thimitial state of the system has to be devel-
oped. This basic tool should enable the usettdfine and store the location of molecules,
membranes and channels within the reactioacspof user-defined size. A suitable data
structure has to be defined for the repentation of the reaction space. ...”

This statement can be boiled down to the following three requirements:

o First of all the user has to be able to sfyeaind configure the reaction space. Important fea-
tures here would be for example the dimensions of the reaction-space. Furthermore, in case
the reaction-diffusion equation to simulate uses any kind of substratalst should be con-
figurable.

e Second the configuration unit has to allow for the insertion of channels, membranes and spe-
cies at various locations. Furthermore additigmalperties of the elements might need to be
set, such as the concentration for species, or the dimension of a membrane.

¢ Finally this structure has to be stored in a flétalata structure, or perhaps serialized into a
file for later reuse.

Section 4.2 will detail this further.
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4.1.2 Simulation

For the simulation part the problem is formulated as:

“...a 3D simulation algorithm (PDE solver), &d on an existing 2D-simulation algo-
rithm for reaction-diffusion systems written Byof. Herbert Sauro, has to be developed.

”

Since “simple three-dimensional reaction-diffusgystems” should be simulated, this means that
the following tasks should be met by the simulation unit.

e The simulation unit should provide differentmsilation modes, so that different reaction-
diffusion systems can be simulated. “Simple’hereby interpreted as reaction-diffusion sys-
tems involving two species interaction only. Paesers for the simulation mode to use should
be specified by the configuration unit. Thgy the actual simulation-core does not require
user feedback.

¢ Also meta-information about the simulation shlibbe provided by the simulation unit. This
way a previous simulation can be continued at a later point in time.

These points will be elaborated in section 4.3.

4.1.3 Visualization

For the visualization part the following problem has been defined:

“The main focus of this thesis is the speaifon and prototypic implementation of a suit-
able reaction space visualization componenttifier display of the siulation results. In par-
ticular, the possibility of 3D visualization dag course of the simulation has to be investi-
gated.”

This leads to the following two requirements:

e In order to find a “suitablesaction space visualization” different visualization modes should
be available. Thereby a selection of the most common volume-visualization algorithms (as
described previously under section 3.4.2) has to be available.

e To investigate the possibility of three-dimamsl visualization during the actual simulation
runs the visualization unit should be able to work in two different modes. A first mode will
just display previous simulation results amdecond mode will alterreatvith the simulation
unit to visualize the results during the course of the simulation.

This will be described further under section 4.4.

4.2 Configuration

As has been stated in the introtlon to this chapter (section 4.1.1) the tasks for the configuration
unit will be threefold. The first task is to guitlee user through the process of specifying needed
parameters for the simulation (parameters foréaetion-volume, the parameters for the reaction-
scheme to use). A second taskhien the insertion of species, membranes and channels into the
reaction-volume. And the third part is the seridl@aof the configuration to an external file.
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This subchapter will begin taxplain all required elements of tlvenfiguration. After that a con-
cept of the configuration unit should follow.

4.2.1 Elements of the configuration

While all other elements are optional there is oeeneht that each configuration needs to have in
order for simulation and visualization to work:

e Reaction-Volume the reaction-volume specifies first of all the space in which all reactions
will be performed later on. The most importgatrameter of the reaction-volume is certainly
the dimension of it. This is the parameteat decides the overall speed and memory con-
sumption. The dimension will be specified by its width, breadth and depth. Of course two-
dimensional simulation and visualization are aisportant features for the user. This is pos-
sible through setting the depth to 1.

Along with the reaction-volume the user will be asked to specify the simulation mode. This
also influences the reaction-volume in the calsat the simulation mode requires the reac-
tion-volume to contain a certain substrate. Since only “simple” reaction-diffusion systems will
be considered two assumptions will be made. The first one is that all substrate elements are
contained throughout the whole reaction-volumém same concentration. The next assump-
tion is that although a closed reaction-volumiviixed width, breadth and depth is defined

the actual reaction-volume will be a hyper-tortisis means that all borders of the reaction-
volume will be connected. In other words, should one element be on the verge of “diffusing
out” of the reaction-volume, it will be inserted again at the opposite border. The reason for
this is the flux preservation law stating that the outgoing flux is as high as the incoming flux.

All other kinds of elements will be optional. @& may or may not be inserted into the reaction-
volume. Should the user decide not to insert any of these optional elements the configuration is
still valid. Not specifying these elements will resalthe assumption that the concentration of the
species X and Y is equal to zero throughout the whole reaction-volume, furthermore no mem-
branes and channels will be present. Optional el&grteat may or may not be added to the con-
figuration are:

e Molecules (in this thesis also called chemicalsspecies) can be added to set the initial con-
centration of X or Y at certaipositions. On all other positiofsof the reaction-volume the
initial concentration of the respective speciesssumed to be equal to zero. The assigned
concentration for the species wik in the range [0...6.0]. Although it will be possible to in-
sert values outside this scale this might infice the performance of the simulation. The rea-
son for that lies in the integration unit as was described in section 3.3.2.

¢ Membranes are defined by a position of the center, and the dimension. Membranes will hin-
der (reaction-) diffusion of chemicals through th&mce the scope of this thesis is to simu-
late “simple” reaction-diffusion systems theepence there will be no permeable membranes.
The author is aware of the fact that this niegbn is a strong one. In biological systems it

18 Regarding the problem of concentrations at certain positions the author wholeheartedly agrees with
[Tur52] who pointed out that: “...[the] description of the system in terms of concentrations in the various
cells is, of course, only an approximation. It wouldusdified if, for instance, the contents were perfectly
stirred. Alternatively, it may often be justified on tinederstanding that the ‘condeation in the cell’ is the
concentration at a certain representative point, alththeyidea of ‘concentration of a point’ clearly itself
raises difficulties. The author believes this approximasangood one, whatever argument is used to justify
it, and it is certainly @onvenient one. ...”
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only holds true if the Miecules are too “large” to be able to pass through the membrane. It is
to be expected that the presence of mendwanill create interesting interference patterns.
For more information on wavesf a reaction-diffusion system and their interaction with
boundaries see also [Sak02].

e Channels are defined similar to membranes. Ag#irough their position of the center and
their dimension. These channels are idealiZéeir only function is to bypass the membrane
on the defined area.

4.2.2 Operation breakdown

After the last section described the elements of a configuration this section shall describe the op-
eration breakdown of the configuration unit. This operation breakdown has been construed to meet
all the requirements as was described in section 4.1.1.

e The first step will be to either create a nemmfiguration — and therefore to specify a new re-
action-volume through entering its dimension <t@toad an existing configuration from an
external file.

e The next step allows the user to specify shaulation mode that the simulation unit should
enter. Here the user will be presented witkeast three options: diffusion only, the Brussela-
tor reaction-diffusion scheme or selection of a user defined reaction-diffusion scheme. For de-
tails on the available simulation modes see also section 4.3.1.

o After these basic steps have been completedethetion-volume will be displayed. This will
allow the user to add additional elements iht® reaction-space. In order to do so one of the
following options have to be taken:

0 Activate the insertion of the element to be inserted: channel, membrane or species X /
Y.

= |nput the parameters for the element. Thereby the user will be given a choice,
to either use the mouse to change alapeeters or to enter the desired values
into a property window. This is in accordance to the analysis of modeling ap-
plications as described in section 3.2.1.

= This will continue until the user either disables the insertion mode, or the file
will be saved.

o Alternatively the user can modify existing elements in the reaction-volume. Therefore
an existing element can be selected through clicking on it.

= That will open the property window for that element. And allow so to move
or delete the respective element.

e Once these steps are completed all that iddedio is to save the configuration and / or quit
the application. As file format for the cogftiration data SBML level 2 has been chosen. The
reasoning to do so can be foundsection: 3.2.2.4.
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4.3 Simulation

The last section described the concept of angadi configuration. This section will now continue

with that configuration and explain the contdw it will be used to simulate the reaction-
diffusion system. Thereby it will strongly regaraétrequirements as defined in section 4.1.2. One
requirement was to be able to simulate different reaction-diffusion systems. Therefore several
simulation modes have been conceived. These witldseribed in the next section. After that the
operation breakdown for the simulation unit will be given.

4.3.1 Simulation modes

This section will describe in more detail which simulation modes will be supported and what pa-
rameters have to be defined for them. Commocalitsupported simulation modes will be that they
will all simulate a reaction-diffusion system as introduced by Alan Turing in [Tur52]. That means
they all follow the equations:

X F (X y)+ DV3x
2:/ (1.8)
e F, (% y)+DV?y

(for details see also section 3.3.1). So all difeerent simulation modedo is provide different
equationd~, andF, (each dependent on the current concéotra of X and Y). In order to provide

a large variety of reaction-diffusion systems the aim is to implement a plug-in system. This will
allow for the addition of very fast functions (besatthey will be available in compiled, optimized
form). Alternatively a way will be described tse the Systems Biology Workbench to visually
design new functions and fitem be interpreted.

4.3.1.1 Diffusion

This simulation mode does not includeeaction equation. By setting both functidAsandF,
equal to zero this mode will result in the simuatdf diffusion only. So every configured concen-
tration distribution will eventually diffuse into equilibrium.

The diffusion equations for the two chemicals x and y that are used here is:

x_ rD,V>x
2; (1.9)
e rD,V’y

HereDy stands for the diffusion rate of chemigandD, respectively stands for the diffusion rate

of chemicaly. The Laplacian operatd?® stands for a measure okthighness of concentration of
the chemical at a given location in respect ® ¢bncentration of the neighbors. The cubic form
hints at the three-dimensional variant.

In this discrete simulation the formulas can be written as:
3
V% i = D (X + % ia + Xjoat Xogue + Kow + Xyw © A% )

. (1.10)
Vo =D (Yiny e+ Yo + Yoot Youw = Yiew* Yo © @Y1 )
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Here @’ is a multiplier between 0 and 6. This multiplie initially 6 and gets degreased each time
a neighbor is a membrane. This accounts for thetfiatino flow through a membrane is allowed.

Although this formula is tailored for the three-dimensional case it holds true for the one- and two-
dimensional case as well. The reason for that is that in the two-dimensional case the elements
X ik @and X ;... again refer to the element ;, and thus the higher negative multiplier gets

lowered by two. Similarly in the one-dimensional cage,, , X j,i» X k1 and X ., referto
X ;x and the multiplier will be lowered by four. Thus simulation of one-, two- and three-
dimensional reaction-volumes is possible.

4.3.1.2 Brusselator reaction scheme

The second simulation mode will be the Brusselator reaction scheme (First mentioned in [Nic77]).
This is a reaction scheme involving two chemicals X and Y engaged in four reactions. In [Tho86]
the hypothetical reactions are stated like this:

A =2 X
B+X =2Y+D
2X+Y = 3X
X 2> E

“Here A, B, DandE are initial and final products, whose centrations are imagined to be im-
posed as constants throughout. All reaction steps are here assumed to be irreversible with rate con-
stants equal to unity.”

After stating these reactions [Tho86] continuesl¢oive the rate of production / lossXfandY.
These rates of changes are neeafedeturn value for the simulation-core. To derive them the same
letters are used to denote the concentratiortheothemicals. This leads for the individual reac-
tions to the following result: the rate pfoduction in the first reaction is simpdy the rate of loss

in the second reaction is the prodB, the rate of production in the third equationXsY and
finally the rate of loss oX in the fourth reaction iX.

This leads to the equations:
rate of change X A( B1) X X ¥nd

(1.11)
rate of change ¥= BX% X Y

These equations are everything that is calculbyethe reaction plug-in. Of course the parameters

have to be tended t&\''and B' are substrate parameters. Thegamaters are to be provided dur-

ing the configuration phase. Should this simulation mode be selected and these parameters are not
provided A’ will be set to 2.5 andB’ to 5.24. This combination of values is known to lead to in-
teresting patterns.

4.3.1.3 User defined reaction schemes

As already mentioned in the introduction to this section there will be two possibilities to allow for
user defined reaction-schemes. The first possibisitto create a plug-in library which can be
loaded into the project at runtime. Using tpisssibility allows for a shorter runtime (since the
equations will be available in compiled and optietiZorm) and thus is preferred. This method
will be explained in detail in the implementation section 5.2.1.
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Figure 11: Workflow describing how JDesigrer and Jarnac can be used for simulation

The second possibility is to employ the SysteBiology Workbench (as introduced in section

2.3). The main idea here is to create a wagdfine new reaction-equations visually. This way
even users without a background in computer programming could create reaction-schemes tailored
to specific initial concentrations of a reactivolume. Figure 11 describes the actual workflow.
First an initial configuration is created. Therabis important to select “JarnacReactionPlugin” -
during the simulation this will tell the simulationitithat Jarnac is to be evoked in order to com-

pute the reaction-scheme. Other than that theigumation may be created as any other. The sec-
ond step is to open the created configuration dfdesigner. JDesigner allows defining a reaction
network visually. Once the configuration filelsaded into JDesigner the following nodes might
already be present:

e The nodes “X” and “Y” represent the speciesnf&’ throughout the reaction-volume. These
nodes should be involved in creating the remctietwork. That means connections to these
nodes should be drawn in order to influence the reaction equations.

e The nodes “channel” and “membrane” on thleer side should not be connected.

Once the reaction network is created the usertesinit, by letting JDesigner invoke Jarnac to
simulate the network. (c.f. section 2.3). Once fishas been saved (as SBML level 2) the con-
figuration is ready to be simulated and visualized.

4.3.2 Operation breakdown

This section will bring together the requirements for the simulation unit and the analysis of section
3.3 through proposing an operation breakdown.

There will be two basic steps for the simulationtuStep one will be an initialization step. Here
the specified configuration file will be loadeohd validated. Based on that information the re-
quired memory for the reaction-volume will be regted. Next the simulation parameters will be
set such as the step size for the integration Aftier that the requested simulation mode will be
entered. Finally the initial configuration as specifindhe configuration file will be written into
the memory reserved for the reaction-volume.
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The second step for the simulation unit is a loop isting of three sub-steps. First a new iteration

will be computed. Thereby the simulation-core Witbt compute the concentration changes for the
species X and Y. Afterwards thesieanges will be applied to theiginal concentration according

to the current integration step. Along with thevnigeration some meta-information about this it-
eration will be computed. These are the minimum-, maximum- and mean-value. These meta-data
will later be used by the visualization unit irder to “guess” a threshold for displaying the simu-
lation-data (see also section 4.4.1.1 for aitketadescription how this threshold will be calcu-
lated). After this computation step the next siglpbe to either save the current iteration onto the
hard drive or pass it on to another applicatidhis loop will be continued until an end is re-
guested. Upon this the simulation unit will stop.

A

jalize simulation core

ialize reaction-plug-in /

pass on iteration

Figure 12: Operation breakdown simulation unit

4.4 Visualization

Before this section will detail the concept for the visualization unit there are two topics to address.
The first one will be to take the analysiscoimmon volume-visualization techniques (as described

in 3.4.2) into account and generate a list of visualization modes to be supported. A second section
will then detail two possible execution modes far thisualization. The essential difference will be

that one mode will visualize simulation result“the fly” and the other mode will display a pre-
viously saved simulation run.

4.4.1 Visualization types

As one requirement for the visualization isvatsity, there will be several types of volume-
visualization algorithms. They generally fall into the following three categories:

e 3D plot,
e Surface fitting algorithms and

e Texture algorithm
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As with the simulation modes here too a plugyinhitecture will be used. This way it should be
rather easy to enhance the existing visualizatipegyat a later stage. The benefit of this will be
for example that different visualization librariesght be supported later on. All a plug-in would
have to do is to map the existingalatructure into the data structure of the library and then trans-
form the output into the OSG structure. Sindeaaklyzed volume-visualization libraries (for de-
tails see 3.4.3) were based on Operifit should not be a problem.

Common to all visualization types will be firstathtransparency can be enabled or disabled and
second that the output can be clipped along the three coordinates. Should transparencies be en-
abled the opaqueness of an object representing gdimtawill be determined by that points con-
centration. This should provide the user the pdggilbo analyze the output more closely. As ex-
pected from a three-dimensional representataiating and moving the created object will be
supported. Finally the user will be provided to difgghe output in three steps: It will be allowed

to choose between the display of points only,display of wire-frames or the display of full sur-

faces. This way drawing time can be reduced further and thus allow for the display of data-sets
that would be to time consuming to display otherwise.

The sub-sections in this chapter will describe aiization types of the main categories further.

4.4.1.1 3D plot

Visualization types in this category basicallsmlay each data point above a chosen threshold.
This threshold will be either “guessed” by theplication based on the minimum-, maximum- and
mean-values, or directly entered by the user.dazh data point above that threshold one object
will be created and colored according to a glgizdétte that assigns a specific color for each con-
centration. In [Pek01] another method is descritzedfficiently detect meaningful iso-surfaces.
The idea here is to generate a Laplacian-wejlgray value histogram in one pass through the
dataset and choosing a maximum value. This is rapfess the approach to be taken here in this
case. An accumulated histogram with a configurain@unt of bins will be calculated. Using that
histogram a threshold value will be chosen tiegluces the data-points to display by about fifty
percent.

There will be two visualization types in this egory. A first type will follow the idea of the
Cuberille algorithm (see section 3.4.2.3). Thaams it will create one cube for each data point
belonging to the object defined through the thodd. As already mentioned on the section about
most common volume-visualization algorithms timgplementation will be v slow and thus is
intended for smaller simulations only.

A second type will follow the same approach bate only points for each data point. Each of
these points will be rendered as a fixed size (otherwise they would not be visible). This simplifica-
tion makes the display of larger reaction-volumes possible.

The drawback of this type of visualization is tkia view gets rather complex if many data-points
are to be displayed. The only remedy here wbeldo clip the display or enable transparency.

4.4.1.2 Surface fitting algorithms

Visualization types in this category will begindreate a surface for the threshold value calculated
by the simulation unit. Again this value can berodelen by the user, thus allowing the user to

choose which surface to create. For more inféionaon the selection of the threshold value see
also the previous section 4.4.1.1.

The first visualization type will be the Marciy Cube algorithm and the second type will be the
Marching Tetrahedron. (See section 3.4.28 @Bor97] for details on these algorithms.)
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Algorithms in this category will be much faster than algorithms in the 3D plot category. This is
due to the fact, that fewer objects will be created.

For a general description of surface-fitting algorithms see also chapter 3.4.2.3.

4.4.1.3 Texture algorithm

The idea behind this algorithm is to create one texture for each slice of the reaction-volume in the
z-plane. Each pixel of this texture will getcalor representing the respective data point, again
chosen from the global color palette. The main aggmbf this visualization type will be its run-

time. Since only one object will be created pkce it will consume a minimum amount of mem-

ory and thus will be processed fastest.

The nature of this type of visualization makethe ideal representation for simulations of two-
dimensional reaction-diffusion schemes. For thdieensional simulations this algorithm still can
be insightful in combination with clipping and rotating.

4.4.1.4 User defined

As with the simulation modes (c.f. chapter 4.3)1it will again be easily possible to create new
visualization types. An interface will be exposed so that new visualization types can be easily
added through loading a new visualization type DLL.

This mechanism will be detailed ihe implementation section 5.2.2.

4.4.2 Online vs. Offline visualization

As mentioned in the beginning there will be taupported operation modes for the visualization —
online and offline visualization. Before empting these two operation modes further the reason
for introducing these two operation modes willdgiee. The reason for allowing these two opera-
tion modes is the runtime. Large reaction-volumes will take a long time to simulate. Furthermore a
large number of iterations might be needed oteotto see the formation of reaction-diffusion pat-
terns. These numbers might be as high as 5.0@9er 7.000 iterations. Separating the visualiza-
tion part from the simulation part may help to sothat problem. This is true especially since it
will be possible to change the operation modes. ietns that should a user notice that the simu-
lation run that was computed in the offline maals prematurely it will be possible to continue
this simulation run (either in online or offline mode). The same is true for the other direction. The
simulation data from an online visualizatioan be used in an offline simulation.

Online visualization (i.e. using the visualizatianit to load a configuration and visualizing the
results while simulating it) will probably be thehit type for small to medium reaction-volumes.
The advantages of this type lie in the fgsneration of images for these kinds of reaction-
volumes. Furthermore no additional hard drive speitedbe consumed. The drawback is that once

an iteration is displayed it is not possible to view previous iterations without re-running the simula-
tion. Since the visualization of the data-set wileamore time than simulating it there will be the
possibility to simulate a user defined number afatiens before visualizing the results. This will
speed up the process much.

Offline visualization (i.e. the visualization of tdastored from a previous simulation run) is the
right type to choose for larger reaction-volumiésr these online visualization would take up too
much time. Advantages here are that since thetidesaare stored on hard disk it will be possible
to go back and forth in time in order to readlyalyze the dataset. The drawback is obviously the
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space needed on the hard drive along with thetfattno feedback is provided whether or not
patterns have already formed.

4.4.3 Operation breakdown

This section will now formulate the basic opesatbreakdown for the vislization part. Thereby
the possibility for the two operation modes, offlared online visualization, will be given respect.

The selection of the operation mode will be madeheyuser. Either the user chooses explicitly to
run a simulation, or to display a previous simulation run. After that as an initialization step the
original configuration will be laded. This will be done in order to display the reaction-space, the
membranes and the channels. Theleenents will always be disglad. As further initialization

step a fast visualization type will be selected. Further initialization of the simulation-core along
with a calculation of the first iteration occurs in the online mode. The last step of the initialization
is to display the first iteration (either from a file the offline mode, or the last computed itera-
tion).

configuration /
stored simulation run

visualization-plug-ins

calculate
new iteration

(visualization-plug-in)

Figure 13: Operation breakdown visualization unit

Now it will be up to the user to perform one of the following actions:

e change render detail (from paimtver wire-frame up to rendering of surfaces (default))

change the visualization type

o clip the displayed reaction-volume

e enable / disable transparency

e enter / leave automatic playback mode

¢ manually select a different threshold for the visualization
e navigate through the generated display

e (uit the application
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e save screenshots

Should the user decide to enter the automatighaick mode a new iteration will be loaded / com-
puted according to the current visualization step-size. This allows for example in the online mode
to calculate a larger number of iterations beforel#st iteration will be displayed. In the offline
mode this will help to skip some iterations.

4.5 Conclusion

The aim of this section is to wrap up what hasrbachieved with this conception. In what way
was the conception done and wy? It will show similarities between the separately described
parts.

Each of the three parts, configuration, simulatod visualization has firéteen analyzed in order

to compile requirements that are essential for the individual tasks. After describing unique ele-
ments for each part (the elements of the gumétion, simulation and visualization modes) all
sections contained a basic operation breakdown. This operation breakdown described the individ-
ual points that have been given critical importance to a successallle application. Thus the
points mentioned there are points to be implemented.

To conclude this chapter, some final remasksthe separation. Separating the configuration unit
from simulation and visualization brings along thiofeing benefits. First of all it makes it easily
possible to create the configuration with thirdtpapplication. Though at the moment modeling
applications for reaction-volumes that regard spatfarmation are still hard to find, they may be
developed in the near future. The idea of usingsiher to enhance a configuration, created with
the configuration unit, displays one way to widihe range of configuring at least the reaction-
networks. Secondly the separation allows the user to save time. It allowed to create both visualiza-
tion modes, online and offline, and with it camhg or separating the simulation and visualiza-
tion unit. Furthermore the workflow for altag a running simulation by changing to a new con-
figuration is much more easily possible with Separated approach. Finally, since the simulation-
core will be written with strong regard for platfio independence this will open up the possibility

to run simulations on a more powerful system tthendesktop-workstations targeted for the visu-
alization. A last point supporting the separation into individual parts is that it allows for a certain
kind of specialization. While an expert biologistcertainly needed toreate the initial concentra-
tion, an expert for simulation could optimize thedabto simulate and finally an expert in vol-
ume-visualization might work on the best disptdythe generated data. This will be possible since
the three parts are separated. The biologist neqosss on the configuration, while the simulation
expert passes on the simulation-data. This enaiegolume-visualization expert to find a fitting
visualization.

The process of implementation along with its peafis and limitations will be discussed in the
next chapter.
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5 Implementation

Based on the analysis of chapter three and theemtion of chapter four this chapter will first
describe the data-structures usgdllowing that the architecture of the system will be described
further. A final point will talk about difficulties #t were encountered alomgth limitations of the
solutions that could be found.

As already stated in the last chapter, the @nm@ntation will include all points of the conception.
This will provide for an easily usable, extendadilaulation and visualization application.

5.1 Data-structures

This section will begin with explaing the data-structure usedhold the configuration data. Next
the internal data structure that holds the simulation data will be discussed.

5.1.1 Configuration data-structure

The configuration data-structure tihe implementation named Configtion) holds all data that is
necessary to run a simulation. It is being used by the configuration unit, where it will be created,
by the simulation unit for setting up the initial concentrations and initialization of the simulation-
core and by the visualization unit in orderrapresent the reaction-volume along with possibly
existing membranes and channelsisBubchapter will explain this structure in more detail.

» Access to Elements
 Serialization to File (SBML Level 2)
* Initialization from File (SBML Level 2)
» searching
for elements |
» hash-map of
elements
e simulation mode +

—
Configuration
—

Figure 14: Elements of the configuration data structure

The elements of the configuration fall into thieegories. The most basic of these categories is

the data needed to specify the reaction-voluméhimfirst implementation this is just the dimen-

sion of the reaction-volume. The second categopyesents data needed for the specification of

the simulation mode. In detail these are a refardo the selected reaction-plug-in and the con-
figuration of that plug-in. The third category ipresented by all elements that have been inserted

by the user. Here a hash-map based on the position of the respective element as key and a refer-
ence to the element as value hasrbehosen. Special classes efastthe possible elements, each
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derived from a common clas&fement ”. In order to retrieve the respective element at a later
time the C++ run time type information (R will be used to obtain the object.

Accompanying these data are support functions. Apart from basic “get-/set-methods” and “insert-
/delete-methods” for the hash-map, the most ingmbrfunctions are probably the ones used for
serialization or de-serialization. As already statethe analysis of possible file formats in section
3.2.2 the file format SBML (level 2) will be usdd store the data. Section 3.2.2 also provided
information about the way the configuration data can be applied to the model-data represented by
the SBML document. In order to implement arpert of the configuration it is necessary to save
some information as SBML annotations. The redsonhis is that SBML currently does not sup-

port spatial-data for the species or defined compartments. Thus a XML name space was defined
after [Van02] that specified the needed elemehtese definitions are displayed in the appendix:

“C - Schema Definition of SBML Annotations”.

5.1.2 Simulation data-structure

The aim of the simulation data-structure (il #ictual implementation meed DataHandler) is to
provide access to all the data stored during one iteration. The reason for storing the data in this
class and not along with the simulation unit was the following. In the online operation mode of the
visualization unit the simulation-data will besglayed after each iteration. Each iteration might
contain a huge number of data. For each element of the reaction-volume four double values (con-
centration for species X and Y, along with the @itehange for X and Y) will be needed for the
simulation and two double values (current conedittn for species X and Y) will be needed for

the visualization. To illustrate that with an exaen for the simulation of a grid with dimension
128x128x128 this would lead to 64MB of memomeded to simulate such a grid. Of these data
32MB are needed for the visualization. Copying these data would on the one side slow down the
visualization process and on the other side occupy more memory. This is where the DataHandler
into play. Apart from storing the data for the concentrations of species X and Y along with their
rates of change it also provides an interfacthabboth applications can access these data.

» Access to Elements
 Serialization to File (binary)
« Initialization from (binary) File

[
|

* Concentrations X
and Y
» Rate of Change X

—
DataHandler
—

Figure 15: Elements of theDataHandler data structure
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5.2 Plug-in system

Both the simulation unit and the visualizationtusie written in a way to easily extend existing
capabilities. Therefore a plug-in system was conckthat will be described here. First the basic
architecture will be detailed and following that it ol specified how it will be used for the simu-
lation and visualization types.

Marching Cube

« Diffusion « Marching Tetrahedr@
* Brusselator e Texture
 SBW/Jarnac « Point Cloud

RactionPlugin MallzationPlugin

PluginManager

Figure 16: Elements of the PluginManager

There will be one manager for both types of plag-iAn instance of this manager will be created

at the program start. Each plug-in library vatntain one registration method that will be called
upon loading. This method will register each and every plug-in of the library. Registering in this
case means that a prototype ins@mf the respective will be created and given to the plug-in
manager.

Upon creating the user interface for the configurabo visualization unit, or during loading of a
configuration the plug-in manager will be askedtfte available plug-ins. Should they be needed
the plug-in manager will provide an instance of these plug-ins.

5.2.1 Reaction plug-ins

Reaction plug-ins determine the simulation modat thill be entered. As already described in
section 4.3.1 the reaction plug-ins specify the functibpéx, y)and F, (x, y)in the basic reac-

tion-diffusion scheme:

X _ F (X y)+ DV°3x
gt (1.12)
Ey: F,(x, y)+ DV?’y

Each reaction plug-in has to be inherited from the abstract cReactionPlugin.h ", This

class definition represents the interface through kviait calls will be maddo this plug-in. In
order to create a new reaction plug-in the felllg members need to be implemented and ex-
ported:

e void initialize(std::string sConfigString) . Although the prototype of
each plug-in will be stored in the plug-in mgea, the initialization should happen when this
function will be called, as opposed to initializing tblug-in in the constructor. The reason for
this is that on the one side specific initialipat may take a long time and on the other side
the plug-in may take certain parameters which will not be provided by the default constructor.
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As parameter this initializatiofunction will be called with the configuration string as speci-
fied during the configuration. The configuiatiwill display the default parameter as provided
by the next function to implement.

If the parameters are in the standard format, mearingie>=<value>; " then the base
class will parse these parameters and they can be obtained by calling:

void parseParameters(std::string sConfig); and

std::string getParameter (std::string sName);

e std:string getDefaultParameter() : This function should provide the default
parameter for the reaction plug-in. Since the petar has to be returned as a string the fol-
lowing format should be used to construct that string:

<ParameterNamel>=<valuel>; <ParameterName2>=<value2>; ...

An example would beA=2.5; B=5.24; " this parameter is used by the Brusselator reac-
tion plug-in.
e const char* className() const: this function provides a class name for the reac-

tion-plug-in. This class name will later be disgd by the configuration unit in order to al-
low the user to make a suitable selection.

e double getChangeX(double dConcentrationX, double dConcentra-
tionY) and

double getChangeY(double dConcentrationX, double dConcentra-
tionY)

These are the main functions to implement. These are the functions that will be called over
and over by the simulation-core. Thus it is Mteat these functions are written in high regard
for performance and memory consciousness.

5.2.2 Visualization plug-ins

The visualization plug-ins provide a possibility Wiversity in the display of the simulation re-
sults. Each of the plug-ins derived froMisualizationPlugin.h ” will benefit from a cou-

ple of support functions, that will help togwide information about the mapping from concentra-
tion value to the color that concentration is sgjgd to be assigned. Furthermore the access to the
dataset will be provided along with information about mean-, minimum- and maximum value in
the data set. Of course the threshold selelsyethe user will be provided as well along with the
information whether to support transparency or not.

The functions that have to be implemented when deriving from the abstract\iissliza-
tionPlugin.h " are the following:

e const char* className() const : this function will provide the information to the
plug-in-manager with which this plug-in is to fimund in a later stage. Also this information
will be displayed to the user in order to help him to make a selection.

e o0sg:..ref _ptr<osg::Node> generateNode(double dThreshold,
DataHandler *oHandler) . For the visualization plug-ins this is the key function to im-
plement. Along with a reference to tbataHandler (containing all simulation data as de-
scribed in 5.1.2) the threshold value will bgegi as argument to this function. It is now com-
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pletely up to the plug-in to processetprovided information and generate @sy::Node
(the base object for any scene graph elementatong all the visualization information.

5.3 Design of the system

This section will explain the design of the systeased on the classes creaafter the conception
of the last chapter. To that aim first the complete structure of the system will be detailed before the
individual parts for configuration, simulati@md visualization are described further.
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Figure 17 displays the schema that details tmwindividual components of the developed appli-
cation are connected. As expected all the compusrare strongly tied together. The configuration

of the system plays a vital role for the simulation as well as for the visualization. On the one side it
is needed in order to initialize the simulation-caral on the other side basic information is taken
out of this configuration in order to visualigee reaction-space. Another vital component is pre-
sented by the plug-in system. This provides the sereate configurations for different reaction-
diffusion systems, which are then processed by thalator. For the visualization of these simula-

tion results, accessed through the data handlepltigein manager provides several visualization
types. For more information see also section 5.2.

Figure 17: Overview of the systems design

In the online visualization mode the visualization unit works closely together with the simulation
unit. They both share a common dataset provided by #taHandler . This was already de-
scribed in section 5.1.2.

5.3.1 Configuration

This sub section will describe the configurationtuhat was implemented in order to fulfill the
requirements as stated in sections 4.1.1 andThe.focus thereby lies on the description of the
program logic. A description of the graphical user interface and with that the integration of the
used three-dimensional renderer can be fourldeémext section (5.4). Figure 18 lists the essential
parts for the configuration unit.
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Configuration Unit
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Figure 18: Configuration unit schema

The most interesting parts of the configuration unit are certainly the following:
¢ how are the data manipulated in the confijoradata structure (as mentioned in 5.1.1)
e and how are elements added to the confifumgsuch as channels, membranes and species).

The main component that makes these tasks possible i€trdigurationViewer " it al-

lows to display configurationsa$ provided by the data structure), to navigate in the created reac-
tion-volume and to add or modify existing elements and finally to save the created or modified
configuration.

For the insertion of the specific elements insertion tools were created. They all derive from a
common base clasdnsertTool.h " that provides the basic interface for tB®nfigura-
tionViewer . Features provided by the base class comtmictions to enable or disable an inser-

tion tool, to move the insertion tool and constraint checking. Constraint checking is used so that no
element can be inserted outside of the reactionmel Finally the base class provides an interface
for keyboard input. Functions to implement by eatlhe derived classes (for this case rudimen-
tary implementations were made for the todiannellnsertTool , Membranelnsert-

Tool andSpeciesinsertTool ) are functions to create an element based on the current setup
of the tool, to provide a graptdl representation for that element (or any given element of the sup-
ported type), to provide a graphical representdiorhe tool itself and to handle keyboard input.
These insertion tools receive keyboard information from the viewer. This is used for example by
the channel- or membrane insertion tool in ondespecify the dimension of the object to insert.
Via pressing the left or right key the width will be restricted or widened (for the height the up-
/down keys are used and for the depth tB&JP/PGDOWN keys). So the insertion process works
like this, first the user enablesethespective insertion tool, then the tool is moved via the mouse to
the desired position. Now the user can specityoopl parameters, like the dimension for a chan-

nel or membrane or the concentration for the gpdanally the object will be created by pressing

the Space-key. This will continue uritile user disables the insertion mode.
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Selection of elements was implemented to allosvitber to modify/delete already placed elements.
Therefore the user would use the mouse to ditkhe desired object. This will invoke a picking
routine to test whether any elem@vas hit by the click on that position. Should an object be hit, it
will be highlighted as selected. Selected edata can then be deleted or moved around.

5.3.2 Simulation

The implementation of the simulation unit was done with the thought in mind to create a platform
independent application. Furthermore the simulationt had to be able to be integrated to the
visualization unit in order to allow for the online operation mode of the visualization section. As
stand alone application it will represent a commiameltool. The stand alone application was cre-
ated to process the simulations on different machines and later use the created simulation-data to
perform an offline visualization. The idea of tipigocess, first simulate a certain number of itera-
tion steps and later on visualizing the crealeth, poses the need for two different execution
modes of the simulation unit. First of all the slation unit should be abke simulate a configura-

tion file and store these information. The second ei@tumode has to be able to continue a pre-
viously run simulation. This will be necessam@ a previous simulation might end at a point
where reaction-diffusion patterns are not yet “ialjor have not yet begun to form). For the
online visualization mode, where usually no dat la¢ written onto the hard drive, this mode
allows to use the simulation-data of a previsumsulation run as start point for an online visualiza-
tion. Finally a function was implemented thdioas changing the configuration of a running
simulation to another configuration with the sadi®ensions of the reaction-volume. This allows
altering a running simulation. This featurélWwe accessible in online visualization only.

Simulation Unit

ReactionPlugins

PluginManager

I

Simulation Core

<:I uoneinbyuod I

Visualization
Q Unit

=

Figure 19: Simulation unit schema

The Figure 19 explains the operation mode anthlworation with the other components. First a
configuration object will be generated from a fileme@or from the information of a previous simu-
lation run. This configuration will then be ustm initialize the reaction plug-in to be used, the
simulation-core and of course the reaction-voluepmresented by the DataHandler (see also 5.1.2).

DataHandler
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In case that a previous simulation run will be conid the stored simulation-data of the last itera-
tion will be taken as initial concentration distrilout for the reaction-volume. Otherwise the ele-
ments of the configuration filevill be taken to set up an initial distribution for the reaction-
volume.

After the initialization the simulation-core will perfa the following steps. In the standalone ap-
plication it will calculate an iteration (based on Turthgquations as stated in sections 3.3.1, 4.3.1

and 5.2.1). As integration unit (as analyzed in section 3.3.2) a simple Euler method has been cho-
sen after all. This has been done in reflectiothenruntime. Should the Euler method fail, (highly
unlikely for the specified concentration range 6.0}, the simulation will interrupt the calculation

of the current iteration. The user will be notifiedtioé fact and informed that by setting a different
(lower) integration step size this error will besolved. A failure in the integration would other-

wise result in negative concentrations, which would falsify all following iterations. Once the com-
putation is complete the simulation-data will beeshwento the hard drive. These steps will be con-
tinued until the user breaks the execution.

Should the simulation unit be called from the vigsalon unit only two steps will change. First

instead of saving the simulation-data onto tregd drive they will be accessed through the
DataHandler and passed on to the selected visuabipapilug-ins. The other thing that changes
is that it will be possible to alter the runningnsilation by selecting another configuration file with

the same reaction-volume dimension. Twilt be detailed in the next section.

5.3.3 Visualization

The implementation of the visualization unitilveupport two execution modes. These modes, as
described in the conception, are titled online affithe visualization mode. For the user this will
allow two approaches to visualization. First dfitis possible to let the simulator process a con-
figuration without the need to attend the computéiese data will then just be saved to the hard
drive. At a later time the user can then choosédoalize the simulation-data. The other visualiza-
tion mode, titled online visualization, will takecanfiguration and use it to simulate one iteration
at a time and then display it. In order to e from one simulation mode to the other the follow-
ing steps will have to be performed by a user:

¢ online- to offline-visualization: All the userak to do to perform this transition, is save the
current simulation results from the visualipatiunit. And call the simulation unit with these
results as parameter.

o offline- to online-visualization: Here the user will perform an offline visualization up to a cer-
tain iteration and then stop it. Now insteadtbbosing to display these iterations the user will
use the visualization unit to “continue a pag” iteration, which will take the last iteration
as a start point for the online visualization.

Should another configuration be opened, althougbrdime-visualization is currently in progress,
it will be possible to alter the current simulation dgding the data of thisew configuration file.

In order to be able to do this the new confaiom has to have the same size of the reaction-
volume. What will happen internally is the foNong: from the old configuration all membranes
and channels will be deleted finathe reaction-volume and only thencentration of species X and
Y along with their respective rate of change wéimain. To these the data specified in the new
configuration file will be added. Using this feagut will also be possible to change the simulation
mode by selecting a different reaction plug-in fag tiew configuration. This concept will be vital
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for the understanding and creation of complex patterns. These patterns might not form from one
initial concentration. Rather thegight be gradually evolved.

A common feature for both online- and offlimésualization will be a “playback” mode. This
mode will display one iteration, either readinfrétm a file or simulating it in the background, and
then make a first visualization. According to gedected step-size, thatlwdecide the number of

files to skip or the number of iterations to congyuhe next iteration will be displayed. This step
size is set initially to one. The user will be atdechange this step-size interactively by pressing
the plus or minuskey on the keyboard. Alternatively a mewill provide often used step-sizes.
This “playback” mode can be entered upon pressingpheekey or pressing a button, and can be
cancelled in the same way. Optionally can be at#d that a screenshot is made upon each itera-
tion and stored onto hard-drive. Canceling the playback mode will result in displaying the last
calculated iteration in the online-mode.

At any time the user will be able to decide whetioeenable or disable the transparency mode (by
pressing T”) or to choose a different render mode (by pressiy.‘By default transparency is
enabled. The default rendering madddo render surfaces. Pressing™will result in a cycle be-

tween point rendering only, wire-frame rendering and surface-rendering. It is also possible to gen-
erate a screenshot anytime by pressi@got “PrintScreefl. Also the user will be able to change

the threshold for which the visualization-plugvitil calculate the view. Furthermore it is possible

to clip the calculated view along each coordinate-axis. Clipping the reaction-volume along with the
different opaqueness might be the only possibility to gather all desired information from the reac-
tion volume. Otherwise vital information might Beidden” by concentration on a concentration-
slice closer to the user. Finally it will be possiltb change the visualization type by selecting a
different visualization plug-in anytime.
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Figure 20: Visualization unit schema

Figure 20 displays a scheme how the visualization unit works together with other created compo-
nents. After the user decides what should be visualizedisializationViewer will either
receive a filename, in case of online-visualization, or the location of the stored simulation-data in
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the case of offline-visualization. A collection stbred simulation-data is always accompanied by
an information file. This will tell theVisualizationViewer from which configuration this
simulation run was created. In a first ste@@nfiguration object (described in 5.1.1) will be
created. This object will be used to visualizeormation such as the dimension of the reaction-
volume along with possibly existing membranes ahdnnels. In case of an online-visualization
this configuration will be passed on to the simulabororder to initialize it. The last step of the
initialization phase is then to calculate an initiatateon in case of online-visualization or to load a
first stored iteration into thBataHandler . Then a default visualization-plug-in will be selected
and the iteration will be visualized by the plug-in through access ®fateHandler

5.4 Graphical user interface

Both, the application implemented for the configuration unit as well the application implemented
for the visualization unit, have been implemented wétlpard to a rich graphical user interface that

has the aim to support the user during each program step. Thus both application support standard
windowing features such as recent-files (a dyndi@anenu listing the last files opened sorted by

last access), drag-and-drop (using the mouse toalfitg onto the application in order to open it),
quick-tips (an information box that appears if t/ser hovers with the mouse over a GUI element),
dockable windows (windows that can be un-docked from the application and be positioned by the
user) as well as menu-bars, toolbars and status-bars.

This demanded for a highly capable windowing toolkit. Thus a first step towards implementing the
graphical user interface was to compare comgnosked windowing toolkits these are Microsoft
WinForms, wxWindow, Gtk+, the FOX toolkit, and the Qt library. The only restriction applied to
the author was not to use Microsoft Foundation Classes (MFC) a highly capable, proprietary win-
dowing toolkit developed by Microsoft. Microk WinForms a new windowing toolkit developed

by Microsoft and just recently (since Visual8io 2003) available for C++ (.NET) could not be
brought to work together with OpenSceneGraphk,chosen rendering APl and thus was not pur-
sued any further. wxWindow and Gtk+ though widely used throughout the developer community
were not selected due to bad experiences of the author in a prior BrdjeetwxWindow toolkit
created problems in a multithreaded application. And Gtk+ though very popular in LINUX envi-
ronments does not comply to standard conceptMS Windows platforms (standard controls did

not provide the same functionality as their Windows counterparts such as Clipboard support). The
FOX windowing toolkit developed by Joren varr dgp (c.f. [Van,04]) since 1997 as open source
project was another possibility. FOX also istfdrm independent, C++ based, and supported
OpenGL (and thus could be made to support OpenSceneGraph). Nonetheless the FOX toolkit was
not used since the documentation of this pragstill lacking in vital parts and necessary infor-
mation can only be obtained through mailing listsaurce code studies. Furthermore as expected
from open source work FOX is still work in progress and not yet complete. Qt as commercial pro-
ject was developed by Trolltech (c.f. [QtC#}d [Bla04]) as a C++ toolkit for multiplatform GUI

and application development. Itlifavs an easy to understand concepsignals and slots, is very

well documented and easy to extend. These factors together with the fact that a free non-
commercial version of Qt (version 3.2.1) caateng with [Bla0O4] made Qt the windowing toolkit

of choice for implementing the GUI for the configuration unit and visualization unit. The only

19 Gtk+ as well as wxWindows were temporary seleagindowing toolkits for the AMIRE project (c.f.
[AMI04]). In the long run it was decided to use MFC over these windowing toolkitsibecd their short-
comings in MS Windows environments.
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restriction of the non commercial version is tiia string “[non-commercial]” will always be
included in the title bar of the applicai along with a system menu “About Qt”.

This section will continue to describe the implemented graphical user interface for the configura-
tion unit and visualization unit.

5.4.1 Configuration unit

[Non-Commercial] - 100x100x100_membrane - configuration unit
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Figure 21: Main screen configuration unit

Figure 21 shows the main screen of the configuration application. This subsection will continue to
describe the main features:

title bar: Along with the program name the titlerhaill always display the currently opened
filename or “untitled” should the ctent configuration be a new one.

menu bar: The menu bar contains two menus. Firstfileemenu, with the standard features
Open, Save, SaveAs, recent files and Eitile second menu provides access to the insertion
tools. Here the insertion mode can be set for the insertion of species X and Y, channels and
membranes. Of course it will be possible teattle the insertion modes as well. To provide

the user with a feedback which insertion mddes been selected these entries will be dis-
played sunken if activated.

tool-bar: The toolbar provides the user withst access to the most common used of these
functions. It is also possible to start the vigaion unit from the toolbar. This will pass the
currently edited configuration to the visualization unit.

OpenSceneGraph Viewer:The main control for the apphtion is represented by the OSG
Viewer. This object allows the three-dimemsal representation of the configuration. Basic
features provided by this object are navigatimgugh the scene by using the mouse. By left-
clicking and moving the mouse or the mouse-wheel the scene will be translated around the
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corresponding coordinate-axis. On right-cliwdgiand moving the mouse or the mouse-wheel
the scene will be rotated along the corresponding coordinate-axis.

If an insertion mode is activated the OSGewer will display the corresponding tool. (a
sphere for thé&peciesinsertTool , & blue cube for th®lembranelnsertTool and a
green cube for th€hannelinsertTool ). This allows the user to drag the insertion object
through the reaction-volume. It will not be gsible to drag the tool outside the reaction-
volume. Once the desired position is reachsdl space is pressed the respective element will
be inserted on that position. (see also section 5.3.1)

Should the insertion mode be disabled, leftkitig upon an element in the scene will result
in selecting it. It will then be possible to dréms element to a different position or to delete
it.

e navigation dockwindow: In order to provide the user withe possibility to easily navigate
through the scene this dockwindow has been aledteallows the user to reset, rotate or
translate the view. The speed of the mouse wtaelalso be configured by this window. As
explained in the introduction to this chapt®ckwindows can be undocked from the applica-
tion and placed wherever the user likes. It sbglossible to hide this window by disabling it
from the popup menu that appears when right-clickingt. This is true for all dockwindows.

e plug-in dockwindow: The plug-in dockwindow allows the user to specify the reaction plug-
in to be used along with its supported parameters.

e concentration dockwindow: This dockwindow provides thesar an easy interface for speci-
fying the concentration for the next specie elettierinsert. The concentration will be chosen
either by a slider, or by directly input in the textbox. Should the slider be moved the range is
restricted to the range 0.0-6.0. This ramgas chosen based on results achieved in many
simulation runs.

e insertion dockwindow: On program start this dockwindow is not visible. It will be visible
only if the insertion mode is activated or theer selects an elemeiithen according the in-
sertion mode activated it allows to input thegmaeters for the respective element (dimension
and position for channels and membranes and position and concentration for species). Upon
selecting an existing element the dockwindow didiplay the parameters of the selected ele-
ment. The difference between these two activatiodes is that for active insertion mode this
window allows only for insertion of elements whereas in selection mode it will only allow to
move or delete an element.

e status bar: The status bar is divided into three parts. The first part will display information
regarding the current operation. The second part will inform the user if the configuration was
modified. The third part will display the currently active insertion mode and cycle through the

stages “none”,

" ou ” o

channel”, “membrane”, “species x” and “species y".

Upon closing the application, or the loadingooeation of a configuration a check will be per-
formed whether the current simulation was modifiédso the user will be prompted to save the
changes, to cancel the operation or to continue the operation without saving.

Information like recent files, the current windgsition and size will be saved upon closing the
program. Thus the window will appear on thensaposition and with the same dimension upon
starting the program anew. Since Qt functionsuaed to store this information the save location
is dependent on the platform. On Windows systéhese settings will be stored in the windows
registry whereas on other platforms they will be wnitie a configuration file (not to be mistaken
with the configuration files created by this application).
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5.4.2 Visualization unit
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Figure 22: Main screen ofthe visualization unit

In Figure 22 the main screen for the visualizatipplization is displayed. It consists of the follow-
ing parts:

o title bar: Similar to the configuration applican the title bar will display the opened file-
name or directory.

e menu bar: The visualization application contains the following menus. The File menu pro-
vides the user with the following actions:

0 “Open Simulation” clicking upomhis element will open a dialog where the user will
be prompted to select the directory containing the simulation-data to visualize.

0 “Run Simulation” this will allow the user to select a configuration file that will be
simulated and visualized.

0 “Save Simulation” this element allows thser to save an online visualization.

0 “Continue Simulation” this allows the ustr continue a previous simulation run, ei-
ther saved using the last option saved by an offline visualization.

The second menu “Display” allows for the selectidrthe concentration to display. Either
the concentration of species X will be digpd or the concentrations of species Y.

The menu “Plug-ins” will provide the user with the possibility to select the visualization
type for the current iteration. Figure 24 shsoall available visualization plug-ins as they
visualize a Brusselator-simulation witheaction-volume of 50x50x50. How this configura-
tion was created is explained in the appendix B - Examples.
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Finally the menu “Settings” is there to allow gkiiselections of different visualization step
sizes. These influence what happens when arelftateration should be displayed. In the
online visualization mode a new visualizati occurs only after as many iterations were
computed as are specified with the step dizéhe offline visualization mode when pressing

the back and next button (see playbacklagl as many iterations will be skipped as de-
fined with step size. Apart from specifying the step size this menu also allows to change the
settings of the simulation unit (see also dialog simulator settings). Changing these settings
will only be available for online visualization.

tool bars: The visualization application has two toakhaThe first one is there to allow fast
access to selected actions from the menuTia.second toolbar allows control which itera-
tion will be displayed next. For the offline-visuadtion this allows to go to the first, previous,
next or last iteration. For the online-visualipatiit is only possible to go to the next iteration.
This is due to the fact that no iteration will f&ved onto the hard-drive and only the current
iteration is in memory. The “next” or “previsliiteration is dependent on the selected step-
size. Selecting the “play” button will result in activating the automated playback mode. Here
the “next” iteration will be displayed shortfter the current iteration is displayed.

navigation dockwindow: The navigation dockwindow provides the same functionality as the
one described in the explanations to the conditiom unit. In fact it is the same control. (see
5.4.1).

tool dockwindow: The tool dockwindow allows the user to specify a different threshold than
the one calculated by the simulator based omtban value. With that function it is possible

to display different iso-surfaces. To change threshold the user activates the first checkbox
on the tool dockwindow. This will enable the sliderd the textbox in the first row. There the
new threshold can be selected. Apart from selecting a different threshold this dockwindow
also provides the possibility to clip the depped iteration. Therefore the checkbox represent-
ing the coordinate-axis to clip to has to beestdd and then a percentage set with the slider.
Figure 23 demonstrates how a different threshalidnfluence the created visualization.

OpenSceneGraph viewer:The OSG viewer for the visualization application provides only
navigational features apart from the display of the reaction-volume along with a representa-
tion of the current iteration. Other than that isisiilar to the one described in section 5.4.1.
Again left-clicking and moving the mouse or the mouse-wheel will result in translating the
scene around the corresponding coordinate-&xisright-clicking and moving the mouse or

the mouse-wheel the scene will be rotated along the corresponding coordinate-axis.

status bar: The status bar is divided into four parts. The first part is there to display informa-
tion about current executed actions. The secondmmicates whether the online visualization
has been chosen (“simulate”) or whether offlivisualization is active (“replay”). The third
part informs which iteration is displayed curtlg. And finally the fourth part indicates
whether the automated playback mode is running or not.

Simulator settings: This dialog allows changing imgant simulator settings. Parameters
influencing the outcome of the simulation run anethe one side the diffusion coefficients for
species X and Y (these determine how fast theseispwill diffuse) and on the other side the
“dimension” parameter. This parameter is used as a scaling parameter and allows scaling
down the diffusion effect (in formula (1.9) the dimension-parameter can be founy. ahé

last parameter to change in the settings dialdigeistep-size parametdihis parameter influ-

ence how large a step will be taken during eatdgmation. While this parameter does not in-
fluence the pattern that gets created thismpatar is crucial for the performance and stability
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of the simulation-core. If set too low, it willka longer till patterns begin to arise. If set too
high on the other side and an update ofcitrecentrations will no longer be possible.

The visualization application will also save infaation about recent files, window position and
dimension upon closing the program. This way it appear on the same position upon startup as
it was when the application was closed.

Figure 23: Using different thresholds (autonatic(2.49), threshold=3.5, threshold=4.0)
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e o

SimpleCubePlugin PointCloudPlugin

ComboPlugin TexturePlugin

Figure 24: Available visualization plug-ins visualizing Example 3 of the appendix
(transparency disabled)
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5.5 Possible optimization for the simulation-core

This part will describe a possible optimizatiom tbe simulation-core. As previously detailed the
core works in two phases. In the first phase all changes will be calculated. And then in a second
phase these changes will be applied. The memory needed for this process is four times the size of
the reaction-volume multiplied by the size of the data type stored. Thus it would be interesting to
improve this. If the two phases could be combimdd one phase that alone would noticeably im-
prove the time needed for the simulation.
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Figure 25: Update procedure ofthe optimized simulation-core

Figure 25 displays the idea for the two-dimensiarzse. The basic idea is to use an inside-out
concept beginning at the center of the reaction-velufActually since the structure of the reac-
tion-volume is a hyper-torus the starting point does not really matter. This follows from the fact
that all opposite edges are wrapped to eachr.gtheom this start point out surrounding neighbors
are red into memory (level 1). Now the center edleta are computed and with them all elements
of this level (level 0). The algorithm would nowde to read all outer neighbors of level 1 into
the memory (level 2). Once this is completeddalia necessary to compute the elements of level 1
has been red into the memory and the elemeititbevcomputed. This allows clearing all elements
of level 0 from the memory. So the general strueigralways: read level x, read level x+1, com-
pute level x with data provided by level x-1x¢1 (at the starting point only levels x and x+1 are
needed), clear level x-1, read level x+2, compexel x+1 .... This idea is followed until all ele-
ments have been computed.

How about the memory saved by this approach@uikhe memory needddr the concentrations

of species X and Y nothing can be done. Thushexe two times the reaction-volume times the

size of the data structure to begin with, but what about the rate of change? Here the memory
needed is at most three times the outer hull ®f#action-volume. Together this would lead to the
equation:
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Figure 26: Comparison of current simulaion-core vs. the optimized version

Figure 26 displays the memory requirements for both cases. It shows impressively that with this
new method the amount of memory needed ddpstically. Since this new method would com-
bine the steps of calculating a change and intewyatiis expected that the runtime for this new
algorithm is not much higher than for the old method.

5.6 Problems and Limitations

This section will detail encountered problems dgrimplementation. Also limitations of the cur-

rent implementation will be stated. Encountered were problems in the following areas: memory
and runtime problems, problems due to the current implementation of the Systems Biology Work-
bench and problems due to the usage of specific features of Qt.

5.6.1 Complexities of three-dimensional simulation

As already hinted at in the description of thedation-data structure (section 5.1.2) the demands
placed by the three-dimensional simulation arsti@iization of reaction-diffusion systems on con-
temporary desktop-hardware dmemense. Due to the cubic neguof the reaction-volume huge
amounts of memory were needed. For the visusizaven more than for the simulation since the
objects needed for the simulation don’t exceed foues eight byte per volume element, a value
easily beaten by almost any visualization plug-in.
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The approach taken to deal with these challsrage two-fold. On the one side addressing the
memory for the simulation data had to be dtmanually” by allocating the space using “malloc”
and then addressing this memory according to the function:

position( X, Y, 2= Xmax Ymax Z Ymax ¥ Z

Although implemented using the “inline” featurastliunction will need some time for each ac-
cess. Still, without this approach not even tiemevolume-dimensions ufp 300x300x300 would
be possible to simulate.

The second approach taken is to develop two plessisualization modes, the online mode for
fast simulation and visualization of “smalleraction-volume dimensions and the offline mode for
simulation of larger dimensions.

Even then the problem seems still not really &hlet for large reaction-volumes. Mentioning that

a 300x300x300 reaction-volume neeabout 824MB of memory, along with the fact that most
reaction-diffusion system take about 4000-7000 ftina until they display interesting patterns,
should be sufficient to prove the point. For all practical reasons on contemporary desktop-
hardware the largest reaction-volume has timesdimension 200x200x200. See also the figure
detailing the memory needs of the current simulation-core (Figure 26).

A third approach has also been evaluated. leredea was to compress the simulation-data using

the ZLib compression algorithms. The drawback fes #pproach was that the (presumably) large
double arrays had to be converted to character arrays first. The additional time and memory needed
for the compression and decompression made this approach useless.

5.6.2 Using the Systems Biology Workbench

The concept of enhancing the capabilitieshd simulator through the Systems Biology Work-
bench is certainly an interesting one. Especitilly idea of visually designing the reactions had
merit. From the beginning it was expected that the runtime would drop noticeably. The expected
runtime drop was attributed to Jarnac havingnterpret the equations build by JDesigner.

The actual time needed for sample runs defied these expectations. Even for very small reaction-
volumes with a dimension of 50x50x1 needed abosgcond to be computed. To give SBW credit

it was not designed to handle high throughpudath. Forthcoming versions promise possibilities

for better ways of sharing memory across modul#sil then this plug-in should be used with

care only.

5.6.3 Qt multithreading and the QProgressDialog

The basic idea was to use the vigaion plug-ins in a separate thread in order to be prepared for
an eventual failure. For example the visualization plugsimpleCubes " this plug-in supported

the display of each and every volume elemduaiva a certain threshold as cube along with trans-
parency. For the case of larger reaction-volumeswiould lead to enormous amounts of runtime

and memory. Thus the generation of the graphigatesentation of the iterations was moved to a
different thread. Furthermore tl@ProgressDialog  was used. This dialog measured the pro-
gress and provided the user with a progress disphal the possibility to cancel the operation.
Moreover it also promised only to appear in case the execution took longer than a certain configur-
able amount of time. Upon implementation two ¢jsirwere noticeable: First the dialog appeared
over and over again for small réi@an-volumes, each time taking away the focus from the applica-
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tion. Secondly canceling an ongoing visualization proved not to be a good idea, since the applica-
tion tended to get more instable after a thread was cancelled.

Thus the multithreading feature is disabled riow until a better way can be found to cancel an
ongoing visualization. For the time being warninglogs have been implemented for visualization
plug-ins that are known to lead to vdoyg runtimes and excessive memory usage.
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6 Evaluation

This section will first recapitulate the proceedingat thave let to the achieved result (i.e. the ap-
plication-suite for the configuration, simulationdawisualization of simple three-dimensional re-
action-diffusion systems). As a next step it willdgued that the result is indeed an outcome of
the proceedings and finally that the proceediofsw the goals specified in the problem defini-
tion.

The goal to create a reaction-dgfan simulator working in three dimensions involved the follow-
ing three main tasks:

o First of all the reaction-space had to be configuinto this reaction-space elements (species,
membranes and channels) had to be inserted.

e These settings had then in a second &idye processed by a simulator.
e And in a final step the output ofd@lsimulator had to be visualized.

Realizing this threefold-ness the author befmoking at each of the three tasks individually.
Never forgetting that the tasks are not compleistyated and always checking the interactions
between these three main tasks (configurationulsition and visualization). This separation can

be found in every aspect of this thesis analysis, conception and implementation. Now, looking
back, it turns out that this decision opened a way to solve the given problem. With the separation
into the three parts, three applications weneettged which are tied strongly together. Nonethe-
less with this approach it is still possible to easdlglace one part of the chain by a different pro-
gram. For example it would be thinkable to haemfigurations generated by a third party pro-
gram that handles the insertion process more elgga®it a different simulator could be chosen.

With one monolithic application this would nbaive been possible. One advantage of a mono-
lithic application would probably be a stronger gregion of the configuration into the visualiza-

tion part of the program. In the developed set of programs it is possible to change a running simu-
lation via selecting a different configuration file. If on the other side a monolithic application were
built, insertion / moving / deleting of elements wibble possible in one application. Another nice
feature of an integrated application would beeviaw feature that would allow the user to evalu-

ate the configuration. Such a preview feature was not implemented because of the huge amount of
time it would consume in most cases.

Of course each of the three applications still represents a prototype. Thus the next paragraph will
take a closer look at each application to evalttadeprototype. While the graphical user interface
makes the configuration unit rather accessiblatiiit is very hard to position elements exactly
where the user would like them to be. Noticingttin early presentations the author added the
possibility for directly entering all paramete&ill, better input metaphors should be developed

in the future.

The developed prototype for the simulation wmdrks fine. The only negative point noticeable

here is that the optimization method as describesection 5.5 was not yet implemented. This
way only reaction-volumes up to a dimension306Dx300x300 can be simulated. Even then the
amount of data created and written to the haingeds immense. This would amount to up to 800

MB per iteration. These amounts of data make even that size intractable at the moment. For all
practical reasons the dimensions of teaction-volume should naxceed 200x200x200 ele-
ments. The idea of the reaction-plug-ins workedrocely. The only major flaw here is the Jarna-
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cReactionPlugin. Since Jarnac has to be askethéorates of changes for each element a huge
amount of communication is done. This is acawgdio the current SBW communication message
flow. SBW-modules are not allowed to “communé&atiirectly with each other. So each time a
message is to be sent, it is sent first to th&VSBoker and from there to the original recipient.

Still the concept of visually creating reaction networks is an interesting one and was worth pursu-
ing.

The final application to evaluate is the viz@tion unit. The two execution forms online- and
offline visualization worked out as expecteditiWthe possibility to change from one execution
form to the other a high degree of flexibility was achieved. Of course there could be more visuali-
zation types but the plug-in system makes it fedio extend the available library easily. The
only point that did not work out as planned was multithreading idea. As already described in
section 5.6.3 it was not possible to successkdjyarate the image generation from the main GUI
thread. This results in possibly large delays iafr@¢quently in a non-responding application. Un-

til that problem is solved the only solution was to warn the user each time a visualization type is
selected that is known to consume a large part of the available resources. Since a real interactive
playback could not be achieved for larger tesmcvolume dimensions the possibility for the sav-

ing of screenshots was provided. This together with the feature of automatically saving screen-
shots every x iterations helps to create movie files of these visualizations.

These three implemented applications together allow configuring, simulating and visualizing sim-
ple reaction-diffusion systems. They follow closely the steps defined in the conception phase. The
conception phase on the other hand is strongly basetlie analysis section. Together analysis,
conception and implementation solve the problem stated at the beginning. It proved that the im-
plementation achieved a working prototype. ekethe concept is validated through the imple-
mentation.
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7 Summary and Outlook

This section concludes this thesis. In the ®eations, first the work done will be summarized
(recapitulating the individual steps analysis, agption and implementation) before a second sec-
tion will give an outlook of how fls project will be continued.

7.1 Summary

In order to research the formation of sub cellgtanctures and patterns or spatial effects in meta-
bolic processes it is helpful to use simulations of three-dimensional reaction-diffusion systems.

The aim of this thesis was to develop algorithmd data structures for the configuration, simula-

tion and visualization of simple three-dimemsl reaction-diffusion systems. Towards this aim

the thesis began to analyze input metaphors for three-dimensional modeling and the comparison of
different file formats used in biological modeling. This provided the basis for the configuration of
the reaction-space along with the setup of initial concentrations inside this reaction space. A next
step analyzed what reaction-diffusion systems vegralyzed in the past and were applicable to

this case. Here it turned out that even half duwgrafter its initial publishing Alan Turing’s paper

(c.f. [Tur52]) on the chemical basis of morphogenesis contained the most common used reaction-
diffusion equations. In order to be able to suppeer new forms of reaction-diffusion systems a
plug-in system was conceived. This way the tieaepart of these equatiom®uld be substituted

by a different one. The analysis of the viseadion of simulation-data involved a comparison of
different rendering APIs, a study of commonly used volume-visualization algorithms and an
evaluation of volume-visualization libraries. THisought along the idea of applying the plug-in
system for the visualization too. This providedeasy extendable selection of visualization types.

This analysis helped to determine a conceptlwlvas then implemented with the following re-
sult. On the basis of C++, extended by the Qt library for a highly capable windowing system and
by OpenSceneGraph a new high level scene graphtifeke applications have been developed.
The first application, the configuration unit, allows setting up the reaction-volume along with de-
sired features such as initial concentrationsmbranes and channels. Furthermore the type of
simulation to run will be specified using the cagpufiation unit. This condiuration will in a next

step be saved onto hard drive using the file-aar@BML level 2. Choosing that format provided

the unique possibility to further extend the ava#areaction-diffusion systems by visually design-

ing new equations using JDesigner, a program for visually defining reaction networks.

The second implemented application, the simulation unit, allows using the thus generated configu-
rations to simulate the specified reaction-volume. Supported simulation modes implemented are
diffusion, the Brusselator reaction-diffusion scleeamd a simulation mode employing the simula-

tion capabilities of Jarnac. Jarnac is used as SRMfufa that interprets the reaction-equations as
specified in the visually created reaction netwaskng JDesigner. Using this last simulation mode
revealed a performance issue when using SBWhitransfer of large amounts of data.

The third application in this suite of applicatiossthe visualization unit. In order to investigate
the possibility of a three-dimensional visualiaa during course of the simulation two operation
modes were implemented. On the one side thealiigtion application can be used to alternate
between simulation of an iteratiamd its visualization. On the other side the visualization unit will
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“just” display recorded simulation runs. During ceeirof the visualization the user is allowed to
change the type of visualization for a maximumoant of information. Furthermore the user has
been provided with the possibiligf analyzing a dataset by selecting a threshold level that will
determine the iso-surfaces that will be visualiz&ad finally the user will have the possibility to
define a clipping volume. This enables the uséslice” the display in a way that will provide the
demanded information.

The chapter implementation ends with statingossible algorithm for optimizing the simulation-
core. Although the author couldn’t find the timecassary to implement this algorithm in the allot-
ted timeframe for this thesis, it is expectedttthis optimization will greatly reduce the space
needed in memory as well as on the hard drive.

In an evaluation chapter was then detailed, that the result of this thesis, namely the developed pro-
gram suite, does indeed follow the concept whias generated through an analysis of the re-
quirements. Furthermore it showed that the ephavas validated through the implementation,
since the final program suite works cothg@nd solves the problems posed to it.

Summarizing the results of this thesis it can be said that althbisghossible to simulate small to
medium sized three-dimensional reaction-voluares visualizing their results on current desktop-
computers, the demand on the hardware is still one notch to high. Thus a lot of simplifying as-
sumptions had to be made in order to achgmall results. Nonetheless the importance of research
in this field is not to be neglected.

7.2 Outlook

This chapter will detail ideas for the improvementtod created application. The suggestions in-
volve all levels of the application: cagfiration, simulation and visualization.

In research there is a still a high demand for the simulation and visualization of two-dimensional
reaction-diffusion systems (perhaps due to the tfzatt these systems are tractable with currently
available hardware). Although the current appiarasupports the simulation and visualization of
two-dimensional reaction-diffusion systems tinaderlying system will treat it still as a three-
dimensional one (with only one element in thelane). A dedicated 2D mode would speed up
these simulations and visualizations. Moreover it would be much easier to configure such a simu-
lation run, since a dedicated 2D mode wouldvaltpainting” species, membranes and channels on
the surface.

There exist various ways to improve the sintiolacore in order tweduce the demand for mem-

ory needed. In section 5.5 one optimization was@nted which could not be implemented within

the allotted time frame. Implementing this optintiaa would already half the memory needed for

large reaction-diffusion simulations. Other optimizations are thinkable. For example it could be
researched whether swapping mechanisms represent a feasible approach to this problem. Another
possibility would be to research parallel calculatidmifferent slices of the data-set and combin-

ing the results from these runs.

A large field for improvements would be to get rid of some of the assumptions made. Dynamic
substrate changes or different diffusion saterough the reaction-volume would represent only
two possibilities. The way membranes are currently implemented opens many possibilities for
enhancements. The current model of basically blocking any molecules hitting the membrane and
hindering the passage would be true only for very large molecules. Thus it would be interesting to
allow for semi-permeable membs Also it should be possible to provide a different set of reac-
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tion-equations for the membrane surfaces. Finallyoiild be interesting thave the possibility of
“moving” membranes.

In his time at the Keck Gradtgalnstitute the author ported some-core components of SBW from
JAVA to C++ this enabled SBW to require less memory and simplified the installation procedures.
Still the communication between the individual\@Bnodules is quite exhaustive. An improve-
ment here along with the introduction of stdiimemory between SBW modules would greatly
enhance its applicability to various fields. Thvsuld also allow the Jarnac reaction-plug-in to
function with greater speed.

A final large field for improvement is represented by the visualization of the simulation-data. The
prototypic visualization-plug-ins implemented so far should be enhanced further. Highest priority
here would have the integration of an open \igaton library such as vtk or OpenDX. This is
another field that could not be touched in #fletted time-frame. Also applying multiple visuali-
zation plug-ins to one data-set in one display would be helpful. This is currently possible through
actual implement a new visualizai-plug-in that calls the visuahtion-plug-ins to combine. This

is demonstrated by theaCbmboPlugin ” (see also Figure 24 for a visualization employing this
plug-in.). This plug-in combined the marching cube representation and the representation through
rendered points and thus alladvélling the “inside” of the surfaces generated by the marching
cube algorithm with “life”. Having a visual wag combine these plug-ins would be helpful.
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Appendix

A - Program CD

This section will describe the program CD accompanying this thesis. The CD contains the win-
dows version for the three programs configuratimit, simulation unit and visualization unit
along with the PDF version of this thesis, developer documentation and of course the source code
for this project. As soon as the CD is placed thioCD-ROM drive the dialog displayed in Figure

27 should be opened. This dialdpws installing the created re&m-diffusion simulator and the
Systems Biology Workbench. The visualizationtamd the configuration unit are also accessible
directly from the CD-ROM. This allows for a qki assessment of the created applications. To
effectively demonstrate the different visualipatitypes it is only necessary to start the visualiza-
tion unit. There choosing “continu@mulation” and selecting theitifo " from one of the dis-
played directories will result in a first visualization. From there all features of the program are
accessible (i.e. changing the visualization-fygigping, navigating through the scene ...).

i [Non-Commercial] - Autorun @g

L install Reaction Diffusion Simulatar d

[install Systems Biology Workbench ]

’ install Acrobat Reader ]

’ start visualization unit from CD ]

’ start configuration unit from CD ]

[ explore CD |

’ view thesis ]

’ view developer documentation ]

() 2004 Frank Bergmann [ it ]

Figure 27: Autorun Dialog of the included CD-ROM

Along with the programs created the program CD also contains developer documentation created
using doxygen. Furthermore a PDF version of tesithwill be available. Finally the program CD
comes along with screenshots created throughout the developing process and some video files that
show a various simulation runs.
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B - Examples

This section will demonstrate how to create a igurhtion using the configuration unit and how
to visualize these configurations applying ttmline mode of the visualization unit.

Configuration

Here a simple configuration will be createthe reaction-volume will have the dimensions
50x50x50. Furthermore a couple of elements Wil inserted to demotmate how membranes,
channels and species work together. As simarathode “diffusion only” will be selected. This
will demonstrate effectively how the membranes influence the diffusion process of the species.

A second configuration to create will demongrgte 2D capabilities of the developed suite of
applications. Therefore the reaction-volume wilVéahe dimensions 100x100x1. Here only some
molecules will be inserted. As simulation mode the Brusselator reaction-scheme will be selected.
This will allow demonstrating the patterns that will be generated using the reaction-diffusion simu-
lator.

In order to create a configuration the following two steps are necessary. First a new reaction-
volume has to be created. TherefoFde\New” is selected form the File-menu of the “configura-

tion unit”. In the now appearing dialog the dimems are to be entered and a simulation mode to

be chosen. The second step is to insert the elerttettshould be in the scene. Therefore the indi-
vidual insertion tools are to be selected from trseitimenu. Once the insert mode is selected two
possibilities for the insertion exist. Either the user enters the data (paaitibconcentration for
species, position and dimension for membranes and channels) in the now visible property pane, or
the user uses the mouse to position the eleamhcommits the position by pressing space.

[Non-Commercial] - new configuration @@

pleaze zet up the grd size for the simulation

x dimension 80

y dimension h0

z dimension E-I]'l

reaction-diffusion . -
T __Bn.lsselatu:urHeau:tanPlugln w

cancdl || oKk |

Figure 28: The file new dialog of the configuration unit

Figure 28 displays theFle\New” dialog. For the first example the dimensions should be set to
50x50x50 as displayed above. Under “reaction-diffusion system to use:ZéneReaction-

Plugin " should be selected ZeroReactionPlugin " hints at the fact that the reactions in

the Turing system (c.f. section 4.3.1.1) are disabled (set to zero). This leads to a simulation of dif-
fusion. After committing this selection witBK the reaction-volume will be displayed as wire-
frame-cube.



APPENDIX 85

The next task is to insert some elements inoréaction-volume. In order to demonstrate the dif-
fusion plug-in one membrane will be inserted rtearcenter of the reaction-volume. In the middle
of the reaction-volume a channel will be placechally several elements of species X will be in-
serted.

e To insert the membrane, the membrane inserbohhas to be selected. It is to be found un-
der ‘Insert\Membrane” or by pressing the key “1”. To actually insert the membrane the po-
sition 25,25,25 and dimension 2@xA will be entered in the property pane that appeared af-
ter activating the insert mode. After committing by pressingett” on the property pane the
membrane will be inserted.

e The next step is the insertion of the channel. The channel insertion tool will be activated by
selecting Tnsert\Channel” or pressing “2” on the keyboard. In the changed property pane
the position will be changed 120,20,25 and the dimensido 4x4x3. Again these changes
will be committed by clicking thsert”.

¢ Finally some molecules are to be entered. This is done by selettisgrt{Molecules of
Species X’ or pressing “x” on the keyboard. Usinlge changed property pane the following
four molecules will be inserted:

position: 25,25,15, concentration: 6.0

position: 26,25,15, concentration: 6.0

o O O

position: 25,26,15, concentration: 6.0
0 position: 26,26,15, concentration: 6.0

With these elements a first simple configuration is complete. What is left is to save the configura-
tion. Therefore File\Save” is chosen and the configuration is saved under:
“50x50x50_Diffusion.xml ". Figure 29 displays the configuration of this first example.

[Mon-Commercial] - 50x50x50_Diffusion.xml - cenfiguration unit

File Insert telp
e O MEXY

rzactior plugin:

ZemReacionPlugin v

plugin parametsrs:

“nct eupported:

|

x By - PR |
- _Ll

artinn

& rotaton (O translation

l eset

J —_
|I concentration: j 517

movs the insert tool to & position and hit <5PACC= to irsert none

Figure 29: The configuration created for the first example.

A second example is created in the same way. In order to create a two-dimensional reaction space
the dimension of the reaction-volume will gazen as 100x100x1 in Figure 28. The simulation
mode will be set toBrusselatorReactionPlugin ”. Only four elements will be needed for
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this example. Elements of species X will bedried in the center of the reaction-volume on the
positions 50,50,1; 51,50,1; 50,51,1 and 51,51,1. Edeiment is inserted with a concentration of
6.0. This configuration will be saved aBHJ0x100x1-Brusselator.xml

[Non-Commercial] - 100x100x1_Rrusselator_xml - configuration imit g@§|

Ele Insert Help
el E@MEXY

1eaulion plugin.

BrusselgtorReactionPlugin =~ |+
plugin parameters:

A-2.5; B-524;
||

x =y =<0z <18

action:
(3 rotation () translation

I concentration:

use FilelNew to areate a configuration or File\Open to open an existing one none

Figure 30: The configuration of thesecond example (2D Brusselator)

Visualization

This section will demonstrate how to visualize thafigurations created in the last section. Since

the first configuration was created with the thiouipn mind to effectively present how membranes
influence the spreading out of the inserted species, an iso-surface representation of the dataset will
prove the point easiest. Thus the marctdnge visualization will be selected.

The second created configuration was a two-dinogagione. Thus the best plug-in to demonstrate
this mode will be the “texture visualization plug=i This example also demonstrates the feature to
set different visualization step sizes. Thatwaicskipping several thousand image-generations and
will display the expected patterns soon.

The last simulation run here is of an alteredfiguration of the first example. The only changes
made here was to select a different simulation mode, namely the Brusselator simulation mode.
This demonstrates the three-dimensional ciiiab visualizing reaction-diffusion schemes.

In order to perform an online visualization of theated examples, the first step is to start the ap-
plication “visualization unit”. The next step is the selection BfefRun Simulation” and the
opening of the created configurations, 50%50x50_Diffusion.xml
“100x100x1_Brusselator.xml " and “50x50x50_Brusselator.xml ", in the appear-

ing file-open-dialog. After selecting the configuratito run, an initial iteration will be computed.
And displayed with a default-visualization plug-in (the marching cube visualization) and enabled
transparencies. Transparencies are here weigltisatding to an elements concentration ranging
from 0.0 to 6.0.

In order to visualize the first configuration5(x50x50_Diffusion.xml”) transparencies were dis-
abled. The reason is the selected simulation mBitee only diffusion is simulated the concentra-
tions throughout the reaction-volume will be rathew, and through the vighted transparencies
not visible. Transparencies are deactivated by pressing “t” or deactiv&@eigngs\enable
transparency”.
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Figure 31 shows some iterations of the simulation run, of the first example. These screenshots
were made using the feature to save a screenshgh time a new iteration is displayed. This fea-
ture is enabled through pressing “A” or selectir@ttings\enable screenshot generation”.

The pictures show the expanding of the concentration through the reaction-volume. When this
“wave” “hits” the membrane, it cannot go through. It expands along the surface of the membrane
until it reaches the end of the membrane, or ¢hannel. Then it continues its spreading out
through the reaction-volume.

15t jteration 420 jteration

845t jteration 1385t jteration

1835 jteration 2402 jteration

Figure 31: Marching cube visualization of the configuration created in the first example
(50x50x50_Diffusion.xml)
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Figure 32 displays the visualization of example tw&0(x100x1_Brusselator.xml ").

Here the texture visualization was chosen. ist 5700 iterations one can see that the concentra-
tions through the reaction-volume oscillate from low to high concentrations. Then slowly patterns
begin to form. These pictures demonstrate the chosen nature of the reaction-volume. First it is no-
ticeable that concentric patterns begin to famtil the “rings” reach the boundaries of the reac-
tion-volume. Since the edges are wrapped around @heh (i.e. the reaction-volume represents a
torus) the concentration-“waves” influence each other as they enter the reaction-volume from the
other side.

5790t jteration 6690t iteration

25440 iteration 51240t iteration
Figure 32: Texture visualization of example two (100x100x1_Brusselator.xml)

Finally Figure 33 displays the visualization ofleanged example one. As already mentioned here
the simulation mode was changed froAefoReactionPlugin " to “BrusselatorReac-
tionPlugin  ”. As visualization plug-in the ComboPlugin ” was chosen. This visualization
plug-in uses the marching cube visualizationcteate an iso-surface according to the desired
threshold. The inside of the thus created objefillésl with points, repesenting the concentrations
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at the data-points. Again it takes about 6000 itemationtil the first patterns begin to arise. This
series of pictures also display how transparency is used to highlight higher concentrations.

6300t jteration 7500t iteration

8700t jteration 9600t iteration

10200t iteration 12654t iteration

Figure 33: Visualization of exampé three through a combination ofthe marching cube visualization
and the point-cloud visualization (50x50x50_Brusselator.xml)
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C - Schema Definition of SBML Annotations

Here the schema definitions for the annotations used in order to be able to save the configuration
data in an SBML document. Three elements were used:

e rdb:dimensions
e rdb:reaction-plug-in and
e rdb:element

With these definitions all necessary data could be saved.

<?xml version ="1.0" encoding ="utf-8" ?>
<! -- schema definition of sbml annotations used in order
to save configuration data generated as part of the

reaction-diffusion simulator -- >
<xs:schema targetNamespace ="http://www.sys-bio.org/sbml"
elementFormDefault ~ ="qualified"
attributeFormDefault ="unqualified"

xmins : rdb ="http://www.sys-bio.org/sbml"
xmins : xs ="http://www.w3.0rg/2001/XMLSchema">

<xs:element  name="dimensions">
<xs:complexType >
<xs:.sequence >

<xs:element name="x" type ="xs:integer" />
<xs:element name="y" type ="xs:integer" />
<xs:element name="z" type ="xs:integer" />

</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:element  name="reaction-plugin">
<xs:complexType >
<xs:sequence >
<xs:element name="name" type ="xs:string" />
<xs:element  name="config" type ="xs:string" />
</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:element  name="element">
<xs:complexType >
<xs:sequence >

<xs:element name="x" type ="xs:integer" />
<xs:element name="y" type ="xs:integer" />
<xs:element name="z" type ="xs:integer" />
<xs:element = name="concentration" type ="xs:double"

minOccurs ="0" />

<xs:element name="width" type ="xs:integer"
minOccurs ="0" />

<xs:element  name="height" type ="xs:integer"
minOccurs ="0" />

<xs:element  name="depth" type ="xs:integer"
minOccurs ="0" />

</ xs:sequence >
</ xs:complexType >
</ xs:element >
</ xs:schema >
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