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Zusammenfassung 

Reaktionsdiffusionssysteme wurden in der Vergangenheit immer wieder mit großem Interesse 
untersucht. Dabei betrachtete man meist die folgenden zwei Themengebiete: Einerseits Reaktions-
diffusionssysteme und ihre Rolle bei der Morphogenese, der Entwicklung von lebenden Zellen und 
andererseits Reaktionsdiffusionssysteme im Hinblick auf Muster, die durch sie begründet werden. 
Zu diesen gehören einfache Punkt- und Streifenmuster bis hin zu komplexen Mustern, wie man sie 
an Tierfellen sehen kann. Bei diesen Untersuchungen beschränkte man sich meist auf die ein- oder 
zweidimensionalen Varianten dieser Systeme.  

Ziel dieser Arbeit ist das Entwerfen einer Anwendung zum Konfigurieren, Simulieren und Visuali-
sieren von einfachen dreidimensionalen Reaktionsdiffusionssystemen. Eine solche Anwendung ist 
hilfreich zur Untersuchung von räumlichen Effekten in metabolischen Prozessen. Weiterhin ist zu 
hoffen, durch sie die Entstehung von dreidimensionalen Mustern verfolgen und erklären zu kön-
nen.  

Um dieses Ziel zu erreichen, wurde die folgende Vorgangsweise gewählt. Zunächst wurde unter-
sucht welche Vorarbeit auf den einzelnen Teilgebieten schon geleistet wurde. Die Konfiguration 
des dreidimensionalen Reaktionsvolumens gleicht dabei am ehesten einer Modellierungsapplikati-
on, denn ein Großteil der Konfigurierungsarbeit ist das Platzieren von Elementen (Molekühlkon-
zentrationen, Kanälen oder Membranen) in das Reaktionsvolumen. Um geeignete Methoden zur 
Eingabe zu finden, wurden gebräuchliche Modellierungsapplikationen untersucht, um herauszu-
finden, wie diese die Aufgabe lösen. Ein weiterer Teil der Analyse beschäftigte sich dann mit der 
Suche nach einem geeigneten Dateiformat für die Speicherung der Konfigurationsdaten. Aufgrund 
des Zieles, ein existierendes Dateiformat zu verwenden, um unter Umständen auch Anwendungen 
von Drittanbietern nutzen zu können, kamen die XML Dialekte CellML und SBML in Frage. 
Durch die weite Verbreitung von SBML und eine nachvollziehbarere Struktur wurde letztendlich 
SBML gewählt. Daraufhin wurde analysiert, welche Reaktionsdiffusionssysteme in der Vergan-
genheit untersucht worden sind. Ein integraler Bestandteil des Simulationskerns ist eine Integrier-
einheit. Daher beschäftigte sich die Analyse auch mit verschiedenen Methoden zum Integrieren. 
Schließlich wurden häufig genutzte Volumenvisualisierungsalgorithmen und –bibliotheken unter-
sucht.  

Die durch die Analyse gewonnenen Vorüberlegungen wurden dann in einer Konzeptionsphase 
weitergeführt. Als Kernpunkt stand hier die Erweiterbarkeit im Vordergrund. Da sowohl die zu 
untersuchenden Reaktionsdiffusionssysteme einfach abgeändert werden sollten, als auch die unter-
schiedliche Darstellung der Simulationsdaten unterstützt werden sollte, wurde ein Pluginsystem 
konzipiert. Weiterhin wurde in dieser Phase beschlossen, das Gesamtprojekt in die Teile Konfigu-
ration, Simulation und Visualisierung zu unterteilen. Die Idee hierbei war, der logischen Struktur 
zu folgen, im ersten Schritt eine Konfiguration zu erstellen, diese in einem zweiten Schritt zu si-
mulieren und schließlich in einem dritten Schritt die Simulationsdaten anzuzeigen.  
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Figure 1: Visualisierung einer Brusselator Simulation (50x50x50) 

Auf der Basis von C++, erweitert um das Windowing Toolkit Qt und die Scenengraph-API O-
penSceneGraph, ist daraufhin eine prototypische Implementierung in drei Teilen entstanden. Für 
die Konfiguration wurde die Anwendung „configuration unit“ erstellt. Diese Applikation erlaubt 
das Festlegen aller Parameter, die für die Simulation benötigt werden. Dazu gehören das Festlegen 
der Größe des Reaktionsvolumens, das Auswählen des zu simulierenden Reaktionsdiffusionssys-
tems und das Einfügen von verschiedenen Elementen (Molekühlkonzentrationen, Kanälen und 
Membranen) in das Reaktionsvolumen. Aufgrund des ausgewählten Dateiformates (SBML level 2) 
ist es möglich, diese Konfiguration mit dem Programm JDesigner nachträglich noch zu erweitern. 
JDesigner erlaubt das visuelle Festlegen von Reaktionsnetzwerken.  

Das zweite Programm, dass umgesetzt wurde, ist die Anwendung „simulation unit“. Dieses be-
rechnet aufgrund der Konfiguration solange neue Iterationen, bis der Benutzer das Berechnen ab-
bricht. Dabei stehen in der prototypischen Form drei Simulationsmodi zur Verfügung: zum einen 
das Simulieren einfacher Diffusion, zum anderen das Simulieren des Brusselator Reaktions-
diffusionssystem (ein einfaches Reaktionsdiffusionssystem bestehend aus Diffusion und vier Re-
aktionsgleichungen) und schließlich ein Simulationsmodus, der die mittels JDesigner veränderten 
Konfigurationen durch die Systems Biology Workbench (SBW) an das Programm Jarnac zum 
Berechnen weiterleitet.  

Die letzte der drei implementierten Anwendungen (“visualization unit“) hat die Aufgabe der Visu-
alisierung der Simulationsergebnisse. Dafür stehen zwei Ausführungsmodi zur Verfügung. Zum 
einen ist es möglich, mit diesem Programm die Simulationsergebnisse aus einem vorherigen Lauf 
des Simulationsprogramms wiederzugeben (dieser Modus wird in dieser Arbeit auch „offline“ 
Visualisierung genannt, da die Simulation von der Visualisierung entkoppelt ist). Zum anderen ist 
es auch möglich, die Visualisierung im „online“ Modus auszuführen. In diesem Fall wird eine 
Konfiguration verwendet, um damit Simulation und Visualisierung alternierend auszuführen. Bei-
de Ausführungsmodi haben ihre Vor- und Nachteile. Die „Offline“ Visualisierung ist recht schnell, 
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benötigt allerdings recht viel verfügbaren Speicherplatz auf der Festplatte. Dadurch, dass die ein-
zelnen Iterationen auf Festplatte abgespeichert werden, ist es allerdings auch möglich, diese öfters 
und in beliebiger Reihenfolge wiederzugeben. Beim „online“ Modus werden im Allgemeinen kei-
ne Daten auf die Festplatte geschrieben, demnach ist es nicht möglich zu einer vorherigen Iteration 
zurückzukehren (es sei denn man beginnt erneut mit der Simulation durch Neuinitialisieren mit der 
ursprünglichen Konfiguration). Beiden Ausführungsmodi gemein ist, dass der Benutzer die Art der 
Visualisierung frei wählen kann. Darüber hinaus können die gewünschten Informationen noch 
genauer spezifiziert werden. Durch die Definition von Clipvolumen (diese erlauben ein „Zurecht-
schneiden“ der Anzeige, so dass auch innere Strukturen angezeigt werden können) kann die An-
zeige vereinfacht werden und bestimmte Gebiete genauer beobachtet werden. Weiterhin ermög-
licht ein Ändern des Schwellenwertes, für den zum Beispiel die Oberflächen generiert werden, das 
Hervorheben anderer Strukturen im Reaktionsvolumen. Normalerweise wird dieser Schwellenwert 
automatisch durch den Simulationskern „geschätzt“, basierend auf dem Minimum-, Maximum- 
und Mittelwert der aktuellen Iteration. Die Abbildung auf Seite 71 demonstriert wie die Verände-
rung des Schwellenwertes die Ausgabe beeinflusst.  

 

Figure 2: Visualisierung einer Brusselator Simulation (100x100x100) 

Die Abbildungen dieses Abschnittes demonstrieren die Visualisierungsmöglichkeiten der Visuali-
sierungsapplikation.  

Schlüsselwörter: Reaktions-Diffusions-Systeme, Simulation, Volumenvisualisierung 
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Abstract 

Reaction-diffusion systems have been widely studied through the years. They are suspected of 
being a vital part in the creation of life. Also reaction-diffusion processes give rise to the formation 
of complex patterns ranging from spots to stripes to labyrinth like constructs. Since skin patterns 
on animals (like seen on cheetahs, zebras or tropical fish) can be recreated using reaction-diffusion 
simulations, the formation of these skin patterns is alleged to reaction-diffusion processes.  

The research of reaction-diffusion systems was mostly restricted to their one- and two-dimensional 
variants. The aim of this thesis is to extend that research to the three-dimensional case. Therefore 
the creation of a program suite for the configuration, simulation and visualization of three-
dimensional reaction-diffusion systems will be described. In order to support a wide range of reac-
tion-diffusion systems a plug-in system will be described that allows providing new reaction-
equations. Employing the Systems Biology Workbench it will also be possible to visually design 
reaction networks and simulating them. A similar plug-in system will be used for the visualization 
of three-dimensional reaction-diffusion simulations. This will allow extending the existing visuali-
zation modes in the near future. The prototypic implementation of the visualization will contain 
standard volume-visualization algorithms presenting the simulation data through voxel-sets, gener-
ated iso-surfaces or textures.  

Keywords: reaction-diffusion systems, simulation, volume-visualization 
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1 Introduction 

1.1 Motivation 

Reaction-diffusion systems have been studied since the invention of the first digital computers. In 
the 1950s Alan Turing proposed that reaction-diffusion processes might be responsible for 
morphogenesis (i.e. the evolutionary development of the structure of an organism or part of an 
organism). He and many other researchers gave reaction-diffusion systems and the possibility of 
creating patterns using reaction-diffusion systems quite some thought. Most of the work in this 
area has been concerned with two-dimensional systems.  

The range of patterns attributed to reaction-diffusion systems range from spots, stripes, spirals to 
labyrinth-like constructs to patterns as seen on animal skins. This thesis will try and show how 
these patterns will behave in the three-dimensional case. Possible benefits from this work might be 
information about the way these patterns form.  

The mathematical principles will probably extend rather easily from the one- and two-dimensional 
case. Challenges will probably arise through the volume-visualization.  

1.2 Problem 

This section will state the problem that is to be solved in this thesis. The process of formulating 
this problem was done in close cooperation with the authors advisors Dipl.-Wirtsch.-Inform. 
Daniel F. Abawi and Dipl.-Biol. Jens Barthelmes. It was also acknowledged by Prof. Herbert 
Sauro of the Keck Graduate Institute.  

The title for this thesis will be:  

Three-Dimensional Configuration, Simulation and Visualization of Simple Biochemical Re-
action-Diffusion Systems 

The thesis is to be placed in the following biological background:  

In biological systems, molecules of different species diffuse within the reaction compart-
ments and interact with each other, ultimately giving rise to such complex structures like 
living cells. In order to investigate the formation of sub cellular structures and patterns (e.g. 
signal transduction) or spatial effects in metabolic processes, it would be helpful to use 
simulations of such reaction-diffusion systems. Pattern formation has been extensively stud-
ied in two dimensions. However, the extension to three-dimensional reaction-diffusion sys-
tems poses some challenges to the visualization of the processes being simulated. 

This background is met by the following definition for the scope of this thesis: The aim of this 
thesis is the specification and development of algorithms and methods for the three-dimensional 
configuration, simulation and visualization of biochemical reaction-diffusion systems consisting of 
a small number of molecules and reactions. After an initial review of existing literature about 
2D/3D reaction-diffusion systems, a 3D simulation algorithm (PDE solver), based on an existing 
2D-simulation algorithm for reaction-diffusion systems written by Prof. Herbert Sauro, has to be 
developed. In a succeeding step, this algorithm has to be optimized for high performance. A proto-
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typic 3D configuration tool for the initial state of the system has to be developed. This basic tool 
should enable the user to define and store the location of molecules, membranes and channels 
within the reaction space of user-defined size. A suitable data structure has to be defined for the 
representation of the reaction space. The main focus of this thesis is the specification and proto-
typic implementation of a suitable reaction space visualization component for the display of the 
simulation results. In particular, the possibility of 3D visualization during course of the simulation 
has to be investigated. During the development phase, the quality and usability of the visualiza-
tions has to be evaluated in user tests. The simulation, configuration and visualization prototypes 
should be compliant with the Systems Biology Workbench to ensure compatibility with software 
from other authors. The thesis is carried out in close cooperation with Prof. Herbert Sauro at the 
Keck Graduate Institute, Claremont, CA, USA. Due to this international cooperation the thesis will 
be written in English.  

1.3 Structure of this thesis 

This section will detail how the chapters will be structured. The last part will then take a glimpse 
into the threefold-ness of the project. 

The first chapter is meant as an introductory chapter. It begins with a motivational part, continues 
with stating the problem of the project and finally ends in this explanation of the structure of this 
thesis. Chapter two will explain the main terms for the thesis. It will shortly give explanations / 
definitions for reaction-diffusion, volume-visualization and the Systems Biology Workbench. With 
these definitions it will be easy to follow what this thesis is about. In chapter three there will be the 
analysis of work previously done in this field. Since three-dimensional reaction-diffusion simula-
tors are hard to find the chapter will be divided into a part for the configuration, the simulation and 
finally the visualization of three-dimensional reaction-diffusion systems. Chapter four then will 
contain the conception of the thesis. It will, again be separated into the three parts (configuration, 
simulation and visualization), detail the concepts for realizing the project. The fifth chapter will 
talk about the implementation side of this project. It will explain the architecture of the software 
system. Also an idea for an optimization of the simulation-core will be given. There will be a sec-
tion on problems that were encountered and solved. The chapter ends with a section on limitations 
of the system. In Chapter six an evaluation can be found. It will ascertain whether the introduced 
concepts were the right concept to meet the problem defined here. After that chapter seven will 
contain a final summary of the project along with an outlook of how the project might be contin-
ued in the next future. Finally an appendix section was added that contains more information about 
the included program CD, some examples, the schema definitions used and the bibliography.  

Perhaps here is the right place to introduce the idea of the threefold-ness of this project. In order to 
obtain three-dimensional visualizations of reaction-diffusion systems the following tasks have to 
be done. First of all, before a simulation can take place, a configuration has to be created that de-
tails how the simulation is supposed to be running and what it should simulate. Secondly, before 
any data can be visualized there have to be some sort of simulation results. This leads ultimately to 
the three parts: configuration, simulation and visualization. The whole project then exists though 
following these three parts beginning with configuration, and then simulation alternated with visu-
alization.  
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2 Terminology 

This first section will introduce the central terms for this project. These explanations will by no 
means be exhaustive and so references will be given and it will be referred to later chapters. First 
there will be a short description of the reaction-diffusion process. Next then there will be a descrip-
tion and categorization of volume-visualization. And as a last major point in this section the Sys-
tem Biology Workbench (SBW), and the file format SBML and its role in SBW will be intro-
duced. 

2.1 Reaction-Diffusion-Systems 

Reaction-diffusion systems have been widely studied throughout the years. Since the aim of this 
thesis is the configuration, simulation and visualization of three-dimensional reaction-diffusion 
systems the first thing to do is to define what a reaction-diffusion system is.  

As defined in [Mur01] wherever there is an assemblage of elements (Here elements could stand for 
cells, bacteria, chemicals …) each element will move around in a random way (also known as 
Brownian motion).  As a result of the elements random motion the elements spread out. If this 
individual random motion results in a regular motion of the group that regular motion is called 
diffusion. Though there might be interaction between the elements in which case the overall 
movement is not simple diffusion. It is very hard to derive the overall movement from knowledge 
of the individual elements movements. Instead a model of the global behavior is derived by look-
ing at element density or concentration.  

In other words reaction-diffusion is a process where two or more elements diffuse over a surface 
(or volume in the three-dimensional case) and react with one another to produce stable patterns. 
Thereby a variety of spot and stripe patterns can be produced. In nature these patterns can be seen 
on skin patterns of various animals like zebras, leopards and such. This definition was derived 
from [Tur92].  

Since reaction-diffusion systems pose the starting point for many researchers there is no shortage 
of references. The author found [Mur01], [Tur52], [Tur91] and [Har93] most insightful. In this 
thesis reaction-diffusion systems will be further analyzed in section 3.3.1 and 4.3.1.  

2.2 Volume-Visualization 

The visualization of data preserving three-dimensional spatial structures is called volume-
visualization. Here images are created from scalar or vector datasets defined on higher dimensional 
grids i.e. a multidimensional dataset is projected onto the image plane. A good general introduc-
tion can be found in [Fol90], [Enc97] and [Owe99]. Volume-visualization is commonly used in 
medical environments (computer-aided tomography (CT), nuclear magnetic resonance (NMR), 
single photon emission computed tomography (SPECT)) or in the visualization of meteorological 
data. Volume-visualization is still a task that requires tremendous resources from the graphics 
hardware. Thus specialized hardware or even clusters are employed. Due to the rapid development 
of hardware in the PC sector slowly these two areas begin to merge. See also [Eng00].  
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In the case of visualizing three-dimensional reaction-diffusion simulations the demand on the 
hardware is an order higher than for regular visualization of volume data. The reason for this is, 
that each iteration of the simulation will result in a new dataset. Thus the kind of volume data pre-
sent is animated volume data. [Gut01] presents a way to use three-dimensional wavelet transforms 
and motion compensation techniques to achieve interactive frame-rates visualizing animated vol-
ume data on a single PC.  

Volume-visualization algorithms are mainly divided into direct-volume-rendering, interactive 
methods and surface-fitting algorithms. For an analysis of commonly used algorithms see section 
3.4.2 and [Elv92]. 

2.3 Systems Biology Workbench (SBW) 

The Systems Biology Workbench (SBW) was developed with the goal to create a software frame-
work that allows arbitrary components to communicate with each other. The components should 
not be restricted to any particular programming language or operating system.  
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Figure 3: SBW message flow 

“Figure 3: SBW message flow” displays the normal message flow through the SBW Framework. 
The core of SBW is the SBW broker. As soon as the first SBW module is started on a client ma-
chine the broker is started along with it. After that the full functionality of all registered / running 
modules is available to the started module. Access to remote modules is also possible.  

Enabling a component for use in the SBW framework is fairly easy done with minimal changes to 
the existing program code. This is possible through binding libraries which exist for a variety of 
programming languages including C, C++, Delphi, JAVA, Python, Perl and Matlab. Once the ap-
plication component is SBW-enabled it has instant access to a variety of new functionality. 

Available SBW-modules include simulation-, modeling- and optimization-modules. These can be 
easily accessed via the binding libraries. (They can be queried either by name or by category.). A 
full list of currently available modules can be found at: http://www.sbw-sbml.org/.  

http://www.sbw-sbml.org/
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SBW-modules have adopted the Systems Biology Markup Language (SBML) as their native file 
format for saving model information. An example for the seamless integration of features from one 
application into another application using SBML can be seen on the example of JDesigner and 
Jarnac. “JDesigner is a visual tool for the layout of reaction networks, including metabolic, signal 
transduction and gene regular networks. …” (JDesigner Help file version 1.91c). Jarnac is a pro-
gramming language for numerical analysis. It has special capabilities for analyzing biological 
models which are usually entered in script form. An alternative is to input the model to analyze via 
SBW. Since JDesigner contains no simulation engine, it can pass the model to Jarnac which in turn 
simulates the model and returns the data. These data will then be displayed via JDesigner. This 
workflow is displayed in Figure 4.   

 

Figure 4: JDesigner using Jarnac to simulate / visualize a Lorenz attractor (Herbert Sauro) 

For more information regarding SBML see also chapter 3.2.2.2.    
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3 Analysis 

This chapter will discuss previous work done in the field of reaction-diffusion systems, simulation 
and visualization. This will help to create a better understanding towards the individual tasks that 
have to be completed in order configure, simulate and visualize simple three-dimensional reaction-
diffusion systems. The next section will detail the structure for this chapter.   

3.1 Threefold-ness: Configuration, Simulation and 

Visualization  

This chapter and the following two are structured around the three topics, configuration, simula-
tion and visualization.  

The section Configuration will analyze common tasks such as inserting an element into a three-
dimensional scene, a task very common to modeling applications. In addition, file formats are dis-
cussed particular with regard to saving configuration data. 

Under the heading of Simulation, previous work on reaction-diffusion systems will be discussed, 
including methods that are available to solve the reaction-diffusion equations, in particular the 
Euler and Runge-Kutta methods.  

The section titled Visualization will first take a closer look at available rendering APIs.  A second 
step then takes a look at available volume-visualization libraries. And finally commonly used 
methods for volume-visualization will be presented.  

A final section will wrap up the whole chapter and look at the project as a whole.  

3.2 Configuration 

The configuration unit will perform mainly three tasks. The first task is to guide the user through 
the process of specifying the required parameters for the simulation (e.g. dimension of the reac-
tion-volume, the parameters for the reaction scheme to use). A second task is the insertion of spe-
cies, membranes and channels into the reaction-volume and finally the serialization of the configu-
ration to an external file.  

The analysis for the configuration unit will focus on two things. A first part will discuss how 
common modeling applications handle the task of inserting elements into a three-dimensional 
space. Thus a comparison of common input metaphors will help to adopt a “natural” input meta-
phor for this case.  

A final part will analyze the serialization of the configuration. It will focus on the comparison of a 
proprietary file format versus the use of a common exchangeable file format.   
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3.2.1 Input metaphors 

This section takes a closer look how well known modeling applications such as Maya5 or 3ds max6 
and Rhinoceros7 treat the tasks of inserting objects into a three-dimensional environment. This will 
help to provide a solid basis for the configuration of the reaction-volume in this case. The analysis 
will include the most common modeling operations: 

• Insertion of an object – as an example a box was inserted with each of the three programs 
once into the origin of the scene, and once onto a specific position.  

• Changing of parameters – here the previously inserted box was moved around, or the di-
mensions were changed.  

• Deleting of an object – a final task to simply delete the object.  

The next three subchapters will explain how each application performed the three tasks. In a com-
parison-section afterwards will be compiled what common features were and these will be set as 
goals.   

3.2.1.1 3ds max 6 

The above specified operations have been tested with a streaming trial version of 3ds max version 
6. 

Inserting an element with 3ds max 6 works the following way; first the user selects the kind of 
object to create from an object pane. After selecting the element (here a box) a property pane ap-
pears that allows a user to directly specify the values. Alternatively 3ds max 6 uses a three point 
metaphor, of first selecting two diagonal points on the base surface and then selecting the height.  

Modifying the parameters of the box can be done either by changing the property-values in the 
property pane, or by using move and scale tools.  

Deleting works intuitively by pressing delete on a selected object. A script language can also be 
used to perform all the desired operations.  

3.2.1.2 Maya 5 PLE 

The operations have been tested on the Maya 5.0 Personal Learning Edition available from the 
Alias website.  

Creating primitive objects with Maya is possible in the following two ways. First of all, one can 
simply select “Create Cube” which will instantly place a box into the origin of the current scene. 
There it can be modified either through scale or move tools, or via input in a parameter pane. The 
other possibility is to select a box item displayed directly behind the “Create Cube” menu. If that 
one is selected an advanced property panel pops up and allows a user to enter all parameters for the 
cube.  

The box is modified as already mentioned with move or scale tools or through changing parame-
ters in a property pane.  

Deleting an element works by selecting an Object (again via mouse input or menu-command) and 
pressing “Delete” (or selecting the menu command “File\Delete”).  

                                                 
5 Maya is a registered trademark of the Alias Systems Corp. 
6 3ds max is a registered trademark of the Autodesk Inc.  
7 Rhinoceros is a registered trademark of Robert McNeel & Assoc.  
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For all options there is also a rich scripting language which makes it possible to write custom 
scripts that simplify any tasks the user might have.   

3.2.1.3 Rhinoceros 

All operations were tested on the evaluation version of Rhinoceros version 3.0 released on Nov. 
26th 2003.  

For inserting boxes Rhinoceros provides three insertion modes. Method one defines the base sur-
face through specifying two diagonal corners and the height through mouse movement. Method 
two specifies first the center of the base surface then allows defining the dimensions of the base 
surface through mouse movement, and finally the height is defined again through mouse move-
ment. The last method allows specifying the base surface through three points and finally the 
height through mouse movement. Alternatively Rhinoceros allows users to specify each point 
through an input console.  

Modifying the parameters of the box for example through scaling or moving follows the same 
strategy. Either the corresponding action is selected from toolbar or menu, and then specified 
through mouse input, or console input achieves the same result.  

Consequently the delete action is executed by selecting the desired object and pressing “delete” or 
through selection and deletion of the object using the console.  

3.2.1.4 Comparison 

After seeing how commonly used applications handle the simple task of inserting and modifying 
elements this is what seems to be the best way of handling it in this case. First of all there will be 
specialized insertion tools for each kind of elements that can be inserted (i.e. channels, membranes 
and species). All tools will work in a similar way. Once activated the insert tool can be moved over 
the reaction-volume and elements can be inserted on any position (if no other element is present on 
that location). Alternatively a pane will appear that allows the specification of all parameters 
through user input.  

To modify an inserted object the user will be allowed to select the object by mouse selection. For 
the selected elements a specialized property pane will appear. This pane will allow moving and 
deleting the element. Alternatively mouse input will allow changing the properties of an element.  

Although all modeling applications supported a script-language there will be no support for a 
script language for the configuration. A script language for the simple tasks of insertion, modifying 
and deleting of elements would further complicate the application.   

3.2.2 Serialization 

This chapter will first state the immediate possibilities for storing the configuration data. Therefore 
it will look at the following file formats in order to be better able to compare them. 

3.2.2.1 Binary File Format 

Binary file formats have been extensively used in the past mainly because of two reasons. One 
reason is the time needed for the execution of the serialization algorithms. It is very fast to block-
write huge amounts of data into a file with only a minimum of needed transformation. The other 
reason is the ease of implementation. Writing or reading files in a binary format is certainly not as 
demanding for the programmer than parsing / writing xml streams.  
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The major drawback of binary files is that it is much harder to use the files across different operat-
ing systems or even applications. And of course binary data is by definition not human-readable 
which makes it a bad choice for configuration data. A final drawback is that format changes often 
mean that a complete rewrite of the saving routine (even if it is a minor change) is necessary.   

3.2.2.2 CellML 

According to the specification of CellML (c.f. [Cue03]) this language is: 

… an XML-based language for describing and exchanging models of cellular and sub-
cellular processes. MathML embedded in CellML documents is used to define the underly-
ing mathematics of models. Models consist of a network of re-usable components, each 
with variables and equations manipulating those variables. Models may import other 
models to create systems of increasing complexity. Metadata may be embedded in CellML 
documents using RDF.   

Upon examining the specification closer it turns out that CellML is based upon connected compo-
nents, whereby components are abstract objects that provide interfaces and hide information. Each 
component consists of: 

• private and / or public interfaces 

• unit definitions 

• variable definitions (All variables have to be assigned appropriate physical units. This is 
being done to ensure consistency.)  

• underlying mathematics (formulated using MathML8) and 

•  meta-data (usually defined using RDF9)  

To share information across several components, connections are used. These connect the inter-
faces of the two components and thus allow sharing of information and variables. A model then is 
for CellML a container for components, connections, units and meta-data. Figure 5 displays the 
CellML model structure. (The picture was taken from [Nie04]).  

                                                 
8 MathML is a markup language as defined under http://www.w3.org/TR/2001/REC-MathML2-20010221
9 short for Resource Description Framework, a language defined in “RDF Model and Syntax Recommenda-
tion” for more information see http://www.w3c.org/RDF/ and http://www.w3c.org/1999/REC-rdf-syntax-
19990222/

http://www.w3.org/TR/2001/REC-MathML2-20010221
http://www.w3c.org/RDF/
http://www.w3c.org/1999/REC-rdf-syntax-19990222/
http://www.w3c.org/1999/REC-rdf-syntax-19990222/
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Figure 5: Structure of a CellML model specification (from [Nie04]) 

According to [Fin04]: “Unlike SBML, CellML explicitly attacks the model integration problem. 
Like SBML, however, CellML can only encompass a limited range of models that exclude for 
example, discrete-event systems. CellML is less widely used than the more pragmatically driven 
SBML”.   

3.2.2.3 Systems Biology Markup Language (SBML) 

The Systems Biology Markup Language (SBML) is a standardized XML dialect for representing 
models of biochemical reaction networks. This allows for models to be freely exchanged over a 
wide variety of programs. (An updated list of applications currently supporting SBML can be 
found at: http://www.sbml.org ) 

Simple networks of biochemical reactions usually consist of the following components: reactant 
species, product species, reactions, rate laws, and parameters in the rate laws. To analyze or simu-
late a network further components have to be specified, such as compartments for species or units 
for the various quantities. These elements have been captured to build the basic structure of an 
SBML file (of SBML level 2 c.f. [Fin03a] page 3): 

Beginning of model definition: 

 list of function definitions(optional) 
 list of unit definitions (optional) 
 list of compartments (optional) 
 list of species (optional) 
 list of parameters (optional) 
 list of rules (optional)  
 list of reactions (optional) 
 list of events (optional) 

End of model definition 

This structure is meant to support basic biochemical network models and operations available in 
existing analysis/simulation tools. The SBML standard was developed in the context of interacting 

  

http://www.sbml.org/
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with a number of existing simulation packages. Hence it is widely accepted through a variety of 
existing tools. For more information about SBML see also [Huc03]. 

Of course SBML is still work in progress, one of the current shortcomings of SBML Level 2 is, 
that it is not possible to add spatial information to the model description. SBML however provides 
a tag called an annotation which permits extensions to be added to SBML. SBML allows each 
element to be annotated. This enables developers to save structured information until the desired 
feature (like spatial data) finds its way into the specifications. A good example as to how the anno-
tations can be used to save and load complex layout information can be found in [Sau03b].  

In order to simplify the handling of SBML to a vide variety of users a support library was created. 
This library is called “libSBML” and is available for Java and C++ on Linux-, Windows-, Solaris- 
and MacOS-systems. This library handles the creation or processing of SBML documents. One 
very interesting feature is for example the conversion of mathematical formulas from MathML to 
post-fix notation or vice versa. That simplifies the work with SBML documents a lot. With 
[Bor03] a comprehensive manual was provided. Recently even an SBW-module was created that 
provided the libSBML functionality to every other SBW-module. This development may help to 
further spread SBML throughout the community.  

3.2.2.4 Comparison 

Given the discussion on binary formats it would seem safe to eliminate this option as a means for 
saving configuration data. A better possibility for saving the files would be a markup language. 
This would ensure a human readable10, interchangeable format. As the analysis of the CellML 
specification ([Cue03]) showed: the CellML format is quite complex. Furthermore a configuration 
file represented in that format would not benefit the project much, since hardly any software exists 
that would provide complementary features. The alternative XML-dialect SBML level 2 seems to 
be a better choice, since embedding the basic configuration elements into a valid SBML structure 
(as described in the last section) involves hardly any overhead. A configuration file could be saved 
using SBML like this: 

The configured reaction-volume, in which the reaction-diffusion simulation will be performed, can 
be seen as a compartment. All additional parameters concerning the whole reaction-volume, such 
as the diffusion rates of the species X and Y, the reaction that should be performed or the step size 
of the integrator for the simulation would be stored as annotations of that compartment.  

Finally all elements that can be inserted, namely the species X and Y, the membranes or the can-
nels could be saved as species. For example under the SBML element representing species X there 
would be annotations for each inserted species X with its position and concentration.  

Of course saving the information that way would involve quite some overhead for XML parsing 
and writing. Also XML documents tend to get bigger than binary documents containing the same 
amount of information. So what would be the advantages compared to the simple serialization into 
a binary format. First of all it would be much simpler exchanging the configuration files over dif-
ferent countries or systems. This is due to the fixed UTF-8 encoding of the SBML dialect. Sec-
ondly and perhaps more importantly it would allow the configuration to be changed by another 
application. The idea here would be to create an initial configuration file with the configuration 
unit and then pass that file on to another application that is able to read SBML. This application 
might then be able to specify the reactions much more comfortably than it will be possible through 
the configuration unit.  

                                                 
10 The author is aware of the fact that very large XML documents tend to get confusing, still in most cases 
XML dialects are human readable.   
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3.3 Simulation 

Tasks for the simulation unit would be threefold again. First reading and validating the configura-
tion file which will initialize the simulation unit. Then the simulator will continue to perform the 
next two steps until the user aborts: 

• perform a simulation step, 

• Return the simulation data / store simulation data to file.  

The main focus for the analysis will be the simulation part. The first thing to be researched is pre-
vious work on reaction-diffusion systems. Another thing to research would be what kind of inte-
grator a custom written simulator should use. A decision here should be dependent on the factors 
runtime and stability. Although these factors might be complementary at least the available possi-
bilities should be analyzed.  

3.3.1 Reaction-Diffusion Systems 

Here previous work on reaction-diffusion systems will be recapitulated. The focus hereby is on 
researchers that contributed their work on pattern formation in connection to reaction-diffusion 
systems. Most influential for this work is certainly the research of: 

• Alan Turing,  

• Hans Meinhardt and  

• Greg Turk 

This section will also take a closer look at the program “Ilya” - a reaction diffusion simulator writ-
ten by Herbert Sauro in 1997. As already stated in the problem definition (section 1.2) this pro-
gram will represent the basis for the simulation unit to be developed here.  

3.3.1.1 The chemical basis of Morphogenesis 

Most influential for this project is certainly the work of Alan Turing [Tur52]. He was the first to 
introduce the idea that chemical substances could react with one another and diffuse through an 
embryo to create stable patters. In his 1952 paper on the chemical basis of morphogenesis he dis-
cusses at length the break down and formation of chemicals due to reactions between different 
molecules in a reaction-diffusion system. He proposes several reaction-diffusion systems and con-
tinues to describe one such system with linear reaction terms. This system is then solved in dis-
crete and continuous form. These (discrete) systems are still used whenever it comes to simulate 
reaction-diffusion. The equations for a two-species reaction-diffusion system for a one-
dimensional ring of cells in his paper look like this: 
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The functions  and xF yF take the concentrations of X and Y at the given time and let them react 

according to their respective chemical formulas. The constants  and are the diffusity con-xD yD
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stants of species X or species Y. They determine how fast the species diffuse. The term x∇  or y∇  

ds for the neighboring elements of the current x or y. In the one-dimensional case this will be 
x-1 and x+1 for x and y-1 and y+1 for y. This will result in a change of concentration from a unit 
with higher concentration to the neighboring unit with a lower concentration.   

stan

Finally a dappling pattern produced by the explained reaction-diffusion system is displayed that is 
reminiscent of the spots on cows. It is presented in Figure 6.   

 

Figure 6: "Dappling" patt ern presented in [Tur52] 

A continuation of Turing’s studies can be found in [Lep03]. Here Leppänen et al. describe the 
formation of two-dimensional Spatio-temporal patterns employing a generic Turing model. The 
authors expect this work to bring insight to recent biological finding of temporal patterns on ani-
mal skin.  

3.3.1.2 Biological principles for pattern formation  

In a series of essays Meinhardt describes in [Mei01] the biological principles for pattern formation. 
In the first part he details the activator-inhibitor reaction. An activator in this sense is a substance 
that “… has a non-linear positive feedback on its own production rate. Its autocatalysis is slowed 
down by a long ranging inhibitor. A necessary condition for the formation of a stable pattern is 
that the inhibitor diffuses much faster than the activator and has a shorter half life. In other ranges 
of parameters oscillations and traveling waves can occur. These modes will be discussed further 
below in connection with the patterns on the shells of mollusks.” (c.f. [Mei01] pattern1) He then 
points out that a pattern emerges whenever the size of the activator-inhibitor-reaction-field be-
comes larger than the range of the activator. Finally he demonstrates how the nervous system of 
Drosophila can be explained through such a system.  

Meinhardt then continues to explain the formation of periodic structures. He mentions for example 
that stripes, a pattern often encountered, can be formed whenever the “… rate of activator auto-
catalysis saturates at high concentrations. This leads also to a limitation of the inhibitor production. 
More cells become activated at a lower level until sufficient inhibitor is produced. In other word, 
the activated regions have the tendency to enlarge, however, in order to become activated; a close 
neighborhood to non-activated cells is essential into which the inhibitor can be dumped. Both re-
quirements, large activated patches and a direct neighborhood of non-activated cells, seems to 
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contradict each other. This is, however, not the case. In a stripe-like activation pattern, each acti-
vated cell has an activated neighbor and non-activated cells are close by. Stripe formation is a very 
frequent phenomenon at very different developmental situations. …” (c.f. [Mei01] pattern 2) In a 
later part of this chapter Meinhardt then explains how source density might be applied together 
with the activator-inhibitor reaction to generate structures close to each other. This is explained on 
the example of head, foot and tentacle formation in the freshwater polyp Hydra. For an interesting 
discussion on the activator-inhibitor theory see also [Har93]. 

In earlier work Meinhardt described (together with other researchers such as Bard and Murray) 
how reaction-diffusion systems can be used to create two-dimensional patterns such as spots and 
stripes. Meinhardt is especially known for proposing a stripe generating reaction-diffusion system. 
This work was done in 1982 and employs a five-chemical reaction-diffusion system which is 
stated as this: 
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In this set of equations the chemicals g1 and g2 represent the present of one stripe color or another 
(e.g. black or white). “r” is a concentration that makes sure that only one color is present at each 
individual location, while the chemicals s1 and s2 limit the stripes in their width. Meinhardt even 
gives the source code for simulation of these systems. [Mei82].  

 

Figure 7: Pattern formation by lateral activation. Stable stripes are formed (from [Mei82]) 
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For a thorough understanding of the activator-inhibitor principle and its connection with Turing’s 
paper the author recommends [Har93].  

3.3.1.3 Generating Textures using Reaction-Diffusion 

In [Tur91] Greg Turk describes how reaction-diffusion systems can be used to generate textures. 
He even gives an algorithm to apply these textures on arbitrary surfaces. In fact these reaction-
diffusion systems are simulated on the surface making slight changes on the diffusion-coefficients 
and thus allowing for a smooth texture that is not “stretched” on the surface. This idea is described 
in more detail in his thesis [Tur92].  

 

Figure 8: A variety of patterns created with Turk's Cascade system (from [Tur92]) 

In order to generate all kinds of textures (such as patterns seen regularly on animal skin as giraffes, 
cheetahs or various fish) a cascade of reaction-diffusion systems is used. This means that after 
running a first reaction-diffusion system the state is frozen and then these altered concentrations 
are taken for the initialization of the next reaction-diffusion system. As for the actual reaction-
diffusion systems simulated the activator-inhibitor systems as introduced by Turing [Tur52] or 
Meinhardt [Mei82] are used. Figure 8 displays what patterns are to be expected using cascading 
reaction-diffusion systems.  
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3.3.1.4 Ilya – a reaction diffusion simulator 

As mentioned before Ilya was written in 1997 by Herbert M. Sauro. It simulates the Brusselator 
Reaction-Diffusion scheme for two-dimensional reaction-volumes with fixed resolutions: 
100x100, 150x150, 200x200 and 300x300 elements.  

Ilya employs a simple Euler integrator that solves the following equation for each cell element:  

 ( )
( )

,

,

2
1, , 1, , 1 , 1

2
1, , 1, , 1 , 1

2
, , ,

2 2
, ,

4

4

i j

i j

i j i j i j i j i j

i j i j i j i j i j

change i j i j i j x

change i j i j y

x x x x x x

y y y y y y

2x A x y Bx x rD x

y Bx x y rD y

+ − + −

+ − +

∇ = − + + +

∇ = − + + +

= + − − + ∇

= − + ∇

−
 (1.3) 

The terms in the brackets represent the reaction equations that can optionally be disabled in order 
to simulate diffusion only. For more information on the Brusselator scheme (c.f. [Nic77]) see also 
section 4.3.1.2. The constant r represents a scaling factor that determines how strongly diffusion 
influences the whole update step. These changes will be applied to the original data set during the 
integration step. And another simulation run will be performed.  

 

Figure 9: Screenshot of ILYA showing a simulation run (300x300)11 

                                                 
11 ILYA copyright 1997 Future Skill Software 
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Ilya allows the configuration of the initial concentration set or the changing of the current concen-
tration set at each point in time. Therefore a new concentration is simply “painted” over the old 
one. This concept can’t be applied to the three-dimensional case though.  

3.3.2 Integrators 

The most time consuming part of a reaction-diffusion simulator is the integration of the reaction-
diffusion equations. Two main issues arise in the choice of a suitable integrator, the stability of the 
method and the time it takes to integrate. A key parameter in any integrator is the step-size. This is 
the time step taken to move to the next time point. The higher the step-size the faster the integra-
tion will advance, however this also leads to greater instability in the solution. In this project three 
integrators were considered:  

• Euler integrator 

• 2nd order Runge Kutta Integrator 

• 4th order Runge Kutta Integrator 

The Euler integrator uses the formula:  

 ( )1 ,n n ny y stepsize f x y+ = + ⋅ n  (1.4) 

Using Euler integration the derivative information is only evaluated once at the beginning of the 
interval. Thus the step’s error is of order  

 ( )2O stepsize  (1.5) 

. Although the Euler method is fairly simple to implement it is less accurate and less stable than 
the other methods mentioned here.  

The second order Runge-Kutta method (or midpoint method) is defined through the formulas: 
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This method has second-order accuracy (obtained through using a first derivative to find the mid-
point, and then the derivative of the midpoint to get the next value).  

The most often used formula is the fourth-order Runge-Kutta formula which uses the following set 
of formulas: 



ANALYSIS 33 
 

 

( )

( )

( )

1

1
2

2
3

4 3

531 2 4
1

,

,
2 2

,
2 2

,

6 3 3 6

n n

n n

n n

n n

n n

k stepsize f x y

kstepsize
k stepsize f x y

kstepsize
k stepsize f x y

k stepsize f x stepsize y k

kk k k
y y O stepsize+

= ⋅

⎛ ⎞= ⋅ + +⎜ ⎟
⎝ ⎠
⎛ ⎞= ⋅ + +⎜
⎝ ⎠

= ⋅ + +

= + + + + +

⎟  (1.7) 

This method would be superior to the midpoint method, if a twice times larger step-size can be 
used - which is often the case. 

In order to improve Runge Kutta integrators further a next step would be to apply adaptive step-
size control. Here the basic idea would be to measure the error of the integration by taking a step 
twice, once as a full step and next independently as two half steps. The difference of these two 
evaluations can then be applied (together with a confidence parameter) to calculate a new step-
size.  

Other integrator methods like Richardson-extrapolation and predictor-corrector methods have been 
rejected because (i) in this case evaluation of the reaction-diffusion function is rather cheap and 

moderate accuracy (smaller then 510− ) is sufficient (because the computed values will be needed 
only to perform a color lookup) and (ii) the function will be evaluated by table-lookups.  

For further discussion of these integrators as well as Richardson extrapolation and predictor-
corrector methods see [Pre99]. An interesting description on how to achieve a stable simulator can 
also be found with [Mon02].  

3.4 Visualization 

The fourth part of this chapter will deal with the analysis for the visualization of the simulation 
data. Basic tasks for this unit will be acquiring the simulation data, preparing the data for display, 
and finally rendering of the data.  

What has to be considered here is what rendering API to use, what sorts of visualization algo-
rithms should be used in the visualization process, and what sort of visualization libraries are al-
ready available and would suit this project.  

3.4.1 3D Rendering APIs 

This section will take a closer look at the most common rendering APIs - namely OpenGL and 
Direct3D. Furthermore an OpenGL library called OpenSceneGraph will also be analyzed as it 
gives OpenGL advanced features that might be vital for this project.  

Another rendering and scene-graph API will not be discussed here – namely Java3D. Although 
that API is known for its thorough specification and platform independence it turned out in a pre-
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vious project12 that a huge amount of memory is needed and an overall slower runtime (compared 
to a project implemented using C++/OpenGL) is to be expected. Since it is to be expected that the 
simulation data will already place a big stress on the memory (the reason for that lies in the three-
dimensional structure of the reaction-volume) Java3D seems not to be the right choice.  

3.4.1.1 Direct3D 

DirectX is a set of low-level APIs that contains components for two- and three-dimensional graph-
ics, sound effects and music, input devices and networked applications. One advantage of using 
DirectX is that all of the low-level APIs follow the same concept. Normally a developer would 
encounter many different APIs following different software design patterns. Direct3D was ac-
quired by Microsoft in 1996. The API is defined through its COM interfaces, help files and sample 
code.  

DirectX is an integral part of the Windows core. Since all modern graphics cards come along with 
DirectX drivers very good performance can be expected. This strong support from graphics card 
manufacturers leads to the fact that new features will be added to DirectX regularly. Recent addi-
tions to the graphics API were a shading language and changes in animated meshes.  

The Direct3D core follows the traditional rendering pipeline but allows programmable extensions 
for pixel shaders (controlling pixel shading) or vertex shaders (manipulating object geometry). 
Finally the current version of Direct3D (version 9.0c) allows also for the following features: 

• bump mapping (allows to simulate a rough surface in 3D scenes),  

• anti-aliasing (allows to reduce the appearance of stair-step pixels),  

• vertex blending (allows to create effects such as smooth joints and bulging muscles in charac-
ter animations) and 

• tweening (allows blending of two provided position or normal streams) 

An additional interesting feature is multiple monitor support. For details see also [Mic02]. 

3.4.1.2 OpenGL 

OpenGL (standing for “Open Graphics Library”) was developed as an industry standard by the 
OpenGL Architectural Review Board (ARB) after the initial version was developed by SGI. 
Founded in 1992 the ARB controls the definition of OpenGL. The current version 1.5 was released 
on July 29th 2003. One big advantage for using OpenGL is that is was built for compatibility across 
hardware and operating systems. Thus an OpenGL application might theoretically be ported to any 
system.  

OpenGL is basically a software interface for graphics hardware that renders multidimensional 
objects into a frame-buffer. It can be seen as a state machine whose attributes control how sets of 
vertices and normals are to be rendered. The programming model used for OpenGL is through 
include- and library-files.  

Interesting features for OpenGL are: 

• support for picking 

• hardware independent z-buffer access and 

                                                 
12 This hints at the project “Pacman3D” (c.f. [Pac02]). Here the game “Pacman” was reimplemented based 
on a 3D environment using Java3D. There memory demands and runtime of Java3D was much slower than 
what could have been achieved using C++ and OpenGL.  
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• accumulation buffers 

Although OpenGL does not support as many functions as DirectX there exist a multitude on util-
ity libraries that extend the features of OpenGL.  

On September 7th, 2004 the ARB released the specification of OpenGL version 2.0. The main 
changes involved are:   

• programmable shading is now supported with the OpenGL Shading Language 

• multiple render targets are supported  

• textures no longer are restricted to textures with power-of-two dimensions  

• Separate stencil functionality might be used for front and back faces of primitives. With that 
step performance of shadow volume and Constructive Solid Geometry rendering algorithms is 
improved.  

For the full specification see [Seg04].  

3.4.1.2.1 OpenSceneGraph 

One high-level API built on top of OpenGL is OpenSceneGraph (OSG). It is an object oriented 
framework built on top of OpenGL. Its intention is to “free the developer from implementing and 
optimizing low level graphics calls, and provide many additional utilities for rapid development of 
graphics applications.” (c.f. [Bur04]) OpenSceneGraph was started by Don Burns in 1998. The 
aim of the project at that time was to port a Performer based application from IRIX to a Linux PC. 
Robert Osfield began 1999 to port the scene-graph element to Windows. Since then a lot of work 
has been put into a project and it has gotten a lot of attention throughout the world. The current 
version is 0.9.7.  

OSG as the name implies implements a scene-graph API. A scene-graph is an acyclic, directed 
graph of nodes. Nodes in this regard correspond to objects like triangle meshes, lights or transfor-
mation objects. An image is rendered by traversing the tree. Thereby each node affects the render-
ing process. Thus the traversing of the tree can be seen as changing the states of the OpenGL state 
machine.  

The major drawback of OpenSceneGraph at the present state is documentation. Available docu-
mentation is mostly restricted to source code, simple examples and support through a news-group. 
Nonetheless the features of OSG are convincing: 

• an extensive scene-graph API 

• support for various file formats 

• support for picking 

• platform independency 

3.4.1.3 Comparison 

After introducing these available three APIs this section evaluates how these APIs perform. There-
fore a small visualization application was implemented for each of these APIs to be able to com-
pare them. The sample application worked on a three-dimensional field of concentrations (double 
values) of size 50x50x50. For each element a cube of unit length was generated. For each cube a 
color representing the concentration was assigned. Furthermore the overall position of each cube 
was determined by the position of the concentration element in the three-dimensional data-set. 
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Here the results for the categories: implementation time, memory consumption, cooperation 
with the window toolkit  and overall runtime:  

Implementation time: The implementation time is a critical factor for a project like this since 
the implementation period of the thesis follows a strict schedule. As expected writing the ap-
plication for the high-level scene-graph API OpenSceneGraph was done very quickly. Ignor-
ing all higher level functions and using only low level OpenGL functions took somewhat 
longer. The end of that scale was represented by Direct3D. The reason for that was using the 
COM concept. Although Direct3D is thoroughly integrated into the Windows core, even sup-
ported with Wizards by Visual Studio (the Wizard already sets up the display context inserted 
an example mesh) writing the actual visualization core took much longer compared to 
OpenGL and OSG.  

Memory consumption: As already indicated at the beginning of the chapter, memory con-
sumption may turn out to be the deciding factor. With cubic reaction-volumes storing at least 
the concentrations a large amount of memory is already allocated and can’t be released. In 
this category the results showed the opposite result than the last heading. Under Direct3D a 
constant amount of memory was needed. A slightly higher amount of memory was needed for 
OpenGL although here too the amount needed was constant. OpenSceneGraph was at the end 
of the scale. Although OSG provides for reference counting and thus rudimentary memory 
management there seems to be an issue with releasing that memory. The memory was re-
leased though not at expected times. This delay leads from time to time to instabilities of the 
application.  

Cooperation with the windowing toolkit: Of course the rendering window won’t stand 
alone it needs to be accompanied by a user friendly GUI. Thus under this heading it will be 
compared how the individual APIs work together with windowing toolkits (windowing tool-
kits tested here were Gtk+, Qt, FOX, MFC and Win Forms). The platform independent API 
OpenGL works seamlessly with every window toolkit. Each toolkit had a dedicated object 
that provided the GL context. OpenSceneGraph that is based on OpenGL could also be made 
to work with any of these toolkits. The integration is not as seamless as with OpenGL since 
the existing toolkit objects have to be altered slightly. Helpful here are the support on the 
OSG mailing list, or example implementations on the OSG web site. Direct3D as a proprie-
tary API was supported only by MFC and Win Forms. The support here was very convincing 
though; Wizards helped setting up the rendering context and even generated example source 
code. 

Runtime: The importance of the overall runtime needed to generate a frame can readily be 
seen. Of course this factor will be dependent on other factors such as the memory consump-
tion. Astonishingly here all three APIs lay very close together. There was a slight better per-
formance for Direct3D, followed by OpenGL and lastly OpenSceneGraph.  

Overall OpenSceneGraph will be chosen for this project. The main reason for this is the ease im-
plementing the concepts, while maintaining the possibility of platform independence. Additionally 
OSG supports features like picking or support for many file-formats out of the box. This will help 
to save much time. Furthermore as OSG is based on OpenGL it would always be possible to fall 
back to OpenGL just in case, that a certain visualization type would not be possible with OSG due 
to memory or runtime restrictions. Finally in a prior project (c.f. [AMI04]) good experiences were 
made using this API.  
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3.4.2 Volume-Visualization Algorithms 

In this section the most common volume-visualization algorithms will be considered. As men-
tioned in section 2.2 classic volume-visualization algorithms can be divided into the three catego-
ries: 

• direct volume rendering,  

• interactive methods 

• surface fitting algorithms 

This categorization shall be used to further structure this section. 

3.4.2.1 Direct Volume Rendering (DVR) 

Algorithms falling in this category directly render the data elements into the screen space, without 
creating geometric objects for them. So for each rendered image (i.e. each time the view has been 
changed) the whole dataset will be traversed. DVR algorithms achieve good results visualizing 
gases, fluids or clouds. Common to DVR algorithms is that the user will first have to specify a 
color map and opacity map for the data. The most important algorithms in this category are:  

• Ray-casting 

Ray casting is the most used DVR algorithm for high-quality images. The algorithm will cast 
rays for each pixel. If a data-point is hit, it gets the assigned color information. Should color 
information be present the values are accumulated. A ray stops if it leaves the data-area or the 
accumulated color information reach a maximum value. There are various versions of this ba-
sic algorithm. These are mainly concerned with how the color and opacity information are 
gathered once a ray hits an object. 

In [Frü96] is described how a pseudo-color approach can be used to apply ray-casting to the 
visualization of vector fields. The usual representation for vector fields was the introduction 
of objects tangential to the vector field.   

Kaneda et al. describe in [Kan96] an approach to the problem of improving interactive vol-
ume rendering with adjustable color maps. Here basis images are calculated based on a fixed 
viewpoint and independent from a color-map. Using these basis images allows for interactive 
change of color maps. These will applied only to the basis image and thus allow for a interac-
tive observation system.  

• Splatting 

Splatting will first compute each voxel’s contribution to the image and accumulate them. 
Each voxel will then be given a color an opacity according to the user defined maps. Then 
they are projected into the image space (using Footprint methods). The contribution of a voxel 
will be higher the closer it is to the center of the data projection. See also [Enc97] and 
[Owe99] for details. 

• V-buffer rendering 

This algorithm is an extension of the Z-Buffer algorithm to volume-visualization. It was de-
scribed in detail in [Ups88]. Here the cells of the dataset will be processed into which a cell 
projects before moving into the next cell. The collected data will be accumulated until either 
opacity reaches one or the entire cell has been traversed.  
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3.4.2.2 Interactive Methods  

Traditionally algorithms in this category were used to provide the user with a possibility for the 
efficient exploration of large datasets. Thereby a loss of information was accepted as long as an 
interactive speed could be achieved. The most common algorithms are: 

• Wireframe Contours:  

As implied by the name this algorithm generated lines for the desired iso-value only. While 
this algorithm is undoubtedly one of the fastest algorithms it displayed minimal information in 
the generated image.   

• Sweeping plane 

For this algorithm the volume was rendered transparent. The user could specify one or more 
pseudo-color sweeping planes through this volume. This made it a very good algorithm for 
the interactive exploring of datasets. Though of course the information the image provided 
was limited to the colors on the “sweeping”-planes. 

• Maximum Voxel 

The idea for this algorithm is to resample the maximum value behind each pixel. Therefore 
nearest-neighbor resampling was used. While this algorithm still achieved interactive speeds 
it allowed for no shading and grayscale display only.  

3.4.2.3 Surface-fitting algorithms (SF) 

Surface-fitting algorithms allow the user to input a threshold value. This value will then be used to 
find a surface in the dataset which will then be displayed. As opposed to DVR methods a geomet-
ric model representing the object will be created. Thus each new view can be created very fast 
without another traversal of the original dataset. A new traversal will only be needed if a different 
threshold is chosen or a new data set has to be displayed. One assumption is made by the algo-
rithms presented here; it assumes that the data are presented in a structured grid. This assumption 
should not be a difficulty however, since each collection of data can be represented as a structured 
grid. Instead of using these Cartesian lattices Carr et al. argue in [Car03] that it would be more 
efficient to use body-centered cubic lattices. Although here too a large number of cells is involved 
it is shown that their model is competitive to the below described Marching Cubes algorithm on 
Cartesian grids.  

The most prominent surface-fitting algorithms are: 

• contour tracking,  

The basic idea behind contour tracking is the following. First two slices of data are read into 
the memory. As a next step the algorithm detects a closed contour in respect to the threshold 
value inputted by the user for each slide. Then the contours in adjacent slices are connected 
(usually by triangles) and rendered.  

• cuberille / opaque cubes,  

The “Cuberille” algorithm also known as opaque cube algorithm was first introduced by 
Herman and Liu in [Her79]. In a first step the algorithm classifies all data points as either be-
longing to the object or not. In a next step all voxels (generated from the data points) belong-
ing to the object are rendered. Thus the surface is defined by the surfaces of the outer voxel. 
Since the number of generated surfaces is immense (because of the fact that cubes are gener-
ated for each data point belonging to the object) this algorithm is hardly used. 
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• marching cubes,  

The Marching Cube (MC) algorithm is one of the most common used volume-visualization 
algorithms. MC works on the assumption that the data are presented in a structured grid (for 
example a three-dimensional array). The first four slices of the data-set a read into the mem-
ory. In a next step grid cells are examined that contain four vertices from both middle slices 
(slices 2 and 3 of the four slices taken in the first step).  According to the value of the data set 
and the selected threshold each vertex will now be classified as inside or outside of the object. 
Based on this classification one can then decide how many triangles are needed for the iso-
surface. This is being done by using a table lookup on a table containing the edge information. 
The exact positions of the triangle-vertices on the edges are next calculated via linear interpo-
lation. From these positions the normals on these vertices cab are determined. These steps will 
be continued until the whole volume has been processed. First described was this algorithm in 
[Lor87]. Good explanations can also be found in [Enc97]. See [Bor97] for a complete repre-
sentation of the edge tables along with some example applications.  

• marching tetrahedra 

The marching cube algorithm that was previously described has a problem with ambiguity in 
special cases. If one cube has marked vertices diagonal to unmarked vertices it cannot be de-
cided whether to separate these vertices or to connect them. Marching Tetrahedra is one pos-
sibility to clarify these ambiguities. Each cube is divided into tetrahedra. It is no problem to 
separate marked and unmarked edges by a single plane in tetrahedra. Similar to the marching 
cube algorithm, marching tetrahedra also works via classification of the possible triangula-
tions (again via table lookup). The only drawback of this algorithm is that through introduc-
tion of edges inside a cube twice as many triangles will be generated than with the marching 
cube algorithm.  

To further improve the algorithm [Zho97] describes a multi-resolution approach. Here the 
volume data is subdivided recursively and represented by binary trees. Using an error based 
model these trees are used by recursively fusing different levels together. This reduces the 
number of voxels needed to construct the model while promising to preserve the topology of 
the model.  

• dividing cubes, 

Since the marching cube algorithm often generates triangles that are smaller than a pixel there 
is another algorithm exploiting that fact – the dividing cubes algorithm. Dividing Cubes is 
similar to Marching Cube in that the user still specifies a threshold value for which a surface 
is searched. Dividing cube begins with the classification of the vertices of each cube. In the 
case that this classification indicates a cut with the surface the algorithm projects the cube into 
the image space and checks for the size. Should it be larger than a pixel, the cube will be di-
vided into eight sub-cubes. Otherwise it will directly be drawn (projected into image space) 
via for example the painters-algorithm or z-buffer algorithm. Thus dividing cubes does not 
compute real surfaces. Rather directly “surface points” are created. This also leads to the act 
that the surface has to be recomputed each time a different view is selected. For a more de-
tailed description of the dividing cubes algorithm see [Ebe04].  

3.4.3 Volume-Visualization Libraries 

This section will analyze what libraries and toolkits are currently available for volume-
visualization. This analysis will take in regard commercial as well as open source products.  
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• AVS/Express 

According to the vendor, AVS/Express is the world’s leading visualization toolkit. In the 
white paper [AVS04] some of the features of AVS/Express are detailed. Among it is stated 
that over 800 graphical operations are supported. It was developed to meet the design goals of 
supporting parallel rendering on PC Windows architecture, supporting all display configura-
tions (such as CAVE, HoloBench, PowerWall and such), supporting any application domains 
(CFD, Telecoms, Oil & Gas, Medical among others), allow using a component library for de-
ployment and creating a visualization environment structure instead of just a low level graph-
ics library.  

Interesting about AVS/Express is that it supports high-level primitives. These primitives man-
age raw triangle data that would be used over and over. Otherwise a visualization of large iso-
surfaces would result in one OpenGL command after each other and then disregarding these 
information. These high level primitives exist for tri-stripes, tubes and bitmaps.   

The only demonstration application that was available to the author proved that examples 
throughout various domains could be rendered convincingly even on average desktop-
computers. Sadly it gave no real insight about the internal structures of AVS/Express. The au-
thor has no doubt however that this toolkit would prove a valuable asset in displaying three-
dimensional reaction-diffusion systems.   

• IRIS Explorer13 

Another commercial visualization library is the IRIS Explorer. The vendor describes the IRIS 
Explorer as follows: “IRIS Explorer is a development tool that enables you to easily build 
visualization applications.” (from IRIS Explorer Demonstration).  

Instead of a programming library the IRIS Explorer is a visual tool that works in the following 
way. Datasets, visualization methods and rendering devices are represented as modules (new 
modules can be written in FORTRAN, C and C++ to enhance existing capabilities). These 
modules will be selected from a librarian and placed on a map editor. There the individual 
modules will be visually connected. This will result in the visualization application. 

• VisiQuest 

VisiQuest14 represents the last volume-visualization tool that has been analyzed from the 
category of commercial volume-visualization libraries. Similar to the IRIS Explorer it also 
provides a dataflow based application interface that allows for an easy way to develop visu-
alization applications. Here about 300 different visualization modules are available. VisiQuest 
is available for Unix platforms, Windows systems and Mac OSX.  

• OpenDX15 

OpenDX represents the open source version of the IBM Visualization Data Explorer. It pro-
vides the developer with two possibilities either it can be chosen to use a workflow tool simi-
lar to the one described for the IRIS Explorer. Or the developer can access the available visu-
alization modes through accessing the library directly. This makes it an interesting choice for 
all kinds of volume-visualization. The only drawback here is that a Windows version is only 
available through Cygwin. And even then a X-Server is necessary. This makes OpenDX not 
really usable in a Windows environment.   

                                                 
13 Information about the Iris Explorer was obtained by visiting: http://www.nag.co.uk    
14 VisiQuest is a trademark of AccuSoft Corporation 
15 Information about OpenDX can be obtained from: http://www.opendx.org  

http://www.nag.co.uk/
http://www.opendx.org/
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• vtk16: short for Visualization Toolkit is a freely available C++ class library for 3D graphics 
and visualization. The idea behind vtk is to write a fully object oriented toolkit, that abstracts 
from the window toolkit on one side and the rendering API on the other. Instead of the scene 
graph paradigm, vtk follows the data-flow paradigm. The vtk supports visualization tech-
niques for scalar, vector and tensor visualization. Furthermore modeling algorithms such as 
decimation, implicit modeling, extrusion and texture cutting. Finally for creating visual dis-
plays it supports Delaunay triangulation, splatting and glyphing. For further information about 
vtk see [Kit04] and [Sch96]. 

One example for the usage of vtk in research can be found in [Pek01]. In [Ahr00] the problem 
of the scientific visualization of extremely large time-varying datasets is being addressed. 
Here too vtk is being used to provide a scalable, portable way for achieving these visualiza-
tions.  

• OpenVL17: OpenVL is a utility library for handling volume data. In its current stage it sup-
ports handling, mapping and manipulating volume data. Volume-visualization support is 
planned in a later stage.   

3.5 Conclusion 

This final section will conclude the chapter “Analysis”.  The last three sections described previous 
work needed to configure, simulate and visualize three-dimensional reaction-diffusion systems. 
The task for this section is now to show the connections between the individual parts.  

The analysis of different modeling application has shown a way of inserting elements into a three-
dimensional space. For this project this three-dimensional space is the reaction-volume that is to be 
populated by concentrations of two kinds of elements, membranes and channels. This configura-
tion of elements will in a next step be serialized into an external file. Therefore the serialization 
into a binary format, the CellML format or the SBML format was considered. Because of the 
straight-forward specification and strong support by other applications SBML seemed to be the 
right choice as the storage format for the configuration data.  

This configuration data is passed on to the simulation-core. The third section of this chapter dis-
cussed what sort of system the simulation-core should simulate. Here the system proposed by Alan 
Turing in [Tur52] seemed to be the right choice. Although Euler Integration is known to make 
errors on larger step sizes it might work fine in this case. Here parameters will be restricted to a 
workable range. It seems to be more important for this case to ensure fast integration that works 
for most cases. Should the integration fail, a mechanism has to be provided to lower the integration 
step size. After that a successful simulation should be achievable in every case and end with the 
generation of simulation-data.  

What is left is the display of the simulation-data. Therefore the fourth section of this chapter dis-
cussed the available rendering APIs. OpenSceneGraph as high level language seemed to be the 
right choice and was selected. What was left was to examine common volume-visualization algo-
rithms. Here several algorithms from all three categories (direct volume rendering, interactive 
methods and surface-fitting algorithms) should be implemented. A final part of the fourth section 
presented some available volume-visualization libraries. This was done to check common features 
in these libraries and to think about a possible integration of these libraries into this project. The 

                                                 
16 Details can be found under: http://public.kitware.com/VTK/
17 See also http://openvl.sourceforge.net/

  

http://public.kitware.com/VTK/
http://openvl.sourceforge.net/
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only visualization library usable in a Windows environment that has a chance of being integrated 
seems to be vtk.  
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4 Conception 

After the last chapter analyzed what has been done before, this chapter will create a concept for the 
project. This chapter will define what has to be done in order to configure, simulate and visualize 
simple three-dimensional reaction-diffusion systems. This conception will be based on the problem 
stated in section 1.2. The structure of this chapter will be defined in the next introductory section.  

4.1 Threefold-ness: Configuration, Simulation and 

Visualization 

As the last chapter, this chapter will be separated into the sections configuration, simulation and 
visualization. The interconnectedness of the individual parts will not be forgotten. Therefore the 
problem stated in section 1.2 will be examined closer and requirements compiled, that each of the 
parts has to fulfill, in order to find a solution for the problem. For the individual parts that means 
the following.  

4.1.1 Configuration 

For the configuration part the problem states that:  

“… a prototypic 3D configuration tool for the initial state of the system has to be devel-
oped. This basic tool should enable the user to define and store the location of molecules, 
membranes and channels within the reaction space of user-defined size. A suitable data 
structure has to be defined for the representation of the reaction space. …” 

This statement can be boiled down to the following three requirements:  

• First of all the user has to be able to specify and configure the reaction space. Important fea-
tures here would be for example the dimensions of the reaction-space. Furthermore, in case 
the reaction-diffusion equation to simulate uses any kind of substrate, this also should be con-
figurable.  

• Second the configuration unit has to allow for the insertion of channels, membranes and spe-
cies at various locations. Furthermore additional properties of the elements might need to be 
set, such as the concentration for species, or the dimension of a membrane. 

• Finally this structure has to be stored in a suitable data structure, or perhaps serialized into a 
file for later reuse.  

Section 4.2 will detail this further.  
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4.1.2 Simulation 

For the simulation part the problem is formulated as:  

“…a 3D simulation algorithm (PDE solver), based on an existing 2D-simulation algo-
rithm for reaction-diffusion systems written by Prof. Herbert Sauro, has to be developed. 
…”  

Since “simple three-dimensional reaction-diffusion systems” should be simulated, this means that 
the following tasks should be met by the simulation unit.  

• The simulation unit should provide different simulation modes, so that different reaction-
diffusion systems can be simulated. “Simple” is hereby interpreted as reaction-diffusion sys-
tems involving two species interaction only. Parameters for the simulation mode to use should 
be specified by the configuration unit. This way the actual simulation-core does not require 
user feedback.  

• Also meta-information about the simulation should be provided by the simulation unit. This 
way a previous simulation can be continued at a later point in time.  

These points will be elaborated in section 4.3. 

4.1.3 Visualization 

For the visualization part the following problem has been defined:  

“The main focus of this thesis is the specification and prototypic implementation of a suit-
able reaction space visualization component for the display of the simulation results. In par-
ticular, the possibility of 3D visualization during course of the simulation has to be investi-
gated.” 

This leads to the following two requirements: 

• In order to find a “suitable reaction space visualization” different visualization modes should 
be available. Thereby a selection of the most common volume-visualization algorithms (as 
described previously under section 3.4.2) has to be available. 

• To investigate the possibility of three-dimensional visualization during the actual simulation 
runs the visualization unit should be able to work in two different modes. A first mode will 
just display previous simulation results and a second mode will alternate with the simulation 
unit to visualize the results during the course of the simulation.  

This will be described further under section 4.4.  

4.2 Configuration 

As has been stated in the introduction to this chapter (section 4.1.1) the tasks for the configuration 
unit will be threefold. The first task is to guide the user through the process of specifying needed 
parameters for the simulation (parameters for the reaction-volume, the parameters for the reaction-
scheme to use). A second task is then the insertion of species, membranes and channels into the 
reaction-volume. And the third part is the serialization of the configuration to an external file.  
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This subchapter will begin to explain all required elements of the configuration. After that a con-
cept of the configuration unit should follow.   

4.2.1 Elements of the configuration 

While all other elements are optional there is one element that each configuration needs to have in 
order for simulation and visualization to work: 

• Reaction-Volume: the reaction-volume specifies first of all the space in which all reactions 
will be performed later on. The most important parameter of the reaction-volume is certainly 
the dimension of it. This is the parameter that decides the overall speed and memory con-
sumption. The dimension will be specified by its width, breadth and depth. Of course two-
dimensional simulation and visualization are also important features for the user. This is pos-
sible through setting the depth to 1.  

Along with the reaction-volume the user will be asked to specify the simulation mode. This 
also influences the reaction-volume in the case, that the simulation mode requires the reac-
tion-volume to contain a certain substrate. Since only “simple” reaction-diffusion systems will 
be considered two assumptions will be made. The first one is that all substrate elements are 
contained throughout the whole reaction-volume in the same concentration. The next assump-
tion is that although a closed reaction-volume with fixed width, breadth and depth is defined 
the actual reaction-volume will be a hyper-torus. This means that all borders of the reaction-
volume will be connected. In other words, should one element be on the verge of “diffusing 
out” of the reaction-volume, it will be inserted again at the opposite border. The reason for 
this is the flux preservation law stating that the outgoing flux is as high as the incoming flux. 

All other kinds of elements will be optional. They may or may not be inserted into the reaction-
volume. Should the user decide not to insert any of these optional elements the configuration is 
still valid. Not specifying these elements will result in the assumption that the concentration of the 
species X and Y is equal to zero throughout the whole reaction-volume, furthermore no mem-
branes and channels will be present. Optional elements that may or may not be added to the con-
figuration are:  

• Molecules: (in this thesis also called chemicals or species) can be added to set the initial con-
centration of X or Y at certain positions. On all other positions18 of the reaction-volume the 
initial concentration of the respective species is assumed to be equal to zero. The assigned 
concentration for the species will lie in the range [0…6.0]. Although it will be possible to in-
sert values outside this scale this might influence the performance of the simulation. The rea-
son for that lies in the integration unit as was described in section 3.3.2.  

• Membranes: are defined by a position of the center, and the dimension. Membranes will hin-
der (reaction-) diffusion of chemicals through them. Since the scope of this thesis is to simu-
late “simple” reaction-diffusion systems the presence there will be no permeable membranes. 
The author is aware of the fact that this restriction is a strong one. In biological systems it 

                                                 
18 Regarding the problem of concentrations at certain positions the author wholeheartedly agrees with 
[Tur52] who pointed out that: “…[the] description of the system in terms of concentrations in the various 
cells is, of course, only an approximation. It would be justified if, for instance, the contents were perfectly 
stirred. Alternatively, it may often be justified on the understanding that the ‘concentration in the cell’ is the 
concentration at a certain representative point, although the idea of ‘concentration of a point’ clearly itself 
raises difficulties. The author believes this approximation is a good one, whatever argument is used to justify 
it, and it is certainly a convenient one. …”   
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only holds true if the Molecules are too “large” to be able to pass through the membrane. It is 
to be expected that the presence of membranes will create interesting interference patterns. 
For more information on waves of a reaction-diffusion system and their interaction with 
boundaries see also [Sak02].   

• Channels: are defined similar to membranes. Again through their position of the center and 
their dimension. These channels are idealized. Their only function is to bypass the membrane 
on the defined area.  

4.2.2 Operation breakdown 

After the last section described the elements of a configuration this section shall describe the op-
eration breakdown of the configuration unit. This operation breakdown has been construed to meet 
all the requirements as was described in section 4.1.1. 

• The first step will be to either create a new configuration – and therefore to specify a new re-
action-volume through entering its dimension – or to load an existing configuration from an 
external file.  

• The next step allows the user to specify the simulation mode that the simulation unit should 
enter. Here the user will be presented with at least three options: diffusion only, the Brussela-
tor reaction-diffusion scheme or selection of a user defined reaction-diffusion scheme. For de-
tails on the available simulation modes see also section 4.3.1.  

• After these basic steps have been completed the reaction-volume will be displayed. This will 
allow the user to add additional elements into the reaction-space. In order to do so one of the 
following options have to be taken:  

o Activate the insertion of the element to be inserted: channel, membrane or species X / 
Y.  

̇ Input the parameters for the element. Thereby the user will be given a choice, 
to either use the mouse to change all parameters or to enter the desired values 
into a property window. This is in accordance to the analysis of modeling ap-
plications as described in section 3.2.1.  

̇ This will continue until the user either disables the insertion mode, or the file 
will be saved.  

o Alternatively the user can modify existing elements in the reaction-volume. Therefore 
an existing element can be selected through clicking on it.  

̇ That will open the property window for that element. And allow so to move 
or delete the respective element.  

• Once these steps are completed all that is left to do is to save the configuration and / or quit 
the application.  As file format for the configuration data SBML level 2 has been chosen. The 
reasoning to do so can be found in section: 3.2.2.4.   
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Figure 10: Operation breakdown of the configuration unit 
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4.3 Simulation 

The last section described the concept of creating a configuration. This section will now continue 
with that configuration and explain the concept how it will be used to simulate the reaction-
diffusion system. Thereby it will strongly regard the requirements as defined in section 4.1.2. One 
requirement was to be able to simulate different reaction-diffusion systems. Therefore several 
simulation modes have been conceived. These will be described in the next section. After that the 
operation breakdown for the simulation unit will be given.  

4.3.1 Simulation modes 

This section will describe in more detail which simulation modes will be supported and what pa-
rameters have to be defined for them. Common to all supported simulation modes will be that they 
will all simulate a reaction-diffusion system as introduced by Alan Turing in [Tur52]. That means 
they all follow the equations:  
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(for details see also section 3.3.1). So all the different simulation modes do is provide different 
equations Fx and Fy (each dependent on the current concentrations of X and Y). In order to provide 
a large variety of reaction-diffusion systems the aim is to implement a plug-in system. This will 
allow for the addition of very fast functions (because they will be available in compiled, optimized 
form). Alternatively a way will be described to use the Systems Biology Workbench to visually 
design new functions and let them be interpreted.   

4.3.1.1 Diffusion 

This simulation mode does not include a reaction equation. By setting both functions Fx and Fy 
equal to zero this mode will result in the simulation of diffusion only. So every configured concen-
tration distribution will eventually diffuse into equilibrium.  

The diffusion equations for the two chemicals x and y that are used here is: 
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Here Dx stands for the diffusion rate of chemical x and Dy respectively stands for the diffusion rate 

of chemical y. The Laplacian operator 3∇  stands for a measure of the highness of concentration of 
the chemical at a given location in respect to the concentration of the neighbors. The cubic form 
hints at the three-dimensional variant.   

In this discrete simulation the formulas can be written as: 
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Here ‘a’ is a multiplier between 0 and 6. This multiplier is initially 6 and gets degreased each time 
a neighbor is a membrane. This accounts for the fact that no flow through a membrane is allowed. 

Although this formula is tailored for the three-dimensional case it holds true for the one- and two-
dimensional case as well. The reason for that is that in the two-dimensional case the elements 

 and  again refer to the element , , 1i j kx − , , 1i j kx + , ,i j kx  and thus the higher negative multiplier gets 

lowered by two. Similarly in the one-dimensional case , ,  and  refer to , 1,i j kx − , 1,i j kx + , , 1i j kx − , , 1i j kx +

, ,i j kx  and the multiplier will be lowered by four. Thus simulation of one-, two- and three-

dimensional reaction-volumes is possible.  

4.3.1.2 Brusselator reaction scheme 

The second simulation mode will be the Brusselator reaction scheme (First mentioned in [Nic77]). 
This is a reaction scheme involving two chemicals X and Y engaged in four reactions. In [Tho86] 
the hypothetical reactions are stated like this:  

A  î X 

B+X  î Y + D 

2X+Y  î 3X 

X  î E 

“Here A, B, D and E are initial and final products, whose concentrations are imagined to be im-
posed as constants throughout. All reaction steps are here assumed to be irreversible with rate con-
stants equal to unity.” 

After stating these reactions [Tho86] continues to derive the rate of production / loss of X and Y. 
These rates of changes are needed as return value for the simulation-core. To derive them the same 
letters are used to denote the concentrations of the chemicals. This leads for the individual reac-
tions to the following result: the rate of production in the first reaction is simply A, the rate of loss 

in the second reaction is the product BX, the rate of production in the third equation is 2X Y  and 
finally the rate of loss of X in the fourth reaction is X.  

This leads to the equations:  
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These equations are everything that is calculated by the reaction plug-in. Of course the parameters 
have to be tended to. 'A' and 'B' are substrate parameters. These parameters are to be provided dur-
ing the configuration phase. Should this simulation mode be selected and these parameters are not 
provided ‘A’ will be set to 2.5 and ‘B’ to 5.24. This combination of values is known to lead to in-
teresting patterns.  

4.3.1.3 User defined reaction schemes 

As already mentioned in the introduction to this section there will be two possibilities to allow for 
user defined reaction-schemes. The first possibility is to create a plug-in library which can be 
loaded into the project at runtime. Using this possibility allows for a shorter runtime (since the 
equations will be available in compiled and optimized form) and thus is preferred. This method 
will be explained in detail in the implementation section 5.2.1.  
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Figure 11: Workflow describing how JDesigner and Jarnac can be used for simulation 

The second possibility is to employ the Systems Biology Workbench (as introduced in section 
2.3). The main idea here is to create a way to define new reaction-equations visually. This way 
even users without a background in computer programming could create reaction-schemes tailored 
to specific initial concentrations of a reaction-volume. Figure 11 describes the actual workflow. 
First an initial configuration is created. Thereby it is important to select “JarnacReactionPlugin” - 
during the simulation this will tell the simulation unit that Jarnac is to be evoked in order to com-
pute the reaction-scheme. Other than that the configuration may be created as any other. The sec-
ond step is to open the created configuration into JDesigner. JDesigner allows defining a reaction 
network visually. Once the configuration file is loaded into JDesigner the following nodes might 
already be present: 

• The nodes “X” and “Y” represent the species X and Y throughout the reaction-volume. These 
nodes should be involved in creating the reaction network. That means connections to these 
nodes should be drawn in order to influence the reaction equations.   

• The nodes “channel” and “membrane” on the other side should not be connected.  

Once the reaction network is created the user can test it, by letting JDesigner invoke Jarnac to 
simulate the network. (c.f. section 2.3). Once this file has been saved (as SBML level 2) the con-
figuration is ready to be simulated and visualized.  

4.3.2 Operation breakdown 

This section will bring together the requirements for the simulation unit and the analysis of section 
3.3 through proposing an operation breakdown.  

There will be two basic steps for the simulation unit. Step one will be an initialization step. Here 
the specified configuration file will be loaded and validated. Based on that information the re-
quired memory for the reaction-volume will be requested. Next the simulation parameters will be 
set such as the step size for the integration unit. After that the requested simulation mode will be 
entered. Finally the initial configuration as specified in the configuration file will be written into 
the memory reserved for the reaction-volume.  
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The second step for the simulation unit is a loop consisting of three sub-steps. First a new iteration 
will be computed. Thereby the simulation-core will first compute the concentration changes for the 
species X and Y. Afterwards these changes will be applied to the original concentration according 
to the current integration step. Along with the new iteration some meta-information about this it-
eration will be computed. These are the minimum-, maximum- and mean-value. These meta-data 
will later be used by the visualization unit in order to “guess” a threshold for displaying the simu-
lation-data (see also section 4.4.1.1 for a detailed description how this threshold will be calcu-
lated). After this computation step the next step will be to either save the current iteration onto the 
hard drive or pass it on to another application. This loop will be continued until an end is re-
quested. Upon this the simulation unit will stop.  
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Figure 12: Operation breakdown simulation unit 

4.4 Visualization 

Before this section will detail the concept for the visualization unit there are two topics to address. 
The first one will be to take the analysis of common volume-visualization techniques (as described 
in 3.4.2) into account and generate a list of visualization modes to be supported. A second section 
will then detail two possible execution modes for the visualization. The essential difference will be 
that one mode will visualize simulation results “on the fly” and the other mode will display a pre-
viously saved simulation run.    

4.4.1 Visualization types 

As one requirement for the visualization is diversity, there will be several types of volume-
visualization algorithms. They generally fall into the following three categories:  

• 3D plot,  

• Surface fitting algorithms and 

• Texture algorithm  
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As with the simulation modes here too a plug-in architecture will be used. This way it should be 
rather easy to enhance the existing visualization types at a later stage. The benefit of this will be 
for example that different visualization libraries might be supported later on. All a plug-in would 
have to do is to map the existing data-structure into the data structure of the library and then trans-
form the output into the OSG structure. Since all analyzed volume-visualization libraries (for de-
tails see 3.4.3) were based on OpenGL this should not be a problem.   

Common to all visualization types will be first that transparency can be enabled or disabled and 
second that the output can be clipped along the three coordinates. Should transparencies be en-
abled the opaqueness of an object representing a data-point will be determined by that points con-
centration. This should provide the user the possibility to analyze the output more closely. As ex-
pected from a three-dimensional representation rotating and moving the created object will be 
supported. Finally the user will be provided to simplify the output in three steps: It will be allowed 
to choose between the display of points only, the display of wire-frames or the display of full sur-
faces. This way drawing time can be reduced further and thus allow for the display of data-sets 
that would be to time consuming to display otherwise.  

The sub-sections in this chapter will describe visualization types of the main categories further.  

4.4.1.1 3D plot 

Visualization types in this category basically display each data point above a chosen threshold. 
This threshold will be either “guessed” by the application based on the minimum-, maximum- and 
mean-values, or directly entered by the user. For each data point above that threshold one object 
will be created and colored according to a global palette that assigns a specific color for each con-
centration. In [Pek01] another method is described to efficiently detect meaningful iso-surfaces. 
The idea here is to generate a Laplacian-weighted gray value histogram in one pass through the 
dataset and choosing a maximum value. This is more or less the approach to be taken here in this 
case. An accumulated histogram with a configurable amount of bins will be calculated. Using that 
histogram a threshold value will be chosen that reduces the data-points to display by about fifty 
percent. 

There will be two visualization types in this category. A first type will follow the idea of the 
Cuberille algorithm (see section 3.4.2.3). That means it will create one cube for each data point 
belonging to the object defined through the threshold. As already mentioned on the section about 
most common volume-visualization algorithms this implementation will be very slow and thus is 
intended for smaller simulations only.  

A second type will follow the same approach but create only points for each data point. Each of 
these points will be rendered as a fixed size (otherwise they would not be visible). This simplifica-
tion makes the display of larger reaction-volumes possible.  

The drawback of this type of visualization is that the view gets rather complex if many data-points 
are to be displayed. The only remedy here would be to clip the display or enable transparency. 

4.4.1.2 Surface fitting algorithms 

Visualization types in this category will begin to create a surface for the threshold value calculated 
by the simulation unit. Again this value can be overridden by the user, thus allowing the user to 
choose which surface to create. For more information on the selection of the threshold value see 
also the previous section 4.4.1.1. 

The first visualization type will be the Marching Cube algorithm and the second type will be the 
Marching Tetrahedron. (See section 3.4.2.3 and [Bor97] for details on these algorithms.) 
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Algorithms in this category will be much faster than algorithms in the 3D plot category. This is 
due to the fact, that fewer objects will be created.  

For a general description of surface-fitting algorithms see also chapter 3.4.2.3.  

4.4.1.3 Texture algorithm 

The idea behind this algorithm is to create one texture for each slice of the reaction-volume in the 
z-plane. Each pixel of this texture will get a color representing the respective data point, again 
chosen from the global color palette. The main advantage of this visualization type will be its run-
time. Since only one object will be created per slice it will consume a minimum amount of mem-
ory and thus will be processed fastest.  

The nature of this type of visualization makes it the ideal representation for simulations of two-
dimensional reaction-diffusion schemes. For three-dimensional simulations this algorithm still can 
be insightful in combination with clipping and rotating.  

4.4.1.4 User defined 

As with the simulation modes (c.f. chapter 4.3.1.3) it will again be easily possible to create new 
visualization types. An interface will be exposed so that new visualization types can be easily 
added through loading a new visualization type DLL. 

This mechanism will be detailed in the implementation section 5.2.2.   

4.4.2 Online vs. Offline visualization 

As mentioned in the beginning there will be two supported operation modes for the visualization – 
online and offline visualization. Before explaining these two operation modes further the reason 
for introducing these two operation modes will be give. The reason for allowing these two opera-
tion modes is the runtime. Large reaction-volumes will take a long time to simulate. Furthermore a 
large number of iterations might be needed in order to see the formation of reaction-diffusion pat-
terns. These numbers might be as high as 5.000 or even 7.000 iterations. Separating the visualiza-
tion part from the simulation part may help to solve that problem. This is true especially since it 
will be possible to change the operation modes. That means that should a user notice that the simu-
lation run that was computed in the offline mode ends prematurely it will be possible to continue 
this simulation run (either in online or offline mode). The same is true for the other direction. The 
simulation data from an online visualization can be used in an offline simulation. 

Online visualization (i.e. using the visualization unit to load a configuration and visualizing the 
results while simulating it) will probably be the right type for small to medium reaction-volumes. 
The advantages of this type lie in the fast generation of images for these kinds of reaction-
volumes. Furthermore no additional hard drive space will be consumed. The drawback is that once 
an iteration is displayed it is not possible to view previous iterations without re-running the simula-
tion. Since the visualization of the data-set will take more time than simulating it there will be the 
possibility to simulate a user defined number of iterations before visualizing the results. This will 
speed up the process much.  

Offline visualization (i.e. the visualization of data stored from a previous simulation run) is the 
right type to choose for larger reaction-volumes. For these online visualization would take up too 
much time. Advantages here are that since the iterations are stored on hard disk it will be possible 
to go back and forth in time in order to really analyze the dataset. The drawback is obviously the 
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space needed on the hard drive along with the fact that no feedback is provided whether or not 
patterns have already formed.  

4.4.3 Operation breakdown 

This section will now formulate the basic operation breakdown for the visualization part. Thereby 
the possibility for the two operation modes, offline and online visualization, will be given respect.  

The selection of the operation mode will be made by the user. Either the user chooses explicitly to 
run a simulation, or to display a previous simulation run. After that as an initialization step the 
original configuration will be loaded. This will be done in order to display the reaction-space, the 
membranes and the channels. These elements will always be displayed. As further initialization 
step a fast visualization type will be selected. Further initialization of the simulation-core along 
with a calculation of the first iteration occurs in the online mode. The last step of the initialization 
is to display the first iteration (either from a file in the offline mode, or the last computed itera-
tion).  
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Figure 13: Operation breakdown visualization unit 

Now it will be up to the user to perform one of the following actions:  

• change render detail (from point, over wire-frame up to rendering of surfaces (default))  

• change the visualization type 

• clip the displayed reaction-volume 

• enable / disable transparency 

• enter / leave automatic playback mode 

• manually select a different threshold for the visualization 

• navigate through the generated display 

• quit the application  
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• save screenshots  

Should the user decide to enter the automatic playback mode a new iteration will be loaded / com-
puted according to the current visualization step-size. This allows for example in the online mode 
to calculate a larger number of iterations before the last iteration will be displayed. In the offline 
mode this will help to skip some iterations.   

4.5 Conclusion  

The aim of this section is to wrap up what has been achieved with this conception. In what way 
was the conception done and why so? It will show similarities between the separately described 
parts.  

Each of the three parts, configuration, simulation and visualization has first been analyzed in order 
to compile requirements that are essential for the individual tasks. After describing unique ele-
ments for each part (the elements of the configuration, simulation and visualization modes) all 
sections contained a basic operation breakdown. This operation breakdown described the individ-
ual points that have been given critical importance to a successful, usable application. Thus the 
points mentioned there are points to be implemented.  

To conclude this chapter, some final remarks on the separation. Separating the configuration unit 
from simulation and visualization brings along the following benefits. First of all it makes it easily 
possible to create the configuration with third party application. Though at the moment modeling 
applications for reaction-volumes that regard spatial information are still hard to find, they may be 
developed in the near future. The idea of using JDesigner to enhance a configuration, created with 
the configuration unit, displays one way to widen the range of configuring at least the reaction-
networks. Secondly the separation allows the user to save time. It allowed to create both visualiza-
tion modes, online and offline, and with it combining or separating the simulation and visualiza-
tion unit. Furthermore the workflow for altering a running simulation by changing to a new con-
figuration is much more easily possible with the separated approach. Finally, since the simulation-
core will be written with strong regard for platform independence this will open up the possibility 
to run simulations on a more powerful system than the desktop-workstations targeted for the visu-
alization. A last point supporting the separation into individual parts is that it allows for a certain 
kind of specialization. While an expert biologist is certainly needed to create the initial concentra-
tion, an expert for simulation could optimize the model to simulate and finally an expert in vol-
ume-visualization might work on the best display of the generated data. This will be possible since 
the three parts are separated. The biologist needs to pass on the configuration, while the simulation 
expert passes on the simulation-data. This enables the volume-visualization expert to find a fitting 
visualization.  

The process of implementation along with its problems and limitations will be discussed in the 
next chapter. 
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5 Implementation 

Based on the analysis of chapter three and the conception of chapter four this chapter will first 
describe the data-structures used. Following that the architecture of the system will be described 
further. A final point will talk about difficulties that were encountered along with limitations of the 
solutions that could be found. 

As already stated in the last chapter, the implementation will include all points of the conception. 
This will provide for an easily usable, extendable simulation and visualization application.    

5.1 Data-structures 

This section will begin with explaining the data-structure used to hold the configuration data. Next 
the internal data structure that holds the simulation data will be discussed. 

5.1.1 Configuration data-structure 

The configuration data-structure (in the implementation named Configuration) holds all data that is 
necessary to run a simulation. It is being used by the configuration unit, where it will be created, 
by the simulation unit for setting up the initial concentrations and initialization of the simulation-
core and by the visualization unit in order to represent the reaction-volume along with possibly 
existing membranes and channels. This subchapter will explain this structure in more detail.  
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Figure 14: Elements of the configuration data structure 

The elements of the configuration fall into three categories. The most basic of these categories is 
the data needed to specify the reaction-volume. In this first implementation this is just the dimen-
sion of the reaction-volume. The second category represents data needed for the specification of 
the simulation mode. In detail these are a reference to the selected reaction-plug-in and the con-
figuration of that plug-in. The third category is represented by all elements that have been inserted 
by the user. Here a hash-map based on the position of the respective element as key and a refer-
ence to the element as value has been chosen. Special classes exist for the possible elements, each 
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derived from a common class “Element ”. In order to retrieve the respective element at a later 
time the C++ run time type information (RTTI) will be used to obtain the object.  

Accompanying these data are support functions. Apart from basic “get-/set-methods” and “insert-
/delete-methods” for the hash-map, the most important functions are probably the ones used for 
serialization or de-serialization. As already stated in the analysis of possible file formats in section 
3.2.2 the file format SBML (level 2) will be used to store the data. Section 3.2.2 also provided 
information about the way the configuration data can be applied to the model-data represented by 
the SBML document. In order to implement an export of the configuration it is necessary to save 
some information as SBML annotations. The reason for this is that SBML currently does not sup-
port spatial-data for the species or defined compartments. Thus a XML name space was defined 
after [Van02] that specified the needed elements. These definitions are displayed in the appendix: 
“C - Schema Definition of SBML Annotations”. 

5.1.2 Simulation data-structure 

The aim of the simulation data-structure (in the actual implementation named DataHandler) is to 
provide access to all the data stored during one iteration. The reason for storing the data in this 
class and not along with the simulation unit was the following. In the online operation mode of the 
visualization unit the simulation-data will be displayed after each iteration. Each iteration might 
contain a huge number of data. For each element of the reaction-volume four double values (con-
centration for species X and Y, along with the rate of change for X and Y) will be needed for the 
simulation and two double values (current concentration for species X and Y) will be needed for 
the visualization. To illustrate that with an example: for the simulation of a grid with dimension 
128x128x128 this would lead to 64MB of memory needed to simulate such a grid. Of these data 
32MB are needed for the visualization. Copying these data would on the one side slow down the 
visualization process and on the other side occupy more memory. This is where the DataHandler 
into play. Apart from storing the data for the concentrations of species X and Y along with their 
rates of change it also provides an interface so that both applications can access these data.  
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Figure 15: Elements of the DataHandler data structure 
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5.2 Plug-in system 

Both the simulation unit and the visualization unit are written in a way to easily extend existing 
capabilities. Therefore a plug-in system was conceived that will be described here. First the basic 
architecture will be detailed and following that it will be specified how it will be used for the simu-
lation and visualization types.  
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Figure 16: Elements of the PluginManager 

There will be one manager for both types of plug-ins. An instance of this manager will be created 
at the program start. Each plug-in library will contain one registration method that will be called 
upon loading. This method will register each and every plug-in of the library. Registering in this 
case means that a prototype instance of the respective will be created and given to the plug-in 
manager.  

Upon creating the user interface for the configuration or visualization unit, or during loading of a 
configuration the plug-in manager will be asked for the available plug-ins. Should they be needed 
the plug-in manager will provide an instance of these plug-ins.  

5.2.1 Reaction plug-ins 

Reaction plug-ins determine the simulation mode that will be entered. As already described in 

section 4.3.1 the reaction plug-ins specify the functions ( ),xF x y and ( ),yF x y in the basic reac-

tion-diffusion scheme:  
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Each reaction plug-in has to be inherited from the abstract class: “ReactionPlugin.h ”. This 
class definition represents the interface through which all calls will be made to this plug-in. In 
order to create a new reaction plug-in the following members need to be implemented and ex-
ported: 

• void initialize(std::string sConfigString) : Although the prototype of 
each plug-in will be stored in the plug-in manager, the initialization should happen when this 
function will be called, as opposed to initializing the plug-in in the constructor. The reason for 
this is that on the one side specific initializations may take a long time and on the other side 
the plug-in may take certain parameters which will not be provided by the default constructor.  
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As parameter this initialization function will be called with the configuration string as speci-
fied during the configuration. The configuration will display the default parameter as provided 
by the next function to implement.  

If the parameters are in the standard format, meaning “<name>=<value>; ” then the base 
class will parse these parameters and they can be obtained by calling:  

void parseParameters(std::string sConfig);  and  

std::string getParameter (std::string sName);  

• std::string getDefaultParameter() : This function should provide the default 
parameter for the reaction plug-in. Since the parameter has to be returned as a string the fol-
lowing format should be used to construct that string:  

<ParameterName1>=<value1>; <ParameterName2>=<value2>; …  

An example would be “A=2.5; B=5.24; ” this parameter is used by the Brusselator reac-
tion plug-in.  

• const char* className() const:  this function provides a class name for the reac-
tion-plug-in. This class name will later be displayed by the configuration unit in order to al-
low the user to make a suitable selection. 

• double getChangeX(double dConcentrationX, double dConcentra-

tionY)  and  

double getChangeY(double dConcentrationX, double dConcentra-

tionY)  : 

These are the main functions to implement. These are the functions that will be called over 
and over by the simulation-core. Thus it is vital that these functions are written in high regard 
for performance and memory consciousness.   

5.2.2 Visualization plug-ins  

The visualization plug-ins provide a possibility for diversity in the display of  the simulation re-
sults. Each of the plug-ins derived from “VisualizationPlugin.h ” will benefit from a cou-
ple of support functions, that will help to provide information about the mapping from concentra-
tion value to the color that concentration is suggested to be assigned. Furthermore the access to the 
dataset will be provided along with information about mean-, minimum- and maximum value in 
the data set. Of course the threshold selected by the user will be provided as well along with the 
information whether to support transparency or not.  

The functions that have to be implemented when deriving from the abstract class “Visualiza-

tionPlugin.h ” are the following: 

• const char* className() const : this function will provide the information to the 
plug-in-manager with which this plug-in is to be found in a later stage. Also this information 
will be displayed to the user in order to help him to make a selection. 

• osg::ref_ptr<osg::Node> generateNode(double dThreshold, 

DataHandler *oHandler) : For the visualization plug-ins this is the key function to im-
plement. Along with a reference to the DataHandler  (containing all simulation data as de-
scribed in 5.1.2) the threshold value will be given as argument to this function. It is now com-
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pletely up to the plug-in to process the provided information and generate an osg::Node  
(the base object for any scene graph element) containing all the visualization information.   

5.3 Design of the system 

This section will explain the design of the system based on the classes created after the conception 
of the last chapter. To that aim first the complete structure of the system will be detailed before the 
individual parts for configuration, simulation and visualization are described further.  
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Figure 17: Overview of the systems design 

Figure 17 displays the schema that details how the individual components of the developed appli-
cation are connected. As expected all the components are strongly tied together. The configuration 
of the system plays a vital role for the simulation as well as for the visualization. On the one side it 
is needed in order to initialize the simulation-core and on the other side basic information is taken 
out of this configuration in order to visualize the reaction-space. Another vital component is pre-
sented by the plug-in system. This provides the user to create configurations for different reaction-
diffusion systems, which are then processed by the simulator. For the visualization of these simula-
tion results, accessed through the data handler, the plug-in manager provides several visualization 
types. For more information see also section 5.2.  

In the online visualization mode the visualization unit works closely together with the simulation 
unit. They both share a common dataset provided by the DataHandler . This was already de-
scribed in section 5.1.2. 

5.3.1 Configuration 

This sub section will describe the configuration unit that was implemented in order to fulfill the 
requirements as stated in sections 4.1.1 and 4.2. The focus thereby lies on the description of the 
program logic. A description of the graphical user interface and with that the integration of the 
used three-dimensional renderer can be found in the next section (5.4). Figure 18 lists the essential 
parts for the configuration unit.  
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Figure 18: Configuration unit schema 

The most interesting parts of the configuration unit are certainly the following:  

• how are the data manipulated in the configuration data structure (as mentioned in 5.1.1)  

• and how are elements added to the configuration (such as channels, membranes and species).  

The main component that makes these tasks possible is the “ConfigurationViewer ” it al-
lows to display configurations (as provided by the data structure), to navigate in the created reac-
tion-volume and to add or modify existing elements and finally to save the created or modified 
configuration.  

For the insertion of the specific elements insertion tools were created. They all derive from a 
common base class “InsertTool.h ” that provides the basic interface for the Configura-

tionViewer . Features provided by the base class contain functions to enable or disable an inser-
tion tool, to move the insertion tool and constraint checking. Constraint checking is used so that no 
element can be inserted outside of the reaction-volume. Finally the base class provides an interface 
for keyboard input. Functions to implement by each of the derived classes (for this case rudimen-
tary implementations were made for the tools: ChannelInsertTool , MembraneInsert-

Tool  and SpeciesInsertTool ) are functions to create an element based on the current setup 
of the tool, to provide a graphical representation for that element (or any given element of the sup-
ported type), to provide a graphical representation for the tool itself and to handle keyboard input. 
These insertion tools receive keyboard information from the viewer. This is used for example by 
the channel- or membrane insertion tool in order to specify the dimension of the object to insert. 
Via pressing the left or right key the width will be restricted or widened (for the height the up-
/down keys are used and for the depth the PGUP/PGDOWN keys). So the insertion process works 
like this, first the user enables the respective insertion tool, then the tool is moved via the mouse to 
the desired position. Now the user can specify optional parameters, like the dimension for a chan-
nel or membrane or the concentration for the specie. Finally the object will be created by pressing 
the Space-key. This will continue until the user disables the insertion mode.  
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Selection of elements was implemented to allow the user to modify/delete already placed elements. 
Therefore the user would use the mouse to click on the desired object. This will invoke a picking 
routine to test whether any element was hit by the click on that position. Should an object be hit, it 
will be highlighted as selected. Selected elements can then be deleted or moved around.  

5.3.2 Simulation 

The implementation of the simulation unit was done with the thought in mind to create a platform 
independent application. Furthermore the simulation unit had to be able to be integrated to the 
visualization unit in order to allow for the online operation mode of the visualization section. As 
stand alone application it will represent a command line tool. The stand alone application was cre-
ated to process the simulations on different machines and later use the created simulation-data to 
perform an offline visualization. The idea of this process, first simulate a certain number of itera-
tion steps and later on visualizing the created data, poses the need for two different execution 
modes of the simulation unit. First of all the simulation unit should be able to simulate a configura-
tion file and store these information. The second execution mode has to be able to continue a pre-
viously run simulation. This will be necessary since a previous simulation might end at a point 
where reaction-diffusion patterns are not yet “stable” (or have not yet begun to form). For the 
online visualization mode, where usually no data will be written onto the hard drive, this mode 
allows to use the simulation-data of a previous simulation run as start point for an online visualiza-
tion. Finally a function was implemented that allows changing the configuration of a running 
simulation to another configuration with the same dimensions of the reaction-volume. This allows 
altering a running simulation. This feature will be accessible in online visualization only.  
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Figure 19: Simulation unit schema 

The Figure 19 explains the operation mode and collaboration with the other components. First a 
configuration object will be generated from a filename or from the information of a previous simu-
lation run. This configuration will then be used to initialize the reaction plug-in to be used, the 
simulation-core and of course the reaction-volume represented by the DataHandler (see also 5.1.2). 
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In case that a previous simulation run will be continued the stored simulation-data of the last itera-
tion will be taken as initial concentration distribution for the reaction-volume. Otherwise the ele-
ments of the configuration file will be taken to set up an initial distribution for the reaction-
volume.  

After the initialization the simulation-core will perform the following steps. In the standalone ap-
plication it will calculate an iteration (based on Turing’s equations as stated in sections 3.3.1, 4.3.1 
and 5.2.1). As integration unit (as analyzed in section 3.3.2) a simple Euler method has been cho-
sen after all. This has been done in reflection on the runtime. Should the Euler method fail, (highly 
unlikely for the specified concentration range 0.0-6.0), the simulation will interrupt the calculation 
of the current iteration. The user will be notified of the fact and informed that by setting a different 
(lower) integration step size this error will be resolved. A failure in the integration would other-
wise result in negative concentrations, which would falsify all following iterations. Once the com-
putation is complete the simulation-data will be saved onto the hard drive. These steps will be con-
tinued until the user breaks the execution.  

Should the simulation unit be called from the visualization unit only two steps will change. First 
instead of saving the simulation-data onto the hard drive they will be accessed through the 
DataHandler  and passed on to the selected visualization plug-ins. The other thing that changes 
is that it will be possible to alter the running simulation by selecting another configuration file with 
the same reaction-volume dimension. This will be detailed in the next section.   

5.3.3 Visualization 

The implementation of the visualization unit will support two execution modes. These modes, as 
described in the conception, are titled online and offline visualization mode. For the user this will 
allow two approaches to visualization. First of all it is possible to let the simulator process a con-
figuration without the need to attend the computer. These data will then just be saved to the hard 
drive. At a later time the user can then choose to visualize the simulation-data. The other visualiza-
tion mode, titled online visualization, will take a configuration and use it to simulate one iteration 
at a time and then display it. In order to change from one simulation mode to the other the follow-
ing steps will have to be performed by a user:  

• online- to offline-visualization: All the user has to do to perform this transition, is save the 
current simulation results from the visualization unit. And call the simulation unit with these 
results as parameter.  

• offline- to online-visualization: Here the user will perform an offline visualization up to a cer-
tain iteration and then stop it. Now instead of choosing to display these iterations the user will 
use the visualization unit to “continue a previous” iteration, which will take the last iteration 
as a start point for the online visualization.  

Should another configuration be opened, although an online-visualization is currently in progress, 
it will be possible to alter the current simulation by adding the data of this new configuration file. 
In order to be able to do this the new configuration has to have the same size of the reaction-
volume. What will happen internally is the following: from the old configuration all membranes 
and channels will be deleted from the reaction-volume and only the concentration of species X and 
Y along with their respective rate of change will remain. To these the data specified in the new 
configuration file will be added. Using this feature it will also be possible to change the simulation 
mode by selecting a different reaction plug-in for the new configuration. This concept will be vital 
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for the understanding and creation of complex patterns. These patterns might not form from one 
initial concentration. Rather they might be gradually evolved.  

A common feature for both online- and offline-visualization will be a “playback” mode. This 
mode will display one iteration, either reading it from a file or simulating it in the background, and 
then make a first visualization. According to the selected step-size, that will decide the number of 
files to skip or the number of iterations to compute, the next iteration will be displayed. This step 
size is set initially to one. The user will be able to change this step-size interactively by pressing 
the plus or minus key on the keyboard. Alternatively a menu will provide often used step-sizes. 
This “playback” mode can be entered upon pressing the space key or pressing a button, and can be 
cancelled in the same way. Optionally can be activated that a screenshot is made upon each itera-
tion and stored onto hard-drive. Canceling the playback mode will result in displaying the last 
calculated iteration in the online-mode.  

At any time the user will be able to decide whether to enable or disable the transparency mode (by 
pressing “T”) or to choose a different render mode (by pressing “W”). By default transparency is 
enabled. The default rendering mode is to render surfaces. Pressing “W” will result in a cycle be-
tween point rendering only, wire-frame rendering and surface-rendering. It is also possible to gen-
erate a screenshot anytime by pressing “S” or “PrintScreen”. Also the user will be able to change 
the threshold for which the visualization-plug-in will calculate the view. Furthermore it is possible 
to clip the calculated view along each coordinate-axis. Clipping the reaction-volume along with the 
different opaqueness might be the only possibility to gather all desired information from the reac-
tion volume. Otherwise vital information might be “hidden” by concentration on a concentration-
slice closer to the user. Finally it will be possible to change the visualization type by selecting a 
different visualization plug-in anytime.  
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Figure 20: Visualization unit schema 

Figure 20 displays a scheme how the visualization unit works together with other created compo-
nents. After the user decides what should be visualized the VisualizationViewer  will either 
receive a filename, in case of online-visualization, or the location of the stored simulation-data in 
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the case of offline-visualization. A collection of stored simulation-data is always accompanied by 
an information file. This will tell the VisualizationViewer  from which configuration this 
simulation run was created. In a first step a Configuration  object (described in 5.1.1) will be 
created. This object will be used to visualize information such as the dimension of the reaction-
volume along with possibly existing membranes and channels. In case of an online-visualization 
this configuration will be passed on to the simulator, in order to initialize it. The last step of the 
initialization phase is then to calculate an initial iteration in case of online-visualization or to load a 
first stored iteration into the DataHandler . Then a default visualization-plug-in will be selected 
and the iteration will be visualized by the plug-in through access of the DataHandler .  

5.4 Graphical user interface  

Both, the application implemented for the configuration unit as well the application implemented 
for the visualization unit, have been implemented with regard to a rich graphical user interface that 
has the aim to support the user during each program step. Thus both application support standard 
windowing features such as recent-files (a dynamic file menu listing the last files opened sorted by 
last access), drag-and-drop (using the mouse to drop a file onto the application in order to open it), 
quick-tips (an information box that appears if the user hovers with the mouse over a GUI element), 
dockable windows (windows that can be un-docked from the application and be positioned by the 
user) as well as menu-bars, toolbars and status-bars.  

This demanded for a highly capable windowing toolkit. Thus a first step towards implementing the 
graphical user interface was to compare commonly used windowing toolkits these are Microsoft 
WinForms, wxWindow, Gtk+, the FOX toolkit, and the Qt library.  The only restriction applied to 
the author was not to use Microsoft Foundation Classes (MFC) a highly capable, proprietary win-
dowing toolkit developed by Microsoft. Microsoft WinForms a new windowing toolkit developed 
by Microsoft and just recently (since VisualStudio 2003) available for C++ (.NET) could not be 
brought to work together with OpenSceneGraph, the chosen rendering API and thus was not pur-
sued any further. wxWindow and Gtk+ though widely used throughout the developer community 
were not selected due to bad experiences of the author in a prior project19. The wxWindow toolkit 
created problems in a multithreaded application. And Gtk+ though very popular in LINUX envi-
ronments does not comply to standard concepts on MS Windows platforms (standard controls did 
not provide the same functionality as their Windows counterparts such as Clipboard support). The 
FOX windowing toolkit developed by Joren van der Zijp (c.f. [Van,04]) since 1997 as open source 
project was another possibility. FOX also is platform independent, C++ based, and supported 
OpenGL (and thus could be made to support OpenSceneGraph). Nonetheless the FOX toolkit was 
not used since the documentation of this project is still lacking in vital parts and necessary infor-
mation can only be obtained through mailing lists or source code studies. Furthermore as expected 
from open source work FOX is still work in progress and not yet complete. Qt as commercial pro-
ject was developed by Trolltech (c.f. [Qt04] and [Bla04]) as a C++ toolkit for multiplatform GUI 
and application development. It follows an easy to understand concept of signals and slots, is very 
well documented and easy to extend. These factors together with the fact that a free non-
commercial version of Qt (version 3.2.1) came along with [Bla04] made Qt the windowing toolkit 
of choice for implementing the GUI for the configuration unit and visualization unit. The only 

                                                 
19 Gtk+ as well as wxWindows were temporary selected as windowing toolkits for the AMIRE project (c.f. 
[AMI04]). In the long run it was decided to use MFC over these windowing toolkits because of their short-
comings in MS Windows environments.  
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restriction of the non commercial version is that the string “[non-commercial]” will always be 
included in the title bar of the application along with a system menu “About Qt”. 

This section will continue to describe the implemented graphical user interface for the configura-
tion unit and visualization unit. 

5.4.1 Configuration unit 

 

Figure 21: Main screen configuration unit 

Figure 21 shows the main screen of the configuration application. This subsection will continue to 
describe the main features:  

• title bar:  Along with the program name the title bar will always display the currently opened 
filename or “untitled” should the current configuration be a new one.  

• menu bar: The menu bar contains two menus. First the file menu, with the standard features 
Open, Save, SaveAs, recent files and Exit. The second menu provides access to the insertion 
tools. Here the insertion mode can be set for the insertion of species X and Y, channels and 
membranes. Of course it will be possible to disable the insertion modes as well. To provide 
the user with a feedback which insertion mode has been selected these entries will be dis-
played sunken if activated.  

• tool-bar:  The toolbar provides the user with fast access to the most common used of these 
functions. It is also possible to start the visualization unit from the toolbar. This will pass the 
currently edited configuration to the visualization unit.  

• OpenSceneGraph Viewer: The main control for the application is represented by the OSG 
Viewer. This object allows the three-dimensional representation of the configuration. Basic 
features provided by this object are navigating through the scene by using the mouse. By left-
clicking and moving the mouse or the mouse-wheel the scene will be translated around the 
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corresponding coordinate-axis. On right-clicking and moving the mouse or the mouse-wheel 
the scene will be rotated along the corresponding coordinate-axis.  

If an insertion mode is activated the OSG Viewer will display the corresponding tool. (a 
sphere for the SpeciesInsertTool , a blue cube for the MembraneInsertTool  and a 
green cube for the ChannelInsertTool ). This allows the user to drag the insertion object 
through the reaction-volume. It will not be possible to drag the tool outside the reaction-
volume. Once the desired position is reached and space is pressed the respective element will 
be inserted on that position. (see also section 5.3.1) 

Should the insertion mode be disabled, left-clicking upon an element in the scene will result 
in selecting it. It will then be possible to drag this element to a different position or to delete 
it.  

• navigation dockwindow: In order to provide the user with the possibility to easily navigate 
through the scene this dockwindow has been created. It allows the user to reset, rotate or 
translate the view. The speed of the mouse wheel can also be configured by this window. As 
explained in the introduction to this chapter dockwindows can be undocked from the applica-
tion and placed wherever the user likes. It is also possible to hide this window by disabling it 
from the popup menu that appears when right-clicking on it. This is true for all dockwindows.  

• plug-in dockwindow: The plug-in dockwindow allows the user to specify the reaction plug-
in to be used along with its supported parameters.  

• concentration dockwindow: This dockwindow provides the user an easy interface for speci-
fying the concentration for the next specie element to insert. The concentration will be chosen 
either by a slider, or by directly input in the textbox. Should the slider be moved the range is 
restricted to the range 0.0-6.0. This range was chosen based on results achieved in many 
simulation runs.  

• insertion dockwindow: On program start this dockwindow is not visible. It will be visible 
only if the insertion mode is activated or the user selects an element. Then according the in-
sertion mode activated it allows to input the parameters for the respective element (dimension 
and position for channels and membranes and position and concentration for species). Upon 
selecting an existing element the dockwindow will display the parameters of the selected ele-
ment. The difference between these two activation modes is that for active insertion mode this 
window allows only for insertion of elements whereas in selection mode it will only allow to 
move or delete an element.  

• status bar: The status bar is divided into three parts. The first part will display information 
regarding the current operation. The second part will inform the user if the configuration was 
modified. The third part will display the currently active insertion mode and cycle through the 
stages “none”, “channel”, “membrane”, “species x” and “species y”.  

Upon closing the application, or the loading or creation of a configuration a check will be per-
formed whether the current simulation was modified. If so the user will be prompted to save the 
changes, to cancel the operation or to continue the operation without saving.  

Information like recent files, the current window position and size will be saved upon closing the 
program. Thus the window will appear on the same position and with the same dimension upon 
starting the program anew. Since Qt functions are used to store this information the save location 
is dependent on the platform. On Windows systems these settings will be stored in the windows 
registry whereas on other platforms they will be written in a configuration file (not to be mistaken 
with the configuration files created by this application).  
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5.4.2 Visualization unit 

 

Figure 22: Main screen of the visualization unit 

In Figure 22 the main screen for the visualization application is displayed. It consists of the follow-
ing parts:  

• title bar:  Similar to the configuration application the title bar will display the opened file-
name or directory.  

• menu bar: The visualization application contains the following menus. The File menu pro-
vides the user with the following actions:  

o “Open Simulation” clicking upon this element will open a dialog where the user will 
be prompted to select the directory containing the simulation-data to visualize.  

o “Run Simulation” this will allow the user to select a configuration file that will be 
simulated and visualized.  

o “Save Simulation” this element allows the user to save an online visualization.  

o “Continue Simulation” this allows the user to continue a previous simulation run, ei-
ther saved using the last option, or saved by an offline visualization.  

The second menu “Display” allows for the selection of the concentration to display. Either 
the concentration of species X will be displayed or the concentrations of species Y.  

The menu “Plug-ins” will provide the user with the possibility to select the visualization 
type for the current iteration. Figure 24 shows all available visualization plug-ins as they 
visualize a Brusselator-simulation with a reaction-volume of 50x50x50. How this configura-
tion was created is explained in the appendix B - Examples. 
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Finally the menu “Settings” is there to allow quick selections of different visualization step 
sizes. These influence what happens when a different iteration should be displayed. In the 
online visualization mode a new visualization occurs only after as many iterations were 
computed as are specified with the step size. In the offline visualization mode when pressing 
the back and next button (see playback toolbar) as many iterations will be skipped as de-
fined with step size. Apart from specifying the step size this menu also allows to change the 
settings of the simulation unit (see also dialog simulator settings). Changing these settings 
will only be available for online visualization.  

• tool bars: The visualization application has two toolbars. The first one is there to allow fast 
access to selected actions from the menu bar. The second toolbar allows control which itera-
tion will be displayed next. For the offline-visualization this allows to go to the first, previous, 
next or last iteration. For the online-visualization it is only possible to go to the next iteration. 
This is due to the fact that no iteration will be saved onto the hard-drive and only the current 
iteration is in memory. The “next” or “previous” iteration is dependent on the selected step-
size. Selecting the “play” button will result in activating the automated playback mode. Here 
the “next” iteration will be displayed shortly after the current iteration is displayed.  

• navigation dockwindow: The navigation dockwindow provides the same functionality as the 
one described in the explanations to the configuration unit. In fact it is the same control. (see 
5.4.1). 

• tool dockwindow: The tool dockwindow allows the user to specify a different threshold than 
the one calculated by the simulator based on the mean value. With that function it is possible 
to display different iso-surfaces. To change the threshold the user activates the first checkbox 
on the tool dockwindow. This will enable the slider and the textbox in the first row. There the 
new threshold can be selected. Apart from selecting a different threshold this dockwindow 
also provides the possibility to clip the displayed iteration. Therefore the checkbox represent-
ing the coordinate-axis to clip to has to be selected and then a percentage set with the slider. 
Figure 23 demonstrates how a different threshold will influence the created visualization.  

• OpenSceneGraph viewer: The OSG viewer for the visualization application provides only 
navigational features apart from the display of the reaction-volume along with a representa-
tion of the current iteration. Other than that it is similar to the one described in section 5.4.1. 
Again left-clicking and moving the mouse or the mouse-wheel will result in translating the 
scene around the corresponding coordinate-axis. On right-clicking and moving the mouse or 
the mouse-wheel the scene will be rotated along the corresponding coordinate-axis. 

• status bar: The status bar is divided into four parts. The first part is there to display informa-
tion about current executed actions. The second part indicates whether the online visualization 
has been chosen (“simulate”) or whether offline-visualization is active (“replay”). The third 
part informs which iteration is displayed currently. And finally the fourth part indicates 
whether the automated playback mode is running or not.  

• Simulator settings: This dialog allows changing important simulator settings. Parameters 
influencing the outcome of the simulation run are on the one side the diffusion coefficients for 
species X and Y (these determine how fast these species will diffuse) and on the other side the 
“dimension” parameter. This parameter is used as a scaling parameter and allows scaling 
down the diffusion effect (in formula (1.9) the dimension-parameter can be found as “r”). The 
last parameter to change in the settings dialog is the step-size parameter. This parameter influ-
ence how large a step will be taken during each integration. While this parameter does not in-
fluence the pattern that gets created this parameter is crucial for the performance and stability 
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of the simulation-core. If set too low, it will take longer till patterns begin to arise. If set too 
high on the other side and an update of the concentrations will no longer be possible.  

 

The visualization application will also save information about recent files, window position and 
dimension upon closing the program. This way it will appear on the same position upon startup as 
it was when the application was closed.  

 

 

Figure 23: Using different thresholds (automatic(2.49), threshold=3.5, threshold=4.0) 

  



72 GRAPHICAL USER INTERFACE  
 

SimpleCubePlugin PointCloudPlugin

MarchingCubePlugin MarchingTetrahedronPlugin

ComboPlugin TexturePlugin

SimpleCubePlugin PointCloudPlugin

MarchingCubePlugin MarchingTetrahedronPlugin

ComboPlugin TexturePlugin  

Figure 24: Available visualization plug-ins visualizing Example 3 of the appendix  
(transparency disabled) 
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5.5 Possible optimization for the simulation-core 

This part will describe a possible optimization for the simulation-core. As previously detailed the 
core works in two phases. In the first phase all changes will be calculated. And then in a second 
phase these changes will be applied. The memory needed for this process is four times the size of 
the reaction-volume multiplied by the size of the data type stored. Thus it would be interesting to 
improve this. If the two phases could be combined into one phase that alone would noticeably im-
prove the time needed for the simulation.  

Out of memory In memory / not calculated In memory / calculatedOut of memory In memory / not calculated In memory / calculated
 

Figure 25: Update procedure of the optimized simulation-core 

Figure 25 displays the idea for the two-dimensional case. The basic idea is to use an inside-out 
concept beginning at the center of the reaction-volume. (Actually since the structure of the reac-
tion-volume is a hyper-torus the starting point does not really matter. This follows from the fact 
that all opposite edges are wrapped to each other.) From this start point out surrounding neighbors 
are red into memory (level 1). Now the center elements are computed and with them all elements 
of this level (level 0). The algorithm would now begin to read all outer neighbors of level 1 into 
the memory (level 2). Once this is completed all data necessary to compute the elements of level 1 
has been red into the memory and the elements will be computed. This allows clearing all elements 
of level 0 from the memory. So the general structure is always: read level x, read level x+1, com-
pute level x with data provided by level x-1, x, x+1 (at the starting point only levels x and x+1 are 
needed), clear level x-1, read level x+2, compute level x+1 …. This idea is followed until all ele-
ments have been computed. 

How about the memory saved by this approach? About the memory needed for the concentrations 
of species X and Y nothing can be done. Thus we have two times the reaction-volume times the 
size of the data structure to begin with, but what about the rate of change?  Here the memory 
needed is at most three times the outer hull of the reaction-volume. Together this would lead to the 
equation:  
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 ( )( )2 3newneeded x y z x y y z x z= ⋅ ⋅ + ⋅ + ⋅ + ⋅  

This equation is opposed to:  

 4oldneeded x y z= ⋅ ⋅ ⋅  
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Figure 26: Comparison of current simulation-core vs. the optimized version 

Figure 26 displays the memory requirements for both cases. It shows impressively that with this 
new method the amount of memory needed drops drastically. Since this new method would com-
bine the steps of calculating a change and integrating it is expected that the runtime for this new 
algorithm is not much higher than for the old method.  

5.6 Problems and Limitations 

This section will detail encountered problems during implementation. Also limitations of the cur-
rent implementation will be stated. Encountered were problems in the following areas: memory 
and runtime problems, problems due to the current implementation of the Systems Biology Work-
bench and problems due to the usage of specific features of Qt.  

5.6.1 Complexities of three-dimensional simulation  

As already hinted at in the description of the simulation-data structure (section 5.1.2) the demands 
placed by the three-dimensional simulation and visualization of reaction-diffusion systems on con-
temporary desktop-hardware are immense. Due to the cubic nature of the reaction-volume huge 
amounts of memory were needed. For the visualization even more than for the simulation since the 
objects needed for the simulation don’t exceed four times eight byte per volume element, a value 
easily beaten by almost any visualization plug-in.  
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The approach taken to deal with these challenges are two-fold. On the one side addressing the 
memory for the simulation data had to be done “manually” by allocating the space using “malloc” 
and then addressing this memory according to the function:  

 ( ), , max max maxposition X Y Z X Y Z Y Y Z= ⋅ ⋅ + ⋅ +  

Although implemented using the “inline” feature this function will need some time for each ac-
cess. Still, without this approach not even reaction-volume-dimensions up to 300x300x300 would 
be possible to simulate.  

The second approach taken is to develop two possible visualization modes, the online mode for 
fast simulation and visualization of “smaller” reaction-volume dimensions and the offline mode for 
simulation of larger dimensions.  

Even then the problem seems still not really tractable for large reaction-volumes. Mentioning that 
a 300x300x300 reaction-volume needs about 824MB of memory, along with the fact that most 
reaction-diffusion system take about 4000-7000 iterations until they display interesting patterns, 
should be sufficient to prove the point. For all practical reasons on contemporary desktop-
hardware the largest reaction-volume has thus the dimension 200x200x200. See also the figure 
detailing the memory needs of the current simulation-core (Figure 26). 

A third approach has also been evaluated. Here the idea was to compress the simulation-data using 
the ZLib compression algorithms. The drawback for this approach was that the (presumably) large 
double arrays had to be converted to character arrays first. The additional time and memory needed 
for the compression and decompression made this approach useless.  

5.6.2 Using the Systems Biology Workbench 

The concept of enhancing the capabilities of the simulator through the Systems Biology Work-
bench is certainly an interesting one. Especially the idea of visually designing the reactions had 
merit. From the beginning it was expected that the runtime would drop noticeably. The expected 
runtime drop was attributed to Jarnac having to interpret the equations build by JDesigner.  

The actual time needed for sample runs defied these expectations. Even for very small reaction-
volumes with a dimension of 50x50x1 needed about a second to be computed. To give SBW credit 
it was not designed to handle high throughput of data. Forthcoming versions promise possibilities 
for better ways of sharing memory across modules. Until then this plug-in should be used with 
care only. 

5.6.3 Qt multithreading and the QProgressDialog 

The basic idea was to use the visualization plug-ins in a separate thread in order to be prepared for 
an eventual failure. For example the visualization plug-in “SimpleCubes ” this plug-in supported 
the display of each and every volume element above a certain threshold as cube along with trans-
parency. For the case of larger reaction-volumes this would lead to enormous amounts of runtime 
and memory. Thus the generation of the graphical representation of the iterations was moved to a 
different thread. Furthermore the QProgressDialog  was used. This dialog measured the pro-
gress and provided the user with a progress display and the possibility to cancel the operation. 
Moreover it also promised only to appear in case the execution took longer than a certain configur-
able amount of time. Upon implementation two things were noticeable: First the dialog appeared 
over and over again for small reaction-volumes, each time taking away the focus from the applica-
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tion. Secondly canceling an ongoing visualization proved not to be a good idea, since the applica-
tion tended to get more instable after a thread was cancelled.   

Thus the multithreading feature is disabled for now until a better way can be found to cancel an 
ongoing visualization. For the time being warning dialogs have been implemented for visualization 
plug-ins that are known to lead to very long runtimes and excessive memory usage.  
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6 Evaluation  

This section will first recapitulate the proceedings that have let to the achieved result (i.e. the ap-
plication-suite for the configuration, simulation and visualization of simple three-dimensional re-
action-diffusion systems). As a next step it will be argued that the result is indeed an outcome of 
the proceedings and finally that the proceedings follow the goals specified in the problem defini-
tion.  

The goal to create a reaction-diffusion simulator working in three dimensions involved the follow-
ing three main tasks:  

• First of all the reaction-space had to be configured. Into this reaction-space elements (species, 
membranes and channels) had to be inserted.  

• These settings had then in a second step to be processed by a simulator.  

• And in a final step the output of the simulator had to be visualized.  

Realizing this threefold-ness the author began looking at each of the three tasks individually. 
Never forgetting that the tasks are not completely isolated and always checking the interactions 
between these three main tasks (configuration, simulation and visualization). This separation can 
be found in every aspect of this thesis analysis, conception and implementation. Now, looking 
back, it turns out that this decision opened a way to solve the given problem. With the separation 
into the three parts, three applications were developed which are tied strongly together. Nonethe-
less with this approach it is still possible to easily replace one part of the chain by a different pro-
gram. For example it would be thinkable to have configurations generated by a third party pro-
gram that handles the insertion process more elegantly.  Or a different simulator could be chosen. 
With one monolithic application this would not have been possible. One advantage of a mono-
lithic application would probably be a stronger integration of the configuration into the visualiza-
tion part of the program. In the developed set of programs it is possible to change a running simu-
lation via selecting a different configuration file. If on the other side a monolithic application were 
built, insertion / moving / deleting of elements would be possible in one application. Another nice 
feature of an integrated application would be a preview feature that would allow the user to evalu-
ate the configuration. Such a preview feature was not implemented because of the huge amount of 
time it would consume in most cases.  

Of course each of the three applications still represents a prototype. Thus the next paragraph will 
take a closer look at each application to evaluate the prototype. While the graphical user interface 
makes the configuration unit rather accessible, it still is very hard to position elements exactly 
where the user would like them to be. Noticing that in early presentations the author added the 
possibility for directly entering all parameters. Still, better input metaphors should be developed 
in the future.  

The developed prototype for the simulation unit works fine. The only negative point noticeable 
here is that the optimization method as described in section 5.5 was not yet implemented. This 
way only reaction-volumes up to a dimension of 300x300x300 can be simulated. Even then the 
amount of data created and written to the hard drive is immense. This would amount to up to 800 
MB per iteration. These amounts of data make even that size intractable at the moment. For all 
practical reasons the dimensions of the reaction-volume should not exceed 200x200x200 ele-
ments. The idea of the reaction-plug-ins worked out nicely. The only major flaw here is the Jarna-

  



78 PROBLEMS AND LIMITATIONS  
 

cReactionPlugin. Since Jarnac has to be asked for the rates of changes for each element a huge 
amount of communication is done. This is according to the current SBW communication message 
flow. SBW-modules are not allowed to “communicate” directly with each other. So each time a 
message is to be sent, it is sent first to the SBW-Broker and from there to the original recipient. 
Still the concept of visually creating reaction networks is an interesting one and was worth pursu-
ing.  

The final application to evaluate is the visualization unit. The two execution forms online- and 
offline visualization worked out as expected. With the possibility to change from one execution 
form to the other a high degree of flexibility was achieved. Of course there could be more visuali-
zation types but the plug-in system makes it possible to extend the available library easily. The 
only point that did not work out as planned was the multithreading idea. As already described in 
section 5.6.3 it was not possible to successfully separate the image generation from the main GUI 
thread. This results in possibly large delays and infrequently in a non-responding application. Un-
til that problem is solved the only solution was to warn the user each time a visualization type is 
selected that is known to consume a large part of the available resources. Since a real interactive 
playback could not be achieved for larger reaction-volume dimensions the possibility for the sav-
ing of screenshots was provided. This together with the feature of automatically saving screen-
shots every x iterations helps to create movie files of these visualizations.  

These three implemented applications together allow configuring, simulating and visualizing sim-
ple reaction-diffusion systems. They follow closely the steps defined in the conception phase. The 
conception phase on the other hand is strongly based on the analysis section. Together analysis, 
conception and implementation solve the problem stated at the beginning. It proved that the im-
plementation achieved a working prototype. Hence the concept is validated through the imple-
mentation.  
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7 Summary and Outlook 

This section concludes this thesis. In the two sections, first the work done will be summarized 
(recapitulating the individual steps analysis, conception and implementation) before a second sec-
tion will give an outlook of how this project will be continued.  

7.1 Summary 

In order to research the formation of sub cellular structures and patterns or spatial effects in meta-
bolic processes it is helpful to use simulations of three-dimensional reaction-diffusion systems.  

The aim of this thesis was to develop algorithms and data structures for the configuration, simula-
tion and visualization of simple three-dimensional reaction-diffusion systems. Towards this aim 
the thesis began to analyze input metaphors for three-dimensional modeling and the comparison of 
different file formats used in biological modeling. This provided the basis for the configuration of 
the reaction-space along with the setup of initial concentrations inside this reaction space. A next 
step analyzed what reaction-diffusion systems were analyzed in the past and were applicable to 
this case. Here it turned out that even half a century after its initial publishing Alan Turing’s paper 
(c.f. [Tur52]) on the chemical basis of morphogenesis contained the most common used reaction-
diffusion equations. In order to be able to support ever new forms of reaction-diffusion systems a 
plug-in system was conceived. This way the reaction-part of these equations could be substituted 
by a different one. The analysis of the visualization of simulation-data involved a comparison of 
different rendering APIs, a study of commonly used volume-visualization algorithms and an 
evaluation of volume-visualization libraries. This brought along the idea of applying the plug-in 
system for the visualization too. This provided an easy extendable selection of visualization types.  

This analysis helped to determine a concept which was then implemented with the following re-
sult. On the basis of C++, extended by the Qt library for a highly capable windowing system and 
by OpenSceneGraph a new high level scene graph API, three applications have been developed. 
The first application, the configuration unit, allows setting up the reaction-volume along with de-
sired features such as initial concentrations, membranes and channels. Furthermore the type of 
simulation to run will be specified using the configuration unit. This configuration will in a next 
step be saved onto hard drive using the file-format SBML level 2. Choosing that format provided 
the unique possibility to further extend the available reaction-diffusion systems by visually design-
ing new equations using JDesigner, a program for visually defining reaction networks.  

The second implemented application, the simulation unit, allows using the thus generated configu-
rations to simulate the specified reaction-volume. Supported simulation modes implemented are 
diffusion, the Brusselator reaction-diffusion scheme and a simulation mode employing the simula-
tion capabilities of Jarnac. Jarnac is used as SBW module that interprets the reaction-equations as 
specified in the visually created reaction network using JDesigner. Using this last simulation mode 
revealed a performance issue when using SBW for the transfer of large amounts of data.  

The third application in this suite of applications is the visualization unit. In order to investigate 
the possibility of a three-dimensional visualization during course of the simulation two operation 
modes were implemented. On the one side the visualization application can be used to alternate 
between simulation of an iteration and its visualization. On the other side the visualization unit will 
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“just” display recorded simulation runs. During course of the visualization the user is allowed to 
change the type of visualization for a maximum amount of information. Furthermore the user has 
been provided with the possibility of analyzing a dataset by selecting a threshold level that will 
determine the iso-surfaces that will be visualized. And finally the user will have the possibility to 
define a clipping volume. This enables the user to “slice” the display in a way that will provide the 
demanded information. 

The chapter implementation ends with stating a possible algorithm for optimizing the simulation-
core. Although the author couldn’t find the time necessary to implement this algorithm in the allot-
ted timeframe for this thesis, it is expected that this optimization will greatly reduce the space 
needed in memory as well as on the hard drive.  

In an evaluation chapter was then detailed, that the result of this thesis, namely the developed pro-
gram suite, does indeed follow the concept which was generated through an analysis of the re-
quirements. Furthermore it showed that the concept was validated through the implementation, 
since the final program suite works correctly and solves the problems posed to it.  

Summarizing the results of this thesis it can be said that although it is possible to simulate small to 
medium sized three-dimensional reaction-volumes and visualizing their results on current desktop-
computers, the demand on the hardware is still one notch to high. Thus a lot of simplifying as-
sumptions had to be made in order to achieve small results. Nonetheless the importance of research 
in this field is not to be neglected.   

7.2 Outlook 

This chapter will detail ideas for the improvement of the created application. The suggestions in-
volve all levels of the application: configuration, simulation and visualization.  

In research there is a still a high demand for the simulation and visualization of two-dimensional 
reaction-diffusion systems (perhaps due to the fact that these systems are tractable with currently 
available hardware). Although the current application supports the simulation and visualization of 
two-dimensional reaction-diffusion systems the underlying system will treat it still as a three-
dimensional one (with only one element in the z-plane). A dedicated 2D mode would speed up 
these simulations and visualizations. Moreover it would be much easier to configure such a simu-
lation run, since a dedicated 2D mode would allow “painting” species, membranes and channels on 
the surface. 

There exist various ways to improve the simulation-core in order to reduce the demand for mem-
ory needed. In section 5.5 one optimization was presented which could not be implemented within 
the allotted time frame. Implementing this optimization would already half the memory needed for 
large reaction-diffusion simulations. Other optimizations are thinkable. For example it could be 
researched whether swapping mechanisms represent a feasible approach to this problem. Another 
possibility would be to research parallel calculation of different slices of the data-set and combin-
ing the results from these runs.  

A large field for improvements would be to get rid of some of the assumptions made. Dynamic 
substrate changes or different diffusion rates through the reaction-volume would represent only 
two possibilities. The way membranes are currently implemented opens many possibilities for 
enhancements. The current model of basically blocking any molecules hitting the membrane and 
hindering the passage would be true only for very large molecules. Thus it would be interesting to 
allow for semi-permeable membranes. Also it should be possible to provide a different set of reac-
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tion-equations for the membrane surfaces. Finally it would be interesting to have the possibility of 
“moving” membranes.  

In his time at the Keck Graduate Institute the author ported some-core components of SBW from 
JAVA to C++ this enabled SBW to require less memory and simplified the installation procedures. 
Still the communication between the individual SBW modules is quite exhaustive. An improve-
ment here along with the introduction of shared memory between SBW modules would greatly 
enhance its applicability to various fields. This would also allow the Jarnac reaction-plug-in to 
function with greater speed.  

A final large field for improvement is represented by the visualization of the simulation-data. The 
prototypic visualization-plug-ins implemented so far should be enhanced further. Highest priority 
here would have the integration of an open visualization library such as vtk or OpenDX. This is 
another field that could not be touched in the allotted time-frame. Also applying multiple visuali-
zation plug-ins to one data-set in one display would be helpful. This is currently possible through 
actual implement a new visualization-plug-in that calls the visualization-plug-ins to combine. This 
is demonstrated by the “ComboPlugin ” (see also Figure 24 for a visualization employing this 
plug-in.). This plug-in combined the marching cube representation and the representation through 
rendered points and thus allowed filling the “inside” of the surfaces generated by the marching 
cube algorithm with “life”. Having a visual way to combine these plug-ins would be helpful.  
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Appendix 

A - Program CD 

This section will describe the program CD accompanying this thesis. The CD contains the win-
dows version for the three programs configuration unit, simulation unit and visualization unit 
along with the PDF version of this thesis, developer documentation and of course the source code 
for this project. As soon as the CD is placed into the CD-ROM drive the dialog displayed in Figure 
27 should be opened. This dialog allows installing the created reaction-diffusion simulator and the 
Systems Biology Workbench. The visualization unit and the configuration unit are also accessible 
directly from the CD-ROM. This allows for a quick assessment of the created applications. To 
effectively demonstrate the different visualization-types it is only necessary to start the visualiza-
tion unit. There choosing “continue simulation” and selecting the “.info ” from one of the dis-
played directories will result in a first visualization. From there all features of the program are 
accessible (i.e. changing the visualization-type, clipping, navigating through the scene …).  

 

Figure 27: Autorun Dialog of the included CD-ROM 

Along with the programs created the program CD also contains developer documentation created 
using doxygen. Furthermore a PDF version of the thesis will be available. Finally the program CD 
comes along with screenshots created throughout the developing process and some video files that 
show a various simulation runs.  
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B - Examples 

This section will demonstrate how to create a configuration using the configuration unit and how 
to visualize these configurations applying the online mode of the visualization unit.  

Configuration 

Here a simple configuration will be created. The reaction-volume will have the dimensions 
50x50x50. Furthermore a couple of elements will be inserted to demonstrate how membranes, 
channels and species work together. As simulation mode “diffusion only” will be selected. This 
will demonstrate effectively how the membranes influence the diffusion process of the species.  

A second configuration to create will demonstrate the 2D capabilities of the developed suite of 
applications. Therefore the reaction-volume will have the dimensions 100x100x1. Here only some 
molecules will be inserted. As simulation mode the Brusselator reaction-scheme will be selected. 
This will allow demonstrating the patterns that will be generated using the reaction-diffusion simu-
lator.  

In order to create a configuration the following two steps are necessary. First a new reaction-
volume has to be created. Therefore “File\New” is selected form the File-menu of the “configura-
tion unit”. In the now appearing dialog the dimensions are to be entered and a simulation mode to 
be chosen. The second step is to insert the elements that should be in the scene. Therefore the indi-
vidual insertion tools are to be selected from the Insert-menu. Once the insert mode is selected two 
possibilities for the insertion exist. Either the user enters the data (position and concentration for 
species, position and dimension for membranes and channels) in the now visible property pane, or 
the user uses the mouse to position the element and commits the position by pressing space.  

 

Figure 28: The file new dialog of the configuration unit 

Figure 28 displays the “File\New” dialog. For the first example the dimensions should be set to 
50x50x50 as displayed above. Under “reaction-diffusion system to use:” the “ZeroReaction-

Plugin ” should be selected. “ZeroReactionPlugin ” hints at the fact that the reactions in 
the Turing system (c.f. section 4.3.1.1) are disabled (set to zero). This leads to a simulation of dif-
fusion. After committing this selection with OK the reaction-volume will be displayed as wire-
frame-cube.  
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The next task is to insert some elements into the reaction-volume. In order to demonstrate the dif-
fusion plug-in one membrane will be inserted near the center of the reaction-volume. In the middle 
of the reaction-volume a channel will be placed. Finally several elements of species X will be in-
serted.  

• To insert the membrane, the membrane insertion tool has to be selected. It is to be found un-
der “Insert\Membrane” or by pressing the key “1”. To actually insert the membrane the po-
sition 25,25,25 and dimension 20x20x1 will be entered in the property pane that appeared af-
ter activating the insert mode. After committing by pressing “insert” on the property pane the 
membrane will be inserted.  

• The next step is the insertion of the channel. The channel insertion tool will be activated by 
selecting “Insert\Channel” or pressing “2” on the keyboard. In the changed property pane 
the position will be changed to 20,20,25 and the dimension to 4x4x3. Again these changes 
will be committed by clicking “insert”.  

• Finally some molecules are to be entered. This is done by selecting “Insert\Molecules of 
Species X” or pressing “x” on the keyboard. Using the changed property pane the following 
four molecules will be inserted:  

o position: 25,25,15, concentration: 6.0 

o position: 26,25,15, concentration: 6.0 

o position: 25,26,15, concentration: 6.0 

o position: 26,26,15, concentration: 6.0 

With these elements a first simple configuration is complete. What is left is to save the configura-
tion. Therefore “File\Save” is chosen and the configuration is saved under: 
“50x50x50_Diffusion.xml ”. Figure 29 displays the configuration of this first example.  

 

Figure 29: The configuration created for the first example. 

A second example is created in the same way. In order to create a two-dimensional reaction space 
the dimension of the reaction-volume will be given as 100x100x1 in Figure 28. The simulation 
mode will be set to “BrusselatorReactionPlugin ”. Only four elements will be needed for 
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this example. Elements of species X will be inserted in the center of the reaction-volume on the 
positions 50,50,1; 51,50,1; 50,51,1 and 51,51,1. Each element is inserted with a concentration of 
6.0. This configuration will be saved as “100x100x1-Brusselator.xml ”.  

 

Figure 30: The configuration of the second example (2D Brusselator) 

Visualization  

This section will demonstrate how to visualize the configurations created in the last section. Since 
the first configuration was created with the thought in mind to effectively present how membranes 
influence the spreading out of the inserted species, an iso-surface representation of the dataset will 
prove the point easiest. Thus the marching cube visualization will be selected.  

The second created configuration was a two-dimensional one. Thus the best plug-in to demonstrate 
this mode will be the “texture visualization plug-in”. This example also demonstrates the feature to 
set different visualization step sizes. That allows skipping several thousand image-generations and 
will display the expected patterns soon.  

The last simulation run here is of an altered configuration of the first example. The only changes 
made here was to select a different simulation mode, namely the Brusselator simulation mode. 
This demonstrates the three-dimensional capabilities visualizing reaction-diffusion schemes.  

In order to perform an online visualization of the created examples, the first step is to start the ap-
plication “visualization unit”. The next step is the selection of “File\Run Simulation” and the 
opening of the created configurations, “50x50x50_Diffusion.xml ”, 
“100x100x1_Brusselator.xml ” and “50x50x50_Brusselator.xml ”, in the appear-
ing file-open-dialog. After selecting the configuration to run, an initial iteration will be computed. 
And displayed with a default-visualization plug-in (the marching cube visualization) and enabled 
transparencies. Transparencies are here weighted according to an elements concentration ranging 
from 0.0 to 6.0.  

In order to visualize the first configuration (“50x50x50_Diffusion.xml”) transparencies were dis-
abled. The reason is the selected simulation mode. Since only diffusion is simulated the concentra-
tions throughout the reaction-volume will be rather low, and through the weighted transparencies 
not visible. Transparencies are deactivated by pressing “t” or deactivating “Settings\enable 
transparency”.  
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Figure 31 shows some iterations of the simulation run, of the first example. These screenshots 
were made using the feature to save a screenshots each time a new iteration is displayed. This fea-
ture is enabled through pressing “A” or selecting “Settings\enable screenshot generation”.  
The pictures show the expanding of the concentration through the reaction-volume. When this 
“wave” “hits” the membrane, it cannot go through. It expands along the surface of the membrane 
until it reaches the end of the membrane, or the channel. Then it continues its spreading out 
through the reaction-volume.  

15th iteration 420th iteration

845th iteration 1385th iteration

1835th iteration 2402nd iteration

15th iteration 420th iteration

845th iteration 1385th iteration

1835th iteration 2402nd iteration  

Figure 31: Marching cube visualization of the configuration created in the first example 
(50x50x50_Diffusion.xml) 

  



88 B - EXAMPLES  
 

Figure 32 displays the visualization of example two (“100x100x1_Brusselator.xml ”). 
Here the texture visualization was chosen. In first 5700 iterations one can see that the concentra-
tions through the reaction-volume oscillate from low to high concentrations. Then slowly patterns 
begin to form. These pictures demonstrate the chosen nature of the reaction-volume. First it is no-
ticeable that concentric patterns begin to form until the “rings” reach the boundaries of the reac-
tion-volume. Since the edges are wrapped around each other (i.e. the reaction-volume represents a 
torus) the concentration-“waves” influence each other as they enter the reaction-volume from the 
other side.  

5790th iteration 6690th iteration

11790th iteration 19140th iteration

25440th iteration 51240th iteration

5790th iteration 6690th iteration

11790th iteration 19140th iteration

25440th iteration 51240th iteration  
Figure 32: Texture visualization of example two (100x100x1_Brusselator.xml) 

Finally Figure 33 displays the visualization of a changed example one. As already mentioned here 
the simulation mode was changed from “ZeroReactionPlugin ” to “BrusselatorReac-

tionPlugin ”. As visualization plug-in the ”ComboPlugin ” was chosen. This visualization 
plug-in uses the marching cube visualization to create an iso-surface according to the desired 
threshold. The inside of the thus created object is filled with points, representing the concentrations 
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at the data-points. Again it takes about 6000 iterations until the first patterns begin to arise. This 
series of pictures also display how transparency is used to highlight higher concentrations.    

6300th iteration 7500th iteration

8700th iteration

10200th iteration 12654th iteration

9600th iteration

6300th iteration 7500th iteration

8700th iteration

10200th iteration 12654th iteration

9600th iteration

 

Figure 33: Visualization of example three through a combination of the marching cube visualization 
and the point-cloud visualization (50x50x50_Brusselator.xml) 
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C - Schema Definition of SBML Annotations 

Here the schema definitions for the annotations used in order to be able to save the configuration 
data in an SBML document. Three elements were used: 

• rdb:dimensions 

• rdb:reaction-plug-in  and  

• rdb:element 

With these definitions all necessary data could be saved. 

<?xml  version ="1.0"  encoding ="utf-8"  ?> 
<! -- schema definition of sbml annotations used in order 
     to save configuration data generated as part of the 
     reaction-diffusion simulator -- > 
<xs:schema  targetNamespace ="http://www.sys-bio.org/sbml"   
 elementFormDefault ="qualified"   
 attributeFormDefault ="unqualified" 
 xmlns : rdb ="http://www.sys-bio.org/sbml"   
 xmlns : xs ="http://www.w3.org/2001/XMLSchema"> 
  
 <xs:element  name="dimensions"> 
  <xs:complexType > 
   <xs:sequence > 
    <xs:element  name="x"  type ="xs:integer"  /> 
    <xs:element  name="y"  type ="xs:integer"  /> 
    <xs:element  name="z"  type ="xs:integer"  /> 
   </ xs:sequence > 
  </ xs:complexType > 
 </ xs:element > 
 <xs:element  name="reaction-plugin"> 
  <xs:complexType > 
   <xs:sequence > 
    <xs:element  name="name"  type ="xs:string"  /> 
    <xs:element  name="config"  type ="xs:string"  /> 
   </ xs:sequence > 
  </ xs:complexType > 
 </ xs:element > 
 <xs:element  name="element"> 
  <xs:complexType > 
   <xs:sequence > 
    <xs:element  name="x"  type ="xs:integer"  /> 
    <xs:element  name="y"  type ="xs:integer"  /> 
    <xs:element  name="z"  type ="xs:integer"  /> 
    <xs:element  name="concentration"  type ="xs:double"   
      minOccurs ="0"  /> 
    <xs:element  name="width"  type ="xs:integer"   

minOccurs ="0"  /> 
    <xs:element  name="height"  type ="xs:integer"   

minOccurs ="0"  /> 
    <xs:element  name="depth"  type ="xs:integer"   

minOccurs ="0"  /> 
   </ xs:sequence > 
  </ xs:complexType > 
 </ xs:element > 
</ xs:schema > 
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