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Abstract

Nanomaterials, i.e., materials that are manufactured at a very small spatial scale, can

possess unique physical and chemical properties and exhibit novel characteristics as

compared to the same material without nanoscale features. The reduction of size down

to the nanometer scale leads to the abundance of potential applications in different fields

of technology. For instance, tailoring the physicochemical properties of nanomaterials

for modification of their interaction with a biological environment has been reflected in

a number of biomedical applications.

Strategies to choose the size and the composition of nanoscale systems are often

hindered by a limited understanding of interactions that are difficult to study experi-

mentally. However, this goal can be achieved by means of advanced computer simula-

tions. This thesis explores, from a theoretical and a computational viewpoints, stability,

electronic and thermo-mechanical properties of nanoscale systems and materials which

are related to biomedical applications.

We examine the ability of existing classical interatomic potentials to reproduce sta-

bility and thermo-mechanical properties of metal systems, assuming that these poten-

tials have been fitted to describe ground-state properties of the perfect bulk materials.

It is found that existing classical interatomic potentials poorly describe highly-excited

vibrational states when the system is far from the potential energy minimum. On the

other hand, construction of a reliable computational model is essential for further de-

velopment of nanomaterials for applications. A new interatomic potential that is able

to correctly reproduce both the melting temperature and the ground-state properties of

different metals, such as gold, platinum, titanium, and magnesium, by means of classical

molecular dynamics simulations is proposed in this work. The suggested modification

of a many-body potential has a general nature and can be utilized for similar numerical

exploration of thermo-mechanical properties of a broad range of molecular and solid

state systems experiencing phase transitions.

The applicability of the classical interatomic potentials to the description of nanoscale

systems, consisting of several tens-hundreds of atoms, is also explored in this study. This

issue is important, for instance, in the case of nanostructured materials, where grains

or nanocrystals have a typical size of about a few nanometers. We validate classical
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potentials through the comparison with density-functional theory calculations of small

atomic clusters made of titanium and nickel. By this analysis, we demonstrate that

the classical potentials fitted to describe ground-state properties of a bulk material can

describe the energetics of nanoscale systems with a reasonable accuracy.

In this work, we also analyze electronic properties of nanometer-size nanoparti-

cles made of gold, platinum, silver, and gadolinium; nanoparticles composed of these

materials are of current interest for radiation therapy applications. We focus on the

production of low-energy electrons, having the kinetic energy from a few electronvolts

to several tens of electronvolts. It is currently established that the low-energy secondary

electrons of such energies play an important role in the nanoscale mechanisms of biolog-

ical damage resulting from ionizing radiation. We provide a methodology for analyzing

the dynamic response of nanoparticles of the experimentally relevant sizes, namely of

about several nanometers, exposed to ionizing radiation. Because of a large number of

constituent atoms (about 103− 104 atoms) and consequently high computational costs,

the electronic properties of such systems can hardly be described by means of ab ini-

tio methods based on a quantum-mechanical treatment of electrons, and this analysis

should rely on model approaches. By comparing the response of smaller systems (of

about 1 nm size) calculated within the ab initio- and the model framework, we validate

this methodology and make predictions for the electron production in larger systems.

We have revealed that a significant increase in the number of the low-energy electrons

emitted from nanometer-size noble metal nanoparticles arises from collective electron

excitations formed in the systems. It is demonstrated that the dominating mechanisms

of electron yield enhancement are related to the formation of plasmons excited in a whole

system and of atomic giant resonances formed due to excitation of valence d electrons

in individual atoms of a nanoparticle. Being embedded in a biological medium, the

noble metal nanoparticles thus represent an important source of low-energy electrons,

able to produce a significant irrepairable damage in biological systems.

A general methodology for studying electronic properties of nanosystems is used

to make quantitative predictions for electron production by non-metal nanoparticles.

The analysis illustrates that due to a prominent collective response to an external

electric field, carbon nanoparticles embedded in a biological medium also enhance the

production of low-energy electrons. The number of low-energy electrons emitted from

carbon nanoparticles is demonstrated to be several times higher as compared to the

case of liquid water.



Zusammenfassung

In den letzten Jahrzehnten haben sich Nanowissenschaft und Nanotechnologie zu einem

reichen und vielversprechenden Forschungsfeld, das auf die zukünftige wissenschaftliche

und technologische Entfaltung richtet, entwickelt [1, 2]. Dies ist vor allem durch die

Entwicklung von anspruchsvollen theoretischen und experimentellen Methoden für das

Verständnis, die Charakterisierung und Manipulation nanoskaliger Strukturen und Phä-

nomene möglich geworden [3].

Fundamentale Forschungsobjekte sind Nanomaterialien, die die isolierten einzelnen

Nanostrukturen und deren Bauteile umfassen. Im Allgemeinen sind Nanomaterialien

chemische Substanzen oder Materialien, die in einem sehr kleinen räumlichen Maßstab

hergestellt und verwendet werden. Es ist allgemein anerkannt, dass solche Systeme

mindestens in einer Dimension Abmessungen haben müssen, die weniger als etwa 100

Nanometer betragen. Im Jahr 2011 hat die Europäische Kommission die Empfehlung

zur Definition von Nanomaterialien veröffentlicht [4]. Gemäß dieser Empfehlung ist ein

“Nanomaterial”: a natural, incidental or manufactured material containing particles, in

an unbound state or as an aggregate or as an agglomerate and where, for 50% or more

of the particles in the number size distribution, one or more external dimensions is in

the size range 1 nm – 100 nm.1 Atomare und molekulare Cluster (auch als Nanopartikel

oder Nanokristalle bezeichnet), die die wesentlichen Bausteine für die Nanotechnologie

sind, sind Objekte mit allen drei Außenabmessungen im Nanometerbereich. Die obige

Empfehlung schlägt auch vor, dass “... Fullerenes, graphene flakes and single wall carbon

nanotubes with one or more external dimensions below 1 nm should be considered as

nanomaterials.2”

Materialien, die in einem sehr kleinen räumlichen Maßstab hergestellt werden, können

einzigartige optische, elektrische und magnetische Eigenschaften besitzen und völlig

neue Eigenschaften aufweisen im Vergleich zu denselben Materialien ohne nanoskalige

Abmessungen. Die Schaffung der neuen Nanomaterialien ist ein wichtiges Thema für

1ein natürliches, zufälliges oder hergestelltes partikelhaltiges Material, dessen Partikel in einem
ungebundenen Zustand oder ein Aggregat oder ein Agglomerat sind, und wobei für mindestens 50%
der Partikeln eine oder mehrere Außenabmessungen in der Größenordnung von 1 nm auf 100 nm liegen.

2“... Fullerene, Graphenflocken und einwandige Kohlenstoffnanoröhren mit einer oder mehreren
Außenabmessungen unter 1 nm sollte als Nanomaterialien berücksichtigt werden.”

iii
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die Nanowissenschaften. Die Reduzierung der Größe führt zu einer Reihe von neuen

physikalischen und chemischen Eigenschaften und einer Fülle von Anwendungsmöglich-

keiten in verschiedenen Technikbereichen. Insbesondere werden Nanomaterialien ver-

wendet oder in der Zukunft zur Verwendung vorgeschlagen in therapeutischen und diag-

nostischen biomedizinische Anwendungen [5], weil ihre physikalisch-chemischen Eigen-

schaften angepasst werden können, um Wechselwirkungen mit der biologischen Umge-

bung zu modifizieren [6, 7].

Strategien zur Wahl der Größe und Zusammensetzung von nanoskaligen Systemen

sind oft behindert durch ein begrenztes Verständnis der Wechselwirkungen, die schwer

experimentell untersuchtbar sind. Allerdings kann dieses Ziel mit Hilfe modernster

Computer-Simulationen erreicht werden. Unter der Annahme, dass die Simulationen

unterschiedliche Systemeigenschaften korrekt beschreiben, können sie einen Einblick

in nanoskalige Charakteristiken des Systems geben und eine preiswerte Alternative zu

experimentellen Untersuchungen werden.

Diese Arbeit widmet sich einer theoretischen und computergestützten Untersuchung

der Stabilität, sowie der elektronischen und thermomechanischen Eigenschaften von

nanoskaligen Systemen und Materialien, die mit biomedizinischen Anwendungen ver-

bunden sind. Die durchgeführte Studie liegt auf dem Grenzgebiet von verschiedenen

Wissenschaftsbereichen, wie der Quantenchemie, der Atom- und Molekülphysik, Clus-

terphysik und der Physik von Strahlenschäden.

In dieser Arbeit untersuchen wir die Fähigkeit von bestehenden klassischen inter-

atomaren Potenzialen, thermomechanische Eigenschaften und die Stabilität von Met-

allsystemen zu reproduzieren, unter der Annahme, dass diese Potenziale zur Beschrei-

bung der Grundzustandseigenschaften makroskopischer Materialen entwickelt wurden.

Es wird festgestellt, dass bestehende klassischen interatomaren Potenziale angeregte

Schwingungszustände schlecht beschreiben, dann nämlich, wenn das System sich weit

von dem Minimum der potenziellen Energie befindet. Jedoch ist die Schaffung von

zuverlässigen numerischen Modellen für die weitere Entwicklung von Nanomaterialien

und ihrer Anwendungen notwendig. In der Arbeit wird ein neues interatomares Po-

tential vorgeschlagen, das in der Lage ist in klassischen Moleküldynamiksimulationen

sowohl die Schmelztemperatur als auch die Grundzustandseigenschaften von verschiede-

nen Metallen korrekt zu reproduzieren. Das neue Potential stellt eine Modifikation

des weitverbreiteten Embedded-Atom-Methode-Potentials vor. Die Anwendbarkeit des

neuen Potentials auf Metalle mit unterschiedlichen Merkmalen der elektronischen Struk-

tur, wie Gold, Platin, Titan und Magnesium, wird demonstriert. Die vorgeschlagene

Modifikation eines Vielteilchen-Potenzials ist allgemeiner Natur und kann für weitere

ähnliche numerische Studien der thermomechanischen Eigenschaften von einer Reihe

von Molekül- und Festkörpersystemen, die Phasenübergänge durchlaufen, verwendet
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werden.

Ein Verfahren zum Benchmarking der klassischen Kraftfelder, das auf den ab-initio-

Berechnungen von kleinen atomaren Cluster basiert, wird vorgeschlagen. Als Beispiel

untersuchen wir die Kraftfelder, die Wechselwirkungen zwischen Nickel- und Titan-

Atomen beschreiben. Durch die Erforschung der Stabilität der reinen und Ni-dotierten

Titancluster im Rahmen des klassischen und ab-initio-Ansatzes wird die Genauigkeit

der vorhandenen klassischen Potentiale für die Beschreibung von Systemen auf atom-

arer Skala, wo Quanteneffekte eine entscheidende Rolle spielen, ausgewertet. Dieses

Problem ist wichtig beispielsweise im Fall von nanostrukturierten Materialien, deren

Körner oder Nanokristalle eine typische Größe von einigen Nanometern haben. Für

solche Systeme ist es wichtig, sowohl ganz präzise makroskopische Eigenschaften des

Systems, als auch die Eigenschaften von nanoskaligen Systemen, die aus mehreren

Dutzenden bis Hunderten von Atomen bestehen, zu beschreiben. Mit dieser Analyse

zeigen wir, dass die klassischen Potenziale, die auf die Grundzustandseigenschaften

von makroskopischen Materialien abgestimmt sind, oft auch die Eigenschaften von

viel kleineren Systemen wie atomaren Clustern mit einer angemessenen Genauigkeit

beschreiben können. Daher kann man einen einzigen Satz dieser Kraftfelder verwen-

den, um die makroskopische Eigenschaften des Materials sowie einige Punktdefekte und

lokale Unregelmäßigkeiten von einer perfekten Kristallstruktur, die im atomistischen

Maßstab auftreten, zu beschreiben.

In dieser Arbeit analysieren wir auch die elektronischen Eigenschaften von Nanopar-

tikeln aus Gold, Platin, Silber und Gadolinium. Nanopartikel aus diesen Materialien

sind aktuell interessant für Anwendungen in der Strahlentherapie [8–12]. Wir konzen-

trieren uns auf die Freisetzung von niederenergetischen Elektronen mit einer kinetis-

chen Energie von wenigen Elektronenvolt bis zu einigen Dutzenden Elektronenvolt. Es

ist bekannt, dass niederenergetische Sekundärelektronen solcher Energien eine wichtige

Rolle spielen bei den nanoskaligen biologischen Schädigungsmechanismen, die durch ion-

isierende Strahlung entstehen [13–15]. Wir schlagen eine Methode vor für die Analyse

der dynamischen Antwort von Nanopartikeln experimentell relevanter Größen, nämlich

einige Nanometer, die ionisierender Strahlung ausgesetzt gewesen sind. Aufgrund der

großen Anzahl von konstituierenden Atomen (103−104 Atome) und dem damit verbun-

denen hohen Rechenaufwand können die elektronischen Eigenschaften solcher Systeme

kaum mittels ab-initio-Methoden, die sich auf eine quantenmechanische Betrachtung

von Elektronen gründen, beschrieben werden. Deshalb sollte sich diese Analyse auf

Modellansätze stützen. Durch den Vergleich der Antwort mit kleineren Systemen (von

etwa 1 nm), die ab initio und im Rahmen des Modells berechnet wurden, bestätigen wir

diese Methodik und machen Vorhersagen für die Freisetzung von Elektronen in größeren

Systemen.
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Die durchgeführte Analyse hat gezeigt, dass ein substanzieller Anstieg der Anzahl

der niederenergetischen Elektronen, die von nanoskaligen Edelmetall-Nanopartikeln

emittiert wurden, durch kollektive Elektronenanregungen in den Systemen entsteht.

Es wird gezeigt, dass die dominierenden Mechanismen der ansteigenden Elektrone-

nausbeute mit (i) der Bildung von Plasmonen und (ii) den durch Anregung der d-

Valenzelektronen in einzelnen Atomen eines Nanopartikels entstandenen Riesenreso-

nanzen, verbunden sind. Plasmonen, das heißt kollektive Anregungen von delokalisierten

Valenzelektronen, zeigen sich in den Elektronenemissionspektren der Edelmetall-Nano-

partikel im Energiebereich von etwa 1−10 eV. Der dominante Mechanismus der erhöhten

Elektronenfreisetzung ist mit dem Oberflächenplasmon verbunden, dessen Beitrag zur

Elektronenausbeute deutlich mehr als der des Volumenplasmons ist. Bei höheren Elek-

tronenenergien (von einigen Dutzenden eV) leistet die kollektive Anregung von 5d-

Elektronen in Gold und Platin und 4d-Elektronen in Silber, die auf einzelne Atome

lokalisiert wird, den Hauptbeitrag zur Elektronenausbeute.

Diese Analyse hat gezeigt, dass die Anzahl der niederenergetischen Elektronen, die

durch den Gold- und Platin-Nanopartikel mit einer bestimmten Größe erzeugt wer-

den, mehr als eine Größenordnung die, die in einem äquivalenten Volumen von Wasser

erzeugt werden, übersteigt. Also sind die in einem biologischen Medium eingebet-

teten Edelmetall-Nanopartikeln eine wichtige Quelle für niederenergetische Elektronen.

Die vorgestellten Ergebnisse stützen die Ergebnisse der neulich durchgeführten experi-

mentellen Studien [16, 17], die die Bedeutung von Gold-Nanopartikeln in der erhöhten

Freisetzung der niederenergetischen Elektronen entdeckten. Solche Elektronen sind für

signifikante irreparable Schäden in biologischen Systemen verantwortlich.

Die Analyse des Beitrags der Plasmonen wurde im Rahmen des Modell-Ansatzes, der

auf die Plasmon-Resonanz-Approximation [18–20] basiert, durchgeführt. Zur Begrün-

dung von Parametern des Modells wurden Photoabsorptionsspektren von verschiedenen

atomaren Gold-Clustern berechnet und mit den Spektren, die mittels zeitabhängiger

Dichtefunktionaltheorie ermittelt wurden, verglichen. Die Genauigkeit der Ergebnisse

ist durch den Vergleich von ab-initio-Spektren mit allgemeingültigen experimentellen

Daten für das Gold-Atom und mit den Ergebnissen früherer ab-initio-Berechnungen

erwiesen. Zusätzliche Belege für die Gültigkeit des Modells wird durch einen umfangre-

ichen Vergleich mit aktuellen experimentellen Daten der Photoionisation und Elektro-

nenstreuung von Kohlenstoff-Fullerenen angeführt.

Eine allgemeine Methode für die Untersuchung der elektronischen Eigenschaften von

Nanosystemen wird verwendet, um quantitative Vorhersagen für die Elektronenfreiset-

zung von nicht-metallischen Nanopartikeln zu machen. Es wird gezeigt, dass auch die

in einem biologischen Medium eingebetteten Kohlenstoff-Nanopartikel aufgrund einer

bedeutenden kollektiven Antwort auf ein externes elektrisches Feld die Freisetzung von



vii

niederenergetischen Elektronen verstärken. Die Anzahl der emittierten Elektronen mit

der Energie von 10 eV ist mehrfach höher als im Vergleich zu flüssigem Wasser.

Die Struktur dieser Arbeit ist folgende.

Kapitel 1 enthält eine kurze Einführung in das Problem der Computermodellierung

von Nanomaterialien für biomedizinische Anwendungen. Die Hauptfragestellungen der

Dissertation werden aufgezählt.

Kapitel 2 gibt einen Überblick über theoretische Methoden zur Beschreibung der

Struktur und Dynamik von Nanosystemen. Das Kapitel beginnt mit einer kurzen

Einführung in die Born-Oppenheimer-Näherung, die die Grundlage sowohl der ab-initio-

Methoden für eine quantenmechanische Behandlung der Elektronen als auch der klas-

sischen interatomaren Potenziale ist. Dann folgt die Beschreibung des Konzepts der

klassischen Molekulardynamik und werden mehrere Haupttypen von interatomaren Po-

tentialen aufgezählt. Als nächstes werden die Hartree-Fock-Näherung und Dichtefunk-

tionaltheorie, die es erlauben die elektronische Struktur von Vielelektronensystemen

zu erforschen, beschrieben. Dynamik der Elektronendichte kann durch zeitabhängige

Dichtefunktionaltheorie beschrieben werden, die am Ende des Kapitels dargestellt wird.

Kapitel 3 widmet sich einer Untersuchung der Stabilität und thermomechanischen

Eigenschaften von Nanomaterialien durch den ab-initio-Ansatz und die klassische Mole-

kulardynamik. Klassische Kraftfelder zur Beschreibung von reinen und Bimetall-Syste-

me, die aus Titan und Nickel bestehen, werden durch die Dichtefunktionaltheorie-

Berechnungen von kleinen atomaren Clustern validiert. Dann wird eine Vorgehensweise

für die Schaffung eines neuen interatomaren Potenzials formuliert, das in der Lage ist

in klassischen Moleküldynamiksimulationen sowohl die Schmelztemperatur als auch die

Grundzustandseigenschaften von verschiedenen Metallen korrekt zu reproduzieren.

Kapitel 4 beschäftigt sich mit der theoretischen und numerischen Untersuchung

der Elektronenemission von Metallnanopartikeln aus Gold, Platin, Silber und Gadolin-

ium. Ein neuer Mechanismus der erhöhten Freisetzung von niederenergetischer Elek-

tronen von solchen Nanopartikeln durch den Zerfall der kollektiven Elektronenanre-

gungen wird vorgeschlagen und untersucht. Das Kapitel stellt Elektronenemissionspek-

tren von solcher Nanopartikel, die mittels der Plasmonresonanz-Approximation berech-

net wurden, dar. Dieser analytische Ansatz stellt ein Mittel für die Untersuchung

der Dynamik von kollektiven Elektronenanregungen vor, die in Vielteilchensystemen

wie atomaren Clustern und Nanopartikeln entstehen. Die Verwendbarkeit des Model-

lansatzes wird durch den Vergleich der modellbasierten Spektren mit denen, die durch

eine avancierterer Methode, und zwar zeitabhängige Dichtefunktionaltheorie, erhalten

wurden, begründet.

Die Analyse der gesteigerten Elektronenausbeute von Kohlenstoff-Nanopartikeln

wird im Kapitel 5 präsentiert. Es wird gezeigt, dass die Elektronenausbeute aus einem
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Kohlenstoff-Nanopartikel, der aus Fullerit besteht, welches eine kristalline Form von

C60-Fullerenen ist, um ein Vielfaches höher ist als die Elektronenausbeute von flüssigem

Wasser. Zusätzliche Bestätigung der Plasmon-Resonanz-Approximation, die benutzt

wurde, um diese Vorhersagen zu machen, wurde durch einen umfangreichen Vergleich

mit aktuellen experimentellen Daten der Photoionisation und Elektronenstreuung von

C60-Fulleren erbracht.

Kapitel 6 präsentiert die Zusammenfassung der Ergebnisse, bringt diese Arbeit in

Verbindung mit den neuesten biomedizinischen und strahlenbiologischen Studien und

gibt einen Ausblick auf die Richtungen zukünftiger Forschung.

Die Dissertation basiert auf Originalergebnisse [21–29], die in internationalen Fach-

zeitschriften veröffentlicht wurden und auf internationalen Konferenzen vorgestellt wur-

den.
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Chapter 1

Introduction

Over the last few decades, nanoscience and nanotechnology have developed into a rich

and promising field of research allowing for extensive future scientific and technological

development [1,2]. This has become possible largely due to the development of sophis-

ticated theoretical and experimental techniques for understanding, characterizing, and

manipulating nanoscale structures and phenomena [3].

The fundamental entities of interest are nanomaterials that comprise the isolated

individual nanostructures and their assemblies. Generally speaking, nanomaterials are

chemical substances or materials that are manufactured and used at a very small spa-

tial scale. It is commonly accepted that such systems must have at least one dimension

that is less than approximately 100 nanometers. In 2011, the European Commission

adopted the recommendation on the definition of a nanomaterial [4]. According to this

recommendation, a “nanomaterial” means: a natural, incidental or manufactured ma-

terial containing particles, in an unbound state or as an aggregate or as an agglomerate

and where, for 50% or more of the particles in the number size distribution, one or

more external dimensions is in the size range 1 nm – 100 nm. This recommendation

also suggests that “... Fullerenes, graphene flakes and single wall carbon nanotubes with

one or more external dimensions below 1 nm should be considered as nanomaterials.”

Materials engineered to such a small scale can possess unique optical, electrical, and

magnetic properties and exhibit novel characteristics as compared to the same material

without nanoscale features. Construction of new nanomaterials is an important issue

in the developing field of nanoscience. The reduction of size leads to a whole range of

new physical and chemical properties and to the abundance of potential applications

in different fields of technology. In particular, nanomaterials are utilized or proposed

to be utilized in the future in therapeutic and diagnostic biomedical applications [5]

because their physicochemical properties can be tailored to modify interactions with

the biological environment [6, 7].

Atomic and molecular clusters (also referred to as nanoparticles or nanocrystals),

3
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which are one of the most essential building blocks for nanotechnology, are objects

with all three external dimensions at the nanoscale. During the last 30 years, the

capability of producing free atomic clusters [30], the discovery of a C60 fullerene – a

nanoscale hollow allotrope of carbon [31], and the first systematic investigations of

metal clusters [32–34] have triggered the emergence of cluster science on a systematic

basis [35]. Hence, cluster science has grown into an important interdisciplinary field

combining different branches of physics and chemistry, and ranging from fundamental

research to nanotechnology applications [36–38].

At present, there is a vivid scientific interest in studying the interaction of nanopar-

ticles with biological media because of the large number of possible applications in

nanomedicine [39, 40]. One of the promising ideas is to use metal-based nanoparticles

in cancer treatments with ionizing radiation [8,11,41–43]. Radiation therapy (or shortly,

radiotherapy) is one of the frequently used technologies to treat tumors, which are a

major health concern. However, this technique has a limitation which comes from the

sensitivity of healthy tissues, surrounding the tumor, to radiation. To make the treat-

ment more efficient, one needs to minimize the dose delivered to the healthy tissue,

thus preventing harmful effects of radiation exposure. This problem can be handled

by using radiosensitizers which can locally enhance the radiation damage of the tumor

cells and thus increase the efficiency of radiotherapy. Thereby, approaches that could

enhance radiosensitivity within tumors relative to normal tissues have the potential to

become advantageous radiotherapies [44].

Nanostructured materials, where grains or nanocrystals have a typical size of about

several nanometers, represent another illustrative example of systems which have been

explored for biomedical applications. Of particular interest is the fabrication of devices

composed of nanostructured metal materials which are designed for being implanted

in living tissues. Nanostructuring of such devices can provide them with superior me-

chanical properties and enhanced biocompatibity as compared to the properties of the

corresponding bulk materials [45]. Materials such as nanostructured titanium and its al-

loys attract much attention in view of their medical application in surgery, orthopaedic,

and dental medicine [46, 47]. A nickel-titanium alloy with almost equal concentration

of both types of atoms manifests the so-called superelastic behavior [48], which is quite

similar to that of living tissues. Thereby, this compound is an excellent candidate for

implant material capable of mimicking the mechanical behavior of bones [49].

Strategies to select nanomaterial components as well as to choose the size and the

shape of nanosystems are often hindered by a limited physical understanding of interac-

tions that are difficult to study experimentally. However, this goal can be achieved by

means of advanced computer simulations. Provided that the simulations correctly de-

scribe different system properties, they may give insights into nanoscale features of the
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system and become a low-cost alternative to experimental studies. Thus, construction

of reliable computational models for the numerical study of nanomaterials is essential

for their further developments for technological applications.

1.1 Problems addressed in this thesis

The aim of this work is to advance the understanding of stability, electronic, and thermo-

mechanical properties of nanomaterials which are of current interest for biomedical

applications and to analyze the physical processes that occur in such nanoscale systems

by means of advanced computer simulations. In order to achieve this goal, the following

main problems were addressed:

1. The ability of existing classical interatomic potentials to reproduce the stabil-

ity and thermo-mechanical properties of metal systems, assuming that these po-

tentials have been fitted to describe ground-state properties of the perfect bulk

materials, was examined. It was found that the existing classical interatomic po-

tentials poorly describe highly-excited vibrational states when the system is far

from the potential energy minimum. A new interatomic potential that is able to

correctly reproduce both the melting temperature and the ground-state proper-

ties of different metals by means of classical molecular dynamics simulations was

proposed. This study was motivated by the fact that the proper quantitative de-

scription of phase transitions in general and the melting process in particular by

means of classical molecular dynamics simulations is a major scientific challenge.

The new potential represents a modification of the widely used embedded-atom

method-type potential. The applicability of the new potential to metals with dif-

ferent characteristics of the electronic structure, such as gold, platinum, titanium,

and magnesium, was demonstrated. The results of these studies are presented in

Chapter 3 and in Ref. [21].

2. A method for benchmarking classical force fields, which is based on the ab initio

calculations of small atomic clusters, was proposed. As a case study, the force

fields which describe interactions between nickel and titanium atoms were investi-

gated. By studying the stability of pure and Ni-doped titanium clusters within the

classical and ab initio frameworks, we evaluated the accuracy of the existing clas-

sical interatomic potentials for the description of systems on the atomistic scale,

where quantum effects play a crucial role. This issue is important, for instance, in

the case of nanostructured materials, where grains or nanocrystals have a typical

size of about a few nanometers. For such systems, it is important to describe

rather accurately both bulk properties of the system and also the properties of
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nanoscale systems consisting of several tens-hundreds of atoms. As a result of

this analysis, it was demonstrated that the classical interatomic potentials fitted

to describe ground-state properties of a bulk material can also describe, with a

reasonable accuracy, the properties of much smaller systems that are driven by

classical interatomic interactions. Therefore, one can use a single set of the force

fields to describe the bulk properties of the material as well as some point de-

fects and local irregularities of a perfect crystalline structure, which occur on the

atomistic scale. The results of this analysis are presented in Chapter 3 and in

Refs. [22,23].

3. A theoretical and numerical analysis of electronic properties of nanometer-size

metal nanoparticles was performed by means of ab initio and model approaches.

In particular, we focused on the study of electron production by gold nanoparti-

cles irradiated with photons and fast ions. For that, the photoabsorption spectra

of several gold clusters were calculated in a broad photon energy range by means

of time-dependent density-functional theory. It was revealed that a significant in-

crease in the number of emitted electrons arises from collective electron excitations

in the clusters. The dominating enhancement mechanisms are related to the for-

mation of (i) plasmons excited in a whole system, and (ii) atomic giant resonances

due to excitation of d electrons in individual atoms. By performing this analysis,

we provided a methodology for analyzing the dynamic response of nanoparticles

of the experimentally relevant sizes, namely of about several nanometers, exposed

to ionizing radiation. Because of a large number of constituent atoms (about

103− 104 atoms) and consequently high computational costs, the electronic prop-

erties of such systems can hardly be described by means of ab initio methods

based on a quantum-mechanical treatment of electrons, and this analysis should

rely on model approaches. The results of this analysis are presented in Chapter 4

and in Ref. [24].

4. The yield of low-energy electrons generated by gold nanoparticles of different size

due to irradiation by fast charged projectiles was estimated. The results of calcu-

lations were compared to those obtained for liquid water representing a biological

medium. It was demonstrated that due to a prominent collective response to

an external field, gold nanoparticles significantly enhance the yield of secondary

electrons as compared to water. Thus, decay of the collective electron excita-

tions in a nanoparticle embedded in a biological medium represents an important

mechanism of the low-energy electron production. The results of this analysis are

presented in Chapter 4 and in Refs. [24,25].

5. A theoretical and numerical analysis of electron production by platinum, silver,
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and gadolinium nanoparticles irradiated by fast ions was performed; along with

gold nanoparticles, the nanoparticles composed of these materials are of current

interest for cancer treatments with ionizing radiation. The study revealed that

the noble metal nanoparticles irradiated with fast ions significantly enhance the

production of low-energy electrons, which play an important role in the biological

damage on the nanoscale. A physical explanation for this effect was provided.

The results of this analysis are presented in Chapter 4 and in Ref. [25].

6. A general methodology developed for studying electronic properties of nanosys-

tems was used to make quantitative predictions for electron production by non-

metal nanoparticles. We made quantitative predictions for electron production

by carbon nanoparticles exposed to ionizing radiation. It was demonstrated that

due to a prominent collective response to an external electric field, carbon-based

fullerite nanoparticles embedded in the medium also enhance the yield of low-

energy electrons. The validity of the model approach, which was used to make

these predictions, was thoroughly justified by an extensive comparison with recent

experimental data on photoionization and electron scattering from a C60 fullerene.

The results of these studies are presented in Chapter 5 and in Refs. [26–29].

1.2 Thesis overview

The thesis is structured as follows.

Chapter 2 gives an overview of theoretical methods for the description of structure

and dynamics of nanoscale systems. The chapter starts with a brief introduction to the

Born-Oppenheimer approximation that is the cornerstone for both ab initio methods for

a quantum-mechanical treatment of electrons and classical interatomic potentials. Then

follows the description of the concept of classical molecular dynamics and several major

types of interatomic potentials are outlined. Next, the Hartree-Fock approximation

and density-functional theory, which allow the study of electronic structure of many-

electron systems, are described. Dynamics of electron density can be described by

means of time-dependent density-functional theory, which is also outlined in the end of

the chapter.

Chapter 3 is devoted to the investigation of stability and thermo-mechanical proper-

ties of nanomaterials by means of ab initio and classical molecular dynamics approaches.

Classical force fields for the description of monatomic and bimetallic systems composed

of titanium and nickel are validated through the density-functional theory calculations

of small atomic clusters. Then, a recipe for constructing a new interatomic potential,

which is able to correctly reproduce both the melting temperature and the ground-state
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properties of metal systems by means of molecular dynamics simulations, is formulated.

The applicability of the new force field to different metal systems, such as gold, plat-

inum, titanium, and magnesium, is demonstrated.

Chapter 4 is devoted to the theoretical and numerical investigation of electron emis-

sion from metal nanoparticles composed of gold, platinum, silver, and gadolinium. A

new mechanism of low-energy electron yield enhancement from such nanoparticles due

to the decay of collective electron excitations is proposed and explored. The chapter

presents spectra of electron emission from nanometer-size nanoparticles calculated by

means of the plasmon resonance approximation [18–20]. This analytical approach rep-

resents a tool for investigating the dynamics of collective electron excitations arising in

many-particle systems, such as atomic clusters and nanoparticles. Validity of the uti-

lized model approach is justified by comparing model-based spectra with those obtained

by means of a more advanced method, namely by time-dependent density-functional

theory. The performed analysis reveals that the number of the low-energy electrons

generated by small noble metal nanoparticles exceeds by more than an order of mag-

nitude that produced by an equivalent volume of liquid water representing a biological

medium.

The similar effects of electron yield enhancement have been observed for carbon

nanoparticles; this analysis is presented in Chapter 5. Electron yield from a solid carbon

nanoparticle composed of fullerite, a crystalline form of C60 fullerene, is demonstrated

to be several times higher than that from liquid water. Additional validation of the

plasmon resonance approximation, which was used to make these predictions, has been

made by an extensive comparison with experimental results on photoionization and

electron scattering from C60.

Chapter 6 presents the summary of the results, draws a connection between this

work and recent biomedical and radiobiological studies, and gives an outlook for the

directions of further investigations.

The thesis is based on the original results, published in international journals [21–

29] and presented at international conferences. Papers not included in this thesis are

mentioned in the complete list of author’s scientific publications on pp. 139–142.



Chapter 2

Theoretical methods for the

description of structure and

dynamics of nanoscale systems

Computer simulations based on atomistic models have become nowadays a powerful

tool for gaining fundamental knowledge about structural and dynamical properties of

materials, and processes involving these systems. The capabilities and areas of ap-

plication of such simulations continue to grow, being reinforced by the progress in

modern computer technology and by the development of new simulation methods and

numerical algorithms [50]. This chapter aims at providing a brief overview of theoret-

ical approaches which have been utilized in this study for exploring the structure and

dynamics of many-particle systems.

The two main approaches are currently used to describe interatomic interactions,

namely (i) ab initio methods based on a quantum-mechanical treatment of electrons

and (ii) classical interatomic potentials. Most ab initio electronic structure calculations,

which are based on the Hartree-Fock method [51] or density-functional theory [52, 53],

assume the electronic configuration to be in an instantaneous ground state for each nu-

clear configuration. Besides, ab initio methods can be utilized for investigating electron

dynamics induced, for instance, by the interaction of radiation with matter. In this

case, one can employ time-dependent density-functional theory [54]. It is also possible

to investigate the influence of excited electronic states on the dynamics of nuclei. This

problem requires an exploration of a potential energy surface for the nuclear motion that

defines the total energy of electrons as a function of nuclear coordinates. Since the mass

of a nucleus far exceeds that of an electron, the Born-Oppenheimer approximation [55]

implies the separation of the motion of slow (nuclei) and fast (electrons) degrees of

freedom of a molecular system. In consideration of the large masses and slow motion

9
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of the nuclei, their motion is often treated using classical mechanics. In this case, the

potential energy surface, which is mapped out for different nuclear configurations, is

used in classical computations for the motion of the nuclei.

If the potential energy surface is computed on-the-fly to drive Newtonian dynam-

ics for the nuclei, this approach is usually referred to as ab initio molecular dynam-

ics (MD) [56, 57]. Based on solution of the Schrödinger equation for the description of

interactions within the system, this method represents one of the most accurate and

advanced MD techniques. However, this approach demands significant computational

resources and is applied typically for the description of dynamics of small systems (of

about 101 − 102 atoms) at the picosecond (10−12 s) time scale. Dynamic processes in-

volving large ensembles of particles, such as diffusion or phase transitions, can hardly

be accessed by means of this approach [50].

An alternative to the ab initio methods are the classical MD simulations. Within

this framework, the description of the time evolution of a system is achieved by inte-

grating classical equations of motion using the defined interactions between the con-

stituent atoms. Given the initial coordinates and velocities of the atoms in a system,

the subsequent motion of individual atoms is described either by deterministic Newto-

nian dynamics or by Langevin-type stochastic dynamics. Classical MD allows for an

ultimate description of dynamics of million-atom systems [58,59] at substantially larger

(up to 10 − 100 nanoseconds, i.e. 10−8 − 10−7 s) time scales [60]. Thus, classical MD

simulations represent a powerful tool which have an eminent research potential. They

can provide insights into nanoscale structural features and thermo-mechanical prop-

erties of a system by means of advanced computer simulations [61]. The interatomic

interactions are parameterized in this approach using various empirical potentials of

the force fields, whose parameters are usually derived from ab initio studies of systems

containing a much smaller number of atoms or fitted to experimental data. Provided

that interatomic potentials correctly describe different system properties, classical MD

simulations may thus represent a low-cost alternative to experimental studies, reaching

the system sizes and time scales that are inaccessible by other methods [58,62–64].

2.1 Born-Oppenheimer approximation

Let us consider an arbitrary molecular system comprising N atoms. In the non-

relativistic case, the Hamiltonian Ĥ of the system includes the operators for kinetic

energy and electrostatic interaction, while weaker interactions, such as spin-orbit and
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spin-spin coupling, are neglected. Hence, the Hamiltonian is given by

Ĥ =
N∑

α=1

(
− ~2

2Mα

∇2
α

)
+

Ne∑
i=1

(
− ~2

2me

∇2
i

)

+
∑
α<β

ZαZβ e
2

|Rα −Rβ|
+
∑
i<j

e2

|ri − rj|
−

N∑
α=1

Ne∑
i=1

Zα e
2

|ri −Rα|

≡ T̂N + T̂e + V̂NN(R) + V̂ee(r) + V̂eN(r,R) , (2.1)

where {R} is the set of nuclear coordinates, {r} is the set of electronic coordinates,

me and e are the mass and the charge of an electron, and Mα and Zαe denote those

of the αth nucleus. Here T̂N and T̂e represent the nuclear and electron kinetic energy

operators, and V̂NN(R), V̂ee(r), and V̂eN(r,R) describe the nucleus-nucleus, electron-

electron, and electron-nucleus interaction, respectively. Eigenfunctions and eigenvalues

of this Hamiltonian are determined from the solution of the Schrödinger equation:

Ĥ(r,R)Ψ(r,R) = EΨ(r,R) , (2.2)

where Ψ(r,R) is the ground-state wave function of the system and E is its total energy.

The V̂eN(r,R) term prevents us from separating the Hamiltonian (2.1) into nu-

clear and electronic parts, which would allow one to write the total wave function as

a product of nuclear and electronic terms, Ψ(r,R) = Ψe(r)ΨN(R). Within the Born-

Oppenheimer approximation [55], it is assumed that this separation is nevertheless

approximately correct. The physical basis for the Born-Oppenheimer approximation is

the fact that the mass of an atomic nucleus in a molecular system is much larger than

the mass of an electron, Mα ≫ me. Because of the significant difference in masses,

the electrons move much faster than the nuclei. Thus, they ”see” an instantaneous

position of the nuclei, while the latter feel only an average potential of electron cloud,

that is, the electrostatic field caused by spatially distributed negative charge [65]. In a

dynamical sense, the electrons can thus be regarded as particles that follow the nuclear

motion adiabatically, meaning that they are ”dragged” along with the nuclei without

requiring a finite relaxation time. One should note that there could be non-adiabatic

effects that do not allow the electrons to follow in this ”instantaneous” manner; how-

ever, in many systems, the adiabatic separation between electrons and nuclei is a good

approximation [66].

Since the nuclei are much more massive than the electrons, the distribution of the

latter in the molecular system can be studied when the nuclei are at rest in a space-fixed

frame. In mathematical terms, the Born-Oppenheimer approximation implies that the
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total wave function Ψ(r,R) of the system can be written as follows:

Ψ(r,R) = Ψe(r;R)ΨN(R) , (2.3)

where Ψe(r;R) is the electronic wave function calculated in the field of fixed-in-space

nuclei ({R} = const), and ΨN(R) is the nuclear wave function. The Born-Oppenheimer

approximation allows one to reduce the solution of the general equation (2.2) to the

solution of two separate Schrödinger equations, for an electronic and a nuclear subsys-

tems, respectively.

Consider again the original Hamiltonian (2.1). Using a wave function of the form (2.3)

in the Schrödinger equation (2.2), one obtains[
T̂N(R) + T̂e(r) + V̂NN(R) + V̂ee(r) + V̂eN(r,R)

]
Ψe(r;R)ΨN(R) = EΨe(r;R)ΨN(R) .

(2.4)

Since T̂e does not depend on R, one can perform the following transformation:

T̂e Ψe(r;R)ΨN(R) = ΨN(R) T̂eΨe(r;R) . (2.5)

The T̂NΨe(r;R)ΨN(R) term can be expressed as:

T̂NΨe(r;R)ΨN(R) = −~2

2

N∑
α=1

1

Mα

∇2
α Ψe(r;R)ΨN(R)

= −~2

2

N∑
α=1

1

Mα

[
Ψe(r;R)∇2

αΨN(R)

+ 2∇αΨe(r;R)∇αΨN(R) + ΨN(R)∇2
αΨe(r;R)

]
. (2.6)

Another consequence of the large mass difference between electrons and nuclei is that

the nuclear components of the total wave function are spatially more localized that the

electronic components of the wave function. Thus, the nuclear wave function varies more

steeply than the electronic wave function, which means that ∇αΨN(R) ≫ ∇αΨe(r;R).

Assuming this, one may neglect the latter two terms on the r.h.s. of Eq. (2.6) and

approximate it as

T̂NΨe(r;R)ΨN(R) ≈
N∑

α=1

−~2

2Mα

Ψe(r;R)∇2
αΨN(R) = Ψe(r;R) T̂NΨN(R) . (2.7)
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Then, the Schrödinger equation (2.4) transforms into the following one:

Ψe(r;R) T̂NΨN(R) + Ψe(r;R) V̂NN(R)ΨN(R)

+ ΨN(R) T̂eΨe(r;R) + ΨN(R) V̂ee(r)Ψe(r;R) + ΨN(R) V̂eN(r,R)Ψe(r;R)

= EΨe(r;R)ΨN(R) . (2.8)

This yields

ΨN(R)
[
T̂e + V̂ee(r) + V̂eN(r,R)

]
Ψe(r;R)

= EΨe(r;R)ΨN(R)−Ψe(r;R)
[
T̂N + V̂NN(R)

]
ΨN(R) , (2.9)

or [
T̂e + V̂ee(r) + V̂eN(r,R)

]
Ψe(r;R)

Ψe(r;R)
= E −

[
T̂N + V̂NN(R)

]
ΨN(R)

ΨN(R)
. (2.10)

From this expression, it follows that the left-hand side can be represented as a function

of R only. Let this function be denoted as Ee(R). Then,[
T̂e + V̂ee(r) + V̂eN(r;R)

]
Ψe(r;R) ≡ ĤeΨe(r;R) = Ee(R)Ψe(r;R) . (2.11)

In this equation, the terms in square brackets describe the electronic Hamiltonian Ĥe

of the molecular system for a fixed nuclear configuration. The electronic wave function

Ψe(r;R) depends explicitly on the coordinates r of the electrons and parametrically on

the position vectors R of all nuclei. The function Ee(R) is the energy of the electronic

subsystem due to the motion of Ne electrons in the field of N nuclei.

For each solution of Eq. (2.11), there will be a corresponding Schrödinger equation

for a nuclear subsystem:[
T̂N + V̂NN(R) + Ee(R)

]
ΨN(R) ≡ ĤNΨN(R) = EΨN(R) , (2.12)

where ĤN is the nuclear Hamiltonian.

To summarize, based on the large difference in the relative masses of the electrons

and nuclei, the Born-Oppenheimer approximation allows one to approximately separate

the total molecular wave function as a product of nuclear and electronic terms. The

electronic wave function Ψe(r;R) is solved for a given set of nuclear coordinates,

ĤeΨe(r;R) =

[
− ~2

2me

∑
i

∇2
i −

∑
α

∑
i

Zα e
2

|ri −Rα|
+
∑
i<j

e2

|ri − rj|

]
Ψe(r;R)

= Ee(R)Ψe(r;R) (2.13)
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and the electronic energy obtained contributes a potential term to the motion of the

nuclei, described by the nuclear wave function ΨN(R):

ĤNΨN(R) =

[
−
∑
α

~2

2Mα

∇2
α + Ee(R) +

∑
α<β

ZαZβ e
2

|Rα −Rβ|

]
ΨN(R) = EΨN(R) . (2.14)

Each electronic eigenvalue Ee(R) gives rise to an electronic surface. The full in-

ternuclear potential for each electronic surface is given by Ee(R) + V̂NN(R). On every

single surface, the nuclear eigenvalue problem can be solved, which yields a set of levels

corresponding to vibrational and rotational motion of the nuclei. Varying the positions

of the nuclei in small steps and repeatedly solving the electronic Schrödinger equation,

one obtains the electronic energy calculated for differentR. Together with the energy of

the mutual repulsion of the nuclei, this electronic energy determines a potential energy

surface (PES) along which the nuclei move [66].

In principle, different potential energy surfaces can become coupled by so called

non-adiabatic effects, contained in the terms that have been neglected in the above

derivation. An important assumption of the Born-Oppenheimer approximation is that

there are no excitations of the electrons among the various surfaces. Such excitations

constitute non-adiabatic effects which are, therefore, neglected. As an example of a

condition in which this approximation is valid, consider a system at temperature T . If

the electrons are in their ground state Ee,0(R), then, if Ee,1(R) denotes the first excited

state, there will be no excitations to this state if

|Ee,1(R)− Ee,0(R)| ≫ kT (2.15)

for all nuclear configurations. If the system visits such nuclear configurations where

the surfaces approach each other with an energy spacing close to kT , then the Born-

Oppenheimer approximation breaks down [67]. In many cases, non-adiabatic effects can

be neglected, and one may consider motion only on the ground electronic surface. Such

motion is described by a time-dependent Schrödinger equation for the time-dependent

nuclear wave function Ψ̃N(R, t):[
T̂N + V̂NN(R) + Ee,0(R)

]
Ψ̃N(R, t) = ı~

∂

∂t
Ψ̃N(R, t) , (2.16)

where Ee,0(R) is defined from[
T̂e + V̂ee(r) + V̂eN(r,R)

]
Ψe,0(r;R) = Ee,0(R)Ψe,0(r;R) . (2.17)
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2.2 Molecular dynamics approach

The Born-Oppenheimer approximation not only laid down a practical way of solving

the Schrödinger equation for molecular systems, but also gave birth to the concepts

constituting the significant share of the modern physical and chemical terminology.

One of such concepts is the molecular dynamics technique. Being developed in the

1950s [68,69], this method has gained popularity in chemical physics, materials science

and later also in biophysics and atomic cluster physics.

Molecular dynamics (MD) is a computer simulation technique where the time evolu-

tion of a molecular system (that is a set of interacting nuclei and a set of electrons) is fol-

lowed by integrating their equations of motion. As follows from the Born-Oppenheimer

approximation, the slow motion of massive nuclei can be separated from the fast mo-

tion of electrons. If nuclear quantum effects can be neglected, the dynamics of nuclei

can be treated using classical mechanics. The derivative of the electronic energy Ee(R)

with respect to the nuclear degrees of freedom, ∂Ee(R)/∂R, represents the classical

definition of the force acting on the nuclei. Thus, the dynamics of the nuclei can be

described by means of Newton’s classical equations of motion:

M
d2R

dt2
= F = −∇REe(R) . (2.18)

There are two main approaches, namely ab initio MD (AIMD) and classical MD,

that are widely used to describe interatomic interactions in many-particle systems.

Within the AIMD approach [56, 57], the forces acting on the nuclei are computed on-

the-fly by accurate electronic structure calculations. This approach, which unifies New-

ton’s and Schrödinger’s equations, allows for complex simulations without relying on

any adjustable parameter and depending only on {R}. However, the high accuracy

and predictive power of AIMD simulations come at significant computational cost [70].

Thus, this approach is very computationally demanding and currently applied only for

the description of dynamics of small systems (typically of less than a few hundreds

atoms) at the picosecond time scale.

An alternative to the ab initiomethods are the classical MD simulations. Within this

framework, the description of the time evolution of a system is achieved by integrating

classical Newtonian or Langevin equations of motion using the defined interactions

between the constituent atoms. The forces F acting on all particles in the system are

determined by a potential function U (also widely referred to as an interatomic potential

or a force field) by means of which the particles interact. The potential functions are

constructed as a sum over interactions between the particles in the system. The simplest

potential function is a pairwise (two-body) potential in which the total potential energy
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of the system, Utot, is calculated from the sum of energy contributions between pairs of

atoms. Thus, the total energy of the system consisting of N particles interacting via a

pairwise potential is calculated as

Utot =
N∑
i=1

∑
j<i

U(rij) , (2.19)

where U(rij) is the interaction energy between atoms i and j, and rij = |ri − rj| is the
distance between these atoms. The force acting on the atom i is equal to the negative

gradient of the potential taken with respect to the atomic coordinates:

Fi = − ∂

∂ri
Utot = − ∂

∂ri

N∑
j=1
j ̸=i

U(rij) . (2.20)

In many-body potentials, the potential energy includes the effects of three and more

particles interacting with one another. In this case, the total energy of a system is

Utot =
N∑
i=1

Ui({ri}) , (2.21)

where Ui({ri}) describes the interaction of atom i with all other particles in the system.

One should briefly mention another type of the potential function, which is widely

used to model biomacromolecules like DNA, proteins, or polypeptides [71, 72]. The

basic functional form of this force field is quite different from pairwise and many-

body potentials. It includes bonded terms for interactions of atoms, that are linked

by covalent bonds, and non-bonded terms that describe the action of the long-range

electrostatic and van der Waals forces. A widely used force field, called CHARMM [71],

employs harmonic approximation for describing the interatomic interactions, thereby

limiting its applicability to small deformations of the molecular system. Thus, this

class of potentials is capable of reproducing structural and conformational changes in

the system but is usually not suited for modeling chemical reactions. In order to study

processes where rupture of chemical bonds plays an essential role, e.g., in irradiation-

or collision-induced damage of biomolecular systems, it is essential to go beyond the

harmonic approximation, thus describing the physics of molecular dissociation more

accurately [73].
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2.2.1 Classical many-body potentials for metal systems

Since the main goal of this work is related to the modeling of metal-based nanostructures

and nanomaterials, a special attention should be paid to an overview of many-body

potentials which are commonly used to describe metal systems in classical molecular

dynamics.

Metal systems are characterized by metallic bonding which describes the electro-

static attractive force occurring between conduction electrons and positively charged

ions. Metallic radius, that is, one-half of the distance between the two adjacent ions in

the lattice, depends on the atom’s type and its environment, i.e. on the coordination

number. Hence, a proper description of metal systems and their properties requires the

consideration of many-body effects. Pairwise potentials are not able to describe metal-

lic bonding; thus, an approach for incorporating many-body effects in the classical

interatomic potentials was proposed [74–76].

The main idea of this approach is to add a term, which is a function of the local

electronic density of a given atom, to the pairwise term. Hence, the general structure of

many-body potentials contains an attractive density-dependent many-body term and a

repulsive part for small distances that results from the repulsion between neighboring

ions. This method has led to the development of several alternative potentials that

mimic the many-body effects.

A well-established potential format for metallic systems is given by the so-called

embedded-atom method (EAM) [74, 75] and the Finnis-Sinclair (FS) method [76]. Al-

though initially derived from different physical approaches, the two potential forms are

quite similar [50]. In the EAM approach, the total energy of a metal system is ex-

pressed via (i) the energy of the short-range electrostatic interaction between atoms i

and j separated by rij, and (ii) the energy Fi, obtained by embedding an atom i into

the local electron density ρi created by the remaining atoms of the system:

UEAM
tot =

N∑
i=1

(
U rep
i + Uattr

i

)
=

N∑
i=1

[
1

2

∑
j ̸=i

V (rij) + Fi(ρi)

]
. (2.22)

The second term in the above expression represents the many-body interactions respon-

sible for bonding in metals. The form of the embedding function is arbitrary in EAM

but is postulated to be the negative of the square root of ρi in the FS method [50]:

UFS
tot =

N∑
i=1

(
U rep
i + Uattr

i

)
=

1

2

N∑
i=1

∑
j ̸=i

V (rij)− c
∑
i

√
ρi . (2.23)

The square root form of the many-body term is chosen in the FS approach to mimic the
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results of tight-binding theory, in which the radicand is interpreted as a sum of squares

of overlap integrals [76].

A commonly used empirical form of the many-body term, proposed by Gupta [77],

reads

Uattr
i = −

√∑
j ̸=i

ξ2 exp
[
−2q

(rij
d

− 1
)]

, (2.24)

where rij denotes the interatomic distance. The parameter ξ is an effective overlap

integral, d is the nearest-neighbor distance, and the parameter q controls the decay of

the exponential function. A similar exponential form is also used for the repulsive term,

U rep
i =

∑
j ̸=i

A exp
[
−p
(rij
d

− 1
)]

, (2.25)

which is commonly known as Born-Mayer ion-ion repulsion [78]. Here the parameter p

controls the decay of the function and is related to bulk elastic constants [79], and A

sets the energy scale.

2.3 Quantum-mechanical description of many-electron

systems

As described above, the Born-Oppenheimer approximation postulates the separation of

the total molecular wave function (2.2) of a many-atom system into the electronic and

the nuclear parts. When focusing on the electronic subsystem, the problem is reduced

to the calculation of a many-electron wave function Ψe(r). However, it is not possible to

find an exact solution to equation (2.11) for a many-electron system. Thus, one needs

to search for approximate methods of solution of a many-electron problem.

This can be done within the framework of the single-particle approximation. It

is assumed in this method that each electron moves independently in a so-called self-

consistent field, that is the mean field created by the remaining electrons and nuclei.

Then, the many-electron Hamiltonian of the system is split into the the Hamiltonian

of independent particles and the so-called residual interaction:

Ĥe = Ĥ0 + V̂res =
Ne∑
i=1

ĥ0(ri) + V̂res , (2.26)

where

ĥ0(r) = − ~2

2me

∇2 −
N∑

α=1

Zαe
2

|r−Rα|
+ U(r) (2.27)

and U(r) represents a part of the self-consistent potential created by all electrons in the
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system. The electron-electron interaction cannot be fully accounted for by the choice

of the self-consistent field. The remaining part, which does not contribute to the field,

represents the residual interaction. It defines to what extent the electronic motion in

the system differs from the independent motion in the self-consistent field, or, in other

words, it accounts for the correlation between electrons. An exact account for the

residual interaction is not possible because it would be equivalent to the solution of a

many-body problem. However, electron correlation can be taken into account in the

single-electron approximation by introducing an additional, the so-called correlation

potential.

Among the single-particle approximations, the most commonly utilized approaches

are the Hartree-Fock method and density-functional theory (DFT). Within these meth-

ods, a many-electron system is described by solving a system of differential or integro-

differential equations. The basic principles of these methods are briefly described below.

2.3.1 Hartree-Fock approximation

Within the Hartree-Fock approximation, instead of solving the Schrödinger equation (2.11),

one considers the following one:

ĤHFΨe(r1, . . . , rNe) = EHFΨe(r1, . . . , rNe) , (2.28)

where

ĤHF =
Ne∑
i=1

[
− ~2

2me

∇2
i −

N∑
α=1

Zαe
2

|ri −Rα|
+ ÛHF(ri)

]
(2.29)

and UHF(ri) is the so-called self-consistent Hartree-Fock potential. The corresponding

operator is defined by the wave functions of all electrons in the system.

Strictly speaking, the Hartree-Fock operator ÛHF and the total wave function Ψe

depend not only on the coordinate of electrons but also on their spin state, which

has been neglected so far. Thus, these functions should rather be defined as ÛHF(xi)

and Ψe(x1, . . . , xNe) where the variable xi = (ri, σi) defines the coordinate ri of the i
th

electron and its spin projection σi.

The solution of equation (2.28) defines the ground state of a many-electron system.

The ground-state electronic wave function is approximated by the Slater determinant

constructed of single-electron wave functions ϕi(x):

Ψe(x1, . . . , xNe) =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) . . . ϕNe(x1)

ϕ1(x2) ϕ2(x2) . . . ϕNe(x2)

. . . . . . . . . . . .

ϕ1(xNe) ϕ2(xNe) . . . ϕNe(xNe)

∣∣∣∣∣∣∣∣∣∣
. (2.30)
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If the single-electron wave functions entering (2.30) are orthonormalized, i.e.,∫
ϕ∗
i (x)ϕj(x) dx = δij , (2.31)

where δij is the Dirac delta function, then the total wave function of the system is

normalized too, ∫
|Ψe(x1, . . . , xNe)|2 dx1 . . . dxNe = 1 . (2.32)

The self-consistent Hartree-Fock potential, UHF(x), consists of a direct (local) and

an exchange (non-local) terms:

UHF(x)ϕi(x) =
∑
j≤F

∫
dx′ ϕ∗

j(x
′)

e2

|r− r′|
ϕj(x

′)ϕi(x)

−
∑
j≤F

∫
dx′ ϕ∗

j(x
′)

e2

|r− r′|
ϕi(x

′)ϕj(x) , (2.33)

where the summation is carried out over all occupied states j below the Fermi level. One

should note that the Hartree-Fock method exactly accounts for the exchange interaction

between electrons, which has a non-local character.

Equations for single-electron wave functions are obtained by minimizing the total

energy of the system with respect to small variations of ϕi(x). These equations are

introduced as follows:[
− ~2

2me

∇2
i −

N∑
α=1

Zαe
2

|ri −Rα|

]
ϕi(x)

+
Ne∑
j=1

∫
ϕ∗
j(x

′)
e2

|r− r′|
[ϕj(x

′)ϕi(x)− ϕi(x
′)ϕj(x)] dx

′ = εiϕi(x) , (2.34)

where εi is the single-electron energy within the Hartree-Fock approximation. The total

energy of the electronic system, EHF, can be calculated using the single-electron wave

functions from equation (2.34):

EHF =
∑
i

εi −
1

2

∑
i,j

[⟨
ij| e2

|r− r′|
|ij
⟩
−
⟨
ij| e2

|r− r′|
|ji
⟩]

, (2.35)

where |i⟩, |j⟩ ≡ ϕi, ϕj.
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2.3.2 Density-functional theory

Density-functional theory (DFT) [52,53] is another widely used approach for solving the

many-electron problem within the single-particle approximation. This method accounts

for many-electron correlation interaction by introducing the so-called correlation poten-

tial. Within this approach, one needs to solve the system of self-consistent Kohn-Sham

equations [53] for the single-electron wave functions1:(
−1

2
∇2

i −
N∑

α=1

Zα

|ri −Rα|
+ vH(r) + vxc(r)

)
ϕi(r) = εi ϕi(r) , (2.36)

where the first term represents the kinetic energy of the ith electron, the second term de-

scribes the Coulomb interaction between this electron and nuclei, and vH is the Hartree

(direct) part of electron-electron interaction:

vH(r) =

∫
ρ(r′)

|r− r′|
dr′ , (2.37)

with

ρ(r) =
Ne∑
i=1

|ϕi(r)|2 (2.38)

being the total electron density of the system. The term vxc is the exchange-correlation

potential which accounts for all many-body interactions in the system. It is defined as

a functional derivative of the exchange-correlation energy functional:

vxc(r) =
δExc[ρ(r)]

δρ(r)
. (2.39)

A general limitation of the DFT approach is that one needs to define vxc(r) to

solve single-electron Kohn-Sham equations, although the form of this potential in the

general case is unknown [80]. Nevertheless, a large number of different approximations

have been introduced so far (see, e.g., Refs. [81–87]), which allow one to solve a many-

electron problem and to describe physical properties of a many-electron system with

good accuracy. In the simplest case of a uniform electron gas, the potential vxc(r), which

is calculated at a certain point in space, depends only on the value of electron density

ρ(r) at the same point. For a system with a non-uniform density distribution, vxc(r)

depends not only on the value of electron density at the point r but also on its spatial

variation in the vicinity of that point. In a more general case, the exchange-correlation

1Further on in this chapter the atomic system of units, me = |e| = ~ = 1, is utilized unless otherwise
is indicated.
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potential can be defined as:

vxc[ρ] = vxc[ρ(r),∇ρ(r),∇(∇ρ(r)), . . . ] . (2.40)

The two major classes of exchange-correlation functionals, which are most commonly

utilized in DFT-based calculations, are the local functionals, vxc[ρ(r)], and the so-called

gradient-corrected functionals, vxc[ρ(r),∇ρ(r)].

As the exact form of the exchange-correlation potential is unknown, one has to use

some approximations, which would allow one to get either an analytic expression for

a particular case or some numerical approximations for vxc(r). The simplest and one

of the most commonly used approaches is the so-called local density approximation

(LDA), which assumes that the potential vxc(r) is local:

vLDA
xc (r) =

δExc[ρ]

δρ(r)
=

∂

∂ρ(r)
[ρ ϵxc(ρ)] , (2.41)

where Exc[ρ(r)] =
∫
ρ(r)ϵxc(ρ)dr and ϵxc(ρ) defines the exchange-correlation energy per

particle. Based on the concept of the homogeneous electron gas (HEG), the LDA was

introduced initially for the solution of a many-electron problem in the case of systems

with slowly varying electron density [81,82]. It approximates the local energy ϵxc as the

value for the HEG at the local density, ϵLDA
xc (ρ(r)) ≈ ϵHEG

xc (ρ)|ρ=ρ(r).

The energy ϵLDA
xc (r) is decomposed into the so-called Slater exchange potential, which

describes exchange interaction in the HEG, and a correlation potential [88]:

ϵLDA
xc (r) = ϵLDA

x (r) + ϵLDA
c (r) = −3

4

(
3

π

)1/3

ρ1/3(r) + ϵLDA
c (r) . (2.42)

Analytic expressions for the correlation energy ϵLDA
c (r) of the HEG are not known

except for the low- and high-density limits that correspond to the case of infinitely-

strong and infinitely-weak correlation [88]. However, in Ref. [89], numerical values of

ϵLDA
c (r) were derived for several intermediate values of density. Based on these results,

several different interpolation formulas for ϵc(r) were introduced to connect the high-

and low-density limits [81, 82]. These parameterizations are widely used nowadays in

various codes for quantum-chemical calculations. One should note that, although the

LDA is exact in the limit of slowly varying densities, the application of this approach

to the systems with much less uniform density distribution, such as small molecules or

atomic clusters, was justified during the past decades by producing reasonable results

for physical properties of these systems [88].

In this study, most calculations within the DFT framework were performed us-

ing the so-called PBE functional, developed by Perdew, Burke, and Ernzerhof [85].
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This functional belongs to the class of generalized gradient approximations (GGA)

for the exchange-correlation energy, Exc = Exc[ρ(r),∇ρ(r)]. PBE is a non-empirical,

parameter-free functional, which was constructed to include the gradient correction

without introducing experimentally fitted parameters. Since its development in 1996,

it has been known for its general applicability and provided rather accurate results for

a wide range of systems.

The exact expressions for the PBE functional are quite complicated; the detailed

explanation of all parameters entering these expressions can be found in the original

paper [85] and a number of subsequent works [90,91]. The main ideas of this approach

are briefly outlined below.

Similar to the LDA, GGA functionals are also split into the exchange and correlation

terms:

EGGA
xc = EGGA

x + EGGA
c . (2.43)

The exchange functional is expressed as [92]:

EGGA
x =

∫
ρ(r) ϵHEG

x (ρ)Fx(s) dr , (2.44)

where ϵHEG
x (ρ) is the energy per particle in the HEG approximation (the first term on

the r.h.s. of (2.42)) and Fx(s) is the so-called GGA enhancement factor which depends

on a reduced density gradient s ∝ |∇ρ|/ρ4/3.
The GGA correlation functional is expressed as [83]

EGGA
c =

∫
ρ(r)

[
ϵHEG
c (rs) +H(rs, t)

]
dr , (2.45)

where rs = (4πρ(r)/3)−1/3 is the so-called Wigner-Seitz radius which characterizes the

density of the system [93], and t ∝ |∇ρ|/ρ7/6 is another scaled density gradient. Similar

to (2.44), Eq. (2.45) can be expressed as [90]

EGGA
c =

∫
ρ(r) ϵHEG

c (ρ)Fc(rs, t) dr , (2.46)

where

Fc(rs, t) ≡ 1 +
H(rs, t)

ϵHEG
c (rs)

. (2.47)

The gradient contribution to the PBE correlation,

HPBE = γ ln

[
1 +

β

γ

t2 + At4

1 + At2 + A2t4

]
, (2.48)

where β ≈ 6.67 ·10−2, γ ≈ 3.11 ·10−2, and A = β/γ
[
exp (−ϵHEG

c /γ)− 1
]−1

, was derived
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from several physical conditions in the slowly (t → 0) and rapidly (t → ∞) varying

density limits. A detailed explanation of these conditions and physical meanings of

the above-mentioned parameters is given in Ref. [85]. In the general case, the above-

defined functionals depend also on the relative spin polarization ζ = (ρ↑ − ρ↓)/ρ, so

that ϵHEG
c = ϵHEG

c (rs, ζ) and H = H(rs, ζ, t).

2.4 Time-dependent density-functional theory

Time-dependent density-functional theory (TDDFT) [54] is an approximate method of

solving the time-dependent Schrödinger equation, which allows one to study properties

of many-electron systems as a function of time. In this approach, the Schrödinger equa-

tion is substituted with a set of time-dependent single-particle Kohn-Sham equations.

On the analogy of the Kohn-Sham method [53] which is the basic principle of DFT,

its generalization to a time-dependent case is based on a one-to-one correspondence

between an external time-dependent potential vext(r, t), in which the motion of a sys-

tem of non-interacting particles is considered, and the time-dependent electron density

ρ(r, t) of a real many-electron system.

The calculation of photoabsorption spectra of many-electron systems by means of

TDDFT can be performed either in the time domain or in the frequency domain. In the

former case, the time evolution of an induced dipole moment is studied by integrating

time-dependent Kohn-Sham equations, while in the latter case one performs the Fourier

transform of time-dependent quantities. Depending on the utilized methodology for

representing single-particle Kohn-Sham orbitals in TDDFT calculations, either a three-

dimensional real-space grid or a plane-wave basis set is utilized, respectively. The main

advantage of such an approach is that convergence of the numerical solution can be

controlled in each case with a single parameter, namely with the grid spacing in real

space or with the kinetic energy cutoff in a plane-wave approach [94].

The time-dependent single-particle Kohn-Sham equation can be written as follows:

ı
∂ϕi(r, t)

∂t
= Ĥ(t)ϕi(r, t) , (2.49)

where

Ĥ(t) = −1

2
∇2 + veff(r, t) (2.50)

is a time-dependent single-particle Kohn-Sham Hamiltonian, and the effective potential

veff(r, t) is defined as

veff(r, t) = vext(r, t) + vH(r, t) + vxc(r, t) . (2.51)
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The function vext(r, t) defines the potential created by a time-dependent external elec-

tric field. Formally, the external potential also accounts for the contribution due to

the Coulomb interaction of electrons with the nuclei. The electrostatic and exchange-

correlation potentials are defined as:

vH(r, t) =

∫
ρ(r′, t)

|r− r′|
dr′ , vxc(r, t) =

δExc[ρ(r, t)]

δρ(r, t)
. (2.52)

Similar to DFT, vxc(r, t) is a functional derivative of the exchange-correlation energy

functional Exc[ρ(r, t)] which accounts for all many-body interactions in the system.

Knowing single-electron orbitals ϕi(r, t), one can define the electron density of the

system:

ρ(r, t) =
Ne∑
i=1

ϕi(r, t)ϕ
∗
i (r, t) , (2.53)

where the summation is performed over all occupied states.

The electrostatic and exchange-correlation potentials are functionally dependent on

electron density, vH(r, t) ≡ vH[ρ(r, t)], vxc(r, t) ≡ vxc[ρ(r, t)], which, in turn, depends

on the effective potential veff(r, t). Thus, the solution of self-consistent Kohn-Sham

equations (2.49)–(2.53) should be sought iteratively. As a rule, the potential veff(r, t)

is calculated first based on some initial guess for ρ(r, t). Then, the derived value of

the potential is utilized to solve the Kohn-Sham equations. Solving them, one can

define a set of single-electron orbitals {ϕi(r, t)} which, in turn, allow one to get the

next approximation for electron density.

At present, a significant part of TDDFT-based studies concerns the calculation of

photoabsorption spectra of small molecules and solids in the linear regime using the

dipole approximation. The linear response theory aims at studying the variation of

a given physical observable due to the application of a weak external perturbation to

a many-particle system. Within this framework [95], the external potential acting on

the system can be represented as a sum of a time-independent part, v0ext(r), and a

time-dependent perturbation, v′ext(r, t):

vext(r, t) = v0ext(r) + v′ext(r, t) . (2.54)

Application of the external perturbation leads to variation of the electron density of

the system. Therefore, the time evolution of the electron density can be represented as

a sum of two terms,

ρ(r, t) = ρ0(r) + δρ(r, t) , (2.55)

where ρ0(r) is the unperturbed ground-state density and δρ(r, t) describes variation of

the electron density due to the perturbation v′ext(r, t).
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In this work, the response of a system to an external perturbation is considered in

the frequency representation. Therefore, one needs to perform the Fourier transform of

the time-dependent quantities. In the linear regime, the Fourier transform of δρ(r, t)

reads

δρ(r, ω) =

∫
χ(r, r′, ω) v′ext(r

′, ω) dr′ , (2.56)

where v′ext(r, ω) is the Fourier transform of the external perturbation v′ext(r, t), and

χ(r, r′, ω) is the generalized frequency-dependent susceptibility of the system.

In the case of a system of non-interacting particles, which is considered within the

Kohn-Sham approach, variation of electron density, δρ(r, ω), can be written as:

δρ(r, ω) =

∫
χ0(r, r

′, ω) v′eff(r
′, ω) dr′ , (2.57)

where χ0(r, r
′, ω) is the susceptibility of the system of non-interacting particles that

is defined through single-electron ground-state orbitals ϕi(r) and the corresponding

energies εi:

χ0(r, r
′, ω) =

∑
ij

(ni − nj)
ϕ∗
j(r)ϕi(r)ϕ

∗
i (r

′)ϕj(r
′)

εj − εi + ω + ıη
, (2.58)

where ni and nj are the occupation numbers. In this expression, the ground-state wave

functions, ϕi(r) and ϕj(r), describe both occupied and empty states. The function

v′eff(r, ω) describes a Fourier transform of the linear variation of the Kohn-Sham effective

potential veff(r, t) (2.51), which is caused, in turn, by the variation of electron density

δρ(r, t). The variation of the Kohn-Sham potential is defined in the frequency domain

as:

v′eff(r, ω) = v′ext(r, ω) + v′H(r, ω) + v′xc(r, ω) . (2.59)

The linear response of the electrostatic and exchange-correlation potentials induced by

the application of v′ext reads as

v′H(r, ω) =

∫
ρ′(r′, ω)

|r− r′|
dr′ , v′xc(r, ω) =

∫
δvxc(r, ω)

δρ(r′, ω)
ρ′(r′, ω) dr′ . (2.60)

In order to avoid inconsistence, variation of the electron density, δρ(r, ω), is denoted

in (2.60) as ρ′(r, ω), while δvxc(r, ω)/δρ(r
′, ω) stands for a functional derivative of the

exchange-correlation potential.

Apart from the non-local spatial dependence of electron density, the exact exchange-

correlation functional should also have a non-local dependence on time. The dependency

on density at earlier times is usually referred to as ”memory effects”. However, most

applications of the linear-response approach rely on the adiabatic approximation, where

the exchange-correlation functional is assumed to be local in time; thus, the memory
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dependence can be disregarded [96]. In other words, the functional derivative of a time-

dependent (or frequency-dependent) exchange-correlation potential corresponds to that

of the ground-state functional, calculated at the ground-state density ρ0(r):

δvxc(r, ω)

δρ(r′, ω)
=
δvxc(r)

δρ(r′)

∣∣∣∣
ρ(r)=ρ0(r)

. (2.61)

Variation of the effective Kohn-Sham potential, v′eff(r, ω), and the external pertur-

bation v′ext(r, ω) can be obtained by inverting equations (2.56) and (2.57):

v′eff(r, ω) =

∫
χ−1
0 (r, r′, ω) δρ(r, ω) dr′ , (2.62)

v′ext(r, ω) =

∫
χ−1(r, r′, ω) δρ(r, ω) dr′ . (2.63)

By utilizing together expressions (2.62), (2.63), and (2.60), and using the definition for

variation of the effective Kohn-Sham potential (2.59), one gets a Dyson-type equation

for the inverse susceptibility:

χ−1(r, r′, ω) = χ−1
0 (r, r′, ω)− 1

|r− r′|
− δvxc(r, ω)

δρ(r′, ω)
. (2.64)

For the perturbation due to a uniform electric field, v′ext(r, ω) = −E(ω) · r, the

Fourier transform of the induced dipole moment reads

di(ω) =
∑
j

αij(ω)Ej(ω) . (2.65)

Here i, j denote the Cartesian components, and αij(ω) is the dynamic polarizability

tensor which describes the linear response of the system to the external electric field:

αij(ω) = −
∫
ri χ(r, r

′, ω) r′j dr dr
′ , (2.66)

and ri, r
′
j are the components of the position vectors r and r′.

The photoabsorption cross section of a randomly oriented molecular system is ex-

pressed as

σγ(ω) =
4πω

c
Im ᾱ(ω) , (2.67)

where ᾱ(ω) denotes the isotropic average polarizability calculated as a sum of the

diagonal elements of the polarizability tensor αij(ω),

ᾱ(ω) =
1

3

3∑
j=1

αjj(ω) , (2.68)
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and c is the speed of light.

Within the approach introduced in Refs. [94, 97, 98], the electron density variation,

δρ(r, ω), is expressed via the so-called Liouvillian operator L,

(ω − L) · δρ(r, ω) = [v′ext(r, ω), ρ0] , (2.69)

whose action onto δρ(r, ω) is defined as:

L · δρ(r, ω) = [H0, δρ(r, ω)] + [v′H(r, ω), ρ0] + [v′xc(r, ω), ρ0] , (2.70)

and H0 is the ground-state Kohn-Sham Hamiltonian calculated within the DFT ap-

proach. The polarizability tensor αij(ω) is defined then by the off-diagonal matrix

element of the resolvent of the Liouvillian L:

αij(ω) = −⟨ri| (ω − L)−1 · [rj, ρ0]⟩ . (2.71)

Based on the frequency representation of the response function, this method allows

one to calculate the photoabsorption spectrum of a complex many-electron system in

a broad photon energy range (see Refs. [94,97,98] for details). However, this approach

does not allow one to get information on partial ionization cross sections which describe

ionization of particular molecular orbitals. The reason of this drawback is that only the

occupied states are required for performing the calculations, and there is no need to

calculate any empty states [97,98]. It makes this method substantially different from the

Casida’s approach [99], which is implemented in many codes for ab initio calculations.

Within the latter one, it is possible to calculate each individual excitation and to assign

it to a specific transition. In general, this operation is feasible only in a limited range

of excitation energies, which is not typically larger than 10 eV and depends also on

the density of the excitation energies [100]. Alternatively, the method, introduced in

Refs. [94, 97, 98], allows one to compute the absorption spectrum in a broad range of

energies but a systematic way to assign the transitions is missed.



Chapter 3

Investigation of stability and

thermo-mechanical properties of

nanomaterials and validation of

classical interatomic potentials

A fundamental understanding of the physicochemical mechanisms occurring in nano-

materials is essential for further developments of these materials for technological ap-

plications. This step should be based on the study of the full atomistic dynamics in a

system. Molecular dynamics (MD) simulations of dynamical processes involving large

systems allow one to overcome the problem of computational demand by calling for a

classical potential to enable the treatment of appropriate spatial and time scales. Thus,

classical MD simulations can provide nanoscale insights into structural and dynamical

features of various systems. However, it can only be done if interatomic potentials,

which are used to model interactions in the system, correctly describe its properties.

The interatomic interactions are parameterized in classical MD simulations using

various empirical potentials of the force fields (see Section 2.2). However, the accuracy

of the force field approach for the description of interactions between the atoms is

sometimes a bottleneck of the MD scheme. Most classical interatomic potentials for

modeling metallic, organic, and biomolecular systems are derived to fit the results of ab

initio calculations or experimental data in order to reproduce ground-state properties of

a system. For instance, parameters of classical interatomic potentials for metal systems

are often chosen to reproduce bulk properties of a perfect crystalline structure. In the

meantime, it is not a priori clear whether the parametrization obtained for bulk systems

could also describe adequately the system properties on the nanoscale. The applicability

of the classical force fields to the description of nanoscale systems, consisting of several

29
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tens-hundreds of atoms, with a reasonable accuracy is important, for instance, in the

case of nanostructured materials, where grains or nanocrystals have a typical size of

about a few nanometers.

Another important issue is that classical force fields usually poorly describe highly-

excited vibrational states when the system under study is far from the potential energy

minimum. This is the case, for instance, when a phase transition occurs in the sys-

tem [101]. The proper quantitative description of phase transitions in general and the

melting process in particular by means of MD simulations is a major scientific chal-

lenge that concerns metal materials, as well as inorganic and biomolecular systems, like

proteins or water.

In this chapter, we explore the ability of existing classical interatomic potentials to

reproduce the system properties on the nanoscale, assuming that these potentials are

already fitted to reproduce features of the perfect bulk materials. It is demonstrated

that it is possible to describe correctly, with the same set of parameters, the main

properties of the systems consisting of several tens of atoms as well as those of an ideal

system comprising several million atoms. We also propose a recipe for constructing an

interatomic potential that is able to correctly reproduce both the melting temperature

and the ground-state properties of metal systems by means of classical MD simulations.

3.1 Benchmark of classical force fields by ab initio

calculations of atomic clusters

In this study, we evaluate the accuracy of the existing interatomic potentials for de-

scription of metal systems on the atomistic scale by analyzing stability of small atomic

clusters. As a case study, monatomic and bimetallic clusters composed of titanium and

nickel are considered.

The choice of the materials has been motivated by the fact that titanium and its

alloys have been widely studied in view of their medical application [46, 47]. A nickel-

titanium alloy with almost equal concentration of both types of atoms manifests the

so-called superelastic behavior [48], which is quite similar to that of living tissues. This

compound is thus an excellent candidate for implant material capable of mimicking the

mechanical behavior of bones [49].

Investigation of properties of transition-metal clusters by means of ab initio meth-

ods is known to be a challenging task due to the presence of partially filled d orbitals

and their hybridization with the valence s states [102]. Since an accurate description

of the correlation effects is crucial in this case, the Hartree-Fock approach is considered

as a not reliable one [103]. The DFT methods based on the local-density approxima-
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tion (LDA) are also not sufficient to describe strong correlation between the localized

d electrons of transition-metal clusters, as they are claimed to produce wrong values

for the bond lengths and total energy of these systems [104]. A better choice for the ab

initio investigation of atomic clusters of transition elements is thus to utilize the DFT

methods based on the generalized gradient approximation (GGA) [105].

In this study, we have performed the ab initio-based calculations using the GGA-

based PW91 exchange-correlation functional developed by Perdew and Wang [83,84] in

combination with the DGDZVP2 basis set [106]. The utilized functional is a predecessor

to the PBE functional described in Section 2.3.2. The ground-state geometries of atomic

clusters were optimized using Gaussian 09 computer package [107]. In order to define the

ground state of the systems, various cluster geometries and spin states were considered.

Classical geometry optimization of atomic clusters was performed using MBN Ex-

plorer [61] package. The cluster geometry optimization was carried out within the

classical approach using the velocity quenching algorithm. Within this algorithm, trans-

lational contributions to the kinetic energy of all individual particles in the system are

monitored during the simulation. When the translational kinetic energy of an arbitrary

particle is maximal, the absolute value of its velocity is set equal to zero. The points

in the configurational space, at which the translational parts of the kinetic energy are

maximal, correspond to the minimum of a potential well, in which a particle moves [61].

In order to describe many-body interactions between titanium and nickel atoms,

the following representation of the Finnis-Sinclair (FS)-type potential (see Eq. (2.23),

(2.24) and (2.25)) was utilized:

UFS =
N∑
i=1

 N∑
j=1
(i̸=j)

Aαβ e
−pαβ

(
rij
dαβ

−1

)
−

√√√√√ N∑
j=1
(i̸=j)

ξ2αβ e
−2qαβ

(
rij
dαβ

−1

) . (3.1)

The parameters entering this expression were defined in Chapter 2, see (2.24) and

(2.25). When simulating a bimetallic system, these parameters depend on the type

of atoms (α, β = Ti or Ni) chosen within the summation. When α = β, i.e., Ti–

Ti or Ni–Ni interaction is described, this exponential parametrization of the potential

coincides with the form presented in Section 2.2. We have utilized the parameter set

proposed in Ref. [108] that reproduces main properties, such as the cohesive energy,

lattice parameters and elastic constants, of the face-centered cubic (Strukturbericht

designation B2) phase of the Ni–Ti crystal at 0 K and those of the bulk nickel and

titanium. Values of the parameters used in the present calculations are summarized in

Table 3.1.

Since most of the many-body potentials go nearly to zero at large distances, a cutoff
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Table 3.1: Parameters of the FS-type potential for the interactions between titanium
and nickel atoms [108]

d (Å) A (eV) p ξ (eV) q
Ti–Ti 2.950 0.153 9.253 1.879 2.513
Ni–Ti 2.607 0.300 7.900 2.480 3.002
Ni–Ni 2.490 0.104 11.198 1.591 2.413

radius, rc, is frequently used to reduce the computation time. If such a cutoff radius is

used, the interatomic potentials and, subsequently, the forces are neglected for atoms

being at distances r > rc from each other. The parameter set given in Table 3.1 was

obtained in Ref. [108] with the cutoff distance of 4.2 Å as another adjustable parameter.

In this study, this value was utilized for all considered types of interaction.

Figure 3.1: Optimized geometries of small TiN (N = 2− 15, 19) and NiN (N = 2− 15)
clusters obtained by means of the ab initio approach. The label above each cluster
image indicates its symmetry point group. The figure is adapted from Ref. [23].

Figure 3.1 shows the ground-state geometries of small titanium and nickel clusters

consisting of up to 19 atoms that were found by means of the DFT approach. The

results of calculations demonstrate that the small transition metal clusters form compact

structures maximizing the coordination number. As illustrated in the figure, most

studied clusters possess rather low symmetry. It can be explained by the Jahn-Teller

effect, which appears in the geometrical distortion of the clusters leading to decrease of

their ground-state energies [22].
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The classical geometry optimization for pure titanium and nickel clusters results

in the geometries similar to those obtained by the ab initio method, except for higher

symmetry of the systems. Within the classical approach the clusters were optimized

as almost regular structures. This difference can be explained in terms of the charge

transfer between the atoms of a cluster as well as the Jahn-Teller and spin effects, which

are not accounted for within the classical framework. The results of classical geometry

optimization of TiN and NiN clusters correspond also to those, obtained previously

using the embedded-atom method [109].

The ability of the classical force fields to adequately describe nanoscale systems was

evaluated by the analysis of the binding energy of pure titanium and nickel clusters.

The binding energy per atom is defined as

Eb/N = E1 − EN/N , (3.2)

where EN is the energy of a cluster consisting of N atoms, and E1 is the energy of a

single Ti or Ni atom.

Figure 3.2: Binding energy per atom for the most stable titanium (left panel) and nickel
(right panel) clusters as a function of number of atoms N . The black (open squares)
and red (filled circles) curves illustrate the results of present DFT calculations and
classical optimization, respectively. Other symbols represent results of previous DFT
studies [110–113] performed at a similar level of theory. The figure is adapted from
Ref. [23].

The dependence of the binding energy per atom for the most stable titanium clusters

on cluster size is illustrated in the left panel of Figure 3.2. Results of the present ab

initio-based calculations (labeled with black squares) are compared to those of other

ab initio studies [110–112]. As shown in the figure, all presented curves have a similar

behavior in spite of a broad range of the obtained values. For N = 7 and 13, a change

of the slope of the Eb/N curve obtained within the ab initio framework is observed,
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that illustrates the increased stability of Ti clusters with ”magic” numbers [114]. The

existence of the magic numbers for transition metal clusters (e.g., N = 7, 13, 15, 19, 25

for neutral TiN clusters) reflects the geometric effects but not the electronic effects [102].

Most properties of clusters of transition elements reflect the rather localized behavior

of d electrons as opposed to the clusters and solids of alkali metals whose properties are

dominated by the delocalized behavior of the external s− p electrons [115,116].

The red line (with filled circles) in the left panel of Figure 3.2 illustrates the results

of classical optimization. They generally correspond to the results of the quantum-

chemical calculations, although the classical framework underestimates significantly

the binding energy of the Ti2 dimer and slightly under- or overestimates it for larger

clusters. The discrepancies between the DFT-based and classical calculations for the

smallest clusters (N = 2− 4) can arise due to quantum effects, occurring in finite-size

systems. One should note, however, that the discrepancy between the results of classical

optimization and DFT-based calculations of small atomic clusters is within the limits

typical for the discrepancies arising from the utilization of different exchange-correlation

functionals. It is hardly possible to reproduce the specific quantum phenomena, like

electronic shell closure, with the classical force fields. However, the relative contribution

of these effects is not so significant and it apparently does not influence much on the

overall (average) evolution of the system properties with the system size.

As an additional benchmark of the utilized force fields, we used them for optimiza-

tion of large titanium and nickel crystalline structures consisting of about one million

atoms. In the case of the titanium crystal, we obtained the value of cohesive energy

Ecoh = 4.80 eV, which corresponds to the experimentally measured cohesive energy of

the bulk titanium, Eexp
coh = 4.85 eV [117].

One should note also that the DFT-based calculations of titanium clusters result in

another asymptotic behavior of the Eb(N) function that leads to significantly higher

values of the binding energy as compared to the results of classical optimization and

the experimental data. It is known that pure DFT methods, such as LDA or GGA,

provide, in general, a reliable description of the ground-state properties of solids but

are far less successful being applied to materials, where the constituent atoms contain

partly filled d or f shells, such as transition metals [118,119]. The origin of the failure

of DFT in transition metals is usually associated with an inadequate description of

the strong Coulomb repulsion between d electrons [120]. With regard to the cohesive

energy, the conventional DFT methods, such as LDA and GGA, overestimate it for

most of transition-metal systems, and for titanium in particular, resulting in the values

of 5.9 eV and 6.7 eV [121], respectively, which are as large as 20–40% higher than the

experimental value of 4.85 eV [117].

The binding energy per atom for the most stable nickel clusters, optimized within the
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DFT (black squares) and classical (red circles) frameworks, is demonstrated in the right

panel of Figure 3.2. The results of the ab initio study by Venkataramanan et al. [113]

are also given for the comparison. Calculating the cohesive energy for an ideal nickel

crystal, we got the value Ec = 4.47 eV, which also corresponds to the experimentally

measured cohesive energy of bulk nickel, Eexp
c = 4.44 eV [117].

Substituting one titanium atom by a nickel atom in the optimized TiN clusters,

we studied bimetallic TiN−1Ni compounds. Various positions of the nickel atom in

the clusters were considered. Geometrical structures of the most stable Ni-doped tita-

nium clusters calculated within the PW91PW91/DGDZVP2 method are presented in

Figure 3.3.

Figure 3.3: Optimized geometries of Ni-doped titanium clusters TiN−1Ni (N ≤ 13)
calculated within the PW91PW91/DGDZVP2 method. Label above each cluster image
indicates the point symmetry group of the cluster. The figure is adapted from Ref. [22]

Similar to the analysis performed for pure titanium and nickel clusters, we carried

out classical geometry optimization of the TiN−1Ni clusters and compared the obtained

results to that of DFT calculations. The binding energy per atom as a function of

cluster size for bimetallic TiN−1Ni clusters,

Eb/N = (N − 1)E1[Ti] + E1[Ni]− EN [TiN−1Ni]/N , (3.3)

calculated within the ab initio and classical approaches is presented in Figure 3.4. It

is seen that the classical force field for a bimetallic system does not reproduce well the

results of the more accurate DFT calculations for very small compounds. However, with

increasing the number of atoms in a cluster, the relative difference between the results

obtained within the two approaches becomes significantly smaller, and one can state

than starting from Ti7Ni the classical results correspond to those from the ab initio

calculations. This behavior can be explained by a significant charge redistribution from

to host titanium environment to the embedded nickel atom [22]. It can be explained
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in terms of different values of electronegativity for the Ni and Ti atoms. Due to the

larger electronegativity of Ni (1.91) comparing to that of Ti (1.54), the dopant atom

gains an additional negative charge. With increasing cluster size and, respectively, the

number of Ti atoms in a cluster, the gained negative charge of the Ni atom decreases.

For N = 11 and 13 the Ni atom gains an additional positive charge equal to 0.1e and

0.07e, respectively. It can be explained by the fact that the most stable configurations

of TiN−1Ni (N > 10) clusters are obtained when the Ni atom is located on the surface

of a cluster rather than in the center (see Figure 3.3). On the contrary, the central

atom in the Ti12Ni cluster gains an additional negative charge equal to −2.0e.

Figure 3.4: Binding energies per atom for the most stable Ni-doped titanium clusters
as a function of cluster size. Black line (squares) represents the results of DFT calcu-
lation, while red line (open circles) represents the results of the classical simulations.
To describe the Ni-Ti interaction in the simulations, the FS-type potential with the
parametrization developed in Ref. [108] was used. The figure is adapted from Ref. [22].

Concluding the analysis of energetic properties of small transition metal clusters,

carried out within the two different approaches, one can summarize that the force

fields, which are parameterized to reproduce bulk properties of perfect Ti, Ni, and Ni-

Ti crystals, are able to describe with a reasonable accuracy nanoscale systems consisting

of several tens of atoms. A proper description of such nanoscale systems is important

in the case of nanostructured or non-ideal materials. Contrary to ideal crystalline

structures, real crystals also have point defects and local irregularities of the structure

such as dislocations, grain boundaries, or stacking faults. The results obtained by the

classical optimization of atomic clusters correlate with those, which were obtained on

the basis of more accurate DFT calculations. For the very small clusters consisting of
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a few atoms, the relative discrepancy between the obtained results is higher since the

finite-size quantum effects, which are not accounted for within the classical approach,

are crucial for these systems. Although having been applied in this study only to Ti-Ni

interatomic potentials, this methodology can also be used for the exploration of many

more materials of technological interest, including monatomic systems and alloys.

3.2 Reconciling simulated melting and ground-state

properties of metals with a modified many-body

potential

Different many-body potentials [76, 77, 122–124], that have a general form defined by

expressions (2.22) or (2.23), are capable of describing geometrical, mechanical, and ener-

getic properties of different metals (e.g., cohesive energy, lattice parameters, and elastic

constants), but can rarely reproduce the experimentally measured melting tempera-

ture. An illustrative case study is bulk gold whose melting temperature, as calculated

using the many-body potentials which account for the interaction of a given atom with

several surrounding atomic layers, differ from experimental values by several hundred

degrees [125, 126]. A similar order of discrepancy was observed also for other metals,

e.g. titanium [127, 128], and also for inorganic systems, such as silicon [126]. Thus,

it is essential to amend the existing force fields, so that they can reproduce correctly

properties of both the ground- and finite-temperature states of metal systems.

In this work, we have proposed a recipe for constructing an interatomic potential

that is able to correctly reproduce both the melting temperature and the ground-state

properties of metal systems by means of classical MD simulations [21]. The new poten-

tial should satisfy the following principal condition: curvature of the modified potential

energy profile in the vicinity of the equilibrium point must coincide with that of the

original potential. This condition is set to reproduce, with the new potential, ground-

state properties which are governed by the behavior of the potential energy curve in

the vicinity of the equilibrium point.

There are different functional forms that satisfy this mathematical condition. As

an illustration, we have added a linear function to the existing formula, so that the

modified expression for the potential energy of the system reads as:

Umod(rij) = U(rij) +B rij + C , (3.4)

where Umod(rij) is the proposed modified potential, U(rij) is the original many-body

potential in the form (2.22) or (2.23), and B and C are adjustable parameters. The
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term B rij makes the resulting potential steeper (less attractive) at interatomic distances

exceeding the equilibrium point but, at the same time, it also slightly changes the depth

of the potential well at the equilibrium point. The constant term C is thus introduced to

discard the latter effect. As a case study, we used the exact form of the potential U(rij)

which is based on the second-moment approximation of the tight-binding model. Both

the attractive and repulsive terms are introduced in this approach in the exponential

form, see Eqs. (2.23) and (2.24)–(2.25).

One should note that the introduced modification (3.4) is spiritually similar to the

so-called Dzugutov pairwise potential [129] which was developed to model glass-forming

liquid metals. The Dzugutov potential was constructed to suppress crystallization com-

mon to most monatomic systems by the introduction of a repulsive term representing

the Coulomb interactions that are present in a liquid metal. The similar idea of increas-

ing repulsion at large interatomic distances for modeling metals in highly-vibrational

states far from the potential energy minimum is pursued with the introduced linear

modification.

The impact of the modified potential is investigated by analyzing thermal, geomet-

rical, and energetic properties of nanoscale samples composed of four representative

metals. We consider gold and platinum, which are important metallic constituents of

the nanosystems currently proposed for radiotherapy applications, as well as titanium

and magnesium, which are of interest for the development of biocompatible implants

for medical applications. A generality of the introduced correction is emphasized by

considering metals with different characteristics of the electron structure, namely (i)

s, p-bonding (Mg), (ii) transition metal with less than half-filled d band (Ti), (iii) tran-

sition metal with almost filled d band (Pt), and (iv) noble metal with completely filled

d band (Au).

We have considered finite-size spherical nanoparticles with radii from 1 to 7 nm, cut

from ideal face-centered cubic (fcc) (in the case of Au and Pt) or hexagonal close-packed

(hcp) (for Ti and Mg) crystals. The nanoparticles were composed of approximately 300

to 80,000 atoms. The crystalline structures were constructed and optimized, and the

MD simulations were carried out using the MBN Explorer software package [61]. Energy

minimization was performed using the velocity-quenching algorithm.

The MD simulations of the nanoparticle heating/melting were performed without

boundary conditions in the NVT canonical ensemble. The temperature T was controlled

by a Langevin thermostat with a damping coefficient γ = 1 ps−1. In Langevin dynamics,

atoms in the system are considered to be embedded in a ”sea” of fictional particles. In

this case, the dynamics of atoms in the system is described by Langevin equations of

motion [61]. The Langevin equation of motion for an atom includes additional terms
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Table 3.2: Utilized parameters of the original ((2.23), (2.24) and (2.25)) and the mod-
ified (3.4) FS-type potentials describing the interactions in gold, platinum, titanium,
and magnesium

d (Å) A (eV) p ξ (eV) q Ref. B (eV/Å) C (eV) rc (Å)
Au 2.88 0.206 10.23 1.79 4.04 [123] 0.0065 −0.034 6.65
Pt 2.78 0.297 10.61 2.70 4.00 [123] 0.0064 −0.031 6.6
Ti 2.95 0.153 9.25 1.88 2.51 [108] 0.0114 −0.060 7.0
Mg 3.21 0.029 12.82 0.50 2.26 [123] 0.0061 −0.032 7.0

that account for the friction force and the noise terms and reads as:

miai(t) = Fi(t)−
1

τd
mivi(t) +

√
2kBT0mi

τd
Ri(t) . (3.5)

Here, Fi is the physical force acting on the atom, kBT denotes the thermal energy in the

system with kB being the Boltzmann constant, τd = 1/γ is the characteristic viscous

damping time, and Ri(t) represents a delta-correlated stationary Gaussian process with

zero-mean, satisfying

⟨Ri(t)⟩ = 0 (3.6)

⟨Ri(t)Ri(t
′)⟩ = δ(t− t′) , (3.7)

where ⟨. . . ⟩ denotes time-averaging. The viscous damping time parameter, τd, de-

scribes the characteristic time of energy exchange between particles and the heat bath.

The Langevin equation of motion (3.5) gives a physically correct description of a

many-particle system interacting with a heat bath, maintained at a constant tempera-

ture T0 [61].

In the performed simulations, the nanoparticles were heated up with a constant rate

of 0.5 K/ps. The time integration of the equations of motion was done using the velocity-

Verlet algorithm [130] with an integration time step of 5 fs. In all the calculations, the

interatomic interactions were truncated at the cutoff radius rc which was introduced

to reduce the computation time. Depending on the system, the utilized cutoff value

was in the range between 6.6 and 7 Å. Parameter B was derived independently for

each considered metal so that the extrapolated bulk melting point corresponds to the

reference value. The parameter C was then tuned to reproduce the reference value of

cohesive energy. Parameters of the original FS-type potential (Eqs. (2.23), (2.24) and

(2.25)) and its modification (3.4) are summarized in Table 3.2.

In the proposed modification, the linear term Brij+C is responsible for a monotonic

increase of the potential at large distances. In this case the cutoff distance is set to

the value at which the modified potential (3.4) is equal to zero. The parametrization

of the original EAM-type potential for titanium, given in Table 3.2, was obtained in
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Table 3.3: Comparison of ground-state parameters of the modeled crystals for different
specifications of the potential

U Umod exp. U Umod exp.
Au Pt

a, Å 4.07 4.05 4.08 3.93 3.91 3.92
Ecoh, eV 3.78 3.80 3.78 5.85 5.84 5.85

Ti Mg

a, Å 2.92 2.92 2.95 3.20 3.20 3.21
c, Å 4.76 4.76 4.68 5.22 5.22 5.21
Ecoh, eV 5.04 4.85 4.87 1.52 1.49 1.52

Ref. [108] with the cutoff distance of 4.2 Å as another adjustable parameter. The

other three metals are described in this work with the parametrization by Cleri and

Rosato [123] where the summation in the EAM-type potential was ”.. extended up

to the fifth neighbors for cubic structures”. The analysis of radial pair distribution

function for gold and platinum demonstrates that the fifth neighbors in these metals

are located at the distance 6.45 and 6.15 Å from the given atom, respectively. These

values are slightly smaller than the cutoff values which have been used in the present

simulations, see Table 3.2. In Ref. [123], hcp metals were described ”... with cutoff

values ranging between
√
11/3 d and

√
5 d” where d is the first-neighbor distance. The

original cutoff for titanium, as formulated in Ref. [123], thus lies in the range from

5.65 to 6.60 Å which is smaller than the cutoff used in our simulations. Similarly, the

original cutoff for magnesium lies in the range between 6.15 and 7.2 Å and corresponds

to the value of rc = 7 Å which we have adopted in the simulations.

To quantify the effect due to the potential modification, we have analyzed first

the ground-state geometrical and energetic properties of the samples, namely lattice

parameters and cohesive energy (see Table 3.3). The quantity Ecoh represents the

cohesive energy per atom of an infinitely large ideal crystal, which was obtained by

extrapolating the binding energies of AuN , PtN , TiN , and MgN (N ≈ 300 − 80, 000)

nanoparticles to the N → ∞ limit. Table 3.3 demonstrates that, similar to the case

of the original potential (the column labeled as ”U”), the modification of the potential

(the column ”Umod”) allows one to reproduce experimental values [117] with a relative

discrepancy of less than 2%.

As another benchmark of the modified potential, vacancy formation energy was

analyzed. This quantity is given by

Evf = EN−1 −
N − 1

N
EN . (3.8)

where EN and EN−1 are the energies of a perfect crystal and a vacancy-formed structure
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after relaxation, and N is the number of atoms in the simulation box. To calculate Evf ,

the following procedure was adopted. A perfect crystal was created, which spans at

least three cutoff distances in each direction. The crystal comprising N atoms was

relaxed using periodic boundary conditions. Then, one atom was removed from the

crystal. The crystal now comprising N − 1 atoms was relaxed again using periodic

boundary conditions. To check the consistency of the results, we have analyzed the

samples of different size, containing from about 500 up to 2048 atoms.

Table 3.4 presents the vacancy formation energy calculated with the original (the

column ”Uorig”) and the modified (the column ”Umod”) potentials. The calculated

values are compared with available experimental data and the results of earlier DFT

and classical calculations. This analysis demonstrates that the numbers obtained with

the original EAM-type potential (2.23)-(2.25) and its modification (3.4) are consistent

with one another and agree in general with the existing experimental and theoretical

values.

Table 3.4: Vacancy formation energy (in eV) calculated with the original (Uorig) and the
modified (Umod) potential. The calculated values are compared with available experi-
mental data and the results of earlier calculations. The experimental methods comprise
positron annihilation (PA), thermal expansion (TE) and quenching (Q) measurements.
Earlier theoretical calculations performed by means of density functional theory are
labeled as DFT. EAM denotes the classical MD simulations performed using an EAM-
type potential.

this work
Uorig Umod exp. data calculations

Ti 1.56 1.52 1.55 [131] 1.56 (EAM) [108]
1.27± 0.05 (PA) [132] 2.14 (DFT-LDA) [133]

1.97 (DFT-GGA) [134]
Mg 0.60 0.62 0.58± 0.01 (TE) [135] 0.88 (EAM) [136]

0.79± 0.03 (Q) [137] 0.77− 0.80 (DFT-GGA) [138]
Au 0.61 0.64 0.62− 0.67 (TE) [139] 0.60 (EAM) [122]

0.70− 1.10 (Q) [139] 0.75 (EAM) [123]
Pt 1.16 1.14 1.35± 0.09 (PA) [140] 1.28 (EAM) [122]

1.15 (DFT-LDA) [141]
1.18 (DFT-GGA) [141]

Melting temperature of the finite-size nanoparticles was estimated from analyzing

the temperature dependence of the heat capacity, CV = (∂E/∂T )V , defined as a deriva-

tive of the internal energy of the system with respect to temperature. A typical caloric

curve, that is the temperature dependence of the time-averaged total energy ⟨Etot⟩ of
the nanoparticle, and the heat capacity CV are shown in Figure 3.5. A sharp maximum

of CV is attributed to the nanoparticle melting.

The bulk melting temperature was estimated by extrapolating the obtained values
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Figure 3.5: Temperature dependence of (i) the time-averaged total energy per atom
⟨Etot⟩/N of a 5 nm-radius gold nanoparticle, composed of N ≈ 31, 000 atoms (blue
curve), and of (ii) the heat capacity CV (red curve and symbols). A sharp maximum
of the heat capacity at T = 945 K arises at the nanoparticle melting temperature.

to the N → ∞ limit according to the Pawlow law [63, 142, 143]. It describes the

dependence of the melting temperature of spherical particles on the number of atoms

they are composed of as Tm = T bulk
m −αN−1/3, where T bulk

m is the melting temperature of

a bulk material and α is the factor of proportionality. Thus evaluated values of melting

temperature are summarized in Figure 3.6 and Table 3.5 for all the studied metals.

In Figure 3.6, symbols illustrate the results of the simulations for the finite-size

nanoparticles. The estimated values of the bulk melting temperature obtained with the

use of the original potential (2.24)-(2.25) (open symbols) lead to a significant deviation

of about 300 K from the experimental values which are marked by stars. The situation

changes drastically when introducing the linear correction to the original potential.

The figure illustrates that the use of the modified force field (closed symbols) leads to

a much better correspondence of the bulk-limit extrapolations with the experimental

values for all studied metals. The extrapolation procedure yields the values of the

melting temperature presented in Table 3.5 which differ from the reference values by

less than a few percent.

For additional analysis, melting temperature of titanium was evaluated with the

original FS-type potential using different values of the cutoff (see Figure 3.7). We have

considered several values of rc, ranging from 4.2 Å up to a significantly larger value

of 14 Å. The former value slightly exceeds the second-neighbor distance in the hcp-

Ti crystal, d2 = 4.17 Å. In the case of a small cutoff radius (open squares / dashed
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Figure 3.6: Melting temperature of spherical AuN , PtN , TiN , and MgN nanoparticles
calculated by means of the original, U (open symbols), and the modified, Umod (closed
symbols), potential. Lines represent the linear extrapolation of the calculated numbers
to the bulk (N → ∞) limit. Experimental values of melting temperature are shown by
stars. The figure is adapted from Ref. [21].

Table 3.5: Melting temperature T bulk
m (in kelvin) of different metals which is evaluated

on the basis of the performed MD simulations
U Umod exp.

Mg 658 913 923
Au 1030 1284 1337
Ti 1610 1915 1941
Pt 1759 2030 2041

black line), the difference between the extrapolated bulk melting temperature and the

reference value is as large as 500 K, while the increase of the cutoff up to 7 Å (open

circles / dashed red line) reduces the gap but still yields the discrepancy of about 300

degrees. We have also tested another parametrization of the Ti-Ti force field, which

was suggested in Ref. [123] (dotted grey line). The further increase of the cutoff up to

a very large value of 14 Å does not quantitatively change the description of thermal

properties of the system. Simulation of melting of the nanoparticles with R = 2 and

3 nm with the use of the increased cutoff (triangles) results in an increase of the melting

temperature only by 20 K, as compared to the case of rc = 7 Å. Thus, an explicit account

of very distant interatomic interactions does not improve the quantitative description

of melting, and the potential modification is required to bring the calculated melting

temperature closer to the experimental value.

In order to understand the physical effects which are behind the above-described

improvement, melting of the studied metal systems was analyzed in terms of the Lin-

demann criterion [144]. It states that melting occurs because of vibrational instability,
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Figure 3.7: Left panel: Crystalline structure of hcp-Ti. Concentric circles show different
cutoff radii with respect to the central atom, marked by red color. Right panel: Melting
temperature of spherical titanium nanoparticles (symbols) calculated by means of the
original U and modified Umod potential using different values of the cutoff radius, as
indicated.

i.e. a crystalline structure melts when the average amplitude of thermal vibrations of

atoms is relatively high compared to interatomic distances. This condition can be ex-

pressed as
√
⟨(δu)2⟩ > δLd, where δu is the atomic displacement, δL is the Lindemann

parameter typically equal to 0.10− 0.15, and d is the interatomic distance [101].

The analysis revealed that interatomic interactions at distances, exceeding the equi-

librium distance by a characteristic vibration amplitude defined by the Lindemann

criterion, significantly affect the correctness of simulations. To elaborate on this issue,

we analyzed the potential energy surfaces (PES) for large 6 nm-radius nanoparticles

with the optimized structure, composed of the titanium, gold, and magnesium. Posi-

tions of all atoms in the systems except for a given one were fixed. The movable atom

was displaced from its equilibrium position and the interaction energy was calculated.

Then, the energy of the perturbed system was subtracted from the energy of the fully

optimized system. The resulting PES for the metal nanoparticles are presented in Fig-

ure 3.8. Each panel shows several isolines corresponding to a given energy difference

between the optimized and the perturbed systems. For the sake of clarity, this quantity

has been converted into temperature.

Due to the additional linear term, the modified many-body potential (solid curves)

makes the resulting potential steeper at large interatomic distances, as compared to

the original FS-type potential (dashed curves). For instance, in the case of titanium,

the displacement of an atom for about 0.3 Å, that is approximately 1/10 of the closest

interatomic distance (dTi = 2.95 Å), results in the energy difference of about 0.17 eV

that corresponds to 2000 K. Thus, interatomic interactions at distances, exceeding

the equilibrium distance by a characteristic vibration amplitude δu, are overestimated
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Figure 3.8: Potential energy surface for 6 nm-radius metal nanoparticles whose con-
stituent atoms interact via the original (dashed lines) or the modified (solid lines)
potentials. The thick dashed and solid (red) lines denote the energy difference cor-
responding to the predicted bulk melting temperatures (see Table 3.5). The figure is
adapted from Ref. [21].

by conventional many-body potentials and should be corrected in order to reproduce

the quantitatively correct value of the melting point. A more accurate description of

the interatomic interaction in the region beyond the equilibrium distance allows one

to handle the problem of the accurate description of thermo-mechanical properties of

metal materials.
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Chapter 4

Low-energy electron production by

metal nanoparticles

This chapter presents the results of a theoretical and numerical analysis of electronic

properties of nanometer-size nanoparticles made of gold, platinum, silver, and gadolin-

ium. This study was motivated by the fact that nanoparticles composed of these ma-

terials are of current interest for radiation therapy applications. Metal nanoparticles

were proposed recently to act as radiosensitizers in cancer treatments with ionizing

radiation [8–12, 41, 145]. It is currently suggested that, being delivered to the tumor

region, such nanoparticles can boost the production of secondary electrons near the

target [16,17]. Therefore, the use of radiosensitizing nanoparticles can result in a well-

localized dose enhancement that will lead to the enhanced radiation damage of the

tumor cells thus increasing efficiency of the treatment.

After the first experimental evidence of radiosensitization by gold nanoparticles [42]

a number of follow-up experiments with nanoparticles composed of other metals, such

as platinum, silver, gadolinium and iron, were performed in recent years [8–10,43, 146,

147]. Application of gold nanoparticles in combination with photons demonstrated an

increase of cancer cell killing [11, 42, 148]. In recent experimental studies with fast

ions as a radiation source the radiosensitizing effect done by metal nanoparticles was

also observed [8, 10, 149]. This opens a possibility for using nanoparticles in ion-beam

cancer therapy which is currently considered as a very promising modern treatment

technique [13,150,151].

In this chapter, we focus attention on electron production by sensitizing nanopar-

ticles irradiated by photons and fast ions. We provide a methodology for analyzing

the dynamic response of nanoparticles of the experimentally relevant sizes, namely of

about several nanometers, exposed to ionizing radiation. Because of a large number of

constituent atoms (about 103− 104 atoms) and consequently high computational costs,

the electronic properties of such systems can hardly be described by means of ab ini-

47



48 Low-energy electron production by metal nanoparticles

tio methods based on a quantum-mechanical treatment of electrons, and this analysis

should rely on model approaches. By comparing the response of smaller systems (of

about 1 nm size) calculated within the ab initio- and the model framework, we validate

this methodology and make predictions for the electron production in larger systems.

The atomic system of units, me = |e| = ~ = 1, is used throughout this chapter.

4.1 Collective electron excitations in gold clusters

under photon impact

It is well known that an important mechanism of excitation/ionization of metallic clus-

ters and nanoparticles, as well as some other nanoscale systems, relies on the formation

of plasmons, that is, collective excitations of delocalized valence electrons induced by

an external electric field [20,36,152]. Plasmon excitations correspond to oscillations of

the electron density with respect to the positively charged ions and are described in the

classical physics terms [19, 80]. These excitations appear as prominent resonances in

the excitation/ionization spectra of various systems, and the position of the resonance

peak depends strongly on the type of a system (see Figure 4.1, panels (a) and (b)).

In the case of metallic clusters, a typical energy of the plasmon excitations is about

several electronvolts, and the resonance peak is located in the vicinity of the ionization

threshold [153,154].

Another important ionization mechanism is associated with the collective excitation

of electrons localized on individual atoms. Such excitations appear in the electronic

shells which have a large number of highly-correlated electrons, for instance, in the

d shells. These excitations are associated with a short-range potential well due to

screening effects and a centrifugal barrier for electrons with large angular momentum,

and result in the formation of the so-called atomic giant resonances in the ionization

spectra of many-electron atoms [155, 156] (see Figure 4.1, panels (c) and (d)). The

resonances appear as broad peaks positioned above the ionization threshold of a given

shell.

All these collective electron phenomena occur in various processes of interaction of

ionizing radiation with matter. In particular, dipole collective excitations result in the

formation of prominent resonances in the photoabsorption spectra of atomic clusters

and nanoparticles [36,152], while the impact ionization cross sections comprise also the

contributions of higher multipole terms [20].

In this work, the contribution of the plasmon excitations is evaluated by means of

the so-called Plasmon Resonance Approximation (PRA) [19, 20, 159]. This approach

postulates that the dominating contribution to the cross section in the vicinity of the
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Figure 4.1: Plasmon resonance peaks in the photoabsorption spectra of a small sodium
cluster (a) and a C60 fullerene (b). In the case of metallic clusters, a typical energy of
the plasmon excitations is about several eV, while in the case of fullerenes the plasmon
peak represents a broad feature positioned at about 20 eV. The formation of atomic
giant resonances in individual atoms is associated with a short-range potential well
formed due to screened Coulomb interaction and a centrifugal barrier for electrons with
large angular momentum (c). These resonances appear as broad peaks positioned above
the ionization threshold of a given shell (d). The figures are adapted from Refs. [153,
156–158].

plasmon resonance comes from collective electron excitations, while single-particle ef-

fects give much smaller contribution [160,161]. During the past decades, this approach

provided a clear physical explanation of the resonant-like structures in photoionization

spectra [19, 29] and differential inelastic scattering cross sections [18, 27, 28, 161–163]

of metal clusters and carbon fullerenes under the photon and electron impact. This

approach is briefly described in this chapter and also outlined in Appendix A.

The PRA relies on a few parameters, which include the oscillator strength of the

plasmon excitation, position of the plasmon resonance peak and its width. The choice

of these parameters can be justified by comparing the model-based spectra either with

experimental data or with the results of more advanced calculations. References [16,17]

provided an experimental evidence that a considerable portion of radiosensitization by

gold nanoparticles arises from the emitted low-energy electrons. However, it is hardly
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possible to find experimentally measured impact ionization cross sections of gold clusters

and nanoparticles with photons and charged projectiles covering the photon energy (or

energy loss range) of about 1− 10 eV. In order to get this information, photoionization

spectra of several gold clusters were calculated in this study by means of TDDFT.

Then, the ab initio-based spectra were fitted with those calculated within the model

approach. Such a methodology allowed us to define the resonance frequencies and to

calculate the oscillator strength of the plasmon excitations in gold nanoparticles.

We begin with the analysis of TDDFT-based ionization spectra of small systems. As

a case study, four three-dimensional gold clusters consisting of 18 to 42 atoms, namely

Au18, Au20, Au32, and Au42, have been considered. The former two systems, which

were observed experimentally, possess C2v and Td symmetry, respectively [164, 165].

The latter two are hollow, fullerene-like icosahedral structures whose high stability was

predicted theoretically on the basis of DFT calculations [166–168].

The TDDFT-based photoabsorption spectra were calculated as follows. At first,

we performed the geometry optimization using the Gaussian 09 package [107]. The

optimization procedure was performed by means of DFT within the generalized gradient

approximation (GGA) and using the effective-core potential CEP-121G basis set [169],

augmented by d-polarization functions. The utilized basis set has the 4f frozen core,

so that 19 electrons (5s, 5p, 5d, and 6s) from each gold atom were explicitly treated in

the course of optimization. The main principles, the performed calculations are based

on, as well as the corresponding definitions are outlined in Appendix B.

To account for the exchange and correlation corrections, the PBE functional [85]

was utilized. Different spin multiplicities were considered in the course of geometry

optimization. Figure 4.2 shows the ground-state geometries of the studied clusters.

Figure 4.2: Optimized structures of the studied gold clusters. The figure is adapted
from Ref. [24].

The linear response function of the clusters was calculated within the dipole approx-

imation, based on the formalism described in Section 2.4. The photoabsorption spectra

were obtained using the TDDFPT module [170] of the Quantum Espresso software pack-
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age [171]. The optimized geometries were introduced into a supercell of 20×20×20 Å
3
.

Then, the system of Kohn-Sham equations was solved self-consistently for valence elec-

trons of the clusters to calculate the ground-state eigenvalues using a plane-wave ap-

proach [171]. The calculations were performed using a Vanderbilt ultrasoft nonlinear

core-corrected pseudopotential [172], which substitutes real valence atomic orbitals in

the core region with smooth nodeless pseudo-orbitals [94]. For that, eleven outer-shell

electrons (5d106s1) of each gold atom were treated as the valence ones. The obtained

results were checked by performing a series of calculations with different values of the

supercell size and the energy cutoff. The spectra presented below were obtained with

the kinetic energy cutoff of 30 Ry for the wave functions and 180 Ry for the electron

densities.

It should be stressed that, although the size of the studied clusters is not so large

(about 1 nm in diameter), the largest considered cluster, Au42, contains 462 outer-shell

electrons which should be simultaneously accounted for in the DFT/TDDFT calcula-

tions. This makes the ab initio-based calculation of the spectra quite demanding from

the computational viewpoint. To analyze the dynamic response of the systems, which

are currently used in the experimental studies on sensitization [8–10, 146], one should

therefore utilize model approaches. They should also describe adequately the response

of smaller systems and must be validated by comparing the results of the ab initio- and

model-based calculations.

Figure 4.3: The photoabsorption cross section of the Au18 (black), Au20 (red), Au32

(blue) and Au42 (green) clusters calculated within the TDDFT framework. The figure
is adapted from Ref. [24].

Figure 4.3 shows the photoabsorption spectra of the Au18, Au20, Au32 and Au42
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clusters calculated by means of TDDFT for the photon energy up to 60 eV. The spectra,

having a similar profile, are characterized by a low-energy peak located below 10 eV

and by a broad feature which has the maximum at about 20− 25 eV.

Figure 4.4: Comparison of the photoabsorption cross section for Au20 calculated in this
work (thick black line) with the spectra from previous studies by Idrobo et al. [173]
(symbols) and Aikens and Schatz [174] (thin blue line). The spectrum obtained in this
work is given in Mb. The spectra from other studies were provided in arbitrary units;
for a quantitative comparison they were normalized to the present spectrum at the
point of maximum of the peak at 2.8 eV.

As a benchmark of the utilized approach, we have compared the photoabsorption

spectrum for Au20 calculated in this work with the spectra obtained in earlier stud-

ies [173, 174]. This comparison is presented in Figure 4.4. It demonstrates that the

spectra are in good mutual agreement thus confirming the accuracy of the present

calculations. Minor discrepancies can be attributed to different exchange-correlation

functionals used in this work (GGA-PBE) and in earlier studies (GGA-PB86 [174] and

LDA [173]).

The analysis performed in this study revealed that the broad feature in the spectra

of gold clusters, having the maximum at about 20 − 25 eV, is the giant resonance

formed due to the excitation of electrons in the 5d atomic shell. To prove this, we

have analyzed the oscillator strength distribution, df/dω, which is proportional to the

photoabsorption cross section,

σγ(ω) =
2π2

c

df

dω
. (4.1)

Integration of this expression leads to the oscillator strength f in the photon energy
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range from ω1 to ω2:

f =

ω2∫
ω1

df

dω
dω =

c

2π2

ω2∫
ω1

σγ(ω) dω . (4.2)

The total oscillator strength, including both excitations in the discrete and in the

continuum spectrum, should be equal to the total number of electrons in the system:

ftotal =

∞∫
0

df

dω
dω = Ne . (4.3)

The spectra presented in Figure 4.3 were integrated in the photon energy range from

20.2 eV (ionization threshold of the 5d shell in a single atom of gold) up to 57.2 eV,

which is the ionization threshold of the 5p shell [175]. The obtained values are 139.8,

153.3, 240.5 and 318.7 for Au18, Au20, Au32 and Au42, respectively. This indicates that

about eight atomic d-electrons contribute to the excitation of the 5d shell forming the

broad resonance peak in the photoionization spectra. The 5d giant resonance can be

fitted with a Fano resonance profile [176],

σ5d(ω) ≡ σ5d→εp,εf (ω) ∝
(Γ5d + ω − ω5d)

2

(Γ5d/2)
2 + (ω − ω5d)

2 , (4.4)

which is frequently utilized in atomic, nuclear and condensed matter physics to describe

resonant scattering processes occurring in various systems. Here, ω5d stands for the

resonance frequency and Γ5d is the width of the peak. To describe this feature, the

values ω5d = 22 eV and Γ5d = 12 eV were utilized. The fitting for the Au32 cluster is

illustrated in Figure 4.5 by the thick solid purple line.

The low-energy peak is related to the surface plasmon, which arises due to collective

excitation of delocalized electrons in a whole cluster. The integration of the oscillator

strength in this energy region reveals that about 1.0 (in Au20) to 1.5 (in Au32) electrons

from each atom contribute to the plasmon. Integration of the photoabsorption spectrum

of Au32 up to 11.2 eV (energy at which the first dip after the resonance peak is observed)

yields the oscillator strength of 1.43 per atom. The collective nature of the low-energy

peak is analyzed in more detail in Section 4.1.1.

The low-energy peak was fitted by means of the PRA scheme. To describe plas-

mon excitations arising in gold nanoparticles, we have adopted a simple but physically

grounded model which treats the studied highly-symmetric clusters, Au32 and Au42,

as a spherical ”jellium” shell of a finite width, ∆R = R2 − R1. In other words, the

electron density in these systems is assumed to be homogeneously distributed over the

shell with the thickness ∆R. Such a ”jellium”-shell representation has been also utilized
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Figure 4.5: Photoabsorption cross section of Au32 calculated within the TDDFTmethod
(thin black curve). Thick green curve denotes the contribution of the plasmon excita-
tions calculated within the PRA. Red (dashed) and blue (dash-dotted) curves show the
contribution of the symmetric and antisymmetric plasmon modes, respectively. Thick
purple line illustrates the fit of the 5d giant atomic resonance by a Fano-type profile.
Black vertical marks denote the ionization potentials of the 5d and 5p atomic shells.
The figure is adapted from Ref. [24].

Table 4.1: Values of R1 and R2 used to model the electron density distribution in hollow
Au32 and Au42 clusters

R1 (Å) R2 (Å)
Au32 3.99 4.53
Au42 4.60 5.25

successfully for the description of plasmon formation in fullerenes, see Chapter 5 and

Refs. [27,29,177–179]. Values of ∆R were defined from the analysis of the ground-state

geometries of Au32 and Au42. This analysis revealed that the atoms are located on two

concentric spheres of the radii R1 and R2 (see Table 4.1).

Within the PRA, the dynamic polarizability α(ω) has a resonance behavior in the

region of frequencies where collective electron modes in a many-electron system are

excited (see Eq. (A27) in Appendix A). Thus, the photoionization cross section σγ(ω)

of a spherically symmetric system can be written as:

σγ(ω) =
4πω

c
Imα(ω) ∼ ω2 Γ(

ω2 − ω2
r

)2
+ ω2Γ2

, (4.5)

where ω is the photon energy, ωr the plasmon resonance frequency, and Γ its width.
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Figure 4.6: Schematic representation of the two modes of the surface plasmon (left
and middle panels) and of the volume plasmon (right panel). Light-blue and dark-blue
regions represent the additional positive and negative charge, respectively. The figure
is adapted from Ref. [181].

The interaction of a hollow system with the uniform external field, E(ω), leads to

the variation of the electron density occurring on the inner and outer surfaces of the

hull. As described in detail in Appendix A, this variation leads to the formation of

the surface plasmon, which has two normal modes, the symmetric and antisymmetric

ones. It has been argued previously [19, 159, 180] that only the surface plasmon can

occur in the system interacting with a uniform external electric field, as it happens in

the photoionization process. Non-uniformity of the external field causes the formation

of the volume plasmon [180] which appears due to compression of the electron density

inside the volume of the shell. The different plasmon modes are schematically depicted

in Figure 4.6.

Thus, in the case of irradiation of hollow gold clusters by dipole photons, two surface

plasmon modes, characterized by resonance frequencies ωr = ω(s) and ωr = ω(a) and

the widths Γ(s) and Γ(a), are formed. The frequencies are defined as:

ω(s/a) =

[
N (s/a)

2(R3
2 −R3

1)
(3∓ p)

]1/2
, (4.6)

where the signs ’−’ and ’+’ correspond to the symmetric (s) and antisymmetric (a)

surface mode, respectively, p =
√

1 + 8ξ3 with ξ = R1/R2 being the ratio of the inner

to the outer radius. The values

N (s) = N
p+ 1

2p
, N (a) = N

p− 1

2p
(4.7)

are the number of delocalized electrons which are involved in each plasmon mode. They

obey the sum rule N (s) + N (a) = N where N stands for a total number of delocalized

electrons participating in the collective excitation.
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In the case of Au32, we have utilized the value N = 46, assuming that 1.43 electrons

from each of 32 atoms are involved in the plasmon excitation. The values of Γ(s)

and Γ(a) were chosen to get the best agreement of the model-based curve with the

TDDFT one. In Figure 4.5, the thick solid green curve represents the total plasmon

contribution to the cross section. The red and the blue curves illustrate the symmetric

and antisymmetric modes, respectively. In this calculation, we have utilized the values

Γ(s) = 4.0 eV and Γ(a) = 10.5 eV. The ratio of the widths, Γ(s)/Γ(a) = 0.38, is close to

the value of 0.34, which was utilized for the description of the plasmon excitations in

fullerenes (see Chapter 5) [28,29]. The ab initio-based spectrum reveals a more detailed

structure which is formed atop the plasmon resonance. This structure represents a series

of individual peaks appearing due to single-particle excitations [29] which are neglected

in the model.

It should be noted that values of the plasmon width cannot be obtained directly on

the basis of the utilized model. A precise calculation of the widths can be performed by

analyzing the decay of the collective excitation mode into the incoherent sum of single-

electron excitations. This process should be considered within the quantum-mechanical

framework [161] and cannot be treated within the classical physics framework, as the

PRA does. Thus, the widths of the plasmon excitations were chosen to obtain the best

agreement with the results of the TDDFT calculations.

The oscillator strength for Au32, calculated by means of TDDFT in the photon

energy range up to the 5p ionization threshold (ω = 57.2 eV), is equal to 338. This

value agrees with the total number of valence electrons in the cluster, N = 352, with

the relative discrepancy of about 5%. As mentioned above, it is assumed that about

1.5 and 8 electrons from each atom contribute to the surface plasmon and the 5d giant

resonance, respectively. Thus, in this analysis we have accounted for the contribution

of 9.5 from 11 valence electrons from each atom. The contribution of the rest results in

a series of individual peaks, positioned in the photon energy range from 11.2 (the first

dip after the low-energy peak) to 20.2 eV (the 5d ionization threshold), that are not

accounted for in our model analysis. Integration of this part of the spectrum yields the

oscillator strength of 51.5, i.e. 1.6 electrons from each atom contribute to the excitations

in this energy region. The individual peaks appear due to single-particle excitations

from the s− d band formed due to hybridization of the 6s and 5d atomic shells.

On the basis of the performed analysis, one can state that the total photoabsorption

cross section of gold clusters and nanoparticles in the energy region up to 60 eV is

approximately equal to the sum of the plasmon contribution and that of the 5d electron

excitations in individual atoms,

σγ ≈ σpl + σ5d . (4.8)
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In order to stress the different nature of the low- and high-energy features in the

photoabsorption spectra of the clusters, an additional comparison with the spectrum of

a smaller molecular system, a gold dimer, was performed. Figure 4.7 demonstrates the

spectra of Au32 and Au2 normalized to the number of atoms in each system. The spectra

have a similar profile in the energy region above 15 eV. This indicates the same origin

of excitations in the dimer and in larger atomic clusters, that is related to the excitation

of electrons in the 5d shell. The ripple, which is seen at high photon energies, has an

artificial origin and arises due to the method of calculation of the polarizability [170],

which is obtained at complex frequencies ω = ω′+iω′′ with an imaginary part of 0.27 eV.

The real part ω′ is the scanned photon energy and imaginary part ω′′ corresponds to

a broadening of the discrete lines due to the excited states finite lifetime [182]. The

normalized spectra are compared also to the x-ray absorption data for atomic gold

taken from the Henke tables [175]. From this comparison, one could state a consistency

of the TDDFT-based spectra and well-established set of data.

Figure 4.7: The normalized photoabsorption cross section of Au32 (thick blue curve)
and of the Au2 molecule (thin black curve) calculated within the TDDFT framework.
Symbols represent the x-ray absorption data for atomic gold compiled by Henke et
al. [175]. The inset shows the low-energy part of the spectra. Red vertical line illustrates
the ionization threshold of a single gold atom as obtained from the DFT calculations.
The figure is adapted from Ref. [24].

On the contrary, the low-energy part of the spectrum is quite different in the two

considered cases. The cross section of the dimer is represented by several well-resolved

narrow peaks due to particular molecular transitions, as opposed to a broader feature

appeared in the spectrum of Au32. The inset of Figure 4.7 shows that the low-energy
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part of the spectrum of Au2 is described by the two peaks, positioned at 2.7 and 5.4 eV,

followed by the prominent peak at 6.1 eV. The latter peak corresponds to ionization of

the molecule. Therefore, one can observe a clear difference in the structure of the two

spectra below 10 eV, that indicates two different mechanisms of electronic excitations

arising in this energy region, namely well-resolved molecular transitions in the case of

Au2 and the collective excitation of delocalized electrons in the Au32 cluster. In the

following section, the difference in the structure of the valence band of Au32 and Au2

is analyzed in greater detail.

4.1.1 Plasmon nature of the low-energy peak

This section provides an explanation of why the low-energy peak in the photoabsorption

spectra of gold clusters can be attributed to a plasmon-type excitation.

The term ”plasmon” is generally used to describe a collective excitation of delocal-

ized electrons of a system to an external electromagnetic field. Quite commonly, it is

understood in terms formulated, for example, by Fano. In his review [183] on collec-

tive phenomena in nanoscale systems and in condensed matter, it is stated that ”...

common to these phenomena [plasmons, superconductivity, etc., i.e. those phenomena

which are based on the motion of (quasi)independent particles] is the role of a dense

spectrum of states viewed initially as independent. The seemingly weak interaction

among these states often condenses into a single eigenvalue separated from the rest of

the spectrum by an energy gap”. Thus, if a system has a dense packing of states with a

small state separation, the excitation of these states may be considered as a collective,

plasmon-type one.

In a number of papers [184–187], the term ”surface plasmon resonance” (SPR) in

relation to gold nanoparticles described a peak in the visible part of the absorption

spectra (at about 2.3 eV or 540 nm). It was stated that this feature is caused by the

collective excitation of 6s electrons in the gold atoms [184–187]. The corresponding

electronic levels are located in the vicinity of the Fermi surface, so that these electrons

delocalize over the whole nanoparticle. It was also stated [184, 185] that such a SPR

(also referred to as the ”localized SPR”, LSPR) is a characteristic feature of relatively

large systems, while the threshold nanoparticle size for emergence of such plasmonic

absorption is about 1.5− 2 nm (this value corresponds to the number of atoms in the

system of about 150 − 200). Smaller gold nanoparticles (less than 1 nm in diameter)

should have discrete energy levels and, thus, molecular-type transitions between the

occupied and unoccupied states [186].

On the other hand, it is also well acknowledged that the occupied 6s states in the

gold atoms are strongly hybridized with the 5d orbitals. A general remark on this issue
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is made in Ref. [187] that ”... almost always a rather strong mixing is observed, this

finding reveals the ”collective” nature of the electron excitation”.

In Figure 4.8, the dipole oscillator strength distribution of the Au32 cluster is com-

pared to that of the Au2 molecule. The low-energy peak in the spectrum of Au32

corresponds to the ionization of the valence band whose structure is shown in the inset.

The valence orbitals in Au32 span over the energy range of about 5.8 eV, so that the

highest occupied molecular orbital (HOMO) and the innermost valence state have the

ionization potentials of 5.77 and 11.57 eV, respectively. The 6s and 5d orbitals are

hybridized and degenerated according to the cluster symmetry. Since Au32 is a highly-

symmetric structure possessing icosahedral symmetry [166, 167], its molecular orbitals

are singly, triply, fourfold and fivefold degenerated in accordance with the irreducible

representation of the Ih point group [188]. Analysis of the valence state separation

indicates that this value varies from 0.01 to 0.64 eV, resulting in the average value of

0.13 eV. This value corresponds to those calculated [189] for a number of silver clusters

AgN (N = 20 . . . 120). The emergence of a plasmon peak was observed in these systems

by means of the TDDFT approach.

Figure 4.8: Dipole oscillator strength of the Au32 cluster (left) and of Au2 dimer (right)
calculated within the TDDFT framework. Vertical red lines mark ionization thresholds
of each of the 6s+5d valence states. Thick dashed lines denote the ionization threshold
of the HOMO state in each system. Inset: Single-electron energy levels of the valence
band as calculated at CEP-121G(d)/PBEPBE level of theory. The figure is adapted
from Ref. [24].

Based on the analysis of the valence band structure and on the explanation given

by Fano [183], the low-energy peak in the photoabsorption spectra of the gold clusters

was thus associated with a collective, plasmon-type excitation. However, one should

point out that this excitation involves not only the 6s electrons (as it happens in the

case of the LSPR located at about 2.3 eV [184–187]) but also some fraction of the 5d

electrons because of the strong overlap between the s and d states.
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To the further support of this statement, this collective excitation was analyzed

in terms of the classical Mie theory [190]. The Au32 cluster has a hollow, fullerene-

like structure [166, 167]. Geometry optimization performed in this work revealed that

all atoms of the cluster are located at two concentric spheres with the radius of 3.99

and 4.53 Å (see Table 4.1). Within the classical framework, the electron density is

assumed to be distributed in between these two spheres. Calculating the frequency of a

surface plasmon excited in a hull-like system with the help of Eq. (4.6), one derives the

value of 6.3 eV that matches well the position of the dominant feature in the TDDFT-

based spectrum of Au32. Thus, one can state that the low-energy peak arises due to

the collective, plasmon-type excitation of electrons delocalized over the whole cluster.

In this estimate, it was assumed that 46 electrons (1.43 electrons from each atom)

delocalize and participate in the collective excitation. This value is in agreement with

the results of Ref. [191], where the dipole polarizability of a series of three-dimensional

gold clusters as a function of their size was calculated. It was found that the calculated

polarizabilities suggest a delocalized character of some fraction of d electrons, so that

1.56 delocalized valence electrons contribute to the linear response to an external field.

4.2 Impact ionization of gold nanoparticles irradi-

ated by fast ions

Investigation of the photoionization process allows one to analyze only optically allowed

dipole excitations. On the contrary, energy loss studies, where a charge projectile

scattered at a certain angle is detected, give access to electronic excitations of higher

angular momenta. Having justified the parameters of the model that describe the dipole

plasmon excitation in gold nanoparticles, the PRA approach is utilized for studying the

electron production due to the plasmon excitation mechanism due to irradiation with

fast ions.

4.2.1 Theoretical description of inelastic scattering on atomic

clusters

In the process of inelastic scattering, the projectile undergoes the transition from the

initial state (ε1,p1) to the final state (ε2,p2) which is accompanied by the ionization

(or, excitation) of a target system from the initial state i with the energy εi to the final

state f with εf .

The matrix element, M , which defines the amplitude of the inelastic scattering is
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given by [65]:

M =

⟨
f, 2

∣∣∣∣∣∑
a

Z

|r− ra|

∣∣∣∣∣ 1, i
⟩

=
∑
a

∫
ψ

(−)∗
2 (r)ψ∗

f ({ra})
Z

|r− ra|
ψi({ra})ψ(+)

1 (r) {dra} dr , (4.9)

where {ra} = r1 . . . rN are the position vectors of the delocalized electrons in the target,

r is the position vector of the projectile, ψ
(+)
1 (r) and ψ

(−)
2 (r) stand for the initial and the

final state wave functions of the projectile, respectively, and Z is its charge. Superscripts

(+) and (−) indicate that asymptotic behavior of the wave functions is ”plane wave +

outgoing spherical wave” and ”plane wave + incoming wave”, respectively [65].

The matrix element can be written as follows:

M =

∫
4πZ

q2
dq

(2π)3
⟨
2
∣∣e−iq·r∣∣ 1⟩⟨f ∣∣∣∣∣∑

a

eiq·ra

∣∣∣∣∣ i
⟩

, (4.10)

where q = p1 − p2 is the transferred momentum.

In this study, we focus on the irradiation of noble metal and gadolinium nanopar-

ticles with fast protons of 0.1 − 10 MeV incident energy. The collision velocity, v ≈
2− 20 a.u., is larger than the characteristic velocity of delocalized electrons in the tar-

get, ve ≈ 0.5 a.u.; thus, the first Born approximation is applicable [65,162]. Within this

approximation, the initial and the final states of the incident particle can be described

by plane waves:

ψ
(+)
1 (r) = eip1·r , ψ

(−)
2 (r) = eip2·r . (4.11)

Within the framework of the plane-wave Born approximation, the amplitude of the

process reduces to

M =
4πZ

q2

⟨
f

∣∣∣∣∣∑
a

eiq·ra

∣∣∣∣∣ i
⟩

q=p1−p2

. (4.12)

The magnitude of q2 is related to p1,2 and the scattering angle θ = p̂1 p2 via:

q2 = p21 + p22 − 2p1p2 cos θ ≈ p21θ
2 . (4.13)

The final approximate equality is valid when p1 ≈ p2 and the scattering angle is small,

θ ≪ 1 rad.

Performing the multipole expansion of the exponential factors in (4.12) (see, e.g.,
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[193]), one obtains:

M = 4π
∑
lm

il Y ∗
lm(q)

⟨
f

∣∣∣∣∣∑
a

ϕl(ra)Ylm(ra)

∣∣∣∣∣ i
⟩

, (4.14)

where the following notation is introduced:

ϕl(r) = 4πZ
jl(qr)

q2
(4.15)

and jl is a spherical Bessel function.

Consider a general expression for the cross section of the scattering process [65]:

dσ =
2π

p1
δ(ωfi − ω)

∑
polf

∑
poli

|M |2 dp2

(2π)3
dρf , (4.16)

where ω = ε1 − ε2 is the energy transfer, ωfi = εf − εi and ω = ωfi due to the energy

conservation law. The sign
∑

polf
denotes the summation over the projection of the final

state f orbital momentum, whereas
∑

poli
denotes the averaging over the projections

of the initial state orbital momentum, and dρf is the density of the final states of the

target.

Substituting the scattering amplitude (4.14) into equation (4.16), one derives the

doubly differential cross section:

d2σ

dε2dΩp2

=
1

π

p2
p1

∑
lm

∫ ∣∣∣∣∣
⟨
f

∣∣∣∣∣∑
a

Vlm(ra)

∣∣∣∣∣ i
⟩∣∣∣∣∣

2

pol

δ(ωfi − ω) dρf , (4.17)

where

Vlm(r) = ϕl(r)Ylm(r) (4.18)

is the multipolar potential of the projectile, dΩp2 denotes the differentiation over the

solid angle of the scattered particle, and sign
∫
dρf means the summation over the final

states (which includes the summation over the discrete spectrum and the integration

over the continuous spectrum).

The cross sections (4.16) and (4.17) are valid for collisions with any charge particle.

For collisions with ions, the cross sections have a quadratic dependence on the projectile

charge Z. For collisions with electrons or positrons, the cross sections should be thus

divided by a Z2 scaling factor due to the change of Coulomb field of the projectile.
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4.2.2 Inelastic scattering cross section within the plasmon res-

onance approximation

According to Kubo linear response theory [95,162], the integral on the right-hand side

of equation (4.17) can be related to the electron density variation δρl (see Eq. (A37) in

Appendix A), so one can perform the following substitution:

∫ ∣∣∣∣∣
⟨
f

∣∣∣∣∣∑
a

Vlm(ra)

∣∣∣∣∣ i
⟩∣∣∣∣∣

2

pol

δ(ωfi − ω)dρf −→ 1

π
Im

∫
V ∗
lm(r)δρl(ω, q, r)dr . (4.19)

It is assumed here that the target system interacts with a weak external perturbation

which causes only a small spatial inhomogeneity in the electron density distribution

within the system. The function δρl(ω, q, r) is a partial density variation due to the

exposure of the system to the multipolar potential Vlm(r). In a general case, this vari-

ation depends on the transferred energy ω, transferred momentum q, and the position

vector r.

Using (4.19) in (4.17), the doubly differential cross section acquires the form:

d2σ

dε2dΩp2

=
1

π2

p2
p1

∑
l

Im
[
Il(ω, q)

]
, (4.20)

where

Il(ω, q) = (2l + 1)

∫
V ∗
lm(r) δρl(ω, q, r) dr . (4.21)

Figure 4.9: Left panel: Exposure of a spherical shell of a finite width ∆R = R2 − R1

to an external electric field causes variation of the surface charge densities, σ(1,2), and
that of the volume charge density, δϱ. Right panel: representation of the symmetric
(a) and the antisymmetric (b) modes of the surface plasmon.

Interaction with an electric fiend of a charge projectile leads to the variation of

electron density in the system. In the case of a non-uniform external field, the total

variation δρl ≡ δρl(ω, q, r) in a hollow system is defined as a sum of the surface charge

densities σ
(1,2)
l at the inner and the outer surfaces of the spherical shell and of the
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volume density variation δϱl ≡ δϱl(ω, q, r) inside the shell (see Figure 4.9):

δρl(r) = σ
(1)
l δ(r −R1) + σ

(2)
l δ(r −R2) + δϱl(r)Θ(r −R1)Θ(R2 − r) . (4.22)

The volume density variation causes the formation of the volume plasmon, while the

variations of the surface densities correspond to two surface plasmon modes. The vol-

ume plasmon is formed due to compression of the electron density inside the volume of

the shell and, therefore, does not interfere with either of the surface plasmon modes.

The formation of the volume plasmon in the electron impact ionization of metal clusters

was studied in Ref. [161]. Recently, the model accounting for the contribution of dif-

ferent plasmon modes was successfully utilized to describe the experimentally observed

variation of the electron energy loss spectra of C60 in collision with fast electrons [27,28].

Presenting the multipole variation of the electron density, δρl(ω, q, r), as a sum

of three contributions, and using the explicit expression for the multipolar potential

Vlm(r), defined by equations (4.15) and (4.18), the function Il(ω, q) can be written as

follows:

Il(ω, q) = I
(v)
l (ω, q) + I

(s)
l (ω, q) + I

(a)
l (ω, q) , (4.23)

where

I
(v)
l (ω, q) =

4πZ2

q2
(2l + 1)

∞∫
0

r2jl(qr) δϱl(ω, q, r) dr,

I
(s/a)
l (ω, q) =

4πZ2

q2
(2l + 1)

∞∫
0

r2jl(qr)σ
(j)
l (ω, q, r) dr, j = 1, 2 .

(4.24)

The double differential inelastic scattering cross section of a fast projectile in collision

with a hull-like system is defined within the PRA as a sum of three terms:

d2σpl
dε2dΩp2

=
d2σ(s)

dε2dΩp2

+
d2σ(a)

dε2dΩp2

+
d2σ(v)

dε2dΩp2

, (4.25)

which describe the partial contribution of the surface (the two modes, s and a) and

the volume (v) plasmons. Different plasmon terms appearing on the right-hand side of

(4.25) are constructed as a sum over different multipole contributions corresponding to

different values of the angular momentum l:
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d2σ(s)

dε2dΩp2

=
2R2Z

2

πq4
p2
p1
ω
∑
l

ω
(s)2
l Γ

(s)
l S

(s)
l (q)(

ω2 − ω
(s)2
l

)2
+ ω2Γ

(s)2
l

d2σ(a)

dε2dΩp2

=
2R2Z

2

πq4
p2
p1
ω
∑
l

ω
(a)2
l Γ

(a)
l S

(a)
l (q)(

ω2 − ω
(a)2
l

)2
+ ω2Γ

(a)2
l

d2σ(v)

dε2dΩp2

=
2R2Z

2

πq4
p2
p1
ω
∑
l

ω2
p Γ

(v)
l Vl(q)(

ω2 − ω2
p

)2
+ ω2Γ

(v)2
l

.

(4.26)

Here ε2 is the kinetic energy of the scattered projectile, p2 its momentum, and dΩp2

its solid angle. ω
(s)
l and ω

(a)
l are the frequencies of the symmetric and antisymmetric

surface plasmons of multipolarity l:

ω
(s/a)
l =

(
1∓ 1

2l + 1

√
1 + 4l(l + 1)ξ2l+1

)1/2
ωp√
2
, (4.27)

where ”−” and ”+” stand for symmetric and antisymmetric modes, respectively. In the

dipole case (l = 1), this expression reduces to Eq. (4.6). The volume plasmon frequency

ωp, associated with the ground-state electron density ρ0 of N electrons, is given by

ωp =
√

4πρ0 =
√
3N/(R3

2 −R3
1) . (4.28)

The functions S
(s)
l (q), S

(a)
l (q) and Vl(q) in (4.26) are the diffraction factors depending

on the transferred momentum q [159]. They determine the relative significance of

the multipole plasmon modes in various ranges of scattering angles. The dominant

contribution of different multipole modes results in a significant angular dependence

for the differential cross sections [28]. Explicit expressions for these functions are given

in Ref. [159].

4.2.3 Electron production via the plasmon excitation mecha-

nism

Let us utilize the above-presented formalism for studying electron production by small

gold nanoparticles via the plasmon excitation mechanism. The doubly differential cross

section d2σpl/dε2dΩp2 , Eq. (4.25), can be written in terms of the energy loss ∆ε = ε1−ε2
of the incident projectile of energy ε1. Integration of d2σpl/d∆ε dΩp2 over the solid angle

leads to the single differential cross section:
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dσpl
d∆ε

=

∫
dΩp2

d2σpl
d∆ε dΩp2

=
2π

p1p2

qmax∫
qmin

q dq
d2σpl

d∆ε dΩp2

, (4.29)

where p1 is the initial momentum of the projectile and q = p1 − p2 the transferred

momentum.

Figure 4.10 shows the cross section dσpl/d∆ε calculated for the Au32 cluster irra-

diated by fast protons of incident energies ranging from 0.1 to 10 MeV. As mentioned

above, the utilized formalism relies on the the plane-wave Born approximation, which

is applicable since the considered collision velocities (v = 2− 20 a.u.) are significantly

larger than the characteristic velocities of delocalized valence electrons in the cluster

(ve ≈ 0.5 a.u.). The figure demonstrates that the amplitude of the plasmon resonance

depends strongly on the kinetic energy of the proton. It was shown previously [162] that

the relative contribution of the quadrupole (l = 2) and higher multipole terms to the

cross section decreases significantly with an increase of the collision velocity. At high

velocities, the dipole contribution dominates over the higher multipole contributions,

since the dipole potential decreases slower at large distances than the higher multipole

potentials.

Figure 4.10: Contribution of the plasmon excitations to the single differential cross
section, dσpl/d∆ε, of the Au32 cluster irradiated by fast protons of different incident
energies as a function of the energy loss. The figure is adapted from Ref. [24].

The presented spectra comprise contributions of both the surface and the volume

plasmon excitations, and different multipole terms contribute to each of them. Calcu-

lating the cross sections presented in Figure 4.10, we accounted for the contribution of
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the dipole (l = 1), quadrupole (l = 2) and octupole (l = 3) terms. The excitations with

large angular momenta have a single-particle rather than a collective nature [162]. With

increasing l, the wavelength of a plasmon excitation, λpl = 2πR/l, becomes smaller than

the characteristic wavelength of the delocalized electrons in the system, λe = 2π/
√
2ϵ.

Here ϵ ∼ Ip is the characteristic electron excitation energy in the cluster, and Ip is

the ionization threshold of the system. The DFT calculations of the electronic struc-

ture of Au32 (see Section 4.1) derived the value of Ip = 5.77 eV, while the calculated

HOMO-LUMO gap is 1.54 eV. Thus, one estimates a characteristic excitation energy

of delocalized electrons in Au32 to be of the order of several electronvolts, that results

in the account of the three multipole plasmon terms.

Following the methodology utilized in Ref. [28], it was assumed that the ratio γl =

Γl/ωl of the width of the plasmon resonance to its frequency equals to γ
(s)
l = 0.6 for

all multipole terms of the symmetric mode, and to γ
(a)
l = 1.0 for the antisymmetric

mode. These values were also utilized successfully to describe the main features of the

photon and electron impact ionization cross sections of the C60 fullerene (see Chapter 5),

whose topology is similar to the Au32 cluster. For the volume plasmon the ratio γ
(v)
l =

Γ
(v)
l /ωp = 1.0 was considered.

Figure 4.11 illustrates the contribution of different plasmon modes to the spectrum

of Au32 irradiated by a 1 MeV proton and also partial contributions of different mul-

tipole modes. The main contribution to the cross section comes from the symmetric

mode of the surface plasmon, which, in turn, is dominated by the dipole excitation.

The figure shows that the relative contribution of the surface plasmon exceeds that of

the volume plasmon by more than an order of magnitude. Thus, the leading mech-

anism of electron production by gold nanoparticles is related to the surface plasmon.

This result contradicts with the recent Monte Carlo simulations [192], where the au-

thors claimed to include the contribution of plasmon excitations when calculating the

cross sections of electron and proton impact on noble metal nanoparticles. One should

note, however, that only ”...the most simplest type of volume plasmon excitation...”

was accounted for in those simulations [192]. On this basis, it was stated that the

plasmon excitation does not play an important role in the process of electron emission

from metallic nanoparticles, contributing much less to the overall cross sections than

individual excitations. As will be shown further in this section, the emission of the

low-energy electrons from the gold nanoparticles is indeed a prominent effect, which

should be accounted for when estimating the secondary electron yield in a biological

medium with embedded nanoparticles.

Note that the maximum of the resonance peak is located at 6.3 eV, that is slightly

above the ionization threshold of Au32, Ip = 5.77 eV. The plasmons located above

the ionization threshold can decay via the ionization process [161]. On the contrary,
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Figure 4.11: Single differential cross section dσpl/d∆ε of the Au32 cluster irradiated by a
1 MeV proton as a function of the energy loss. Upper panel illustrates the contribution
of different plasmon excitations to the resulting spectrum. Lower panel shows the
contribution of different multipole terms. The figure is adapted from Ref. [24].

the decay of a collective excitation located below the ionization threshold results in

single-electron excitations, which can also be coupled with the ionic motion by the

electron-phonon coupling [194]. Therefore, decay of the surface plasmon in Au32 results

in the electron emission from the system which can be accompanied by vibrations of

the ionic core.

To quantify the production of electrons via the plasmon excitation mechanism, the

cross section dσpl/d∆ε was redefined as a function of the kinetic energy E of emitted

electrons. This quantity is related to the energy loss via E = ∆ε− Ip, where Ip is the

ionization threshold of the system. The cross section dσpl/dE can be related to the

probability to produce N electrons with kinetic energy E, in the interval dE, emitted
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from a segment dx, via [13]:
d2N(E)

dx dE
=

1

V

dσpl
dE

, (4.30)

where V is the volume occupied by the nanoparticle. Assuming that the linear size of

the Au32 cluster is d ≈ 0.9 nm [166,167], we calculated the number of electrons per unit

length per unit energy emitted from this system due to proton irradiation. Figure 4.12

illustrates the dependence of this quantity on kinetic energy of emitted electrons for

different incident energies of the proton.

Figure 4.12: Number of electrons per unit length per unit energy emitted via the plas-
mon excitation mechanism from the Au32 cluster irradiated by a fast proton. Different
curves illustrate different values of the proton’s kinetic energy. The figure is adapted
from Ref. [24].

Figure 4.13 compares the electron production by Au32 (red curve) and by an equiv-

alent volume of pure water medium (blue curves) irradiated by a 1 MeV proton. Solid

and dashed blue curves represent the results obtained recently within the dielectric

formalism [195,196]. This approach is based on the experimental measurements of the

energy-loss function of the target medium, Im[−1/ϵ(ω, q)], where ϵ(ω, q) is the complex

dielectric function, with ω and q being the energy and the momentum transferred to

the electronic excitation, respectively. Comparative analysis of the spectra reveals that

the number of the low-energy electrons (with the kinetic energy of about a few eV) pro-

duced by the gold nanoparticle is about one order of magnitude higher than by liquid

water.

In the above-presented analysis, the hollow cluster of diameter d ≈ 0.9 nm was

considered. An additional estimate was done also for a space-filling structure of a similar
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Figure 4.13: Number of electrons per unit length per unit energy emitted via the
plasmon excitation mechanism from the Au32 cluster irradiated by a 1 MeV proton
(red curve). Blue curves represent the number of electron generated from an equivalent
volume of pure water. Solid and dashed blue curves represent the results obtained within
the dielectric formalism by Scifoni et al. [195] and de Vera et al. [196], respectively. The
figure is adapted from Ref. [24].

size. As a case study, we considered a 1 nm nanoparticle ”cut” from an ideal gold crystal

having the face-centered cubic (fcc) lattice with the parameter a = 4.08 Å [117]. It was

found that the 1 nm solid gold nanoparticle is composed of 31 atoms. Thus, its atomic

density is close to that of the above-considered Au32 cluster.

The dynamic response of a solid nanoparticle can also be modeled by means of the

PRA formalism assuming that the system is treated not as a ”jellium” hull but as a full

sphere. In this case, the electron density is uniformly distributed inside the sphere of a

radius R, and the above defined radii R1 and R2 transform into R1 → 0 and R2 ≡ R.

In this case, the electron density variation on the surface and in the volume of the

nanoparticle leads to the formation of the surface (symmetric mode) and the volume

plasmon, respectively,
d2σpl

dε2dΩp2

=
d2σ(s)

dε2dΩp2

+
d2σ(v)

dε2dΩp2

, (4.31)

while the antisymmetric surface plasmon mode does not contribute to the cross sec-

tion [159]:

lim
R1→0

d2σ(a)

dε2dΩp2

= 0 . (4.32)

As shown in Figure 4.11 in the case of the hollow system, the contribution of the

antisymmetric mode in the 1− 10 eV range is an order of magnitude smaller than that
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Figure 4.14: Upper panel: Contribution of the plasmon excitations to the single differ-
ential cross section, dσpl/d∆ε, of 1 nm gold NP irradiated by fast protons of different
incident energies as a function of the energy loss. Lower panel: Contribution of dif-
ferent plasmon excitations to the resulting cross section dσpl/d∆ε of a 1 nm gold NP
irradiated by a 1 MeV proton.

of the symmetric mode. Thus, the absence of the antisymmetric mode in the excitation

spectrum of the solid nanoparticle should not lead to quantitatively different results

from those presented in Figure 4.11. To check this hypothesis, we have calculated the

cross section dσpl/d∆ε for a 1 nm solid gold nanoparticle irradiated by fast protons

of different incident energies, see Figure 4.14. The figure confirms that all the above-

given estimates on the electron production yield by the hollow nanoparticle of about

1 nm diameter are also valid for the case of the fcc structure. Electron production by

solid nanoparticles composed of gold and other metals is analyzed in greater detail in

Section 4.3.
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4.2.4 Contribution of individual atomic excitations

As illustrated above (see Figure 4.5), the d electrons in the atoms of gold play a

dominant role at the excitation energies from approximately 20 to 60 eV. Thus, the

photoabsorption spectra of gold nanoparticles in the energy region up to 60 eV were

approximated as the sum of the plasmon contribution and that of the 5d electron ex-

citations in individual atoms, see Eq. (4.8). Similar to the photoionization, the two

distinct types of collective electron excitations appear in the process of charge particle

impact ionization. To evaluate the contribution of individual atomic excitations under

ion impact, we introduce an analytical expression, which relates the cross section of

photoionization with that of inelastic scattering in the dipole approximation.

For distant collisions, i.e. when the impact parameter exceeds the radius Rat of the

atomic subshell, the ionization spectra are dominated by the dipole term [65]. On this

basis, the cross sections of photoionization, σγ(ω), were compared to the dipole term

of atomic inelastic scattering, dσ5d/d∆ε, calculated in the Born approximation. As a

result, one derives the following expression:

dσ5d
d∆ε

=
2c

πωv21
σγ ln

(
v1

ωR5d

)
, (4.33)

where σγ ≡ σ5d(ω) is the 5d photoionization cross section estimated by a Fano-type

profile, Eq. (4.4), ω = ε1 − ε2 the energy transfer, v1 the projectile velocity, and R5d a

characteristic radius of the 5d electron shell. More details about the derivation of this

expression are provided in Appendix C.

Equation (4.33), obtained within the so-called ”logarithmic approximation”, as-

sumes that the main contribution to the cross section dσ5d/d∆ε comes from the region

of large distances, R5d < r < v1/ω. This relation has the logarithmic accuracy which

implies that the logarithmic term dominates the cross section while all non-logarithmic

terms are neglected (this approximation is described in greater detail in Ref. [197]).

Making an estimate for the gold atoms, we assumed ω ≈ 1 a.u. which corresponds

to the maximum of the 5d giant resonance in gold (see Fig. 4.5), v1 ≈ 6.3 a.u. for a

1 MeV proton, and the electron shell radius R5d(Au) ≈ 2 a.u. The latter parameter

was estimated by analyzing the density distribution of the 5d electron shell in the atom

of gold, carried out within the Hartree-Fock approach, see Figure 4.15.

It should be stressed that the interaction of the incident projectile with the nanopar-

ticle leads to the formation of the 5d giant resonance not in all atoms of the system

but only in those located within the impact parameter interval from rmin ≃ R5d to

rmax ≃ v1/ω. This estimate indicates that the 5d giant resonance is formed in about

one third of atoms of the nanoparticle.
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Figure 4.15: Upper panel: Radial electron density of the 5d and 4d electron shells in
the atoms of gold, platinum, and silver, carried out within the Hartree-Fock approach.
Lower panel: Integrated oscillator strength distributions for the 5d and 4d electron
shells, which yield the number of electrons occupying a given shell.

The number of electrons per unit length per unit energy produced via the excitation

of 5d electrons in individual gold atoms, is defined as:

d2N(E)

dx dE
= An

dσ5d
dE

, (4.34)

where n is the atomic density of the target, and A ≈ 1/3 is the ratio of the number of

atoms possessing the 5d resonance to the total number of atoms in the nanoparticle.

To estimate the total number of electrons produced due to the collective excita-

tions in the gold nanoparticle, we have accounted for the contribution of the plasmon

excitations and excitations of 5d electrons in individual atoms. Figure 4.16 shows the

relative enhancement of the electron yield from the Au32 cluster as compared to pure



74 Low-energy electron production by metal nanoparticles

Figure 4.16: Yield enhancement from the Au32 cluster as compared to an equivalent
volume of pure water [196]. The solid and dashed lines show the contribution of the
plasmons and the atomic 5d excitations, respectively. Symbols illustrate the resulting
enhancement. The figure is adapted from Ref. [24].

water. The data for the gold nanoparticle are normalized to the spectrum for liquid

water [196]. The solid line shows the contribution of the plasmon excitations to the

electron yield, while the dashed line presents the contribution from the atomic 5d giant

resonance, estimated using Eq. (4.33) and (4.34). When making this estimate, it was

assumed that the ionization cross sections of individual atoms are dominated by the

dipole excitation. Contribution of quadrupole and higher multipole terms will lead to

an increase in the number of emitted electrons but their relative contribution will be not

as large as that from the dipole excitation. Accounting for the plasmon contribution

leads to a significant additional increase in the number of 1 − 5 eV emitted electrons

as compared to the pure water. Due to the collective electron excitations arising in the

∼ 1 nm gold nanoparticle, it can thus produce up to 70 times larger number of the

low-energy electrons comparing to the equivalent volume of pure water medium. These

results indicate that the decay of the collective electron excitations in gold nanoparticles

is an important mechanism of electron yield enhancement.

4.2.5 Different kinematic conditions for charged-particle im-

pact

In this section, we analyze how the contribution of the plasmon and the 5d excitation

mechanisms evolves for different projectile velocities.
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Figure 4.17: Number of electrons per unit length per unit energy produced via the
plasmon and the 5d excitation mechanisms in the Au32 cluster irradiated by a proton
of different kinetic energies. Solid line and filled symbols illustrate the plasmon con-
tribution to the electron production yield. Dashed line and open symbols show the
contribution of the 5d giant resonance. The figure is adapted from Ref. [24].

In the case of the Au32 cluster irradiated by a 1 MeV proton, the number of electrons

produced via the excitations in individual atoms is generally higher than that produced

via the plasmon excitation mechanism (see Figure 4.16). At certain kinematic condi-

tions, the plasmon contribution to the low-energy (of about 1 − 10 eV) electron yield

from the gold nanoparticle can exceed significantly that due to the atomic giant reso-

nance. An illustration of this effect is given in Figure 4.17, where the yields of electron

production due to irradiation by 1, 0.3, and 0.1 MeV protons have been compared. The

electron yield due to the plasmon excitations grows with decreasing the projectile’s

energy (see also Figure 4.12). On the contrary, the yield due to the atomic excitations

exhibits a different behavior. The number of electrons emitted from the Au32 cluster

via the decay of the atomic 5d excitation by a 0.3 MeV proton is larger than in the case

of a 1 MeV projectile. However, a decrease of incident energy down to 0.1 MeV leads

to an abrupt decrease of the number of produced electrons. As follows from Eq. (4.33),

at ε1 = 0.1 MeV (v1 = 2.00073 a.u.), the dipole term of the 5d inelastic scattering cross

section is strongly suppressed, as the ln(v1/ωR5d) term approaches zero. In this case,

the yield of electrons with kinetic energy below 5 eV due to the plasmon excitation

exceeds that due to the 5d atomic excitation by the factor of about 103.



76 Low-energy electron production by metal nanoparticles

4.3 Comparative analysis of electron production by

different metal nanoparticles

In this section, the above-presented methodology is applied to compare electron pro-

duction by different metal nanoparticles irradiated by fast protons. In addition to gold

nanoparticles, we focus our attention on the systems composed of platinum, silver and

gadolinium. Similar to the analysis presented in Section 4.2, we account for the two

collective electron effects, namely excitation of delocalized electrons in a nanoparticle

(plasmons) and that of d electrons in individual atoms (atomic giant resonances). Thus,

the single differential inelastic scattering cross section of a fast projectile in collision

with a nanoparticle is described as a sum of the contributions of the plasmon and

individual atomic excitations:

dσ

d∆ε
=

2π

p1p2

qmax∫
qmin

q dq
d2σ

d∆ε dΩp2

≈ dσpl
d∆ε

+
dσat
d∆ε

. (4.35)

As noted above, this assumption relies on the similarity of the collective electron phe-

nomena that occur in the ionization with photons and charged projectiles.

As follows from Eq. (4.31), the plasmon contribution to the double differential cross

section, d2σpl/d∆ε dΩp2 , for a solid spherical nanoparticle is defined by the surface

(s) and the volume (v) plasmon terms, which are constructed as a sum over different

multipole contributions corresponding to different values of the angular momentum l.

Similar to the analysis presented in Section 4.2.3, we account for the dipole (l = 1),

quadrupole (l = 2), and octupole (l = 3) terms. In the dipole case, parameters of

the PRA were validated by fitting the TDDFT-based spectra of gold clusters to those

calculated within the model approach (see Section 4.1). It came out from this analysis

that about 1.5 electrons from each gold atom contribute to the plasmon excitation.

This value was also utilized for our estimates of electron production by other metals.

Because of significant difficulties in calculating the ab initio-based spectra for platinum

and gadolinium, it was not possible to define precisely the PRA parameters for the

considered metals. Thus, we utilized the same ratio of the plasmon resonance width

to its frequency, Γ
(s)
l /ω

(s)
l = Γ

(v)
l /ωp = 0.6, as in the case of gold. In the latter case,

it was based on the dipole plasmon width Γ
(s)
1 = 4.0 eV ≈ 0.6ω

(s)
1 , which was used

to reproduce the low-energy peak in the photoabsorption spectra of gold clusters by

means of the PRA scheme (see Figure 4.5).

At higher excitation energies, the photoionization cross sections of different metals

were estimated based on the X-ray absorption data by Henke et al. [175]. Figure 4.18

demonstrates that, similar to the case of gold, the ionization spectra of platinum and
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silver are also characterized by the prominent features at about 20 eV and above, which

can be associated with the d electrons.

Figure 4.18: Photoionization cross section of the atoms of gold (squares), platinum
(circles), silver (triangles), and gadolinium (stars). Symbols represent the X-ray ab-
sorption data taken from the Henke tables [175]. The spline interpolation of these data
is illustrated by lines.

With the help of Eq. (4.33), one can relate the cross sections of photoionization, σγ,

and the dipole term of inelastic scattering, dσat/d∆ε, calculated in the Born approxima-

tion. For the studied noble metal atoms, we assumed ω ≈ 1 a.u. which corresponds to

the maximum of the 5d (4d) giant resonance in gold and platinum (silver), v1 ≈ 6.3 a.u.

for a 1 MeV proton, and the electron shell radii R5d(Au,Pt) ≈ R4d(Ag) ≈ 2 a.u (see

Figure 4.15). A similar estimate was made also for a Gd atom. Contrary to the noble

metals, the Gd atom has a single electron in the 5d shell. Thus, there is no atomic giant

resonance in the ionization spectrum of Gd in the 20− 60 eV range, and the spectrum

is characterized by a narrower peak at ω ≈ 1.2 a.u. (see Figure 4.18), formed due to

ionization of the 5p shell.

Figure 4.19 presents the number of electrons per unit length per unit energy pro-

duced via the plasmon excitation mechanism by the 1 nm spherical nanoparticles due

to 1 MeV proton irradiation. The electron production by the equivalent volume of pure

water medium [196] is also shown. Comparative analysis of the spectra demonstrates

that the number of low-energy electrons (with the kinetic energy of about a few eV)

produced due to the plasmon excitations in all considered noble metal nanoparticles is

much higher than that by liquid water.
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Figure 4.19: Number of electrons per unit length per unit energy produced via the
plasmon excitations in the Au, Pt, Ag and Gd nanoparticles irradiated by a 1 MeV
proton. Open circles represent the number of electron generated from the equivalent
volume of water [196]. Inset: contributions of the surface (dashed) and the volume
(dash-dotted) plasmons to the electron yield from the gold nanoparticle. The figure is
adapted from Ref. [25].

The low electron yield from the Gd nanoparticle, as compared to the noble metal

targets, is explained by the density effects (the atomic density of Gd is about two times

smaller than that of the studied noble metals) as well as by the lower plasmon frequency.

The maximum of the plasmon resonance peak in the Gd nanoparticle (4.1 eV) is located

below the ionization potential of the system (∼ 5.0 eV) [198]. In the case of noble metal

nanoparticles, the plasmon peak maxima are in the range between 5.5 and 6.0 eV, being

in the vicinity of the ionization thresholds. Therefore, the plasmon decay in noble metal

nanoparticles results in the more intense electron emission as compared to the system

composed of gadolinium. In the latter case, the plasmon will mostly decay into the

single-electron excitations, which can lead to the vibration of the ionic core as a result

of the electron-phonon coupling [194].

The inset of Fig. 4.19 demonstrates that the surface plasmon (dashed curve) gives

the dominating contribution to the electron production by the solid gold nanoparticle,

exceeding that of the volume plasmon (dash-dotted curve) by an order of magnitude.

This result coincides with the analysis carried out in Section 4.2 for the case of a hollow

system. Thus, this study reveals the significance of the plasmon excitations in the

process of electron production by sensitizing nanoparticles.

To estimate the total number of electrons produced due to the collective excita-
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Figure 4.20: Yield enhancement from the 1 nm metallic nanoparticles. Dashed lines
show the contribution of individual atomic excitations. Solid lines show the resulting
contribution with an account of the plasmons. The figure is adapted from Ref. [25].

tions in the nanoparticles, we have also accounted for the contribution of excitations in

individual atoms. Figure 4.20 demonstrates the relative enhancement of the electron

yield from the considered nanoparticles as compared to pure water. This quantity was

obtained by summing up the contribution of the plasmons and individual atomic exci-

tations. The dashed lines present the contribution of the atomic giant resonances (5d

in Au and Pt, and 4d in Ag) as well as the total 5p+ 5d contribution in Gd, estimated

using Eq. (4.33). The solid line is the sum of the excitations in individual atoms and

the plasmons. The significant yield enhancement arises in those nanoparticles whose

constituent atoms possess the giant resonance, contrary to case of gadolinium which

has a single 5d electron. Accounting for the plasmon contribution leads to a significant

increase of the 1−5 eV electron yield. Due to the collective electron excitations arising

in these systems, the gold and platinum nanoparticles can thus produce much larger

(of more than an order of magnitude) number of low-energy electrons comparing to the

equivalent volume of pure water medium.

Finally, let us analyze the role of the nanoparticle size on the intensity of electron

production. Figure 4.21 illustrates the electron yield from the solid gold nanoparticles

of different size irradiated by the 0.1, 0.3, 1 and 10 MeV protons. We have focused

on the systems of about 1− 10 nm in diameter. Metal nanoparticles of this size range

were studied recently in relation to the radiotherapies with charged ions [8,10]. For the

sake of clarity, we have calculated the number of electrons per unit energy, dN/dE. At
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Figure 4.21: Number of electrons per unit energy produced via the plasmon excitation
mechanism in the solid gold nanoparticles of different size irradiated by the protons of
different kinetic energy. The figure is adapted from Ref. [24].

certain kinematic conditions, the contribution of the plasmon excitations saturates, so

that larger nanoparticles emit a smaller number of electrons via the plasmon damping

mechanism.

It was shown previously [162] that the dipole mode of the plasmon excitations aris-

ing in a nanoparticle gives the dominating contribution to the ionization cross section

when the characteristic collision distance exceeds significantly the nanoparticle size,

v1/ω ≫ D/2, where D is the nanoparticle diameter. At large collision distances, the

dipole contribution dominates over the higher multipole contributions. Terms with

higher l become significant only in the case when the collision distances become com-

parable with the cluster size. This means that for a given incident energy the plasmon

mechanism of electron production will be efficient for relatively small nanoparticles,

while the dipole plasmon mode will be suppressed for larger D. This behavior is il-

lustrated in Figure 4.21. For instance, the number of low-energy electrons emitted via

the surface plasmon mechanism from a 2 nm nanoparticle irradiated by a 0.3 MeV pro-

ton (dashed red curve) is higher than that from a 4 nm nanoparticle (thin solid green

curve). In the former case, the characteristic collision distance v1/ω ≈ 18 a.u. becomes
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comparable with the nanoparticle radius, D/2 = 1 nm ≈ 19 a.u. Therefore, a larger

nanoparticle with the diameter of 4 nm emits a smaller number of electrons via the

plasmon mechanism. A small increase in the number of 5 eV electrons produced by

the 4 nm nanoparticle as compared to the smaller one is the result of an increased role

of the volume plasmon due to the increased volume/surface ratio. A similar scenario

holds for other incident velocities. For a 1 MeV proton, the plasmon contribution to

the electron yield saturates for the nanoparticle with the diameter of approximately

4 nm, while for higher energies (ε1 = 10 MeV) the saturation takes place for the 12 nm

nanoparticle. Thereby, the plasmon excitations play a prominent role in the production

of low-energy electrons from gold nanoparticles of about 1 − 5 nm in diameter. One

should stress again that this size range corresponds to the size of gold, platinum, and

Gd-based nanoparticles studied recently in relation to the radiotherapy with charged

ions [8, 10,12].
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Chapter 5

Emission of low-energy electrons

from carbon nanoparticles

Excitation of plasmons by an external electric field is a characteristic feature of not

only metal but also, to some extent, of carbon nanoscale systems. For instance, it is

well established that plasmon excitations dominate the spectra of photo-, electron, and

ion impact ionization of fullerenes [27, 29, 157, 163, 199, 200] and polycyclic aromatic

hydrocarbons (PAHs) [201–203]. Contrary to the case of metal clusters, where the

plasmon resonance peak is located in the vicinity of the ionization threshold, ionization

spectra of carbon-based nanosystems are characterized by a prominent peak positioned

at the energy of about 20 eV.

This chapter demonstrates that the decay of plasmons excited in carbon nanopar-

ticles also plays a prominent role in the production of low-energy electrons. Due to

the collective response to an external electric field, these systems can enhance the pro-

duction of secondary electrons in a biological medium, in the energy range where the

plasmons play the dominant role. This is done by the calculation of spectra of sec-

ondary electrons ejected from a carbon nanoparticle composed of fullerite, a crystalline

form of C60 fullerene, irradiated by fast protons.

5.1 Plasmon excitations in an isolated C60 molecule

Similar to the case of metal nanoparticles, the contribution of plasmon excitations to the

electron production is evaluated by means of the PRA. To start with, we evaluate the

plasmon contribution to the ionization spectrum of an isolated C60 molecule. Within

the utilized model, the fullerene is represented as a spherical ”jellium” shell of a finite

width ∆R with a homogeneous distribution of the electron density [177–179]. The

chosen value, ∆R = 1.5 Å, corresponds to the size of the carbon atom [178]. Figure 5.1

83
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shows the radial distribution of the density of 240 delocalized electrons in C60 (the four

valence 2s22p2 electrons in each carbon atom form a cloud of delocalized electrons)

considered within the model and that obtained from DFT calculations [204].

Figure 5.1: Radial distribution of the valence electron density of C60 obtained from DFT
calculations [204] (solid curve) and that considered within the model (dashed curve).
The DFT calculations were performed by means of the Gaussian 09 package [107]
utilizing the local density approximation (LDA) and the 6-31G(d) basis set.

The choice of the parameters entering the PRA, namely the oscillator strength

of the plasmon excitation, position of the plasmon resonance peak, and its width,

has been justified by comparing the model-based spectra with experimental data and

the results of more advanced ab initio calculations. As a benchmark of the utilized

approach, the photo- and electron impact ionization cross sections of carbon-based

systems, namely fullerenes and PAHs, were calculated [27–29,202]. The results obtained

for C60, see Figures 5.2 and 5.3, agreed well with experimental data on photoionization

[205] and electron inelastic scattering [27, 28]. Being a clear physical model which

describes collective electron excitations, the PRA has thus been proven to be a useful

tool for interpretation of experimental results and making new numerical estimates.

Within the PRA, the double differential inelastic scattering cross section of a fast

projectile in collision with a hull-like system is defined as a sum of three terms which

describe the partial contribution of the two modes of the surface plasmon and of the

volume plasmon, see Eq. (4.25)-(4.26). The frequencies of the symmetric and antisym-

metric modes of the surface plasmon are given by Eq. (4.27) and the volume plasmon

frequency, associated with the ground-state electron density ρ0, is given by Eq. (4.28).

In the case of a fullerene Cn, the number N of delocalized electrons represents the
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Figure 5.2: The photoabsorption cross section of C60 (left panel) and benzene (right
panel) calculated within the TDDFT method (black line) and the plasmon resonance
approximation (green line). Theoretical curves are compared to the experimental data
from Kafle et al. [205] and Koch and Otto [206]. The figure is adapted from Ref. [202].

four 2s22p2 valence electrons from each carbon atom. Thus, it is assumed that 240

delocalized electrons of C60 contribute to the formation of plasmons.

Studying the plasmon excitations in C60, we have also accounted for the dipole

(l = 1), quadrupole (l = 2) and octupole (l = 3) in the sum over l in Eq. (4.26).

Similar to the analysis performed in Section 4.2.3 for small gold clusters, the number

of multipole terms to be accounted for is evaluated by comparing the wavelength of

plasmon excitation, λpl = 2πR/l, with the characteristic wavelength of the delocalized

electrons in the system, λe = 2π/
√
2ϵ, where ϵ ∼ Ip(C60) ≈ 7.5 eV [157]. In the

case of C60, this estimate shows that the excitations with l > 3 are formed by single

electron transitions rather than by the collective ones. In Ref. [29], the single-particle

excitations in C60 were mapped to a series of individual peaks formed atop the broad

plasmon resonance peak. These peaks were either assigned to a series of optically

allowed discrete transitions or related to the ionization of particular molecular orbitals

of the system.

Table 5.1: Peak positions of the surface and the volume plasmon modes as well as their
widths used in the present calculations. All values are given in eV.

ω
(s)
l Γ

(s)
l ω

(a)
l Γ

(a)
l ωp Γ

(v)
l

l = 1 19.0 11.4 33.2 33.2 37.1 37.1
l = 2 25.5 15.3 31.0 31.0 37.1 37.1
l = 3 30.5 18.3 29.5 29.5 37.1 37.1

In the performed analysis, we assumed that the ratio γl = Γl/ωl of the width of

the plasmon resonance to its frequency equals to γ
(s)
l = 0.6 for all multipole terms of

the symmetric mode, and to γ
(a)
l = 1.0 for the antisymmetric mode [28]. These values
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Figure 5.3: Comparison of the electron energy loss spectra calculated within the PRA
and the experimental spectra measured for the incident electron energy range 1002 −
1050 eV and for the scattering angles θ = 3◦ . . . 9◦. The symmetric and antisymmetric
modes of the surface plasmon are shown by dashed red and the dash-dotted blue lines,
respectively; the volume plasmon contribution is shown by the double-dotted purple
line. The total cross section is shown by the thick green line. Open squares represent
the experimental data [27,28]. For the sake of convenience, both the experimental and
the theoretical curves are normalized to 1 at the point of maximum. The energy scale
is the same for all panels. The figure is adapted from Ref. [181].

have been utilized to describe experimental data on photoionization [205] and electron

inelastic scattering [27,28] of gas-phase C60, see Figures 5.2 and 5.3. The value γ
(s)
l = 0.6

is also close to the numbers obtained from the earlier photoionization and electron

energy loss experiments on neutral C60 [157, 163]. The value γ
(a)
l = 1.0 is consistent

with the widths of the second plasmon resonance observed in the photoionization of Cq+
60

(q = 1− 3) ions [199]. For the volume plasmon, we consider the ratio γ
(v)
l = Γ

(v)
l /ωp =

1.0. The values of the plasmon resonance peaks and the widths are summarized in

Table 5.1.
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5.2 Electron production by C60 fullerene due to the

plasmon excitation mechanism

Figure 5.4 illustrates the single differential cross section dσpl/d∆ε calculated by means

of the PRA for the C60 fullerene irradiated by fast protons of different incident energies

as indicated. The presented spectra comprise contributions of both the surface and vol-

ume plasmon excitations of different angular momenta l. The contribution of different

plasmon modes to the spectrum of C60 irradiated by a 1 MeV proton is illustrated in the

lower panel of Figure 5.4. Similar to electron production by noble metal nanoparticles

(Section 4.2.3), the main contribution to the cross section comes from the symmetric

mode of the surface plasmon, whose relative contribution is much larger that of the

volume plasmon.

Figure 5.4 demonstrates that the amplitude and the shape of the plasmon resonance

depend strongly on the kinetic energy of protons. It can be explained by the fact that the

relative contributions of the quadrupole and higher multipole terms to the cross section

decrease significantly with an increase of the collision velocity [162]. At high velocities,

the dipole term dominates over the contributions of larger l, since the dipole potential

decreases slower at large distances than the higher multipole potentials. To illustrate

this effect, we have plotted the partial contributions of different multipole modes which

are excited due to irradiation by 0.1, 1, and 10 MeV protons. These dependencies are

presented in Figure 5.5. For the sake of clarity, the cross sections, which represent the

sum of three multipole contributions, have been normalized to unity at the point of

maximum. Thus, one can compare directly the relative contribution of the different

terms to the cross section at different incident energies. A prominent interplay of the

different multipole terms at the lowest incident energy (left panel) results in a shift in

the position of the maximum of the cross section.

To quantify the production of electrons in collision with a nanoparticle, the cross

section dσ/d∆ε is redefined as a function of the kinetic energy E of emitted elec-

trons, E = ∆ε − Ip. Figure 5.6 shows the cross section dσ/dE of C60 (thick solid and

dash-dotted black curves) and of a water molecule (thin solid and dashed blue curves)

irradiated by a 1 MeV proton as a function of the kinetic energy of emitted electrons.

The thick solid curve demonstrates the contribution of the plasmon excitations to the

spectrum of C60, dσpl/dE, calculated within the PRA approach. This cross section is

compared to the single-differential cross section of C60 [26] obtained within the dielec-

tric formalism. The results for water, also obtained within the dielectric formalism,

are taken from Refs. [195, 196]. Symbols show the cross section dσ/dE for the 1 MeV

proton impact of a single carbon atom calculated by means of the binary encounter

approximation (BEA), multiplied by 60. This approximation considers the collision as
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Figure 5.4: Upper panel: contribution dσpl/d∆ε of the plasmon excitations to the single
differential cross section of C60 fullerene irradiated by fast protons of different incident
energies as a function of the energy loss. Lower panel illustrates the contribution of
different plasmon excitations to the cross section dσpl/d∆ε of C60 irradiated by a 1 MeV
proton. The figure is adapted from Ref. [26].

a classical one between the projectile and a single electron in the target; the nucleus and

the remaining electrons in the target play no part except that of providing a binding

energy for the electron being ejected [207]. An agreement between the cross section for

C60 obtained within the dielectric formalism with that within the BEA at the energy of

about 20 eV and above indicates that the emission of electrons with kinetic energy of

several tens of eV takes place via single-electron excitations of the system. The plasmon

excitations dominate the spectrum at lower energies, i.e. in the vicinity of the plasmon

resonance, while this contribution drops off at higher energies of emitted electrons. In

the energy range where the plasmons are excited, single-particle effects give a small

contribution as compared to the collective modes, while at higher energies, the collec-



5.3 Electron production by a large fullerite nanoparticle 89

Figure 5.5: Relative contribution of different multipole terms to the single differential
cross section dσpl/d∆ε of C60 fullerene irradiated by 0.1, 1, 10 MeV protons as a function
of the energy loss. The figure is adapted from Ref. [26].

tive excitation decays to the incoherent sum of single-electron excitations. Note that

at lower electron energies (from 1 to approximately 20 eV) the BEA-based results start

to deviate significantly from that of the dielectric formalism. This deviation indicates

that the BEA is not applicable for the description of low-energy electron emission, since

these electrons are produced in distant rather than in binary collisions. In this energy

range, the PRA approach better describes the low-energy electron emission since it

accounts for the collective electron effects omitted in other models.

5.3 Electron production by a large fullerite nanopar-

ticle

The single differential cross section dσ/dE calculated for an isolated C60 molecule (Fig-

ure 5.6) can be utilized to evaluate the production of secondary electrons by a large solid

carbon nanoparticle whose density corresponds to that of fullerite, the crystalline form

of C60. The cross section can be related to to the probability to produce N secondary

electrons with kinetic energy E, in the interval dE, emitted from a segment ∆x of the

trajectory of a single ion [13,208]:

dN(E)

dE
= n∆x

dσ

dE
, (5.1)

where n is the atomic density of a system of compounds,

n =
ρ

Natmat

, (5.2)

with ρ being the mass density of a target, Nat the number of atoms in the target

compound, and mat the atomic mass.
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Figure 5.6: Single differential cross section dσ/dE of the C60 fullerene (thick solid and
dash-dotted black curves) and of a water molecule (thin solid and dashed blue curves)
irradiated by a 1 MeV proton as a function of the kinetic energy of emitted electrons.
Thick solid (black) curve illustrates the contribution of the plasmon excitations to the
emission spectrum from C60. Thin solid and dashed (blue) curves represent the results
obtained within the dielectric formalism by Scifoni et al. [195] and de Vera et al. [196],
respectively. Symbols represent the cross section of a single C atom calculated by means
of BEA, multiplied by 60. The figure is adapted from Ref. [26].

As a case study, we have considered a large nanoparticle of 50 nm in diameter. In

the calculations, is was assumed that (i) C60 molecules in fullerite are packed in the

fcc crystalline lattice, and (ii) a unit cell is composed of four C60 molecules. Knowing

the lattice parameter of fullerite, a = 1.417 nm [209], and the mass of a single carbon

atom, mC = 12 u, we have calculated the density of the fullerite crystal:

ρ(fullerite) =
4 · 60mC

a3
= 1.68 g/cm3 . (5.3)

Utilizing these values, we have obtained the atomic density of fullerite:

n(fullerite) =
ρ(fullerite)

60 ·mC

= 1.4 · 1021 cm−3 , (5.4)

which is by about an order of magnitude smaller than that of water, n(water) = 3.34×
1022 cm−3.

In Figure 5.7, the electron yield from a 50 nm spherical carbon nanoparticle is

compared to that from the equivalent volume of pure water medium. We have calculated

the number of electrons per unit energy produced due to irradiation by a 1 MeV proton.

The contribution of collective electron excitations estimated by means of the PRA
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Figure 5.7: Number of electrons per unit energy produced by irradiation of a 50 nm
carbon nanoparticle by a single 1 MeV proton (black curves). Blue curves represent the
number of electron generated in the equivalent volume of liquid water. Solid and dashed
blue curves represent the results obtained within the dielectric formalism by Scifoni et
al. [195] and de Vera et al. [196], respectively. Open circles illustrate this quantity
obtained on the basis of Monte Carlo simulations using the Geant4-DNA simulation
tool. The figure is adapted from Ref. [26].

(thick black curve) is compared to the number of electrons estimated by means of the

dielectric formalism (dash-dotted black curve) [26]. These results are also compared to

the results of Monte Carlo simulations carried out by means of the Geant4 tool for pure

water medium (symbols) [26]. Thin solid and dashed blue curves represent the results of

recent calculation for liquid water obtained within the dielectric formalism taken from

Refs. [195, 196]. Comparative analysis of the spectra demonstrates that the number of

electrons with the energy of about 10 eV, produced by the carbon nanoparticle via the

plasmon excitation mechanism, is several times higher than that created in pure water.

Similar to the case of noble metal nanoparticles, the use of carbon-based nanostructures

in radiotherapy applications can thus produce the sensitization effect. As shown in

Chapter 4, the number of electrons with the energy of about a few eV produced by the

gold and platinum nanoparticles via the plasmon excitation mechanism exceeds that

generated in the same volume of liquid water by more than an order of magnitude. In

the case of a carbon nanoparticle, the electron yield reaches the maximum at slightly

higher electron energies, namely at about 10 eV.

In order to quantify the difference in electron production by the carbon nanoparticle

and by an equivalent volume of pure water, we have calculated the relative enhancement

of the electron yield from the nanoparticle as compared to water. This quantity is

presented in Figure 5.8. The enhancement was calculated by comparing the contribution
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Figure 5.8: Yield enhancement from the 50 nm carbon nanoparticle as compared to
pure water medium. Solid and dashed blue lines show the enhancement due to the
plasmon excitations as compared to the results obtained within the dielectric formalism
by Scifoni et al. [195] and de Vera et al. [196], respectively. Open symbols illustrate the
plasmon-based enhancement compared to the results of Monte Carlo simulations. The
figure is adapted from Ref. [26].

of the plasmon excitations, obtained within the PRA, to the electron yield from pure

water calculated by means of the dielectric formalism (solid and dashed blue curves)

and Monte Carlo simulations (open symbols). Depending on the data to be chosen as

a reference, the collective electron excitations result in 2 to 3 times greater number of

emitted 10 eV electrons as compared to the case of water. This effect is less pronounced

than the enhancement done by the small noble metal nanoparticles which can produce

up to 15-20 times greater number of electrons via the plasmon decay mechanism as

compared to water (see Figure 4.20). On the other hand, this enhancement results in an

excessive emission of the very low-energy electrons of about a few eV, while the carbon-

based nanoparticle can enhance the yield of more energetic electrons. Assuming this,

one may consider novel types of nanoparticles for radiotherapy applications, composed

of a metal and an organic parts, where collective excitations will arise in both parts of

the system. A proper choice of the constituents will allow one to tune the position of the

resonance peaks in the ionization spectra of such systems and, subsequently, to cover

a broader kinetic energy spectrum of electrons emitted from such nanoparticles, thus

enhancing effectiveness of their biomedical applications. The fabrication of new, more

efficient types of radiosensitizers would allow one to advance further modern techniques

of radiotherapy treatments with ionizing radiation.



Chapter 6

Conclusion and outlook

This work has been devoted to a theoretical and computational study of stability, elec-

tronic and thermo-mechanical properties of nanomaterials which are of current interest

for biomedical applications.

We have explored the ability of existing classical interatomic potentials to repro-

duce stability and thermo-mechanical properties of metal systems, assuming that these

potentials have been fitted to describe ground-state properties of the perfect bulk ma-

terials. By studying the stability of small atomic clusters within the classical and ab

initio frameworks, we evaluated the accuracy of the existing potentials for the descrip-

tion of systems on the atomistic scale, where quantum effects play a crucial role. This

issue is important, for instance, in the case of nanostructured materials, where grains

or nanocrystals have a typical size of about a few nanometers. For such systems, it

is important to describe rather accurately both bulk properties and the properties of

nanoscale systems consisting of several tens-hundreds of atoms.

As a case study, we investigated the force fields which describe interactions between

nickel and titanium atoms. Nanomaterials made of these metals attract attention for the

development of biocompatible implants. We demonstrated that the classical interatomic

potentials fitted to describe ground-state properties of bulk titanium, nickel and an

equiatomic NiTi alloy can also describe, with a reasonable accuracy, the properties of

much smaller systems that are driven by classical interatomic interactions. Therefore,

one can use a single set of the force fields to describe the bulk properties of the material

as well as some point defects and local irregularities of a perfect crystalline structure,

which occur on the atomistic scale. The presented methodology can also be used for the

exploration of other materials of technological interest, including monatomic systems

and alloys.

It was found that the existing classical interatomic potentials often poorly describe

highly-excited vibrational states when the system is far from the potential energy min-

imum, e.g., when a phase transition occurs in the system. The proper quantitative de-
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scription of phase transitions in general and the melting process in particular by means

of molecular dynamics simulations is a major scientific challenge that concerns metal

materials, as well as inorganic and biomolecular systems. To overcome this problem, a

new interatomic potential that is able to correctly reproduce both the melting tempera-

ture and the ground-state properties of different metals by means of classical molecular

dynamics simulations has been proposed in this work. The new potential represents

a modification of the widely used embedded-atom method-type potential. The appli-

cability of the new potential to metals with different characteristics of the electronic

structure, such as gold, platinum, titanium, and magnesium, was demonstrated. It was

found that interatomic interactions at distances, exceeding the equilibrium distance by

a characteristic vibration amplitude, are overestimated by conventional many-body po-

tentials and should be corrected in order to reproduce the quantitatively correct value

of the melting point.

We have analyzed electronic properties of nanometer-size nanoparticles made of

gold, platinum, silver, and gadolinium; nanoparticles composed of these materials are of

current interest for radiation therapy applications [8–12]. It is currently suggested that

such nanoagents delivered to the tumor region can boost the production of secondary

electrons near the target. The use of metal-based nanoparticles in combination with

ionizing radiation may thus result in the local enhancement of the radiation damage of

the tumor cells. Approaches that can enhance radiosensitivity within tumors relative

to normal tissues have the potential to become advantageous radiotherapies [44].

In this work, we have provided a methodology for analyzing the dynamic response of

nanoparticles of the experimentally relevant sizes, namely of about several nanometers,

exposed to ionizing radiation. Because of a large number of constituent atoms (about

103 − 104 atoms) and consequently high computational costs, the electronic properties

of such systems can hardly be described by means of ab initio methods based on a

quantum-mechanical treatment of electrons, and this analysis should rely on model ap-

proaches. By comparing the response of smaller systems (of about 1 nm size) calculated

within the ab initio- and the model framework, this methodology has been validated

and used to make predictions for the electron production in larger systems. We focused

our attention on the production of low-energy electrons, having the kinetic energy from

a few electronvolts to several tens of electronvolts. It is currently established that the

low-energy secondary electrons of such energies play an important role in the nanoscale

mechanisms of biological damage resulting from ionizing radiation [13–15].

The analysis performed has revealed that a significant increase in the number of

the low-energy electrons emitted from nanometer-size noble metal nanoparticles arises

from collective electron excitations formed in the systems. It was demonstrated that

the dominating mechanisms of electron yield enhancement are related to the formation
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of plasmons excited in a whole system and of atomic giant resonances formed due to

excitation of valence d electrons in individual atoms of a nanoparticle. Plasmons, that is,

collective excitations of delocalized valence electrons, dominate the spectra of electron

emission from the noble metal nanoparticles in the energy range of about 1 − 10 eV.

The leading mechanism of the increased electron production has been associated with

the surface plasmon, whose contribution to the electron yield significantly exceeds that

of the volume plasmon. For higher electron energies (of a few tens of eV), the main

contribution to the electron yield arises from the collective excitation of 5d electrons in

gold and platinum and of 4d in silver, localized on individual atoms.

The analysis of the plasmon contribution was performed within the model approach

based on the plasmon resonance approximation [18–20]. To justify parameters of the

model, photoabsorption spectra of several gold atomic clusters were calculated and

compared with the spectra obtained by means of time-dependent density-functional

theory. The accuracy of the results was proven by the comparison of ab initio-based

spectra with well-established experimental data for atomic gold and the results of earlier

ab initio calculations. Additional validation of the model was made by an extensive

comparison with recent experimental data on photoionization and electron scattering

from carbon fullerenes.

In this study, we have demonstrated that the number of the low-energy electrons

produced by the noble metal nanoparticles of a given size (especially, those composed

of gold and platinum) exceeds that produced by an equivalent volume of liquid water

by more than an order of magnitude. Being embedded in a biological medium, the

noble metal nanoparticles thus represent an important source of the low-energy elec-

trons. This result supports the conclusions of the recent experimental studies [16, 17]

which revealed the importance of gold nanoparticles in facilitating the production of

low-energy electrons, which are responsible for a significant irrepairable damage in bio-

logical systems. We found that the electron yield from a small gadolinium nanoparticle

also exceeds the electron production from pure water medium but is lower than that

from noble metal systems. This result generally corresponds to the conclusions of re-

cent experimental studies [10] where it was found that the effect of gadolinium-based

nanoparticles is less pronounced than that of platinum-based compounds, tested under

the same conditions.

The utilized approach for evaluation of the electron production yield from sensi-

tizing nanoparticles has an advantage as compared to other widely used approaches

like track structure Monte Carlo simulations, which are utilized in the microdosimetric

calculations (see, e.g., Ref. [210] and references therein). In most of the Monte Carlo

simulations, the contribution of collective excitations, which play a significant role in

the ionization of gold and other noble metal nanoparticles, is not accounted for. Apart
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from that, the utilized methodology can be adopted for other projectiles, e.g. carbon

ions, which are the most clinically used projectiles, besides protons.

The methodology for studying electronic properties of nanosystems was also used to

make quantitative predictions for electron production by non-metal nanoparticles. We

have demonstrated that due to a prominent collective response to an external electric

field, carbon nanoparticles embedded in a biological medium also emit a large number

of low-energy electrons. The number of emitted 10 eV electrons has been shown to

be several times higher as compared to the case of liquid water. Assuming this, one

may consider novel types of nanoparticles for radiotherapy applications, composed of a

metal and an organic parts, where collective excitations will arise in both parts of the

system. A proper choice of the constituents will allow one to tune the position of the

resonance peaks in the ionization spectra of such systems and, subsequently, to cover

a broader kinetic energy spectrum of electrons emitted from such nanoparticles thus

enhancing effectiveness of their biomedical applications.

Directions for future research

One of the outcomes of this work is that the fundamental mechanisms of the enhanced

production of low-energy electrons emitted from sensitizing nanoparticles have been

suggested and explored. These findings will be utilized in future research aimed at a

closer connection to radiobiological studies.

Recent experiments demonstrated that irradiation of cancer cells, loaded with metal-

lic sensitizing nanoparticles, with photons or ion beams leads to an increase of cell

killing [10,147,149]. Such studies are typically based on the analysis of survival curves,

that is, the dependence of the clonogenic cell survival probability on the deposited dose

(see Figure 6.1). These dependencies generally vary for different types of cells, cell cycle,

and radiation modalities, and are the starting point for a treatment plan. It was also

shown experimentally that injection of the nanoparticles into the tumor region leads

to an increase of the relative biological effectiveness (RBE) of ionizing radiation [149].

This quantity is defined as the ratio of the dose delivered by photons to that delivered

by different radiation modalities (e.g., electrons, protons, or heavier ions), leading to

the same biological effect, such as the probability of an irradiated cell inactivation. All

these results have demonstrated that radiosensitizing nanoparticles can enhance the ra-

diation damage of the tumor cells and may thus increase the efficiency of radiotherapy.

However, the full potential of the new techniques of radiotherapy can be realized only if

the fundamental mechanisms leading to lethal cell damage under the action of ionizing

radiation are well understood. The results obtained in this work will serve as a starting

point for this further analysis.
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Figure 6.1: Left panel: Cell survival as a function of dose for DU145 human prostate
cancer cells irradiated solely with x-rays (circles) and proton beams (squares), as well
as for the cells irradiated with protons in the presence of gold nanoparticles (triangles).
Right panel: Survival of U87 brain tumor cells (black triangles) and those loaded with
Gd-based nanoparticles (red squares) irradiated by photons. The figures are adapted
from Refs. [147,149].

In particular, the calculated spectra of secondary electrons emitted by nanoparticles

will be used as the input data for investigation of radiobiological effects by means of the

MultiScale Approach to the physics of radiation damage with ions [13]. This approach

has the goal of developing knowledge about biodamage at the nanoscale and molecular

level and finding the relation between the characteristics of incident particles and the

resultant biological damage. It is capable of predicting the biological damage based on

the physical effects related to ionization of the medium, transport of secondary particles,

chemical interactions, thermo-mechanical pathways of biodamage, and heuristic biolog-

ical criteria for cell survival [13]. In the future work, this approach will be extended to

include the physical effects due to the presence of nanoparticles in cells.

An important problem to be explored in future studies is how the presence of

nanoparticles in cells affects the production and evolution of free radicals and reactive

oxygen species. This research direction relies on the idea that the enhanced production

of low-energy electrons by the nanoparticles should lead to an increase in the number

of free radicals (in particular, OH• and O−
2 ) and other reactive species, e.g., hydrogen

peroxide H2O2 [211, 212]. By now, it is generally accepted that all these secondary

species play an important role in the biological damage resulting from ionizing radia-

tion [13,213–215].

It is also argued that H2O2 can deliver damaging impacts onto the DNA in the cell

nucleus from the radiation induced damages associated with the presence of nanoparti-

cles in other cell compartments (see Figure 6.2). This issue might be important because
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Figure 6.2: Left panel: Transmission electron microscopy image of gadolinium-based
nanoparticles in mammalian CHO cells; Right panel: Scheme of a cell loaded with
nanoparticles (in yellow) irradiated by an ion track (black line). The zoom highlights
the production in the cytoplasm of a nano-size cluster composed of reactive oxygen
species. The figures are adapted from Ref. [10].

a number of recent experiments demonstrated that the nanoparticles penetrate cells but

are localized in the cytoplasm rather than in the cell nucleus [10,147]. Despite this, the

presence of small (about 2 nm diameter) gold nanoparticles in the cell nucleus was also

experimentally detected [12]. In the case if the sensitizing nanoparticles are localized

in the nucleus, the low-energy electrons emitted from the nanoparticles can produce

direct damage to DNA, e.g., by dissociative electron attachment [216].

The future research will hopefully give answers to the fundamental questions regard-

ing the nanoscale mechanisms of radiation-induced damage of cells in the presence of

nanoparticles. Understanding and exploiting the nanoscale processes that drive phys-

ical, chemical, and biological effects induced by ionizing radiation is within the scope

of an ongoing international project, entitled “Advanced Radiotherapy, Generated by

Exploiting Nanoprocesses and Technologies (ARGENT)”, supported by the European

Commission [44].
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Appendix A: Plasmon resonance

approximation

The plasmon resonance approximation (PRA) [19,20,159] represents an effective method

for evaluating the contribution of plasmons to the excitation/ionization spectra of

atomic clusters and nanoparticles. It postulates that the dominating contribution to

the cross section comes from collective electron excitations, while single-particle effects

give much smaller contribution in the vicinity of the plasmon resonance. This Appendix

gives a brief overview into the PRA formalism [159].

It is assumed that the considered system has spherical symmetry with a homoge-

neous distribution of the negative charge over the volume of the system. The equilib-

rium electron density distribution, ρ0(r), is expressed via the number N of delocalized

electrons and the system’s volume V :

ρ0 =

{
N/V , R1 ≤ r ≤ R2

0 , r < R1, r > R2 .
(A1)

In the general case, the volume of the system can be expressed as

V =
4π

3

(
R3

2 −R3
1

)
=

4π

3
R3

2

(
1− ξ3

)
, (A2)

where R1 and R2 are the inner and the outer radii of the system, respectively, and

ξ = R1/R2 ≤ 1 is the ratio of the two radii.

The spherical-shell model defined by (A1) and (A2) is applicable for any spherically

symmetric system with an arbitrary value of the ratio ξ. The limiting case of ξ → 0

describes a solid nanoparticle with the electron density distribution over the full sphere

of a radius R:

ρ0(r) =
N

V
Θ(R− r) . (A3)

In this limit, R1 → 0 and R ≡ R2 so the cluster volume is V = 4πR3/3.

The total electron density of the system in the point r and time t is introduced as

ρ(r, t) = ρ0(r)+δρ(r, t), where ρ0(r) denotes the stationary distribution of the negative
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charge in the point r, and δρ(r, t) is the density variation caused by the interaction with

an external electric field. The collective motion of the electron density is described using

the Euler equation and the equation of continuity [19].

The Euler equation couples the acceleration, dv(r, t)/dt, of the electron density with

the total electric field E acting on the system at the point (r, t):

dv(r, t)

dt
= E(r, t) . (A4)

The electric field E includes both the external field acting on the system and the

polarization contribution due to the variation of electron density δρ(r, t):

E(r, t) = −∇⃗ϕ(r, t)− ∇⃗
∫
δρ(r′, t)

|r− r′|
dr′ , (A5)

where ϕ(r, t) is the scalar potential of the external field. Introducing (A5) in (A4) and

evaluating the full time derivative of the vector v, one obtains

∂v(r, t)

∂t
+
(
v(r, t) · ∇⃗

)
v(r, t) = −

(
∇⃗ϕ(r, t)

)
− ∇⃗

∫
δρ(r′, t)

|r− r′|
dr′ . (A6)

The potential of the external field is assumed to satisfy the wave equation and has the

monochromatic dependence on t:

ϕ(r, t) = eiωt ϕ(r) , (A7)

where ϕ(r) satisfies the equation

∆ϕ(r) + q2 ϕ(r) = 0 (A8)

with q being the wave vector.

The motion of electron density in the system obeys the equation of continuity, which

reads
∂ρ(r, t)

∂t
+ ∇⃗ ·

(
ρ(r, t)v(r, t)

)
= 0 . (A9)

Equations (A6) and (A9), being solved simultaneously, determine the variation of elec-

tron density δρ(r, t) as well as its velocity v(r, t). The second term on the left-hand

side of equation (A6) can be neglected, which means physically that the external field

causes only a small spatial inhomogeneity in the electron density distribution within

the system.
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The solutions of equations (A6) and (A9) are sought in the following form: δρ(r, t) = δρ(r) eiωt

v(r, t) = v(r) eiωt
. (A10)

Substituting these expressions into (A6) and (A9) and performing some transformations

with the simultaneous use of equation (A8) and ∆|r− r′|−1 = −4πδ(r− r′), one derives

a set of the following linear equations:

v(r) =
i

ω

[
∇⃗ϕ(r) + ∇⃗

∫
δρ(r′)

|r− r′|
dr′
]
, (A11)

(
ω2 − 4πρ0(r)

)
δρ(r) + ∇⃗ρ0(r) · ∇⃗

∫
δρ(r′)

|r− r′|
dr′

= q2 ρ0(r)ϕ(r)− ∇⃗ρ0(r) · ∇⃗ϕ(r) . (A12)

In the case of the spherically symmetric density distribution, ρ0(r) = ρ0(r), one can

exclude angular variables from equations (A11) and (A12) by expanding functions ϕ(r),

δρ(r), and |r− r′|−1 into spherical harmonics and then integrating over spherical angles

of the vector r.

Performing some algebraic transformations [159], one obtains a general equation for

the variation of electron density in an arbitrary spherically symmetric system:

(
ω2−4πρ0(r)

)
δρl(r)+4π

ρ′0(r)

Π2
l

∞∫
0

gl(r, r
′) δρl(r

′) dr′ = q2ρ0(r)ϕl(r)−ρ′0(r)ϕ′
l(r) , (A13)

where ϕl(r) is the scalar potential, ω is the frequency of the external field, and the

notation Πl =
√
2l + 1 is introduced. The function gl(r, r

′) is defined as:

gl(r, r
′) = l

( r
r′

)l−1

Θ(r′ − r)− (l + 1)

(
r′

r

)l+2

Θ(r − r′) ,

where Θ(x) is the Heaviside step function

Θ(x) =

{
0 , x < 0

1 , x ≥ 0
.

Consider a system with a homogeneous charge distribution over a spherical shell

of a finite width ∆R = R2 − R1. This means that the equilibrium electron density

distribution, ρ0(r), is constant within the interval R1 ≤ r ≤ R2 and equals to zero if
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otherwise:

ρ0(r) = ρ0 Θ(r −R1)Θ(R2 − r) , (A14)

where ρ0 is defined by (A1). The derivative of the function ρ0(r) is given by

ρ′0(r) = ρ0

(
δ(r −R1)− δ(r −R2)

)
, (A15)

where δ(x) is the delta-function. The solution of equation (A13) for such a system is

sought in the following form:

δρl(r) = δϱl(r)Θ(r −R1)Θ(R2 − r) + σ
(1)
l δ(r −R1) + σ

(2)
l δ(r −R2) , (A16)

where δϱl(r) describes the volume density variation arising inside the finite-width spher-

ical shell, and σ
(1,2)
l are variations of the surface charge densities at the inner and the

outer surfaces of the shell, respectively (see Figure 4.9). The volume density variation

causes the formation of the volume plasmon, while the variations of the surface densities

correspond to two surface plasmon modes.

Interaction with a uniform external field

The case of a uniform external field describes the interaction of a system with an

electromagnetic field. It is assumed that the wavelength of electromagnetic radiation is

much larger than the typical size of the system, i.e. the condition ωR ≪ 1 is fulfilled.

This condition implies the validity of the dipole approximation. In this limit, the wave

vector q = 0 and equation (A13) for the multipole variation of the electron density in

a spherically symmetric system turns into the following one:

(
ω2 − 4πρ0(r)

)
δρl(r) + 4π

ρ′0(r)

Π2
l

∞∫
0

gl(r, r
′)δρl(r

′)dr′ = −ρ′0(r)ϕ′
l(r) . (A17)

Substituting (A14)-(A16) into equation (A17) and taking into account that in the

dipole approximation the field intensity ϕ′
l does not depend on the spatial coordinate,

ϕ′
l(R1) = ϕ′

l(R2) ≡ ϕ′
l, one derives the following equation:

(
w − 1

)
δϱl(r)Θ(r −R1)Θ(R2 − r)

+

(
wσ

(1)
l + I

(1)
l − l + 1

Π2
l

σ
(1)
l +

l

Π2
l

σ
(2)
l ξl−1

)
δ(r −R1)

+

(
wσ

(2)
l + I

(2)
l +

l + 1

Π2
l

σ
(1)
l ξl+2 − l

Π2
l

σ
(2)
l

)
δ(r −R2)

= − ϕ′
l

4π
δ(r −R1) +

ϕ′
l

4π
δ(r −R2) , (A18)
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where

w = ω2/ω2
p (A19)

with ωp being the volume plasmon frequency associated with the density ρ0 (4.28), and

I
(1)
l =

l

Π2
l

Rl−1
1

R2∫
R1

δϱl(x)

xl−1
dx , I

(2)
l =

l + 1

Π2
l

1

Rl+2
2

R2∫
R1

xl+2δϱl(x)dx . (A20)

Matching the terms of different types on the right- and the left-hand side of equation

(A18), one obtains expressions which define the variations of the volume and the surface

charge densities. The solution corresponding to the volume density variation reads as:

(
w − 1

)
δϱl(r)Θ(r −R1)Θ(R2 − r) = 0 . (A21)

This means that no volume plasmon can arise in the system due to interaction with

a uniform external field. The volume plasmon manifests itself only when the system

interacts with a non-uniform external field, for instance, in collisions with charged

particles. Thus, the total variation of electron density is described only by the surface

density contributions:

δρl(r) = σ
(1)
l δ(r −R1) + σ

(2)
l δ(r −R2) , (A22)

which can be defined from the following system of coupled equations:
(
w − l + 1

Π2
l

)
σ
(1)
l +

l

Π2
l

ξl−1σ
(2)
l = − ϕ′

l

4π

l

Π2
l

ξl+2 σ
(1)
l +

(
w − l

Π2
l

)
σ
(2)
l =

ϕ′
l

4π

. (A23)

The determinant of the system (A23) is ∆ = (w−w1l)(w−w2l), where w1l and w2l are

the roots of the secular equation ∆ = 0:

w1l =
1

2

(
1− 1

2l + 1

√
1 + 4l(l + 1)ξ2l+1

)
w2l =

1

2

(
1 +

1

2l + 1

√
1 + 4l(l + 1)ξ2l+1

) . (A24)

Variation of the surface charge densities, σ
(1,2)
l , results in the formation of two coupled

modes of surface plasmon oscillations [159,177–179]. Frequencies of the symmetric, ω
(s)
l ,

and the antisymmetric, ω
(a)
l , surface plasmons of multipolarity l are given by expres-

sion (4.27). In the symmetric mode, the charge densities of the two surfaces oscillate in

phase, while in the antisymmetric mode they are out of phase (see Figure 4.9). Since
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only dipole excitations may arise in the system due to interaction with the external

electromagnetic field, the case of interest is l = 1. The expression for the resonant

frequencies of the surface plasmons is then reduced to Eq. (4.6).

The cross section of photoionization by a single photon is given by the general

expression:

σγ(ω) =
4πω

c
Imα(ω) , (A25)

where α(ω) is the dynamic polarizability. This quantity is related to the external electric

field E(ω) and the induced dipole moment, which is defined as:

d(ω) =

√
4π

3

∞∫
0

r3 δρ1(r) dr . (A26)

The quantity δρ1(r) defines the electron density variation (A22) created by the dipole

mode of surface plasmon oscillations.

One can demonstrate that the dipole polarizability α(ω) can be expressed in the

following form [159]:

α(ω) ∝ N

(
1

ω2 − ω(s)2
+

1

ω2 − ω(a)2

)
, (A27)

where N is the number of delocalized electrons in the system. This expression clearly

shows that the photoionization cross section is defined by the two surface plasmons

with the frequencies ω(s) and ω(a).

The final expression for the photoionization cross section within the PRA is obtained

by accounting for damping of the plasmon oscillations due to the decay of the collective

mode to the incoherent sum of single-electron excitations. This is done by introducing

the finite widths, Γ(s) and Γ(a), of the plasmon resonances and making the following

substitutions in the right-hand side of (A27):

1

ω2 − ω(s,a)2
−→ 1

ω2 − ω(s,a)2 + iωΓ(s,a)
. (A28)

Taking the imaginary parts of the polarizability produces:

Im
1

ω2 − ω(s,a)2 + iωΓ(s,a)
−→ ωΓ(s,a)(

ω2 − ω(s,a)2
)2

+ ω2Γ(s,a)2
. (A29)

Thereby, the final formula for the photoionization cross section within the PRA is
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written in the following form [159,180]:

σ(ω) =
4πω2

c

(
Ns Γ

(s)(
ω2 − ω(s)2

)2
+ ω2Γ(s)2

+
Na Γ

(a)(
ω2 − ω(a)2

)2
+ ω2Γ(a)2

)
, (A30)

whereNs, Na are the number of delocalized electrons which are involved in each plasmon

mode.

Interaction with a non-uniform external field

In the case of the interaction with a non-uniform electric field, e.g., in collisions with

charged particles, the multipole variation of the electron density (A16) is defined as the

solution of a general equation (A13).

Carrying out the transformations, similar to those described above for the case of a

uniform external field, one derives the following equation:

(
w − 1

)
δϱl(r)Θ(r −R1)Θ(R2 − r)

+

(
wσ

(1)
l + I

(1)
l − l + 1

Π2
l

σ
(1)
l +

l

Π2
l

σ
(2)
l ξl−1

)
δ(r −R1)

+

(
wσ

(2)
l + I

(2)
l +

l + 1

Π2
l

σ
(1)
l ξl+2 − l

Π2
l

σ
(2)
l

)
δ(r −R2)

= q2
ϕl(r)

4π
Θ(r −R1)Θ(R2 − r)− 1

4π

(
ϕ′
l(R1)δ(r −R1)− ϕ′

l(R2)δ(r −R2)
)
. (A31)

Matching the terms of different types on the left- and the right-hand side of equa-

tion (A31), one obtains three equations: one for the volume density variation and

the other two for the variation of the surface charge densities. The solution of equa-

tion (A31) corresponding to the volume density variation reads as:

δϱl(r) =
q2

w − 1

ϕl(r)

4π
, (A32)

and the density variation due to the surface plasmon modes is

σl(r) = σ
(1)
l δ(r −R1) + σ

(2)
l δ(r −R2) . (A33)

The quantities σ
(1)
l and σ

(2)
l satisfy the following system of coupled equations:

(
w − l + 1

Π2
l

)
σ
(1)
l +

l

Π2
l

ξl−1σ
(2)
l = F1

l

Π2
l

ξl+2σ
(1)
l +

(
w − l

Π2
l

)
σ
(2)
l = F2

, (A34)
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where

F1,2 = ∓ϕ
′
l(R1,2)

4π
− I

(1,2)
l (A35)

and the functions I
(1,2)
l were defined above in (A20).

Solutions of the system (A34) are given by the following expression:

σ
(1)
l =

1

∆

[
F1w − l

Π2
l

(
F1 + ξl−1F2

)]
≡ F1

∆

σ
(2)
l =

1

∆

[
F2w − l + 1

Π2
l

(
F2 + ξl+2F1

)]
≡ F2

∆

, (A36)

where ∆ is the determinant of the system.

Finally, using (A32) and (A36) in (A16), one obtains the expression which defines

the multipole variation of electron density in a spherically symmetric hollow system

under the action of the multipole component ϕl(r) of the external field:

δρl(r) =
q2

w − 1

ϕl(r)

4π
Θ(r −R1)Θ(R2 − r)

+
F1

∆
δ(r −R1) +

F2

∆
δ(r −R2) . (A37)

The first term leads to the formation of the volume plasmon, while the two other terms

are responsible for the formation of two coupled modes of the surface plasmon.



Appendix B: Basis sets in

quantum-chemical calculations

This Appendix provides an overview of some basis principles which the performed

quantum-chemical calculation are based on. A more detailed description of ab initio

methods is presented, for instance, in Refs. [217–219].

In quantum-chemical calculations, the many-electron wave function of a system, Ψe,

is expressed via a set of single-electron wave functions (which are also sometimes called

molecular orbitals), ϕi. In order to define the orbitals, one needs to solve a system

of single-particle equations using the Hartree-Fock method or within the framework

of density-functional theory (see Section 2.3). The major part of ab initio calculations

described in this work have been based on DFT methods, where a system of Kohn-Sham

equations [53] is solved to find the molecular orbitals ϕi:[
−1

2
∇2 + vn(r) +

∫
ρ(r′)

|r− r′|
dr′ + vxc(r)

]
ϕi(r) = εi ϕi(r) . (B1)

The first term on the left-hand side of the above equation represents the kinetic energy

of the electron i, vn(r) described its interaction with the nuclei, the third term de-

fines the potential of electron-electron Coulomb interaction, and vxc(r) is the exchange-

correlation potential.

When carrying out quantum-chemical calculations with the use of Gaussian 09 pack-

age [107] or with some other modern quantum chemistry codes, the molecular orbitals

ϕi are approximated by a linear combination of predefined single-electron functions χµ,

also known as basis functions:

ϕi =
N∑

µ=1

cµi χµ , (B2)

where cµi are the molecular orbital expansion coefficients, and the parameter N defines

the number of basis functions used in the calculation [115]. The constructed basis set

consists of a limited number of functions centered on each atomic nucleus of a molecular

system.

At an early stage of development of computational quantum chemistry, so-called

109
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Slater-type orbitals (STOs) were used as basis functions. The radial component of such

orbitals decays exponentially when moving away from the nucleus the given orbital is

centered on:

χ(ζ, n, l,m; r, ϑ, φ) = Nrn−1 e−ζr Ylm(ϑ, φ) . (B3)

Here N is a normalization prefactor, n, l and m are the principal, orbital, and magnetic

quantum numbers, respectively, and r is the distance from the nucleus. The parameter

ζ denotes a so-called orbital exponent that defines an effective nucleus charge appear-

ing due to partial screening of the nucleus by electrons. It was shown later that STOs

can be expressed as a linear combination of so-called Gaussian-type orbitals (or Gaus-

sians, GTOs); the radial component of a GTO is defined by a Gaussian distribution,

χ(r) ∼ e−αr2 . Since a basis set composed of GTOs is more convenient for calculating

complex many-center integrals, the STO-based basis sets are not widely used nowadays

in quantum-chemical calculations.

Figure B1: Comparison of the quality of the least-squares fit of a 1s Slater orbital
(ζ = 1.0) by means of a single (STO-1G), as well as a combination of two (STO-2G)
and three (STO-3G) Gaussian-type orbitals. The illustration is adapted from Ref. [218].

In spite of convenience in calculating many-center integrals, a single GTO or even

a combination of several GTOs cannot describe properly the electronic wave function

near the nucleus (see Figure B1). Thus, one has to utilize the so-called contracted

Gaussian-type orbitals (CGTOs), where each basis function χµ is a linear combination

of several primitive Gaussian functions:

χµ =
∑
p

dµp gp , (B4)
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and the contraction coefficients dµp are predefined for a given basis set. A primitive

Gaussian function gp ≡ g(α;x, y, z) centered on atom a is defined as follows:

g(α;x, y, z) = N xiyjzk e−αr2 , (B5)

where i, j and k are non-negative integers, α is a positive orbital exponent, (x, y, z)

are Cartesian coordinates with the origin at a, and N is the normalization factor. The

choice of the parameters i, j and k defines the type of primitive Gaussian functions,

namely, the sum of the powers, i+j+k, should be equal to the orbital quantum number

l of an atomic orbital. Hence, different combinations of i, j and k are used to denote

s, p, d, and f -orbitals (see Table 6.1).

Table 6.1: Presentation of different atomic orbitals via the corresponding Guassian
primitives.

i+ j + k g(α;x, y, z)

s-orbital 0 e−αr2

p-orbital 1 {x, y, z} e−αr2

d-orbital 2 {x2, y2, z2} e−αr2 ,

{xy, yz, xz} e−αr2

When describing chemical bonds in complex molecular systems, a standard basis

set, that is, a combination of primitive Gaussian orbitals, is usually augmented with

other functions. The most common addition to basis sets is the addition of polarization

functions. The radial part of such functions has one additional node, i.e. these functions

are one unit higher in angular momentum than what are present in the ground state of

the atom. For instance, the only basis function located on a hydrogen atom in a minimal

basis set is a function approximating the 1s atomic orbital. Including polarization

means that a p-function is also added to the basis set. This allows molecular orbitals

involving the hydrogen atoms to be more asymmetric with respect to the nucleus (see

Figure B2). Similarly, d-type functions can be added to a basis set with valence p

orbitals, f -functions to a basis set with d-type orbitals, etc.

In general, polarization functions significantly improve the description of molecular

geometries, i.e., they produce more accurate values of bond lengths and angles [219].

However, one should note that adding d-functions to, for instance, a carbon atom, does

not imply that d-orbitals become occupied or that d-orbitals provide a significant con-

tribution to the bonding of the carbon atom. In this case, the presence of the d-orbital

functions improves the description of the electron density around the carbon atom and

its bonding characteristics. Indeed, adding polarization functions allows one to achieve

a more accurate representation of bonding between atoms, because the presence of the

bonded atom makes the energetic environment of the electrons spherically asymmetric.
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Figure B2: Distortion of an s-orbital due to the inclusion of a p-type polarization
function (a) and of a p-orbital due to the inclusion of d-orbitals (b). The figure is
adapted from Ref. [219].

Sometimes the standard basis sets are also augmented by so-called diffuse functions

which are characterized by a very small value of the orbital exponent α and are used to

better describe the long-range ”tail” of the atomic orbitals. These functions represent

Gaussian primitives which decay slowly with increasing the distance from the nucleus.

They do not influence significantly geometries of covalently bonded species but improve

the description of energetics associated with weak interactions (e.g., van der Waals

interactions, H-bonding, or electron affinities).

A number of quantum chemistry computer packages, e.g., QuantumEspresso [171],

rely on another representation of molecular orbitals ϕi. Contrary to the above-described

localized basis sets, in this approach single-electron wave functions are represented by

a linear combination of plane waves,

ϕi(r) =
1√
Ω

∑
G

ψ̃i(G) eiG·r , (B6)

where Ω is the volume of a unit cell, defined by the unit vectors {a1, a2, a3} as Ω =

a1 ·(a2 × a3), G is the reciprocal lattice vector, and the wave planes eiG·r are determined

from the periodicity constraint:

eiG·(r+R) = eiG·r . (B7)

with R = n1a1 + n2a2 + n3a3 being the translation vector. Expansion into plane waves

allows one to calculate accurately electronic structure of periodic crystals. However,

such an expansion can also be utilized successfully for the calculation of amorphous

structures and finite systems, such as atomic clusters and nanoparticles. From a math-
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ematical viewpoint, plane waves form a complete basis set, i.e. the accuracy of the

calculation increases with increasing the number of basis functions. Thus, the con-

vergence of a numerical solution and the accuracy of calculations are governed by a

kinetic energy cutoff value for plane waves used in the expansion. Only the reciprocal

lattice vectors whose kinetic energy lower than a predefined maximum cutoff energy,
1
2
|G|2 < Ecut, are kept in the expansion, while the rest of the coefficients are set to

zero. One should note that plane waves are not centered on the atomic nuclei, and the

accuracy of the wave function description within the plane-wave approach will be the

same at every point of the system.

Plane-wave basis sets are often used in combination with an ”effective core potential”

or pseudopotential, so that the plane waves are only used to describe the valence charge

density. This is because core electrons are localized very close to the atomic nuclei,

resulting in large wave function and density gradients near the nuclei which are not

easily described by a plane-wave basis set. For an accurate description of atomic core

electrons, one has to consider a significant number of plane waves in the expansion,

that means, to use a very high energy cutoff. Hence, pseudopotentials are commonly

used to describe core electrons. Such pseudopotentials are usually constructed based on

the solution of the Schrödinger equation or the relativistic Dirac equation for isolated

atoms.
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Appendix C: Electron production

from individual atomic excitations

This Appendix presents the derivation of Eq. (4.33) that is utilized to evaluate the con-

tribution of individual atomic excitations in electron production from metal nanoparti-

cles under ion impact. This analytical expression relates the cross section of photoion-

ization, σγ, with that of inelastic scattering in the dipole approximation, dσ/d∆ε.

Photoionization

The operator describing the interaction of a photon with an electron can be written in

the following form (the atomic system of units, me = |e| = ~ = 1, is utilized):

Vγ =
N∑
i=1

eik·r (e · ∇i) , (C1)

where e is the polarization vector of the photon, ri is the position vector of the elec-

tron, ∇i ≡ −i ∂/∂ri, and N is the number of electrons in the system. In the dipole

approximation, the photon momentum k can be neglected, so that eik·r ≈ 1 and the

interaction of a many-electron system with a photon reduces to:

Vγ ≡ dVγ = (e · ∇i) . (C2)

In this representation, the interaction operator is written in the so-called velocity form

because −i ∂/∂ri corresponds to the velocity of the electron in the target. Along with

this form, the dipole operator can also be written in the so-called length form:

dLγ = ω (e · ri) . (C3)

The matrix element ML,V
n0 , which is determined by the following integral, describes

the interaction of a many-electron system with a photon:

ML,V
n0 (ω) =

∫
Ψ∗

0(r1, . . . , rN) d
L,V (ω)Ψn(r1, . . . , rN) dr1 . . . drN , (C4)
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where Ψ0(r1, . . . , rN) and Ψn(r1, . . . , rN) are the wave functions of the initial and the

final states, respectively.

The total photoionization cross section σL,V
γ (ω) is given by

σL,V
γ (ω) =

4π2

ωc

∫
|ML,V

n0 (ω)|2 δ(ε0 + ω − εn) dρ(εn) , (C5)

and in the length form, it is expressed as (the superscript ”L” is omitted for brevity)

σγ(ω) =
4π2ω

c

∫
|(e · r)n0|2 δ(ε0 + ω − εn) dρ(εn) . (C6)

The differential cross section with respect to the emission angle is derived as follows

(linear polarization is assumed):

dσγ(ω) =
4π2ω

c
|(e · r)n0|2 δ(ε0 + ω − εn)

dpn

(2π)3

=
4π2ω

c
|(e · r)n0|2 δ(ε0 + ω − εn)

p2n dpn dΩpn

(2π)3

=
ωpn
2πc

|(e · r)n0|2 δ(ε0 + ω − εn) dεn dΩpn

=
ωpn
2πc

∣∣∣
pn=

√
2(ε0+ω)

|(e · r)n0|2 dΩpn . (C7)

Directing the z-axis along e , one can write:

dσγ(ω)

dΩpn

=
ωpn
2πc

|zn0|2 (C8)

with pn =
√

2(ε0 + ω).

Inelastic scattering

The atomic transition 0 → n is due to the operator

V =
1

|r− ra|
=

∫
4π

Q2
ei(r−ra)·Q dQ

(2π)3
. (C9)

Hence, the transition matrix element, calculated with the plane-wave Born approxima-

tion, reads:
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Mn0 = ⟨p2, n |V | 0,p1⟩ =
∫

4π

Q2

dQ

(2π)3
⟨p2

∣∣eiQ·r∣∣p1⟩ ⟨n
∣∣e−i ra·Q

∣∣ 0⟩
=

4π

Q2

dQ

(2π)3

∫
dr ei(p1−p2+Q)·r (e−i ra·Q

)
n0

=
4π

Q2

dQ

(2π)3
(2π)3δ(q+Q)

(
e−i ra·Q

)
n0

=
4π

q2
(
e−i ra·q

)
n0

, (C10)

where q = p1 − p2.

The differential cross section reads:

dσ =
2π

v1
δ(ε0+ε1−εn−ε2) |Mn0|2

dpn

(2π)3
dp2

(2π)3
→ 2π

v1
|Mn0|2

dΩpnpn
(2π)3

dΩp2v2dε2
(2π)3

. (C11)

Recalling that dΩp2 = q dq dϕ2/v1v2 and assuming the validity of the dipole approx-

imation for the Coulomb interaction, i.e., e−iq·ra ≈ 1 − iq · ra (this also leads to a

substitution qmax → R−1), one proceeds

d2σ

dε2dΩpn

=
pn

v21(2π)
5

qmax∫
qmin

q dq

2π∫
0

dϕ2 |Mn0|2

≈ pn
v21(2π)

5

R−1∫
qmin

q dq
(4π)2

q4

∫ 2π

0

dϕ2

∣∣∣∣∣∣(q · r︸︷︷︸
=qz

)n0

∣∣∣∣∣∣
2

=
4pn

v21(2π)
2
|zn0|2

R−1∫
qmin

dq

q
=

4pn
v21(2π)

2
|zn0|2 ln

(
1

qminR

)
. (C12)

Introducing ω ≡ ε1 − ε2 and approximating

d2σ

dε2dΩpn

=
4pn

v21(2π)
2
|zn0|2 ln

( v1
ωR

)
=

2c

πωv21

dσγ
dΩpn

ln
( v1
ωR

)
. (C13)

This equation establishes the relation with the photoionization cross section. Integra-

tion over the emission angles produces:

dσ

dε2
=

2c

πωv21
σγ ln

( v1
ωR

)
. (C14)
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