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Zusammenfassung

Raumladungseffekte spielen in der Niederenergiestrahltransportsektion von Beschleu-
nigern für intensive Ionenstrahlen eine wichtige Rolle. Diese bedingen nicht nur den
Einsatz von Fokussierlinsen mit höherer Brechkraft, sondern können für nicht-homogene
Strahlverteilungen zu einem Anwachsen der Emittanz [7] führen. In magnetostatischen
Systemen stellt sich jedoch durch die Ansammlung von Elektronen, welche zum Beispiel
durch Restgasionisation bereitgestellt werden, im Strahlpotential eine Kompensation, also
eine Reduktion der Raumladungskräfte ein. Ist die Verteilung der Elektronen nicht gleich
jener der Strahlteilchen, der Strahl also lokal unterschiedlich kompensiert, so kann auch
hierdurch eine Erhöhung der Emittanz entstehen [46].
Eine Messung der Verteilung der Kompensationselektronen sowie deren Geschwindig-

keiten wie beispielsweise in [45] stellte sich in der Vergangenheit als schwierig heraus.
In theoretischen Ansätzen, wie zum Beispiel in [8] müssen weitreichende vereinfachende
Annahmen über die Geometrie der Transportlinie und die involvierten Prozesse vorgenom-
men werden, um ein lösbares System zu erhalten. Als alternativer Ansatz wurde in dieser
Arbeit eine Untersuchung der Raumladungskompensation über eine Berücksichtigung der
Sekundärpartikel in Particle-in-Cell-Simulationen (PIC) verfolgt. Wie im dritten Kapitel
dieser Arbeit vorgestellt, stellt das elektrostatische PIC-Verfahren eine Lösungsmethode
des Systems aus Vlasov- und Poisson-Gleichung durch die Einführung von Makroteilchen,
Teilchen endlicher Ausdehnung, dar.

Für die Untersuchungen wurde ein neuer PIC-Code bender entwickelt. Die verwendeten
Algorithmen sowie deren Implementierung wurden im dritten Kapitel vorgestellt. Für
die Integration der Bewegung der Makroteilchen wird der Velocity-Verlet-Algorithmus
verwendet. Im Vergleich zu Standardintegrationsverfahren für Differentialgleichungen wie
dem Runge-Kutta-Verfahren, hat dieser den Vorteil, dass er Energie und Drehimpuls über
lange Simulationszeiten innerhalb gewisser Grenzen erhält. Dies wurde anhand einiger
Beispielsysteme demonstriert.
Zur Berechnung des elektrischen Eigenfeldes der Teilchenensembles kann die Poisson-

Gleichung numerisch gelöst werden. Für eine Lösung in drei Dimensionen wurden zwei
unterschiedliche Verfahren implementiert. Die Berechnung der Potentiale mittels schneller
Fouriertransformationen (FFT) profitiert von der Verfügbarkeit schneller Implementierun-
gen der FFT, wie der verwendeten FFTW-Bibliothek [32], ist aber auf äquidistante Gitter
und boxförmige Randbedingungen begrenzt. Im zweiten Solver, werden Methoden für
dünnbesetzte Matrizen – hierfür kommt die Bibliothek PetSc [29] zum Einsatz – verwen-
det, um das Gleichungssystem resultierend aus einer Finite-Differenzen-Diskretisierung
der Poissongleichung zu lösen. Der Code erlaubt hierbei das Setzen der Potentiale auf
Objekten beliebiger Geometrie. Mittels der selben Technik wurde auch ein Solver für die
Poissongleichung in zylindrischer Geometrie umgesetzt. Alle drei Poissonsolver erlauben
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Zusammenfassung

eine Aufteilung des Gitters auf mehrere Prozesse, entweder durch longitudinales Zerlegen
des Gitters oder durch eine Aufteilung auf beliebig dimensionierte und frei angeordnete
Gitterboxen. Die drei Solver wurden durch den Vergleich des berechneten elektrischen
Feldes einer radial-gaussverteilten Ladungswolke mit der analytischen Lösung getestet.
Nach dem Test der Einzelkomponenten des Codes, wurden zwei bekannte selbstkonsi-

stente Lösungen der Vlasov-Gleichung beschrieben und deren Vorhersagen mit Simulati-
onsergebnissen verglichen. Als Vergleichssystem für Strahltransportrechnungen kam ein
angepasster KV-Strahl in einem periodischen Quadrupolkanal mit einem Phasenvorschub
von 15° (Nullstromphasenvorschub 60°) zum Einsatz. Es konnte gezeigt werden, dass die
bender -Ergebnisse für den Phasenvorschub mit höherer Teilchenanzahl und Gitterauflösung
gegen den theoretischen Wert konvergieren. Mit der höchsten mit vertretbarem Aufwand
rechenbaren Auflösung ergab sich ein nur noch geringer Unterschied im Phasenvorschub
von 0,06°.

Als zweiter Test kam eine der Boltzmann-Statistik folgende Elektronenwolke in einem
externen Potential zum Einsatz. Zu diesem Zwecke wurde ein Algorithmus zur Lösung
der Poisson-Boltzmann-Gleichung

∇2ϕc(r) = −ρc

ε0
exp

(
−q (ϕc(r) + ϕext(r))

kbT

)
(1)

entwickelt. Hierfür wird die Gleichung durch Skalierung der Koordinaten mit der Debye-
Länge und des Potentials durch die Temperatur normiert und Gleichung (1) mit einer
Abhängigkeit von einem neuen Parameter versehen. Die resultierende Differentialgleichung
lässt sich mittels einer Kombination aus Crank-Nicholson- und Euler-Verfahren lösen. Für
eine gaussförmige externe Ladungsverteilung wurde die Elektronendichte berechnet und
eine daraus generierte Verteilung in bender geladen. Für hohe Teilchenanzahlen bleibt
diese über lange Simulationszeiträume stabil. Es wurde jedoch ein zeitlich konstanter
Anstieg der Gesamtenergie des Systems beobachtet. Dieser konnte als der bereits bekannte
Effekt der stochastischen Heizung in PIC-Simulationen [21, p. 316] identifiziert werden.

Neben bender wurde ein zweiter, einfacherer Code tralitrala entwickelt. Dieser erlaubt
unter dem Einsatz von Strahltransportmatrizen und auf die Feldgeometrie spezialisierten
Integrationsalgorithmen – implementiert sind Solenoide sowie externe Potentialverteilun-
gen – eine schnelle Simulation von Niederenergiestrahlführungslinien unter Berücksichti-
gung der Raumladung in einer (radial) oder zwei (kartesisch, transversal) Dimensionen.
Dieser ist sowohl auf gewöhnlichen CPUs als auch auf Graphikkarten des Herstellers
NVidia lauffähig, wobei die Graphikkartenversion für hohe Teilchenanzahlen bis zu einem
Faktor von 100 schneller als die CPU-Variante ist.
Zur Simulation des Kompensationsprozesses wird die Ionisation des Restgases sowohl

durch Protonen als auch durch Elektronen berücksichtigt. Ionisierende Teilchenstöße
wurden mittels der Nullkollisionsmethode in bender implementiert. Die benötigten Wir-
kungsquerschnitte werden über zwei atomphysikalische Modelle berechnet: dem semiem-
pirischen Model von Rudd et al. [48] für Protonenstoßionisation und dem Model von Kim
et al. für Elektronenstoßionisation [52]. Beide Modelle liefern einfach-differentielle Wir-
kungsquerschnitte. Die Simulation reproduziert also auch die Sekundärelektronenenergie.
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Die verbleibenden, unbestimmten Komponenten wie beispielsweise der Ejektionswinkel
und die Energie des verbleibenden Restgasions werden mittels Energie- und Impulser-
haltung unter vereinfachenden Annahmen berechnet. Der Einfluss der Produktion von
Sekundärelektronen bei Teilchenverlusten an außerhalb des Strahles befindlichen Metallo-
berflächen, wie dem Strahlrohr, auf den Kompensationsgrad wurde abgeschätzt. Dieser
ist vernachlässigbar, sofern nicht bereits eine Kompensation aus anderen Quellen besteht.
Der Einfluss der Kompensation auf die Drift eines 120 keV, 100 mA-Strahls wurde

mittels bender untersucht. Das simulierte System besitzt eine Länge von 0,5 m und wurde
um den longitudinalen Einschluss der Elektronen zu gewährleisten mit zwei Repellerelek-
troden auf einem Potential von −1,5 keV abgeschlossen. Als Restgas wurde ein homogener
Argon-Hintergrund bei 1× 10−5 mbar angenommen. Der Aufbau der Kompensation zeigt
das erwartete Verhalten: ein linearer Anstieg der Elektronenanzahl mit der theoretischen
Produktionsrate, gefolgt von ansteigenden Elektronenverlusten bis sich ein Gleichgewicht
einstellt, in dem diese der Produktionsrate entsprechen.
Bei den gewählten Parametern wird, außerhalb des Einflusses der Repellerelektroden,

ein Kompensationsgrad ηpart von durchschnittlich 80 % erreicht. In den berechneten
Ladungsdichteverteilungen wurden einige Merkmale identifiziert, die sich nicht durch eine
gleichmäßige Reduktion des elektrischen Feldes erklären lassen. Diese sind die Formierung
eines Hohlstrahles im Strahlfokus, die Bildung eines Bereiches negativer Ladungsdichte
jenseits des Strahlrandes, sowie die Akkumulation von Restgasionen im Bereich des Fokus.
Die ersten beiden Effekte lassen sich in der Nettoladungsdichte, dargestellt in Abbildung 1a,
erkennen. Weiterhin entsprechen die Verteilungen der Geschwindigkeiten der Elektronen
an jeder Stelle in der Simulation einer Gaussverteilung. Die Breite (“Temperatur”) dieser
Verteilungen unterscheidet sich jedoch zwischen den transversalen und der longitudinalen
Ebene. Beide ändern ihren Wert longitudinal.
Setzt man die Präsenz jener Gaussverteilungen voraus, so erlaubt Gleichung (1) ei-

ne Bestimmung des Potentials des kompensierten Strahles. Dies wurde beispielhaft für
die Drift eines 2 cm breiten Parallelstrahles mit 120 keV und 50 mA Strom über 50 cm
untersucht. Für niedrige Elektronentemperaturen kompensieren diese den Strahl voll-
ständig, für Kompensationsgrade unter 100 % aber nur bis zu einem gewissen Radius.
Die Nettoladungsdichte entspricht der eines Hohlstrahles, bei dem das elektrische Feld
am Rand quadratisch ansteigt. Bei größeren Temperaturen fällt die Elektronendichte
radial früher ab und reicht zunehmend über den Strahlrand hinaus, was das Verhalten
der PIC-Simulation reproduziert. Bei hohen Elektronentemperaturen wird deren Dichte
zunehmend homogen, erreicht also auch auf der Strahlachse nicht mehr die Dichte des
Strahles.

Um die Evolution der Verteilung unter dem Einfluss der Elektronen zu untersuchen, wur-
de der Raumladungssolver in tralitrala durch den Poisson-Boltzmann-Solver ersetzt. Für
eine homogene Strahlverteilung ergab sich das größte Emittanzwachstum für T → 0 bei
Kompensationsgraden um 35 % aufgrund des Einflusses des radial quadratisch ansteigen-
den elektrischen Feldes am Strahlrand. Bei höheren Temperaturen oder unterschiedlichen
Kompensationsgraden ergab sich ein Emittanzwachstum unter 5 %. Dieses verschwindet
jedoch nur für T = 0, ηpart = 100 % und ηpart = 0 % (keine Kompensation). Für einen rms-
äquivalenten, im Phasenraum Gauss’sch verteilten Strahl ergab sich das größte Wachstum
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(a) PIC-Simulation mit bender .
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(b) Berechnung aus der Poisson-Boltzmann-
Gleichung.

Abbildung 1.: Netto-Ladungsdichte in einer Strahldrift berechnet mittels PIC-Simulation
unter Einbeziehung der Sekundärelektronen und -ionen in (a) und über eine
Lösung der Poisson-Boltzmann-Gleichung in (b). Zu erkennen ist die Prä-
senz einer negativen Ladungsträgerdichte jenseits des Strahlrandes, sowie
die Formierung eines Hohlstrahles, der lokal nicht vollständig kompensiert
ist. Dies sind beides Effekte, die bei einer Berechnung der Kompensation
durch Skalierung der Felder nicht auftreten.

(25 %) in vollständiger Abwesenheit kompensierender Elektronen aufgrund des nicht-
linearen Eigenfeldes des Strahles. Hier genügt bereits ein geringer Kompensationsgrad
um das Wachstum auf unter 10 % zu senken.
Übernimmt man die transversale Temperaturverteilung T (z) und die Kompensati-

onsgradverteilung ηpart(z) und führt eine ähnliche Simulation unter Verwendung der
Poisson-Boltzmann-Gleichung für das mit bender simulierte System aus, so erhält man
vergleichbare Ergebnisse. Ein Vergleich ist in Abbildung 1 dargestellt. Der Hohlstrahl
entsteht aufgrund der Reduktion der Teilchenwinkel durch das am Strahlrand stark
ansteigende elektrische Feld. Durch das Hohlprofil des Strahles in der Gegend des Fo-
kus übersteigt die Elektronendichte an der Achse die Protonendichte. Dies führt in der
bender -Simulation zum beobachteten Einschluss der Restgasionen.

Die Elektronen verhalten sich somit wie ein im Strahlpotential eingeschlossenes Nicht-
Neutrales Plasma. Dadurch wird es wichtig, den Ursprung der gefundenen Geschwindig-
keitsverteilung zu verstehen. Es wurde festgestellt, dass die Temperaturen, sowie auch
der in der Simulation erreichte Kompensationsgrad, empfindlich von der Anzahl der Ma-
kroteilchen abhängt. Je geringer die Masse und Ladung pro Makroteilchen, desto geringer
die sich ergebenden Temperaturen und desto höher der Grad der Kompensation. Es kann
davon ausgegangen werden, dass Letzteres ein Effekt der geringeren Temperaturen ist,
da der gleiche Zusammenhang auch bei der Variation des Restgasdruckes, und somit der
Elektronenproduktionsrate, gefunden wurde.

Ein möglicher Erklärungsansatz für das Enstehen der Abhängigkeit zwischen der Tem-
peratur und dem numerischen Teilchen-pro-Makroteilchen-Verhältnis könnte das zuvor in
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den Code-Tests gefundene stochastische Heizen sein. Es wurde die Hypothese geformt,
dass die zugeführte Energie über erhöhte Teilchenverluste vom System ausgeglichen wird.
Dies wurde mittels einiger numerischer Experiment untersucht. Wird zum Beispiel das
elektrische Feld des Strahles zeitlich konstant gehalten und somit eine der Quellen für
Fluktuationen ausgeschaltet, sinkt die Temperatur auf weniger als die Hälfte. Bevor
physikalisch vorhandene Heizprozesse, wie beispielsweise Coulomb-Kollisionen der Strahl-
teilchen mit dem Kompensationsplasma, in die Simulation übernommen werden können,
muss sichergestellt sein, dass diese nicht durch numerische Heizeffekte überdeckt werden.
Dies könnte geschehen, in dem die Prozesse berücksichtigt werden und die erhaltenen
Unterschiede verglichen werden oder in dem der Ursprung des stochastischen Heizens
genauer untersucht wird. Da die Ergebnisse für die Heizraten im abgeschlossenen Test-
system nicht ohne weiteres auf das kompensierte System mit Strahl übertragen werden
können, ist hier keine abschließende Antwort möglich.

Die präsentierten Simulationen stellen einen Startpunkt für die Untersuchung weiterer
geladener Vielteilchensysteme dar. Das in der Simulation erreichte Gleichgewicht ist von
den vorhandenen Teilchenproduktions- und Verlustmechanismen geprägt, wobei letztere
stark durch Heiz- sowie potentiell vorhandene Kühlungsprozesse beeinflusst werden. Von
ähnlichen Vorgängen dominiert sind Gabor-Linsen [13], in denen eine Elektronenwolke
in einer Falle aus magnetischen und elektrischen Feldern gehalten wird und welche
für die Fokussierung von Ionenstrahlen zum Einsatz kommen können. Um in Zukunft
bessere Vorhersagen über das sich einstellende Gleichgewicht in solchen Systemen machen
zu können, ist es wichtig, die beteiligten Prozesse sowohl experimentell als auch in
Simulationen genauer zu studieren und deren Zusammenspiel zu verstehen.
Neben grundsätzlichen Untersuchungen können Particle-in-Cell-Simulationen ebenso

einen Beitrag zur Auslegung von Beschleunigerkomponenten liefern. In Kapitel 5 werden
zwei solche Anwendungen von bender beschrieben.

In [11] wurde der Code verwendet, um die Strahlpulsformierung innerhalb eines neuar-
tigen E× B-Choppersystems zu untersuchen, welches im Rahmen des FRANZ-Projektes
zum ersten Mal zum Einsatz kommen wird. Hierfür wurde in [81] mittels tralitrala und an-
deren Programmen der Strahltransport der Niederenergiesektion ausgiebig untersucht und
eine optimale Solenoideinstellungen ermittelt. Eine diesen Einstellungen entsprechende
Strahlverteilung wurde in bender geladen und unter den zeitabhängigen elektrischen und
statischen magnetischen Feldern transportiert. Damit konnte in [11] gezeigt werden, dass
das System selbst unter der Wirkung der vollen Raumladungskräfte den Anforderungen
an die Pulslänge und an die Strahlqualität entspricht.

Für eine Elektronenlinse für den Integrable Optics Test Accelerator (IOTA) im Rahmen
des Fermilab Accelerator Science and Technology-Projektes (FAST) am Fermi National
Accelerator Laboratory wurden ebenfalls Simulationen angefertigt. Als erster Schritt
wurde hierfür eine Magnetfeld- und Spulenkonfiguration entworfen, die in der Lage ist,
einen 5 keV-Elektronenstrahl von der Kathode auf die Achse des IOTA-Ringes zu führen.
Durch Imperfektionen in der Feldgeometrie entstehende Aberrationen wurden untersucht
und charakterisiert. Der Einfluss der Krümmungsdrift auf die Teilchenbewegung wurde
untersucht und die Simulationsergebnisse mit semianalytischen Abschätzungen verglichen.
Die Grenzen des Strahltransportes in longitudinalen magnetischen Führungsfeldern
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Zusammenfassung

wurden analysiert. Das stärkste identifizierte Limit entsteht als Resultat des durch die
Kompression vorhandenen longitudinalen elektrischen Eigenfeldes des Strahles, welches
diesen abbremst oder gar reflektiert. Hierfür konnte unter Annahme eines stabilen Profils
eine Formel für die Stromgrenze

I < 4πε0

√
2e

m
U3/2

(
g1 −

√
3g2

2 − g2
1/3

4g2
1 − 9g2

2

)

gefunden und mit bender -Simulationen verifiziert werden. Außer der Strahlenergie hat
auch die Strahlverteilung sowie die Strahlrohrgeometrie, enthalten in den Faktoren g1

und g2 am Start und Ende des Systems, einen starken Einfluss.
Die Teilchenbewegung unter der eigenen Raumladung ist gegeben durch eine langsa-

me Drehung um die Strahlachse überlagert von schnellen radialen Oszillationen. Für
homogen verteilte Strahlen verblieb das Profil in zwei-dimensionalen Simulationen unter
dieser Bewegung stabil. In Strahlen, die einer McMillan-Verteilung folgen, welche für
die Experimente an IOTA von Interesse ist, wurde jedoch das Enstehen von Ringen
erhöhter Dichte bereits nach weniger als 1 m Transport beobachtet. Diese zeigen sich auch
in Simulation der vollständigen IOTA-Elektronenlinse in der Form von Spiralen in der
finalen Strahlverteilung. Da die Stabilität des Profils und insbesondere der Kicks auf den
zirkulierenden Strahl von großer Bedeutung für die Anwendung der Linse ist, werden hier
weitere Untersuchungen benötigt.
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1. Introduction

With the advent of modern computers in the 60s of the last century, it became possible
to investigate the dynamics of systems of many charged particles—such as plasmas and
beams—by means of computer experiments. For this purpose, a model including the
fundamental interactions required for the system of interest is built and then advanced in
time. This makes it possible to investigate strongly non-linear and complex phenomena
not treatable by theory. Compared to performing measurements on the system itself,
computer experiments are usually much easier to set up in a controlled way and allow
extracting as much information as required without disturbing the system.
For plasma simulation, these models started as the integration of the motion of one-

dimensional charge sheets moving under the influence of the others, for example in
[1]. A few years later, the first particle-in-cell models were introduced [2], which use a
grid to calculate the electric fields. In the following decades, the method was applied
to problems in two and later three dimensions, some including electrodynamic effects,
realistic boundaries and collisions among the particles themselves or with neutral gases.

Particle-in-cell models are used extensively for the study of hadron particle accelerators
to investigate the evolution of beams under the influence of the optics and their own
electric and, if non-negligible, magnetic field. The self-fields become increasingly important
when high beam intensities are involved. Since the rates of the reaction under investigation
with these machines are directly proportional to the number of particles, the requirements
on the beam current are continuously increasing. For example, this is the case for neutron
sources of various types such as ESS [3], SNS [4] or FRANZ [5] and for high-energy
colliders for elementary particle physics such as the LHC with its injectors [6]. Depending
on the application, the design objectives are usually a low increase in the beam quality
(emittance) as well as keeping particle losses along the accelerator low to avoid activation.

For this purpose, it is important to accurately model and to understand every part of
the accelerator. Since the beam’s electric field decreases with increasing energy, space
charge forces are critical in the low-energy beam transport (LEBT) section of such a
machine. They act as an additional continuous defocusing force on the beam, necessitating
stronger lenses with larger fields. Additionally, space charge forces drive non-homogeneous
beam distributions towards homogeneous ones. This reduces the energy contained within
the electric field, which is converted into an unwanted increase of the beam’s emittance [7].
The influence of space charge can be reduced when particles of opposite charge are

allowed to accumulate within the potential of the beam. This is usually the case when
no large external electric fields are present. The compensation particles are typically
formed by ionization of the residual gas background. Measurements indicate that a full
neutralization of the beam charge is not achieved in most cases. Furthermore, if the
distribution of the compensating particles differs from the distribution of the beam, some
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1. Introduction

electric force will remain and can lead to an increase of the emittance.
Linear models of the compensation only predict the effects resulting from a reduction in

space charge force but do not contain any effects from the secondary particle distribution(s).
The degree of compensation is a free parameter that has to be chosen from experience. An
improved model thus needs to treat both the beam and the additionally involved particle
species self-consistently, as their distribution is interdependent. New ions and electrons
are continuously formed within the system. In steady-state, there will be no net flow of
charge but possibly a flow of energy, which in some way has to be provided by the beam.
Various technical factors such as non-dc beams, fluctuating beam currents, influence from
measurement devices and complicated field geometries make the description more difficult.
Analytic models like the model by Holmes [8] often need to make assumptions about

the given geometry such as assuming a fixed beam distribution and require various
approximations to be solvable.

In this work, an ab initio approach to modeling the compensation process by including
the relevant particle species and production processes into a newly developed particle-in-
cell code bender was chosen. Similar approaches were already taken in [9] or [10].

Along with some single-particle effects, Chapter 2 introduces the Vlasov equation as
the governing kinetic equation for particle beams as well as the KV envelope equations
which result in a self-consistent solution for homogeneous particle beams. Chapter 3
starts with a motivation of the particle-in-cell method as a solution to the Vlasov-Poisson
system of equations. Then, the algorithms used for bender are discussed along with tests
to verify their implementation. The chapter concludes with two tests of the full code
against known solutions.

Chapter 4 covers the studies on the space charge compensation of a low-energy
proton beam. The chapter starts with a short introduction on techniques used for the
measurement of compensation in ion beams as well as some general definitions. For the
simulations, a model for the ionization of the residual gas is required, which is presented
subsequently. Section 4.3 then presents the results for a simple model system, which is
compared to results from a theoretical model in Section 4.4.
While the presence of some level of compensation is assumed to be present in the

design of most low-energy beam transport sections, space charge compensation in circular
accelerators is a new topic. This is the subject of one of the experiments planned for the
Integrable Optics Test Accelerator at the Fermi National Accelerator Laboratory. For this
purpose, an electron beam guided using magnetic fields and overlapping the circulating
beam is considered [10]. While not covering the compensation, Section 5.1 presents the
design of the electron lens as well as studies on the beam dynamics of the electron beam
in such a device.

bender was used for the development of a novel chopper system for the FRANZ project
in [11]. Section 5.2 provides a short recapitulation on the performed simulations.
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2. Aspects of single and multi-particle
motion

2.1. Particle drifts

Particles in a homogeneous magnetic field B with a transverse velocity component v⊥
perform a rotation with the cyclotron frequency ωc and the gyroradius rg,

ωc =
|qB|
m

and rg = v⊥/ωc =

∣∣∣∣
mv⊥
qB

∣∣∣∣ .

When an additional electric field is present, the magnetic field is inhomogeneous or the
fields time-dependent, the motion deviates from the simple oscillation. However, if the
changes in the fields are small during the gyration and the changes in time occur much
slower than ω−1

c , the motion can be approximated by a drift of a guiding center around
which the oscillation occurs. In fields constant in time, [12, p. 139ff] derives an equation
of motion for the guiding center,

dr

dt
= v‖b + VE + V∇B + Vκ. (2.1)

b = B/ |B| is the (local) direction of the magnetic field and v⊥ and v‖ the particle velocity
perpendicular and parallel to that vector.
The various components in (2.1) are the different occurring drifts. These are:

• The E ×B drift VE = E⊥×B
B2 , which is a result of the different transverse velocities

during the cyclotron oscillation. Depending on the particle charge, the gyroradius is
larger towards higher or lower potential respectively and smaller on the opposite side.
During a cyclotron oscillation, particles end up with a displacement in direction
perpendicular to both E and B. The effect is not dependent on particle charge and
mass.

• The gradient B drift V∇B = q
|q|

v2⊥
2ωc

B×∇B
B2 is the result from a difference in gyroradii

across a field gradient.

• The curvature B drift Vκ = q
|q|

v2‖
ωc

Rc×B
R2

cB
occurs when the magnetic field lines are not

straight. The drift velocity is proportional to the inverse of the local radius of field
line curvature R−1 and B−1, i.e. the drift is smaller for larger field strengths and
larger curvature radii (less curved fields).
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2. Aspects of single and multi-particle motion

When the current density is negligible and the electric field is constant in time, the
curvature and the gradient B drift can be combined,

V∇B + Vκ =
q

|q|
1

ωc

(
v2
‖ +

1

2
v2
⊥

)
B×∇B
B2

.

2.2. Charged particle motion in a radial electric and
longitudinal magnetic field

A radial electric field crossed with a longitudinal magnetic field is a commonly occurring
field configuration in accelerator physics. One example are electron lenses (Section 5.1),
where a high current electron beam producing the electric field is confined by a longitudinal
magnetic field. A similar situation occurs in Gabor lenses [13], where the radial electric
field is produced by an electron cloud confined by a magnetic and an additional (mainly)
longitudinal electric field.
For a homogeneous beam with current I and radius Rb or a homogeneously charged

cylinder, the radial electric field is

Er(r) =
1

2πε0

|I|
v

q

|q|
r

R2
b

=
mω2

p

2q
r, (2.2)

where ω2
p = nq2/ (mε0) is the square of the plasma frequency, containing the density n of

the beam or electron column. In a longitudinal magnetic field B = Bez, the force balance
for a test particle rotating around the axis with an angular velocity ωrr is

Fcentrifugal = −mω2
r r =

1

2
mω2

pr + qωrBr = Felectric + Fmagnetic, (2.3)

with first and second term, the centrifugal and the electric force, always acting defocusing.
Introducing the cyclotron frequency ωc = |qB| /m,

1

2
ω2

p +
q

|q|
B

|B|ωcωr + ω2
r = 0. (2.4)

The two solutions to the force balance equation

ω±r = −1

2

q

|q|
B

|B|ωc


1±

√
1− 2

ω2
p

ω2
c


 (2.5)

are the two angular frequencies at which the particle’s orbit does not change and the motion
is a circle around the origin. When the magnetic field is aligned with the longitudinal
coordinate axis, B/ |B| = 1, a positively charged particle will rotate clockwise around the
axis and a negatively charged particle counterclockwise. In the following, the latter is
assumed to be the case.
ω±r are the two angular velocities at which a rigid rotation of a charged cylinder is
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Figure 2.1.: Solutions ω±r to the force balance equation and the corresponding motion
of a test particle. When the initial angular frequency of the test particle is
equal to ω±r (points 2, 5 and 6) the particle simply rotates around the origin.
These are points where rigid rotation of a homogeneous beam is possible.

possible. At different values, due to the radial expansion or contraction of the cylinder,
the electric field changes, leading to a more complicated type of motion.
Figure 2.1 shows the different kinds of motion for different values of ωr. At very low

density and thus vanishing electric field, the two solutions correspond to a cylinder of
fixed charges (no motion) and a cylinder rotating at the cyclotron frequency, at which the
radius of rotation becomes equal to the initial radial position of the particle. Increasing
the density, ω−r has to become larger for the magnetic force to be able to balance the
increase in electric field. The inverse is the case for the fast rotation frequency ω+

r . Its
value decreases along with the electric force.

At the high density limit, also called Brillouin Flow limit, where

2
ω2

p

ω2
c

= 1, (2.6)

the values of ω−r and ω+
r are equal and there is just one angular velocity at which rigid

rotation is possible. At even higher density, the magnetic field is not able to balance the
electric force any more and particles start escaping.
The motion of a particle in static crossed radial electric and longitudinal magnetic
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2. Aspects of single and multi-particle motion

fields are analytically solvable. The equations of motion are

d2

dt2

(
x(t)
y(t)

)
=

1

2
ω2

p

(
x(t)
y(t)

)
+ ωc

d

dt

(
−y(t)
x(t)

)
.

Transforming x(t) and y(t) to a frame rotating with some frequency ω, i.e.

(
x̃(t)
ỹ(t)

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)−1(
x(t)
y(t)

)
= R(ωt)−1

(
x(t)
y(t)

)
,

results in

d2

dt2

(
x̃(t)
ỹ(t)

)
=

(
1

2
ω2

p − ωωc + ω2

)(
x̃(t)
ỹ(t)

)
+ (ωc − 2ω)

d

dt

(
−ỹ(t)
x̃(t)

)
. (2.7)

If ω is chosen to be either ω+
r or ω−r , the first term on the right hand side of equation

(2.7) drops out and thus

d2

dt2

(
x̃(t)
ỹ(t)

)
= ±

(
ω+

r − ω−r
) d

dt

(
ỹ(t)
−x̃(t)

)
. (2.8)

The solution to this equation,
(
x̃(t)
ỹ(t)

)
=

(
x̃0

ỹ0

)
+R

(
∓
(
ω+

r − ω−r
)
t
)(α

β

)
,

describes a rotation with ω+
r − ω−r around a point, clockwise in a frame rotating with ω+

r

or counterclockwise in a frame with ω−r . The two vectors on the right hand side are given
by initial conditions. Transforming back to the laboratory frame,

(
x(t)
y(t)

)
= R

(
ω±r
)(x̃0

ỹ0

)
+R

(
ω∓r
)(α

β

)

the motion is given as the addition of two points rotating at ω+
r and ω−r respectively. For

a particle starting with some offset on the horizontal axis, x(t = 0) = x0 and y(t = 0) = 0,
and some initial angular velocity ωr (vy(t = 0) = ωrx0),

(
x(t)
y(t)

)
= x0

(
ω+

r − ω−r
)−1

(
(ωr − ω+

r ) cos(ω−r t) + (ω−r − ωr) cos(ω+
r t)

(ωr − ω+
r ) sin(ω−r t) + (ω−r − ωr) sin(ω+

r t)

)
. (2.9)

When ωr = ω±r , the component of the vector being rotated by the other frequency drops
out and equation (2.9) describes a circle.

From (2.9), it is simple to calculate the excursion of a particle starting at some radius
r0 with no velocity by calculating r(t)2 = x(t)2 + y(t)2 and finding the point where its
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2.3. Vlasov’s equation

derivative becomes zero a second time. The result is

rmax = r0

(
1− 2

ω2
p

ω2
c

)−1/2

≈
(

1 +
ω2

p

ω2
c

)
r0 =

(
1 +

nm

ε0B2

)
r0 =

(
1 +

m

eε0

I

vb

1

πR2
b

1

B2

)
r0,

where the approximation holds in the low-density limit.

2.3. Vlasov’s equation

One of the fundamental equations of classical statistical mechanics is the Liouville equation

df

dt
=
∂f

∂t
+

N∑

i=1

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
= 0. (2.10)

The density in phase-space f is a function of the canonical coordinates and momenta
of all degrees of freedom. For a system of N particles, f = f(q1, . . . ,qN ,p1, . . . ,pN ).
(2.10) states that the density in the 6N dimensional phase-space remains constant along
trajectories given from the solution of Hamilton’s equations. This is Liouville’s theorem,
which in accelerator physics is often used to argue that the beam’s phase space remains
constant in certain cases.

The Hamiltonian of a system of N charged particles of mass m and charge q, omitting
magnetic and external electric fields for shortness, is

H =

N∑

i=1





p2
i

2m
+ q

N∑

j=1
j<i

ϕi,j




, (2.11)

where ϕi,j = q (4πε0 |qi − qj |)−1. (2.10) can be rewritten as a hierarchy of equations for
a reduced probability function [14, p.44]. The functions fs are defined by integrating over
the phase-space coordinates Xi = (qi,pi) of (s+ 1) . . . N particles,

fs(X1, . . . , Xs) ∝
∫
f(X1, . . . , XN ) dXs+1 . . . dXN .

For these fs and the special choice of Hamiltonian (2.11) [14, p. 43],

∂fs
∂t

+
s∑

i=1

pi
m

∂fs
∂qi
− q

s∑

i=1

s∑

j=1
i 6=j

∂ϕi,j
∂qi

∂fs
∂pi

= q
s∑

i=1

∫
∂ϕi,s+1

∂qi

∂fs+1

∂pi
dXs+1. (2.12)

Therefore, the evolution of the s’th distribution function depends on the distribution
function of the next order. This hierarchy is called BBGKY hierarchy after the physicists
Bogoliubov, Born, Green, Kirkwood and Yvon involved in its derivation. Its solution is
identical to that of the full Liouville equation.
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2. Aspects of single and multi-particle motion

The fs can be written in terms of distribution function of lowest order f̂(X1) and
correlation functions of increasing order

f1(X1) = f̂(X1)

f2(X1, X2) = f̂(X1) f̂(X2) + P (X1, X2)

...

The lowest order of (2.12) is then

∂f̂

∂t
+

p1

m

∂f̂

∂q1
− q ∂f̂

∂p1

∫
∂ϕ1,2

∂q1
f̂(X2) dX2 = q

∫
∂ϕ1,2

∂q1

∂P (X1, X2)

∂p1
dX2.

The evolution of f̂ depends on the electric field

E(q1) = −
∫
∂ϕ1,2

∂q1
f̂(X2) dX2 =

q

4πε0

∫
f̂
(
q′,p

) q1 − q′

|q1 − q′|3
dq′dp

and the two-particle correlation function P (X1, X2). The evolution of P is then dependent
on the three-particle correlation function and so on. Up to this point, no simplification
was achieved, since f̂ depends on a long chain of unknown correlation functions.

However, if the chain of equations can be truncated at some point, the situation is
strongly simplified. For a plasma, the authors in [14, p. 46-48] argue why this should
be possible: due to Debye shielding—the statistical redistribution of particles to shield
any other charge—the r−1 dependence of the potential is modified to r−1 exp(−r/λd).
For this reason, the correlation functions should be increasingly small in the plasma
parameter Λ. Λ = (4/3)πnλ3

d is the number of particles per Debye sphere. According to
the argument, for large numbers, particle correlations become negligible. Then, at any
given time, the probability to find a particle in a segment of phase space is completely
independent on the location of the other particles.

The equation resulting from P (X1, X2) = 0 is called Vlasov equation or also collisionless
Boltzmann equation,

∂f̂

∂t
+

p1

m

∂f̂

∂q1
+ qE1

∂f̂

∂p1
= 0. (2.13)

Together with Poisson’s equation for the electric field ∇E = ε−1
0

∫
f̂dp, this results in

a closed system. (2.13) has a similar form to the Liouville equation, but only contains
the one-particle distribution function. f̂(q,p) dqdp can be interpreted as the number of
particles in an infinitesimal phase space volume. The Vlasov equation then dictates that
the density in six-dimensional phase space remains constant along the particle trajectories
and therefore, the phase space volume is conserved.
In a system described by the Vlasov equation, particles only interact via the mean

electric field and not as individual particles. One illustrative case, where this results in a
difference, is a close encounter between two particles in a quasineutral plasma. In this
case, the electric field is zero. Vlasov’s equation then predicts that particles move in
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2.4. Beam dynamics with space charge: KV envelope equation

straight lines. Physically however, when two particles pass by very close to each other,
there will be some scattering. Anything resulting from this kind of process is excluded
from (2.13).
The Vlasov equation is difficult to solve due to the problem of self-consistency: f̂

and the electric field are interdependent and can not be solved for alone. While general
solutions do not exist, solutions can be found numerically. The method chosen for the
work in this thesis will be presented in Section 3.1. In the following section, a common
example from accelerator physics where further simplifications are possible will be given.

2.4. Beam dynamics with space charge: KV envelope
equation

When the time in (2.13) is replaced by s = vbt as an independent variable and the
longitudinal coordinate neglected, it becomes

df

ds
=
∂f

∂s
+ x′

∂f

∂x
+

(
Ex

(Eρ)
− k2

x(s)x

)
∂f

∂x′
+ y′

∂f

∂y
+

(
Ey

(Eρ)
− k2

y(s) y

)
∂f

∂y′
= 0. (2.14)

x′ = vx/vb and y′ = vy/vb are transverse angles and (Eρ) = mv2
b/q the electric rigidity.

External forces, which were previously omitted, are included by the kx,y terms. To further
simplify the situation, moments of (2.14) can be taken. The n’th moment is defined as

xn =

∫
(x− x)n f

(
x, x′, y, y′

)
dxdx′dydy′ with x =

∫
xf
(
x, x′, y, y′

)
dxdx′dydy′.

The evolution of these moments can be found from their s derivatives. If x = 0, x′ = 0
initially and Ex = 0, the first moments x and x′ will remain zero. For the second moments
in x,

dx2

ds
= 2xx′,

dxx′

ds
= x′2+(Eρ)−1 xEx−k2

xx
2 and

dx′2

ds
= 2 (Eρ)−1 x′Ex−2k2

xxx
′. (2.15)

The root-mean-squared (rms) size of the beam is given by x̃ =
√
x2. Its second

derivative in s is

d2x̃

ds2
= (Eρ)−1 xEx

x̃
− k2

xx̃+
εx(s)2

x̃3
=

1

2

K

x̃+ ỹ
− k2

xx̃+
εrms,x(s)2

x̃3
. (2.16)

This equation was first derived by Sacherer in [15] who also found that xEx ∝ x̃/ (x̃+ ỹ)
for beams with elliptical symmetry (used in the second step). Therefore, in general, the
rms emittance

εrms,x =

√
x2x′2 − xx′2 (2.17)

is the only quantity in (2.16) dependent on s. Its value is often used as a measure of the
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2. Aspects of single and multi-particle motion

beam quality [16, p. 58]. The generalized perveance

K =
1

2πε0

1

(Eρ)

I

vb
=

q

2πε0

I

mv3
b

(2.18)

quantifies the strength of the space charge forces.
In a special case, the rms emittance remains constant. This can be seen from

dε2rms,x

ds
= x2x′Ex − xx′xEx, (2.19)

which can be calculated from the second moments in (2.15). Beyond the trivial case
Ex = 0, if Ex ∝ x, the rms emittance also remains preserved. This is the case for a
homogeneous distribution of particles in real space. Then, (2.16) only contains known
functions. In [17, p.77] it is shown that a homogeneous distribution minimizes the electric
field energy and will remain homogeneous.
For a homogeneous beam, the envelopes are X(s) = 2x̃(s) and Y (s) = 2ỹ(s). The

effective emittance is εx = 4εrms,x. By inserting into (2.16),

d2X(s)

ds2
+ k2

x(s)X(s)− 2K

X(s) + Y (s)
− ε2x

X(s)3 = 0

d2Y (s)

ds2
+ k2

y(s)Y (s)− 2K

X(s) + Y (s)
−

ε2y

Y (s)3 = 0, (2.20)

which are the Kapchinsky-Vladimirsky (KV) envelope equations. The KV distribution,
which corresponds to a distribution function

f
(
x, x′, y, y′

)
∝ δ
(

1− (x/X)2 −
(
x′/X ′

)2 − (y/Y )2 −
(
y′/Y ′

)2)
,

is self-consistent under linear focusing, when the paraxial approximation (vx,y � vb) holds
and longitudinal electric fields are small.

2.4.1. Periodic transport channel

An often used model system in accelerator physics are periodic transport channels.
For example, these can be constructed by an alternating combination of focusing and
defocusing quadrupole magnets. With an appropriate choice of beam parameters, the
beam envelopes X(s) and Y (s) and their derivatives have the same periodicity as the cell
length S. When this is the case, the beam is said to be matched.

Mathematically, the condition that the beam ellipse is mapped to itself by a transport
matrix M can be written as

M

(
βe −αe
−αe γe

)
MT =

(
βe −αe
−αe γe

)
.

αe, βe and γe are the ellipse parameters. If this condition holds, M can be shown to have
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2.4. Beam dynamics with space charge: KV envelope equation

the following parameterization [17, p.107ff],

M =

(
cosσ + αe sinσ βe sinσ
−γe sinσ cosσ − αe sinσ

)
.

Between cells, particles move on their eigenellipses. The phase advance σ is proportional
to the phase-space area covered in each cell. In beam dynamics for rings, the tune
Q = 2π/σ, which is the number of cells required for the particles to perform one turn
around the eigenellipse, is also often used.
For σ > 180°, with or without space charge, the beam is focused so strongly, that it

enters the following cell with a larger diameter. In that case, no periodic solutions exist.
If the electric field of the beam becomes non-negligible, the phase advance is reduced
from its zero-current value σ0. With space charge, only phase advances σ0 < 90° are
unconditionally stable [17]. When σ0 > 90°, σ also has to be larger than 90° [17].
To find the ellipse parameters for which the beam is matched, an algorithm given in

[17, p. 60ff] can be used. There, a unitless mismatch factor is defined as

F = (α(S)− α(0))2 − (β(S)− β(0)) (γ(S)− γ(0))

=
1

ε2
(
X(S)X ′(0)−X(0)X ′(S)

)2
+
X(S)2

X(0)2 +
X(0)2

X(S)2 − 2. (2.21)

If the state of the system is defined as Pi(s) = (X(s) , X ′(s) , Y (s) , Y ′(s)), the following
iteration minimizes (2.21),

Pi+1(0) =
1

2
(Pi(0) + Pi(S)) ,

where Pi(S) is calculated using numerical integration of the envelope equations. Faster
algorithms for beam matching exist. For the purposes in this thesis however (Section 3.4.2),
the algorithm was found to work satisfactorily.

2.4.2. Calculation of phase advance from a simulated map

Following an idea by J. Struckmeier [18], given a mapping of particle locations and angles
between two positions, a matrix can be found, that reproduces the given transformation
as well as possible. From this matrix, an approximate value of the phase advance σ can
be determined. This algorithm is utilized in Section 3.4.2 to obtain an estimate for σ.
One way to obtain a fit is to minimize the sum of the squared differences between the
transformed initial (index i) and the final particle (index f) states.

Minimize ∀p: ~Sp =

(
m11 m12

m21 m22

)(
ri
p

r′ip

)
−
(
rf
p

r′fp

)

S =
1

N

N∑

p=1

[
γ2
(
m11r

i
p +m12r

′i
p − rf

p

)2
+ γ′2

(
m21r

i
p +m22r

′i
p − r′fp

)2
]
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2. Aspects of single and multi-particle motion

γ and γ′ normalize the residual to a unit-less value.
Minimizing the residual, dS/dmij = 0, leads to two independent linear system of

equations for m1j and m2j .

(
0
0

)
=

1

2

(
dS

dm11

dS
dm12

)
= γ2Q

(
m11

m12

)
− γ2

N

N∑

p=1

(
ri
pr

f
p

r′ipr
f
p

)

(
0
0

)
=

1

2

(
dS

dm21

dS
dm22

)
= γ′2Q

(
m21

m22

)
− γ′2

N

N∑

p=1

(
ri
pr
′f
p

r′ipr
′f
p

)

Q =
1

N

N∑

p=1

((
ri
p

)2
ri
pr
′i
p

ri
pr
′i
p

(
r′ip
)2

)
=

(
ri2 rir′i

rir′i r′i2

)

The matrix Q is known as the beam matrix. The weights γ and γ′ drop out of the
calculation of the coefficients of M. Inverting for M , results in

M =


 1

N

N∑

p=1

(
ri
pr

f
p r′ipr

f
p

ri
pr
′f
p r′ipr

′f
p

)
Q−1.

The phase advance can then be calculated by taking the trace of M ,

σ = arccos

(
1

2
Tr(M)

)
.

Therefore, all that is required for the determination of the phase advance are the initial
second moments as well as those between the initial and final values.
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3. The codes bender and tralitrala

In the previous chapter, it was motivated that the Vlasov equation along with Poisson’s
equation provides a description of a system of charged particles,

∂fj(r,v)

∂t
+ v

∂fj(r,v)

∂r
+

qj
mj

(E + Eext + v ×Bext)
∂fj(r,v)

∂v
= 0, (3.1)

∇E =
ρ(r)

ε0
=

1

ε0

∑

j

qj

∫
fj(r,v) dv. (3.2)

These equations include multiple species (index j) as well as external electric and magnetic
fields, which were previously ignored.
In the derivation two important approximations were made:

• The particle velocities are much smaller than the speed of light and the motion is
non-relativistic.

• The magnetic self-fields have been omitted. Beyond the field produced by the
particle currents, in the electrostatic approximation, propagation of electromagnetic
waves is also excluded. Such an approximation should be valid for the simulations
presented in this thesis. In Chapter 4, the focus lies on the steady state properties,
where the electric field remains constant. For both Chapter 4 and Chapter 5, the
current densities are low enough not to produce a significant magnetic field.

There are various approaches to numerically solving the system (3.1) and (3.2). One
class of algorithms [19] introduces a grid in phase-space on which (3.1) is discretized. Due
to the six-dimensional grid required for three space dimensions, the computational effort
required by these methods can become very large. Additionally, the grid needs to be fine
enough to resolve the structures of interest in phase-space.
The approach chosen for the simulations in this thesis is the particle-in-cell (PIC)

method. To solve (3.1), simulation particles are reintroduced to sample the phase space.
PIC methods only require a grid in real space and are therefore computationally not as
expensive in higher dimensions. However, due to the statistical sampling, problems from
noise can occur and alter the results.

In the following section a derivation of the PIC algorithm will be sketched. Section 3.2
presents the algorithms used in the 3d PIC code written for the work in this thesis,
along with some implementation details. Following similar principles, a 2d code was also
implemented, which is presented in Section 3.3. Finally, in Section 3.4, two tests of the
written codes against self-consistent solutions will be presented.
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3. The codes bender and tralitrala

3.1. The particle-in-cell algorithm

By using an ansatz for the phase-space density f , the calculations required for the
particle-in-cell method can be derived. The derivation follows [20]. It is given in only
one dimension to reduce the complexity of the equations. However, the same approach
works for two or more dimensions. For further simplification, external magnetic fields are
ignored.

The phase-space density is assumed to be covered by macroparticles with a finite size,

f(t, x, v) =
∑

i

NiS(x− xi(t)) δ(v − vi(t)) . (3.3)

The functions xi(t) and vi(t) are degrees of freedom which will be identified with the
macroparticle position and velocity later on. The shape function S(x) has to satisfy three
conditions:

1. Compact support: The function is non-zero only in a “small” range around 0.

2. Normalization:
∫∞
−∞ S(x) dx = 1

3. Symmetry: S(x) = S(−x)

In velocity space, the macroparticles are points, so that they do not spread out over time.
The density n(t, x) =

∫∞
−∞ dv f(t, x, v) of particles can be calculated from f via

n(x) =
∑

i

NiS(x− xi(t))
∫ ∞

−∞
δ(v − vi(t)) dv =

∑

i

NiS(x− xi(t)) .

The total number of (physical) particles is then

N =

∫ ∞

−∞
n(x) dx =

∑

i

Ni

∫ ∞

−∞
S(x− xi(t)) dx =

∑

i

Ni.

Thus, the Ni are the numbers of particles per phase-space volume covered by macroparti-
cle i.

3.1.1. Equation of motion

By looking at the evolution of the first order moments in x and v of the Vlasov equation,
the equation of motion can be found for the macroparticles. For compactness only the
solutions will be given here. The full calculation can be found in appendix A. The first
moment in space is

0 =

∫
x

df

dt
dxdv =

∫
x

{
∂f

∂t
+ v

∂f

∂x
+

q

m
E(x)

∂f

∂v

}
dxdv =

∑

i

(
∂xi(t)

∂t
− vi(t)

)
.

(3.4)
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Figure 3.1.: The three b splines of lowest order.

The first moment in velocity space is

0 =

∫
v

df

dt
dxdv =

∑

i

(
∂vi(t)

∂t
− q

m

∫ ∞

−∞
E(x)S(x− xi(t)) dx

)
. (3.5)

According to equation (3.4) and (3.5), which are Newton’s equations, the macroparticles
move just like real particles. However, the electric field is replaced by the convolution of
the field with the particle shape function.

For the shape of the particles, b-splines are often chosen [21, p. 142]. The first function
is defined as

b0(x) =

{
1 |x| < 1/2

0 |x| ≥ 1/2
(3.6)

and functions of higher order as convolution with b0(x),

bn(x) =

∫ ∞

−∞
b0
(
x− x′

)
bn−1

(
x′
)

dx′. (3.7)

The first three b’s are displayed in Figure 3.1. For a PIC code of order n with a particle
size the same as the grid spacing ∆x, S(x) = (1/∆x)bn(x/∆x).

The Vlasov equation needs to be solved self-consistently with Poisson’s equation. Most
approaches use a grid spanning the computational volume. From the ansatz for f (3.3),
instructions how to calculate the charge density on the grid as well as how to interpolate
the electric field can be derived. If the grid points are equidistantly spaced with ∆x and
the grid cells defined as centered around the grid points, the charge density on the grid
can be calculated from the average of ρ(x) over a cell. Then, for the j’th point,

ρj =
1

∆x

∫ x
j+1

2

x
j− 1

2

ρ(x) dx =
q

∆x

∑

i

Ni

∫ x
j+1

2

x
j− 1

2

S(x− xi(t)) dx

=
q

∆x2

∑

i

Ni

∫ ∞

−∞
bn

(
x− xi(t)

∆x

)
b0

(
x− xj

∆x

)
dx
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3. The codes bender and tralitrala

Insert particles

Calculate forces

Move particles
(3.4) & (3.5)

Particles lossesOutput

Weight charge density ρj
(3.8)

Solve ∇2ϕ = −ρ/ε0

Calculate E
(3.9)

Figure 3.2.: Particle-in-cell algorithm.

=
q

∆x

∑

i

Nibn+1

(
xj − xi(t)

∆x

)
. (3.8)

Assuming that the electric field has a constant value Ej within a grid cell, i.e. between
xj− 1

2
and xj+ 1

2
,

∫
E(x)S(x− xi(t)) dx =

∑

j

Ej

∫ ∞

−∞
S(x− xi(t)) b0

(
x− xj

∆x

)
dx

=
∑

j

Ejbn+1

(
xj − xi(t)

∆x

)
. (3.9)

Therefore, both the charge density and the electric field are interpolated using the same
type of function as S(x), but with the order increased by one.
For bender , n = 0 and therefore S(x) = (1/∆x)b0(x/∆x) was chosen (in all three

dimensions), where the particle “size” is set to the grid spacing ∆x. This choice leads
to the cloud-in-cell (CIC) version of the particle-in-cell algorithm. A delta-function,
S(x) = δ(x), leads to the nearest-grid-point (NGP) version.
The charge assignment (3.8) and the field interpolation (3.9) are reduced to linear

interpolation for the cloud-in-cell version. Charges and fields are weighted proportionally
to the distance to the opposite grid point. For example, equation (3.9) becomes

∫
E(x)S(x− xi(t)) dx =

(
1− xi(t)− xj

∆x

)

︸ ︷︷ ︸
rel. distance to xj+1

Ej +

(
xi(t)− xj

∆x

)

︸ ︷︷ ︸
rel. distance to xj

Ej+1. (3.10)

Figure 3.2 contains a schematic of the main particle-in-cell loop. How to implement the
important parts of the algorithm—the solution of Poisson’s equation on the grid and the
integration of Newton’s equations—has not been specified yet. These will be explained in
the following section.
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3.2. Implementation of the particle-in-cell code bender

3.2. Implementation of the particle-in-cell code bender

3.2.1. Integration of motion

The Velocity Verlet algorithm (in its positional form, [22]), can be derived by expanding
the particle positions at the preceding and the advanced time step,

r(t+ ∆t) = r(t) +
∂r

∂t

∣∣∣∣
t

∆t+
1

2

∂2r

∂t2

∣∣∣∣
t

∆t2 +O
(
∆t3

)
(3.11)

r(t−∆t) = r(t)− ∂r

∂t

∣∣∣∣
t︸︷︷︸

v(t)

∆t+
1

2

∂2r

∂t2

∣∣∣∣
t︸ ︷︷ ︸

a(t)

∆t2 +O
(
∆t3

)
(3.12)

Combining (3.11) and (3.12) leads to a version of the algorithm that calculates the new
particle position from the two previous positions. The velocity v(t) can then be calculated
using the centered-difference,

v(t) = (r(t+ ∆t)− r(t−∆t)) /(2∆t). (3.13)

To calculate the velocity at time t requires the knowledge of the particle position at t+∆t.
To start a simulation, the positions would have to be known in two adjacent time steps.

Using (3.11) to update the particle positions, adding the expansion for r(t+ ∆t) and
r(t+ 2∆t) and inserting (3.13) leads to the Velocity Verlet algorithm. For the Lorentz
force and using momenta instead of velocities, it reads

p

(
t+

1

2
∆t

)
= p(t) +

q∆t

2
E(r(t)) +

q∆t

2m
p(t)×B(r(t)) (3.14)

r(t+ ∆t) = r(t) +
∆t

m
p

(
t+

1

2
∆t

)
(3.15)

p(t+ ∆t) = p

(
t+

1

2
∆t

)
+
q∆t

2
E(r(t+ ∆t))

+
q∆t

2m
p(t+ ∆t)×B(r(t+ ∆t)) . (3.16)

Introducing a matrix

Ω =




0 Bz −By
−Bz 0 Bx
By −Bx 0


 , where Ω



vx
vy
vz


 =



vx
vy
vz


×



Bx
By
Bz


 ,

(3.16) can be inverted:

p(t+ ∆t) =

(
1− q∆t

2m
Ω(t+ ∆t)

)−1(
p

(
t+

1

2
∆t

)
+
q∆t

2
E(r(t+ ∆t))

)
, (3.17)
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where (with B̃i = q∆t/(2m)Bi): (1− q∆t/(2m)Ω(t+ ∆t))−1

=
(

1 + B̃2
x + B̃2

y + B̃2
z

)−1




1 + B̃2
x B̃xB̃y + B̃z B̃xB̃z − B̃y

B̃xB̃y − B̃z 1 + B̃2
y B̃yB̃z + B̃x

B̃xB̃z + B̃y B̃yB̃z − B̃x 1 + B̃2
z


 .

The algorithm is second-order accurate in time [23] and can be shown to be time-
reversible, i.e. a step by ∆t followed by a step by −∆t results in the original position and
momentum.
The implementation in bender calculates (3.14) after (3.15) and (3.17), i.e. calcu-

lates p
(
t+3/2∆t

)
. Thus, for each step, the forces from the electric and magnetic fields

have to be evaluated only once. In the calculations made in Chapter 4 and Chapter 5, it
was found that the time taken for the evaluation of the field values typically outweighs the
calculations to update the particle’s position and momenta. Hence, for these applications,
the Velocity Verlet algorithm is preferable over lower-order integrators (like a symplectic
Euler scheme) or higher order integrators, which require more field evaluations per step.

A number of physical systems were used to test the implementation of the integrator: a
pendulum implemented using electric fields, the gradient B drift described in Section 2.1
and the motion of particles in a radial electric and longitudinal magnetic field, a configu-
ration described in Section 2.2. The integrated motion was compared to the results from
the standard Runge-Kutta scheme (RK4) [24].

Figure 3.3 shows the phase space of the pendulum for three different initial conditions
with the parameters m = 1 kg, q = 1 C and E(x) = −1 V m−1 sin(πx). For a low
initial amplitude, the solution behaves like an harmonic oscillator, while at larger initial
amplitudes the oscillation time increases. The Velocity Verlet algorithm follows the
behaviour of a symplectic integrator: the energy of the particle oscillates within fixed
bounds, which were found to decrease quadratically with the timestep. This behaviour is
different from the standard RK4 integrator, where the energy constantly decreases over
time. This can also be observed in the phase space plot in Figure 3.3a, where the solution
found using the RK4 algorithm slowly spirals towards 0.
For different time steps ∆t, Figure 3.4a shows the oscillation times of four particles

with different initial amplitudes compared to the analytic value. For larger time steps, the
oscillation frequency of the numerical solution was found to be smaller than the physical
value. To reproduce the oscillation time for example to 1%, more than 10 timesteps per
period were required.

The integrator also correctly reproduces effects in inhomogeneous magnetic field, such
as the gradient B drift. Figure 3.4b contains the deviation of the total downward drift as
well as the oscillation time for different time steps from the correct values. In this case,
the revolution time approaches the correct value from higher values.

Figure 3.5 shows some results for the integration of particle motion (m=1 kg, q=1 C) in
a radial electric field (Er = 0.1 V m−1r) and homogeneous magnetic field (Bz = 1 T). This
is the field configuration already discussed in Section 2.2. Just as in the previous tests, the
energy oscillates but remains bounded over long periods of time. The amplitude of this
oscillation is displayed in Figure 3.5b. It shrinks proportional to the square of the time
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step (grey curves). The canonical angular momentum Lz = xpy − ypx + qBz
(
x2 + y2

)
/2

shows a similar behaviour. Here, the solution by the RK4 method shows a continuous
increase in angular momentum.
These simple tests suggest that the Velocity Verlet algorithm is a good candidate for

long-time integration of motion in electromagnetic fields.

3.2.2. Solver for Poisson’s equation

As an electrostatic particle-in-cell code, bender has to solve Poisson’s equation

∇2ϕ(x, y, z) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ϕ(x, y, z) = − 1

ε0
ρ(x, y, z)

at least once in every timestep to obtain the potential as well as the electric field of
the particles. A number of common algorithms were implemented: a solver in three-
dimensions as well as a solver for radially symmetric geometries using a finite difference
approximation and a three dimensional solver using Fourier transforms. The best choice
depends on the geometry of the system as well as on the time available for the calculation.
In the next section, these algorithms and their implementation will be presented.

Finite difference 3d solver

Finite difference approximations of differential equations replace the derivatives by corre-
sponding difference quotients on a grid. The three-dimensional Cartesian solver imple-
mented for bender uses the Shortley-Weller [25] approximation. In each dimension, the
second derivative is replaced by

∂2ϕ(x)

∂x2

∣∣∣
x=xi

≈ 2

∆− (∆+ + ∆−)
ϕi−1 −

2

∆+∆−
ϕi +

2

∆+ (∆+ + ∆−)
ϕi+1 (3.18)

+O(∆− (1− λ)) +O
((
λ2 − λ+ 1

)
∆2
−
)
, λ = ∆+/∆−.

∆+ and ∆− are the grid spacings to both sides of the grid point. When the spacing is
equal in both directions, ∆ = ∆+ = ∆− (λ = 1), the truncation error is of order ∆2. In
the presence of conductors, the grid spacing can be changed locally to move neighboring
points to their surface. An example for this is shown in Figure 3.6a.

Applying (3.18) to each grid point produces a large system of equations. These couple
the potential value ϕi,j,k at each grid point to its six neighbors and the charge density
ρi,j,k. At the grid boundaries, the implementation supports Dirichlet, Neumann and
periodic boundary conditions.

In the first case, the value of the potential at the boundary is known and does not need
to be solved for. The term containing the affected point in the equation of neighboring
points can be moved to the right-hand side of Poisson’s equation. Periodic boundary
conditions can be implemented by replacing all occurrences of ϕN by ϕ0 and ϕ−1 by
ϕN−1 (on a grid of N points, i ∈ [0, N − 1)).
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+

(a) Shortley-Weller finite difference stencil at a
conducting surface.

(b) Example for a domain decomposition. Only
the gray parts of the domain are considered
for the computation.

Figure 3.6.: Finite difference stencil and an example for domain decomposition.

For Neumann boundary conditions, the normal derivative n · ∇ϕ(x, y, z) = En is
specified, where n is the normal on some surface. bender only handles the case where n
is pointing along one of the coordinate axes and the grid point is located on one of the
surfaces of the Cartesian grid. In this case, the boundary condition can be approximated
by finite difference, here for example for i = 0, by (ϕ1 − ϕ−1) / (2∆) = −En. Solving for
ϕ−1 and inserting, (3.18) then becomes

∂2ϕ(x)

∂x2

∣∣∣
x=x0

≈ −2En

∆
+

2

∆2
(ϕ1 − ϕ0) .

Once again, the first term can then be moved to the right hand side of Poisson’s equation.
Including boundary conditions, (3.18) produces a system of linear equations for the

potential. The problem can be written in matrix form as Ax = b. Since each grid point
only references its neighbors, the matrix A is only sparsely populated with a maximum of
7 non-zeros per row. Various methods exist to solve these systems efficiently:

• Relaxation methods work by repeatedly calculating ϕi,j,k from its neighboring values
using (3.18). The algorithms are relatively simple to implement but converge more
slowly than other methods [26]. However, in combination with a hierarchy of grids,
these methods are good at smoothing high-frequency components in the solution
error. These Multigrid methods are able to find a solution in O(N) steps, where N
is the total number of grid points. Due to the effort involved in implementing such
a solver in the presence of an arbitrary boundary geometry, such a solver was not
implemented.

• Krylov subspace methods [27] are iterative algorithms, which in the m’th iteration
build an approximation of the solution from the Krylov subspace

Km(A, r0) = span
{
r0, Ar0, A

2r0, . . . , A
m−1r0

}
,
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where r0 = b − Ax0 is the residual of some initial solution x0. A large number
of algorithms exist which differ in the choice of the new approximation vector
xm ∈ Km(A, r0). Here, the Generalized Minimal Residual (GMRES) algorithm [28]
or the Biconjugate Gradient Stabilized (BiCGStab) were used.

• The solution of Ax = b can also be calculated directly, for example using Gaussian
elimination. Another procedure, LU decomposition, first splits the matrix A into
a lower and an upper triangular matrix such that A = LU , which then allows to
calculate the solution by forward and backward substitution, Ly = b and then
Ux = y. These methods have the advantage, that once L and U are known, the
solution x can be repeatedly calculated very efficiently for different b. However L
and U are not necessarily as sparse as A, sometimes vastly increasing the required
memory to store the matrices. For the grids used in Chapter 5, the matrices have
millions of unknown and using LU decomposition is not feasible. For the two
dimensional solver presented below, using LU decomposition provides an increase
in speed compared to the Krylov subspace methods.

bender uses the PetSc [29] library for all sparse matrix operations. PetSc provides
parallel implementations of all of the algorithms listed above.
Once the solution is known, the electric field components at each grid point are

calculated from the potential by using

Ex,i = −∂ϕ(x)

∂x

∣∣∣∣∣
x=xi

≈ ∆+

∆− (∆− + ∆+)
ϕi−1 −

∆+ −∆−
∆−∆+

ϕi −
∆−

∆+ (∆− + ∆+)
ϕi+1

+O(∆+∆−) . (3.19)

The electric field is then interpolated to each particle’s position by linear interpolation.
To generate the sparse matrix, the distances ∆± in all directions have to be found.

These are calculated by testing each grid line for intersections against a given list of
boundary elements. In the first iteration, along the x-axis, each grid point outside a
boundary element is assigned an index in ascending order. This index is then used for
all local data arrays. To avoid storing the grid spacing for each of these “active” grid
points (which would require 48 byte per point), a bitset only stores if such information
is present (1 byte per point). This enables the code to quickly check if a grid point is
located close to a boundary or is regular. The distance to the boundary is then stored in
a binary-search tree. After indexing, a global index is calculated from the local index,
which numbers the rows in the system matrix and which is used to reference grid points
in communication between processors.

For the right hand side of the system, two vectors are maintained: one containing the
charge density and one containing contributions by the boundary conditions. In cases
where only the charge density changes between successive solves, a recalculation of the
second vector can thus be avoided.
For parallel computations, the solver allows rectangular parts of the global grid to be

handed to different processors. Parts not assigned to a processor are not considered for
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the calculation. An example is shown in Figure 3.6b. Since the sides of the computational
domains do not necessarily have to be aligned, before indexing, each processor checks the
list of computational domains for its neighbors and numbers those parts of its boundary
that are not adjacent to another processor for reference by the user.

Fast Fourier solver

bender includes an implementation of the well-known Fast Fourier algorithm [21, 30].
In the discrete case, the second derivatives in Poisson’s equation lead to a relation

between potential values on different grid points. This necessitates the use of solution
methods like the sparse matrix methods employed for the finite difference solver. However,
when the solution is expanded in eigenfunctions of the differential operator, the expansion
coefficients are decoupled. The choice of function depends on the boundary conditions.
For example, in the case of zero potential on both sides of a domain of length L on a
grid of N grid points, when the potential ϕ(x) and the charge density ϕ(x) are expanded
using sine functions

ϕ(x) = 2
N−1∑

k=0

ϕ̃k sin
(
π (k + 1)

x

L

)
, (3.20)

the differential equation d2ϕ(x) /dx2 = −ρ(x) turns into

−2
N−1∑

k=0

ϕ̃k

[π
L

(k + 1)
]2

sin
(
π (k + 1)

x

L

)
= −2

N−1∑

k=0

ρ̃k sin
(
π (k + 1)

x

L

)
.

Due to the linear independence of the sine, ϕ̃k =
[
π
L (k + 1)

]−2
ρ̃k.

On “simple” geometries such as rectangular domains, Poisson’s equation is separable
i.e. the solution has the form ϕ(x, y, z) = ϕx(x) · ϕy(y) · ϕz(z) and

∇2ϕ(x, y, z) =
d2ϕx(x)

dx2
ϕy(y)ϕz(z) + ϕx(x)

d2ϕy(y)

dy2
ϕz(z) + ϕx(x)ϕy(y)

d2ϕz(z)

dz2
.

By using an expansion such as (3.20) in each dimension, ϕ(x, y, z) can be solved for by
calculating

ϕ̃i,j,k = ε−1
0

{[
π

Lx
(i+ 1)

]2

+

[
π

Ly
(j + 1)

]2

+

[
π

Lz
(k + 1)

]2
}−1

ρ̃i,j,k. (3.21)

The algorithm solves Poisson’s equation by first calculating the Fourier transform of
the charge density ρ̃i,j,k. Then, the Fourier coefficients of the potential ϕ̃i,j,k are found
from (3.21). By using the inverse transform, the potential ϕi,j,k can be calculated.
A direct calculation of the Fourier transform (3.20) would require O

(
N2
)
operations.

However, Fast Fourier transforms exist, which calculate the transform in O(N logN)
by recursively reusing previously computed values [31]. The implementation in bender
uses the distributed-memory version of the FFTW library [32]. This version of the
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Boundary condition Transform / Inv. transform

ϕ(x) |x=0 = ϕ(x) |x=L = 0 ϕ̃k = 2
N−1∑

j=0

ϕj sin
(
π [k + 1]

xj
L

)
xj
L = j+1

N+1 (DST-I)

ϕ(x) |x=0 = 0
dϕ(x)

dx |x=L = 0

ϕ̃k = ϕ0 + 2
N−1∑

j=0

ϕj cos

(
π

[
k +

1

2

]
xj
L

)
(DCT-III)

ϕj = 2

N−1∑

k=0

ϕ̃k cos

(
π

[
k +

1

2

]
xj
L

)
xj
L = j

N (DCT-II)

dϕ(x)
dx |x=0 = dϕ(x)

dx |x=L = 0
ϕ̃k = ϕ0 + 2

N−2∑

j=1

ϕj cos
(
πk
xj
L

)

+ (−1)k ϕN−1

xj
L = j

N−1 (DCT-I)

Table 3.1.: Boundary conditions and respective (unnormalized) Fourier transforms used
in the implementation of the Fast Fourier solver. DST-I and DCT-I are their
own inverse transforms.

library can calculate the required Fourier transforms while distributing the data along one
direction among multiple processes. The solver supports either zero potential (Dirichlet)
or zero electric field (Neumann) boundary conditions for each of the six surfaces of the
computational domain. The transforms used as well as the corresponding multiplication
factors are listed in Table 3.1.
Similar to the finite difference solver, the charge density is calculated using trilinear

interpolation. The electric fields are calculated from the potentials using a second-order
accurate finite difference approximation and interpolated linearly to the particle position
inside each cell,

Exj =
ϕj+1 − ϕj−1

2∆x
,Ex0 =

{
4ϕ1−ϕ2

2∆x Dirichlet
0 Neumann

and ExN−1 =

{
ϕN−2−4ϕN−1

2∆x Dirichlet
0 Neumann

.

R-Z poisson solver

In Low-Energy Beam Transport scenarios involving solenoid magnets, cylindrical symmetry
is often kept approximately. In this case, the calculation can be sped up significantly by
using a two-dimensional Poisson solver. Reducing the dimensionality not only reduces the
number of grid points, but also the number of particles required to reproduce the charge
densities.
A radially symmetric solver was implemented using the finite difference scheme given

in [33] for equidistantly spaced meshes,

−ρj,k
ε0

=
2j + 1

2∆r2
ϕj+1,k − 2

j

∆r2
ϕj,k +

2j − 1

2∆r2
ϕj−1,k +

1

∆z2
(ϕj,k+1 − 2ϕj,k + ϕj,k−1) .
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The solver supports Neumann boundaries in longitudinal direction using the same
scheme as the three-dimensional solver. The grid can be distributed among multiple
processors along the z-direction. Solution of the linear system is again implemented using
PetSc [29], where LU decomposition is the default solution algorithm.
For charge accumulation, area weighting is used. Compared to linear weighting, the

contribution of a particle is not distributed according to the relative position of the
particle within the cell but relative to the enclosed area,

Qj =
r2
j+1 − r2

r2
j+1 − r2

j

·Q, Qj+1 =
r2 − r2

j

r2
j+1 − r2

j

·Q. (3.22)

Linear weighting is used in longitudinal direction. To calculate charge densities, the
contributions at the grid points (i, j) are divided by the cell volumes Vi,j . As proposed
in [34], the volumes Vi,j are calculated by weighting the volume elements in the same way
as the particles,

Vi,j =

∫
Wj(~r) dV

= 2π∆z

(∫ rj

rj−1

r
r2
j+1 − r2

r2
j+1 − r2

j

dr +

∫ rj+1

rj

r
r2 − r2

j−1

r2
j − r2

j−1

dr

)

=
π

2
∆z
(
r2
j+1 − r2

j−1

)
= 2π∆z∆r2j,

where the last step is only valid for a regular lattice rj = j∆r and Wj(r) is the particle
shape function corresponding to the choice in (3.22). For the inner- and outermost cells
in radial direction, the volumes are obtained by dropping the out-of-bounds integrals.
The results are Vi,0 = 1

2π∆z∆r2 and Vi,Nr = 2N−3
2 π∆z∆r2.

Parallelization

The computation for all of the solvers presented above can be distributed among multiple
processors. Both the Fast Fourier and the RZ solver support distribution in z, while the
three-dimensional finite difference solver allows arbitrary blocks inside the global grid to
be distributed. The communication during the solution process is handled by the specific
libraries, but communication is still required for the charge accumulation step and the
calculation of the electric field.
Without any load balancing, bender keeps particles in the same process they were

inserted on. Consequently, in this mode of operation, particles can be located anywhere
on the grid and are not necessarily contained within the local portion of the grid. Since it
is much more likely for a particle to be located completely inside the grid volume on one
processor than between two or multiple grid portions, sending the particle position (in
units relative to the grid to avoid recomputation) instead of the charge contribution to
the individual grid points is more efficient. Particles located in the cells between two grid
portions, then have to be sent to both processors. Synchronous communication is used
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Located on rank 1

Charge sent to rank 0

Grid Point

(a) “Non-local” mode.

Located on 

rank 0
Located on

rank 1
Charge sent

to rank 1

Grid Point

(b) “Local” mode.

Figure 3.7.: Charge accumulation in multiprocessor runs.

for sending particles, i.e. the code first iterates over all particles, storing those that have
to be sent to other processors and then sends these collectively.

During the accumulation of the electric field values at the particle positions, all non-local
particle positions are synchronously sent to the corresponding processors. These then
answer the requests by sending a list of electric field values at the requested positions.

When the particle distribution in the computational domain is approximately homoge-
neous, it is much more efficient to keep particles local to the grid. When the load leveling
provided by the solver implementations is used, only particles in the grid cells between
grid portions can contribute to the charge density accumulated at another process. In
this mode, the charge density array is expanded at each processor interface, so that the
usual charge accumulation routine treats all particles like local particles. Afterwards, the
charge density on the interfaces is sent to the adjacent processor and added. Additionally,
in local mode, the solvers share the values of the potential in the affected regions after
the solution. This allows calculating the electric field for all particles without requiring
any further communication among processors.
Figure 3.7 shows the two possible ways charge density accumulation is treated.

Tests

The solvers were tested for a number of distributions, for which expressions for the electric
field and the potential can be found. Figure 3.8 contains some results for a charged sphere
and a cylinder, both with a Gaussian distribution in the radius r,

ρ(r) = ρ0 exp

(
− r2

2σ2

)
. (3.23)

For the numerical computation, the distributions have to be cut off due to the finite
grid size. For the test a grid with d = 1 m was used. Using σ = 5 cm, a comparison to the
solution of the infinitely extended distribution is valid, since the fraction of charge located
outside of the lattice volume is extremely small. Such a comparison is given in Figure 3.8.

For the tests, the charge distribution was calculated from (3.23) and not sampled using
a large number of particles to avoid contributions from statistical error.

26



3.2. Implementation of the particle-in-cell code bender

Er(r) = (2π)−
3
2
Q

ε0

1

r2

[√
π

2
erf

(
r√
2σ

)

− r

σ
exp

(
− r2

2σ2

)] Er(r) = − 1

2πε0

I
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[
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Figure 3.8.: Test of the Poisson solvers using a Gaussian distributed sphere (left) and a
Gaussian distributed cylinder (right), σ = 5 cm on a grid of d = 1 m.
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For the charged sphere, Dirichlet boundary conditions ϕ(r) = 0 were used on all faces
of the grid box. An additional calculation was made using the finite difference (FD)
solver, including a grounded sphere of 50 cm radius. For the cylinder, Neumann boundary
conditions dϕ/dz = 0 were used longitudinally for all solvers and Dirichlet boundary
conditions transversely. For the Fast Fourier (FFT) solver, these are rectangular, while
for the rz solver the boundary is a cylinder. The finite difference solver allows calculation
of both cases.

Rectangular boundary conditions introduce an artificial octupolar component, i.e. the
field is higher along the coordinate axes and lower along the diagonals of the grid. The
effect can be seen in Figure 3.8a and d, where Er was calculated along the coordinate
axis.

For different grid resolutions, Figure 3.8b and e contain the root-mean-square deviation
in the electric field calculated over the complete grid and as well as over a volume of 2σ
around the center. Due to the systematic error produced by the boundary conditions, when
using higher resolutions, the deviation over all grid points does not decrease significantly
for the FFT solver and the FD solver without the appropriate boundaries. When these
are included, the deviation decreases quadratically over the simulated range. The FD
solver uses the GMRES algorithm with incomplete LU preconditioning [29] per default,
which is aborted when the norm of the residual ||ρ − Aϕ||2 falls below a certain value
(per default, rtol · ||ρ||2, rtol = 10−5). For higher resolutions, this value is reached before
the deviation is sufficiently reduced, which leads to the visible divergence from quadratic
convergence. For rtol = 10−8, as is shown in Figure 3.8e, the rms deviation continues to
decrease.
Looking at the points within 2σ, the deviation decreases quadratically for all solvers.

For the cases with incorrect boundary conditions however, once a certain value is reached,
there is no further improvement.
Figure 3.8c and f contain the times required for solving for the potential. If possible

and especially for high resolution calculations, using the rz solver is faster than the FFT
solver, mainly due to the greatly reduced number of degrees of freedom.
In general, for calculations in 3d, the FFT solver can be up to a factor of 1000 times

faster. However, the values have to be taken with a grain of salt: in a particle-in-cell
application, the FD solver reuses the potential values from the previous step as a starting
point whereas the FFT solver—as a direct method—always requires the same number of
operations for the solution. In cases where the changes in charge density are low, the FD
solver converges much faster than shown in the figures.

3.2.3. Structure of the code

bender is implemented using the C++ language. Linear algebra routines are provided
by the Armadillo library [35]. The code uses the Message Passing Interface (MPI) via
the Boost.MPI library [36] for communication among processes. Figure 3.9 provides an
overview of the class structure of the code.

The Species class contains the data for macroparticles of equal charge and mass. The
positions and the momenta in the laboratory frame are stored together with an index
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Figure 3.9.: Structure of the code bender .
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unique for each particle as well as the macroparticle’s real particle count, which is required
in the charge accumulation step. The index can be used to track particles, since various
operations such as particle losses may change the order of the storage array. Additionally
the class contains routines for filtering particles against elements bounding the simulation
implemented via the BoundaryElement interface, which can be used either for particle
losses i.e. for removing particles or for monitoring.
If required, any other part of the code may request additional per particle storage

contained in ParticleInformationVector, which is updated along with the regular
particle array. This feature is used by some of the mover algorithms to avoid recalculation
of quantities between timesteps.
Particles can be inserted into the simulation via particle sources derived from the

ParticleSource class. The BunchParticleSource inserts a fixed number N of particles
into the simulation once. These consist of Nmacro = I/ (frfNqspecies) real particles, where
I is the beam current, frf a given rf frequency and qspecies the particle charge of the
corresponding species. The BeamParticleSource builds a continuous beam by inserting
N particles with Nmacro = I∆t/ (qspeciesN), where ∆t is the time step of the simulation.
The DumpParticleSource can be used to restart a simulation using an exported particle
distribution from a previous simulation.
For BunchParticleSource and BeamParticleSource the distribution in phase space

can be specified by using one of the specializations of the Distribution interface. These
can be either read from file in various formats or, for continuous beams, generated from a
number of model distributions.

The equation of motion for particles are integrated using the various implementations
of the Mover class. The algorithm used is described in Section 3.2.1. As input, it uses a
list of objects implementing the Field interface to calculate electric and magnetic fields.
In the current version, the code treats external fields in the same way as the space charge
fields.

In general, for multi-processor runs, bender does not assume particles to be local to the
fields. Theoretically, field maps could be located on another process than the particles. To
avoid long waiting times until requests for the field contribution to a foreign process have
been answered, the Accumulate method of the Field class calculates all field values for a
given list of positions at once. This enables the implementations to continue calculating
values at local positions while waiting for requests to other processors to be answered.

However, even for the very large field maps used in the simulations in Chapter 5,
keeping a copy available in every process was still possible and the cost of increased
communication from keeping the data only one on process far outweigh the savings in
memory. Thus, all currently implemented field models derive from LocalField, which
implements Accumulate as a simple calculation loop over the list of positions. Among
the implemented field models are a Biot-Savart solver used in Section 5.1 and simple
multipole fields.
The only parallel-aware Field implementations are the solvers for Poisson’s equa-

tion, since these only hold a local portion of the grid on each processor. Apart from
operations such as charge accumulation, solving for the potential and accumulation of
electric field values, the PoissonSolver class provides a common interface for setting
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boundary conditions. Two of the implemented solvers—the three-dimensional Cartesian
and cylindrical finite difference solvers—support using objects of the BoundaryElement
class to define these. The CompDomain solver assigns an index to each surface to allow
boundary conditions to be set.
The code uses a concept termed “coordinate systems” implemented via the special-

izations of the CoordinateSystem class to transform various objects in the simulation.
Implementation for simple translations (FixedSystem) as well as general affine trans-
formations (e.g. rotations, scaling and shears) implemented in TransformedSystem are
provided. The class ComovingSystem provides a transformation into a system which is
pinned to the center of mass or charge of a particle distribution and aligned to its direction
of movement. This allows the use of the available solvers for Poisson’s equation in a
comoving frame without any additional code. Currently, only Galileo transformations, i.e.
non-relativistic transformations, are supported.
For objects such as the BoundaryElement, ParticleSource and LoadLeveler classes,

wrappers exist that transform all positions in calls to these objects as well as their results
using CoordinateSystem. Field also provides support for these coordinate systems. This
allows flexibly placing these objects in the simulation space without reimplementing
support in every class.

Various classes deriving from the DataOutput class implement routines for analysis and
for exporting data from the simulation. Objects of these classes are triggered in a list of
steps given by the user. Currently implemented are output of a list of particles either
at a given time or when they intersect given geometric objects, output of particle losses,
tracking, output of the potential, electric and magnetic fields used in the simulation and
calculation of various parameters such as kinetic or potential energy of all particles.

The contents of a simulation are specified in an XML-type format, which closely follows
the class hierarchy. This input file is read by the Bender class, which also contains the
main particle-in-cell loop.

3.3. The 2d code tralitrala

When effects such as space charge compensation or time-dependent external fields are not
present or their detailed description is not of interest, beam matching simulations of dc
beams can usually be performed using a much simpler code. During the work for this
thesis, such a code, named tralitrala, was written.

Instead of time, as is conventional in accelerator physics, the reference path length s is
used as independent variable. The software calculates the particle motion in the transverse
plane, using x, x′ and y, y′. When x′ and y′ are small, the paraxial approximation can
be used. This makes it possible to use transfer matrices [37, p. 120ff]. tralitrala includes
matrices for drift sections, quadrupole magnets, dipoles with edge focusing and thin lenses.
For solenoids, the code includes an integrator of the paraxial equation of motion [17, p.
65] in fields imported from other simulation software. The algorithm used is similar to
the one in Section 3.2.1.

Space charge can be included. The code features a 2d solver in a rectangular geometry
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Figure 3.10.: Comparison of the simulation times for a simulation of the FRANZ LEBT
(Section 5.2.2) using the CPU or the graphics card version of tralitrala1

depending on the number of particles. A grid of 512 points was used.
Simulation times were averaged over five runs.

using the algorithm described in Section 3.2.2 and a radial solver using the trapezoidal
rule to integrate

Er(r) = −1

r

1

ε0

∫ r

0
dr′r′ρ

(
r′
)
. (3.24)

The kick by the electric field

Msc,x(∆s) =

(
1 0

Ex∆s/(Eρ) 1

)
,

where (Eρ) = 2E/q is the electric rigidity of a particle with energy E, is included by
applying

M(∆s) = Mm(∆s/2)Msc(∆s)Mm(∆s/2)

in each step, where Mm is the matrix or the integrator for the optical element. This
results in a method that is second-order accurate in ∆s [38, p.47].

The code is written in C++ and can be controlled using a Python interface. The algo-
rithms for the optical elements and the solution of equation (3.24) were also implemented
for execution on graphic cards using CUDA. Most of the calculations are trivially parallel
since each particle can be handled separately. Only during the calculation of the space
charge density, data needs to be shared among threads. The implementation assigns the
particle list in equal parts to a number of CUDA thread blocks, which then calculate the
density of these particles in their shared memory using atomic adds. Finally, the results
are copied to global memory and added by a single thread block. The integration of the
electric field is implemented as a parallel reduction.

Figure 3.10 shows the running time of a simulation of the FRANZ LEBT (3.8 m length,

1On a Nvidia Geforce GTX 770, Intel Core i7-3770K.
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3.4. Tests against self-consistent solutions

1 mm step size). For the graphics card version, below 1× 104 particles, the Poisson solver
and various management tasks dominate the run time, which remains constant. For
more than 3× 105 particles, the run time increases linearly with the number of particles.
Compared to the CPU version, the GPU version can be up to 100 times faster. This
reduces run times of a couple of hours to a few minutes. This improvement allows mapping
of the parameter space of a beam line. An example is given in Section 5.2.2.

3.4. Tests against self-consistent solutions

In the code tests so far, only single elements of the particle-in-cell algorithm were tested—
the integration of motion and the solver for Poisson’s equation—but not the code as a
whole. For this purpose, model systems for which the solution can be found by simpler
or even analytic means can used. In the following, two examples are presented and
compared to bender simulations: a plasma cloud in thermal equilibrium as well as a
periodic transport channel.

3.4.1. Poisson-Boltzmann equation

Derivation and numerical solution

It can be shown [39, p. 52] that any phase space distribution f(r,p) which is a function
of the single particle constants of motion such as the Hamiltonian H is a solution to the
steady-state Vlasov equation. In electrostatic approximation,

p

m
∇rf(r,p) + qE∇pf(r,p) = 0. (3.25)

Thus, for a group of particles of mass m and charge q trapped inside a confining potential
ϕext(r), a Boltzmann distribution

f(r,p) = f0 exp

(
− H

kbT

)
= f0 exp

(
− p2

2mkbT

)
exp

(
−q (ϕc(r) + ϕext(r))

kbT

)
(3.26)

solves equation (3.25). Additionally, Poisson’s equation must be fulfilled,

∇2ϕc(r) = − q

ε0

∫
f(r,p) dp = −ρc

ε0
exp

(
−qϕ(r)

kbT

)
. (3.27)

Here, ϕ(r) = ϕc(r) + ϕext(r).
This is the Poisson-Boltzmann equation, which can be used to calculate the potential

and the density of such a trapped particle cloud. The total charge of the cloud ρc can be
chosen freely. To provide a confining field in all spatial directions, the external potential
has to be produced by a charge distribution ρext. For the present purpose, this distribution
is considered as fixed.
Sometimes, it is convenient to replace ρc by a compensation degree η defined as the
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3. The codes bender and tralitrala

ratio of the cloud’s charge to that of the confining charges,

ρc

∫
dV exp

(
−qϕc(r)

kbT

)
= η

∫
dV ρext(r) .

The Poisson-Boltzmann equation can be non-dimensionalized by scaling the potential
ϕ̃ = eϕ/ (kbT ) and by scaling the coordinates by λ−1

d =
(
ε0kbT/

(
nce

2
))−1/2, where nc is

the density of the compensation particles on the axis. Thus,

∇̃2ϕ̃c = −µ exp(ϕ̃ext(r̃) + ϕ̃c(r̃)) . (3.28)

Including ρext, equation (3.28) for the total potential ϕ̃ = ϕ̃ext + ϕ̃c is

∇̃2ϕ̃ = fext(r̃)− µ exp(ϕ̃(r̃)) . (3.29)

Algorithms for both equations were implemented and their convergence properties com-
pared.

The solutions of (3.29) are fully characterized by the Debye length λd and the compen-
sation degree contained within the factor

µ = η

∫
dV exp(ϕ̃(r))

(∫
dV fext(r)

)−1

.

The potential ϕ will take equal shapes for a thin and cold plasma and a dense and hot
plasma with equal values of λd.
In practice, nc is not known beforehand, since its value depends nonlinearly on η and

the temperature. For the numerical implementation, it is still beneficial to use the given
nondimensionalization to keep values in the same order of magnitude. For the examples
given below, the density of the confining particles at the origin was used as guess for nc,
which is a good choice for low Debye lengths.

Following the approach in [40], a dependence on a parameter t can be added to solve
(3.29) numerically,

dϕ̃

dt
= ∇̃2ϕ̃− fext(r̃) + µ exp(ϕ̃(r̃)) = R(ϕ̃) . (3.30)

This equation is similar to the heat equation, except for the added exponential part. To
solve (3.30), the Crank-Nicholson method [24, p. 1045] can be used for the linear part.
For the exponential term, to avoid solving a non-linear equation in every step, a more
simple Forward Euler method can be used. Using the Forward Euler method for the
spatial derivative as well, i.e. using only R(ϕ̃n), was found to be unstable. Then, the
following differential equation has to be solved in every iteration:

(
1− ∆t

2
∇̃2

)
ϕ̃n+1(r̃) = ϕ̃n(r̃) +

∆t

2
∇̃2ϕ̃n(r̃) + ∆t (fext(r̃) + µ exp ϕ̃n(r̃)) . (3.31)

The second derivatives can be discretized using finite differences. For the purpose
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Figure 3.11.: Number of steps required by the one-dimensional implementation in cylin-
drical coordinates to reduce the norm of the residual ||R(ϕ̃) || to below 10−6

for various step sizes and Debye lengths in a system with η = 0.95 and
Rsystem = 3 cm. Missing points indicate divergence of the algorithm. The
dashed curves are for the version of the algorithm solving (3.28), solid curves
are for the version solving (3.29).

of testing bender , a version for spherically symmetric systems was developed. In the
iteration, the resulting tridiagonal linear system is solved using routines from LAPACK
[41]. For the simulations in Section 4.4, a one-dimensional radial and a two dimensional
r − z version of the algorithm in cylindrical coordinates were implemented. The same
discretization as in Section 3.2.2 as well as routines from the LAPACK and UMFPACK
[42] libraries were used respectively.
Figure 3.11 shows the number of steps required to reduce the norm of the residual
||R(ϕ̃) || to below 10−6 for both variants of the algorithm. Missing points indicate
divergence of the algorithm.

In many cases, the algorithm excluding the external charge distribution is faster. Only
towards lower Debye lengths and for small step sizes, the alternative version provides a
small benefit. The version of the algorithm solving for the complete potential is more
robust against divergence, which occurs when the parameter µ exceeds the range of a
double precision variable.
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Figure 3.12.: Code test using a thermal confined electron cloud. T = 20 eV was used in
the PIC simulations.

Test against bender

For the tests, a Gaussian charge distribution σ = 1 cm and n0 = 5× 1014 m−3 was used
to confine an electron cloud. With the algorithm described in the previous section, the
Poisson-Boltzmann equation was solved to calculate its radial charge density profile ρe(r).
The confining charge density as well as ρe(r) for various temperatures are displayed
in Figure 3.12a. For the T = 20 eV case, particle distributions with Maxwellian speed
distribution were generated following ρe(r). Those were then loaded in bender .

The probability for electrons to be located far away from the confining charge density
is practically zero: for example ρe(3σ) ≈ 1.510−8ρe(0). In the tests, a grid extending to
10σ = 10 cm was used to guarantee that no particle is ever located close to the boundaries
of the grid. Additionally, the systematic error in the electric field due to the incorrect
boundary conditions (potential set to zero on a box instead of a sphere) should be very
small in the area where particles are located, as was shown in the tests in Section 3.2.2.

The plasma parameters calculated using the density ne,0 ≈ 4.6× 1014 m−3 at the origin
are ωp,0 ≈ 1.2 GHz, λd,0 ≈ 1.5 mm and Λ ≈ 2.2× 107. The rms size of the cloud is
xrms ≈ 5.6 mm.

Even over long time scales, for simulations with relatively high resolution, the distribu-
tion in the bender simulation changes very little. An example is shown in Figure 3.12b,
for a grid spacing of ∆ ≈ 0.5λd,0 and ωp,0∆t ≈ 0.06 after up to 3 million time steps
(T = 150 µs, ωp,0∆t ≈ 180000). Only a small oscillation in the rms size with a frequency of
983.5 MHz ≈ 0.82ωp,0 was found. The amplitude of this oscillation decreases with grid res-
olution, from 0.5 %xrms at 1.6 mm ≈ λd,0 grid spacing to 0.15 %xrms at 0.6 mm ≈ 0.3λd,0
grid spacing. Fluctuations of similar magnitude are present in the kinetic and potential
energy.

However, a slow increase in the total energy of the system over time was observed. An
example for relatively low-resolution simulations (at approximately λd,0 grid spacing) is
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Figure 3.13.: Stochastic heating in the simulation of a thermal electron cloud.

shown in Figure 3.13a. The energy increases linearly with a rate that depends on the
numerical parameters of the simulation. For simulations of up to 25 million steps, no
change in the behaviour over time was observed, except for simulations with the lowest
used resolutions. For these, a few particles were accelerated to energies high enough to
leave the grid volume.
An explanation for the increase in energy is given in [21, p. 316]. The authors start

with the assumption that all errors in the simulation can be included in a random “error”
electric field δE. On average, this field should not accelerate particles, i.e. δE = 0, but
has a variance δE2 6= 0. This error field leads to a change in velocity for each particle
δvi = (q/m)δEi∆t in every time step ∆t. Under this assumption, they calculate the
average change in kinetic energy per particle ∆T between two steps resulting from this
kind of field,

∆T = Tj+1 − Tj =
1

2
m
(

(vi + δvi)
2 − v2

i

)
=

1

2
m
(

2viδvi + δv2
i

)
=

1

2

q2

m
δE2∆t2. (3.32)

Since the error occurs in every time step, the energy increases linearly. This matches the
observation in the presented simulations. Simulations with different time steps also show
the quadratic dependence on the timestep ∆t predicted by (3.32), at least for ∆t > 0.2 ns.
For smaller step sizes, the heating rate stays constant.
For low numbers of macroparticles, one can assume that the error in the field is of

statistical origin and δE ∼ 1/
√
Np, where Np is the number of macroparticles. This

was also found in [43, Sec. II] in a more detailed analysis for KV and Gaussian beam
distributions. Then, from (3.32), ∆T ∼ N−1

p . Figure 3.13b shows the dependence of the
energy increase rate on grid spacing and macroparticle count, as well as 1/Np curves as
grey dashed lines for comparison. The energy increase rates calculated from the simulation
follow the predicted behaviour well. Depending on the grid resolution, the behaviour
diverges towards higher macroparticle counts—indicating that some other, unidentified
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P. Value
W 120 keV
m 1 u
g 3.0582 T m−1

σ0 60°
σ 14.9°
β 1.63 m
α −5.1
ε 25 mm mrad
I 15.77 mA
K 0.25× 10−3

(a) Parameters.
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(b) Envelope and single particle tracks from the integration of (2.20).

Figure 3.14.: Parameters of the periodic transport channel used to test bender and trali-
trala.

process becomes relevant as the fluctuation in the charge density becomes smaller.
By smoothing the potential (and thus the electric field), the observed heating rate can

be decreased. This was done using the Fast Fourier solver (Section 3.2.2) by setting the
high-frequency part of the spectrum to zero before performing the inverse transform. For
50000 macroparticles and a grid of 643, the heating rate decreased from 14.2 keV s−1 to
7.3 keV s−1, when cutting off above i2 + j2 + k2 > 0.25N2

g . At this level of reduction
however, ringing artifacts were clearly visible in the charge density. Therefore, if filtering
like this were to be used, special care needs to be taken not to significantly change the
charge density of interest. Smoothing the particle distribution was not further investigated
in this thesis.

In retrospect, the choice of test system was not optimal. Due to the inhomogeneity of
the chosen electron cloud, finding a dependence on parameters such as the Debye length
of the plasma is difficult and was not performed. A better choice would have been either
choosing a system with many Debye lengths contained within the electron cloud or the
simulation of a periodic system.

For the beam simulations in Chapter 5, stochastical heating is likely not relevant. For
example, for the simulations of the FRANZ LEBT, i.e. the transport of a 120 keV proton
beam over 3.7 m, at 100 keV s−1, the numerical energy increase amounts to 80 meV,
corresponding to 0.8 mrad if present in one of the transverse planes. For long-term
simulations, such as the beam compensation studies in Chapter 4 or for long-term
tracking of beams in circular accelerators [43] however, the effect is of great importance.

3.4.2. KV envelope solution

As was described in Section 2.4, the Kapchinsky-Vladimirsky (KV) distribution is self-
consistent under transport including space charge in two dimensions. For this choice
of distribution, the envelope can be calculated from the KV envelope equation (2.20),
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Figure 3.15.: Comparison of the phase advance calculated from simulations using different
grid resolutions and number of particles. The correct value is shown as a
dashed line.

which as a system of two ordinary differential equations is much simpler to solve than the
Vlasov equation. To verify the correct functioning of a PIC-code, simulation results can
be compared to the resulting envelope.

As a test case, a periodic focusing channel was chosen and a beam matched using the
algorithm described in Section 2.4.1. The channel has a cell length of 40 cm with two
quadrupole magnets of 10 cm length placed at 5 cm and 25 cm. The first focuses in x,
the second in y. The parameters of the channel and the matching are summarized in
Figure 3.14a. A plot of the envelope and some particle trajectories is shown in Figure 3.14b.
Using a matched beam has the benefit that the envelope does not oscillate strongly and
the solution is known for an arbitrarily long transport. Furthermore, results for the phase
advance per cell can be compared instead of the envelopes.
Only for tralitrala, a full agreement can be expected. As a three-dimensional code,

bender also includes the longitudinal coordinate and therefore the influence of the longitu-
dinal electric field produced by the envelope oscillation of the beam. Furthermore, the
integration of motion does not include the paraxial approximation and particles on the
outer trajectories will fall behind those closer to the axis. Therefore, a KV distributed
beam will not be perfectly self-consistent in three dimensions. Since both effects are
small at the chosen parameters—x′ ≈ 22 mrad and the beam potential varying only
approximately by 1 V on the axis—no differences can be expected over the short lengths
calculable.
For the simulation in bender , 10 cells of the channel were simulated by continuously

injected particles at the start of the channel. After 4 m, at the end of the simulated
region, the beam is dumped. An initial beam distribution was generated from the results
of the integration of the envelope equation. Without such an initial distribution, particles
are accelerated forward by electric field of the forming beam. The calculations were run
long enough for the initial distribution to be lost and the phase advances calculated only
from newly inserted particles. For tralitrala, a step size of 1 mm was used. The field was
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calculated using the two-dimensional FFT solver. In both cases, a 6 cm wide grid was
used. For the bender simulation, the quarter symmetry was exploited to decrease the
number of grid points and particles.

The phase advance was fitted using the algorithm described in Section 2.4.2. The results
are shown in Figure 3.15. tralitrala reproduces the correct value 14.91°, but requires
a resolution of 60 µm and more than 5× 105 particles to reach this value. At coarser
resolutions, the particle distribution showed a slight drop of the beam density at the
edge. This can be explained by looking at the calculated electric field. When the edge of
the beam falls within a grid cell, the electric field in this cell slightly deviates from the
required radially linear behaviour.
Simulations with grid resolutions this fine would have required prohibitively long

simulation times using bender . For the smallest grid spacing used, the result σ = 14.97°
nevertheless agrees relatively well with the expected value. Varying the longitudinal grid
spacing from the 2.8 cm to 1.7 mm while keeping the number of particles per cell constant
only resulted in a difference of 0.14°. For the simulations in Figure 3.15a, a spacing of
3.5 mm was used. This result legitimizes using a coarser resolution in the propagation
direction for simulation of continuous beams, unless effects in this direction are specifically
of interest.
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compensated systems

This chapter covers the studies on space charge compensation using bender .
Even though the processes involved in the compensation of negative ion beams—the

most important example being H− beams often used in high-intensity proton machines—
are similar to the positive case, only the compensation of positive ion beams will be
considered. The studies were further limited to the case of proton beams. However, using
the same approach, calculations for different beams could be performed as long as cross
section data for the relevant processes is available.
The chapter starts with a short overview over commonly used measurement methods

and general definitions. In Section 4.2, sources of compensation electrons as well as the
simulation model will be discussed. Results are presented in Section 4.3 and compared
with predictions from a simpler model in Section 4.4.

4.1. Space charge compensation

4.1.1. Measurements

Commonly, in low-energy beam transport lines, Faraday cups and slit-grid emittance
scanners are used as diagnostics to provide information about the beam. Faraday cups
measure the beam current by capturing the entire beam with a geometry usually designed
to minimize the deposited beam power density. Most designs include either an electrostatic
repeller or a magnetic dipole field to prohibit secondary electrons produced on the surface
from leaving the cup, which would alter the current measurement. Slit-grid emittance
scanners consist of a slit with an array of wires positioned at some distance, which are
moved transversely through the beam. The slit cuts out a slice of the beam which drifts
onto the wires and registers as current. From the current measurements, the beam
distribution in one plane and thus the emittance can be calculated.

Both methods are destructive and influence the compensation state, either by allowing
secondary electrons to escape into the beam (emittance scanner) or by introducing the
repeller fields. Therefore, for diagnostics of a compensated beam, non-destructive methods
are preferable. One option currently under investigation at IAP is tomography [44], which
reconstructs the density from images taken around the beam.
To gather information on the state of compensation, diagnostics from plasma physics

such as Langmuir probes have been used, for example in [8]. In a plasma, the remaining
potential, the density and the electron temperature can be deduced from the measured
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(a) 127◦ residual gas ion energy
spectrometer.

(b) Electron beam probe for potential measurement.

Figure 4.1.: Non-interceptive beam diagnostics. Images taken from [45].

current-voltage characteristic. For measurements on beams, [45, p. 145] lists various
difficulties that limit the applicability of the method.
When the beam has cylindrical symmetry, the beam potential can be deduced from a

measurement of the deflection of a low current electron beam. As long as the current is
low enough, the method does not significantly disturb the system. A possible setup is
shown in Figure 4.1b.

Residual gas ions are a good probe for the potential. They start with low initial energies
and are accelerated from the system (nearly) interaction-free. Thus, at the walls, their
energy only comes from the potential at the point of ionization. For an energy-resolved
measurement, an electrostatic spectrometer such as the one shown in Figure 4.1a can
be used. In the deliberately decompensated case, the beam distribution can be deduced
from such a measurement.
When the results of two measurements are combined, the density of all beam compo-

nents can be reconstructed in the compensated case. This is possible by combining a
measurement of the beam profile (for example via a backtracked measured distribution)
with the measurement from an electron probe or from a residual gas ion spectrometer [45,
p. 132ff].

Measuring the energy distribution of the compensation electrons is difficult, even when
a Maxwell-Boltzmann is assumed. In [45], an RF probe connected to a network analyzer
was used to measure the response of the electrons to an excitation. From the Q factor
(i.e. the damping of the oscillation), an upper limit of the electron temperature was
deduced. Another option are Langmuir probe measurements [8]. Temperatures could also
be measured optically: for example, in [13], the ratio of two optical emission lines was
used to measure the electron temperature in a Gabor lens.
Figure 4.2 shows two exemplary results of measurements taken from [46]. These were

performed at a two-solenoid beam line containing various devices for diagnostics as well as
six electrodes to confine or extract electrons. The residual gas ion spectrum in Figure 4.2a
shows the influence of an electrode located approximately 40 cm downstream of the
spectrometer. Much larger ion energies at positive bias indicate a global decompensation.
This demonstrates that a local perturbation of the compensation state can have a far-
reaching influence.
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(a) Residual gas ion energy measurement. (b) Emittance measurement after a compen-
sated beam line in a configuration similar
to an injector of an accelerator.

Figure 4.2.: Two measurement results from [46, Fig. 4.31, Fig. 4.22].

The beam distribution displayed in Figure 4.2b is a measurement taken when the
system was configured to produce a focused beam in a configuration similar to that of
an injector for an accelerator. A compensated state was allowed to form by terminating
the system with a repeller electrode on −200 V. The distribution is similar to that of
two beams—one focused and one defocused. The appearance of this “satellite beam” was
interpreted as a consequence from the additional focusing resulting from an accumulation
of compensation electrons on the axis of the solenoids. Therefore, the local distribution
of compensation particles can strongly influence the behaviour of the beam.

One motivation for simulating the compensation process is an improved understanding
and, if unwanted, the mitigation of these effects.

4.1.2. Compensation degree

The most simple model for the compensation process used in modeling LEBTs assumes a
constant reduction of the space charge forces by introducing a compensation degree η.
The factor linearly reduces the perveance of the beam K = (1 − η)K0 (as defined in
(2.18)) and thus also the focusing required. Values around 90 % are typically used based
on experimental experience or as input from some more elaborate code (examples in [47,
11]). This degree is sometimes chosen to vary longitudinally or over time.

In the following, three definitions of a space charge compensation factor will be used.
These capture different aspects of the compensation process. As a measure of the electron
charge,

ηpart(z) =
λe−(z)

λbeam(z) + λrgi(z)
=

λe−(z)

I/vb + λrgi(z)
, (4.1)

where the λ are the line charge densities of the various particle species. In cases where the
electron density is not proportional to the beam density, the quantity can be misleading.
As a worst case example, if all electrons were located outside the beam’s radius, ηpart > 0,
but there is no force reduction inside the beam. However, ηpart can be useful as an input
for theoretical models.
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4. Simulation of space charge compensated systems

Since ϕ(r) =
∫ r
REr(r

′) dr′,

η(r) = 1− ϕ(r)− ϕ(0)

ϕuncomp(r)− ϕuncomp(0)
(4.2)

is proportional to the remaining electric force below radius r. In the following either
ηbeam = η(Rbeam) or ηpot = η(Rwall) will be given.

The choice of “uncompensated” potential ϕuncomp is ambiguous since the beam extension
can change due to the compensation. Both the potential of a beam transported without
electrons or the potential of the beam particles are a valid choice. The former better fits
an intuitive interpretation of “compensation degree”, but predicts compensation in cases
where none is present1. Thus, ϕuncomp was calculated from the beam distribution taken
from the compensated simulation without any secondary particles.

When the only source of electrons is ionization of a residual gas, the electron density
will change with

dn

dt
= nbngσvb −

(
dn

dt

)

loss

. (4.3)

The density of the background gas ng can be calculated from the equation of state of
an ideal gas. nb and vb are the beam density and velocity respectively. Assuming the
absence of particle losses and processes such as recombination, the time to reach full
compensation is

τscc =
1

ngσvb
=

I

vbe

(
W

L

)−1

=
kT

vbpσ
, (4.4)

where
Pp+ =

W

L
=
Ipσ

kT
(4.5)

is the rate of ionization inside a beam of current I per length L.

In low-energy beam transport sections of high-intensity linacs, the residual gas pressure
ranges from 1× 10−4 mbar to 1× 10−8 mbar. At these values, the gas is in a molecular
flow regime, i.e. the mean free path is larger than the characteristic length of the system
and particles collide mostly with the walls. The density of the gas molecules for these
values are almost always larger than the density of the beam. For example, a 100 mA,
120 keV proton beam with 1 cm beam radius has the same density as an ideal gas with
1.7× 10−8 mbar at room temperature. At higher pressures, due to the large difference in
the number of particles, it can be assumed that the impact of the beam on the gas is low.
Whether this is true at lower pressures is difficult to ascertain.

1A simple example would be a system with two sections, one either fully neutralized or fully decom-
pensated, one fully decompensated. If the beam has a larger radius in the second section when
neutralization is permitted in the first section, η(r) would be larger than 0 just from the change in
beam radius.
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4.2. Sources of compensation electrons

4.1.3. Estimation of the residual gas ion background

Residual gas ions are accelerated outwards radially by the electric field of the beam.
Depending on the transit time, a background of ions will form. The time for a positively
charged particle of mass m and charge q to move from an initial radius r0 to r in a
homogeneous beam of current I and velocity vb is given by

T (r0, r) = π

√
ε0
m

q

vb

I





r0erfi

(√
ln
(
r
r0

))
if r0 > Rb

Rb

√
2
π cosh−1

(
Rb
r0

)
+Rb exp

(
1
2

(
r20
R2

b
− 1
))

if r0 < Rb, r > Rb

·
[
erfi

(√
1
2

(
1− r20

R2
b

)
+ ln

(
r
Rb

))
− erfi

(√
1
2

(
1− r20

R2
b

))]

Rb

√
2
π cosh−1

(
r
r0

)
if r0 < r < Rb

(4.6)
Rb is the beam size and erfi(x) = −ierf(ix) the imaginary error function. Space charge
compensation can be included by scaling the current I → (1 − η)I. T (r0, r) is not
necessarily monotonically increasing. For small beam radii, it is possible for ions created
inside the beam to overtake those created at the edge.
Neglecting the effects of the charge of the residual gas ions, it is possible to estimate

the amount of ions remaining. At radius R,

λrgi(R) = 2π

∫ R

0

dρrgi

dt
T (r0, r) r0dr0 =

2

R2
b

Ipσ

kT

∫ R

0
T (r0, r) r0dr0. (4.7)

Thus the line charge from residual gas ions contained within the beam is

λrgi(Rb) =
2

Rb

Ipσ

kT

√
m

q

2πε0vb

(1− η) I

∫ Rb

0
cosh−1

(
Rb

r0

)
r0dr0 =

pσ

kT
Rb

√
m

q

2πε0vb

(1− η)
I.

(4.8)
Lighter particles are more easily accelerated by the electric field, reducing the ion back-
ground. Due to the lower remaining electric field, the number of residual gas ions increases
with the compensation degree. Close to full compensation, the electric field produced by
the ion charge becomes significant. In these cases, the real behaviour will differ from (4.8).
In relation to the beam line charge density, λrgi(Rb) /λbeam, a change in compensation
leads to the same behaviour as a reduction of beam current.

4.2. Sources of compensation electrons

In a beam transport line, secondary particles are continuously introduced by various
processes. Both ions and electrons can ionize remaining residual gas atoms and will,
on impact with the vacuum vessel or other objects within their path, release further
secondary particles. In the following, all of these particles will be said to be “produced”,
even though no new particles are actually formed.
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4. Simulation of space charge compensated systems

The level of compensation results from a balance between the rate at which these
are formed and at which these are able to escape the system. Therefore, an important
ingredient in a model of the compensation are the production processes. In this section,
those most relevant for proton beams will be covered.

4.2.1. Proton impact ionization

Using the semiempirical model by Rudd et al. [48], the differential cross section for the
ionization of a shell i containing Ni electrons can be calculated from

dσ

dW
= 4πa2

0R
2NiB

−3
i

F1(t) + F2(t)w

1 + exp
(
α (w − wc(t)) t−1/2

) 1

(1 + w)3 . (4.9)

w = W/Bi is the energy of the secondary electron W scaled by the binding energy Bi,
t = (me/mp)T/Bi the energy of the proton T scaled by the electron-proton mass ratio
and the binding energy. R = 13.6 eV is the Rydberg energy constant and a0 = 0.529Å
the Bohr radius.
The dependence on the projectile energy is contained in the functions

wc(t) = 4t− 2
√
t−R/(4B)

and

F1(t) = L1(t) +H1(t) F2(t) = L2(t)H2(t) /(L2(t) +H2(t))

H1(t) = A1 ln(1 + t)
(
t+B1t

−1
)−1

H2(t) = A2t
−1 +B2t

−2

L1(t) = C1t
D1/2

(
1 + E1t

D1/2+2
)−1

L2(t) = C2t
D1/2.

The parameters A1,2 . . . D1,2, E1 and α need to be fitted to measured cross sections.
Reference [48] lists values for various gas atoms and molecules. Those that were used in
this thesis are listed in Table 4.1. The authors give values for “inner shells”, which is to
be used for all shells with Bi < 2B1s, where B1s is the ionization energy of the first shell.
The atomic data required for the calculation for these gases in Table 4.2 was taken from
the same reference.
Figure 4.3a shows the total and differential ionization cross sections for various gases

that were used in the simulations. The total cross sections were determined by numerical
integration of (4.9). Their maxima all fall inside the range of beam energies typically
found in low-energy beam transport sections.
The authors of the model report an accuracy of probably 10 % to 15 % for the argon

ionization cross sections in the range between 50 keV to 500 keV and for electron energies
below a few hundred eV.

For impact of 120 keV protons on argon atoms, the average secondary electron energy
is 27.5 eV and the median of the distribution is 12.6 eV.
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4.2. Sources of compensation electrons

Species A1 B1 C1 D1 E1 A2 B2 C2 D2 α

He 1.02 2.4 0.70 1.15 0.70 0.84 6.0 0.70 0.50 0.86
Ar 1.20 8.0 0.86 0 0.80 0.90 2.7 0.75 0.80 0.71
H2 0.96 2.6 0.38 0.23 2.2 1.04 5.9 1.15 0.20 0.87
N2 1.05 12.0 0.74 -0.39 0.80 0.95 1.20 1.00 1.30 0.70
Inner shells 1.25 0.5 1.00 1.00 3.0 1.10 1.30 1.00 0 0.66

Table 4.1.: Fitting constants for Rudd’s model. Excerpt from [48, Table V].

B U N
1s 24.59 39.51 2

(a) He

B U N
1σg 15.43 31.96 2

(b) H2

B U N
1s 3202.9 4192.9 2
2s 326.0 683.1 2
2p 249.18 651.4 6
3s 29.24 103.5 2
3p 15.82 78.07 6

(c) Ar

B U N
1σg 409.9 601.78 2
1σu 409.9 602.68 2
2σg 37.3 69.53 2
2σu 18.78 62.45 2
1πg 16.96 55.21 4
3σg 15.59 44.27 2

(d) N2

Table 4.2.: Atomic data for the gases used in the space charge compensation simulations:
binding energy B in eV, kinetic energy U (required only for the BEB cross
section) in eV and number of electrons N . Excerpt from [48, Table I(a)].

 0

 1

 2

 3

 4

 5

 6

 1  10  100  1000

C
ro

ss
 s

ec
tio

n 
[Å

2 ]

Proton energy [keV]

Ar
He
H2
N2

(a) Total ionization cross section for various
gases. Solid lines calculated using Rudd’s
model, data points from [49, Table IV].

10−10

10−8

10−6

10−4

10−2

100

 0  200  400  600  800  1000

C
ro

ss
 s

ec
tio

n 
[Å

2 /e
V

]

Electron energy [eV]

SDCS for p+ + Ar

10 keV
50 keV

100 keV

500 keV
C&R 71

(b) Single differential cross section of argon for
various proton energies. Data "C&R 71"
from [50, p. 424].

Figure 4.3.: Cross sections calculated from Rudd’s model for proton impact ionization.
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4. Simulation of space charge compensated systems

For multiatomic targets more than one reaction is possible on proton impact, such as

p +X2 → p + X+
2 + e− (4.10)

→ p + X+ + X0 + e− (4.11)

→ p + X2+
2 + 2e−

. . .

The remaining ions and atoms could also remain in excited states. The cross section
calculated from (4.9) only predicts the total ionization cross section and leaves the
remaining ion unspecified.

Data from Shah and Gilbody [51, Table 1] for molecular hydrogen shows that the cross
section for the dissociation reaction only contributes at most 14 % to the total ionization
cross section at the lowest measured energy of 38.3 keV. For higher energy, the fraction
decreases further. Considering the uncertainties in the cross sections, for H2, it should
be valid to only include reaction (4.10). For molecular nitrogen, such data could not be
found. The current implementation also assumes that only N+

2 is formed.

4.2.2. Electron impact ionization

Only a fraction of the electrons resulting from proton impact ionization have enough
energy to ionize an additional gas atom. For a 120 keV proton beam passing though an
argon gas, (4.9) predicts, that 45 % of the electrons have energies higher than the lowest
ionization energy. When the remaining beam potential is sufficiently small, electrons
cannot gain enough energy to cause further ionization.

This is not the case during build-up of the compensation, in cases of low compensation
degrees as well as for high-intensity beams. Thus, bender also includes a model for electron
impact ionization.

The Binary-Encounter-Bethe (BEB) model [52] was chosen to calculate the cross section
for electron-impact ionization. The SDCS of a single shell i as defined by the BEB theory
is given by

dσi(t, w)

dw
= 4πa2

0N

(
R

B

)2 3∑

n=1

Fn(t)

[
1

(w + 1)n
+

1

(t− w)n

]
, (4.12)

where F1(t) = − F2

t+ 1
, F2(t) =

2− (b/N)

t+ u+ 1
, F3(t) =

b

N

ln(t)

t+ u+ 1
.

The primary particle energy T, the secondary electron energy W and the mean kinetic
energy U of a bound electron are all incorporated after division by the binding energy
B: t = T/Bi, w = W/Bi, u = U/Bi. Multiple electrons in the same shell are included
by multiplication of the cross section with their number Ni. The data from Table 4.2
was used. b = 1.605 for Helium and b = 1.173 for H2 was taken from [52, Table I]. For
nitrogen and argon, b/N = 1 was assumed.

48



4.2. Sources of compensation electrons
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Figure 4.4.: Cross sections calculated from the BEB model [52] (solid lines) in comparison
to measured data (data points).

Integrated over w, the total cross section of a single shell is

σi(t) =
4πa2

0N (R/B)2

t+ u+ 1

{
1

2

b

N

(
1− t−2

)
ln(t) + (2− (b/N))

[
1− t−1 − ln(t)

t+ 1

]}
. (4.13)

Figure 4.4 shows data for various gases as well as the differential cross section for
electron impact ionization of argon. In general, agreement to the presented measured data
from [53], [54] and [55] is quite good, even though some features such as the maximum of
the cross section in argon or the small peak in the secondary cross section data are not
well reproduced.

4.2.3. Secondary electron production on surfaces

An additional purpose of Low-Energy Beam Transport sections is often the separation
of unwanted ion fractions. From proton ion sources, a fraction of H+

2 and H+
3 ions

is extracted. Since these ions have a higher magnetic rigidity, they are not focused
as strongly as the main beam and are continually lost throughout the beam line. In
addition, the transmission of the beam is often not 100 %. When these ions hit the vacuum
vessel, electrons and atoms are emitted. The atoms will not be considered further here.
Depending on the projectile as well as the surface material and composition, the number
of produced electrons at energies used in LEBT sections is in the order of η = 1 . . . 10
electrons per ion [56]. Thus, when the losses per meter

λloss

Ib
>

1

η

pσ

kbT
, (4.14)
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Figure 4.5.: Electron background forming due to particle losses on the vacuum vessel.
Values of ηp are rough guesses.

the number of electrons produced by secondary electron emission exceeds that of the
ionization process with cross section σ. At p = 1× 10−3 Pa and σ = 5.3Å2 (proton
impact ionization cross section on argon at 120 keV), even at a comparatively low value
of η = 2, (4.14) results in 0.6 % m−1. Thus, it is quite likely that the electron production
rate at the walls exceeds that of impact ionization.
The secondary electrons emitted from the walls will see the attractive potential of

the beam and oscillate once across its volume. If during this period no process leads to
an energy loss, they will simply hit the wall on the opposite side of the system. There
is some probability, that the electron is reflected or produces a number of secondary
electrons—[57] gives a value of ηe = 50 % for electrons close to 0 eV impacting a stainless
steel surface. The charge of the electrons in flight will provide some compensation. The
line charge density of electrons inside the beam can be estimated using

λe = ηpλlossTtransit

∞∑

i=0

ηie =
ηp

1− ηe

Iloss

L
Ttransit, (4.15)

where Ttransit is the time required for an electron to cross the vacuum vessel. Assuming
radial symmetry and since electrons outside the beam’s volume have no influence on it,
one can assume that new electrons are directly created at its edge with no initial energy.
The real transit times will be lower due to the velocity gained outside the beam radius.
Then,

λe

λb
=

ηp

1− ηe

Iloss

IbL

√
2
me

e
ε0

(πvb)3/2

√
(1− η) I

Rb =
ηp

1− ηe

Iloss

IbL
π

√
me

mb

√
Q

K
Rb. (4.16)

Under the given assumptions, the background is thus proportional to the beam loss per
meter, the beam radius and inversely proportional to square root of the beams perveance
K. Q is the charge state of the beam. (4.16) diverges for compensation degrees η → 1
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4.2. Sources of compensation electrons

due to the vanishing electric field. In this case however, the assumption that the electron
background does not significantly alter the electric field of the beam is not valid.

Figure 4.5 displays values calculated from (4.16) for various beam parameters. Unless
the beam is already strongly compensated by some other effect, the contribution from
secondary electrons is negligible. With the same argument, secondary electrons from
residual gas ions—the yield for Ar+ ions is lower than 0.1 for energies below 100 eV [58]—as
well as from escaping electrons can be neglected.

The situation is different in cases when the beam impinges on a surface longitudinally.
Initial simulations showed instabilities due to the electrons propagating against the beam’s
direction. These were not pursued further.

4.2.4. Simulation of ionizing collisions

The probability for a process j to occur for a particle with energy Ei in a time step ∆t is
given by

Pi,j = 1− exp(−nt(r)σj(Ei) vi∆t) = 1− exp(−νi,j(r, Ei) ∆t) , (4.17)

where σj is the cross section, nt the density of the target species, vi∆t the distance
traveled and νi,j the collision frequency. Evaluating equation (4.17) directly for each
particle in each step is computationally expensive: the main cost comes from evaluating
the cross section for each particle energy in every step.
By introducing a maximum collision frequency,

νmax = max
r,E

(ν(r, E)) = max
E

(vσT(E)) max
r

(nt(r)) , (4.18)

where the total cross section σT is the sum of the cross sections of all possible processes,
the upper limit of collisions per step can be calculated,

Ncol = Nparticles (1− exp(−νmax∆t)) . (4.19)

Ncol particles are then picked at random. To reproduce the exact collision rate, the
implementation in bender carries over the fractional part between time steps. For each of
these particles, the collision rates νi,j are then calculated and compared to νmax. Drawing
a random number R ∈ [0, 1], reaction 1 occurred if R < ν1/νmax, reaction 2 occurred if
ν1/νmax < R < (ν1 + ν2) /νmax and so on. For R >

∑
j νj/νmax, no collision is calculated.

This algorithm is called Null collision method [59] for this reason. The approach is
illustrated in Figure 4.6 including three possible unspecified processes.

Using the Null collision method, the collision probability only needs to be calculated for
Ncol particles instead for all particles. For the simulations below, the ratio to the number
of macroparticles was in the order of per mill. In cases where νmax does not differ greatly
from the sum of all collision rates, this number should be small, because otherwise the
probability for multiple collisions to occur during one timestep is not negligible anymore.
When an ionizing collision was found to have occurred, the energy of the secondary

particle Wsec is picked at random from the distribution given by the differential cross
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Figure 4.6.: Null collision algorithm: the selection of particles is performed using a
maximum collision frequency, after which the type of collision is determined
including a “null collision”.

section of the reaction. Apart from the secondary electron energy, only the momentum
and energy of the incoming projectile as well as the binding energy B are known. Both
the final velocity vector of the projectile as well as that of the remaining ion are unknown,
as is the direction of movement of the secondary electron.
To be able to calculate these quantities, the following assumptions were made:

1. Rotational symmetry around the projectile velocity vector. Since the orientation of
the gas atoms or molecules is completely random, this assumption should be valid.

2. The secondary electron emission angle is known. For the present simulations, as
a rough estimation, a completely isotropic distribution was assumed. In reality,
for certain secondary electron energies, the differential cross sections differ over
many orders of magnitude over different emission angles, both for proton impact
ionization (114 keV p + H2, [60, Fig. 2]) and electron impact ionization (500 eV
e− + Ar, [61, Fig. 2]). If a significant influence of the simulation results on the
secondary electron angular distribution should be found, the angular distribution
could also be taken from double differential cross section data.

3. The ion moves in the same direction as the incoming projectile, ϕi = 0.

The main goal of this model is not to provide an accurate model of the kinematics of
ionizing collisions but to ensure energy and momentum conservation in the simulation.
Under the given assumptions, calculation of the three remaining quantities ϕp, vp and vi

is possible.
The final ion momentum is

pi =

(
1 +

mp

mi

)−1
{

∆p−
√

∆p2 −
(

1 +
mp

mi

)[(
1 +

mp

mt

)
p2
t + 2mpB − 2p̄ppt cosϕt

]}
,

with ∆p = p̄p − pt cosϕt. The quantities with indices t, p and i label properties of the
target electron, the projectile ion or electron and the residual gas ion respectively. p̄p is
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Figure 4.7.: Quantities in the classical collision model.

the momentum of the incoming projectile. The argument of the square root is negative
for cosϕ−t,min < cosϕt < cosϕ+

t,min, where

cosϕ±t,min = −mp

mi

p̄p

pt
±
√(

1 +
mp

mi

)[(
mp

mi
− 1

)
p̄2

p

p2
t

+
mp

mt

(
1 +

B

Et

)
+ 1

]
. (4.20)

For high secondary electron energies in the range of the projectile energy, this limits the
emission angle to either the forward or the backward direction. Figure 4.8a shows the
dependence of the final ion energy in the impact of a 500 eV electron on argon. The energy
imparted on the ion is largest for backward emission of the electron. For the depicted
case, due to the huge mass difference, only up to 25 meV are transferred. However, also
in cases with no mass difference such as 120 keV proton impact on atomic hydrogen, the
predicted energy transfer to the ion does not exceed a few 10 eV.

The final proton momentum is then

pp =

√
(∆p− pi)

2 + p2
t sin2 ϕt

and the scattering angle of the projectile is related to that of the electron by

sinϕp =
pt

pp
sinϕt.

Figure 4.8b shows the scattering angle of the projectile. Since the calculation is classical,
it is possible to distinguish the incoming projectile from the secondary electron. Most
electrons are deflected only by a few degrees and the deflection decreases with the increased
projectile velocity. For 120 keV protons for example, the angular distribution has a similar
shape centered at 0.1 mrad.

In the implementation in bender , the calculation is made in a frame oriented along
the direction of movement of the projectile. The two “created” macroparticles are then
rotated back into the reference frame.
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4. Simulation of space charge compensated systems

(a) Ion energy distribution for 500 eV electron
impact on argon. The green lines are the
two branches of (4.20).
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Figure 4.8.: Results from the classical collision model for electron impact ionization of
argon gas.

4.3. Simulation of a drift system

Space charge compensation in two scenarios was investigated: in a beam drift over a
distance of 50 cm and in a model LEBT section consisting of two solenoids. Only the
results for the drift section will be presented here.
A 120 keV proton beam was transported. This is the maximum beam energy of the

low-energy beam transport section at the upcoming FRANZ facility (Section 5.2.2)
and will enable a comparison between simulation results and measurements. A beam
current of 100 mA with a homogeneous distribution and an rms emittance of 25 mm mrad
(unnormalized) were arbitrarily chosen. For the drift system, the beam was matched using
tralitrala in a way that no particles are lost inside the system for currents below 100 mA.
The ellipse parameters of α = 7.4 and β = 1.89 m were chosen so that the envelope of the
beam is approximately symmetric around the middle of the system for full current as well
as for 95 % compensation. At full current, most particles are reflected before crossing the
beam core, while at high compensation, most particles are able to cross over. The beam
envelope along with some particle tracks are displayed in Figure 4.9.
The simulated systems are bounded by cylindrical repeller electrodes. For the drift

system, unless otherwise specified, a beam pipe with 4 cm diameter terminated by repellers
with 5 mm length and an aperture of 35 mm was used. In such a geometry, the potential on
the axis drops to 56 % of the applied voltage. Thus, to prohibit an electron with no energy
from leaving the system longitudinally, at least about twice the beam potential (400 V)
has to be applied. To also stop electrons with higher energies, a voltage Urep = −1.5 kV
of about four times the uncompensated beam potential was used if not otherwise specified.
This guarantees that there is no particle flux from or to the simulation volume.

Unless otherwise specified, argon was used as a residual gas. This choice was made due
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Figure 4.9.: Beam envelope at full current and full neutralization (black curves), along
with some particle tracks (colored). The red rectangles give the location of
the repeller electrodes.

to the comparatively high ionization cross sections—keeping simulation times low—and
to avoid dealing with multiple reaction products as in the case of gases forming molecules.
Another factor was the availability of tabulated double differential cross section data [50].
This data however was not used.

In a real low-energy transport line, the residual gas will likely contain a large amount
of gas from the ion source, with the pressure decreasing with distance, depending on the
beam pipe geometry and pump position. To avoid the complexity involved in interpreting
the results of a simulation with locally varying production rate, a constant pressure is
assumed over the simulation volume. An argon background of p = 1× 10−5 mbar was
used, except where otherwise specified. Experimentally, such a composition could be
achieved by flooding a vacuum chamber with argon gas.
Secondary electrons from particle impact on the vacuum vessel were not considered,

since their influence was estimated to be small (see Section 4.2.3).
The simulations were made using the Fourier solver described in Section 3.2.2 utilizing

quarter symmetry by using Neumann boundary conditions on the x− z and y − z planes.
Due to the rectangular geometry, there is a systematical error. The electric field along the
axes will always be higher than along the diagonals. Furthermore, the repeller electrodes
are not included as boundary conditions in the calculation of the potential of the particles.
Due to the large aperture compared to the beam pipe radius, the influence on the potential
by this should be small. A grid resolution of approximately 0.4 mm in all three directions
and a time step of 50 ps was used.

For the drift system, on two nodes of the HHLR Fuchs Cluster2, at 1000 particles per
step (resulting in 2.1 million proton, 1.8 million electron and 200000 residual gas ion
macroparticles), 50 µs of simulated time or one million steps took two weeks.

4.3.1. Build-up of compensation

If no electrons were lost, compensation should reach 100 % after τscc ≈ 16.25 µs (equation
(4.4)).

2AMD Opteron Processor 6172, 2.1GHz, 12-core [62]
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Figure 4.10.: Time dependence of various parameters of the drift simulation. (a) Number
of particles in the simulation in comparison to the number of protons.
(b) Currents of secondary particles lost on the negatively biased repeller
electrodes, longitudinally on the axis and radially. (c) Compensation degrees
as defined by (4.1) and (4.2) averaged over the inner 30 cm of the system
i.e. outside the field of the repeller electrodes. (d) Potential at the center
of the system, r = 0 m and z = 25 cm. (e) Second moments in velocity for
the compensation electrons. (f) Deviation of various beam parameters after
transport, such as emittance, kurtosis and rms size.
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4.3. Simulation of a drift system

Figure 4.10 shows various parameters of the simulation over time. The build-up of the
compensation can be separated in three periods depending on the electron losses: a period
of nearly loss-free accumulation of electrons until approximately 0.4τscc, a relaxation
period where the beam potential is reduced far enough for more electrons to escape the
system and a steady-state starting at approximately τscc in which electron production
and losses are balanced and in which the beam transport remains stable.
At the start of the build-up phase, electrons are only produced by proton impact

ionization and the number of particles in the simulation increases linearly with the
production rate predicted by equation (4.5). The average compensation degree outside
the influence of the repellers rises faster than predicted by the linear model. This is a
result from electrons accelerated out of the repeller region. In the first 10 µs, the number
of electrons from electron impact ionization rises quadratically.
Initially, the number of residual gas ions increases with the electron production rate.

Starting after the shortest initial ion arrival time predicted by (4.6) for ions created
at the beam edge at the center of the system, T (6 mm, 20 mm) ≈ 0.4 µs, the current
increases within 0.6 µs to Pp+ . 1 µs is approximately the time required for ions from the
axis to reach the beam pipe. The average charge density inside the beam at this point
is 0.29 nC m−1 (1.5 % of the beam’s line charge density). Including the compensation
degree of 11 %, the result of (4.8) is 0.27 nC m−1. This indicates that at this level of the
compensation build-up, the assumption used in the derivation of (4.8) holds quite well.

After approximately 0.5τscc, the potential becomes low enough for an increasing number
of electrons to escape the system and the curve for the number of particles in the system
differs from linear behaviour. Around this time, significant deviations in the beam
parameters can be observed. The decrease in xrms is a result of the beam matching. As
the space charge forces decrease, the focus point of the beam initially moves backwards
as protons are deflected outwards radially later and later. This shows up as a decrease in
beam radius after 50 cm. At some point, more particles are able to cross over the axis and
the focus moves inwards again, leading to an increase in xrms at the end of the system.
The same behaviour is present in calculations, where the compensation is treated by a
constant compensation factor, with a minimum in xrms at around 50 % compensation.
Regardless of the high repeller voltage, a tiny fraction of the electrons is still able to

escape the system longitudinally. Those are formed within the repeller with a sufficiently
high initial velocity pointing out of the system. Their number, also shown in Figure 4.10b,
initially increases until 0.5τscc and then decreases. The reason for this behaviour is the
movement of the focus. When the beam radius at the end of the system is smaller, the
beam potential is larger, compensating the repeller voltage, which allows more electrons
to escape.
The beam initially becomes hollow (kurtosis smaller than 2) and the beam emittance

decreases by approximately 2 %. This effect can be explained by the non-linear field
appearing due to the nonproportional distribution of the electrons and will be discussed
in Section 4.4.
After τscc, the compensation degree ηpot already has 96.7 % of its equilibrium value

ηeq
pot = 83.9 %. From there, the difference of ηpot to the last simulated value falls
exponentially with a (fitted) time constant of 3.6 µs.
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Figure 4.11.: Spatial dependence of various quantities in the drift simulation in the steady
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Figure 4.12.: Two electron tracks from the compensation simulation of the 50 cm drift.

4.3.2. Steady state

Figure 4.11 shows the charge density of the simulated species as well as the remaining
charge density in the steady state. The reduction of the potential on the axis ηpot is nearly
constant outside of the repeller’s range, varying by 0.6 %. ηbeam achieves a maximum of
87 % at z = 7.5 cm but decreases to 77 % in front of the focus point (24 cm). In the focus
point, there is a small local maximum of 81 %. At the end of the system outside of the
repeller’s reach, ηbeam = 83 %.

The beam, homogeneously distributed initially, clearly becomes hollow around the focus
and then relaxes again to a more homogeneous distribution. The increase in density at
the beam edge in the focus is not well compensated by the electrons and thus also shows
up in the plot of the net charge density in Figure 4.11d.
Instead of remaining confined to the beam volume, some electrons are present at the

edge of the beam. The negative charge density in the simulation sometimes takes on
values of about 25 % of the beam’s charge density at the edge. The compensation electrons
oscillate through the beam radially as well as longitudinally. Figure 4.13 shows some
exemplary particle tracks. Longitudinally, most electrons move between the electric
fields of the two repellers at almost constant velocity, where they get reflected sharply.
Sometimes, these slow down somewhat at a location close to the beam’s focus. For the few
particle tracks that were exported from the simulation, oscillation times from 0.15 µs to
0.4 µs were found. Some of the electrons do not have sufficient energy to cross between the
two sides, oscillating between repeller and focus. There are also some particles switching
between these two behaviours.

The transverse oscillations have a much higher frequency, exemplary values range from
3 ns to 15 ns per oscillation. Since the charge density remaining near the axis is low, so are
the electric fields, i.e. most electrons move through the center at constant velocities and
only experience a force near the beam edges, reversing their motion somewhere outside of
its radius.
The argon ions form a low background of about 10 %. Near the axis at the beam’s

focus, an accumulation of ions with a charge density of up to 100 µC m−3 (63 % of the
beam’s density) can be found. This is surprising since one would assume the highest
radial electric fields to be present at this location. The effect only starts to occur at about
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Figure 4.13.: Two projections of phase space for the second electron from Figure 4.12.

0.6τscc, when the residual gas ion to electron ratio starts to decrease at the focus while
remaining approximately constant over time in the areas surrounding it. The source of
these effects will be explained in Section 4.4.2.

In the final state, the loss currents of electrons and residual gas ions are equal. Apart
from Pp+ = 1.28 mA m−1, ionization by electron impact contributes another 0.2 mA m−1.
Figure 4.11i contains the radial loss profile of the electrons and the residual gas ions. Over
the largest part of the system, the loss rate for residual gas ions matches the production
rate exactly, since the ions are lost at the same longitudinal positions at which they are
formed. Only in the region affected by the repellers, the rate deviates. Some ions are
able to reach the first repeller, but most of the particles are extracted from the system
longitudinally.

A large number of the compensation electrons escape the system around z = 2.5 cm and
z = 47.5 cm. Responsible are the electric fields pointing from the grounded beam pipe
towards the negatively biased repellers. Electrons reaching the maximum of their radial
oscillation in the area of these fields get accelerated towards the beam pipe. Transversely,
the electron losses show a clear influence of the rectangular boundary conditions imposed
by the Poisson solver: electrons are more likely to be lost on the diagonal than on the
axes. This dependence disappeared when the rz solver was used.
When a bigger beam pipe radius is used—values up to 40 mm were simulated—the

transverse fields close to the beam decrease and the maxima shift more towards the center
of the beam. For these simulations, the applied voltage was scaled so that the potential
on the beam axis inside the repeller remained constant. While increasing the beam pipe
radius increases both ηpart and ηpot, ηbeam remains almost constant in shape. At larger
radii, the only visible effect is a small increase of compensation at both ends of the system
and a small decrease in the length of the electron column. Another difference can be
found in the electron velocity distributions—the curves Figure 4.11h shift to lower values
by about 0.5 eV per 5 mm larger beam pipe. Furthermore, for 25 mm pipe radius and
higher, the electron loss rate in the focus point reaches the ion loss current but does not
exceed it.
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Figure 4.14.: Distribution of electron velocities in a slice of 4 cm length in the center of
the system.

4.3.3. Electron velocity distributions

Figure 4.14 shows the distribution of the electron velocities in a slice of 4 cm length
in the center of the system. In the full slice, the distribution can be fitted well by a
Gaussian, f(v) ∝ exp

(
−mev

2/(2kbT )
)
, where kbT ≈ 27.9 eV for the present simulation.

For Gaussian distributions, kbT = mev2, where v2 is the second-order velocity moment.
Due to the axial symmetry, the “temperatures” T in the transverse directions are equal
everywhere. These differ from the longitudinal values.

A similar distribution can be found at every position along the beam outside the range
of the repeller electrodes. However, the value of T changes longitudinally, as shown in
Figure 4.11h. The maximum of T can be found at the focus of the beam. Towards the
front and the back of the system, its value decreases. The effect is more pronounced in
the transverse planes, where Tx,y decreases by 56 %, than in the longitudinal plane, where
the decrease is only 27 %.

For the first 10 µs, during the build-up of the compensation, the velocity distributions
are more peaked around zero. As can be seen in Figure 4.10e, during this time, the
second-order velocity moments approximately decrease by half and then stay constant in
the steady-state.

Looking at electrons at different radii, we find deviations from a Gaussian distribution
at larger radii. Figure 4.14b shows an example for the same group of particles also found
in Figure 4.14a. Due to the large variation in the number of particles in each ring, the
displayed distributions are normalized independently. The second-order velocity moment
decreases from about 34 eV near the axis to only 3 eV near the beam pipe. One possible
reason for this behaviour might be particle losses: since the potential decreases with
radius, the kinetic energy for electrons required to escape the system is lower at larger
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radii.
In thermal equilibrium, one would expect the electrons to follow a Boltzmann distribu-

tion,

f(r,p) = f0 exp

(
−H(r,p)

kbT

)
= f0 exp

(
− p2

2mkbT
+
eϕ(r)

kbT

)
. (4.21)

Integrated over momentum, the density is n(r) = f0

√
2πmkbT exp(eϕ(r) /(kbT )).

Figure 4.15a shows the distribution of electron energies −H found in arbitrarily chosen
locations in the bender simulation along with exponential fits to these distributions.
Similar distributions are found everywhere in the system outside the repeller region. The
sizes of the regions were chosen to be large enough for sufficient statistics, but small
enough so that the change in temperature over the region is still negligible. The agreement
for total energies below 0 eV is quite good. Electron energies above zero are populated
less than predicted by (4.21), a likely result of particle losses, since the system reduces its
energy when these particles leave the system.

The distribution in a full slice of particles shows exponential behaviour only for particles
with lower total energy. However, taking the temperature calculated from the second-
order moment of all particles in a slice is sufficient to approximately predict the spatial
distribution. The blue curve in Figure 4.15b was calculated using the potential at some
longitudinal position within the system as well as the kbT = mv2 calculated from all
particles located in a slice around this location. The result matches the electron density
taken from the simulation, verifying the behaviour predicted by (4.21).
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4.3. Simulation of a drift system

The double layers observed in Figure 4.11 along the edge of the beam, also found in
Figure 4.15b, are a result of the energy distribution. Since the beam’s potential does
not immediately decrease to 0 V outside the beam, there are always some electrons with
enough energy to temporarily escape its volume.

When the temperature (or temperature distribution) as well as the line charge density
along the beam line is known, the Poisson-Boltzmann equation—already used in Sec-
tion 3.4.1 to generate self-consistent distributions to test bender—can be used to calculate
the density of the electrons without explicit simulation of the compensation process. The
investigation of the influence of the two model parameters on electron distribution and
the beam transport, as well as a comparison to the present simulation can be found in
Section 4.4.

In [45, p. 162], an upper limit for the electron temperature of at most 0.7 eV is given for
a 10 keV, 1.52 mA He1+ beam (K = 1.96× 10−3). Holmes [8, Fig. 12] gives values around
20 eV for a 17.6 mA, 20 keV helium beam (K = 8.05× 10−3). In order of magnitude, the
values from the simulation, where K = 1.56× 10−3, are similar to the result from Holmes.
However, considering the different beam species, background gases and their pressure as
well as geometries, it is impossible to draw any further conclusions.

4.3.4. Origin of the electron velocity distributions

Since the thermalization of the electrons is responsible for their distribution and thus the
influence on the beam, the question which effect is responsible for the formation of the
equilibrium is important.

In an experiment, instead of calculating the energies in a proton impact collision from
the cross section, a fixed value E0 was assumed and electron impact ionization disabled
in the simulation. Even when newly introduced electrons were all given E0 = 0 eV kinetic
energy initially, energy distributions similar to those shown in Figure 4.15a were found.
When the initial energy E0 is increased to fixed values from 25 eV to 100 eV, the

curves in plots such as Figure 4.15a start to drop off earlier and more towards the low
energy end, i.e. lower energy states are less populated than predicted by the Boltzmann
distribution. Additionally, the final temperatures increase from 25.3 eV (E0 = 0 eV) to
50.3 eV (E0 = 100 eV) at the center of the system. Thus, the initial electron energies have
a significant influence on the temperature, but are not responsible for the appearance of
the Boltzmann distribution.
In the steady-state, the densities of the different species and thus the potential is

constant on average. In such a situation, one would assume that the total energy of every
single particle is also a constant. Figure 4.16 shows that this is not the case. Instead, the
energies of the shown particles rapidly fluctuate. On average, the tracks show an increase
more often than a decrease over the lifetime of the electron. For some particles, the energy
increases over more than 100 eV, a range in the order of the total remaining potential,
over a time of 5 µs. Again, we observe that particles with H > 0 are not confined and are
lost at the boundaries.
The hypothesis was formed, that the stochastic heating described in Section 3.4.1 is

responsible for the observed equilibrium. In this case, the average energy of an electron
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Figure 4.17.: Dependence of the compensation degree on the temperature.

increases over time until it can escape the system due to the random error in the electric
field. If this is the case, one would assume the results to be dependent on some of the
parameters of the PIC simulation, especially the number of macroparticles.
Figure 4.17a shows the dependence of the observed electron temperature (calculated

over a slice of particles at the system center) on the amount of charge per macroparticle
used in the simulation. When more particles are used to represent the system, the
temperatures in all planes are lower and, correspondingly, the average compensation
degree of the system changes significantly. If the mechanism responsible would not be
of numerical origin, a convergence to some “correct” value for the given geometry and
ionization rate should be observed as the system becomes better resolved. This is not the
case.
Compared to the number of macroparticles used to represent the beam, the number
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4.3. Simulation of a drift system

of macroparticles used for the electrons only has a minor influence on the temperature.
When multiple macro-electrons per proton impact are created instead of one (with the
charge divided among them), the observed temperatures only deviate by values below
1.5 % between simulations with up to 5 times as many macro-electrons. When the beam
is treated as a static potential and fixed after the steady-state has been reached, the
electron temperatures decrease to 11.8 eV. A further decrease to 8.3 eV was observed,
when residual gas ions were not included in the simulation.

In the case where residual gas ions were included and the beam potential fixed, the
compensation degree does not reach a constant. Instead, electrons and residual gas ions
start to accumulate indefinitely at the same location. After 50 µs, when the simulation
was aborted, the ratio between electrons and ions had reached values close to 1 at some
points in the volume and was still increasing in other parts. This indicates that, if the
hypothesis is correct, the fluctuating forces also significantly influence the residual gas
ions, driving these from the approximately field free region near the beam axis. At lower
temperatures, transversely, the areas of low electric field inside the beam increase. This
further amplifies the accumulation.
When the electric field of the beam is replaced by that of a homogeneously charged

cylinder and electrons inserted accordingly, the transverse velocities remain Gaussian
distributed in the steady state. Varying the total number of macro-electrons inserted
per step (proportionally decreasing the charge per particle) from 5 (3× 105 particles in
the steady state) to 150 (9.5× 106), the temperatures range between 2.65 eV to 1.85 eV.
Longitudinally however, the larger the number of macro-electrons, the more the velocity
distribution becomes approximately triangular. The second-order moments range from
4.7 eV to 11.3 eV, increasing with the number of particles.

The hypothesis also provides an idea about the origin of the observed Gaussian velocity
distributions. It was observed that the remaining electric field around the beam axis
becomes relatively low and, correspondingly, that particles move through the beam core
in straight lines, see Figure 4.13a. They are then smoothly reflected at some point around
the beam edge. If random fluctuations in the field are present, this will lead to a diffusion
of the velocities. The energy curves shown in Figure 4.16 could then be interpreted as
the result of a random walk due to the fluctuating electric field.

To illustrate this, following the calculation by Einstein [63, §4] for Brownian motion, if
the velocity of each particle changes by a random δv in a small step ∆t, where the δv are
distributed with a function φ(δv), then

f(v, t+ ∆t) =

∫ ∞

−∞
f(v + δv, t)φ(δv) dδv

=

∫ ∞

−∞

[
f(v, t) + δv

∂f(v, t)

∂v
+

1

2
δv2∂

2f(v, t)

∂v2
+O

(
δv3
)]
φ(δv) dδv

≈ f(v, t) + 0 +D∆t
∂2f(v, t)

∂v2
.

The first integral over φ(δv) is 1 due to conservation of the numbers of particles, the
second 0 if φ(δv) is assumed to be symmetric and the third is defined as the diffusion
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Figure 4.18.: Results from simulations using an argon background gas at various pressure
values in the range of 1× 10−6 mbar to 2× 10−5 mbar.

coefficient times the time step D∆t. Dividing by ∆t→ 0, we get

∂f(v, t)

∂t
= D

∂2f(v, t)

∂v2
.

The solution with the initial condition f(v, 0) = nδ(v) is

f(v, t) = n exp
(
−v2/ (4Dt)

)
/
√

4πDt,

i.e. a Gaussian of increasing width. The hypothesis is, that at the point where as
many particles diffuse to energies high enough to escape the system as are introduced by
ionization, an equilibrium with a stable, approximately Gaussian velocity distribution
forms.

Further experiments are needed to understand the formation of the equilibrium as well
as its dependence on the number of macroparticles. To do so, a one dimensional model in
r could be implemented, where sufficient particle statistics can be achieved more easily.
Another possible experiment is using grids with different resolutions for the beam and
the electrons—a coarse one for the beam to keep fluctuations to a minimum and a grid
fine enough to resolve the Debye length for the electrons. If stochastic heating is in fact
the source, use of a higher-order PIC scheme or filtering of the charge distribution could
also help reduce the effect.
Physically, a process that drives the velocity distribution towards Maxwellian distri-

butions are particle collisions. For a system of charged particles, these are Coulomb
collisions. For these, starting from the Boltzmann equation, [14, p.15ff, p.33ff] derives an
equation of Focker-Planck type and shows that for isotropic distributions, the velocity
profiles relax towards a Maxwellian. Since the particle-in-cell algorithm solves Vlasov’s
equation, ideally, these collisions should not be present in the simulations. However,
models exist to introduce them into PIC models [64].
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For collisions between beam particles and electrons, Dölling [45, p. 19] gives an average
heating rate per electron for a beam with particle mass mb and charge qb, density nb

at velocity vb passing through a thermal electron background with thermal velocity
vt =

√
2kbT/me,

P =
e2

4πε20me

nbq
2
b

vb
ln(Λ)

[
erf

(
vb

vt

)
− 2√

π

(
1 +

me

mb

)
vb

vt
exp

(
−
(
vb

vt

)2
)]

. (4.22)

For the given system, P = 19.5 keV s−1, increasing slightly for colder electron temperatures
and towards lower beam energies. The magnitude of this rate is roughly equal to those
that were observed in the test system in Section 3.4.1 at parameters in the same order
of magnitude. Therefore, the numerical influence needs to be better understood before
processes such as Coulomb collisions are implemented.

4.3.5. Variation of parameters

Simulations at different background gas pressures in the range from 1× 10−6 mbar to
2× 10−5 mbar were made. Figure 4.18 shows the development of the electron to proton
ratio over time as well as some parameters in the steady state. Changing the pressure
proportionally changes the production rate of electrons. Initially, in all cases their number
increases linearly with the production rate. At lower gas pressures, the curves start to
deviate from this behaviour earlier.
The simulations show a significant dependence of the compensation degree as well as

the velocity distribution of the electrons on the gas pressure. It could be speculated that
the dependence of the temperature is of numerical origin as a result of the lower number
of simulation particles. If this were the case, the values of T should be similar at equal
number of macroparticles. However, this is not the case, since the influence of the electrons
on the final temperature was found to be small. For p = 5× 10−6 mbar, this was checked
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4. Simulation of space charge compensated systems

again by producing multiple macroelectrons per ionizing collision. At double the number
of macroelectrons (i.e. more than for p = 1× 10−5 mbar), the reduction in temperature
(0.6 eV) is much smaller than the difference between the results for 5× 10−6 mbar and
1× 10−5 mbar in Figure 4.18b.

The results from the pressure variation hint at a connection between the temperature
and the loss rate, which in steady-state has to be equal to the electron production rate.
The system finds a state, in which enough particles are transported into the tail of
the Boltzmann distribution and are lost. The relation between temperature and the
amount of charge in simulations with different gas pressures as well as different number
of macroparticles in Figure 4.17b is quite similar. There appears to be some commonality
between the effects of an increased level of numerical fluctuation and an increased number
of new, potentially low-energetic electrons being created.
Figure 4.19a shows the currents of electrons flowing onto various parts of the system

when the repeller voltage Urep is reduced. Particles escaping the system longitudinally
through the apertures at the system entrance (denoted by “1”) and exit (“2”) are considered
as lost. Experimentally, such a situation would need to be created, for example by two
electric dipole fields to make sure electrons do not return through the aperture. At high
negative voltages, only electrons formed inside the electrodes with sufficient energy and
correct initial direction can escape. Except for this tiny fraction, all other electrons hit
the beam pipe.

When the repeller voltage is decreased from −1.5 kV to −600 V, the compensated area
of the beam as well as the amount of negative charge in the system increases slightly.
In the simulations at repeller voltages between −800 V to −500 V, the electron current
flowing through the second aperture increases nearly by an order of magnitude per 100 V
increase. Initially, the electrons only escape the system on the axis, where the potential
is highest. At −500 V, longitudinal losses start to dominate the radial losses. At this
point the compensation starts to decrease significantly as can be seen in Figure 4.19b.
Once this occurs, there is an additional influence from the beam focus moving towards
the second repeller, which additionally weakens the confinement by an increase of beam
potential due to its smaller size. The movement of the focus and the resulting asymmetry
is also responsible for the current through aperture 1 remaining constant in the range
between −500 V to −200 V.
Simulations with positive “repeller” voltages were made. Even at high positive values,

the system is never completely decompensated. At Urep = 500 V, a charge density of
200 µC m−3, about a fifth of the value at −1500 kV, was found to be confined within the
potential well of the focus. The currents onto the repeller remain quite low, even when
their potential is larger than the beam potential. Most of the electrons are accelerated
through the aperture by the electric field.

4.4. Simulation using the Poisson-Boltzmann equation

In Section 4.3.3, it was found that the electron energies in the bender simulation are
approximately Boltzmann distributed. This made it possible to predict their distribution
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4.4. Simulation using the Poisson-Boltzmann equation

using the total charge contained in a slice of particles, their temperature and the potential
extracted from the bender simulation. Given the two parameters temperature T and
compensation charge density ρcomp, the potential can also be found directly. Inserting
the expression for the electron density into Poisson’s equation, we have

∇2ϕ(r) = − 1

ε0

(
ρbeam(r) + ρcomp exp

(
eϕ(r)

kbT

))
. (4.23)

In Section 3.4.1, a method to solve the Poisson-Boltzmann equation (4.23) was explained.
The following section will focus on its application on space charge compensation of proton
beams. Similar calculations where already made for example in [65].
To calculate the influence of the electron distribution on the beam, the solution of

Poisson’s equation in a code such as tralitrala can be replaced by the solution of (4.23).
Given the longitudinal distribution of the temperatures and the compensation degree
from the PIC simulation, this makes it possible to compare the results to those of the
much simpler model.

4.4.1. Profiles

Figure 4.20 shows the solutions to (4.23) for a homogeneous beam of 1 cm radius for a
compensation degree ηpart of 50 % and 95 %. The figure gives both the dimensionless
scaled quantities as well as the potential and the electric field for a beam with the same
parameters as were used in the bender simulations. For beams of, for example, lower
current, these quantities will have the same distribution if the given temperatures are
also decreased by the same fraction.

Figure 4.21 shows the emittance growth of a homogeneous and a Gaussian beam, both
initially parallel, transported over 50 cm including the compensation electrons at different
temperatures and compensation degrees ηpart.

For Debye lengths small in comparison to the size of the confining beam, the electron
density follows that of the beam closely and drops off rapidly at the edge. This behaviour
leads to a constant potential and zero electric field in the beam core. If the compensation
degree is high, the influence of the space charge is mostly removed. If ηpart is significantly
smaller than 1, a part of the beam outside some radius remains largely uncompensated.
This leads to an approximately linear increase of the electric field at the beam edge.
Therefore, the beam density at lower radii will remain unchanged. However, particles at
the edge will be pushed outwards, leading to a decrease in density.

Even a small amount of “cold” electrons lead to an emittance increase of a few percent:
at kT = 2 eV and ηpart = 6 %, ∆εrms/εrms = 2 %. From Figure 4.21a, we find that
values of ηpart around 35 % for cold electrons lead to the highest emittance growth:
∆εrms/εrms = 14 % for kT = 2 eV. This last case—cold electrons but a low compensation
degree—only occurred in the bender simulations when the potential on the repellers was
reduced to values in the order of the remaining potential or even set to positive values,
i.e. electrons were allowed or even forced to escape the system.

At higher temperatures, more electrons have enough energy to move to areas at lower
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Figure 4.20.: Solution of the Poisson-Boltzmann equation for a homogeneous beam of
1 cm radius compensated by ηpart = 50 % or ηpart = 95 %. The upper row of
figures shows the dimensionless scaled quantities for various Debye lengths
λd, the lower row the potential and electric field for a 100 mA, 120 keV
proton beam at the electron temperatures given in the caption.
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Figure 4.21.: Emittance growth of a parallel beam (I = 50 mA, εrms = 25 mm mrad,
α = 0, β = 1 m) after 50 cm transport including thermally distributed
compensation electrons. In the remaining white areas the solver diverged.

potential and thus the electron distribution extends to higher radii. This leads to a
non-linear field over wide areas of the beam, which in turn causes an emittance growth.
While at intermediate values of the compensation degree, the effect of these non-linearities
is not as pronounced as the effect of the sharp increase at the edge, for ηpart ≈ 1, their
result can be seen in the increasing emittance at higher electron temperatures.

Towards high electron temperatures, the emittance growth decreases again in all cases.
There, the electron distribution becomes very spread out, tending towards a homogeneous
distribution reaching up to the aperture. Such a homogeneous background, while not
very effective at compensation, does not produce any non-linearities in the electric field
and thus doesn’t lead to emittance growth. In such a configuration however, the radial
electron loss current would become very large and would need to be compensated by a
large rate of electron production. In the bender simulations, such a state was not found.

The observed growth also depends on the beam parameters. If the beam is matched in
the same way as in the bender simulations, i.e. with a focus in the center of the system,
the simulations predict a large emittance growth at higher electron temperatures for
intermediate values of ηpart as well.
In addition to a homogeneous beam, an rms equivalent beam following a Gaussian

distribution was transported in the same way. The emittance growth, shown in Fig-
ure 4.21b, differs significantly from the homogeneous case. The highest growth is observed
for the uncompensated beam. This is caused by the relaxation of the non-linear field
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energy contained in the Gaussian distribution [16, p. 426]. The simulations show a
reduction in emittance growth from 27 % to below 10 % going from no compensation
to low compensation values above 15 %, nearly independent on electron temperature.
Another difference in the plots of Figure 4.21 is the low emittance growth observed in
the simulation of the Gaussian beam around T = 8 eV, ηpart = 60 %. In this case the
confined electrons distribute in such a way that the total electric field becomes linear over
wide parts of the beam.

The assumption of a thermal electron distribution also makes it possible to link the
two definitions of the space charge compensation degree as defined per reduction of line
charge density in (4.1) and per reduction of the potential difference between beam edge
and center in (4.2). The relation is shown in Figure 4.22.
For Debye lengths long in comparison to the beam radius, the behaviour is close to

linear, however with slopes much less than one. For low values of λd, initially, the potential
on the axis reduces faster than ηpart, since the electrons overproportionally populate the
area around the axis. As the amount of the electron charge increases in the system, the
increase in ηbeam is reduced as more and more electrons have enough energy to distribute
the area outside the beam. For vanishingly small Debye lengths, the charge density is
that of a hollow beam. This allows us to find an analytical relation between ηbeam and
ηpart,

ηbeam = (1− log(ηpart)) ηpart,

which nicely fits the numerical result for λd → 0.

4.4.2. Comparison to the bender simulation

In Section 4.3, various features in the distribution of the beam and the secondary particles
were identified. To investigate whether these effects can be explained by the presence of
the thermalized electrons, the temperature distribution (Figure 4.11h) and fraction of
charge ηpart (Figure 4.11g) from the bender simulations were imported into tralitrala and
the radial distribution of the electrons calculated from the Poisson-Boltzmann equation as
in the preceding section. Such a simulation does not contain the influence of the residual
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Figure 4.23.: Simulation of the drift system using tralitrala with thermally distributed
electrons. The longitudinal distribution of temperature and compensation
degree was imported from the PIC simulation.

gas ions and any effects caused by the velocity distribution of the compensation electrons
in longitudinal direction.
The resulting total charge density is shown in Figure 4.23a. The formation of the

hollow beam clearly occurs in a similar way as in the 3d simulation. It is a result of the
sharp increase of the electric field at the edge of the beam. There, these fields reduce
the angles of the particles. In the xx′ projection, areas of higher density form towards
lower angles x′ for negative horizontal offsets x and towards higher angles for positive
x. These continue to form the large peak in density in the focus—Figure 4.23b shows a
cut in radial direction at 30 cm—and continue on towards the axis. They are still visible
in the final output distribution of the system shown in Figure 4.24 at the edges of the
ellipse close to the axis.

The kurtosis of the beam distribution changes significantly during transport. It increases
to 2.15 at z = 22 cm in front of the focus, then drops to 1.75 6 cm later in its center,
afterwards increasing to its final value of 2.26. During the build-up of compensation,
this effect shows up in the final distribution of the beam as formation of a hollow beam
after about 6 µs of simulation. As the beams focus shifts backwards, the areas of higher
density appear at the edge of the beam in the final distribution, leading to a short drop
in kurtosis.
The beam distributions from both simulations are shown in Figure 4.24. They have

equal rms dimensions and orientation in phase space. The emittance growth is larger in
the simulation using the Poisson-Boltzmann model. This could be a result of the much
larger grid resolution. Peaks in the distribution, such as present in Figure 4.23b, could
not be resolved by the 0.4 mm grid in the bender simulation.
In Figure 4.23 a negative net density is predicted around the beam axis in the focus,

as a result of the increased potential well of the sharp peak at the edge of the beam.
In the model simulations, this leads to a negative electric field near the axis. This is
only possible when the residual gas are excluded. These would become trapped due to
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Figure 4.24.: Beam distribution from bender compared to the simulation with thermally
distributed electrons.

the negative electric field, filling up the potential well. This is the reason for the ion
accumulation in the area of the focus observed in the bender simulations. Equally, a
negative radial electric field near the axis was observed in the bender simulation, where
the beam was treated as static and the residual gas ions ignored.

Compared to the PIC simulation, the used CPU time is reduced by about three orders of
magnitude. Thus, if the inputs used for the 1d simulation—temperature and compensation
degree distribution—could be predicted by some other means, the effects on the beam
could be calculated at severely reduced cost.
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5. Applications

5.1. Particle-in-cell simulations for the IOTA electron lens

In free space, the fields from magnetostatic as well as electrostatic lenses can be calculated
from scalar potentials which have to satisfy the Laplace equation [66, p. 195]. For
applications where fields are needed which do not fulfill this requirement but which satisfy
Poisson’s equation, use of an electron lens is a possible choice [67]. An important example
are fields pointing mainly in radial direction. In an electron lens, a low-energy beam
of electrons with high intensity is guided by strong magnetic fields, either alongside or
superimposed on another beam.

Two electron lenses were used at the Tevatron at Fermi National Accelerator Laboratory
(FNAL) [68] for experiments on hollow-beam collimation [69] and abort-gap cleaning
[70]. At Brookhaven National Laboratory, two electron lenses are under operation to
compensate the tune spread due to beam-beam effects [71], previously also investigated
at FNAL [72]. For the LHC, an electron lens is being considered for halo control using
hollow beams [73].

Figure 5.1 shows a schematic of one of the lenses used at the Tevatron [68]. A beam of
up to 3 A is produced at the gun, which is biased to the wanted beam energy between
5 keV to 10 keV. It is located inside the magnetic field produced by the gun solenoid.
From there, the beam is guided onto the axis of the circulating beam by magnetic fields
produced by three additional coils. An increase in the magnetic field, from Bgun = 0.3 T
to Bmain = 3.1 T inside the superconducting main solenoid, compresses the beam to
c =

√
Bgun/Bmain ≈ 32% of its radius at the gun. After interacting with the circulating

beam, the electron beam is guided into a collector.
By shaping the electrodes of the electron gun, the current-density profile of the electron

1þ !e and maximizes the tuneshift). Both TELs operate
with only a few amperes of electron current at up to 10 keV
electron energy and can shift the betatron tune by as much
as dQx;y

max " 0:008 [3].
Two Tevatron electron lenses (TELs) were built and

installed in two different locations of the Tevatron ring.
Figure 1 depicts the general layout of the TEL-1 and TEL-
2. The electron beam is generated by a thermionic gun
immersed in a solenoidal magnetic field. Strongly magne-
tized electrons are accelerated to a kinetic energy of 5–
10 kV and follow the magnetic field lines into the main
superconducting solenoid where the interaction with the
high-energy proton/antiproton bunches occurs. While the
high-energy particles continue on (along) the Tevatron
orbit, the low-energy electrons exiting the main solenoid
are guided into the collector and are not being recirculated
(reused). A list of the TEL, relevant Tevatron parameters,
and beta functions at the two places where lenses are
installed (F48 and A11) is given in Table I. Both lenses
are used in two regimes of operation—(a) for compensa-
tion of beam-beam effects [3,4] and (b) for removal of
uncaptured particles from the abort gaps between the
bunch trains [5]. Three conditions were found to be crucial
for successful compensation of beam-beam effects by the
electron lenses [3]: (1) the electron beam must be trans-
versely centered on the proton (antiproton) bunches, within
0.2–0.5 mm, along the entire interaction length;
(b) fluctuations in the electron current need to be less
than 1%, and the timing jitter within 1 ns, in order to

FIG. 1. (Color) (a) General layout of the TEL-1 installed at F48 location, top view. (b) General layout of the TEL-2 installed at A11
location, top view.

TABLE I. Electron lens and Tevatron collider parameters.

Parameter Symbol Value Unit

Tevatron electron lens
e-beam energy (operation/maximum) Ue 5=10 kV
Peak e-current (operation/maximum) Je 0:6=3 A
Magnetic field in main solenoid Bm 30.1 kG
Magnetic field in gun solenoid Bg 2.9 kG
e-beam radius in main solenoid ae 2.3 mm
Cathode radius ac 7.5 mm
e-pulse repetition period T0 21 "s
e-pulse width, ‘‘0-to-0’’ Te 0.6 "s
Interaction length Le 2.0 m
Tevatron collider
Circumference C 6.28 km
ProtonðpÞ=antiprotonðaÞ energy E 980 GeV
p- bunch intensity Np 270 109

a- bunch intensity (maximum) Na 50–100 109

Number of bunches NB 36
Bunch spacing Tb 396 ns
p-emittance (normalized, rms) "p " 2:8 "m
a-emittance (normalized, rms) "a " 1:4 "m
Maximum initial luminosity=1032 L0 3.15 cm%2 s%1

Beta functions at A11 TEL !y;x 150=68 m
Beta functions at F48 TEL !y;x 29=104 m
p-head-on tuneshift (per IP) #p 0.010
a-head-on tuneshift (per IP) #a 0.014
p-long-range tuneshift (maximum) $Qp 0.003
a-long-range tuneshift (maximum) $Qa 0.006

VLADIMIR SHILTSEV et al. Phys. Rev. ST Accel. Beams 11, 103501 (2008)

103501-2

Figure 5.1.: Schematic drawing of the TEL2 lens at the now defunct Tevatron [68].
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implementation of nonlinear integrable lattices in a real machine, the study of space-charge compensation in rings,
and a proof-of-principle demonstration of optical stochastic cooling [11, 12].

The concept of nonlinear integrable optics applied to accelerators involves a small number of special nonlinear
focusing elements added to the lattice of a conventional machine in order to generate large tune spread while preserving
dynamic aperture [13]. The concept may have a profound impact in the design of high-intensity machines by providing
improved stability to perturbations and mitigation of collective instabilities through Landau damping.

The effect of nonlinear lattices on single-particle dynamics will be investigated during the first stage of IOTA
operations using low-intensity pencil beams of electrons at 150 MeV: 109 particles/bunch, 0.1 µm transverse rms
geometrical equilibrium emittance, 2 cm rms bunch length, and 1.4⇥ 10�4 relative momentum spread. The beam
is generated by the photoinjector currently being commissioned at the Fermilab Advanced Superconducting Test
Accelerator (ASTA) facility. The goal of the project is to demonstrate a nonlinear tune spread of about 0.25 without
loss of dynamic aperture in a real accelerator.

It was recently shown that one way to generate a nonlinear integrable lattice is with specially segmented quadrupole
magnets [13]. There are also 2 concepts based on electron lenses: (a) axially symmetric thin-lens kicks with a particular
amplitude dependence [14, 15, 16]; and (b) axially symmetric thick-lens kicks in a solenoid [17]. These concepts use
the electromagnetic field generated by the electron beam distribution to provide the desired nonlinear transverse kicks
to the circulating beam.

The integrability of axially symmetric thin-lens kicks was studied in 1 dimension by McMillan [14, 15]. It was then
extended to 2 dimensions [16] and experimentally tested with colliding beams [18]. Let us analyze the main quantities
involved in the electron-lens case. The beam in the electron lens (Figure 1, left) has velocity ve = bec. The length L
of the electron lens is assumed to be small in comparison with the local lattice amplitude function b . Let j(r) be a
specific radial dependence of the current density of the electron-lens beam (the ‘McMillan case’), with j0 its value on
axis and a its effective radius: j(r) = j0a4/(r2 +a2)2. The total current is Ie = 2p

R •
0 j · r dr = j0pa2. While traversing

the electron lens, the circulating beam, with magnetic rigidity (Br) and velocity vz = bzc, experiences the following
transverse angular kick:

q(r) = 2p
j0L(1±bebz)

(Br)bebzc2
a2r

r2 +a2

✓
1

4pe0

◆
. (1)

The ‘+’ sign applies when the beams are counterpropagating and the electric and magnetic forces act in the same
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FIGURE 1. Left: schematic layout of the IOTA ring; the electron lens (gun, solenoid, and collector) is shown in the lower right
section. Right: calculated IOTA lattice for electron-lens operation, showing the horizontal and vertical amplitude functions bx and
by (left axis, in meters) and the horizontal dispersion Dx (right axis, in meters) as a function of the longitudinal coordinate s around
the ring.

(a) Schematic of the IOTA ring including
the electron lens [76].
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Figure 5.2.: Schematic of the ring and the required current density distribution.

beam can be controlled. Ideally, this profile should be preserved during the transport.
However, distortions in the magnetic field as well as effects from space charge can lead to
changes in the distribution. bender was used to investigate the dynamics in a proposed
new electron lens for the Integrable Optics Test Accelerator storage ring currently being
built at FNAL. The contents of this section is also focus of [74].

5.1.1. IOTA at the Fermi National Accelerator Laboratory

In the ideal case, the beam dynamics of conventional circular accelerators is completely
linear, i.e. the forces of all optical elements depend linearly on the particle’s offset from
the axis. In that case, all particles oscillate around the axis with the same frequency (or
tune), independent on their amplitude. However, in such a system, errors in the external
fields can drive resonances, which lead to emittance growth and beam loss. Additionally,
sextupoles—with a force proportional to the square of the offset—are often added to an
accelerator lattice to correct for effects due to the energy dependence of the focusing
(chromaticity correction, [37, p. 439]). Another non-linear force comes from space charge.
However, any non-linearity added decreases the region of phase space where the motion
of particles is regular and non-chaotic (dynamic aperture).
A new approach will be investigated as an experiment at the Integrable Optics Test

Accelerator (IOTA) at the Fermi National Accelerator Laboratory. The idea is to
intentionally introduce a non-linearity in a way that particle motion remains integrable.
The result should be a large tune spread, which is expected to provide improved stability
properties [75]. IOTA is a storage ring with 40 m diameter that will provide space for
several possible non-linear inserts. One of these inserts is an electron lens, which will be
placed at the location shown in Figure 5.2a.
Two ways to achieve an integrable beam dynamic with a large tune spread will be
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investigated at IOTA. The first option requires a current profile following

j(r) =
I

π

(
1 +

a2

R2
b

)
a2

(a2 + r2)2 ,

where I is the beam current, a an effective radius and Rb a cut-off radius (ideally
Rb →∞). The properties of a mapping with kicks produced by a current density such
as this was studied first by McMillan in one dimension and extended to two dimensions
in [77]. Reference [76] lists the requirements on the electron lens beam for this case: at
B = 0.33 T main solenoid field and 24 mm ring aperture, a = 3.6 mm at the cathode and
a = 2 mm inside the main solenoid. For a beam energy of E = 5 keV and copropagating
beams, the current has to reach I = 1.7 A to achieve a tune spread larger than 0.25. The
required current density inside the main solenoid is displayed in Figure 5.2b.

The second option is to focus the circulating beam using the electron lens main solenoid.
At a setting of B = 2(Bρ)/β the beta functions in both directions are constant and any
radially symmetric current distribution leads to an integrable dynamic for phase advances
that are multiples of π in the rest of the ring.

5.1.2. Initial coil design

Figure 5.3 shows the magnetic fields as well as the coil design for the injection part of
the electron lens to be investigated. The design was found using a Python script written
specifically for this purpose, which includes a Biot-Savart solver for cylindrical coils and
an algorithm for tracking the magnetic field lines.

The length of the normal conducting main solenoid was chosen to be 1 m. The current
IOTA lattice design then only leaves 30 cm on each side between the main solenoid and
the adjacent quadrupole magnets. This necessitates an increase of the angle of injection
from 57° for TEL2 (where about 80 cm were available) to 70°. The design reuses the
electron gun and collector magnets from TEL2. These can reach fields up to 0.4 T, but
only 0.1 T are required for the desired compression when the main solenoid is operating
at its nominal value 0.33 T.

Solenoid Ri Ro B j Θ Center
[cm] [cm] [mT]

[
A/mm2

]
[◦] [m]

Gun 12.5 23.7 100 1.11 70 (0.517, 0.828)
Transfer 3.5 7.5 100 2.27 70 rtrans = (0.2114, 0.717)
Bend 1 9.65 13.65 53.9 6.28 43 rbend,1 = (0.02692, 0.682)
Bend 2 6.33 10.33 74.9 6.28 33.5 rbend,2 = (0.0118, 0.615)
Bend 3 4.17 8.17 100 6.28 24 rbend,3 = (0.0, 0.5555)
Main 2.5 10 330 3.53 (0.0, 0.0)

Table 5.1.: Dimensions and magnetic field settings of the initial bend design under inves-
tigation. Ri and Ro are the inner and outer diameters of the coils and θ the
angle between their axis and the direction of the propagating beam.
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Figure 5.3.: Initial bend design for the IOTA electron lens. The dimensions as well as the
current settings of the solenoids can be found in Table 5.1.

As in TEL2, three smaller coils generate the magnetic field to guide the beam from
the source into the main solenoid. Their inner, frontal edges were placed on a circle.
The radius of 295.6 mm and the center of the circle were found trying to increase the
field homogeneity in the bending region. For the geometry investigated here, the three
solenoids operate at equal current. This makes operation with one power supply possible.
Due to the different sizes, the bending solenoid closest to the gun only produces 54 %
of the magnetic field of the last solenoid on its axis, the second one only 75 %. At the
chosen dimensions, the solenoids can be operated at up to 159 mT (in the first solenoid)
to stay below the value given as “good” in [78, p. 113] for water-cooled coils.
Due to the increased distance between gun and bending solenoids, an additional

“transfer” magnet had to be included.
Figure 5.4a shows two field lines with an offset of ±25 mm projected to the field line

starting at the center of the gun solenoid for different currents through the bending
solenoids. In the figure, the magnetic field strength produced by the third and last
bending solenoid is given. Compared to the case where the currents through the bending
solenoids are chosen so that all produce a field of 100 mT (dashed line), the beam in the
current design has a larger size, especially in the first bending solenoid.
Towards the center of bending solenoid 1, the magnetic field decreases. This leads to

the asymmetry between the positive and negative horizontal direction, clearly visible in
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center of the main solenoid.

Figure 5.4.: Deformation of the field lines.

Figure 5.4a, which can be as high as 3 mm. The short increase in beam size in front of
the main solenoid is a result of the field drop between bending solenoid 3 and the main
solenoid.
In a system symmetric around the axis, field lines starting on a circle with radius R

at a field of B1 should be compressed by a factor of
√
B1/B2. Figure 5.4b shows the

deviation for the field configuration in Figure 5.3 inside the main solenoid. Due to stray
fields from the bending section, the compression ratio is slightly higher than from the
field values produced by the magnets alone: 55.7 % (Bgun = 102.9 mT, Bmain = 331.3 mT)
instead of 55 % (Bgun = 0.1 T, Bmain = 0.33 T).
At lower radii, the deformation is mainly quadrupolar i.e. the compression is slightly

higher on the horizontal axis than it is in vertical direction. With increasing radius, the
influence of the asymmetry in the injection in horizontal direction becomes visible. Field
lines with negative offset, i.e. those starting with offset towards the injection, end up at
lower radii than those starting away from the injection. The shift of the maxima in both
downwards and upwards direction is a result of the field lines being slightly shifted in
horizontal direction. In total, the deformation of a circle starting at the gun at R = 25 mm
is as large as 0.26 mm.
For the placement of vacuum equipment, some space not covered by a coil is needed.

This space can be provided between the gun and the transfer solenoid. Figure 5.5a shows
the deformation of the field lines for various distances between the magnets. As long as
the aperture is designed wide enough, increasing the distance from its current value of
12.5 cm should not pose a problem.

Due to the long range of the magnetic field of the coils, the magnetic field on the surface
of the cathode does not perfectly point in the geometric direction of injection but at a
slightly increased angle ϕ′ = 70.027°. The angle of the magnetic field also depends on the
horizontal offset by −94 µrad mm−1 and on the vertical offset by 280 µrad mm−1.

A similar configuration of magnets, with the gun replaced by a beam dump, is placed on
the opposite side of the lens to guide the electron beam out of the path of the circulating
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Figure 5.5.: Field line tracking for various design choices.

beam. The configuration can either be mirrored at the central plane, guiding out the
beam towards the same side of the ring it was injected from, or can be inverted to guide
out the beam towards the other side. The two options differ in the disturbance on the
circulating beam.
In the bends, there is a kick in vertical direction due to the horizontal component of

the guiding fields. For the present design, on the axis of the lens, the kick on 150 MeV
electrons is 31 mrad in each bend. These kicks cancel for the former option due to the
different direction of the horizontal magnetic fields in the two bends. If the electron beam
is guided out towards the other side of the ring, the kicks accumulate. The downside of
the mirrored configuration is the accumulation of the horizontal kicks from the electric
field of the lens beam on the circulating beam. Compared to the kick from the magnetic
field, these are small: 5.6 µrad per bend on the axis for a 1.7 A McMillan beam calculated
from the simulation in Section 5.1.4.
When the collector is placed on the opposite side of the electron gun, the magnetic

field lines are not symmetric. This can be observed in Figure 5.5b, which shows the outer
field lines for both options. With the collector on the opposite side, field lines starting at
±25 mm at the cathode end with an offset of 25.4 mm and 24.6 mm from the geometric
collector center.
The design presented here as well as in [74] uses the configuration with gun and

collector on opposite sides. However, the layout was recently changed back to the
“classical” mirrored configuration. The impact of this choice on the coil configuration in
Table 5.1 and on the the considerations in this section are minor.

5.1.3. Single particle dynamics

Particles do not follow the field lines exactly. Their trajectories will always exhibit
some drift. In TEL-1, the curvature of the trajectories resulted in several millimeters of
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Figure 5.6.: Drift of a particle starting at the center of the cathode. Particle tracking
using bender and the integration of (5.2) produce the same results. The green
and blue curves were calculated by separately integrating the two terms in
(5.2). Dashed lines are the velocities, solid lines the offsets.

downward drift [68]. Due to the inhomogeneities in the field, particle drifts could result
in significant distortions and were therefore investigated.
The guiding center of a particle can be followed by integrating

dr

ds
= ± 1

B

{
B +

m

qv0

1

B2

(
v2
|| +

1

2
v2
⊥

)
(B×∇B)

}
, (5.1)

where v0 is the absolute particle velocity and v|| and v⊥ are the components parallel and
perpendicular to the magnetic field. Since particles at the cathode start with negligible
transverse velocity v⊥ and thus magnetic moment, the corresponding gradient B drift can
be ignored. The remaining term proportional to v2

|| is the drift due to a curvature in the
field lines.

Equation (5.1) can be integrated and rewritten using the local radius of curvature R(s),

∆y(s) =

∫ s

0

{
2U

v0

q

|q|
1

R(s′)B(s′)
+
By(s′)

Bz(s′)

}
ds′ . (5.2)

Since the drift has a dependence on the sign of R(s), when the collector is placed on the
opposite side of the gun, most of the curvature B drift will cancel.

Particles were also tracked using bender . Time steps of 5 ps (ωc∆t ≈ 0.09) were found
to be sufficiently small. The magnetic field was calculated from a grid of field values with
a resolution of 0.5 mm. Care had to be taken not to truncate the fields in the region of
the beam to avoid visible effects on the particle motion.
Figure 5.6 shows the drift of a particle starting at the center of the cathode. The
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resulting downward drift predicted by integrating only the curvature B drift is −1.7 mm,
but results from particle tracking just predict a drift by −1.2 mm. This reduction is caused
by the guiding effect of the magnetic field (the second term in (5.2)), which counters the
drift once the particle has reached some offset from the axis.

The drift velocity in Figure 5.6 shows two maxima: between the transfer solenoid and
the first bending solenoid and in front of the main solenoid. Both a lower curvature as
well as a lower absolute magnetic field are responsible for the much stronger drift in the
first of these two segments.
The downward drift differs by about 5 µm mm−1∆x for particles with an horizontal

offset ∆x due to the inhomogenous magnetic field in the bending region. This tilts
the final distribution slightly. For particles with larger positive offset ∆x > 10 mm, i.e.
those on the trajectories closer to the center of the bending solenoids, the change in
drift deviates from linear behaviour and becomes as large as 134 µm for a particle with
∆x = 25 mm.

5.1.4. Dynamics including space charge

Main focus of the investigation of the electron lens was to better understand the dynamics
under space charge and any aberration in the beam distribution that might occur. For
this purpose, PIC simulations of the IOTA electron lens were made using bender .
The electron gun was not included in the simulation. Instead, the potential on the

boundary of the computational volume was fixed to that of an infinitely long beam. This
should be a valid approximation, since the beam size does not change much inside the
gun solenoid. The three-dimensional Poisson solver described in Section 3.2.2 was used.
A beam pipe geometry was included as boundary condition. The radius of the pipe was
set to the inner diameter of the solenoids, ignoring wall thickness. Any effects occurring
due to this should be investigated once a final design of the lens is found. Using CAD
software, a beam pipe with constant curvature and 6 cm inner diameter was included in
the bending region.
Simulations with two levels of resolution were made: a “low resolution” version using

100 particles inserted per step (about 430000 in total), 1 mm mesh resolution (3.6 million
degrees of freedom) on 16 processors and a “high resolution” version using 2500 particles
per step (10 million in total), 0.5 mm mesh resolution (21.3 million dof) on 192 processors.
On the Fermilab Wilson cluster [79], the low resolution runs1 took about 20 h and the
high resolution runs2 approximately 9 h.

Motion

For a homogeneous distribution, including space charge, the particle dynamics in electron
lenses is given by the behaviour described in Section 2.2 for zero angular velocity ωr = 0.
Particles are accelerated outwards by the electric field until the magnetic force due to

1on the amd32 partition: AMD Opteron 6134 2.3 GHz
2on the intel12 partition: Intel Xeon X5650 2.67 GHz
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their increasing velocity is able to balance the push of the electric field. This motion will
modulate the envelope of the beam.

During the motion, the angular component of the Lorentz force results in a rotation of
the particle around the axis. On average, the velocity of this rotation will be the E×B
velocity

ωE×B =
vϕ
r

=
1

q

q (E×B)ϕ
B2

=
1

2πε0

I

vb

1

R2
b

1

B
.

As long as the velocity vb does not change significantly, the rotation frequency is constant
during a compression, since Rb(s) =

√
B0/B(s)R0 and thus

ωE×B =
1

2πε0

I

v

1

R2
0

B(s)

B0

1

B(s)
=

1

2πε0

I

v

1

R2
0

1

B0
.

For an electron beam with I = 2 A, Rb = 2 cm and W = 5 keV, the beam will rotate with
ωE×B = 3.4 MHz. This amounts to a rotation of 33° from the gun to the center of the
main solenoid.
In Section 2.2, an expression for the maximum excursion of a particle was found,

rmax − r0 ≈
1

ε0

m

e

I

vb

1

πR2
b

1

B2
r0 =

I

2Ibrillouin
r0. (5.3)

For the given parameters, particles only deviate by 0.24 % from their initial offset, e.g.
for the particles at the edge of the beam r = 49 µm.

For the McMillan distribution, the rotation velocity depends on the radius due to the
radial dependence of the electric field,

ωE×B =
1

2πε0

I

vb

1

B

(
1 +

a2

R2
b

)
1

r2 + a2
.

The revolution frequencies differ by an order of magnitude depending on the radius: for
I=1.7 A, a=3.6 mm and Rb = 22 mm, particles in the core oscillate with 92 MHz, those
at the beam edge with 2.4 MHz.

Near the axis, the electric field of a McMillan distributed beam is linear in the radius r.
Compared to a homogeneously distributed beam of radius Rb however, the field is higher
by a factor 1 +R2

b/a
2 (≈ 38.3 for the considered parameters). Since the field in the core is

linear, it can be expected that the motion of the particles is similar, at least initially. The
excursion predicted in this case by (5.3) for a particle at r0 = 1 mm is 200 µm or 20 % of
the initial offset. At these large deviations, the electric field and thus the distribution is
likely to change during transport.

Current limits

To be able to estimate when deformations in the distribution are likely to appear, it is
important to know whether a given beam current can be considered “high” or “low”. Thus,
the question how much beam current in total can be transported becomes interesting.
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Figure 5.7.: Results from the simulation of a model system, compressing a 15 mm, 5 keV
electron beam to 3 mm (c = 0.2).

One current limit is given by the Brillouin flow limit (2.6). Below Ibrillouin, the magnetic
force is able to counteract the force from the electric self-field. For the given case, at the
cathode,

I < Ibrillouin =
1

2

e

m
πε0vbR

2
bB

2 ≈ 410 A.

Due to its high value, the Brillouin current limit is not very binding. It becomes even less
relevant at higher magnetic fields, since the beam radius only scales with

√
B1/B2 and

therefore Ibrillouin ∝ B2/B1.
The beam potential for the required parameters is easily in the same order of magnitude

as the accelerating voltage in the cathode (Homogeneous beam, I = 2 A, Rb = 2 cm and
W = 5 keV: beam potential -940 V). If, during compression, the potential increases by a
value higher than the accelerating voltage of the beam, particles will get reflected under
their own space charge influence. This limit is an equivalent of Child-Langmuir’s law.
The expression for the potential of an arbitrarily distributed beam with some radius

Rb always contains terms that scale with v−1
b ln(Rb/Rp), where vb is the particle velocity,

Rb the beam size and Rp the size of the beam pipe. Since the logarithmic term only
increases slowly, one would suspect that the limit can not be easily reached. Yet, as the
potential decreases, the electrons become slower and the density increase leads to an even
lower potential, which exacerbates the effect.

Figure 5.7 shows results from the simulation of a model system for a range of injected
beam currents from 2 A to 5 A. In this example, a 5 keV electron beam is compressed from
15 mm to 3 mm radius by an increase of magnetic field from 100 mT to 2.5 T generated by
two solenoids. At 2 A, all particles are transmitted but the beam is slowed down by about
2 keV. At higher currents, electrons return to the gun at increasingly earlier positions.
The limit is not a hard one: increasing the current still results in some increase in the
output, but not to the same degree, as can be seen in Figure 5.7b.
For currents close to the limit, it takes a long time for particles to be reflected. At
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(a) Beam density.
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Figure 5.8.: Density profiles over the current limit for the compression of a 5 keV homo-
geneous electron beam from 15 mm to 3 mm.

2.2 A current, the transport is already stable after 60 µs. For 2.4 A, particles start to
move backwards at about 72.5 µs. At 2.3 A however, the effect only occurred after 150 µs
of simulation.
If particles would have been able to gain sufficient magnetic moment, the magnetic

mirror effect could also have been responsible. However, in the simulation, the reflected
particles completely convert their kinetic energy into potential energy before reversing
their direction of travel. Furthermore, the potential rise compared to the potential at the
cathode peaks above the beam energy at the inflection point.
Figure 5.8 shows the beam density along with the current profile of the transmitted

and the reflected current. The core of the beam is almost completely reflected at a thin
region of high charge density, while particles at larger radius are able to pass. This forms
a hollow beam. At higher currents the current profile additionally becomes more and
more inhomogeneous.
An upper current limit can be found by assuming that the beam does not slow down

under its own space charge, i.e. that the initial velocity v1 is equal to the final velocity v2.
This assumption is questionable, since Figure 5.8a shows a significant deceleration of the
beam. In that case, energy conservation for the central particle at the reflection point is

1

2
mv2

1 −
e

2πε0

Ilimit

v1
g(Rb, Rp,1) = − e

2πε0

Ilimit

v1
g(cRb, Rp,2) ,

where Rp,1 and Rp,2 are the radii of the beam pipe at the two points of investigation.
Then,

Ilimit = πε0

√
8
e

m
(g(Rb, Rp,1)− g(cRb, Rp,2))−1 U3/2. (5.4)

U is the acceleration voltage of the beam and g a distribution-dependent function
containing the terms in the potential not dependent on the radius r. Those are given in
Table 5.2.
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Homogeneous distribution g(Rb, Rp) = ln
(
Rb
Rp

)
− 1

2

McMillan distribution g(Rb, Rp) = ln
(
Rb
Rp

)
− 1

2

(
1 + a2

R2
b

)
ln
(

1 +
R2

b
a2

)

Gaussian distribution g(Rb, Rp) = ln
(
Rb
Rp

)
+ 1

2γ − ln
(√

2σ
Rb

)

Table 5.2.: Geometric functions for homogeneous, McMillan and Gaussian beam distribu-
tion. γ ≈ 0.577 is the Euler-Mascheroni constant.

Assuming that the beam distribution remains fixed transversely during transport, a
lower current limit can be found from energy conservation for the central particle. Looking
for roots in

0 = H2 −H1 =
1

2
mv2

2 − E1 + e (ϕ(Rb)− ϕ(cRb))

−→ v3
2 +

[
eI

mπε0
g(Rb, Rp,1)

1

v1
− 2E1

m

]
v2 −

eI

mπε0
g(cRb, Rp,2) = 0,

results in the condition that

4

(
2E1

m
− eI

πε0

1√
2mE1

g(Rb, Rp,1)

)3

− 27

(
eI

mπε0
g(cRb, Rp,2)

)2

> 0. (5.5)

The derivation assumes that all particles possess the same longitudinal velocity, which
due to the radial dependence of the potential is not correct. However, for realistic values
of the beam radius and beam pipe sizes, the velocity spread inside the beam is relatively
small. Equation (5.5) can be solved approximately by ignoring the I3-term,

I < 4πε0
1

e

√
2

m
E

3/2
1

(
g1 −

√
3g2

2 − g2
1/3

4g2
1 − 9g2

2

)
= 4πε0

√
2e

m
U3/2

(
g1 −

√
3g2

2 − g2
1/3

4g2
1 − 9g2

2

)
,

(5.6)
where g1 = g(Rb, Rp,1) and g2 = g(cRb, Rp,2).

Figure 5.9 shows the current limits calculated from both estimations for a homogeneous
distribution as well as for a McMillan distributed beam in comparison to the PIC
simulations of the previously described model system. In general, the estimation predicts
the current limit found in the bender simulations. These were obtained by simulation of
various beam currents. The error bars indicate both the highest current, where no particles
are reflected, as well as the current of the simulation where reflection was observed first.
Furthermore, the energy scaling with U3/2 could be reproduced in simulations with c = 0.2
for E = 2.5 keV, E = 5 keV, E = 7.5 keV and E = 10 keV.

Equation (5.6) is a good approximation for lower values of c. It only starts to deviate
from the full solution at weak compression, where the current limit is relatively high.

Both expressions predict no current limit when Rp,2 < cRp,1. In that case, the potential
on the axis will be larger than at the source and the electrons will gain energy. The same
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Figure 5.9.: Current limits for a homogeneous distribution and the McMillan distribution
at E = 5 keV. Solid lines are the current limits calculated numerically from
(5.5), dashed lines are a result of the approximation using equation (5.6),
dotted curves from (5.4). The discrete points are current limits found by
simulating a model system using bender . The upper and lower limits of the
error bars indicate the currents at which reflection of particles was observed
or not observed respectively.

result can be found from simulation of the model system. For example, for c = 0.6 and a
beam pipe ratio of 0.5 , simulations up to 20 A beam current could be made—however,
with some aberration in the beam distribution. To avoid the current limit as well as any
additional effects due to changes in particle velocities, it would be ideal to follow the
envelope of the electron beam with the beam pipe.

For a McMillan distributed beam, for the parameters used, the current limit predicted
by the estimation is between 5 % and 50 % lower than the value for the homogeneous
beam. A comparison with bender simulations proved difficult due to aberration in the
profile as well as a curious self-modulation of the beam. Only for c = 0.2 and c = 0.4 the
results of (5.6) could be confirmed.

For the parameters of the IOTA electron lens, c = 0.55, Rp1 = 4 cm and Rp2 = 2.5 cm,
equation (5.6) predicts a current limit of 7.9 A (9.2 A from the numerical solution) for
a homogeneously distributed beam with Rb = 2 cm. This is matched by the full bender
simulation. While there is no reflected charge for 7.5 A, at 10 A current, a charge build-up
in the transfer solenoid occurs. For the McMillan distributed beam with a = 3.6 mm, the
current limit is predicted to be 4.3 A (numerical: 5.5 A).

Profiles

Figure 5.10 shows the current profiles extracted from the simulation of the full electron
lens. The distribution of the homogeneous beam remains constant. There is a small
dependence of the final beam radius on the current. Since this deviation is lower in size
than the grid spacing used for calculation of the electric field, it is difficult to draw a
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Figure 5.10.: Current profiles from the simulation of the IOTA lens. The offset due to
the drifts were subtracted before calculation of the profile.

conclusion from this observation.
For higher currents, the profile in the simulation of the McMillan distributed beam shows

a clear deviation from the expected current profile. The origin of these becomes more
apparent in the transverse profiles shown in Figure 5.11. They show some filamentation
in the form of “spiral arms” of higher density.

Since the bender calculations did not have enough resolution to accurately resolve the
filamentation, a small 2d particle-in-cell code using similar algorithms as those described
in Section 3.2.1 and Section 3.2.2 was implemented. It calculates the time evolution of a
beam with a given profile in a purely longitudinal magnetic field and includes the beam
pipe as boundary in the potential calculation. Beyond the envelope oscillations described
earlier, just as in the full 3d case, the homogeneous distribution was found to be stable
over very long times. Even after 25 m, a 5 keV, 5 A electron beam with 22 mm beam
radius in a 100 mT magnetic field did not show any aberration.

For the McMillan distribution, results are shown in Figure 5.12. Here, the aberrations
do not form spirals but show up as rings. Their number increases over time as they
become more peaked and thinner. The initial behaviour does not depend on the grid
resolution. The rings form at the same positions. However, the simulations start to
deviate when these are not sufficiently resolved by the grid. Therefore, it is very likely
that the 3d simulation did not have enough resolution to correctly calculate the evolution
of the distribution. Another possible reason for the different observed structures could
either be longitudinal space charge forces or the bending.
One possible source for the formation of the rings might be the different strength of

radial oscillation. For example at 3 A and 0.1 T, the rms size of the whole beam initially
oscillates by 1 %, which decreases to below 0.2 % after 30 cm. Meanwhile, over the first
meter of transport, the density at the origin continues to oscillate by 20 % with a frequency

3Calculated as
∑

ri<Rb

(
Esim

r (ri) /Er(ri)− 1
)
.
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5.1. Particle-in-cell simulations for the IOTA electron lens

Figure 5.11.: Transverse current profile for McMillan distributed beams at various currents
from the bender simulation of the IOTA electron lens.
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Figure 5.12.: Two-dimensional simulation of the electron beam transport with 66 µm grid
resolution and 1× 108 macroparticles: Evolution of a McMillan distribution
(a = 3.6 mm, Rb = 2.5 cm, I = 3 A, B = 0.1 T) with the beam pipe at 5 cm.
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Figure 5.13.: Electric field from the simulation of the transport of a McMillan distributed
beam. Simulation parameters for (a) and the dashed curve in (b) are the
same as in Figure 5.12, 250 µm grid resolution and 4× 106 macroparticles
otherwise.

89



5. Applications

close to the cyclotron frequency. For the homogeneous distribution, the amount of energy
converted between kinetic and potential energy in each radial oscillation stayed constant
over 25 m of simulated transport. This was not the case in the simulation of the McMillan
distribution. There, the amount of energy exchanged drops below 8 % in the first 50 cm.
The electric field produced by the current distribution in Figure 5.12a is displayed

in Figure 5.13a. The rings lead to areas, where the electric field is lower than initially.
The error in the electric field is largest during the initial expansion and then oscillates
around the final value with decreasing amplitude. Even though more and more rings
form and thus the error in the density increases permanently, the error in the electric
field approaches a constant value. The development of the deviation over time is shown
in Figure 5.13b. Due to a limitation of the exported data, these curves do not contain
enough points to resolve the radial oscillation. This however allows a visual comparison
of the two displayed simulations at different grid resolution. These show an identical
behaviour until the time at which the coarser simulation lattice is not able to resolve the
peaks.
From the bender simulations, kick maps were calculated. These can be used as input

for a calculation of the ring dynamics to study the influence of the imperfections on the
circulating beam. The procedure and exemplary data can be found in [74, 80].

5.2. Simulations of beam transport for the FRANZ facility

At the Frankfurt neutron source facility, a driver linac capable of transporting up to
140 mA will provide a 2 MeV proton beam for experiments. Beyond measurements of
neutron capture cross sections of interest for the understanding of nucleosynthesis, the
facility is a test bench for novel accelerator components. An overview over the project
can be found in [5].

A schematic of the facility under construction is displayed in Figure 5.14. The beam will
be provided by a filament-driven ion source at an energy of up to 120 keV. The low-energy
beam transport section is divided in two sections consisting of two solenoid magnets
each. The first matches the beam through a chopper system. The chopper system used
for FRANZ utilizes a new concept that combines the benefits of magnetic and electric
deflection. It can be used to chop the proton beam into 50 ns long pulses at a repetition
rate of up to 250 kHz. bender was used to investigate the pulse shaping including space
charge forces and the complicated field geometry of the system. In Section 5.2.2, a short
overview over the performed simulations is given. The design of the system and detailed
analysis of the simulation results can be found in [11].

After the chopper system, the third and fourth solenoid provide the focusing required
for injection of the beam into an RFQ (radio frequency quadrupole). tralitrala can be
used for the simulation and an example from those performed in [81] is presented in the
next section.

The RFQ, operated at 175 MHz, will then accelerate the protons to an energy of 700 keV.
It is coupled to an IH-type (interdigital H-mode) cavity, which provides acceleration to
the final beam energy of 2.03 MeV. Downstream, a CH-type structure (crossbar H-mode)
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is used to longitudinally focus the beam and to vary its energy by ±200 keV.
Depending on the experiment, the beam will then either be transported directly to a

target or additionally compressed by a bunch compressor. The design shown in Figure 5.14
consists of a kicker system, that deflects nine successive bunches from the rf accelerator
onto paths of different lengths created by four dipole magnets. In simulations, the system
was able to produce 1 ns long pulses [82] at a neutron production target.

5.2.1. Low-energy beam transport

In [81], the beam transport through the FRANZ Low-Energy Beam Transport section
was studied for various geometries using, among others, tralitrala. The graphics card
version of the latter made it possible to perform calculations of a wide range of settings
for the two solenoids of each section. An example is shown in Figure 5.15. These maps
contain results from 82368 simulations runs, calculated in 2.5 days4.
These use the same simulated beam distribution for all three ion species extracted

from the ion source. Its emittance is εxrms,norm = 0.029 mm mrad. At a proton current of
50 mA, 5 mA H+

2 and 5 mA H+
3 are assumed to be present. Until the start of the chopper,

a space charge compensation of 95 % is assumed—calculated by scaling of the electric
field. Within the chopper system itself, compensation will be low due to the presence of
external electric fields. This is also the case for the pulse in the second half of the LEBT
since the pulse length is much shorter than the compensation built-up time τscc.

The transmission of the proton beam in Figure 5.15a shows two areas of high transmis-
sion in the parameter space. The area towards lower solenoid strengths corresponds to a
situation, where the beam is approximately parallel to the beam axis between the first
two magnets and is then focused to fit between the chopper plates by the second. When
the magnetic field in the first solenoid B1 is increased from this setting, the beam focus
shifts towards the position of the second solenoid. The band of low transmission around
B1 ≈ 400 mT is caused by the focus of the beam being located within the second solenoid,
which is then unable to provide any focusing. Towards even higher values of B1, the

4On a Nvidia Geforce GTX 770.
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Figure 5.14.: Schematic of the future Frankfurt neutron source FRANZ.
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(a) 50 mA proton fraction.
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(b) 5 mA H+
2 fraction.

Figure 5.15.: Transmission of two of the three beam species in simulations of the first
section of the FRANZ LEBT. Contour lines at 10 % transmission steps.
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(a) Only proton beam.
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Figure 5.16.: Emittance growth in the first section of the FRANZ LEBT. The contour lines
in (b) were taken from Figure 5.15, those in (a) from a similar calculation
without the additional species.
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beam radius increases again at the position of the second solenoid and, also assuming a
higher field strength B2, the transmission increases again, which leads to the second high
transmission area in Figure 5.15a. This setting corresponds to the “crossover” matching
of the proton beam in Section 4.3.
When only one of the two magnets is operating, the beam transmission is relatively

low except when the focus is placed between the chopper plates, which is the case around
B1 ≈ 350 mT, B2 small and B2 ≈ 430 mT, B1 small.

The emittance of the proton beam, shown in Figure 5.16b, varies over a wide range of
values. Due to particle losses, the emittance also decreases in some areas. Particle losses
of the outlying particles are also responsible for the variation of the emittance growth
over several 100 % in the areas of high transmission. In [81], the “crossover” matching at
higher solenoid strengths and the regular matching were found to lead to similar values
of emittance growth at low beam currents. This is no longer the case at 50 mA for the
given realistic beam distribution. There, the strong electric field in the crossover point
leads to a redistribution and to emittance growth.
Figure 5.16b shows two bands of very high emittance growth, around B2 ≈ 450 mT

for low field strengths in the first solenoid and around B2 ≈ 500 mT for large values of
B1. These are also present in effectively zero current simulations [81, Abbildung 3.3,
p. 25], albeit only amounting to an emittance growth of 100 %. At these settings, the
proton beam enters the second solenoid with a large size and is then focused strongly
to fit through the chopper section. Since the focusing strength of a solenoid increases
radially towards its aperture, the distribution in x− x′ becomes S-shaped. These changes
in turn lead to strong non-linear field in the uncompensated chopper section, resulting in
an emittance growth above 2500 %.

While the proton beam transmission is not significantly changed by the presence of the
additional beam fractions, the H+

2 and H+
3 ions significantly contribute to the emittance

growth at settings where these are not filtered in front of the uncompensated chopper
section. For example, this is the case in the area of high transmission with a focus between
the first and second solenoid. An interesting effect can be identified by comparing the
two plots in Figure 5.16 for settings at which only the first solenoid is operating. Towards
high B1, the emittance growth alternates between high and low values. The maxima in
the emittance growth are located at solenoid strengths, where the focus point of the H+

2

and later the H+
3 ions are located within the chopper section. The electric field produced

by these ions affects the remaining protons, leading to the formation of a hollow beam.
Figure 5.17 shows the beam envelope for the optimal setting identified in [81] as a

trade-off between a large transmission—97.1 % in this case—and a low emittance, which
is εxrms,norm = 0.061 mm mrad, a 209 % increase.

5.2.2. Beam shaping simulations

Figure 5.18a depicts the technical design of the E× B chopper system located between
the second and third solenoid of the FRANZ LEBT. The system consists of two parts—a
deflection section and a separation system. In the first section, a dipole magnet deflects
the beam by approximately 10°. In the second stage, the deflected beam is separated from
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5. Applications

(a) Cross-sectional view of the E×B chopper
[11, Fig. 4.2] located between two solenoids
of the FRANZ LEBT.
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Figure 5.18.: E×B chopper.

the axis of the transmitted beam and dumped. To produce a beam pulse, the magnetic
deflection in the first section is compensated by an electric field applied to the deflector
plates. The length of the pulse is then defined by the length of the voltage pulse and
the size of an aperture located in front of the third solenoid. This configuration has
the benefit, that the high voltage needs to be applied only for a short period of time,
minimizing the probability of electric breakdowns. Furthermore, the beam can be safely
dumped outside of the beam line.

In [11, p. 53-63], the system was optimized to minimize the impact of the complicated
field geometry on the beam. bender was used to investigate the beam transport for several
variations of the geometry. Without space charge, the rms emittance was found to remain
approximately constant at the input value of εrms,norm = 0.053 mm mrad.

Two important questions are whether the beam quality also remains unchanged during
transport through the time-dependent fields in the chopper system for a space charge
dominated beam, and if the system is able to filter the unwanted H+

2 and H+
3 fractions

present in the beam before injection into the RFQ.
To answer these questions, simulations using bender were performed. The magnetic

field of the chopper dipole magnet and the solenoid magnets as well as the electric field
produced by the deflection plates were calculated using CST EM Studio [83] and included
in the simulation. The strength of the latter is varied over time. The voltage pulse, which
was taken from a measurement of the pulse generator, is shown in Figure 5.18b.

Due to their vicinity, solenoids 2 & 3 and the chopper dipole magnet influence each
other. For example, some flux is drawn from the solenoids into the yoke of the dipole
magnet. To be able to change the strength of each magnet independently without having
to calculate the full fields, three fieldmaps for this combination of magnets were generated.
In each of these fieldmaps, only one magnet is activated. In bender , these fieldmaps are
then overlapped and added. Since all three magnets are operated far away from saturation
of the magnetic materials, this superposition should be valid.
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5.2. Simulations of beam transport for the FRANZ facility

Figure 5.19.: Beam distributions of the protons (blue), H+
2 ions (red) and H+

3 ions (green)
in a simulation of the pulse shaping at different times during the voltage
pulse. Taken from [11, p. 86].
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5. Applications

An input distribution was taken from simulations similar to those presented in the
previous section. A current of 50 mA was used. 1000 proton macroparticles and 100
macroparticles carrying a current of 5 mA for both H+

2 and H+
3 are inserted in every step.

To remove any switch-on effects from the forming beam, each simulation was started
including the distribution of an already-formed beam taken from a previous simulation.
Such a distribution is shown for t = 0 ns in Figure 5.19.
The finite difference solver (Section 3.2.2) was used at a grid resolution of 2.5 mm in

each direction. The full geometry of the vacuum vessels and the chopper plates was
included. This reduces the total number of freedom that have to be solved for by the
Poisson solver from 6.7 million to 2.1 million and includes effects from image charges on
the wall. Longitudinally, Neumann boundary conditions are used. On 10 processors on
the FUCHS cluster [62], each run takes typically about 9 h.
Figure 5.19 shows the particle distributions during several stages of the simulation.

At 0 ns, it corresponds to the distribution without electric deflection. All three particle
species possess the same beam energy, W = 120 keV. They have the same electric rigidity
(Eρ) = 2W/q and are deflected equally by the electric field, but differ in magnetic rigidity
(Bρ) = p/q due to the difference in mass. Therefore, the H+

2 and H+
3 ions are deflected

less at t = 0 ns in Figure 5.19.
Then, the voltage pulse is applied. The first ions transmitted through the aperture

are H+
2 and H+

3 ions at about 320 ns. Since the electric deflection force was matched to
compensate the (larger) magnetic deflection for protons, the heavier ions are overdeflected,
producing two separate pulses while sweeping over the aperture. Due to the larger velocity
of the protons, these heavier and slower species are overtaken and arrive at the RFQ
behind the proton pulse.

Between 320 ns and 660 ns, the proton beam pulse forms. Notice, that due to the time
of flight difference between the chopper plates and the aperture (≈ 143 ns for 120 keV
protons), at this time, the voltage at the chopper plates is already decreasing.

The pulse has a rise time of 120 ns, followed by a 50 ns plateau with less than ±1.6 mrad
deviation from the axis and a 160 ns tail. The asymmetry between head and tail is already
present in the voltage pulse. The final current pulses for the matched case in front of the
RFQ are also shown in Figure 5.18b.

Both the head and the tail of the pulse have significant offsets and angles. In between
the pictures at 440 ns and 560 ns in Figure 5.19, these seem to disappear for the head
of the pulse only to be present again at 660 ns. Furthermore, the offset is shifted from
positive x (and positive deflection angle) towards negative x. This is a result of the
rotation induced by the fringe fields of the solenoid magnets [84, p. 144]. At 560 ns, most
of the offset of the head of the proton pulse is found in vertical direction.

The unwanted ion species are insufficiently focused and have either high position offsets
or angles, up to 3 cm and ±80 mrad respectively for H+

2 and 4 cm and ±50 mrad for H+
3 .

Most of these ions will therefore not be injected into the RFQ, which has an aperture of
only ±3 mm [11, p.88].

Parameter studies for different pulse shapes, different apertures after the chopper and
various types of mismatch were performed. It was found, that the E× B chopper system
is able to provide the beam parameters required by the FRANZ project.
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6. Summary and Conclusion

Compensation of space charge forces by particles of opposite charge is an important
effect for the transport of high-intensity, low-energy ion beams, potentially reducing the
required focusing forces and the rate of emittance growth due to a redistribution of the
beam. In this thesis, space charge compensation of a proton beam by electrons in a drift
section was investigated. In the approach taken, the secondary particles—both electrons
and residual gas ions—were included self-consistently in a simulation.

For this purpose, a new electrostatic particle-in-cell code (PIC code) named bender was
developed. In Chapter 3, PIC was introduced as a solution method for the Vlasov-Poisson
system by the use of simulation particles. bender uses the Velocity Verlet algorithm
for the integration of motion. The implementation was tested on several test systems
and its correctness as well as its long-term conservation of energy demonstrated. For
calculation of space charge forces in three dimensions, two solvers were implemented: a
solver utilizing Fourier transforms on Cartesian, cubic lattices using the FFTW library
[32] and one solving a finite difference approximation of Poisson’s equation using the PetSc
library [29]. The latter supports Dirichlet boundary conditions on arbitrary geometric
objects and can be used for systems with complex geometries. A two-dimensional rz
solver was implemented using finite differences as well. All three solvers support parallel
computation of the fields in some way, either by distributing the grid longitudinally or by
distributing the grid in arbitrarily located grid boxes. These were then tested against the
analytically calculated field of either a Gaussian distributed beam or sphere.

After these components were found to be working correctly when used separately, the
code was tested against two known self-consistent solutions of Vlasov’s equation. As an
example of a system including a beam, a KV distributed beam was matched through a
quadrupole channel and several cells were simulated using bender . For large numbers of
particles and high grid resolution, the simulated phase advance converges to the correct
value. As a test from non-neutral plasma physics, a particle distribution of thermally
distributed electrons confined in an external potential was generated and loaded into a
simulation. For this purpose, an algorithm to solve the Poisson-Boltzmann equation was
implemented. For high numbers of macroparticles, the resulting distribution remained
stable. However, in all simulations, an energy growth dependent on the number of
macroparticles and to a lesser degree on the grid resolution was found. This effect was
identified as the stochastic heating known to be present in PIC simulations [21, p. 316].

In addition to bender , a simpler PIC code named tralitrala was written for fast simulation
of Low-Energy Beam Transport systems. It includes various typical beam optical elements
such as drifts and solenoids either by field integration or by using transport matrices and
runs both on CPUs and graphic processors. Speed-ups of up to factor 100 compared to
the CPU version were demonstrated when using the latter.
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6. Summary and Conclusion

Particle collisions with the residual gas were included into bender using the Null-collision
method. The code includes model cross sections for both proton impact and electron
impact ionization. Both calculate differential cross sections and therefore reproduce the
correct energy distribution of the secondary electrons. The undetermined quantities
are calculated from a classical collision model to guarantee energy and momentum
conservation.

Using bender , compensation in a model system of a converging, homogeneous 120 keV,
100 mA proton beam was simulated. The build-up of the compensation in the simulation
fits the expected behavior: initially the charge in the system increases linearly with the
ionization rate until losses occur and an equilibrium forms. The compensation in the
presented simulation reached values around 80 %, varying longitudinally by several percent.
In the calculated charge densities, various features not explained by a homogeneous
reduction of the electric field were identified. These are the formation of a hollow beam
around the beam focus, an accumulation of residual gas ions in the center of the system as
well as an area of negative charge density at the edge of the beam. Furthermore, Gaussian
velocity distributions are present at all locations in the simulation.

From the assumption of Boltzmann distributed electrons, the spatial distribution of
electrons in an external potential was calculated. To understand the influence on beam
transport, the Poisson solver in tralitrala was replaced by a one-dimensional radial solver
for the Poisson-Boltzmann equation. At low temperatures, the electron charge density
is equal to the beam’s charge density until some radius and then decreases. This leads
to a non-linear electric field, especially at the beam edge. The emittance growth due to
these fields was studied in various systems. The tralitrala simulation of the model system
including a thermal electron distribution qualitatively reproduces all previously mentioned
features of the steady-state charge distributions. The formation of the hollow beam
was found to be a result of the non-linear radial electric field due to the inhomogeneous
compensation. The accumulation of residual gas ions is a result of a local overcompensation
due to the density maximum at the beam edge in the focus.

The origin of the Gaussian velocity distributions was studied. The electron temperatures
as well as the compensation degree were found to vary strongly with the particle per
macroparticle ratio i.e. the number of macroparticles used to represent the system. A
potential explanation of the numerical influence could be the stochastic heating observed
during the code tests. The hypothesis was formed that the additional energy introduced
by the numerical heating is compensated by the system by increased particle losses,
leading to a compensation well below 100 %. This needs to be further investigated, for
example by identifying the influencing parameters for the statistical heating in the test
simulation for comparison with the compensation system. Since the observed rates can
be larger in magnitude than physical heating processes, before these can be implemented,
the understanding of the numerical effects needs to be improved. Optionally, a different
approach to solving the Poisson-Vlasov system, such as direct methods, could be pursued.
The presented simulations provide a starting point for future investigations of the

dynamics of charged many-particle systems. The simulated equilibrium was observed to
be determined by particle production as well as loss mechanisms, which are themselves
influenced by heating (and possibly present cooling) processes. Another system governed
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by similar laws are Gabor lenses, which are under investigation at IAP [13]. To improve
predictions for the observed steady-state and the behavior of these systems, it is important
to improve the understanding of the involved processes as well as their interaction.

Particle-in-cell simulations can also provide valuable input for the design of accelerator
components. Two applications for bender and tralitrala were described in this thesis: the
Low-Energy Beam Transport section of the Frankfurt neutron source FRANZ with the
novel E×B chopper system and the electron lens for the IOTA project at Fermi National
Laboratory.
A wide range of possible parameter settings for the solenoids of the FRANZ LEBT

were explored using tralitrala in [81], which is possible due to the short calculation times
of the graphics card version. This makes it possible to easily find optimal settings of
the beam line. Using distributions generated from these settings, the pulse shaping in
the E×B chopper was studied in [11] using bender . The system was found to fulfill the
requirements in regard to pulse length and beam quality.
For the IOTA electron lens, a coil layout satisfying the geometric requirements was

found. Compared to the second electron lens used in the Tevatron, it features an increased
angle of injection and an additional transfer solenoid. The distortion of the beam due to
asymmetry in the field lines and due to particle drifts was studied.
The current that can be transported was found to be mainly limited by the influence

of the longitudinal electric field resulting from the radial compression of the beam. The
current limit also depends strongly on the beam pipe geometry. An expression for the
limit was found and checked using simulations of a model system for a homogeneous
distribution and for the McMillan distribution of interest for IOTA.
When the beam’s electric field becomes non-negligible, particle motion shows a slow

angular drift and a fast radial oscillation. Under this type of motion, a homogeneous
beam distribution remains stable. However, for the McMillan distribution, the formation
of rings of increased density was observed in two-dimensional PIC simulations. These
were also found in calculations for the full electron lens in the form of spirals. Since the
stability of the current density is important for the application of the electron lens, these
results demand further investigation.
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A. Derivation of the macroparticle
equation of motion

Under the assumption of a phase-space density f(t, x, v) =
∑

iNiS(x− xi(t)) δ(v − vi(t)),
where the particle shape function S(x) fulfills the requirements given in Section 3.1, the
equation of motions for xi(t) and vi(t) can be found from the Vlasov equation

0 =
df

dt
=
∂f

∂t
+ v

∂f

∂x
+

q

m
E(x)

∂f

∂v
. (A.1)

Due to the symmetry and the normalization of S(x),
∫ ∞

−∞
xS(x− xi(t)) dx =

∫ ∞

−∞
(x+ xi(t))S(x) dx = xi(t) . (A.2)

The following identity for the δ-distribution will be useful [66, p. 26]
∫ ∞

−∞

dδ(x′)

dx′

∣∣∣∣
x

f(x) dx = −df

dx

∣∣∣∣
x=0

. (A.3)

For the first moment of the Vlasov equation in x,

0 =

∫
x
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dt
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∫
x

{
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+

q

m
E(x)

∂f
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}
dxdv

=
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i

Ni

{∫
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=1

∂
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+

∫
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=−1, partial integration
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}
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∑

i
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{
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∂t
− vi(t)

}
.
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A. Derivation of the macroparticle equation of motion

For the first moment of the Vlasov equation in v,

0 =

∫
v
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dt
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