
Fast Signature Generation with a
Fiat Shamir – Like Scheme

H. Ong
Deutsche Bank AG

Stuttgarter Str. 16–24
D – 6236 Eschborn

C.P. Schnorr ∗

Fachbereich Mathematik / Informatik
Universität Frankfurt

Postfach 111932
D – 6000 Frankfurt/M. 11

Abstract

We propose two improvements to the Fiat Shamir authentication and signa-
ture scheme. We reduce the communication of the Fiat Shamir authentication
scheme to a single round while preserving the efficiency of the scheme. This
also reduces the length of Fiat Shamir signatures. Using secret keys consisting
of small integers we reduce the time for signature generation by a factor 3 to
4. We propose a variation of our scheme using class groups that may be secure
even if factoring large integers becomes easy.

1 Introduction and Summary

The Fiat–Shamir signature scheme (1986) and the GQ–scheme by Guillou and Quis-
quater (1988) are designed to reduce the number of modular multiplications that
are necessary for generating signatures in the RSA–scheme. Using multicomponent
private and public keys Fiat and Shamir generate signatures much faster than with
the RSA–scheme. The drawback is that signatures are rather long. They are about
t–times longer than RSA–signatures, where t is the round number in the Fiat–Shamir
scheme. Using single component keys Guillou and Quisquater obtain signatures of
about the same length as in the RSA–scheme but the cost for signature generation is
only slightly reduced (by a factor of about 3) compared to the RSA–scheme.

In this paper we propose a new signature scheme and a corresponding authentica-
tion scheme that reduces the length of signatures in the Fiat–Shamir scheme to about
the length of RSA–signatures. Signature generation with the new scheme is about

∗This research was performed while the second author visited the Department of Computer
Science of the University of Chicago

3 to 4 times faster than with the Fiat–Shamir scheme. The efficiency of the new
signature scheme is comparable to that of the discrete logarithm signature scheme by
Schnorr (1989): In the new scheme signature generation is somewhat slower, signature
verification about 5 times faster than in the discrete logarithm scheme. Signatures,
private and public keys are longer in the new scheme.

We present the basic version of the new signature scheme in section 2. This basic
version preserves the efficiency of the Fiat–Shamir scheme but reduces the length
of signatures. In section 3 we present a variant of the new scheme that generates
signatures about 3 to 4 times faster than with the Fiat–Shamir scheme. The authen-
tication scheme that corresponds to the signature scheme is presented in section 4.
It is shown to be secure unless computing non trivial 2t-th roots modulo N is easy.
A variation of our scheme using class groups is given in section 5. This variant may
be secure even if factoring large integers is easy.

2 A condensed variant of Fiat Shamir signatures

Notation. For N ∈ IN let ZZN denote the ring of integers modulo N . The
numbers t and k are security parameters, typically 4 ≤ t , k ≤ 20 .

The role of the key authentication center (KAC). The KAC chooses

• random primes p and q such that p, q ≥ 2256

• a one–way hash function h : ZZN ×ZZ → {0, 1}tk.

• its own private and public key.

The KAC publishes N = p · q , h and its public key.

COMMENTS. The KAC’s private key is used for signing the public keys issued by
the KAC. The KAC can use any secure public key signature scheme whatsoever for
generating this signature.

The user’s private and public key. Each user chooses a private key s =
(s1, . . . , sk) consisting of random numbers si ∈ [1, N] such that gcd(si, N) = 1 for
i = 1, . . . , k. The corresponding public key v = (v1, . . . , vk) consists of the integers
vi = s−2t

i (mod N) for i = 1, . . . , k.

Registration of users. The KAC checks the identity of a user, prepares an
identification string I (containing name, address etc.) and generates a signature S for
the pair (I, v) consisting of I and the user’s public key v.

Signature generation.
input message m ∈ ZZ , private key s = (s1, . . . , sk) and modulus N .

1. Preprocessing pick a random r ∈ [1, N] , x := r2t
(mod N).

2. e = (e11, . . . , etk) := h(x,m) ∈ {0, 1}tk.

3. y := r
∏k

j=1 s
∑t

i=1
eij2

i−1

j (mod N).

Output signature (e, y).

Our signature concept reduces multicomponent signatures of the Fiat Shamir
scheme to single components. The efficiency of signature generation is preserved.
Step 3 can be performed as follows

y :=
∏

et,j=1

sj (mod N)

y := y2
∏

et−i,j=1

sj (mod N) for i = 1, . . . , t− 1

y := y · r (mod N).

Step 3 requires at most kt + t − 1 modular multiplications; for random e only
t(k +2)/2− 1 modular multiplications are required on the average. Step 1 requires t
squarings and can be done in a preprocessing stage that is independent of the message
m.

Signature verification.
input signature (e, y), message m, v = (v1, . . . , vk), I, S, N .

1. check the signature S for (I, v).

2. z := y2t ∏k
j=1 v

∑t

i=1
eij2

i−1

j (mod N)

3. check that e = h(z, m) .

Signature verification can be done using at most kt+t modular multiplications. For
random e only t(k + 2)/2 + 1 modular multiplications are required on the average.
Step 2 can be performed as follows:

z := y2
∏

et,j=1

vj (mod N)

z := z2
∏

et−i,j=1

vj (mod N) for i = 1, . . . , t− 1.

Security of signatures. In order to falsify a signature for message m the crypt-
analyst has to solve the equation

e = h


y2t ∏

j

v
∑t

i=1
ei,j2

i−1

j (mod N), m


 ,

for e and y. No efficient method is known to solve this equation.

3 Fast Signatures

The generation of signatures can be accelerated by choosing secret keys s consisting
of small integers s1, . . . , sk . The security of this variation of the scheme is based
on the assumption that computing 2t–roots modulo N is difficult. No particular
algorithms are known to compute 2t–roots modulo N given that these 2t–roots are of
order N2−t+1

.

Let the private key (s1, . . . , sk) consist of random primes s1, . . . , sk in the interval
[1, 264]. The interval [1, 264] must be large enough so that it is infeasible to find the
si by exhaustive enumeration. We must have t ≥ 4 so that s2t

j is at least of order
N2. We next explain the requirement for the numbers s1, . . . , sk to be prime. For if
si = α · β with α, β ∈ [1, 232] we can find si by solving

β−2t

= viα
2t

(mod N) for α, β ∈ [1, 232].

This can be done using about 232 steps.

For the efficiency of the scheme we suppose that
∑

j ei,j ≤ 8 for i = 1, . . . , t.
Then we have

∏
ei,j=1 sj < 2512 for all i and computing this product does not require

any modular reduction. Consequently step 3 of the procedure for signature genera-
tion requires only 2t− 1 full modular multiplications; the other multiplications are
with small numbers. Thus step 3 costs an equivalent of about 2.5t − 1 full modular
multiplications. Step 1 of the procedure for signature generation requires t additional
modular multiplications, but these multiplications are done in preprocessing mode
independent of the message that is to be signed. The total cost of about 2.5t− 1 mo-
dular multiplications for signature generation compares favourable with the average
of (k/2 + 1)t modular multiplications in the original Fiat–Shamir scheme.

4 The authentication scheme and its security

Let the private and public keys s, v be as in the previous sections. In particular we
can use the small integer variant for the private key s.

The authentication protocol.
(Prover A proves its identity to verifier B)

1. Preprocessing. A picks a random number r with 1 ≤ r ≤ N and computes
x := r2t

(mod N).

2. Initiation. A sends to B its identification string I, its public key v, the KAC’s
signature S for (I, v) and x.

3. B checks v by verifying the signature S and sends a random string e ∈ {0, 1}tk

to A.

4. A sends y := r
∏

j s
∑t

i=1
ei,j2

i−1

j (mod N) to B

5. B checks that x = y2t ∏
j v

∑t

i=1
ei,j2

i−1

j (mod N) and accepts A′s proof of identity
if this holds.

Obviously if A and B follow the protocol then B always accepts A’s proof of
identity. We next consider the possibility of cheating for A and B. Let Ã (B̃, resp.)
denote a fraudulent A (B, resp.). Ã (B̃, resp.) may deviate from the protocol in
computing x, y (e, resp.). Ã does not know the secret s. B̃ spies upon A’s method of
authentication.

A fraudulent A can cheat by guessing the exam e and sending for an arbitrary
r ∈ ZZN the crooked proof

x := r2t ∏

j

v
∑t

i=1
ei,j2

i−1

j (mod N) , y := r.

The probability of success for this attack is 2−tk.

We prove in the following theorem that this success rate cannot be increased unless
we can easily compute some nontrivial 2t–th root modulo N. For this let Ã be an
interactive, probabilistic Turing machine that is given the fixed values k, t, N . Let
RA be the internal random bit string of Ã. Let the success bit SÃ,v(RA, e) be

1 if Ã succeeds with v, RA, e and 0 otherwise. The success probability SÃ,v of Ã
for v is the average of SÃ,v(RA, e), where RA, e are uniformly distributed. We

assume that the time TÃ,v(RA, e) of Ã for v,RA, e is independent of RA and e, i.e.
TÃ,v(RA, e) = TÃ,v. This is no restriction since limiting the time to twice the average
running time for successful pairs (RA, e) decreases the success rate SÃ,v at most by a
factor 2.

Theorem 1. There is a probabilistic algorithm AL which on input Ã, v computes
a 2t-root of

∏
j vci

j (mod N) for some (c1, . . . , ck) 6= 0 with |cj| < 2t for j = 1, . . . , k.
If SÃ,v > 2−tk+1 then AL runs in expected time O(TÃ,v / SÃ,v).

Proof. The argument extends Theorem 5 in Feige, Fiat, Shamir (1987). We
assume that TÃ,v also covers the time required for B.

Algorithm with input v

1. Pick RA at random. Compute x = x(Ã, RA, v), i.e. compute x the same way
as algorithm Ã using the coin tossing sequence RA. Pick a random e ∈ {0, 1}tk.
Compute y = y(Ã, RA, v, e) the same way as algorithm Ã. If SÃ,v(RA, e) = 1
then fix RA, retain x, y, e and go to step 2. Otherwise repeat step 1 using a
new independent RA.

2. Let u be the number of probes (i.e. passes of step 1) in the computation of
RA, x, y, e. Probe up to 4u random e ∈ {0, 1}tk whether SÃ,v(RA, e) = 1. If

some 1 occurs with e 6= e then compute the corresponding y = y(Ã, RA, e, v)
and output ci =

∑t
i=1(eij − eij)2

i−1 for j = 1, . . . , t and y/y (mod N).

Time analysis. Let SÃ,v > 2−tk+1. For fixed Ã and v let the success bits
SÃ,v(RA, e) be arranged in a matrix with rows RA and columns e. A row RA is
called heavy if the fraction of 1–entries is at least SÃ,v/2. At least half of the 1–
entries are in heavy rows since the number of 1–entries in non–heavy rows is at most
SÃ,v · #rows · #columns/2. Thus the row RA that succeeds in step 1 is heavy with
probability at least 1/2. A heavy row has at least two 1–entries.

We abbreviate ε = SÃ,v. The probability that step 1 probes iε−1 random RA

for some i ∈ IN without finding an 1–entry is at most (1− ε)i/ε < 2.7−i. Thus the
average number of probes for the loop of step 1 is

≤
∞∑

i=1

iε−12.7−i+1 = O(ε−1).

We have with probability at least 1/2 that u ≥ ε−1/2. The row RA is heavy with
probability at least 1/2. If these two cases happen then step 2 finds a successful e
with probability ≥ 1−(1−ε/2)2/ε > 1−2.7−1, and we have e 6= e with probability
≥ 1/2. Thus AL terminates after one iteration of steps 1 and 2 with probability

≥ 1

4
(1− 2.7−1)

1

2
> 0.07.

The probability that AL performs exactly i iterations is at most 0.93i−1. Alltogether
we see that the average number of probes for AL is at most

O

(
5ε−1

∞∑

i=0

0.93i−1t

)
= O(ε−1).

This proves the claim. QED

5 A variation of the new scheme using class
groups

One can obviously modify the new scheme so that the private and public key com-
ponents si, vi are elements of an arbitrary finite abelian group G, i.e. we can replace
the group ZZ∗N of invertible elements in ZZN by the group G. The efficiency of signa-
ture generation and signature verification relies on the efficiency of the multiplication
in G. For the generation of the public key components vi = s−2t

i we need an efficient
division algorithm in G. The security of the authentication and the signature scheme
requires that computing 2t–th roots in G is difficult.

A particular type of suitable groups are class groups C4 of equivalence classes of
binary quadratic forms aX2 + bXY + CY 2 ∈ ZZ [X,Y] with negative discriminant
4 = b2 − 4ac. The multiplication in C4, which is called composition, is only slightly
slower than modular multiplication for integers of the order of 4. All known algo-
rithms for computing 2t–th roots in C4 require knowledge of the group order h4 of
C4 which is called the class number.

Class groups C4 have the following advantage over the group ZZ∗N :

• The problem of computing class numbers h4 is harder than the problem of
factoring integers N of the order N ≈ | 4 |.

• Computing the class number h4 is hard no matter whether 4 is prime or
composite.

• No trusted authority is required for the generation of4, since there is no hidden
secret, as is the factorization of the modulus N in the Fiat–Shamir scheme.

For the sake of completeness we give all the details for the operation in class groups.

5.1 Class groups. A polynomial aX2 + bXY + cY 2 ∈ ZZ [X, Y] is called a binary
quadratic form, and 4 = b2− 4ac is its discriminant. We denote a binary quadratic
form aX2 + bXY + cY 2 by (a, b, c). A form for which a > 0 and 4 < 0 is
called positive, and a form is primitive if gcd(a, b, c) = 1. Two forms (a, b, c) and
(a′, b′, c′) are equivalent if there exist α, β, γ, δ ∈ ZZ with αδ − βγ = 1 such that
a′U2 + b′UV + c′V 2 = aX2 + bXY + cY 2, where U = aX + γY , and V = βX + γY .
Two equivalent forms have the same discriminant.
Now fix some negative integer4 with 4 ≡ 0 or 1 mod 4. We will often denote a form
(a, b, c) of discriminant 4 by (a, b), since c is determined by 4 = b2−4ac. The set
of equivalence classes of positive, primitive, binary quadratic forms of discriminant 4
is denoted by C4. The existence of the form (1,4) shows that C4 is non–empty.

5.2 Reduction algorithm. Each equivalence class in C4 contains precisely one reduced
form, where a form (a, b, c) is reduced if |b| ≤ a ≤ c and b ≥ 0 if |b| = a or if
a = c.

5.3 Composition algorithm. The set C4 is a finite abelian group, the class group.
The group law, which we will write multiplicatively, is defined as follows. The inverse
of (a, b) follows from an application of the reduction algorithm to (a,−b), and the unit
element 14 is (1, 1) if4 is odd, and (1, 0) if4 is even. To compute (a1, b1)·(a2, b2), we
use the Euclidean algorithm to determine d = gcd(a1, a2, (b1 +b2)/2), and r, s, t ∈ ZZ
such that d = ra1 + sa2 + t(b1 + b2)/2. The product then follows from an application
of the reduction algorithm to (a1a2/d

2, b2 + 2a2(s(b1 − b2)/2− tc2)/d, where c2 =
(b2

2 −4)/(4a2).

5.4 Prime forms. For a prime number p we define the Kronecker symbol
(4

p

)
by

(4
p

)
=





1 if 4 is a quadratic residue modulo 4p and gcd(4, p) = 1
0 if gcd(4, p) 6= 1

−1 otherwise.

For a prime p for which
(4

p

)
= 1 , we define the prime form Ip as the reduced

form equivalent to (p, bp), where bp = min{b ∈ IN>0 : b2 ≡ 4 mod 4p}.

5.5 Factorization of forms. A form (a, b, c) of discriminant 4, with gcd(a,4) = 1,
for which the prime factorization of a is known, can be factored into prime forms in
the following way. If a =

∏
p prime pep is the prime factorization of a, then (a, b) =∏

p prime Ispep
p , where sp ∈ {−1, +1} satisfies b ≡ spbp mod 2p, with Ip = (p, bp) as

in 3.4. Notice that the prime form Ip is well–defined because the prime p divides a,
gcd(a,4) = 1, and b2 ≡ 4mod 4a.

5.6 Choice of the discriminant and the private and public keys. We can choose
4 = −q to be the negative of any prime with q = 3 mod 4 so that q is at least 512
bits long. This particular choice of 4 implies that h4 is odd, and thus every class
(a, b) in C4 has a unique square root.

We can choose the components si of the private key s = (s1, . . . , sk) to be prime
forms si = Ipi

with random primes pi, 263 < pi < 264. We must have t ≥ 3 so that

p2t

i is much larger than
√
| 4 |. Given si one can easily compute the corresponding

public key component vi = s−2t

i .

Acknowledgement The second author wishes to thank the Department of Com-
puter Science of the University of Chicago for its support during this research. He
also wishes to thank A. Shamir for inspiring discussions on this subject.

References

Feige, U., Fiat, A. and Shamir, A.: Zero Knowledge Proofs of Identity. Procee-
dings of STOC 1987, pp. 210 – 217, and J. Cryptology 1 (1988), pp. 469 – 472.

Fiat, A. and Shamir, A.: How to Prove Yourself: Practical Solutions of Identi-
fication and Signature Problems. Proceedings of Crypto 1986, in Lecture Notes in
Computer Science (Ed. A. Odlyzko), Springer Verlag, 263, (1987) pp. 186 – 194.

Goldwasser, S., Micali, S. and Rackoff, C.: Knowledge Complexity of Inter-
active Proof Systems. Proceedings of STOC 1985, pp. 291 – 304.

Guillou, L.C. and Quisquater, J.J.: A Practical Zero–Knowledge Protocol Fitted
to Security Microprocessor Minimizing Both Transmission and Memory. Proceedings
of Eurocrypt‘88. Lecture Notes in Computer Science, Springer–Verlag (Ed. C. G.
Günther) 330 (1988), pp. 123 – 128.

Micali, S. and Shamir, A.: An Improvement of the Fiat–Shamir Identification and
Signature Scheme. Crypto 1988.

Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. Procee-
dings of Crypto‘89 (Ed. G. Brassard) Lecture Notes in Computer Science, Springer–
Verlag 435, (1990) pp. 239 – 252.

