A stable integer relation
algorithm

Preliminary Version

CARSTEN ROSSNER* AND CLAUS P. SCHNORR!

FB Mathematik / Informatik, Universitat Frankfurt,
Postfach 111932, 60054 Frankfurt am Main, Germany

TR-94-016
April 1994

Abstract
We study the following problem: given 2 € IR" either find a short integer relation
m € Z", so that < x,m >= 0 holds for the inner product < ., . >, or prove that
no short integer relation exists for x. Hastad, Just, Lagarias and Schnorr (1989) give
a polynomial time algorithm for this problem.

We present a stable variation of the HJL.S—algorithm that preserves lower bounds
on A(z) for infinitesimal changes of z. Given # € R" and o € IN this algorithm finds
a nearby point ' and a short integer relation m for z’. The nearby point z’ is ’good’
in the sense that no very short relation exists for points T within half the z’-distance
from x. On the other hand if 2’ = x then m is, up to a factor 2/2, a shortest integer
relation for z.

Our algorithm uses, for arbitrary real input z, at most O(n*(n + log«)) many
arithmetical operations on real numbers. If x is rational the algorithm operates on
integers having at most O(n® + n*(log a)? + log(||gz||*)) many bits where ¢ is the
common denominator for x.
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1 Introduction

Given a real vector z € IR" an integer relation for x is a non—zero vector m € Z" with
zero inner product < m,x >= 0. This paper studies the following computational problem:
given z € IR™ find a nearby point 2’ to z and a short integer relation m for z’ so that
there is no much closer point 7 to z having a very short integer relation. Let A(2) denote
the length < m, m >'/2 of the shortest integer relation m for . Given z € R” and a € N
our algorithm finds 2’ € R, m € 7" \ 0 satisfying

o [[m | <200 02 [ cm 2’ > = 0
e A(Z) > § holds for all 7 € R™ with ||z — T || < || 2 — 2 ||/2
o if 2 =2’ then || m || < 27/2X\(z) .

The nearby point 2’ € IR™ has a ’short’ integer relation m, ||m| < 20(**(1°82)*) The
nearby point is 'good’ in the sense that there is no 7 € R”™, within half the z’'—distance
from x, having an integer relation of length at most a/2. On the other hand if 2’ = «
then m is, up to a factor 2/2, a shortest integer relation for z.

For real input z the algorithm uses at most O(n*(n+log a)) many arithmetic operations
on real numbers using exact arithmetic. If the input z is rational, 2 = (p1,...,p,)/q with
integers p1,...,Pn,q, then the arithmetic operations are on integers. The bit length of
these integers is bounded polynomially in n + log a + log(||gz||?) . For non-rational z the
solution 2’ € IR™ may be non-rational as well. The solution (z’, m) holds for all T
satisfying ||z — 7 || < || # — 2" ||/2. Without this stability property the problem is easy
to solve. A short integer relation for a close approximation z’ to x can be found by the
I3-algorithm for lattice basis reduction. If z is rational and A(z) < 20(n*(log)?) it suffices
to construct by L3-reduction a short integer relation for . The problem is difficult if
Alz) > 20(n*(log2)*) o1 if 7 is non-rational. The first polynomial time algorithm, which
for arbitrary real z produces a ’good’ lower bound for A(z) has been designed by Hastad,
Just, Lagarias and Schnorr [HJLS89]. For given z, o the HJLS—algorithm either finds an
integer relation m for 2 with || m || < 2*/2a or it proves that A\(z) > a.

The instability of the HJLS—algorithm is due to the goal of approximating A(z) which is
a discontinuous function in z. To obtain a stable algorithm we changed the objectives of the
algorithm somewhat. The new algorithm computes a point 2’ near to x and establishes the
lower bound A(Z) > /2 for all T satisfying ||z — T || < || 2 — 2’ ||/2. The new algorithm
is a variant of the HJLS—algorithm, which in turn is a variation of both the L3-algorithm
of Lenstra, Lenstra and Lovasz [LLL82] and the generalized continued fraction algorithm
presented by Bergman [BR80] in his notes on Ferguson and Forcade’s generalized Euclidean
algorithm.

2 Notation and Definitions

Let IR™ be the n—dimensional real vector space with the ordinary inner product < ., . >
and Euclidean length [|y|| :=< y,y >'/? . A discrete additive subgroup I C R™ is called a
lattice. Every lattice is generated by some set of linear independent vectors by,...,b,, € L
that is called a basisof L, L = {37 4;b; : t; € Z,1 < j<m}. Welet L(by,...,bm)
denote the lattice generated by the basis by, ..., b, .

A non—zero vector m € 7" is called an integer relation for x € R™ if < z,m >= 0.
We let A(z) denote the length ||m|| :=< m,m >'/2 of the shortest integer relation m for
z, AM(z) = oo if no relation exists.



Throughout the paper we let by,...,b, be an ordered basis of the integer lattice Z™
and let by := = be a non—zero vector in IR™. We associate with this basis the orthogonal
projections

Tiz ¢ R" — span(z,by,,...,, bi_q)t and

mi ¢ R™ — span(b,,...,,bi_1)*" fori=1,...,n,
where span(b;,...,,b;_1) denotes the linear space generated by b;,...,b;—1 and
span(b;, .. .,b;_1)* its orthogonal complement in IR™. We abbreviate biz == Ti(bs),
b; :== m;(b;) and z; := m;(z). The vectors by z,...,b,, (resp. by,...,b,) are pairwise

orthogonal. = They are called the Gram-Schmidl orthogonalization of z,by,...,b,
(resp. by,...,b,). The Gram-Schmidt coefficients for by = z,by,...,b, are defined as

~

b, b;
Mk = M for 1 <k,j<m,
16,212

where we set pp ; = 0 if Zj’x = 0. We have
k o~
Wi,x(bk) = Z,uk,jb]‘,x for1 <1<k <n.
Jj=t

We call the (ordered) system of vectors by := z,by,...,b, size-reduced if
|,u;w-|§% holdsfor 1 < j<k<n
and L3-reduced if it is size-reduced and the inequality
3 Imet1,0(bk—1)||? < ||Th—1,2(bx)||* holds for k =2,...,n.
The latter inequality is equivalent to
Hok1ell® < brall” + i s [Br1,0]1”

We let [.] denote the nearest integer function to a real number r, [r| =[r 4 0.5] .
Let [by,...,b,] denote the matrix with column vectors by, ..., b,.

3 The method of the HJLS—-algorithm
The HJLS-algorithm relies on Proposition 3.1 of [HJLS89] which states that

Az) > 1/ max [[bia (1)

holds for every basis by,...,b, of the lattice ZZ". This inequality already appears in
somewhat weaker form in [FF79].

Initially the vector z = bg is extended to the linear dependent system {bg, b1,...,b,} =
{z,e1,...,e,}, where eq,..., e, are the unit—vectors in IR".

The algorithm transforms the basis by,...,b, by exchange and size-reduction steps
intending to minimize max;—1,_ ||gw|| . For this the HJLS—algorithm uses the Bergman
exchange rule which swaps b;_1, b; for an 7 that maximizes ||Zm||22Z The algorithm
terminates if max;—1, ., ||gw|| < a~!. There is one possible way that the HJLS-algorithm



fails to achieve max;=1,._, ||b; z|| < @~'. This is if an exchange b,,_1 < b,, results in a zero—

vector Zn_l,x. In this case the new basis by,...,b, yields an integer relation a,, which is
the last vector of the basis aq,...,a, that is dual to by,...,by,, 1. e.

[bl, .. .,bn]_l = [(11, .. .,an]T .
This relation a,, is sufficiently short, we have ||a,|| < 2"/?a.

Stability analysis. In Lemma 9 we show the inequalities

~ ~ ~ WMz, — T
i = Bisll < [l — T
t+11] t+1
~ 2{lx — T .
< ||bi,x||w fori=1,....,n-1; (2)
n

where Z; = 1;(z) and T; = 7;(Z) . From this and (1) we see that
\®) > af? 3)
holds provided that the inequalities (4) and (5) are satisfied:
=3l < |52 ()
b;x]] < 2a7! fori=1,...,n (5)
This is because inequalities (2), (4) and (5) imply
lbie = bigll < lIbil

and thus 0 < |lbizl| < 2a7! fori=1,...,n.

We modify the HILS—algorithm so that the basis and its dual satisfy throughout the
algorithm the inequalities

lagll , [1b&]] < 90 (4 47 (log a)?) fork=1,...,n, (6)

see Proposition 2. These inequalities hold for arbitrary real input z.

To obtain (6) we have to perform some size-reduction steps but we cannot afford a com-
plete size-reduction as in the L3-algorithm. We only reduce by versus b; if ||g],x|| >a™h
In this case Lemma 6 shows that the reduction coefficient u ; is at most
| < njﬁx(Abk),bj,x > | < g/

116,217

kil =

and thus the resulting reduction by«—>by, — [u, ;|b; does not generate a very large vector
by . Large values p, ; with ||3]7$|| < a1 will be oppressed in the further reduction process.
The stable integer relation algorithm does not use Bergman’s exchange rule, it uses the
exchange rule of the L3-algorithm. The L3-exchange rule may be inefficient in case of
extremely small orthogonalization vectors gj,x. We overcome this inefficiency by collecting
the vectors b; with ||5]7z|| < a~!in the initial segment of the basis. For this we use an
index s which, throughout the algorithm, satisfies

||Z]7x|| < at forj=1,...,s—1.

The vectors b; with j < s will be excluded from all further exchange and reduction steps.



4 STABLE INTEGER RELATION ALGORITHM

Input e R", 2 #0,a € IN.
1. FOR :=1TO n» DO
a; :=b; := e; the i—th unit—vector
si=k:=1;bp:i=a; co:i=<uw,x>; * kis the stage *
2. WHILE s < n DO

* upon entry of the loop we always have ¢; = ||Z“:||2 >0forj=1,...,k—1,

s<k, ¢1,...,coc1 <72, Tow(bs)y .., To,z(bro1) is I2—reduced. *
cp =< br, by > ;
IF £ =1 THEN k2:2;62:<bg,bg>

2.1 FOR j=0TO £-1DO
pkg = (< b by > = Y000 wimgici) /e 5 er = ek = ui ¢
IF (¢, =0AND k <n ) THEN Output z':=2, a,; STOP

2.2 IF (¢, <a > AND k=s ) THEN k:=s:=s+1; GOTO 2

2.3 FOR j =k —-1DOWNTO s DO
b := by — [pr,;]b; 5 aj := a; + [pr,j]ax ; update pg; for e =0,...,7

2.4 IF %ck_l > ¢+ M%,k—l Ch_1
THEN swap bg_1,b; ; swap ag_1,a;; k:=k—1
ELSE k:=Fk+1
END-WHILE

3. compute the orthogonal projection 2, = m,(z) € span(by,...,by_1)t of z ;

Output 2’ =2z -7, , a,.

Comments: 1. Upon entry of stage k we compute the Gram-Schmidt coefficients puy ; ,
j=0,...,k—1 and the height square c; = ||3k7$||2. This computation uses the actual
basis vectors by,...,by_1 and the previously computed entities p;; for 0 <i:<j <k -1
and cg,...,CL_1.

2. The equality [by,...,b,]"" = [a1,...,a,]" does always hold, i. e. the basis ay,...,a,
is the dual of the basis by,...,b,. Therefore a reduction step by«—by — [ ;]b; implies
the transformation a;«—a; + [pk,;]ax in step 2.3.

3. The value max;<;<, ¢; does never increase. Initially this maximum is at most 1.

Lemma 1. Upon entry of the WHILF-loop in step 2 we always have
L= bl >0 forj=1,....k -1,

2.¢1,...,051 < a‘Q,

3. s z(bs)y .oy s p(br—1) is L?-reduced.

Proof. The claims are shown by induction on the number of passes of the WHILE-loop.

(1) The termination condition in step 2.1 implies that ¢; > 0 holds for j =1,...,k— 1.
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(2) is an immediate consequence of the actualization of s in step 2.2. (3) holds because the
previous steps 2.3 and 2.4 of stage k — 1 finish the L?>-reduction of 75 ,(bs),. .., Ts(br—1) -

|

5 Analysis and Correctness
We first prove an upper bound on the length of the vectors in the bases by,...,b, and
its dual aq,...,a, which holds throughout the algorithm. This bound holds no matter

whether the input z is rational or irrational. The result is based on the restricted size-
reduction of step 2.3. It becomes wrong if we change the algorithm to either perform full
size-reduction or to perform no size-reduction at all.

Proposition 2. Let the input x be an arbitrary real vector. Throughout the algorz'thm
the basis by, ...,b, and its dual ay,...,a, satisfy ||ax|| , ||bk|]] < 20(nt+n?(loga)?)  fo

k=1,...,n

Thus the bit length of the coordinates of b; and a; is at most
O(n* + n*(log @)?) . From this we obtain, for rational inputs =, a polynomial bound for
the bit length of the integers occuring in the algorithm. As a consequence the algorithm
has polynomial bit complexity for rational inputs z.

Theorem 3. Let the input = be rational with x =(p1,...,pn)/q and p1,...,pn,q€ 7.
Then the algorithm performs at most O(n*(n + log a)) arithmetical operations using inte-

gers with at most O(n® + n*(log a)? + log(||qz||*)) bits.

Proof sketch. The number of arithmetic operations of the algorithm is about n times
that of the HJLS-algorithm, see Theorem 3.2 of [HJLS89]. The additional factor n is
for the size-reduction in step 2.3. Let the rational input be « = by = (p1,...,pn)/¢ with
PlyeeeyPn,q € Z. Then a common denominator for the coordinates of the rational vector
Zi,x is the integer

q° det(< b;, by >)o<ji<i -

We see from Proposition 2 and the Hadamard inequality that this integer is in absolute
value at most ||gz||2 20(n"i+n*illog2)*) Tt follows that all integers occuring in the algorithm
are at most ||gz||? 200" +7° (082)*) in absolute value. 0

To prove Proposition 2 we analyse the effect of the size-reduction. All changes of the
basis vectors are by the size-reduction in step 2.3. For an arbitrary pass of loop 2.3 let

b;cl), ,u& denote the vector by and the Gram—Schmidt coefficient py; after performing [

(0) (k—s)

iterations of this loop with [ values j. So b, is by before entering the loop, and b,
the vector by upon termination of the loop.

18

Lemma 4. We have fori=k—-1-1,...,s

l
il < NI = G+ max 6]

geeagB—

Proof. We prove by induction on [ the inequality

! 0
|,L§C)Z.| |,L,H|+;Z§ +|u§c,,1_l+].|) forl=1,...k—s.



Since by_; is size—reduced we have

{ I— 1—
|N§c,)i| = |N§c,¢l) - [Mg;ki%Juk—l,il
- I—
< LTV LG+ e )

which proves the claim for [ = 1. The induction hypothesis for / = 1 applied to the latter
inequality yields

-2
l 0
il <+ E GV G+ )
J=0
- (0
+ %(l %Z % ‘|' |Iuk,k—l+j|))
0
< g 2:% (5 + lihoras D) + 3 ld
0
< H+2§j% 3+ i)
Finally the claim follows from evaluating the geometrical sum. a

Corollary 5. For every pass of step 2.3 we have

k—1
k—s —1—;
68 < 1o+ S IONEF T + max [ul) .

pa s<j<k—1
Proof. For the whole size-reduction loop with respect to by_1,...,bs Lemma 4 yields
B0 = o §:uk110m<nbn+§:w i)
< w@n+zn@%um@wu@ﬁ*ﬁ—u@+ _max ()]
< [lof ||+Z||b NEFid+ max w0

s<j<k-1

Lemma 6. Upon enlry of slep 2.3 we have that |ug;| < 2"/* 'ay/n fors <i<k—1.

Proof. case 1: b, has not been reduced before.
Then b = e and 75.(bs), ..., Ts(bg—1) is L3-teduced. Using the properties of L3~
reduced bases [LLL82] we see that

| < minlbi) bis > | lmasboll o]
5. el Il
= bl < 2Tl < 2Fa

|1tk

CASE 2: by has been reduced in a previous pass of step 2.3.
Let by be the old vector by after its last reduction on stage &’ and before its transfer, via
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exchange steps, from position k& to position &’. Let s’ be the value of s at stage k. We
have from ||b; z|| <1 for j =1,...,n that

| 5 g%forj:s’gs,...,k’—l and

k'—1
~ ~ n+3 .
175 (O)I* = llbwl|* + E _uif,jllbj,aall2 < fori=s,....k.
J=i

Finally we see from 2¢~* ||gmg||2 > ||ZS,I||2 > a that for s <i <k

1,7 b i—s— _
7“””’3( |’“|)” < 2955 avn+3 < 27/ lay/n . O
i,z

e <

Corollary 7. The mazimum B\ := max;<x<n ||b§cl)|| satisfies
B(k—s) < B(O)(%)n_IQH/Qa\/ﬁ.

Proof. After the size-reduction of by with respect to bx_q,...,bs we have from Corollary 5
k-1
plk=s) < B(O)[l + g(%)k—l—i(% + SSr]nSakX_l |N§c(,)])|)]
< BO@DT - DG+ max [u)
(by Lemma 6) < BO(2(2)F=* —1)(1 + 27/ ay/n)
< BO(@)E1on20 /1 O

Proof of Proposition 2. The number of passes of step 2.3 is at most "n + the number
of swaps in step 2.4”. Hastad, Just, Lagarias and Schnorr show that the number of swaps
is at most (3)((logy/32)n 4 2log, ). This is because every swap of bx_1, by in step 2.4
decreases the product

[T (max{[biz[|? 2", a=2})"~

by at least a factor % . Initially this product is at most 27°/2 and upon termination it is at

n

® . Thus the number of passes of step 2.3 is at most (5)((logg/32)n + 2logy a) + n.
Let Bierm s, Binit denote the maximum FEuclidean length of the terminal, respectively
initial, basis vectors. We have Bj,;; = maxj<i<y ||ex|| = 1, and thus Corollary 7 yields

least o™

Biorm < [(%)n—IQn/2aﬁ](g)((log4/3 2)n+2log, a)+n  _ 20(n4+n2(10ga)2) .
The claim on the vectors ay of the dual basis holds by symmetry. |

Lemma 8. For z, T € R"™ lel m7,, 7z denole the orthogonal projection into
span(z)t, span(z)t respectively. Then we have for all b € R™

2(|o[{]« —=||
max{|lz||, ||z[[}

I72(b) = 7=(b)]| <

Proof. Following Clarkson, [Cla92] Lemma 3.2, we have

<ba>_ <bz>| P37 -
EE EE
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This and the Cauchy—Schwarz inequality imply

e =m)] < o= Stz - <22
<bT>_ <bz>_ ., <bz>_ <bx>H
— T+ 3 T — 5 T
HlMV |HV [EIR [EE
_il<bz> <ba>|, I <baz>] _
< | Shn> - <o) Iz — al|
[ [EE [E3l&
o]l [z — =|| MMV ”IQWMM—ﬂL
- ||l HH ||l
proves the claim. |
Lemma 9. Forz, T € R" we have
Bie — bizl| < ﬂmﬁ”“r|m fori=1,...,n—1.

~

Proof. We apply Lemma 8 with b = bi, T =3, T = T;. Using Ffl(gz) = b;» and
T (b;) = b;z 7 this yields

2|z — T 2|z — T
max{|| ;|| , [|7:]|} max{||Ziy1||, [|Tiga]}

The last equality follows from ||| [|biz|| =| det(mi(z), 7i(b;))| = ||bil| ||Ziz1]| . Using
1Zo|| < ||Zix1ll 5 ||Z: — 7| = ||mi(z = T)|| < ||o — 7| for i = 1,...,n — 1 we see that

lbie = bzl < B = |[bicl

S 2 > W 7|

Theorem 10. For arbitrary input x € Q" , a € IN the Stable Integer Relalion Algorithm
produces x' € Q" , m € 7™\ 0 such that
Lo]m| < 200 00se)) o gl > = 0,
where m = +b,||bn|| 2 holds for the terminal vector by, of the algorithm.
2. MT) > § holds for allT € R" with ||z -7 || < || 2 — 2’ ||/2
3. ifx =2 then || m| < 2"\ (z) .

Proof. 3. If 2/ = z then Zn,x # 0 and thus m = a, is an integer relation for z by
Proposition 3.1 of [HJLS89]. The same proposition shows that the length of a,, is at most
27/2 =T min{\(z),a}.

1. The inequality || m || < 20(n"(log2)?*) follows from Proposition 2. If  # 2’ we have
z' € span(by,...,b,—1) and thus b, o = b, # 0 which implies < a,,2’ >= 0. The equal-
ity a, = :EgngnH 2 follows from < a,,z’ >= 0 =< obin,z’ >, see Proposition 3.1 of
[HJLSS9].

2. For every 7 satisfying ||Z7 — || < [|Z,,||/2 Lemma 9 implies ||gwc — ZZ,EH < ||Zw|| and thus

;2] > 0 and b:zl] < 207t fori=1,...,n—-1.

From inequality 1 we see that A(Z) > § holds for all Z € R" with ||z — Z|| < ||z — 2'[| /2.
O



6 Closeness of the approximation

We prove an upper and an lower bound on the distance ||z — 2’| of the input vector z
from the output vector 2’. We comment on diophantine approximation.

Proposition 11. For arbitrary real input x € R™ and output (', m) we have
|z =2l < |zl a'=" / [Jm]].

Proof. lLet by,...,b, be the terminal basis and a4,...,a, its dual, m := a, . We can
assume that o # 2’ since otherwise the claim is trivial. If z # 2’ the vectors x, by, ..., b,_1
form the basis of a lattice L = L(z,bq,...,b,—1). Its determinant det(L) is the volume
of the parallelepiped generated by the basis. We can compute det(L) as the product of
the lengths of the Gram—Schmidt orthogonalization vectors. Applying this to the bases
x,b1,...,b,_1 and by, ...,b,_1,z we see that

n—1 n—1
det(L(x, b1, ,bn-1)) = ]| ] Ibjll = (H ||bj||) [zl -
71=1 71=1
Throughout the algorithm the basis by, ..., b, generates the lattice ZZ" and thus
det(L(by,...,b,)) = H [[b;]] = 1.
j=1

These equations imply [[b |~ = T2 1] = [Tt [Bjll (2]l /1IZ0) - From this and

[|an| :H/Z;n,x’H_l = ||Zn||—1 we see that

-1
=]l

le =2l = [lZall = IT1bjall < llzfl o' =" [laa]I 7" ,
Jaul] L4
where we use that ||, .|| <a™' forj=1,...,n—1. O

Proposition 11 raises the question whether the distance ||z — 2’|| is for random z on
the average proportional to ||z||a'=" /||m||. This point requires further study.

Proposition 12. Let the input z be rational, x = (p1,...,pn)/q with p1,...,pn,q € 7,
and z' # x . Then we have ||z —2'|| > ¢! 2-0(n*+n? (loga)?) |

Proof. Since the vector a, = +b,|[b,||"2 is integer we see that

o~ ~

b, b,

(@ =) [ba] * = <o, = > =
1612 1oal?

is a rational vector with denominator ¢. Thus Proposition 2 implies

117 11— -1 5—0(n*+n?(loga)?
o= ol > g7 Bl > g0t s g

Remarks. 1. B. JusT [Ju92] analyzes diophantine approximations obtained by a
variant of the HJLS-algorithm on inputs of the special form z = (z4,...,2,-1,1) € R™.
Her algorithm is the HJLS-algorithm with full reduction in size so that, before swapping



br_1, by, size-reduction is performed on the vector by with respect to by_1,...,b1 . Formula
(17), [Ju92] shows that the final basis b1,...,b, ( and every basis in the algorithm that

precedes a swap of the last two vectors by, b,—1) satisfies with by = (p1,...,pn-1,¢)
Pi >
P
y g e =1 < HlbaalHlell /1l (8)

Moreover Theorem 7, [Ju92] bounds the error of the diophantine approximation as

pi 202/ |la
1<i<n1 i - q = g F1/2n(n=1) ° (9)

This algorithmic result must be compared with the existential bound of HERMITE, where
the right hand side of inequality (9) is ||z||/|¢|'T"/*~1). LaGARIAS has shown that dio-
phantine approximations can be constructed by the L3-algorithm for lattice basis reduc-
tion so that the right hand side in (9) is 2*/2n/|q|'*/(*=1) [La83]. However this result
does not use a continued fraction type algorithm.
2. The analysis of Just does not apply directly to our polynomial time algorithm, and the
Just algorithm is not polynomial time. However the Just analysis is valid if we change our
algorithm to perform a full size-reduction in step 2.3 so that the vector by gets reduced
with respect to bx—_1, ..., b1. Then the inequalities (8) and (9) hold for every basis occuring
in our algorithm immediately before a swap of the last two vectors b,,_1,b,. In particular
these inequalities hold for the final basis of our algorithm, no matter whether z = 2’ or
not.

If step 2.3 of our algorithm is changed to perform a full size-reduction then Theorem
10 remains valid, in particular the upper bound on the length of a,, = m holds true. This
is because the inequalities

||ai|| < 20(n4+n2(loga)2) fori=s,...,n. (10)

of Proposition 2 still hold throughout the algorithm. The reason is that the vectors a;, b;
with j < s cannot be exchanged with vectors a;, b;, 1 > s, nor can a; be added to a;
during the reduction in size. Thus the vectors a; with j < s do not influence the vectors
a; with ¢« > s in step 2.3 at a later stage. On the other hand the coefficients pj ; with
7 < s and the vectors by,...,b,,, a1,...,a5_1 may become very large if z is irrational. This
point requires further study.

Our algorithm with full size-reduction in step 2.3 distinguishes from the algorithm in

[Ju92] only in that we use the Lovasz exchange rule whereas Bergman’s exchange rule is
used in [Ju92] and in the HJLS—algorithm.
3. It may be of interest to note that clauses (2), (3) of Theorem 10 also remain valid
if we change step 2.3 to perform a size-reduction restricted to j = k — 1 so that by gets
merely reduced with respect to by before swapping by and bx_1 . Also clauses (2), (3)
of Theorem 10 remain valid if we replace in our algorithm the Lovész exchange rule by the
Bergman exchange rule which is used in the HJLS-algorithm. This means that clauses
(2), (3) also hold for the HJLS—algorithm provided that the corresponding output (z’, m)
is added to this algorithm in case that 2’ # « .
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