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Abstract. We modify the concept of LLL-reduction of lattice bases in
the sense of Lenstra, Lenstra, Lovász [LLL82] towards a faster re-
duction algorithm. We organize LLL-reduction in segments of the basis.

Our SLLL-bases approximate the successive minima of the lattice
in nearly the same way as LLL-bases. For integer lattices of dimension
n given by a basis of length 2O(n), SLLL-reduction runs in O(n5+ε) bit
operations for every ε > 0, compared to O(n7+ε) for the original LLL
and to O(n6+ε) for the LLL-algorithms of Schnorr (1988) and Stor-
johann (1996). We present an even faster algorithm for SLLL-reduction
via iterated subsegments running in O(n3 log n) arithmetic steps.

Keywords. LLL-reduction, SLLL-reduction, length defect, segments, local LLL-
reduction, Householder reflection, floating point errors, error bounds.
Abbreviated Title. Fast LLL-Lattice Reduction.

1 Introduction.

The set of all linear combinations with integer coefficients of a set of linearly
independent vectors b1, ..., bn ∈ Rd is a lattice of dimension n with basis b1, ..., bn.
The problem of finding a shortest, nonzero lattice vector is a landmark problem in
complexity theory. This problem is polynomial time for fixed dimension n due to
[Le83, LLL82] and is NP-hard for varying n [E81, Aj98, Mi98]. The famous LLL-
algorithm of Lenstra, Lenstra, Lovász [LLL82] for lattice basis reduction is a
ground breaking technique for solving important problems in algorithmic number
theory, integer optimization, diophantine approximation and cryptography, for
a few recent applications see [BN00, Bo00, Co97,Co01,NS00,BM03,Ma03] and
[Lo86,MG02,S04] for background. We refer to integer lattices of dimension n
contained in Zd, d = O(n), given by a lattice basis of vectord of Euclidean
length M0. Throughout the introduction we assume that M0 = 2O(n). Lattice
reduction decreases the length of such input bases by at most a factor 2O(n).

Performance of the original LLL-algorithm [LLL82]. The LLL performs O(n5)
arithmetic steps using O(n2)-bit integers. Approximating the shortest lattice
vector to within length defect c means to find a nonzero lattice vector with at
most c-times the minimal possible length. The LLL achieves for arbitrary ε > 0
length defect ( 4

3 + ε)n/2. It repeatedly constructs short bases in two-dimensional
lattices, the two-dimensional problem was already solved by Gauss [Ga801].



Finding very short lattice vectors. Finding very short lattice vectors requires
additional search beyond LLL-type reduction. The algorithm of Kannan [K83]
finds the shortest lattice vector in nO(n) steps. The improved algorithm of Hel-
frich [He85] runs in n

n
2 +o(n) steps. The recent probabilistic sieve algorithm of

[AKS01] runs in 2O(n) average time and space, but is impractical as the expo-
nent O(n) is about 30 n. Schnorr [S87] has generalized the LLL-algorithm by
repeated construction of short lattice bases of dimension 2k ≥ 2. 2k-reduction
[S87] runs in O(n3kk+o(k) + n4) arithmetic steps achieving length defect (2k)n/k

The stronger BKZ-reduction [S87, SE91] is quite efficient for k ≤ 20 but lacks a
proven time bound. LLL-reduction is the case k = 1 of 2k-reduction. Recently,
Ajtai [Aj03] proves a complexity lower bound for 2k-reduction that matches
the proven time bound of [S87] up to a constant factor in the exponent. By ran-
dom sampling of short lattice vectors Schnorr [S03] achieves under heuristic
assumptions in O(n3kk + n4) steps length defect (k/6)n/8k, the 8-th root of the
length defect achievable in that time by 2k-reduction [S87].

Floating point arithmetic. The LLL uses under exact integer arithmetic in-
termediate integers of bit length O(n2). This bit length can be reduced to O(n)
using floating point arithmetic (fpa, for short). The algorithm LLLH of Section
3 compute intermediate vectors by a sequence of Householder reflections. This
method is both practical and fully proven. It outperforms in practice the method
of [SE91] and matches the proven time bound of the theoretic method of [S88].
LLLH runs under fpa in O(n6+ε) bit operations saving a factor n compared to
the original LLL. We will combine this saving with another one from Segment
LLL-reduction. Our time bounds assume fast multiplication of n-bit integers
within O(n1+ε) bit operations for every ε > 0.

Segment LLL-reduction in fpa. Segment LLL-reduction adapts LLL-reduction
to a better use of local LLL-reduction. It improves the LLL-time bound and ap-
proximates the successive minima in nearly the same way as the LLL. Following
Schönhage [Sc84] we partition a basis b1, . . . , bn of dimension n = k m into m seg-
ments of k consecutive basis vectors. LLL-swaps are done using local coordinates
of dimension 2k of two adjacent segments. Local LLL-swaps cost merely O(k2)
arithmetic steps, local size-reduction included — compared to O(n2) steps for a
global LLL-swap. We design Segment LLL-reduction as to minimize the number
of local LLL-reductions. In Section 4 we present our basic SLLL0-algorithm that
runs in O(n4) arithmetic steps, compared to O(n5) steps of the original LLL. It
uses integers and fpa numbers of bit length O(n2). The refined algorithm SLLL
of Section 5 decreases this bit length to O(n) performing O(n4 log n) arithmetic
steps. SLLL runs under fpa in O(n5+ε) bit operations, compared to O(n7+ε)
for the original LLL and O(n6+ε) bit operations for LLLH , the LLL-algorithms
of [S88] and [St96], and the semi-reduction of [Sc84]. In Section 6 we speed up
SLLL-reduction by extending LLL-steps iteratively to larger and larger segments.
The algorithm SLLL+ runs in O(n3 log n) arithmetic steps.

Space efficiency. SLLL runs in linear space O(nd log2 M0) and input bases
of length M0 fit into space nd log2 M0. The LLL-algorithms of [S88] and LLLH

of section 3 are also linear in space, while the original LLL of [LLL82] and the
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algorithms of [Sc84], [St96] expand the space of the input by a factor O(n). The
recent Hermite reduction algorithm of [Mi01] is also in linear space but is much
slower than SLLL requiring O(n5(log2 M0)2) arithmetic steps.

Related work. Schönhage’s [Sc84] concept of semi-reduction achieves length
defect 2n and runs in O(n4) arithmetic steps using O(n2)-bit integers. Storjo-
hann [St96] proposes an LLL-algorithm that replaces size-reduction by modular
reduction, the Gram-Schmidt coefficients are reduced modulo a squared deter-
minant of order Mn

0 . This modular LLL uses matrix multiplication as a core
subroutine. If multiplication of n × n-matrices runs in O(nβ) arithmetic steps
it requires O(nβ+1) arithmetic steps using O(n log2 M0)-bit integers. The draw-
back is the bit length O(n log2 M0) of integers. We are not aware of an LLL-code
that uses long integers as proposed in [LLL82, St96] and performs for moder-
ately large n and M0. [St96, Thm 24] accelerates semi-reduction of [Sc84] by
modular reduction via fast matrix multiplication to run in O(n5+ 1

5−β +ε) bit op-
erations. SLLL beats this time bound even for the unlikely value β = 2 and
achieves the smaller length defect ( 4

3 + ε)n/2 for every ε > 0. Mehrotra and
Li [ML01] combine our previous segment LLL-reduction [KS01a] with modular
reduction to run in O(n3.5) arithmetic steps using O(n log2 M0) bit integers, and
thus running in O(n5.5+ε) bit operations.

Daudé and Vallée [DV94] and Akhavi [Ak02] study random input bases
consisting of real vectors b1, ..., bn that are independently drawn from the unit
ball in Rn. LLL-reduction performs for such random input bases on average
O(n4 log2 n) arithmetic steps using real numbers [DV94]. Size-reduction of such
a random basis achieves length defect ( 4

3 )(n−1)/2 with high probability [Ak02].
The present paper continues and revises the reports [KS01a, KS01b, KS02].

2 LLL Reduction of Lattice Bases.

Notation. Let Rd be the real vector space of dimension d with standard in-
ner product 〈x,y〉 = xty. A vector b ∈ Rd has length ‖b‖ = 〈b, b〉 1

2 . An
ordered set of linearly independent vectors b1, ..., bn ∈ Rd is a basis of the
lattice L =

∑n
i=1 biZ ⊂ Rd of dimension dimL = n, consisting of all in-

teger linear combinations of b1, ..., bn. We identify the basis with the matrix
B = [b1, ..., bn] ∈ Rd×n, we write L = L(B) = L(b1, ..., bn). All vectors will
be column vectors. Let qi denote the component of bi that is orthogonal to
b1, ..., bi−1, q1 = b1. The orthogonal vectors q1, ..., qn ∈ Rd and the Gram-
Schmidt coefficients µj,i, 1 ≤ i, j ≤ n of the basis b1, ..., bn satisfy for j = 1, ..., n:

bj =
∑j

i=1 µj,iqi, µj,j = 1, µj,i = 0 for i > j.

µj,i = 〈bj , qi〉/〈qi, qi〉, 〈qj , qi〉 = 0 for j 6= i.

The geometric normal form (GNF) of a basis. The basis B ∈ Rd×n has a unique
decomposition B = QR, where Q ∈ Rd×n has pairwise orthogonal columns of
length 1, and R = [ri,j ] ∈ Rn×n is upper-triangular with positive diagonal en-
tries, ri,j = 0 for i > j and r1,1, ..., rn,n > 0. Hence Q = [ q1/‖q1‖, ...., qn/‖qn‖ ],
µj,i = ri,j/ri,i, and ‖qi‖ = ri,i. Two bases B = QR, B̄ = Q̄R̄ are isometric iff
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R = R̄, or equivalently iff BtB = B̄tB̄. We call R the geometric normal form
(GNF) of the basis, GNF(B) := R.

The lattice L = L(B) has determinant detL = det(BtB)
1
2 =

∏n
i=1 ‖qi‖,

where Bt is the transpose and BtB is the Gram matrix of B. Let drc = dr − 1
2e

denote the nearest integer to r ∈ R. Let col(j, B) (row(j, B)) denote the j-th
column (j-th row) vector of the matrix B.

Duality. The dual of lattice L = L(B) with basis B ∈ Rd×n is the lattice
L∗ =def {x ∈ span(L) | 〈x, y〉 ∈ Z for all y ∈ L}

having determinant detL∗ = (detL)−1. L∗ has a basis B̄ ∈ Rd×n satisfying
B̄tB = In, where In is the n × n identity matrix. Inverting the order of the
columns of B̄ = [b̄1, ..., b̄n] yields the dual basis B∗ = [b∗1, ..., b

∗
n] = [b̄n, ..., b̄1]−1

of B satisfying 〈b∗n−i+1, bj〉 = δn−i+1,j and ‖qi‖ = ‖q∗n−i+1‖−1 for i = 1, ..., n.

The successive minima. The j-th successive minimum λj of a lattice L, 1 ≤ j ≤
dimL, is the minimal real number r for which there exist j linearly independent
lattice vectors of length bounded by r. λ1 is the length of the shortest nonzero
lattice vector. ‖b1‖/λ1 is the length defect of the basis.

Definition 1. A basis b1, . . . , bn ∈ Zd with orthogonal vectors q1, ..., qn ∈ Rd

is an LLL-basis (or LLL-reduced) for given δ, 1
4 < δ ≤ 1, if

1. |µj,i| ≤ 1
2 for 1 ≤ i < j ≤ n,

2. δ ‖qi‖2 ≤ µ2
i+1,i ‖qi‖2 + ‖qi+1‖2 for i = 1, . . . , n− 1.

A basis satisfying 1. is called size-reduced. For the rest of the paper LLL-reduction
refers to given δ, α := 1/(δ − 1/4) . A.K. Lenstra, H.W. Lenstra, Jr. and
L. Lovász [LLL82] introduced LLL-bases focusing on δ = 3/4 and α = 2.

Theorem 1 (LLL82). Every LLL-basis b1, . . . , bn ∈ Zd with orthogonal vectors
q1, ..., qn ∈ Rd of lattice L satisfies
1. ‖qi‖2 ≤ αj−i ‖qj‖2 and ‖bi‖2 ≤ αj−1 ‖qj‖2 for 1 ≤ i ≤ j ≤ n,

2. ‖b1‖ ≤ α
n−1

4 (detL)
1
n ,

3. α−j+1 ≤ ‖qj‖2λ−2
j ≤ ‖bj‖2 λ−2

j ≤ αn−1 for j = 1, ..., n.

The inequalities (1), (3) of Theorem 1 follow by the argument of Theorem 6.

Size measures. We call M0 =def max(‖b1‖, ..., ‖bn‖) the length of the basis B =
[b1, ..., bn] ∈ Zd×n and M =def max(d1, ..., dn, 2n) the volume of the basis, where
di := det(L(b1, ..., bi))2 = ‖q1‖2 · · · ‖qi‖2. We use a novel measure for bounding
the length defect of a basis: M1 =def max1≤i≤j≤n ‖qi‖/‖qj‖. The argument of
Theorem 6 shows that every size-reduced basis satisfies

4
j+3/M2

1 ≤ ‖bj‖2/λ2
j ≤ M2

1
j+3
4 for j = 1, ..., n.

By Theorem 1, M2
1 ≤ αn−1 holds for LLL-bases. A basis B and its dual B∗ have

the same M1-value. Lattice reduction aims at a lattice basis with small M1-value.
Clearly, di ≤ M2i

0 , M ≤ M2n
0 and M−1 ≤ ‖qi‖2 ≤ M , and thus M1 ≤ M follows
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from ‖qi‖2 = di/di−1. We let M0 refer to the input basis of an algorithm. M and
M1 do not increase during LLL-reduction. M1,M = 2O(n2) holds for every basis
of length 2O(n). We present the main steps of the LLL-algorithm, see [LLL82]
for more details.

LLL
INPUT b1, . . . , bn ∈ Zd (a basis with M0, M), δ, 1

4 < δ < 1
OUTPUT b1, . . . , bn LLL-basis
1. l := 1 # b1, . . . , bl′ is always an LLL-basis for l′ := max(l − 1, 1).
2. WHILE l ≤ n DO

compute the rational numbers µl,1, ..., µl,l−1 and ‖ql‖2
#size-reduce bl against bl−1, ..., b1 :
FOR i = l − 1, ..., 1 DO bl := bl − dµl,icbi, update µl,i, ..., µl,1

IF l 6= 1 and δ ‖ql−1‖2 > µ2
l,l−1 ‖ql−1‖2 + ‖ql‖2

THEN swap bl−1, bl, l := l − 1 ELSE l := l + 1.

LLL-time bound. One round of the WHILE-loop, i.e., one LLL-swap of bl−1, bl re-
quires O(nd) arithmetic steps, size-reduction of bl and computation of the ratio-
nals µl,1, ..., µl,l−1, ‖ql‖2 included. Given an integer basis in Zd of length M0 ≥ 2
and volume M , LLL performs O(n log1/δ M) = O(n2 log1/δ M0) LLL-swaps for
δ < 1, and runs in O(n2d log1/δ M) arithmetic steps using O(log2(M0M))-bit
integers. Given a basis of length 2O(n) and d = O(n) this requires O(n7+ε) bit
operations for every ε > 0 because log2(M0M) = O(n2).

3 LLL Algorithm via Householder Reflections.

In this section we present the LLLH variant of LLL which computes the µl,i, ‖ql‖
by a sequence of Householder reflections. We first analyse LLLH in ideal real
arithmetic, thereafter under floating point arithmetic. LLLH under fpa saves a
factor n in the number of bit operations compared to LLL. While the intermedi-
ate data µl,i, ‖ql‖ are computed in fpa, the basis vectors are in exact arithmetic.
All subsequent reduction algorithm are based on LLLH .

Computing the GNF of B = [b1, ..., bn]. There is an extensive literature on
numerical algorithms for computing the GNF R of the decomposition B = QR
of a basis B, see [LH95]. Householder algorithms and modified Gram-Schmidt
orthogonalization are in our experience practically equivalent for the LLL. We
use Householder reflection matrices because of the published fpa-error bounds.

We compute an orthogonal matrix Q′ ∈ Rd×d that extends Q and a matrix
R′ ∈ Rd×n that extends R by zero-rows and allows that col(i, R′) = ± col(i, R).
In ideal arithmetic we get R′ by a sequence of Householder transformations

R′0 := B, R′j := QjR
′
j−1 for j = 1, ..., n,

R′ := R′n, Q′ := Q1 · · ·Qn = Qt
1 · · ·Qt

n,
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where Qj := Id − 2‖hj‖−2hjh
t
j ∈ Rd×d is orthogonal and symmetric, hj ∈ Rd.

The transform R′j := QjR
′
j−1 zeroes the entries in positions j + 1 through d

of col(j, R′j−1), it triangulates col(j, R′j−1) so that R′j ∈ Rd×n is upper-triangular
for the first j columns. The transform x 7→ Qjx reflects x at the hyperplane
that is orthogonal to the Householder vector hj ∈ Rd so that

Qjhj = −hj , Qjx = x for 〈hj , x〉 = 0.

Setting r := (r1, ..., rd)t := col(j, R′j−1) and z := sign(rj)(
∑d

i=j r2
i )

1
2

we get hj := (0, ..., 0, rj + z, rj+1, ..., rd)t/
√

2zrl + 2z2.

Correctness. We have that 2hj〈hj , r〉‖hj‖−2 = 2hj
zrj+z2

2zrj+2z2 = hj , and thus
Qjr = r − hj = (r1, ..., rj−1,−z, 0, ..., 0)t ∈ Rd.

This shows that Qjr is correctly triangulated and hj is well chosen.

The sign of z is chosen as to maximize the denominator 2zrj + 2z2 =
‖hj‖2 in Qj . Clearly, Qj · · ·Q1bj = col(j, R′) = −sign(rj)col(j, R) because
〈hj , col(i, R′)〉 = 0 for i < j. We abbreviate rl := col(l, R) for R = GNF(B).
Since TriCol computes rl from col(l, R′) this extends rl by d− n zeroes.

TriCol(b1, ..., bl,h1, ..., hl−1, r1, ..., rl−1) (TriColl for short)
# TriColl computes hl and rl := col(l, R) and size-reduces bl, rl.
1. r = (r1, ..., rd)t := bl/‖bl‖

# we normalize ‖r‖ and ‖hl‖ to 1.
2. FOR j = 1, ..., l − 1 DO r := r − 2〈hj , r〉hj

3. z := sign(rl)(
∑d

i=l r
2
i )

1
2 , hl := (0, ..., 0, rl + z, rl+1, ..., rd)t/

√
2zrl + 2z2

4. rl := −sign(rl) ‖bl‖ (r1, ..., rl−1,−z, 0, ..., 0)t ∈ Rd

5. # size-reduce bl against bl−1, ..., b1 and update rl :
FOR i = l − 1, ..., 1 DO bl := bl − dri,l/ri,icbi, rl := rl − dri,l/ri,icri.

The normalization simplifies the fpa-error analysis, but it is not essential. In
step 4 we have sign(rl)z > 0, and thus upon termination we have that rl,l > 0.

Step bound. TriColl runs in O(dl) arithmetic steps and one sqrt.

The LLL-algorithm in terms of R = GNF(B). Consider the diagonal submatrix

Rl−1,1 =
[

rl−1,l−1 rl−1,l

0 rl,l

]
⊂ R shown in Fig. 1. (We let R′ ⊂ R denote that

R′ is a submatrix of R, i.e., r′i,j = ri+k,j+m for all i, j and some k, m.) LLLH

performs simultaneous column operations on R and B that shorten the first
column of some Rl−1,1. It swaps columns rl−1, rl and bl−1, bl if this shortens
the square length of the first column of Rl−1,l by the factor δ. To enable a
swap the entry rl−1,l is first reduced to |rl−1,l| ≤ 1

2 |rl−1,l−1| by transforming
rl := rl − drl−1,l/rl−1,l−1crl−1. The ideal LLLH algorithm reads
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Fig. 1. The submatrix Rl−1,1 ⊂ R

LLLH

INPUT b1, . . . , bn ∈ Zd (a basis with M0, M1,M), δ, 1
4 < δ < 1

OUTPUT b1, . . . , bn LLL-basis for δ

1. l := 1, # b1, ...,bmax(l−1,1) is always an LLL-basis
2. WHILE l ≤ n DO

TriCol(b1, ..., bl, h1, ..., hl−1, r1, ..., rl−1)
IF l 6= 1 and δ r2

l−1,l−1 > r2
l−1,l + r2

l,l

THEN swap bl−1, bl, l := l − 1 ELSE l := l + 1.

Correctness. At stage l we get rl = col(l, R) of R = GNF(B), and we have rl−1

from a previous stage. Using the coefficients rl−1,l−1, rl−1,l, rl,l LLLH correctly
simulates LLL since r2

i,j = µ2
j,i‖qi‖2. The GNF [r1, ...rl] of [b1, ...bl] is preserved

during simultaneous size-reduction of rl and bl in TriColl.

LLLH using floating point arithmetic. We use the fpa model of Wilkinson
[Wi63]. There is no assumption by this model. We merely want to use proven
fpa-error bounds. A fpa number with t = 2t′ + 1 precision bits is of the form
±2e

∑t′

i=−t′ bi2i, where bi ∈ {0, 1} and e ∈ Z. It has bit length t+s+2 for |e| < 2s,
two signs included. We denote the set of these numbers by FLt. Standard double
length fpa has t = 53 precision bits, t + s + 2 = 64. Let fl : R ⊃ [−22s

, 22s

] 3
r 7→ FLt approximate real numbers by fpa numbers. A step c := a ◦ b for
a, b, c ∈ R and a binary operation ◦ ∈ {+,−, ·, /} translates under fpa into
ā := fl(a), b̄ := fl(b), c̄ := fl(ā ◦ b̄), resp. into ā := fl(◦(ā)) for unary
operations ◦ ∈ {d c,√ }. Each fpa operation induces a normalized relative error
bounded in magnitude by 2−t: |fl(ā ◦ b̄)− ā ◦ b̄|/|ā ◦ b̄| ≤ 2−t. If |ā ◦ b̄| > 22s

or
|ā ◦ b̄| < 2−2s

then fl(ā ◦ b̄) is undefined due to an overflow, resp. underflow.

It is common to require that 2s ≤ t2 and thus s ≤ 2 log2 t, for brevity we
identify the bit length of fpa-numbers with t, neglecting the minor (s + 2)-part.
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Under fpa we let LLLH use approximate vectors h̄l, r̄l ∈ FLd
t and exact basis

vectors in Zd.

TriColl under fpa. A detailed discussion and analysis of steps 1-4 of TriColl

under fpa is in [LH95, chapter 15]. In order to keep fpa-errors small during the
iteration of TriColl within LLLH we replace under fpa for the rest of the paper
TriColl by the following iterative

fpa-version of TriColl. Let ε > 0 be given as input.
Zero dr̄i,l/r̄i,ic in step 5 if |r̄i,l/r̄i,i| < 1

2 + ε/2 holds. Repeat steps 1-5 of
the above TriColl-procedure in a loop until step 5 leaves bl unchanged, i.e.,
|r̄i,l/r̄i,i| < 1

2 + ε/2 holds for i = l − 1, ..., 1.
Zeroing of dr̄i,l/r̄i,ic cancels a size-reduction step and prevents cycling through

steps 1-5. In TriColl’s last round size-reduction is void and the value of rl in
step 4 and its fpa-error remain unchanged.

The proof of Theorem 2 shows under fpa that TriColl with t = 5n+2 log2 M0

precision bits performs two rounds through steps 1-5, the first correctly size-
reduces bl, the second decreases fpa-errors given that ‖bl‖ is already small.

Given ε > 0 we set δ− := δ−ε, δ+ := δ+ε ≤ 1−ε and α− := 1/(δ−ε−1/4).

Theorem 2. Given a basis of length M0, 0 < ε < 0.02 and δ ≥ 0.96, LLLH

using fpa of t = 5n+2 log2 M0 precision bits computes for n ≥ n0(ε) an approx-
imate LLL-basis for δ− with µj,i and orthogonal vectors q1, ..., qn satisfying
1. |µj,i| < 1

2 + ε for 1 ≤ i < j ≤ n,

2. δ−‖qi‖2 ≤ µ2
i+1,i ‖qi‖2 + ‖qi+1‖2 for i = 1, . . . , n− 1.

LLLH runs under fpa in O(n2d log1/δ M) arithmetic steps using 2n + 2 log2 M0

bit integers and fpa numbers of bit length 3n + 2 log2 M0.

In particular LLLH runs for M0 = 2O(n) in O(n4d) arithmetic steps, i.e. for
d = O(n), in O(n6+ε′) bit operations for every ε′ > 0. If 1. of Theorem 2 holds
we call the basis size-reduced under fpa.

Proof. The proof uses an fpa-version of Theorem 1 which will later be proved in
Theorem 6. In particular, clauses 1 and 2 of Theorem 2 imply the inequalities

α−j+1
− ≤ ‖bj‖2 λ−2

j ≤ αn−1
− for j = 1, ..., n, α− := 1/(δ − ε− 1/4).

For all size bounds of intermediate data we neglect the effect of ε on α− . For
simplicity we assume that α− = α ≤ √

2 since 1/(0.96 − 1
4 ) <

√
2. We also

neglect that the |µj,i| for i < j can be larger than 1
2 but less than 1

2 + ε.
Length of intermediate bases. We show in ideal arithmetic that all interme-

diate basis vectors have length ≤ 2nM0. We show that the claim holds during
size-reduction within LLLH . A size-reduction step bl := bl − dµl,jcbj for j < l
induces µl,i := µl,i − dµl,jcµj,i for i = 1, ..., j, where b1, ..., bj is an LLL-basis.
As |µj,i| ≤ 1

2 for i < j this increases maxi<l |µl,i| by at most a factor 3
2 (the

rounding to dµl,jc can be neglected).
Consider the initial values bl, µl,i and the final values b′l, µ

′
l,i after h size-

reduction steps. We have µ′l,l = 1, |µ′l,i| ≤ 1
2 for l−h ≤ i < l. For i < l−h there
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exists by the above argument j, h− l ≤ j < l such that

|µ′l,i| ‖qi‖ ≤ ( 3
2 )h|µl,j | ‖qi‖ ≤ ( 3

2 )hα
j−i
2 |µl,j | ‖qj‖,

because ‖qi‖ ≤ α
j−i
2 ‖qj‖ as b1, ..., bl−1 is LLL-reduced. From α ≤ √

2 we get

‖b′l‖2 =
∑l

i=1 |µ′l,i|2‖qi‖2 ≤ l( 3
2 )2h2l/2‖bl‖2 ≤ l · 3.15l‖bl‖2.

Therefore, in ideal arithmetic all intermediate vectors b′l have length ≤ 2l‖bl‖
for l ≥ 10. This also holds under fpa due to the following fpa-error analysis.

Correctness under fpa. We study TriColl within the algorithms LLLH , SLLL0,
SLLL. It is crucial that the Householder reflection matrices Qi preserve the
inner product, 〈x, y〉 = xty = xtQt

iQiy = 〈Qix, Qiy〉, and thus Qi preserves in
ideal arithmetic the length of fpa-error vectors. An+1 := Qn · · ·Q1B is computed
under fpa recursively as Ā1 := B, Āi+1 := fl(Q̄iĀi) for i = 1, ..., n.

Proposition 1. ‖h̄l − hl‖ = O(d l 7l2−t), ‖r̄l − rl‖ = O(d l 7l2−t‖bl‖). (1)

Proof. We proceed by induction on l. We extend the error analysis of [LH95,
pp.85,86]. Let rl = col(l, R), b1 = (r1, ..., rd)t and z = sign(r1)(

∑d
i=1 r2

i )
1
2 then

the errors of r1 = (z, 0, ..., 0)t, h1 = (r1 + z, r2, ..., rd)t are bounded as

‖r̄1 − r1‖ = O(d ‖b1‖ (2−t + 2−2t)), ‖h̄1 − h1‖ = O(d (2−t + 2−2t)).

We will neglect all 2−2t-terms. The first bound is obvious and implies the second,
see (15.22), (15.23)[LH95]. TriColl computes rl, hl via

r′l−1 :=
∏

i=1,...,l−2(1− 2hih
t
i) (bl/‖bl‖) and r

/
l := (1− 2hl−1h

t
l−1)r

′
l−1.

The induction hypothesis for l − 1 yields ‖r̄′l−1 − r′l−1‖ = O(d (l − 1)7l−12−t).
If r̄

/
l := (1− 2h̄l−1h̄

t
l−1)r̄′l−1 is computed in ideal arithmetic we have

‖r̄/
l − r

/
l ‖ ≤ ‖r̄′l−1 − r′l−1‖+ 2 · 2 ‖h̄l−1 − hl−1‖+ 2 ‖r̄′l−1 − r′l−1‖

= O(d (l − 1)7 · 7l−12−t),
where 2−2t-terms are omitted. We used that ‖r̄′l−1‖, ‖h̄l−1‖ = 1+o(1) for t ≥ 3n.
One factor 2 in 2 · 2 comes from the two occurences of h̄l−1 in r̄

/
l .

The computation of r̄
/
l from r′l−1 under fpa adds O(d 2−t) to the error ob-

tained in ideal arithmetic. Step 3 of TriColl computes hl from r̄
/
l so that

‖h̄l − hl‖ = ‖r̄/
l − r

/
l ‖+ O(d2−t) = O(d l 7l2−t).

This proves the first induction claim.
The computation of rl from r

/
l and hl in Step 4 of TriColl multiplies errors

by ‖bl‖ so we get the second claim ‖r̄l − rl‖ = O(d l 7l2−t‖bl‖). ¤

Referring to the GNF [r1, ..., rl] of TriColl’s input basis b1, ..., bl we denote
M̄0 := M0/r1,1 M̄1 := maxi<l r1,1/ri,i. (2)

We let M0,M1 refer to the LLL-input basis. We always have M̄1 ≤ M1, where
M̄1 ≤ α

l−1
2 holds within LLLH since b1, ..., bl−1 is LLL-reduced. We show that

TriColl’s last round correctly computes µ̄l,i = r̄i,l/r̄i,i up to an ε/2-error. Using
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(1), (2) and assuming the initial bound ‖rl‖ ≤ M0 Step 4 of TriColl yields

‖r̄l − rl‖/ri,i = O(d 7lM̄0M̄12−t) for 1 ≤ i ≤ l − 1. (3)
We have |µ̄l,i − µl,i| = |r̄i,l/r̄i,i − ri,l/ri,i| ≤ ‖r̄l − rl‖/ri,i + ‖rl‖|r̄−1

i,i − r−1
i,i |.

We bound the dominating ‖rl‖|r̄−1
i,i − r−1

i,i |-term, the minor ‖r̄l − rl‖/ri,i-term
is bounded by (3) and will be neglected. Consider the right-hand side factors
of ‖rl‖|r̄−1

i,i − r−1
i,i | = (‖rl‖/ri,i)(|r̄i,i − ri,i|/r̄i,i). Applying (3) to a previous

TriColi-execution we have |r̄i,i− ri,i|/r1,1 ≤ O(d 7iM̄02−t). Multiplication with
‖rl‖/r1,1 ≤ 1

2M̄0 and r2
1,1/r2

i,i ≤ M̄2
1 shows that step 4 of TriColl yields

|r̄i,l/r̄i,i − ri,l/ri,i| ≤ O(d 7lM̄2
0 M̄2

1 2−t) ≤ ε/2, (4)
where the last inequality holds for t = Ω(1) + log2(d 7lM̄2

0 M̄2
1 /ε), e.g., for ε =

0.02, d = n ≥ 40 and t ≥ 3.5n + 2 log2(M̄0M̄1). In particular, (4) holds upon
termination of TriColl as the final size-reduction in step 5 is void. Within LLLH

we have that M̄1 ≤ α
n−1

2 ≤ 2
n−1

4 . Hence, upon termination bl is size-reduced
for t ≥ 4n + 2 log2 M0 and n ≥ n0(ε), proving clause 1 of Theorem 2.

TriColl’s first round. We have shown that ‖bl‖ increases during size-reduction
to at most 2lM0. Retracing this proof with a view on fpa-errors shows that
‖r̄l − rl‖/ri,i increases during size-reduction by at most a factor 2l compared
to (3). This is a straightforward exercise left to the reader. We offset the in-
creased fpa-errors by n additional precision bits. Hence, using t ≥ 5n+2 log2 M0

precision bits TriColl’s first round correctly size-reduces bl for n ≥ n0(ε), and
TriColl terminates in the second round.

Correct swapping. We see from (3) that the fpa-error of rl,l is bounded by
O(r1,1d 7lM̄0M̄12−t). Due to |rl−1,l| ≤ 1

2 |rl−1,l−1| the fpa-error of r2
l−1,l + r2

l,l −
δr2

l−1,l−1 is at most O(r1,1(rl−1,l−1+rl,l)d 7lM̄0M̄12−t). If rl,l ≤ rl−1,l−1 that fpa-

error is less than εr2
l−1,l−1 for t ≥ 5n + 2 log2 M0 due to M̄0 ≤ M0, M̄1 ≤ 2

n−1
4 .

Then a valid swap for δ− under ideal arithmetic, will also be executed under fpa
and each swap under fpa is a valid swap for δ+ . If rl,l > rl−1,l−1 the inequality
δ−r2

l−1,l−1 < r2
l−1,l + r2

l,l is preserved under fpa-errors. Hence swapping is always
correct for δ− .

Time bound. As δ ≤ 1 − 2ε, δ+ ≤ 1 − ε we have that δ ≤ δ2
+
. Hence LLLH

performs at most log1/δ+
Mn ≤ 2 n log1/δ M LLL-swaps under fpa, each swap

requiring one TriColl-execution. We have shown that TriColl performs 2 rounds
and thus requires O(nd) arithmetic steps and 2 sqrt’s. We see that LLLH runs
in O(n2d log1/δ M) arithmetic steps.

Costs of the sqrt’s. There are O(n log1/δ M) sqrt’s to be computed with t =
5n + 2 log2 M0 precision bits, one sqrt per round of TriColl. Using Newton
iteration this requires O(n log1/δ M log(n + log2 M0)) arithmetic steps that are
covered by the claimed step bound provided that log2 log2 M0 = O(n2).

Newton’s iteration x0 := 1, xk+1 := 1
2 (xk + m

xk
) converges quadratically to√

m. Therefore O(log(n+log2 M0)) rounds of Newton iteration suffice to compute√
m for m ≤ 2nM0 up to an error less than 2−2n/M2

0 . ut
LLLH in practice. In practice LLLH is correct up to dimension n = 250

under fpa with t = 53 precision bits for arbitrary M0, and not just for t ≥
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5n + 2 log2 M0 as shown in Theorem 2. In practice, the constant 7 of Prop. 1
can be replaced by a constant near 1.1 [KS01b]. This is because the orthogonal
transforms Qj preserve the length of error vectors. Moreover the error vector
resulting from computing fl(Qjr) is, due to cancellations, on average much
smaller than in worst-case. However, LLLH is in practice incorrect for t = 53
and dimension 400, see [KS01b].

Scaled LLL-reduction. Scaling is a useful concept of numerical analysis for
reducing fpa-errors. Scaled LLL-reduction of [KS01b] associates with a given
lattice basis an associated scaled basis that generates a sublattice of the given
lattice. The scaled basis has all values M̄0, M̄1 ≤ 2, which makes the error bounds
(3), (4) particularly good. Its coefficients µj,i can be correctly computed using
only limited fpa-precision. Scaled LLL-reduction performs a weak size-reduction,
reducing relative to an associated scaled basis. The weaker size-reduction does
scarcly lessen the quality of the reduced basis and can be done using limited
precision. This way it is possible to implement variants of LLLH and SLLL
that are correct for all practical cases, namely up to dimension 215 using fpa
with merely 53 precision bits and preserving the run times of this paper.

Comparison with [S88] and the modular LLL of [St96]. The time bound of
Theorem 2 also holds for the theoretic, less practical method of [S88].

The modular LLL [St96] performs O(nd log1/δ M) arithmetic steps on inte-
gers of bit length log2(M0M) using standard matrix multiplication. This yields
the same bound for the number of bit operations for LLLH and the modular
LLL [St96] if M0 = 2Ω(n). If M0 = 2o(n) the given basis is shorter than an LLL-
basis and LLL-reduction is useless. The practicability of LLLH rests on the use
of small integers of bit length 5n + 2 log2 M0 whereas [St96] uses long integers
of bit length log2(M0M) = O(n log M0).

4 Basic Segment LLL-Reduction.

This section introduces main concepts of segment LLL-reduction and a first
algorithm SLLL0. The argument of Theorem 4 for bounding the number of
local LLL-reductions within SLLL0 will be used throughout the paper. This is
also true for Lemma 1 and Corollary 1 that bound the norm of, and the fpa-
errors induced by, local LLL-transforms. The algorithm SLLL0 is faster by a
factor n in the number of arithmetic steps compared to LLLH but uses longer
integers and fpa numbers of bit length 5n + log2(M2

0 M3
1 ). The algorithm SLLL

of section 5 reduces this bit length to 7n + 2 log2 M0.

Segments and local coordinates. Let the basis B = [b1, . . . , bn] ∈ Zd×n have
dimension n = k m and GNF R ∈ Rn×n. We partition B into m segments
Bl,k = [blk−k+1, . . . , blk] for l = 1, ..., m. Local LLL-reduction of two consecutive
segments Bl,k, Bl+1,k is done in local coordinates of the submatrix

Rl,k := [rlk+i,lk+j ]−k<i,j≤k ∈ R2k×2k

of R. Let H = [h1, ..., hn] = [hi,j ] ∈ Rd×n be the lower triangular matrix of
Householder vectors and Hl,k = [hlk+i,lk+j ]−k<i,j≤k ⊂ H the submatrix for
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Rl,k. We control the calls, and minimize the number, of local LLL-reductions of
the Rl,k by means of the local squared determinant of Bl,k

Dl,k =def ‖qlk−k+1‖2 · · · ‖qlk‖2.
We have that dlk = ‖q1‖2 · · · ‖qlk‖2 = D1,k · · ·Dl,k. Moreover, we will use

D(k) =def

∏m−1
l=1 dlk =

∏m−1
l=1 Dm−l

l,k ,
Ml,k =def maxlk−k<i≤j≤lk+k ‖qi‖/‖qj‖.

Ml,k is the M1-value of Rl,k of locLLL(Rl,k), obviously Ml,k ≤ M1.

Definition 2. A basis b1, . . . , bn ∈ Zd, n = km, is an SLLL0-basis (or SLLL0-
reduced) for given k, δ > 1

4 , α = 1/(δ − 1/4) if it is size-reduced and
1. δ ‖qi‖2 ≤ µ2

i+1,i‖qi‖2 + ‖qi+1‖2 for i ∈ [1, n− 1] \ kZ,

2. Dl,k ≤ (α/δ)k2
Dl+1,k for l = 1, . . . , m− 1.

Size-reducedness under fpa means that |µj,i| < 1
2 + ε holds for 1 ≤ i < j ≤ n.

We neglect the role of ε in SLLL-reduction, ε plays the same role as for LLLH .
Segment Bl,k of an SLLL0-basis is LLL-reduced in the sense that the k × k-

submatrix [rlk+i,lk+j ]−k<i,j≤0 ⊂ R is LLL-reduced. Clause 1 does not bridge
distinct segments since the i ∈ kZ are excepted. Clause 2 relaxes the inequality
Dl,k ≤ αk2

Dl+1,k of LLL-bases, and this allows to bound the number of local
LLL-reductions, see Theorem 4.

We could have used two independent δ-values for the two clauses of Def.2.
Theorem 3 shows that the first vector of an SLLL0-basis of lattice L is almost
as short relative to (detL)1/n as for LLL-bases.

Theorem 3. Every SLLL0-basis b1, ..., bn satisfies ‖b1‖ ≤ (α/δ)
n−1

4 (detL)
1
n .

Proof. Every SLLL0-basis satisfies by clause 2 of Def.2

D1,k ≤ (α/δ)k2 (i−1) Di,k for i = 1, ...,m.

We multiply the m inequalities and take the m-th root. As D1,k · · ·Dm,k =
(detL)2 and 1 + 2 + · · ·+ (m− 1) = m · m−1

2 this yields

D1,k ≤ (α/δ)k2 m−1
2 (detL)

2
m .

Moreover ‖b1‖2 ≤ α
k−1
2 D

1
k

1,k holds as the basis b1, ..., bk is LLL-reduced. Com-
bining the two latter inequalities proves the claim

‖b1‖2 ≤ α
k−1
2 (α/δ)k m−1

2 (detL)
2

mk ≤ (α/δ)
n−1

2 (detL)
2
n . ut

The dual of Theorem 3. Clause 2 of Def.2 is preserved under duality. If it holds
for a basis b1, ..., bn it also holds for the dual basis b∗1, ..., b

∗
n of the lattice L∗. We

have that ‖b∗1‖ = ‖qn‖−1 and det(L∗) = (detL)−1. Hence, Theorem 3 implies
that every SLLL0-basis satisfies ‖qn‖ ≥ (δ/α)

n−1
4 (detL)

1
n .

Local LLL-reduction. The procedure locLLL(Rl,k) locally LLL-reduces Rl,k ⊂ R
given Hl,k ⊂ H. Initially it produces a copy [b′1, ...,b

′
2k] of Rl,k. It LLL-reduces
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the local basis [b′1, ...,b
′
2k] consisting of fpa-vectors. It updates and stores the

local transform Tl,k ∈ Z2k×2k so that [b′1, ...,b
′
2k] = Rl,kTl,k always holds for the

current local basis [b′1, ...,b
′
2k] and the initial Rl,k. E.g., it does col(l′, Tl,k) :=

col(l′, Tl,k) − µ col(i, Tl,k) along with b′l′ := b′l′ − µ b′i within TriColl. It freshly
computes b′l′ from the updated Tl,k. Using a correct Tl,k this correction of b′l′
limits fpa-errors of the local basis, see Cor.1.

Local LLL-reduction of Rl,k is done in local coordinates of dimension 2k.
A local LLL-swap merely requires O(k2) arithmetic steps, update of Rl,k, lo-
cal triangulation and size-reduction via TriColl included, compared to O(nd)
arithmetic steps for an LLL-swap in global coordinates.

locLLL(Rl,k)
1. produce copies [b′1, ..., b

′
2k] = R′l,k of Rl,k and [h′1, ..., h

′
2k] of Hl,k ⊂ H

Tl,k := I2k, l′ := 1
2. WHILE l′ ≤ 2k DO

TriCol(b′1, ..., b
′
l′ ,h

′
1, ..., h

′
l′−1, r

′
1, ..., r

′
l′−1)

update Tl,k, b′l′ := Rl,k col(l′, Tl,k)
IF l′ 6= 1 and δ r′2l′−1,l′−1 > r′2l′−1,l′ + r′2l′,l′
THEN swap b′l′−1, b

′
l′ , swap r′l′−1, r

′
l′ , update Tl,k, l′ := l′ − 1

ELSE l′ := l′ + 1.
SLLL0-algorithm. SLLL0 transforms a given basis into an SLLL0-basis. It iter-
ates locLLL(Rl,k) for submatrices Rl,k ⊂ R, followed by a global update that
transports Tl,k to B and triangulates Bl,k, Bl,k+1 via TriSegl,k. Transporting
Tl,k to B, R, T1,n/2 and so on means to multiply the submatrix consisting of 2k
columns of B,R, T1,n/2 corresponding to Rl,k from the right by Tl,k.

The procedure TriSegl,k triangulates and size-reduces two adjacent segments
Bl,k, Bl+1,k. Given Bl,k, Bl+1,k and h1, ..., hlk−k, it computes [rlk−k+1, ..., rlk+k]
⊂ R and [hlk−k+1, ..., hlk+k] ⊂ H.

TriSegl,k

1. FOR l′ = lk − k + 1, ..., lk + k DO TriColl′ (including updates of Tl,k)

2. Dj,k :=
∏k−1

i=0 r2
kj−i,kj−i for j = l, l + 1.

SLLL0

INPUT b1, . . . , bn ∈ Zd (a basis with M0, M1,M), k, m, δ

OUTPUT b1, . . . , bn SLLL0-basis for k, δ

WHILE ∃ l, 1 ≤ l < m such that either Dl,k > (α/δ)k2
Dl+1,k

or TriSegl,k has not yet been executed
DO for the minimal such l: TriSegl,k, locLLL(Rl,k)

# global update: [Bl,k, Bl+1,k] := [Bl,k, Bl+1,k]Tl,k, TriSegl,k.
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Correctness in ideal arithmetic. All inequalities Dl,k ≤ (α/δ)k2
Dl+1,k hold upon

termination of SLLL0. All segments Bl,k are locally LLL-reduced and globally
size-reduced and thus the terminal basis is SLLL0-reduced.
The number of locLLL-executions. Let #k denote the number of loclll(Rl,k)-
executions due to Dl,k > (α/δ)k2

Dl,k for all l. The first loclll(Rl,k)-executions
for each l is possibly not counted in #k, this yields at most n/k − 1 additional
executions. We bound #k by the Lovász volume argument.

Theorem 4. #k ≤ 2 nk−3 log1/δ M .

Proof. We show that a locLLL(Rl,k)-execution decreases Dl,k by the factor δk2/2

if it is due to Dl,k > (α/δ)k2
Dl+1,k. locLLL(Rl,k) changes Dl,k, Dl+1,k into

D′
l,k, D′

l+1,k and preserves Dl‘,k for l‘ 6= l, l + 1. It also preserves the product
Dl,kDl+1,k. locLLL(Rl,k) results in D′

l,k ≤ αk2
D′

l+1,k because upon termina-
tion the matrix Rl,k is LLL-reduced with δ and thus the claim follows from
‖qlk−2k+i‖2 ≤ αk ‖qlk−k+i‖2 for i = 1, ..., k. Therefore

D′
l,k ≤ αk2

D′
l+1,k = αk2

D′
l,kD′

l+1,k/D′
l,k

= αk2
Dl,kDl+1,k/D′

l,k < δk2
D2

l,k/D′
l,k,

and thus D′
l,k ≤ δk2/2Dl,k. Hence locLLL(Rl,k) decreases

D(k) =
∏m−1

l=1 dlk =
∏m−1

l=1 Dm−l
l,k

by the factor δk2/2. As D(k) is a positive integer, D(k) ≤ Mm−1, this implies
#k ≤ log1/δk2/2 Mm−1 ≤ 2m−1

k2 log1/δ M . ut

All intermediate Ml,k-values within SLLL0 are bounded by the M1-value of
the input basis of SLLL0. Consider the local transform Tl,k ∈ Z2k×2k within
locLLL(Rl,k). Let ‖Tl,k‖1 denote the maximal ‖ ‖1-norm of the columns of Tl,k.

Lemma 1. Within locLLL(Rl,k) we have that ‖Tl,k‖1 ≤ 6k( 3
2 )2kMl,k.

Proof. We rename the input basis b′1, ..., b
′
2k of locLLL(Rl,k) into b1, ..., b2k and

we let b′1, ..., b
′
2k denote the current local basis. The input basis has been size-

reduced by the preceding TriSegl,k-execution, and thus |µj,i| ≤ 1
2 for 1 ≤ i <

j ≤ 2k. W.l.o.g. let |µ′l,i| ≤ 1
2 for 1 ≤ i < l ≤ 2k hold for the current basis

because ‖col(l′, Tl′,k)‖1 increases during size-reduction of b′l′ . The equations
[b′1, ..., b

′
2k] = [q′1, ..., q

′
2k][µ′j,i]

t = [q1, ..., q2k][µj,i]tTl,k.

yield Tl,k = ([µj,i]t)−1 [〈qj , q
′
i〉‖qj‖−2] [µ′j,i]

t
1≤i,j≤2k. The coefficients νj,i of the

inverse matrix [νj,i] := ([µj,i]t)−1 satisfy |νj,i| ≤ ( 3
2 )|j−i|, and thus

∑2k
i=1 |νj,i| ≤∑2k

i=1(
3
2 )|j−i| < 3( 3

2 )2k. We get that
‖Tl,k‖1 ≤ 6k(3

2 )2k max1≤i,j≤2k |〈qj , q
′
i〉|/‖qj‖2.
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To finish the proof we show that max1≤i,j≤2k |〈qj , q
′
i〉|/‖qj‖2 ≤ Ml,k.

If bl′−1, bl′ get swapped, the swapped vectors b′l′−1, b
′
l′ clearly satisfy

‖ql′‖ ≤ ‖q′l′−1‖, ‖q′l′‖ ≤ ‖ql′−1‖,
and thus |〈qj , q

′
i〉|/‖qj‖2 ≤ ‖q′i‖/‖qj‖ ≤ ‖ql′−1‖/‖ql′‖ holds for l′−1 ≤ i, j ≤ l′,

i.e., for the i, j that are linked by the LLL-swap.
More generally, we say that i, j are linked by a sequence of LLL-swaps, swap-

ping bhν
, bhν+1 for ν = 1, ..., s if the edges (hν , hν+1) link i and j by an undirected

path. By induction on the sequence of LLL-swaps we see that ‖q′i‖/‖qj‖ ≤ Ml,k

holds for all i, j such that the terminal b′i and the initial bj are linked by a
sequence of LLL-swaps. Otherwise, if b′i and bj are not linked, we have that
〈qj , q

′
i〉/‖qj‖2 = δi,j because q′i is in the linear space generated by the qj such

that b′i and bj are linked, and thus 〈qj , q
′
i〉 = 0 for i 6= j. In particular, the

quotients ‖qi‖/‖qj‖ for i > j, which are not bounded by Ml,k, are irrelevant,
they do not induce LLL-swaps and do not affect Tl,k. ¤

Next we study locLLL(Rl,k) under fpa, where TriColl performs the iterative
fpa-version of TriColl that depends on ε, 0 < ε < 0.2.

Corollary 1. 1. Within locLLL(Rl,k) the current R′l,k := Rl,kTl,k and its ap-
proximation R̄′l,k satisfy ‖R̄′l,k−R′l,k‖F ≤ ‖R̄l,k−Rl,k‖F 22kMl,k+7n‖Rl,k‖F 2−t.

2. Let TriSegl,k and locLLL use fpa with t = 3n + log2(M2
0 M3

1 ) + 2k precision
bits. If R̄l,k is computed by TriSegl,k then locLLL(R̄l,k) computes for n ≥ n0 a
correct Tl,k so that Rl,kTl,k is LLL-reduced with δ− .

Proof. 1. locLLL(Rl,k) updates the current R′l,k = [b′1, ..., b
′
2k] by transforming

the initial Rl,k into R′l,k := Rl,kTl,k. In ideal arithmetic this increases ‖R̄l,k −
Rl,k‖F by at most a factor ‖Tl,k‖1

√
2k ≤ 22kMl,k holds for k ≥ 9 by Lemma 1.

The 7n‖Rl,k‖F 2−t-term accounts for the fpa-errors of the calculation of Rl,kTl,k,
using e.g., (15.30)[LH95] for d ≥ 37. This term can be neglected as it is covered
by the upper bound of ‖R̄l,k −Rl,k‖F that follows from (1).

2. The input Rl,k of locLLL(Rl,k) satisfies the inequalities (3),(4) with M̄1 ≤
M1. Therefore TriSegl,k’s fpa-errors are by a factor M2

1 /2
n−1

2 larger than for
TriColl-executions within LLLH , where the input b1, ..., bl−1 is LLL-reduced
and M̄1 ≤ 2

n−1
4 . This is offset by 2 log2 M1 − n/2 additional precision bits.

We compensate the loss of precision described by clause 1 by another log2 M1+
2k additional precision bits. Thus we add to the precision t of Theorem 2
log2(M3

1 ) − n
2 + 2k with k ≤ n

4 to get t = 5n + log2(M2
0 M3

1 ). With the in-
creased precision the argument of Theorem 2 shows the correctness of Tl,k. ut
Theorem 5. Let k = Θ(

√
n). Given a basis with M0,M1,M , SLLL0 computes

under fpa with t = 5n + log2(M2
0 M3

1 ) precision bits for n ≥ n0 an SLLL0-basis
for δ− . It runs in O(nd log1/δ M) arithmetic steps using 5n + log2(M2

0 M3
1 )-bit

integers and fpa numbers.

SLLL0 saves a factor n in the number of arithmetic steps compared to LLLH

but uses longer integers and fpa numbers. The choice k, m = Θ(
√

n) equalizes
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for d = O(n) the number of local and global arithmetic steps. SLLL0 runs for
M0 = 2O(n), and thus for M = 2O(n2), in O(n3d) arithmetic steps using O(n2)
bit integers. The bit length O(n2) will be reduced to O(n) by the algorithm
SLLL see Theorem 7.

Proof. Time bound. We separately count the local (resp. global) arithmetic steps
of locLLL(Rl,k) (resp., of TriSegl,k). Initially we have that D(1) ≤ Mn. Each
LLL-swap of bl−1, bl, due to the inequality δr2

l−1,l−1 > r2
l−1,l + r2

l,l, decreases
D(1) by a factor δ. As initially D(1) ≤ Mn and D(1) ≥ 1 holds upon termination
there are at most n log1/δ M LLL-swaps.

Each of the n log1/δ M LLL-swaps, done in local coordinates of dimension
2k, requires O(k2) steps for a local TriColl-execution and for updating Tl,k. In
total there are O(nk2 log1/δ M) local arithmetic steps.

Each locLLL(Rl,k)-execution requires O(ndk) global arithmetic steps for
TriSegl,k and for updating Bl,k, Bl+1,k. Therefore, the n/k + 2nk−3 log1/δ M

locLLL(Rl,k)-executions require O(n2d+m2d log1/δ M) global arithmetic steps.
This proves the claimed step bound using that M ≥ 2n and m2 = Θ(n).

Correctness under fpa. We see from Cor.1(2) that locLLL(Rl,k) correctly
LLL-reduces Rl,k with δ− , computing a correct Tl,k for n ≥ n0, n ≥ 4k. The
fpa-errors within locLLL(Rl,k) get corrected by the subsequent global update
”[Bl,k, Bl+1,k] := [Bl,k, Bl+1,k]Tl,k, TriSegl,k” which restores and even im-
proves the initial error bounds.

Selecting the right Rl,k for the next locLLL(Rl,k)-call within SLLL0 rests
on the decision whether Dl,k, Dl+1,k differ by at least a factor (α/δ)k2

, where
(α/δ)k2

> ( 4
3 )k2

> 20.4n for k ≥ √
n. This is always correctly decided because the

ri,i and thus Dl,k, Dl+1,k are computed with an arbitrary small relative error ε
due inequality (1). W.l.o.g. we can assume that all except possibly one ri,i satisfy
ri,i ≥ 2−n/M0.

Intermediate basis vectors have length ≤ 6k( 3
2 )2kM0M12n = 2n+o(n)M0M1

because ‖Tl,k‖1 ≤ 6k(3
2 )2kM1 holds by Lemma 1, and size-reduction increases

the length of intermediate basis vectors by at most a factor 2n. Hence all integers
and fpa numbers within SLLL0 have bit length 5n + log2(M2

0 M3
1 ). ut

5 Gradual SLLL Reduction Using Short Bases.

The algorithm SLLL of this section achieves the same length defect as LLL,
uses intermediate bases of length 2n+o(n)M0, and is correct under fpa with
t = 7n + 2 log2 M0 precision bits. SLLL prepares local LLL-reductions through
local reductions on subsegments that get reduced with smaller δ-values, all local
transforms have norm 2n+o(n). SLLL saves a factor n/ log2 n in the number of
arithmetic steps compared to LLLH , using 7n + 2 log2 M0-bit integers and fpa
numbers. For input bases of length 2O(n) and d = O(n) SLLL performs O(n5+ε)
bit operations for every ε > 0 compared to O(n6+ε) bit operations for LLLH ,
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SLLL0 and the LLL-algorithms of [S88], [St96]. The advantage of SLLL is the
use of small integers of bit length 7n + 2 log M0 which is crucial in practice.

The use of small integers and short intermediate bases within SLLL rests
on a gradual LLL-type reduction so that all local LLL-transforms Tl,2σ of Rl,2σ

have norm O(2n). This requires to work with segments of all sizes 2σ and to
perform LLL-reduction on Rl,2σ with a measured strength, i.e., SLLL-reduction
according to Definition 3. If the submatrices R2l,2σ−1 , R2l+1,2σ−1 ⊂ Rl,2σ are
already SLLL-reduced then locLLL(Rl,k) performs a transform Tl,2σ bounded
as ‖Tl,2σ‖F = O(2n). This is the core of fpa-correctness of SLLL.

Comparison with semi-reduction of [Sc84, St96]. The semi-reduction algorithm
of [Sc84] also uses segments but proceeds without adjusting LLL-reduction ac-
cording to Def. 2 and without Theorem 4. This algorithm runs for input bases of
length 2O(n) in O(n6+ε) bit operations, its combination with modular reduction
[St96] runs in O(n5.5+ε)-bit operations. This time bound also holds for a combi-
nation of [S88] and [Sc84], see Theorem 9 [S88]. Assuming that n × n matrices
can be multiplied using O(nβ) arithmetic steps the semi-reduction of [St96, Thm
24] runs in O(n5+ 1

5−β +ε) bit operations. SLLL beats the [St96] time bound even
if n × n-matrix multiplication can be done in O(n2) steps. SLLL achieves for
every ε > 0 length defect ( 4

3 + ε)n/2 whereas semi-reduction achieves 2n. More-
over, SLLL is practical even for small n since all our O-constants and n0-values
are small.

We let n be a power of 2, 1
2 ≤ δ < 1, α = 1

δ− 1
4
. We set s := d 1

2 log2 ne so that√
n ≤ 2s < 2

√
n.

Definition 3. A basis b1, ..., bn ∈ Rd is an SLLL-basis (or SLLL-reduced) for
δ ≥ 1

2 if it satisfies for σ = 0, ..., s = d 1
2 log2 ne and all l, 1 ≤ l < n/2σ:

Dl,2σ ≤ α4σ

δ−nDl+1,2σ .

If the inequalities of Def.3 hold for a basis they also hold for the dual basis.
Thus the dual of an SLLL-basis is again an SLLL-basis. To preserve SLLL-
reducedness by duality we do not require SLLL-bases to be size-reduced.

The inequalities of Def.3 for σ = 0 mean that ‖ql‖2 ≤ αδ−n‖ql+1‖2 holds
for all l. The inequalities of Def.3 are merely required for 2σ ≤ 2

√
n. Therefore,

SLLL locally LLL-reduces Rl,2σ via locLLL(Rl,2σ ) merely for segment sizes 2σ <
2
√

n, where size-reduction of a vector requires O(22σ) = O(n) arithmetic steps.
The inequalities of Def.3 and Dl,k ≤ (α/δ)k2

Dl+1,k of Def.2 coincide for
k = 2σ when setting δ := δσ in Def.2, and δσ := δn4−σ

for the δ of Def.3.
Note that δσ can be arbitrarily small, e.g. δσ ¿ 1

4 , δσ decreases with σ. In
particular for 2σ = k ≥ √

n we have that α4σ

δ−n ≤ (α/δ)k2
and thus the

inequalities of Def.3 are stronger than the ones of Def.2. Next we show via
Lemma 2 that the vectors of SLLL-bases approximate the successive minima in
nearly the same way as for LLL-bases.

Theorem 6. Every size-reduced SLLL-basis satisfies
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1. λ2
j ≤ αj−1δ−7n‖qj‖2 for j = 1, . . . , n,

2. ‖bl‖2 ≤ αj−1δ−7n‖qj‖2 for l ≤ j,
3. ‖bj‖2 ≤ αn−1δ−7nλ2

j for j = 1, . . . , n.

Proof. We first prove 1. and 2. There clearly exists l, 1 ≤ l ≤ j so that λj ≤ ‖bl‖.
Using Lemma 2 and size-reducedness we get

λ2
j ≤ ‖bl‖2 ≤ ‖ql‖2 + 1

4

∑l−1
i=1 ‖qi‖2

≤ ‖qj‖2αj−1δ−7n[α1−l + 1
4

∑l−1
i=1 α1−i].

This upper bound on ‖bl‖2 holds for all l and j with l ≤ j. To finish the proof
of 1. and 2. it remains to show that α1−l + 1

4

∑l−1
i=1 α1−i ≤ 1. This is trivial for

l = 1 and holds for l ≥ 2 as α ≥ 4/3 and
∑l−1

i=1 α1−i ≤ 1−α1−l

1−3/4 .
3. We note that every lattice basis satisfies λj ≥ ‖bl‖ ≥ ‖ql‖ for some l ≥ j,
and thus λ2

j ≥ ‖ql‖2 ≥ α−l+iδ7n‖qi‖2 holds for all i ≤ l by Lemma 2. Hence

‖bj‖2 ≤ ‖qj‖2 + 1
4

∑j−1
i=1 ‖qi‖2 ≤ δ−7n[αl−j + 1

4

∑j−1
i=1 αl−i]λ2

j ≤ δ−7nαl−1λ2
j

holds since bj is size-reduced, and ‖qi‖2 ≤ δ−7nαl−iλ2
j . ¤

Bounds for other bases. 1. The proof of Theorem 6 shows that LLL-bases satisfy
the inequalities of Theorem 6 with δ−7n replaced by 1, because they satisfy the
inequalities of Lemma 2 with δ−7n replaced by 1. Therefore LLL-bases satisfy
for j = 1, ..., n: α1−j ≤ ‖qj‖2/λ2

j ≤ ‖bj‖2/λ2
j ≤ αn−1.

2. Every size-reduced basis satisfies the inequalities of Lemma 2 with αj−iδ−7n

replaced by M2
1 , i.e., ‖qi‖2 ≤ M2

1 ‖qj‖2 for i < j. Retracing the proof of Theorem
6 shows that every size-reduced basis satisfies for j = 1, ..., n

4
j+3/M2

1 ≤ ‖qj‖2/λ2
j ≤ ‖bj‖2/λ2

j ≤ j+3
4 M2

1 .

Lemma 2. Every SLLL-basis b1, . . . , bn satisfies

‖qi‖2 ≤ αj−iδ−7n‖qj‖2 for 1 ≤ i < j ≤ n.

Proof. Every SLLL-basis satisfies
D2−σ

l,2σ ≤ (α/δσ)2
σ

D2−σ

l+1,2σ (5)

for δσ := δn 4−σ

and σ = 0, ..., s and all l, because (α/δσ)4
σ

= α4σ

δ−n.
Moreover, we have for all l and σ = 0, ..., s:

D2−σ

l,2σ ≤ (α/δσ)2
σ−1

D2−σ−1

l+1
2 ,2σ+1 . (6)

This follows by multiplying both sides of (5) by D2−σ

l,2σ , using the equality Dl,2σDl+1,2σ =
D l+1

2 ,2σ+1 and taking square roots on both sides.
Let i0, ..., is−1 ∈ {0, 1} and l0, ..., ls ∈ N satisfy

i +
∑σ−1

σ′=0(1 + iσ′)2σ′ = lσ 2σ for σ = 0, . . . , s. (7)
We prove for σ = 0, ..., s by induction on σ:

‖qi‖2 ≤
∏σ−1

σ′=0(α/δσ′)2
σ′ ( 1

2+iσ′ ) D2−σ

lσ,2σ . (8)
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The claim for σ = 0: ‖qi‖2 ≤ Dl0,1 = ‖qi‖2 holds as
∑−1

σ′=0 := 0,
∏−1

σ′=0 := 1,
i = l0.

Induction from σ to σ + 1. We see from (7) that 2lσ+1 = lσ + 1 + iσ. If lσ is odd
than iσ = 0 and lσ+1 = lσ+1

2 . In this case we combine (8) with inequality (6) for
l := lσ. This yields (8) for σ + 1. If lσ is even, iσ = 1 then we first combine (8)
with (5) for l := lσ, and we proceed with lσ + 1 as in the previous case with lσ.

Applying the inequalities (6) to the dual basis b∗1, ..., b
∗
n we get for odd l and

σ = 0, ..., s:
D2−σ−1

l+1
2 ,2σ+1 ≤ (α/δσ)2

σ−1
D2−σ

l,2σ . (6∗)

Let j0, ..., js−1 ∈ {0, 1} and l∗0, ..., l
∗
s ∈ N satisfy

j −∑σ−1
σ′=0 jσ′ 2σ′ = l∗σ 2σ for σ = 0, . . . , s. (7∗)

By duality (8) yields for σ = 1, ...., s:

D2−σ

l∗σ,2σ ≤ ∏σ−1
σ′=0(α/δσ′)2

σ′ ( 1
2+jσ′ ) ‖qj‖2. (8∗)

The claim of Lemma 2 clearly holds for j − i ≤ 7 since Def.3 for σ = 0
requires that ‖ql‖2 ≤ αδ−n‖ql+1‖2. To prove the claim for j− i ≥ 8 we combine
the inequalities (8) and (8∗) for a suitable σ. If j − i ≥ 2s+2 we set σ := s,
otherwise we choose σ such that 2σ+1 ≤ j − i < 2σ+2, and thus σ ≥ 2. We set
lσ := d(i − 1)/2σ + 1e, l∗σ = bj/2σc. Then there exist iσ′ , jσ′ ∈ {0, 1} such that
(7), (7∗) hold for σ.

Obviously l∗σ − lσ > (j − i)/2σ − 3 ≥ 2− 3 = −1 holds for 2 ≤ σ ≤ s because
(j − i)/2σ ≥ 2 for σ < s and (j − i)/2s ≥ 4 for σ = s. Hence lσ ≤ l∗σ.

Case lσ = l∗σ. By (8) and (8∗) : ‖qi‖2 ≤
∏σ−1

σ′=0(α/δσ′)2
σ′ (1+iσ′+jσ′ ) ‖qj‖2,

where i +
∑σ−1

σ′=0(1 + iσ′ + jσ′)2σ′ = j. We see from δσ′ = δn 4−σ′
and∑σ−1

σ′=0(1 + iσ′ + jσ′)2−σ′ ≤ 6− 2−σ+1 that

‖qi‖2 ≤ αj−iδ−6n+n2−σ+1 ‖qj‖2. (9)

Case lσ < l∗σ. We set l′ := l∗σ − lσ. We combine (8), (8∗) and D2−σ

lσ,2σ ≤
(α/δσ)2

σl′D2−σ

lσ+l′,2σ which follows from (5). This induces into the right side
of (9) another factor δ−2σl′

σ .
For σ = s we have δ−2sl′

s = δ−n2−sl′ ≤ δ−n as l′ < (j − i)2−s < n2−s ≤ 2s.
Hence ‖qi‖2 ≤ αj−iδ−7n+2m ‖qj‖2.

For σ < s we have l′ = 1 because i − lσ ≥ 2σ − 1 and j − i < 22σ. Hence
‖qi‖2 ≤ αj−iδ−6n ‖qj‖2. ¤

SLLL uses the procedure LLLSegl,1 that breaks locLLL(Rl,1) up into parts,
each with a bounded transform ‖Tl,1‖1 ≤ 9 ·2n+1. This keeps intermediate bases
of length O(4nM0) and limits fpa-errors within LLLSegl,1.

LLLSegl,1 LLL-reduces the basis Rl,1 =
[

rl,l rl,l+1

0 rl+1,l+1

]
⊂ R after dilating

row(2, Rl,1) so that rl,l/rl+1,l+1 ≤ 2n+1. After the LLL-reduction of the dilated
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Rl,1 we undo the dilation, by transporting the local transform Tl,1 ∈ Z2×2 to B.
LLLSegl,1 includes global updates between local rounds.

LLLSegl,1

# Given Rl,1, b1, ..., bl+1, h1, ..., hl, r1, ..., rl, LLLSegl,1 LLL-reduces Rl,1.
1. IF rl,l/rl+1,l+1 > 2n+1 THEN [ R′l,1 := Rl,1,

row(2, R′l,1) := row(2, R′l,1) 2−n−1 rl,l/rl+1,l+1 locLLL(R′l,1),
# global update: [bl, bl+1] := [bl, bl+1] Tl,1, TriColl, TriColl+1 ]

2. locLLL(Rl,1).

Lemma 3. LLLSegl,1 performs O(nd) arithmetic steps. An effectual step 1 de-
creases D(1) by a factor 2−n/2 via a transform Tl,1 satisfying ‖Tl,1‖1 ≤ 9 · 2n+1.

Proof. Consider R′l,1 after dilation of row(2, R′l,1) which results in r′l,l/r′l+1,l+1 ≤
2n+1. The local transform Tl,1 of locLLL(R′l,1) satisfies ‖Tl,1‖1 ≤ 9 · 2n+1 using
Lemma 1 with k = 1.

The dilated and LLL-reduced R′l,1 satisfies r′l,l/r′l+1,l+1 ≤
√

α ≤ 2. Undoing
the dilation via [bl, bl+1] := [bl, bl+1]Tl,1 yields a basis R′l,1 which is LLL-reduced
after dilation. Therefore undoing the dilation shrinks r′l,l and r′l+1,l+1 by factors
that are bounded by the dilation factor 2−n−1rl,l/rl+1,l+1, and thus increases
r′l,l/r′l+1,l+1 at most by the dilation factor. Hence, an effectual step 1 yields

rnew
l,l / rnew

l+1,l+1 ≤ 2 · 2−n−1 rl,l/rl+1,l+1.

It decreases rl,l/rl+1,l+1 by a factor 2−n, decreases rl,l by a factor 2−n/2, and
thus decreases D(1) =

∏n−1
l=1 dl by a factor 2−n/2. ¤

SLLL
INPUT b1, . . . , bn ∈ Zd (a basis with M0, M1,M), δ, α, ε

OUTPUT b1, . . . , bn size-reduced SLLL-basis for δ, ε

1. TriCol1, TriCol2, l′ := 2, s := d 1
2 log2 ne

# TriColl′ has always been executed for the current l′

2. WHILE ∃σ ≤ s, l, 2σ(l + 1) ≤ l′ such that Dl,2σ > α4σ

δ−n Dl+1,2σ

# Clearly r1,1, ..., rl′,l′ and thus Dl,2σ , Dl+1,2σ are available
DO for the minimal such σ and the minimal l:

IF σ = 0 THEN LLLSegl,1 ELSE locLLL(Rl,2σ )
#global update: transport Tl,2σ to B, TriSegl,2σ

3. IF l′ < n THEN l′ := l′ + 1, TriColl′ , GOTO 2.

Correctness in ideal arithmetic. All inequalities Dl,2σ ≤ α4σ

δ−nDl+1,2σ hold
upon termination of SLLL. As TriSegl,2σ results in size-reduced segments Bl,2σ ,
Bl+1,2σ the terminal basis is size-reduced.
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Theorem 7. Given a basis with M0,M SLLL finds under fpa of precision t =
7n+2 log2 M0 for n ≥ n0 an SLLL-basis for δ− . It runs in O(nd log2 n log1/δ M)
arithmetic steps using integers and fpa numbers of bit length 7n+o(n)+2 log2 M0.

For M0 = 2O(n) and d = O(n) SLLL runs in O(n4 log n) arithmetic steps,
and thus in O(n5+ε′) bit operations for every ε′ > 0.

Proof. Time bound. It is crucial that D(2σ) does not increase within SLLL.
locLLL(Rl,2σ ) leaves D(2σ‘) unchanged for σ‘ > σ and does not increase D(2σ′ )

for σ′ ≤ σ, because the segments Bl,2σ of level σ partition B, and this partition
refines as σ decreases.

Each locLLL(Rl,2σ ) execution within SLLL decreases Dl,2σ and D(2σ) by
a factor δn/2 by the argument of Theorem 4. As initially D(2σ) =

∏m−1
l=1 Dm−l

l,2σ

≤ Mn2−σ

the number of locLLL(Rl,2σ )-executions for all l is ≤ logδ−n/2(Mn 2−σ

)
= 2−σ+1 log1/δ M for each σ ≥ 1. Each execution requires O(nd2σ) global steps
for TriSegl,2σ , hence all executions require O(nd log1/δ M) global steps for each
σ ≥ 1. For σ = 0 each round of LLLSegl,1 requires O(nd) arithmetic steps and
decreases D(1) ≤ Mn by a factor 2−n/2 due to Lemma 3. Hence, there are at
most 2 log2 M rounds of SegLLLl,1 for all l, requiring a total of O(nd log2 M)
global arithmetic steps. Thus there are O(nd log2 n log1/δ M) global arithmetic
steps for all σ = 0, ..., s. The number of local steps, induced by local LLL-
swaps of locLLL(Rl,2σ ), is bounded by O(n22σ log1/δ M) for each σ ≤ s, as for
SLLL0 with r = 2σ. In addition there are n TriColl-executions requiring O(n2d)
arithmetic steps. These steps are within the claimed step bound as M ≥ 2n.
The required sqrt’s can be computed within the claimed step bound by Newton
iteration.

Correctness under fpa.We first bound the Ml,2σ -value of the input Rl,2σ of
locLLL and LLLSegl,1. If σ ≥ 1 then Rl,2σ is SLLL-reduced as SLLL executes
locLLL(Rl,2σ ) for the smallest possible σ, and thus Rl,2σ , a basis of dimension
n′ = 2σ+1 ≤ 2

√
n, is SLLL-reduced as the inequalities of Def.3 already hold for

σ′ ≤ d 1
2 (σ + 1)e = d 1

2 log2 n′e. Therefore, Rl,2σ satisfies by Lemma 2 :
Ml,2σ ≤ α2σ+1

δ−7n ≤ 2n for δ ≥ 0.96, α ≤ √
2, 2σ ≤ 2

√
n and n ≥ 16.

If σ = 0 the execution of LLLSegl,1 on the dilated input R′l,1 performs by
Lemma 3 a transform Tl,1 with ‖Tl,1‖1 ≤ 9 · 2n+1 and the dilated R′l,1 satisfies
M1(R′l,1) ≤ 2n+1.

The fpa-errors of Rl,2σ , R′l,1 within SLLL. When ri,l is used the basis b1, ..., bl−1

already satisfies the bounds of Lemma 2 and rl−1,l−1/rl,l ≤ 2n+1 holds after
dilation of R′l,1. The initial ri,l resulting from TriCol1,..., TriColl satisfies the
inequalities (1),(3),(4) with M̄0 ≤ M0 and M̄2

1 ≤ αlδ−7n4n ≤ 23n. Hence, the
initial fpa-error of µ̄l,i is bounded according to (4) by O(d7l M2

0 2−3n2−t).
The loss of precision within locLLL(Rl,2σ ) described in Cor.1(1) gets cor-

rected by the global update subsequent to locLLL(Rl,2σ ). We see that SLLL is
correct using fpa with t = 7n + o(n) + 2 log2 M0 precision bits.
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By Lemma 1 and the argument of Theorem 2 all intermediate basis vectors
have length bounded by 2nM0‖Tl,2σ‖1 = 22n+o(n)M0. Therefore, all integers and
fpa-numbers in SLLL have bit length ≤ 7n + o(n) + 2 log2 M0. ¤

SLLL-bases versus LLL-bases. LLL-bases with δ satisfy the inequalities of Theo-
rem 6 with δ replaced by 1. Thus ‖bj‖ approximates λj to within a factor α

n−1
2

for LLL-bases, resp., within a factor (α/δ7)
n−1

2 for SLLL-bases. However, SLLL-
bases for δ′ = δ1/8 are ”better” than LLL-bases for δ, in the sense that they guar-
antee a smaller length defect, because α′/δ′7 = 1

δ′8−δ′7/4 = 1
δ−δ′7/4 < 1

δ−1/4 = α.

Dependence of time bounds on δ. The time bounds contain a factor log1/δ 2,

log1/δ 2 = log2(e)/ ln(1/δ) ≤ log2(e)
δ

1−δ ,

since ln(1/δ) ≥ 1/δ−1. We see that replacing δ by
√

δ essentially halves 1−δ and
doubles the SLLL-time bound. Hence, replacing δ by δ1/8 increases the SLLL-
time bound at most by a factor 3. In practice, the LLL-time may increase slower
than by the factor δ

1−δ as δ approaches 1, see [KS01b, Fig.3].

Reducing a generator system. There is an algorithm SLLL’ that, given a
generator matrix B ∈ Zd×n of arbitrary rank ≤ n, transforms B with the per-
formance of SLLL, into an SLLL-basis for δ− of the lattice generated by the
columns of B.

6 SLLL-Reduction via Iterated Subsegments.

We present a variant of SLLL-reduction that extends LLL-operations stepwise
to larger and larger submatrices Rl,2σ ⊂ R by transporting local transforms
from level σ − 1 to level σ recursively for σ = 1, ..., s, where n = 2s. Local
LLL-reduction and the transport of local LLL-transforms is done by the new
procedure locSLLL(Rl,2σ ) that recursively executes locSLLL(Rl′,2σ−1) for l′ =
2l− 1, 2l, 2l + 1. SLLL+ does not iterate the global procedure TriSeg iterating
instead the faster local procedure locTri.

Unfortunately SLLL+ seems to require under fpa t = O(log(M0M1)) =
O(n log M0) precision bits to cover the fpa-errors that get accumulated by the
initial TriSeg and by iterating locTri. Obviously, t = O(n log M0) precision bits
erase under fpa the advantage of SLLL+ over SLLL. SLLL+ essentially saves
a factor n in the number of arithmetic steps compared to SLLL but requires
fpa-numbers that are n-times longer. We can reduce t by using Scaled LLL-
reduction of [KS01b], and by a novel partitioning the SLLL+-reduction into
transforms Tl,2σ with small norm and correcting Rl,2σTl,2σ by a global update.
We plan to include this into a separate paper.

Here we merely analyse SLLL+ in ideal real arithmetic. SLLL+ runs in
O(n2d + n log2 n log1/δ M) arithmetic steps, e.g. for M0 = 2O(n) and d = O(n)
it runs in O(n3 log n) arithmetic steps.
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Definition 4. A basis b1, . . . , bn ∈ Zd with n = 2s is an SLLL+-basis (or
SLLL+-reduced) for δ if it satisfies for σ = 0, ..., s = log2 n

Dl,2σ ≤ (α/δ)4
σ

Dl+1,2σ for odd l ∈ [1, n/2σ[. (10)

Unlike to Def.2 and Def.3 the inequalities (10) are not required for even l,
this opens new efficiencies for SLLL+-reduction. The inequalities (10) hold for
each σ and odd l locally in double segments [Bl,2σ , Bl+1,2σ ], they do not bridge
these pairwise disjoint double segments. For σ = 0 the inequalities (10) mean
that ‖ql‖2 ≤ α/δ ‖ql+1‖2 holds for odd l.

The inequalities (10) are preserved under duality. If b1, ..., bn is an SLLL+-
basis then so is the dual basis b∗1, ..., b

∗
n. We next extend Theorem 3, and show

that the first vector of an SLLL+-basis is almost as short relative to (detL)
2
n as

for LLL-bases.

Theorem 8. Every SLLL+-basis b1, . . . , bn, where n is a power of 2 satisfies

‖b1‖ ≤ (α/δ)
n−1

4 (detL)
1
n and ‖qn‖ ≥ (δ/α)

n−1
4 (detL)

1
n .

Proof. Using the inequalities (10) merely for l = 1 we prove by induction on σ

that ‖b1‖2σ+1 ≤ (α/δ)4
σ/2−2σ−1

D1,2σ holds for σ = 0, ..., s = log2 n .
For σ = s this proves the first claim of the theorem as D1,2s = (detL)2 and

4s2−s−1 − 1
2 = n−1

2 . The second claim holds by duality.
The induction claim for σ = 0 means that ‖b1‖2 ≤ ‖b1‖2 as 40/2− 1

2 = 0.

Induction from σ to σ + 1. By SLLL+-reducedness we have that D1,2σ ≤
(α/δ)4

σ

D2,2σ . We multiply both sides by D1,2σ then the equation
D1,2σ+1 = D1,2σ D2,2σ yields D2

1,2σ ≤ (α/δ)4
σ

D1,2σ+1 .
This and the squared induction hypothesis for σ implies

‖b1‖2σ+2 ≤ (α/δ)4
σ−2σ

(α/δ)4
σ

D1,2σ+1 .

This proves the claim for σ + 1 since 4σ − 2σ + 4σ = 4σ+1/2− 2σ. ut
Let the given basis b1, ..., bn ∈ Zd have GNF R ∈ Rn×n. The local proce-

dures locSLLL(Rl,2σ ), locTri(Rl,2σ ) are given for input on transformed subma-
trices Rl,2σ = R′l,2σTl,2σ , where R′l,2σ is the initial submatrix Rl,2σ of R and
Tl,2σ is the currently performed transform. We let locSLLL(Rl,1) coincide with
locLLL(Rl,1), and we recursively define locSLLL(Rl,2σ ) for σ = 1, ..., s.

locSLLL(Rl,2σ ) (locSLLLl,2σ for short)
# locSLLLl,2σ locally SLLL+-reduces Rl,2σ and updates the local transform
Tl,2σ . Note that Rl′,2σ−1 ⊂ Rl,2σ iff l′ ∈ {2l − 1, 2l, 2l + 1}.

1. Tl,2σ := I2σ+1 , l′ := 2l − 1
# Tl,2σ is always updated to be the product of all previous transforms
Tl′,2σ′ for σ′ < σ performed within locSLLLl,2σ .

2. WHILE l′ < 2l + 1 DO

copy Rl′,2σ−1 from Rl,2σ
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locSLLLl′,2σ−1 , transport Tl′,2σ−1 to Rl,2σ and Tl,2σ ,
locTri(Rl,2σ ), update Tl,2σ for the size-reduction performed by locTri

IF l′ ≥ 2l and Dl′−1,2σ−1 > (α/δ)4
σ−1

Dl′,2σ−1

THEN l′ := l′ − 1 ELSE l′ := l′ + 1.

locTri(Rl,2σ )
# locTri(Rl,2σ ) locally triangulates and size-reduces Rl,2σ using O(23σ)

arithmetic steps.
1. Produce a copy [b′1, ..., b

′
2σ+1 ] of Rl,2σ

2. FOR i = 1, ..., 2σ+1 DO TriCol(b′1..., b
′
i, h

′
1, ..., h

′
i−1, r

′
1, ..., r

′
i−1)

3. Dj,2σ :=
∏2σ−1

i=0 r2σj−i,2σj−i, for j = l, l + 1.

Correctness of locSLLLl,2σ . We see by induction on σ that upon termination
of locSLLLl,2σ the basis Rl,2σ is SLLL+-reduced, upper-triangular and size-
reduced; its local transform is stored in Tl,2σ . Local triangulation of a trans-
formed Rl,2σTl,2σ results in the same submatrix Rl,2σ ⊂ R obtained by global
triangulation of the transformed B via TriSeg1,n/2.

Upon termination the inequalities (10) hold locally within Rl,2σ for even and
odd l, but possibly D4l,2σ−2 > (α/δ)4

σ−2
D4l+1,2σ−2 since the final locSLLL2l+1,2σ−1 -

execution may revers the inequality D4l,2σ−2 ≤ (α/δ)4
σ−2

D4l+1,2σ−2 .

SLLL+

INPUT b1, . . . , bn ∈ Zd (a basis with M), n = 2s, δ

OUTPUT b1, . . . , bn a size-reduced SLLL+-basis

1. # compute R1,n/2 : TriSeg1,n/2

2. locSLLL(R1,n/2), # global update : B := B T1,n/2

Correctness of SLLL+ follows from the correctness of locSLLL1,n/2.

Theorem 9. In ideal arithmetic SLLL+ computes a size-reduced SLLL+-basis
for δ and runs in O(n2d + n log2 n log1/δ M) arithmetic steps.

Proof. For σ = 0, ..., s− 1 let #2σ denote the number of locSLLLl,2σ -executions
in SLLL+ due to Dl,2σ > (α/δ)4

σ

Dl+1,2σ for all l. By the argument of Theorem
4 each locSLLLl,2σ execution counted in #2σ decreases D(2σ) by the factor δ4σ/2.
Initially the integerD(2σ) satisfiesD(2σ) ≤ Mn/2σ

, and upon terminationD(2σ) ≥
1, hence #2σ ≤ 2n · 2−3σ log1/δ M .

Each of the locSLLLl′,2σ−1 -executions within locTri(Rl,2σ ) requires an over-
head of O(23σ) arithmetic steps. This covers the matrix transports and the
subsequent locTri(Rl,2σ )-execution. The very first locSLLLl′,2σ−1 -execution
within locSLLLl,2σ is possibly not counted in #2σ−1 . We allocate its overhead of
O(23σ) steps to the overhead of locSLLLl,2σ . We see that the total overhead of
all locSLLLl,2σ -executions is O(23σ + n log1/δ M) for each σ ≤ s.
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Moreover, the initial TriSeg1,n/2 and the final update B := B T1,n/2 require
O(n2 d) arithmetic steps. We see that SLLL+ runs in O(n2d+n log2 n log1/δ M)
arithmetic steps, where s = log2 n. ¤

Further improvements of SLLL+. It is still possible to improve the time
bound of SLLL+ via modular reduction and fast matrix multiplication follow-
ing [St96]. But this will hardly be practical. Other variants of SLLL+ are more
promising. SLLL+ can be modified to achieve the length defect of SLLL-bases.
This is possible by the concept of strong SLLL-reduction of [KS02]. Practica-
bility requires an SLLL+-algorithm that runs under fpa of t = O(n + log2 M0)
precision bits instead of the straightforward method with t = O(n log2 M0). We
plan to continue in this direction.

Acknowledgement. Damien Stehle, a student of Phong Nguyen, informed me
that I previously misused the analysis of Householder transforms in [LH95]. Prop.
1 corrects this error.
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