Fast LLL-Type Lattice Reduction.

Claus Peter Schnorr

Fachbereiche Mathematik/Biologie-Informatik, Universität Frankfurt, PSF 111932, D-60054 Frankfurt am Main, Germany. schnorr@cs.uni-frankfurt.de

25. October, 2004

Abstract. We modify the concept of LLL-reduction of lattice bases in the sense of LENSTRA, LENSTRA, LOVÁSZ [LLL82] towards a faster reduction algorithm. We organize LLL-reduction in segments of the basis.

Our SLLL-bases approximate the successive minima of the lattice in nearly the same way as LLL-bases. For integer lattices of dimension n given by a basis of length $2^{O(n)}$, SLLL-reduction runs in $O(n^{5+\varepsilon})$ bit operations for every $\varepsilon>0$, compared to $O(n^{7+\varepsilon})$ for the original LLL and to $O(n^{6+\varepsilon})$ for the LLL-algorithms of SCHNORR (1988) and STORJOHANN (1996). We present an even faster algorithm for SLLL-reduction via iterated subsegments running in $O(n^3\log n)$ arithmetic steps.

Keywords. LLL-reduction, SLLL-reduction, length defect, segments, local LLL-reduction, Householder reflection, floating point errors, error bounds.

Abbreviated Title. Fast LLL-Lattice Reduction.

1 Introduction.

The set of all linear combinations with integer coefficients of a set of linearly independent vectors $\boldsymbol{b}_1,...,\boldsymbol{b}_n \in \mathbb{R}^d$ is a lattice of dimension n with basis $\boldsymbol{b}_1,...,\boldsymbol{b}_n$. The problem of finding a shortest, nonzero lattice vector is a landmark problem in complexity theory. This problem is polynomial time for fixed dimension n due to [Le83, LLL82] and is NP-hard for varying n [E81, Aj98, Mi98]. The famous LLL-algorithm of LENSTRA, LENSTRA, LOVÁSZ [LLL82] for lattice basis reduction is a ground breaking technique for solving important problems in algorithmic number theory, integer optimization, diophantine approximation and cryptography, for a few recent applications see [BN00, Bo00, Co97,Co01,NS00,BM03,Ma03] and [Lo86,MG02,S04] for background. We refer to integer lattices of dimension n contained in \mathbb{Z}^d , d = O(n), given by a lattice basis of vectord of Euclidean length M_0 . Throughout the introduction we assume that $M_0 = 2^{O(n)}$. Lattice reduction decreases the length of such input bases by at most a factor $2^{O(n)}$.

Performance of the original LLL-algorithm [LLL82]. The **LLL** performs $O(n^5)$ arithmetic steps using $O(n^2)$ -bit integers. Approximating the shortest lattice vector to within length defect c means to find a nonzero lattice vector with at most c-times the minimal possible length. The LLL achieves for arbitrary $\varepsilon > 0$ length defect $(\frac{4}{3} + \varepsilon)^{n/2}$. It repeatedly constructs short bases in two-dimensional lattices, the two-dimensional problem was already solved by GAUSS [Ga801].

Finding very short lattice vectors. Finding very short lattice vectors requires additional search beyond LLL-type reduction. The algorithm of KANNAN [K83] finds the shortest lattice vector in $n^{O(n)}$ steps. The improved algorithm of Helfrich [He85] runs in $n^{\frac{n}{2}+o(n)}$ steps. The recent probabilistic sieve algorithm of [AKS01] runs in $2^{O(n)}$ average time and space, but is impractical as the exponent O(n) is about 30 n. SCHNORR [S87] has generalized the LLL-algorithm by repeated construction of short lattice bases of dimension $2k \geq 2$. 2k-reduction [S87] runs in $O(n^3k^{k+o(k)}+n^4)$ arithmetic steps achieving length defect $(2k)^{n/k}$. The stronger BKZ-reduction [S87, SE91] is quite efficient for $k \leq 20$ but lacks a proven time bound. LLL-reduction is the case k=1 of 2k-reduction. Recently, AJTAI [Aj03] proves a complexity lower bound for 2k-reduction that matches the proven time bound of [S87] up to a constant factor in the exponent. By random sampling of short lattice vectors SCHNORR [S03] achieves under heuristic assumptions in $O(n^3k^k + n^4)$ steps length defect $(k/6)^{n/8k}$, the 8-th root of the length defect achievable in that time by 2k-reduction [S87].

Floating point arithmetic. The **LLL** uses under exact integer arithmetic intermediate integers of bit length $O(n^2)$. This bit length can be reduced to O(n) using floating point arithmetic (fpa, for short). The algorithm \mathbf{LLL}_H of Section 3 compute intermediate vectors by a sequence of Householder reflections. This method is both practical and fully proven. It outperforms in practice the method of [SE91] and matches the proven time bound of the theoretic method of [S88]. \mathbf{LLL}_H runs under fpa in $O(n^{6+\varepsilon})$ bit operations saving a factor n compared to the original \mathbf{LLL} . We will combine this saving with another one from Segment \mathbf{LLL} -reduction. Our time bounds assume fast multiplication of n-bit integers within $O(n^{1+\varepsilon})$ bit operations for every $\varepsilon > 0$.

Segment LLL-reduction in fpa. Segment LLL-reduction adapts LLL-reduction to a better use of local LLL-reduction. It improves the LLL-time bound and approximates the successive minima in nearly the same way as the LLL. Following Schönhage [Sc84] we partition a basis b_1, \ldots, b_n of dimension n = k m into m segments of k consecutive basis vectors. LLL-swaps are done using local coordinates of dimension 2k of two adjacent segments. Local LLL-swaps cost merely $O(k^2)$ arithmetic steps, local size-reduction included — compared to $O(n^2)$ steps for a global LLL-swap. We design Segment LLL-reduction as to minimize the number of local LLL-reductions. In Section 4 we present our basic SLLL₀-algorithm that runs in $O(n^4)$ arithmetic steps, compared to $O(n^5)$ steps of the original **LLL**. It uses integers and fpa numbers of bit length $O(n^2)$. The refined algorithm **SLLL** of Section 5 decreases this bit length to O(n) performing $O(n^4 \log n)$ arithmetic steps. **SLLL** runs under fpa in $O(n^{5+\varepsilon})$ bit operations, compared to $O(n^{7+\varepsilon})$ for the original **LLL** and $O(n^{6+\varepsilon})$ bit operations for **LLL**_H, the LLL-algorithms of [S88] and [St96], and the semi-reduction of [Sc84]. In Section 6 we speed up SLLL-reduction by extending LLL-steps iteratively to larger and larger segments. The algorithm \mathbf{SLLL}^+ runs in $O(n^3 \log n)$ arithmetic steps.

Space efficiency. **SLLL** runs in linear space $O(nd \log_2 M_0)$ and input bases of length M_0 fit into space $nd \log_2 M_0$. The LLL-algorithms of [S88] and **LLL**_H of section 3 are also linear in space, while the original **LLL** of [LLL82] and the

algorithms of [Sc84], [St96] expand the space of the input by a factor O(n). The recent Hermite reduction algorithm of [Mi01] is also in linear space but is much slower than **SLLL** requiring $O(n^5(\log_2 M_0)^2)$ arithmetic steps.

Related work. Schönhage's [Sc84] concept of semi-reduction achieves length defect 2^n and runs in $O(n^4)$ arithmetic steps using $O(n^2)$ -bit integers. STORJO-HANN [St96] proposes an LLL-algorithm that replaces size-reduction by modular reduction, the Gram-Schmidt coefficients are reduced modulo a squared determinant of order M_0^n . This modular LLL uses matrix multiplication as a core subroutine. If multiplication of $n \times n$ -matrices runs in $O(n^{\beta})$ arithmetic steps it requires $O(n^{\beta+1})$ arithmetic steps using $O(n \log_2 M_0)$ -bit integers. The drawback is the bit length $O(n \log_2 M_0)$ of integers. We are not aware of an LLL-code that uses long integers as proposed in [LLL82, St96] and performs for moderately large n and M_0 . [St96, Thm 24] accelerates semi-reduction of [Sc84] by modular reduction via fast matrix multiplication to run in $O(n^{5+\frac{1}{5-\beta}+\varepsilon})$ bit operations. **SLLL** beats this time bound even for the unlikely value $\beta = 2$ and achieves the smaller length defect $(\frac{4}{3} + \varepsilon)^{n/2}$ for every $\varepsilon > 0$. MEHROTRA AND Li [ML01] combine our previous segment LLL-reduction [KS01a] with modular reduction to run in $O(n^{3.5})$ arithmetic steps using $O(n \log_2 M_0)$ bit integers, and thus running in $O(n^{5.5+\varepsilon})$ bit operations.

Daudé and Vallée [DV94] and Akhavi [Ak02] study random input bases consisting of real vectors $\boldsymbol{b}_1,...,\boldsymbol{b}_n$ that are independently drawn from the unit ball in \mathbb{R}^n . LLL-reduction performs for such random input bases on average $O(n^4\log_2 n)$ arithmetic steps using real numbers [DV94]. Size-reduction of such a random basis achieves length defect $(\frac{4}{3})^{(n-1)/2}$ with high probability [Ak02]. The present paper continues and revises the reports [KS01a, KS01b, KS02].

2 LLL Reduction of Lattice Bases.

Notation. Let \mathbb{R}^d be the real vector space of dimension d with standard inner product $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^t \boldsymbol{y}$. A vector $\boldsymbol{b} \in \mathbb{R}^d$ has length $\|\boldsymbol{b}\| = \langle \boldsymbol{b}, \boldsymbol{b} \rangle^{\frac{1}{2}}$. An ordered set of linearly independent vectors $\boldsymbol{b}_1, ..., \boldsymbol{b}_n \in \mathbb{R}^d$ is a basis of the lattice $\mathcal{L} = \sum_{i=1}^n \boldsymbol{b}_i \mathbb{Z} \subset \mathbb{R}^d$ of dimension $\dim \mathcal{L} = n$, consisting of all integer linear combinations of $\boldsymbol{b}_1, ..., \boldsymbol{b}_n$. We identify the basis with the matrix $B = [\boldsymbol{b}_1, ..., \boldsymbol{b}_n] \in \mathbb{R}^{d \times n}$, we write $\mathcal{L} = \mathcal{L}(B) = \mathcal{L}(\boldsymbol{b}_1, ..., \boldsymbol{b}_n)$. All vectors will be column vectors. Let \boldsymbol{q}_i denote the component of \boldsymbol{b}_i that is orthogonal to $\boldsymbol{b}_1, ..., \boldsymbol{b}_{i-1}, \ \boldsymbol{q}_1 = \boldsymbol{b}_1$. The orthogonal vectors $\boldsymbol{q}_1, ..., \boldsymbol{q}_n \in \mathbb{R}^d$ and the Gram-Schmidt coefficients $\mu_{j,i}$, $1 \leq i, j \leq n$ of the basis $\boldsymbol{b}_1, ..., \boldsymbol{b}_n$ satisfy for j = 1, ..., n:

$$\mathbf{b}_{j} = \sum_{i=1}^{j} \mu_{j,i} \mathbf{q}_{i}, \qquad \mu_{j,j} = 1, \qquad \mu_{j,i} = 0 \text{ for } i > j.$$
$$\mu_{j,i} = \langle \mathbf{b}_{j}, \mathbf{q}_{i} \rangle / \langle \mathbf{q}_{i}, \mathbf{q}_{i} \rangle, \qquad \langle \mathbf{q}_{j}, \mathbf{q}_{i} \rangle = 0 \text{ for } j \neq i.$$

The geometric normal form (GNF) of a basis. The basis $B \in \mathbb{R}^{d \times n}$ has a unique decomposition B = QR, where $Q \in \mathbb{R}^{d \times n}$ has pairwise orthogonal columns of length 1, and $R = [r_{i,j}] \in \mathbb{R}^{n \times n}$ is upper-triangular with positive diagonal entries, $r_{i,j} = 0$ for i > j and $r_{1,1}, ..., r_{n,n} > 0$. Hence $Q = [\mathbf{q}_1/\|\mathbf{q}_1\|, ..., \mathbf{q}_n/\|\mathbf{q}_n\|]$, $\mu_{j,i} = r_{i,j}/r_{i,i}$, and $\|\mathbf{q}_i\| = r_{i,i}$. Two bases B = QR, $\bar{B} = \bar{Q}\bar{R}$ are isometric iff

 $R = \bar{R}$, or equivalently iff $B^t B = \bar{B}^t \bar{B}$. We call R the geometric normal form (GNF) of the basis, GNF(B) := R.

The lattice $\mathcal{L} = \mathcal{L}(B)$ has determinant $\det \mathcal{L} = \det(B^t B)^{\frac{1}{2}} = \prod_{i=1}^n \|q_i\|$, where B^t is the transpose and B^tB is the Gram matrix of B. Let $\lceil r \rfloor = \lceil r - \frac{1}{2} \rceil$ denote the nearest integer to $r \in \mathbb{R}$. Let $\operatorname{col}(j, B)$ (row(j, B)) denote the j-th column (j-th row) vector of the matrix B.

Duality. The dual of lattice $\mathcal{L} = \mathcal{L}(B)$ with basis $B \in \mathbb{R}^{d \times n}$ is the lattice

$$\mathcal{L}^* =_{\operatorname{def}} \{ \boldsymbol{x} \in \operatorname{span}(\mathcal{L}) \, | \, \langle \boldsymbol{x}, \boldsymbol{y} \rangle \in \mathbb{Z} \text{ for all } \boldsymbol{y} \in \mathcal{L} \}$$

having determinant $\det \mathcal{L}^* = (\det \mathcal{L})^{-1}$. \mathcal{L}^* has a basis $\bar{B} \in \mathbb{R}^{d \times n}$ satisfying $\bar{B}^t B = I_n$, where I_n is the $n \times n$ identity matrix. Inverting the order of the columns of $\bar{B}=[\bar{\boldsymbol{b}}_1,...,\bar{\boldsymbol{b}}_n]$ yields the dual basis $B^*=[\boldsymbol{b}_1^*,...,\bar{\boldsymbol{b}}_n^*]=[\bar{\boldsymbol{b}}_n,...,\bar{\boldsymbol{b}}_1]^{-1}$ of B satisfying $\langle b_{n-i+1}^*, b_j \rangle = \delta_{n-i+1,j}$ and $||q_i|| = ||q_{n-i+1}^*||^{-1}$ for i = 1, ..., n.

The successive minima. The j-th successive minimum λ_i of a lattice \mathcal{L} , $1 \leq j \leq$ $\dim \mathcal{L}$, is the minimal real number r for which there exist j linearly independent lattice vectors of length bounded by r. λ_1 is the length of the shortest nonzero lattice vector. $\|\boldsymbol{b}_1\|/\lambda_1$ is the length defect of the basis.

Definition 1. A basis $b_1, ..., b_n \in \mathbb{Z}^d$ with orthogonal vectors $q_1, ..., q_n \in \mathbb{R}^d$ is an LLL-basis (or LLL-reduced) for given δ , $\frac{1}{4} < \delta \leq 1$, if

1.
$$|\mu_{j,i}| \le \frac{1}{2}$$
 for $1 \le i < j \le n$

1.
$$|\mu_{j,i}| \le \frac{1}{2}$$
 for $1 \le i < j \le n$,
2. $\delta \|\mathbf{q}_i\|^2 \le \mu_{i+1,i}^2 \|\mathbf{q}_i\|^2 + \|\mathbf{q}_{i+1}\|^2$ for $i = 1, ..., n-1$.

A basis satisfying 1. is called *size-reduced*. For the rest of the paper LLL-reduction refers to given δ , $\alpha := 1/(\delta - 1/4)$. A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovász [LLL82] introduced LLL-bases focusing on $\delta = 3/4$ and $\alpha = 2$.

Theorem 1 (LLL82). Every LLL-basis $b_1, \ldots, b_n \in \mathbb{Z}^d$ with orthogonal vectors $q_1,...,q_n \in \mathbb{R}^d$ of lattice \mathcal{L} satisfies

- 1. $\|\boldsymbol{q}_i\|^2 \le \alpha^{j-i} \|\boldsymbol{q}_j\|^2$ and $\|\boldsymbol{b}_i\|^2 \le \alpha^{j-1} \|\boldsymbol{q}_j\|^2$ for $1 \le i \le j \le n$,
- $2. \quad \|\boldsymbol{b}_1\| \le \alpha^{\frac{n-1}{4}} (\det \mathcal{L})^{\frac{1}{n}},$
- 3. $\alpha^{-j+1} \le \|\boldsymbol{q}_j\|^2 \lambda_i^{-2} \le \|\boldsymbol{b}_j\|^2 \lambda_i^{-2} \le \alpha^{n-1}$ for j = 1, ..., n.

The inequalities (1), (3) of Theorem 1 follow by the argument of Theorem 6.

Size measures. We call $M_0 =_{\text{def}} \max(\|\boldsymbol{b}_1\|,...,\|\boldsymbol{b}_n\|)$ the length of the basis B = $[\boldsymbol{b}_1,...,\boldsymbol{b}_n] \in \mathbb{Z}^{d \times n}$ and $M =_{\text{def}} \max(d_1,...,d_n,2^n)$ the volume of the basis, where $d_i := \det(\mathcal{L}(\boldsymbol{b}_1,...,\boldsymbol{b}_i))^2 = \|\boldsymbol{q}_1\|^2 \cdots \|\boldsymbol{q}_i\|^2$. We use a novel measure for bounding the length defect of a basis: $M_1 =_{\text{def}} \max_{1 \leq i \leq j \leq n} \|\boldsymbol{q}_i\| / \|\boldsymbol{q}_j\|$. The argument of Theorem 6 shows that every size-reduced basis satisfies

$$\frac{4}{i+3}/M_1^2 \le \|\mathbf{b}_j\|^2/\lambda_j^2 \le M_1^2 \frac{j+3}{4} \text{ for } j=1,...,n.$$

By Theorem 1, $M_1^2 \leq \alpha^{n-1}$ holds for LLL-bases. A basis B and its dual B^* have the same M_1 -value. Lattice reduction aims at a lattice basis with small M_1 -value. Clearly, $d_i \leq M_0^{2i}$, $M \leq M_0^{2n}$ and $M^{-1} \leq ||q_i||^2 \leq M$, and thus $M_1 \leq M$ follows

from $\|q_i\|^2 = d_i/d_{i-1}$. We let M_0 refer to the input basis of an algorithm. M and M_1 do not increase during LLL-reduction. $M_1, M = 2^{O(n^2)}$ holds for every basis of length $2^{O(n)}$. We present the main steps of the LLL-algorithm, see [LLL82] for more details.

LLL

```
INPUT b_1, \ldots, b_n \in \mathbb{Z}^d (a basis with M_0, M), \delta, \ \frac{1}{4} < \delta < 1
OUTPUT b_1, \ldots, b_n LLL-basis

1. l := 1 # b_1, \ldots, b_{l'} is always an LLL-basis for l' := \max(l-1,1).

2. WHILE l \le n DO

compute the rational numbers \mu_{l,1}, \ldots, \mu_{l,l-1} and \|q_l\|^2 #size-reduce b_l against b_{l-1}, \ldots, b_1:

FOR i = l-1, \ldots, 1 DO b_l := b_l - \lceil \mu_{l,i} \rfloor b_i, update \mu_{l,i}, \ldots, \mu_{l,1} IF l \ne 1 and \delta \|q_{l-1}\|^2 > \mu_{l,l-1}^2 \|q_{l-1}\|^2 + \|q_l\|^2 THEN swap b_{l-1}, b_l, \ l := l-1 ELSE l := l+1.
```

LLL-time bound. One round of the WHILE-loop, i.e., one LLL-swap of $\boldsymbol{b}_{l-1}, \boldsymbol{b}_{l}$ requires O(nd) arithmetic steps, size-reduction of \boldsymbol{b}_{l} and computation of the rationals $\mu_{l,1},...,\mu_{l,l-1},\|\boldsymbol{q}_{l}\|^{2}$ included. Given an integer basis in \mathbb{Z}^{d} of length $M_{0} \geq 2$ and volume M, **LLL** performs $O(n\log_{1/\delta}M) = O(n^{2}\log_{1/\delta}M_{0})$ LLL-swaps for $\delta < 1$, and runs in $O(n^{2}d\log_{1/\delta}M)$ arithmetic steps using $O(\log_{2}(M_{0}M))$ -bit integers. Given a basis of length $2^{O(n)}$ and d = O(n) this requires $O(n^{7+\varepsilon})$ bit operations for every $\varepsilon > 0$ because $\log_{2}(M_{0}M) = O(n^{2})$.

3 LLL Algorithm via Householder Reflections.

In this section we present the \mathbf{LLL}_H variant of \mathbf{LLL} which computes the $\mu_{l,i}$, $\|\mathbf{q}_l\|$ by a sequence of Householder reflections. We first analyse \mathbf{LLL}_H in ideal real arithmetic, thereafter under floating point arithmetic. \mathbf{LLL}_H under fpa saves a factor n in the number of bit operations compared to \mathbf{LLL} . While the intermediate data $\mu_{l,i}$, $\|\mathbf{q}_l\|$ are computed in fpa, the basis vectors are in exact arithmetic. All subsequent reduction algorithm are based on \mathbf{LLL}_H .

Computing the GNF of $B = [b_1, ..., b_n]$. There is an extensive literature on numerical algorithms for computing the GNF R of the decomposition B = QR of a basis B, see [LH95]. Householder algorithms and modified Gram-Schmidt orthogonalization are in our experience practically equivalent for the LLL. We use Householder reflection matrices because of the published fpa-error bounds.

We compute an orthogonal matrix $Q' \in \mathbb{R}^{d \times d}$ that extends Q and a matrix $R' \in \mathbb{R}^{d \times n}$ that extends R by zero-rows and allows that $\operatorname{col}(i, R') = \pm \operatorname{col}(i, R)$. In ideal arithmetic we get R' by a sequence of Householder transformations

$$R'_0 := B,$$
 $R'_j := Q_j R'_{j-1}$ for $j = 1, ..., n$,
 $R' := R'_n,$ $Q' := Q_1 \cdots Q_n = Q_1^t \cdots Q_n^t$,

where $Q_j := I_d - 2\|\boldsymbol{h}_j\|^{-2}\boldsymbol{h}_j\boldsymbol{h}_j^t \in \mathbb{R}^{d\times d}$ is orthogonal and symmetric, $\boldsymbol{h}_j \in \mathbb{R}^d$.

The transform $R'_j := Q_j R'_{j-1}$ zeroes the entries in positions j+1 through d of $\operatorname{col}(j, R'_{j-1})$, it $\operatorname{triangulates} \operatorname{col}(j, R'_{j-1})$ so that $R'_j \in \mathbb{R}^{d \times n}$ is upper-triangular for the first j columns. The transform $\boldsymbol{x} \mapsto Q_j \boldsymbol{x}$ reflects \boldsymbol{x} at the hyperplane that is orthogonal to the $\operatorname{Householder} \operatorname{vector} \boldsymbol{h}_j \in \mathbb{R}^d$ so that

$$Q_j \mathbf{h}_j = -\mathbf{h}_j, \qquad Q_j \mathbf{x} = \mathbf{x} \text{ for } \langle \mathbf{h}_j, \mathbf{x} \rangle = 0.$$

 $\begin{array}{ll} \text{Setting} & \quad \pmb{r} := (r_1,...,r_d)^t := \operatorname{col}(j,R'_{j-1}) \text{ and } z := \operatorname{sign}(r_j)(\sum_{i=j}^d r_i^2)^{\frac{1}{2}} \\ \text{we get} & \quad \pmb{h}_j := (0,...,0,r_j+z,r_{j+1},...,r_d)^t/\sqrt{2zr_l+2z^2}. \end{array}$

Correctness. We have that $2\mathbf{h}_{j}\langle\mathbf{h}_{j},\mathbf{r}\rangle\|\mathbf{h}_{j}\|^{-2} = 2\mathbf{h}_{j}\frac{zr_{j}+z^{2}}{2zr_{j}+2z^{2}} = \mathbf{h}_{j}$, and thus $Q_{j}\mathbf{r} = \mathbf{r} - \mathbf{h}_{j} = (r_{1},...,r_{j-1},-z,0,...,0)^{t} \in \mathbb{R}^{d}$.

This shows that $Q_i \mathbf{r}$ is correctly triangulated and \mathbf{h}_i is well chosen.

The sign of z is chosen as to maximize the denominator $2zr_j + 2z^2 = \|\boldsymbol{h}_j\|^2$ in Q_j . Clearly, $Q_j \cdots Q_1 \boldsymbol{b}_j = \operatorname{col}(j, R') = -\operatorname{sign}(r_j)\operatorname{col}(j, R)$ because $\langle \boldsymbol{h}_j, \operatorname{col}(i, R') \rangle = 0$ for i < j. We abbreviate $\boldsymbol{r}_l := \operatorname{col}(l, R)$ for $R = \operatorname{GNF}(B)$. Since TriCol computes \boldsymbol{r}_l from $\operatorname{col}(l, R')$ this extends \boldsymbol{r}_l by d - n zeroes.

 $TriCol(b_1, ..., b_l, h_1, ..., h_{l-1}, r_1, ..., r_{l-1})$ (TriCol_l for short)

 $\# \text{TriCol}_l \text{ computes } \boldsymbol{h}_l \text{ and } \boldsymbol{r}_l := \operatorname{col}(l,R) \text{ and size-reduces } \boldsymbol{b}_l, \boldsymbol{r}_l.$

- 1. $r = (r_1, ..., r_d)^t := b_l / ||b_l||$ # we normalize ||r|| and $||h_l||$ to 1.
- 2. FOR j=1,...,l-1 DO $\boldsymbol{r}:=\boldsymbol{r}-2\langle\boldsymbol{h}_i,\boldsymbol{r}\rangle\,\boldsymbol{h}_i$
- 3. $z := \operatorname{sign}(r_l)(\sum_{i=1}^d r_i^2)^{\frac{1}{2}}, \quad \mathbf{h}_l := (0, ..., 0, r_l + z, r_{l+1}, ..., r_d)^t / \sqrt{2zr_l + 2z^2}$
- 4. $\mathbf{r}_{l} := -\text{sign}(r_{l}) \|\mathbf{b}_{l}\| (r_{1}, ..., r_{l-1}, -z, 0, ..., 0)^{t} \in \mathbb{R}^{d}$
- 5. # size-reduce \mathbf{b}_l against $\mathbf{b}_{l-1},...,\mathbf{b}_1$ and update \mathbf{r}_l :

 $\text{FOR } i=l-1,...,1 \text{ DO } \boldsymbol{b}_l:=\boldsymbol{b}_l-\lceil r_{i,l}/r_{i,i}\rfloor \boldsymbol{b}_i, \ \boldsymbol{r}_l:=\boldsymbol{r}_l-\lceil r_{i,l}/r_{i,i}\rfloor \boldsymbol{r}_i.$

The normalization simplifies the fpa-error analysis, but it is not essential. In step 4 we have $sign(r_l)z > 0$, and thus upon termination we have that $r_{l,l} > 0$.

Step bound. TriCol_l runs in O(dl) arithmetic steps and one sqrt.

The LLL-algorithm in terms of R = GNF(B). Consider the diagonal submatrix $R_{l-1,1} = \begin{bmatrix} r_{l-1,l-1} & r_{l-1,l} \\ 0 & r_{l,l} \end{bmatrix} \subset R$ shown in Fig. 1. (We let $R' \subset R$ denote that R' is a submatrix of R, i.e., $r'_{i,j} = r_{i+k,j+m}$ for all i,j and some k,m.) **LLL**_H performs simultaneous column operations on R and B that shorten the first column of some $R_{l-1,1}$. It swaps columns r_{l-1}, r_l and b_{l-1}, b_l if this shortens the square length of the first column of $R_{l-1,l}$ by the factor δ . To enable a swap the entry $r_{l-1,l}$ is first reduced to $|r_{l-1,l}| \leq \frac{1}{2} |r_{l-1,l-1}|$ by transforming $r_l := r_l - \lceil r_{l-1,l}/r_{l-1,l-1} \rceil r_{l-1}$. The ideal **LLL**_H algorithm reads

Fig. 1. The submatrix $R_{l-1,1} \subset R$

```
\begin{split} \mathbf{LLL}_{H} \\ \text{INPUT} \quad & \boldsymbol{b}_{1}, \dots, \boldsymbol{b}_{n} \in \mathbb{Z}^{d} \text{ (a basis with } M_{0}, M_{1}, M), \quad \delta, \quad \frac{1}{4} < \delta < 1 \\ \text{OUTPUT} \quad & \boldsymbol{b}_{1}, \dots, \boldsymbol{b}_{n} \quad \text{LLL-basis for } \delta \\ 1. \quad & l := 1, \qquad \# \ \mathbf{b}_{1}, \dots, \mathbf{b}_{\max(l-1,1)} \text{ is always an } LLL\text{-basis} \\ 2. \quad \text{WHILE} \quad & l \leq n \quad \text{DO} \\ & \quad \text{TriCol}(\boldsymbol{b}_{1}, \dots, \boldsymbol{b}_{l}, \boldsymbol{h}_{1}, \dots, \boldsymbol{h}_{l-1}, \boldsymbol{r}_{1}, \dots, \boldsymbol{r}_{l-1}) \\ & \quad \text{IF} \quad & l \neq 1 \quad \text{and} \quad \delta \, r_{l-1,l-1}^{2} > r_{l-1,l}^{2} + r_{l,l}^{2} \\ & \quad \text{THEN swap} \, \boldsymbol{b}_{l-1}, \boldsymbol{b}_{l}, \quad & l := l-1 \quad \text{ELSE} \quad & l := l+1. \end{split}
```

Correctness. At stage l we get $\mathbf{r}_l = \operatorname{col}(l,R)$ of $R = \operatorname{GNF}(B)$, and we have \mathbf{r}_{l-1} from a previous stage. Using the coefficients $r_{l-1,l-1}, r_{l-1,l}, r_{l,l}$ \mathbf{LLL}_H correctly simulates \mathbf{LLL} since $r_{i,j}^2 = \mu_{j,i}^2 \|\mathbf{q}_i\|^2$. The GNF $[\mathbf{r}_1, ... \mathbf{r}_l]$ of $[\mathbf{b}_1, ... \mathbf{b}_l]$ is preserved during simultaneous size-reduction of \mathbf{r}_l and \mathbf{b}_l in \mathbf{TriCol}_l .

LLL_H using floating point arithmetic. We use the fpa model of WILKINSON [Wi63]. There is no assumption by this model. We merely want to use proven fpa-error bounds. A fpa number with t=2t'+1 precision bits is of the form $\pm 2^e \sum_{i=-t'}^{t'} b_i 2^i$, where $b_i \in \{0,1\}$ and $e \in \mathbb{Z}$. It has bit length t+s+2 for $|e| < 2^s$, two signs included. We denote the set of these numbers by \mathbb{FL}_t . Standard double length fpa has t=53 precision bits, t+s+2=64. Let $fl: \mathbb{R} \supset [-2^{2^s}, 2^{2^s}] \ni r \mapsto \mathbb{FL}_t$ approximate real numbers by fpa numbers. A step $c:=a\circ b$ for $a,b,c\in\mathbb{R}$ and a binary operation $\circ\in\{+,-,\cdot,/\}$ translates under fpa into $\bar{a}:=fl(a),\ \bar{b}:=fl(b),\ \bar{c}:=fl(\bar{a}\circ\bar{b}),\ \text{resp. into }\bar{a}:=fl(\circ(\bar{a}))$ for unary operations $\circ\in\{\lceil\ \rfloor,\sqrt\rceil\}$. Each fpa operation induces a normalized relative error bounded in magnitude by $2^{-t}:|fl(\bar{a}\circ\bar{b})-\bar{a}\circ\bar{b}|/|\bar{a}\circ\bar{b}|\leq 2^{-t}.$ If $|\bar{a}\circ\bar{b}|>2^{2^s}$ or $|\bar{a}\circ\bar{b}|<2^{-2^s}$ then $fl(\bar{a}\circ\bar{b})$ is undefined due to an overflow, resp. underflow.

It is common to require that $2^s \le t^2$ and thus $s \le 2\log_2 t$, for brevity we identify the bit length of fpa-numbers with t, neglecting the minor (s+2)-part.

Under fpa we let \mathbf{LLL}_H use approximate vectors $\bar{\boldsymbol{h}}_l$, $\bar{\boldsymbol{r}}_l \in \mathbb{FL}_t^d$ and exact basis vectors in \mathbb{Z}^d .

TriCol_l under fpa. A detailed discussion and analysis of steps 1-4 of TriCol_l under fpa is in [LH95, chapter 15]. In order to keep fpa-errors small during the iteration of TriCol_l within \mathbf{LLL}_H we replace under fpa for the rest of the paper TriCol_l by the following iterative

fpa-version of TriCol_l. Let $\varepsilon > 0$ be given as input.

Zero $\lceil \bar{r}_{i,l}/\bar{r}_{i,i} \rceil$ in step 5 if $|\bar{r}_{i,l}/\bar{r}_{i,i}| < \frac{1}{2} + \varepsilon/2$ holds. Repeat steps 1-5 of the above TriCol_l -procedure in a loop until step 5 leaves \boldsymbol{b}_l unchanged, i.e., $|\bar{r}_{i,l}/\bar{r}_{i,i}| < \frac{1}{2} + \varepsilon/2$ holds for i = l - 1, ..., 1.

Zeroing of $\lceil \bar{r}_{i,l}/\bar{r}_{i,i} \rceil$ cancels a size-reduction step and prevents cycling through steps 1-5. In TriCol_l's last round size-reduction is void and the value of r_l in step 4 and its fpa-error remain unchanged.

The proof of Theorem 2 shows under fpa that $TriCol_l$ with $t = 5n + 2 \log_2 M_0$ precision bits performs two rounds through steps 1-5, the first correctly size-reduces b_l , the second decreases fpa-errors given that $||b_l||$ is already small.

Given
$$\varepsilon > 0$$
 we set $\delta_- := \delta - \varepsilon$, $\delta_+ := \delta + \varepsilon \le 1 - \varepsilon$ and $\alpha_- := 1/(\delta - \varepsilon - 1/4)$.

Theorem 2. Given a basis of length M_0 , $0 < \varepsilon < 0.02$ and $\delta \ge 0.96$, \mathbf{LLL}_H using fpa of $t = 5n + 2\log_2 M_0$ precision bits computes for $n \ge n_0(\varepsilon)$ an approximate LLL-basis for δ_- with $\mu_{j,i}$ and orthogonal vectors $\mathbf{q}_1, ..., \mathbf{q}_n$ satisfying

1.
$$|\mu_{j,i}| < \frac{1}{2} + \varepsilon$$
 for $1 \le i < j \le n$,

2.
$$\delta_{-} \| \boldsymbol{q}_{i} \|^{2} \leq \mu_{i+1,i}^{2} \| \boldsymbol{q}_{i} \|^{2} + \| \boldsymbol{q}_{i+1} \|^{2}$$
 for $i = 1, ..., n-1$.

LLL_H runs under fpa in $O(n^2 d \log_{1/\delta} M)$ arithmetic steps using $2n + 2 \log_2 M_0$ bit integers and fpa numbers of bit length $3n + 2 \log_2 M_0$.

In particular \mathbf{LLL}_H runs for $M_0 = 2^{O(n)}$ in $O(n^4d)$ arithmetic steps, i.e. for d = O(n), in $O(n^{6+\varepsilon'})$ bit operations for every $\varepsilon' > 0$. If 1. of Theorem 2 holds we call the basis size-reduced under fpa.

Proof. The proof uses an fpa-version of Theorem 1 which will later be proved in Theorem 6. In particular, clauses 1 and 2 of Theorem 2 imply the inequalities

 $\alpha_{-}^{-j+1} \leq \|\boldsymbol{b}_{j}\|^{2} \lambda_{j}^{-2} \leq \alpha_{-}^{n-1}$ for $j=1,...,n, \ \alpha_{-}:=1/(\delta-\varepsilon-1/4)$. For all size bounds of intermediate data we neglect the effect of ε on α_{-} . For simplicity we assume that $\alpha_{-}=\alpha \leq \sqrt{2}$ since $1/(0.96-\frac{1}{4})<\sqrt{2}$. We also neglect that the $|\mu_{j,i}|$ for i< j can be larger than $\frac{1}{2}$ but less than $\frac{1}{2}+\varepsilon$.

Length of intermediate bases. We show in ideal arithmetic that all intermediate basis vectors have length $\leq 2^n M_0$. We show that the claim holds during size-reduction within \mathbf{LLL}_H . A size-reduction step $\mathbf{b}_l := \mathbf{b}_l - \lceil \mu_{l,j} \rfloor \mathbf{b}_j$ for j < l induces $\mu_{l,i} := \mu_{l,i} - \lceil \mu_{l,j} \rfloor \mu_{j,i}$ for i = 1, ..., j, where $\mathbf{b}_1, ..., \mathbf{b}_j$ is an LLL-basis. As $|\mu_{j,i}| \leq \frac{1}{2}$ for i < j this increases $\max_{i < l} |\mu_{l,i}|$ by at most a factor $\frac{3}{2}$ (the rounding to $\lceil \mu_{l,j} \rfloor$ can be neglected).

Consider the initial values $\boldsymbol{b}_{l}, \mu_{l,i}$ and the final values $\boldsymbol{b}'_{l}, \mu'_{l,i}$ after h size-reduction steps. We have $\mu'_{l,l} = 1, \ |\mu'_{l,i}| \leq \frac{1}{2}$ for $l - h \leq i < l$. For i < l - h there

exists by the above argument j, $h - l \le j < l$ such that

$$\|\mu'_{l,i}\|\|\boldsymbol{q}_i\| \leq (\frac{3}{2})^h \|\mu_{l,j}\|\|\boldsymbol{q}_i\| \leq (\frac{3}{2})^h \alpha^{\frac{j-i}{2}} \|\mu_{l,j}\|\|\boldsymbol{q}_j\|,$$

because $\|\boldsymbol{q}_i\| \leq \alpha^{\frac{j-i}{2}} \|\boldsymbol{q}_j\|$ as $\boldsymbol{b}_1,...,\boldsymbol{b}_{l-1}$ is LLL-reduced. From $\alpha \leq \sqrt{2}$ we get

$$\|\boldsymbol{b}_l'\|^2 = \sum_{i=1}^l |\mu_{l,i}'|^2 \|\boldsymbol{q}_i\|^2 \le l(\frac{3}{2})^{2h} 2^{l/2} \|\boldsymbol{b}_l\|^2 \le l \cdot 3.15^l \|\boldsymbol{b}_l\|^2.$$

Therefore, in ideal arithmetic all intermediate vectors b'_l have length $\leq 2^l ||b_l||$ for $l \geq 10$. This also holds under fpa due to the following fpa-error analysis.

Correctness under fpa. We study TriCol_l within the algorithms \mathbf{LLL}_H , \mathbf{SLLL}_0 , \mathbf{SLLL} . It is crucial that the Householder reflection matrices Q_i preserve the inner product, $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^t \boldsymbol{y} = \boldsymbol{x}^t Q_i^t Q_i \boldsymbol{y} = \langle Q_i \boldsymbol{x}, Q_i \boldsymbol{y} \rangle$, and thus Q_i preserves in ideal arithmetic the length of fpa-error vectors. $A_{n+1} := Q_n \cdots Q_1 B$ is computed under fpa recursively as $\bar{A}_1 := B$, $\bar{A}_{i+1} := fl(\bar{Q}_i \bar{A}_i)$ for i = 1, ..., n.

Proposition 1.
$$\|\bar{h}_l - h_l\| = O(d \, l \, 7^l 2^{-t}), \quad \|\bar{r}_l - r_l\| = O(d \, l \, 7^l 2^{-t} \|b_l\|).$$
 (1)

Proof. We proceed by induction on l. We extend the error analysis of [LH95, pp.85,86]. Let $\boldsymbol{r}_l = \operatorname{col}(l,R)$, $\boldsymbol{b}_1 = (r_1,...,r_d)^t$ and $z = \operatorname{sign}(r_1)(\sum_{i=1}^d r_i^2)^{\frac{1}{2}}$ then the errors of $\boldsymbol{r}_1 = (z,0,...,0)^t$, $\boldsymbol{h}_1 = (r_1+z,r_2,...,r_d)^t$ are bounded as

$$\|\bar{\boldsymbol{r}}_1 - \boldsymbol{r}_1\| = O(d \|\boldsymbol{b}_1\| (2^{-t} + 2^{-2t})), \|\bar{\boldsymbol{h}}_1 - \boldsymbol{h}_1\| = O(d (2^{-t} + 2^{-2t})).$$

We will neglect all 2^{-2t} -terms. The first bound is obvious and implies the second, see (15.22), (15.23)[LH95]. TriCol_l computes r_l , h_l via

$$r'_{l-1} := \prod_{i=1,...,l-2} (1 - 2h_i h_i^t) (b_l / ||b_l||) \text{ and } r'_l := (1 - 2h_{l-1} h_{l-1}^t) r'_{l-1}.$$

The induction hypothesis for l-1 yields $\|\bar{r}'_{l-1} - r'_{l-1}\| = O(d(l-1)7^{l-1}2^{-t})$.

If $\bar{r}_l' := (1 - 2\bar{h}_{l-1}\bar{h}_{l-1}^t)\bar{r}_{l-1}'$ is computed in ideal arithmetic we have

$$\begin{aligned} \|\bar{\boldsymbol{r}}_{l}^{\prime} - \boldsymbol{r}_{l}^{\prime}\| &\leq \|\bar{\boldsymbol{r}}_{l-1}^{\prime} - \boldsymbol{r}_{l-1}^{\prime}\| + 2 \cdot 2 \|\bar{\boldsymbol{h}}_{l-1} - \boldsymbol{h}_{l-1}\| + 2 \|\bar{\boldsymbol{r}}_{l-1}^{\prime} - \boldsymbol{r}_{l-1}^{\prime}\| \\ &= O(d(l-1)7 \cdot 7^{l-1}2^{-t}), \end{aligned}$$

where 2^{-2t} -terms are omitted. We used that $\|\bar{\boldsymbol{r}}'_{l-1}\|$, $\|\bar{\boldsymbol{h}}_{l-1}\| = 1 + o(1)$ for $t \geq 3n$. One factor 2 in $2 \cdot 2$ comes from the two occurrences of $\bar{\boldsymbol{h}}_{l-1}$ in $\bar{\boldsymbol{r}}'_l$.

The computation of \bar{r}_l^f from r'_{l-1} under fpa adds $O(d \, 2^{-t})$ to the error obtained in ideal arithmetic. Step 3 of TriCol_l computes h_l from \bar{r}_l^f so that

$$\|\bar{\boldsymbol{h}}_l - \boldsymbol{h}_l\| = \|\bar{\boldsymbol{r}}_l^{/} - \boldsymbol{r}_l^{/}\| + O(d2^{-t}) = O(d \, l \, 7^l 2^{-t}).$$

This proves the first induction claim.

The computation of r_l from r_l' and h_l in Step 4 of TriCol_l multiplies errors by $||b_l||$ so we get the second claim $||\bar{r}_l - r_l|| = O(d \, l \, 7^l 2^{-t} ||b_l||)$.

Referring to the GNF $[r_1,...,r_l]$ of TriCol_l's input basis $b_1,...,b_l$ we denote

$$\bar{M}_0 := M_0/r_{1,1} \qquad \bar{M}_1 := \max_{i < l} r_{1,1}/r_{i,i}.$$
 (2)

We let M_0, M_1 refer to the LLL-input basis. We always have $\bar{M}_1 \leq M_1$, where $\bar{M}_1 \leq \alpha^{\frac{l-1}{2}}$ holds within \mathbf{LLL}_H since $\boldsymbol{b}_1,...,\boldsymbol{b}_{l-1}$ is LLL-reduced. We show that TriCol_l's last round correctly computes $\bar{\mu}_{l,i} = \bar{r}_{i,l}/\bar{r}_{i,i}$ up to an $\varepsilon/2$ -error. Using

(1), (2) and assuming the initial bound $||r_l|| \leq M_0$ Step 4 of TriCol_l yields

$$\|\bar{\mathbf{r}}_l - \mathbf{r}_l\|/r_{i,i} = O(d7^l \bar{M}_0 \bar{M}_1 2^{-t}) \quad \text{for } 1 \le i \le l-1.$$
 (3)

We have $|\bar{\mu}_{l,i} - \mu_{l,i}| = |\bar{r}_{i,l}/\bar{r}_{i,i} - r_{i,l}/r_{i,i}| \leq ||\bar{r}_l - r_l||/r_{i,i} + ||r_l|||\bar{r}_{i,i}^{-1} - r_{i,i}^{-1}|$. We bound the dominating $||r_l|||\bar{r}_{i,i}^{-1} - r_{i,i}^{-1}|$ -term, the minor $||\bar{r}_l - r_l||/r_{i,i}$ -term is bounded by (3) and will be neglected. Consider the right-hand side factors of $||r_l|||\bar{r}_{i,i}^{-1} - r_{i,i}^{-1}| = (||r_l||/r_{i,i})(|\bar{r}_{i,i} - r_{i,i}|/\bar{r}_{i,i})$. Applying (3) to a previous TriCol_i-execution we have $|\bar{r}_{i,i} - r_{i,i}|/r_{1,1} \leq O(d\,7^i\bar{M}_02^{-t})$. Multiplication with $||r_l||/r_{1,1} \leq \frac{1}{2}\bar{M}_0$ and $r_{1,1}^2/r_{i,i}^2 \leq \bar{M}_1^2$ shows that step 4 of TriCol_l yields

$$|\bar{r}_{i,l}/\bar{r}_{i,i} - r_{i,l}/r_{i,i}| \le O(d7^l \bar{M}_0^2 \bar{M}_1^2 2^{-t}) \le \varepsilon/2,$$
 (4)

where the last inequality holds for $t = \Omega(1) + \log_2(d\,7^l\bar{M}_0^2\bar{M}_1^2/\varepsilon)$, e.g., for $\varepsilon = 0.02$, $d = n \geq 40$ and $t \geq 3.5n + 2\log_2(\bar{M}_0\bar{M}_1)$. In particular, (4) holds upon termination of TriCol_l as the final size-reduction in step 5 is void. Within \mathbf{LLL}_H we have that $\bar{M}_1 \leq \alpha^{\frac{n-1}{2}} \leq 2^{\frac{n-1}{4}}$. Hence, upon termination \boldsymbol{b}_l is size-reduced for $t \geq 4n + 2\log_2 M_0$ and $n \geq n_0(\varepsilon)$, proving clause 1 of Theorem 2.

TriCol_l's first round. We have shown that $||b_l||$ increases during size-reduction to at most $2^l M_0$. Retracing this proof with a view on fpa-errors shows that $||\bar{r}_l - r_l||/r_{i,i}$ increases during size-reduction by at most a factor 2^l compared to (3). This is a straightforward exercise left to the reader. We offset the increased fpa-errors by n additional precision bits. Hence, using $t \geq 5n + 2 \log_2 M_0$ precision bits TriCol_l's first round correctly size-reduces b_l for $n \geq n_0(\varepsilon)$, and TriCol_l terminates in the second round.

Correct swapping. We see from (3) that the fpa-error of $r_{l,l}$ is bounded by $O(r_{1,1}d\,7^l\bar{M}_0\bar{M}_12^{-t})$. Due to $|r_{l-1,l}| \leq \frac{1}{2}|r_{l-1,l-1}|$ the fpa-error of $r_{l-1,l}^2 + r_{l,l}^2 - \delta r_{l-1,l-1}^2$ is at most $O(r_{1,1}(r_{l-1,l-1}+r_{l,l})d\,7^l\bar{M}_0\bar{M}_12^{-t})$. If $r_{l,l} \leq r_{l-1,l-1}$ that fpa-error is less than $\varepsilon r_{l-1,l-1}^2$ for $t \geq 5n+2\log_2 M_0$ due to $\bar{M}_0 \leq M_0$, $\bar{M}_1 \leq 2^{\frac{n-1}{4}}$. Then a valid swap for δ_- under ideal arithmetic, will also be executed under fpa and each swap under fpa is a valid swap for δ_+ . If $r_{l,l} > r_{l-1,l-1}$ the inequality $\delta_- r_{l-1,l-1}^2 < r_{l-1,l}^2 + r_{l,l}^2$ is preserved under fpa-errors. Hence swapping is always correct for δ_- .

Time bound. As $\delta \leq 1-2\varepsilon$, $\delta_+ \leq 1-\varepsilon$ we have that $\delta \leq \delta_+^2$. Hence \mathbf{LLL}_H performs at most $\log_{1/\delta_+} M^n \leq 2 \, n \log_{1/\delta} M$ LLL-swaps under fpa, each swap requiring one TriCol_l -execution. We have shown that TriCol_l performs 2 rounds and thus requires O(nd) arithmetic steps and 2 sqrt's. We see that LLL_H runs in $O(n^2d\log_{1/\delta} M)$ arithmetic steps.

Costs of the sqrt's. There are $O(n\log_{1/\delta}M)$ sqrt's to be computed with $t=5n+2\log_2 M_0$ precision bits, one sqrt per round of TriCol_l. Using Newton iteration this requires $O(n\log_{1/\delta}M\log(n+\log_2 M_0))$ arithmetic steps that are covered by the claimed step bound provided that $\log_2\log_2 M_0=O(n^2)$.

Newton's iteration $x_0 := 1$, $x_{k+1} := \frac{1}{2}(x_k + \frac{m}{x_k})$ converges quadratically to \sqrt{m} . Therefore $O(\log(n + \log_2 M_0))$ rounds of Newton iteration suffice to compute \sqrt{m} for $m \le 2^n M_0$ up to an error less than $2^{-2n}/M_0^2$.

LLL_H in practice. In practice **LLL**_H is correct up to dimension n=250 under fpa with t=53 precision bits for arbitrary M_0 , and not just for $t\geq$

 $5n + 2\log_2 M_0$ as shown in Theorem 2. In practice, the constant 7 of Prop. 1 can be replaced by a constant near 1.1 [KS01b]. This is because the orthogonal transforms Q_j preserve the length of error vectors. Moreover the error vector resulting from computing $fl(Q_j \mathbf{r})$ is, due to cancellations, on average much smaller than in worst-case. However, \mathbf{LLL}_H is in practice incorrect for t = 53 and dimension 400, see [KS01b].

Scaled LLL-reduction. Scaling is a useful concept of numerical analysis for reducing fpa-errors. Scaled LLL-reduction of [KS01b] associates with a given lattice basis an associated scaled basis that generates a sublattice of the given lattice. The scaled basis has all values \bar{M}_0 , $\bar{M}_1 \leq 2$, which makes the error bounds (3), (4) particularly good. Its coefficients $\mu_{j,i}$ can be correctly computed using only limited fpa-precision. Scaled LLL-reduction performs a weak size-reduction, reducing relative to an associated scaled basis. The weaker size-reduction does scarcly lessen the quality of the reduced basis and can be done using limited precision. This way it is possible to implement variants of \mathbf{LLL}_H and \mathbf{SLLL} that are correct for all practical cases, namely up to dimension 2^{15} using fpa with merely 53 precision bits and preserving the run times of this paper.

Comparison with [S88] and the modular LLL of [St96]. The time bound of Theorem 2 also holds for the theoretic, less practical method of [S88].

The modular LLL [St96] performs $O(nd \log_{1/\delta} M)$ arithmetic steps on integers of bit length $\log_2(M_0M)$ using standard matrix multiplication. This yields the same bound for the number of bit operations for \mathbf{LLL}_H and the modular LLL [St96] if $M_0 = 2^{\Omega(n)}$. If $M_0 = 2^{o(n)}$ the given basis is shorter than an LLL-basis and LLL-reduction is useless. The practicability of \mathbf{LLL}_H rests on the use of small integers of bit length $5n + 2\log_2 M_0$ whereas [St96] uses long integers of bit length $\log_2(M_0M) = O(n \log M_0)$.

4 Basic Segment LLL-Reduction.

This section introduces main concepts of segment LLL-reduction and a first algorithm \mathbf{SLLL}_0 . The argument of Theorem 4 for bounding the number of local LLL-reductions within \mathbf{SLLL}_0 will be used throughout the paper. This is also true for Lemma 1 and Corollary 1 that bound the norm of, and the *fpa*-errors induced by, local LLL-transforms. The algorithm \mathbf{SLLL}_0 is faster by a factor n in the number of arithmetic steps compared to \mathbf{LLL}_H but uses longer integers and fpa numbers of bit length $5n + \log_2(M_0^2 M_1^3)$. The algorithm \mathbf{SLLL} of section 5 reduces this bit length to $7n + 2\log_2 M_0$.

Segments and local coordinates. Let the basis $B = [\mathbf{b}_1, \dots, \mathbf{b}_n] \in \mathbb{Z}^{d \times n}$ have dimension n = k m and GNF $R \in \mathbb{R}^{n \times n}$. We partition B into m segments $B_{l,k} = [\mathbf{b}_{lk-k+1}, \dots, \mathbf{b}_{lk}]$ for $l = 1, \dots, m$. Local LLL-reduction of two consecutive segments $B_{l,k}, B_{l+1,k}$ is done in local coordinates of the submatrix

$$R_{l,k} := [r_{lk+i,lk+j}]_{-k < i,j \le k} \in \mathbb{R}^{2k \times 2k}$$

of R. Let $H=[\boldsymbol{h}_1,...,\boldsymbol{h}_n]=[h_{i,j}]\in\mathbb{R}^{d\times n}$ be the lower triangular matrix of Householder vectors and $H_{l,k}=[h_{lk+i,lk+j}]_{-k< i,j\leq k}\subset H$ the submatrix for

 $R_{l,k}$. We control the calls, and minimize the number, of local LLL-reductions of the $R_{l,k}$ by means of the local squared determinant of $B_{l,k}$

$$D_{l,k} =_{\text{def}} \|\boldsymbol{q}_{lk-k+1}\|^2 \cdots \|\boldsymbol{q}_{lk}\|^2.$$

We have that $d_{lk} = \|\boldsymbol{q}_1\|^2 \cdots \|\boldsymbol{q}_{lk}\|^2 = D_{1,k} \cdots D_{l,k}$. Moreover, we will use

$$\mathcal{D}^{(k)} =_{\text{def}} \prod_{l=1}^{m-1} d_{lk} = \prod_{l=1}^{m-1} D_{lk}^{m-l}$$

$$M_{l,k} =_{\text{def}} \max_{lk-k < i \le j \le lk+k} ||q_i|| / ||q_j||.$$

 $M_{l,k}$ is the M_1 -value of $R_{l,k}$ of locLLL $(R_{l,k})$, obviously $M_{l,k} \leq M_1$.

Definition 2. A basis $b_1, \ldots, b_n \in \mathbb{Z}^d$, n = km, is an SLLL₀-basis (or SLLL₀-reduced) for given $k, \delta > \frac{1}{4}$, $\alpha = 1/(\delta - 1/4)$ if it is size-reduced and

1.
$$\delta \|\mathbf{q}_i\|^2 \le \mu_{i+1,i}^2 \|\mathbf{q}_i\|^2 + \|\mathbf{q}_{i+1}\|^2 \text{ for } i \in [1, n-1] \setminus k\mathbb{Z},$$

2.
$$D_{l,k} \leq (\alpha/\delta)^{k^2} D_{l+1,k}$$
 for $l = 1, ..., m-1$.

Size-reducedness under fpa means that $|\mu_{j,i}| < \frac{1}{2} + \varepsilon$ holds for $1 \le i < j \le n$. We neglect the role of ε in SLLL-reduction, ε plays the same role as for **LLL**_H.

Segment $B_{l,k}$ of an SLLL₀-basis is LLL-reduced in the sense that the $k \times k$ -submatrix $[r_{lk+i,lk+j}]_{-k < i,j \le 0} \subset R$ is LLL-reduced. Clause 1 does not bridge distinct segments since the $i \in k\mathbb{Z}$ are excepted. Clause 2 relaxes the inequality $D_{l,k} \le \alpha^{k^2} D_{l+1,k}$ of LLL-bases, and this allows to bound the number of local LLL-reductions, see Theorem 4.

We could have used two independent δ -values for the two clauses of Def.2. Theorem 3 shows that the first vector of an SLLL₀-basis of lattice \mathcal{L} is almost as short relative to $(\det \mathcal{L})^{1/n}$ as for LLL-bases.

Theorem 3. Every $SLLL_0$ -basis $\boldsymbol{b}_1,...,\boldsymbol{b}_n$ satisfies $\|\boldsymbol{b}_1\| \leq (\alpha/\delta)^{\frac{n-1}{4}}(\det \mathcal{L})^{\frac{1}{n}}$.

Proof. Every SLLL₀-basis satisfies by clause 2 of Def.2

$$D_{1,k} \le (\alpha/\delta)^{k^2 (i-1)} D_{i,k}$$
 for $i = 1, ..., m$.

We multiply the m inequalities and take the m-th root. As $D_{1,k}\cdots D_{m,k}=(\det\mathcal{L})^2$ and $1+2+\cdots+(m-1)=m\cdot\frac{m-1}{2}$ this yields

$$D_{1,k} \leq (\alpha/\delta)^{k^2 \frac{m-1}{2}} (\det \mathcal{L})^{\frac{2}{m}}.$$

Moreover $\|\boldsymbol{b}_1\|^2 \leq \alpha^{\frac{k-1}{2}} D_{1,k}^{\frac{1}{k}}$ holds as the basis $\boldsymbol{b}_1,...,\boldsymbol{b}_k$ is LLL-reduced. Combining the two latter inequalities proves the claim

$$\|\boldsymbol{b}_1\|^2 \leq \alpha^{\frac{k-1}{2}} (\alpha/\delta)^{k^{\frac{m-1}{2}}} (\det \mathcal{L})^{\frac{2}{mk}} \leq (\alpha/\delta)^{\frac{n-1}{2}} (\det \mathcal{L})^{\frac{2}{n}}.$$

The dual of Theorem 3. Clause 2 of Def.2 is preserved under duality. If it holds for a basis $b_1, ..., b_n$ it also holds for the dual basis $b_1^*, ..., b_n^*$ of the lattice \mathcal{L}^* . We have that $||b_1^*|| = ||q_n||^{-1}$ and $\det(\mathcal{L}^*) = (\det \mathcal{L})^{-1}$. Hence, Theorem 3 implies that every SLLL₀-basis satisfies $||q_n|| \geq (\delta/\alpha)^{\frac{n-1}{4}} (\det \mathcal{L})^{\frac{1}{n}}$.

Local LLL-reduction. The procedure $locLLL(R_{l,k})$ locally LLL-reduces $R_{l,k} \subset R$ given $H_{l,k} \subset H$. Initially it produces a copy $[\mathbf{b}'_1,...,\mathbf{b}'_{2k}]$ of $R_{l,k}$. It LLL-reduces

the local basis $[\mathbf{b}'_1,...,\mathbf{b}'_{2k}]$ consisting of fpa-vectors. It updates and stores the local transform $T_{l,k} \in \mathbb{Z}^{2k \times 2k}$ so that $[\mathbf{b}'_1,...,\mathbf{b}'_{2k}] = R_{l,k}T_{l,k}$ always holds for the current local basis $[\mathbf{b}'_1,...,\mathbf{b}'_{2k}]$ and the initial $R_{l,k}$. E.g., it does $\operatorname{col}(l',T_{l,k}) := \operatorname{col}(l',T_{l,k}) - \mu \operatorname{col}(i,T_{l,k})$ along with $\mathbf{b}'_{l'} := \mathbf{b}'_{l'} - \mu \mathbf{b}'_{i}$ within TriCol_l . It freshly computes $\mathbf{b}'_{l'}$ from the updated $T_{l,k}$. Using a correct $T_{l,k}$ this correction of $\mathbf{b}'_{l'}$ limits fpa-errors of the local basis, see Cor.1.

Local LLL-reduction of $R_{l,k}$ is done in local coordinates of dimension 2k. A local LLL-swap merely requires $O(k^2)$ arithmetic steps, update of $R_{l,k}$, local triangulation and size-reduction via $TriCol_l$ included, compared to O(nd) arithmetic steps for an LLL-swap in global coordinates.

$locLLL(R_{l,k})$

- 1. produce copies $[b'_1,...,b'_{2k}] = R'_{l,k}$ of $R_{l,k}$ and $[h'_1,...,h'_{2k}]$ of $H_{l,k} \subset H$ $T_{l,k} := I_{2k}, \ l' := 1$
- 2. WHILE $l' \leq 2k$ DO

$$\begin{split} & \text{TriCol}(\boldsymbol{b}'_{1},...,\boldsymbol{b}'_{l'},\boldsymbol{h}'_{1},...,\boldsymbol{h}'_{l'-1},\boldsymbol{r}'_{1},...,\boldsymbol{r}'_{l'-1}) \\ & \text{update } T_{l,k}, \quad \boldsymbol{b}'_{l'} := R_{l,k} \operatorname{col}(l',T_{l,k}) \\ & \text{IF } \quad l' \neq 1 \quad \text{and} \quad \delta \, r'^{2}_{l'-1,l'-1} > r'^{2}_{l'-1,l'} + r'^{2}_{l',l'} \\ & \text{THEN swap } \boldsymbol{b}'_{l'-1},\boldsymbol{b}'_{l'}, \text{ swap } \boldsymbol{r}'_{l'-1},\boldsymbol{r}'_{l'}, \text{ update } T_{l,k}, \quad l' := l'-1 \\ & \text{ELSE} \quad l' := l'+1. \end{split}$$

 $SLLL_0$ -algorithm. $SLLL_0$ transforms a given basis into an $SLLL_0$ -basis. It iterates $locLLL(R_{l,k})$ for submatrices $R_{l,k} \subset R$, followed by a global update that $transports \ T_{l,k}$ to B and triangulates $B_{l,k}, B_{l,k+1}$ via $location Triseg_{l,k}$. $Transporting \ T_{l,k}$ to $B, R, T_{1,n/2}$ and so on means to multiply the submatrix consisting of 2k columns of $B, R, T_{1,n/2}$ corresponding to $R_{l,k}$ from the right by $T_{l,k}$.

The procedure TriSeg_{l,k} triangulates and size-reduces two adjacent segments $B_{l,k}, B_{l+1,k}$. Given $B_{l,k}, B_{l+1,k}$ and $h_1, ..., h_{lk-k}$, it computes $[r_{lk-k+1}, ..., r_{lk+k}] \subset R$ and $[h_{lk-k+1}, ..., h_{lk+k}] \subset H$.

$\mathtt{TriSeg}_{l,k}$

- 1. FOR l'=lk-k+1,...,lk+k DO $TriCol_{l'}$ (including updates of $T_{l,k}$)
- 2. $D_{j,k} := \prod_{i=0}^{k-1} r_{k,i-i,k,j-i}^2$ for j = l, l+1.

SLLL

INPUT
$$m{b}_1,\dots,m{b}_n\in\mathbb{Z}^d$$
 (a basis with $M_0,M_1,M),\ k,\ m,\ \delta$ OUTPUT $m{b}_1,\dots,m{b}_n$ SLLL $_0$ -basis for k,δ WHILE $\exists\, l,1\leq l< m$ such that either $D_{l,k}>(\alpha/\delta)^{k^2}\,D_{l+1,k}$ or ${\tt TriSeg}_{l,k}$ has not yet been executed DO for the minimal such l : ${\tt TriSeg}_{l,k}$, ${\tt locLLL}(R_{l,k})$

global update: $[B_{l,k}, B_{l+1,k}] := [B_{l,k}, B_{l+1,k}] T_{l,k}$, TriSeg_{l,k}.

Correctness in ideal arithmetic. All inequalities $D_{l,k} \leq (\alpha/\delta)^{k^2} D_{l+1,k}$ hold upon termination of **SLLL**₀. All segments $B_{l,k}$ are locally LLL-reduced and globally size-reduced and thus the terminal basis is SLLL₀-reduced.

The number of locLLL-executions. Let $\#_k$ denote the number of loclll($R_{l,k}$)-executions due to $D_{l,k} > (\alpha/\delta)^{k^2} D_{l,k}$ for all l. The first loclll($R_{l,k}$)-executions for each l is possibly not counted in $\#_k$, this yields at most n/k-1 additional executions. We bound $\#_k$ by the Lovász volume argument.

Theorem 4. $\#_k \le 2 n k^{-3} \log_{1/\delta} M$.

Proof. We show that a locLLL $(R_{l,k})$ -execution decreases $D_{l,k}$ by the factor $\delta^{k^2/2}$ if it is due to $D_{l,k} > (\alpha/\delta)^{k^2} D_{l+1,k}$. locLLL $(R_{l,k})$ changes $D_{l,k}$, $D_{l+1,k}$ into $D'_{l,k}$, $D'_{l+1,k}$ and preserves $D_{l',k}$ for $l' \neq l, l+1$. It also preserves the product $D_{l,k}D_{l+1,k}$. locLLL $(R_{l,k})$ results in $D'_{l,k} \leq \alpha^{k^2} D'_{l+1,k}$ because upon termination the matrix $R_{l,k}$ is LLL-reduced with δ and thus the claim follows from $\|\mathbf{q}_{lk-2k+i}\|^2 \leq \alpha^k \|\mathbf{q}_{lk-k+i}\|^2$ for $i=1,\ldots,k$. Therefore

$$D'_{l,k} \leq \alpha^{k^2} D'_{l+1,k} = \alpha^{k^2} D'_{l,k} D'_{l+1,k} / D'_{l,k}$$
$$= \alpha^{k^2} D_{l,k} D_{l+1,k} / D'_{l,k} < \delta^{k^2} D^2_{l,k} / D'_{l,k},$$

and thus $D'_{l,k} \leq \delta^{k^2/2} D_{l,k}$. Hence locLLL $(R_{l,k})$ decreases

$$\mathcal{D}^{(k)} = \prod_{l=1}^{m-1} d_{lk} = \prod_{l=1}^{m-1} D_{l,k}^{m-l}$$

by the factor $\delta^{k^2/2}$. As $\mathcal{D}^{(k)}$ is a positive integer, $\mathcal{D}^{(k)} \leq M^{m-1}$, this implies

$$\#_k \le \log_{1/\delta^{k^2/2}} M^{m-1} \le 2 \frac{m-1}{k^2} \log_{1/\delta} M.$$

All intermediate $M_{l,k}$ -values within \mathbf{SLLL}_0 are bounded by the M_1 -value of the input basis of \mathbf{SLLL}_0 . Consider the local transform $T_{l,k} \in \mathbb{Z}^{2k \times 2k}$ within $\mathbf{loc}_{LLL}(R_{l,k})$. Let $||T_{l,k}||_1$ denote the maximal $|| ||_1$ -norm of the columns of $T_{l,k}$.

Lemma 1. Within $locLLL(R_{l,k})$ we have that $||T_{l,k}||_1 \leq 6k(\frac{3}{2})^{2k}M_{l,k}$.

Proof. We rename the input basis $b'_1,...,b'_{2k}$ of locLLL $(R_{l,k})$ into $b_1,...,b_{2k}$ and we let $b'_1,...,b'_{2k}$ denote the current local basis. The input basis has been size-reduced by the preceding $\mathtt{TriSeg}_{l,k}$ -execution, and thus $|\mu_{j,i}| \leq \frac{1}{2}$ for $1 \leq i < j \leq 2k$. W.l.o.g. let $|\mu'_{l,i}| \leq \frac{1}{2}$ for $1 \leq i < l \leq 2k$ hold for the current basis because $\|\mathrm{col}(l',T_{l',k})\|_1$ increases during size-reduction of $b'_{l'}$. The equations

$$[b'_1,...,b'_{2k}] = [q'_1,...,q'_{2k}][\mu'_{i,i}]^t = [q_1,...,q_{2k}][\mu_{j,i}]^t T_{l,k}.$$

yield $T_{l,k} = ([\mu_{j,i}]^t)^{-1} [\langle \boldsymbol{q}_j, \boldsymbol{q}_i' \rangle \| \boldsymbol{q}_j \|^{-2}] [\mu_{j,i}']_{1 \leq i,j \leq 2k}^t$. The coefficients $\nu_{j,i}$ of the inverse matrix $[\nu_{j,i}] := ([\mu_{j,i}]^t)^{-1}$ satisfy $|\nu_{j,i}| \leq (\frac{3}{2})^{|j-i|}$, and thus $\sum_{i=1}^{2k} |\nu_{j,i}| \leq \sum_{i=1}^{2k} (\frac{3}{2})^{|j-i|} < 3(\frac{3}{2})^{2k}$. We get that

$$||T_{l,k}||_1 \le 6k(\frac{3}{2})^{2k} \max_{1 \le i,j \le 2k} |\langle \boldsymbol{q}_j, \boldsymbol{q}_i' \rangle| / ||\boldsymbol{q}_j||^2.$$

To finish the proof we show that $\max_{1 \leq i,j \leq 2k} |\langle \boldsymbol{q}_j, \boldsymbol{q}'_i \rangle| / ||\boldsymbol{q}_j||^2 \leq M_{l,k}$. If $\boldsymbol{b}_{l'-1}, \boldsymbol{b}_{l'}$ get swapped, the swapped vectors $\boldsymbol{b}'_{l'-1}, \boldsymbol{b}'_{l'}$ clearly satisfy

$$\|\boldsymbol{q}_{l'}\| \leq \|\boldsymbol{q}'_{l'-1}\|, \|\boldsymbol{q}'_{l'}\| \leq \|\boldsymbol{q}_{l'-1}\|,$$

and thus $|\langle \boldsymbol{q}_j, \boldsymbol{q}_i' \rangle| / \|\boldsymbol{q}_j\|^2 \le \|\boldsymbol{q}_i'\| / \|\boldsymbol{q}_j\| \le \|\boldsymbol{q}_{l'-1}\| / \|\boldsymbol{q}_{l'}\|$ holds for $l'-1 \le i, j \le l'$, i.e., for the i, j that are linked by the LLL-swap.

More generally, we say that i, j are linked by a sequence of LLL-swaps, swapping $\boldsymbol{b}_{h_{\nu}}, \boldsymbol{b}_{h_{\nu}+1}$ for $\nu=1,...,s$ if the edges $(h_{\nu},h_{\nu+1})$ link i and j by an undirected path. By induction on the sequence of LLL-swaps we see that $\|\boldsymbol{q}_i'\|/\|\boldsymbol{q}_j\| \leq M_{l,k}$ holds for all i, j such that the terminal \boldsymbol{b}_i' and the initial \boldsymbol{b}_j are linked by a sequence of LLL-swaps. Otherwise, if \boldsymbol{b}_i' and \boldsymbol{b}_j are not linked, we have that $\langle \boldsymbol{q}_j, \boldsymbol{q}_i' \rangle/\|\boldsymbol{q}_j\|^2 = \delta_{i,j}$ because \boldsymbol{q}_i' is in the linear space generated by the \boldsymbol{q}_j such that \boldsymbol{b}_i' and \boldsymbol{b}_j are linked, and thus $\langle \boldsymbol{q}_j, \boldsymbol{q}_i' \rangle = 0$ for $i \neq j$. In particular, the quotients $\|\boldsymbol{q}_i\|/\|\boldsymbol{q}_j\|$ for i > j, which are not bounded by $M_{l,k}$, are irrelevant, they do not induce LLL-swaps and do not affect $T_{l,k}$.

Next we study $locLLL(R_{l,k})$ under fpa, where $TriCol_l$ performs the iterative fpa-version of $TriCol_l$ that depends on ε , $0 < \varepsilon < 0.2$.

Corollary 1. 1. Within locLLL($R_{l,k}$) the current $R'_{l,k} := R_{l,k}T_{l,k}$ and its approximation $\bar{R}'_{l,k}$ satisfy $\|\bar{R}'_{l,k} - R'_{l,k}\|_F \le \|\bar{R}_{l,k} - R_{l,k}\|_F 2^{2k} M_{l,k} + 7n \|R_{l,k}\|_F 2^{-t}$.

2. Let TriSeg_{l,k} and locLLL use fpa with $t = 3n + \log_2(M_0^2 M_1^3) + 2k$ precision bits. If $\bar{R}_{l,k}$ is computed by TriSeg_{l,k} then locLLL($\bar{R}_{l,k}$) computes for $n \ge n_0$ a correct $T_{l,k}$ so that $R_{l,k}T_{l,k}$ is LLL-reduced with δ_- .

- Proof. 1. locLLL $(R_{l,k})$ updates the current $R'_{l,k} = [b'_1, ..., b'_{2k}]$ by transforming the initial $R_{l,k}$ into $R'_{l,k} := R_{l,k}T_{l,k}$. In ideal arithmetic this increases $\|\bar{R}_{l,k} R_{l,k}\|_F$ by at most a factor $\|T_{l,k}\|_1\sqrt{2k} \leq 2^{2k}M_{l,k}$ holds for $k \geq 9$ by Lemma 1. The $7n\|R_{l,k}\|_F2^{-t}$ -term accounts for the fpa-errors of the calculation of $R_{l,k}T_{l,k}$, using e.g., (15.30)[LH95] for $d \geq 37$. This term can be neglected as it is covered by the upper bound of $\|\bar{R}_{l,k} R_{l,k}\|_F$ that follows from (1).
- 2. The input $R_{l,k}$ of $locLLL(R_{l,k})$ satisfies the inequalities (3),(4) with $\bar{M}_1 \leq M_1$. Therefore $location TriSeg_{l,k}$'s fpa-errors are by a factor $M_1^2/2^{\frac{n-1}{2}}$ larger than for $location TriCol_l$ -executions within $location LLL_H$, where the input $location b_1, ..., location <math>location b_1, ..., location b_1$. This is offset by $2\log_2 M_1 n/2$ additional precision bits.

We compensate the loss of precision described by clause 1 by another $\log_2 M_1 + 2k$ additional precision bits. Thus we add to the precision t of Theorem 2 $\log_2(M_1^3) - \frac{n}{2} + 2k$ with $k \leq \frac{n}{4}$ to get $t = 5n + \log_2(M_0^2 M_1^3)$. With the increased precision the argument of Theorem 2 shows the correctness of $T_{l,k}$. \square

Theorem 5. Let $k = \Theta(\sqrt{n})$. Given a basis with M_0, M_1, M , **SLLL**₀ computes under fpa with $t = 5n + \log_2(M_0^2 M_1^3)$ precision bits for $n \ge n_0$ an $SLLL_0$ -basis for δ_- . It runs in $O(nd \log_{1/\delta} M)$ arithmetic steps using $5n + \log_2(M_0^2 M_1^3)$ -bit integers and fpa numbers.

SLLL₀ saves a factor n in the number of arithmetic steps compared to \mathbf{LLL}_H but uses longer integers and fpa numbers. The choice $k, m = \Theta(\sqrt{n})$ equalizes

for d = O(n) the number of local and global arithmetic steps. \mathbf{SLLL}_0 runs for $M_0 = 2^{O(n)}$, and thus for $M = 2^{O(n^2)}$, in $O(n^3d)$ arithmetic steps using $O(n^2)$ bit integers. The bit length $O(n^2)$ will be reduced to O(n) by the algorithm \mathbf{SLLL} see Theorem 7.

Proof. Time bound. We separately count the *local* (resp. *global*) arithmetic steps of $locLLL(R_{l,k})$ (resp., of $locLLL(R_{l,k})$). Initially we have that $\mathcal{D}^{(1)} \leq M^n$. Each LLL-swap of locLLL, due to the inequality locLLL or locLLL, decreases locLLL by a factor locLLL. As initially locLLL and locLLL or locLLL holds upon termination there are at most locLLL or locLLL out locLLL or locLL

Each of the $n \log_{1/\delta} M$ LLL-swaps, done in local coordinates of dimension 2k, requires $O(k^2)$ steps for a local TriCol_l-execution and for updating $T_{l,k}$. In total there are $O(nk^2 \log_{1/\delta} M)$ local arithmetic steps.

Each locLLL $(R_{l,k})$ -execution requires O(ndk) global arithmetic steps for TriSeg_{l,k} and for updating $B_{l,k}, B_{l+1,k}$. Therefore, the $n/k + 2nk^{-3}\log_{1/\delta}M$ locLLL $(R_{l,k})$ -executions require $O(n^2d + m^2d\log_{1/\delta}M)$ global arithmetic steps. This proves the claimed step bound using that $M \geq 2^n$ and $m^2 = \Theta(n)$.

Correctness under fpa. We see from Cor.1(2) that $locLLL(R_{l,k})$ correctly LLL-reduces $R_{l,k}$ with δ_- , computing a correct $T_{l,k}$ for $n \geq n_0$, $n \geq 4k$. The fpa-errors within $locLLL(R_{l,k})$ get corrected by the subsequent global update $[B_{l,k}, B_{l+1,k}] := [B_{l,k}, B_{l+1,k}] T_{l,k}$, TriSeg_{l,k}" which restores and even improves the initial error bounds.

Selecting the right $R_{l,k}$ for the next $locll(R_{l,k})$ -call within \mathbf{SLLL}_0 rests on the decision whether $D_{l,k}, D_{l+1,k}$ differ by at least a factor $(\alpha/\delta)^{k^2}$, where $(\alpha/\delta)^{k^2} > (\frac{4}{3})^{k^2} > 2^{0.4n}$ for $k \geq \sqrt{n}$. This is always correctly decided because the $r_{i,i}$ and thus $D_{l,k}, D_{l+1,k}$ are computed with an arbitrary small relative error ε due inequality (1). W.l.o.g. we can assume that all except possibly one $r_{i,i}$ satisfy $r_{i,i} \geq 2^{-n}/M_0$.

Intermediate basis vectors have length $\leq 6k(\frac{3}{2})^{2k}M_0M_12^n = 2^{n+o(n)}M_0M_1$ because $||T_{l,k}||_1 \leq 6k(\frac{3}{2})^{2k}M_1$ holds by Lemma 1, and size-reduction increases the length of intermediate basis vectors by at most a factor 2^n . Hence all integers and fpa numbers within **SLLL**₀ have bit length $5n + \log_2(M_0^2M_1^3)$.

5 Gradual SLLL Reduction Using Short Bases.

The algorithm **SLLL** of this section achieves the same length defect as **LLL**, uses intermediate bases of length $2^{n+o(n)}M_0$, and is correct under fpa with $t = 7n + 2\log_2 M_0$ precision bits. **SLLL** prepares local LLL-reductions through local reductions on subsegments that get reduced with smaller δ -values, all local transforms have norm $2^{n+o(n)}$. **SLLL** saves a factor $n/\log_2 n$ in the number of arithmetic steps compared to **LLL**_H, using $7n + 2\log_2 M_0$ -bit integers and fpa numbers. For input bases of length $2^{O(n)}$ and d = O(n) **SLLL** performs $O(n^{5+\varepsilon})$ bit operations for every $\varepsilon > 0$ compared to $O(n^{6+\varepsilon})$ bit operations for **LLL**_H,

SLLL₀ and the LLL-algorithms of [S88], [St96]. The advantage of **SLLL** is the use of small integers of bit length $7n + 2 \log M_0$ which is crucial in practice.

The use of small integers and short intermediate bases within **SLLL** rests on a gradual LLL-type reduction so that all local LLL-transforms $T_{l,2^{\sigma}}$ of $R_{l,2^{\sigma}}$ have norm $O(2^n)$. This requires to work with segments of all sizes 2^{σ} and to perform LLL-reduction on $R_{l,2^{\sigma}}$ with a measured strength, i.e., SLLL-reduction according to Definition 3. If the submatrices $R_{2l,2^{\sigma-1}}$, $R_{2l+1,2^{\sigma-1}} \subset R_{l,2^{\sigma}}$ are already SLLL-reduced then $loclll(R_{l,k})$ performs a transform $T_{l,2^{\sigma}}$ bounded as $||T_{l,2^{\sigma}}||_F = O(2^n)$. This is the core of fpa-correctness of **SLLL**.

Comparison with semi-reduction of [Sc84, St96]. The semi-reduction algorithm of [Sc84] also uses segments but proceeds without adjusting LLL-reduction according to Def. 2 and without Theorem 4. This algorithm runs for input bases of length $2^{O(n)}$ in $O(n^{6+\varepsilon})$ bit operations, its combination with modular reduction [St96] runs in $O(n^{5.5+\varepsilon})$ -bit operations. This time bound also holds for a combination of [S88] and [Sc84], see Theorem 9 [S88]. Assuming that $n \times n$ matrices can be multiplied using $O(n^{\beta})$ arithmetic steps the semi-reduction of [St96, Thm 24] runs in $O(n^{5+\frac{1}{5-\beta}+\varepsilon})$ bit operations. **SLLL** beats the [St96] time bound even if $n \times n$ -matrix multiplication can be done in $O(n^2)$ steps. **SLLL** achieves for every $\varepsilon > 0$ length defect $(\frac{4}{3} + \varepsilon)^{n/2}$ whereas semi-reduction achieves 2^n . Moreover, **SLLL** is practical even for small n since all our O-constants and n_0 -values are small.

We let n be a power of $2, \frac{1}{2} \le \delta < 1, \alpha = \frac{1}{\delta - \frac{1}{4}}$. We set $s := \lceil \frac{1}{2} \log_2 n \rceil$ so that $\sqrt{n} \le 2^s < 2\sqrt{n}$.

Definition 3. A basis $b_1, ..., b_n \in \mathbb{R}^d$ is an SLLL-basis (or SLLL-reduced) for $\delta \geq \frac{1}{2}$ if it satisfies for $\sigma = 0, ..., s = \lceil \frac{1}{2} \log_2 n \rceil$ and all $l, 1 \leq l < n/2^{\sigma}$:

$$D_{l,2\sigma} < \alpha^{4\sigma} \delta^{-n} D_{l+1,2\sigma}$$
.

If the inequalities of Def.3 hold for a basis they also hold for the dual basis. Thus the dual of an SLLL-basis is again an SLLL-basis. To preserve SLLL-reducedness by duality we do not require SLLL-bases to be size-reduced.

The inequalities of Def.3 for $\sigma = 0$ mean that $\|\boldsymbol{q}_l\|^2 \leq \alpha \delta^{-n} \|\boldsymbol{q}_{l+1}\|^2$ holds for all l. The inequalities of Def.3 are merely required for $2^{\sigma} \leq 2\sqrt{n}$. Therefore, **SLLL** locally LLL-reduces $R_{l,2^{\sigma}}$ via $locLLL(R_{l,2^{\sigma}})$ merely for segment sizes $2^{\sigma} < 2\sqrt{n}$, where size-reduction of a vector requires $O(2^{2\sigma}) = O(n)$ arithmetic steps.

The inequalities of Def.3 and $D_{l,k} \leq (\alpha/\delta)^{k^2} D_{l+1,k}$ of Def.2 coincide for $k = 2^{\sigma}$ when setting $\delta := \delta_{\sigma}$ in Def.2, and $\delta_{\sigma} := \delta^{n4^{-\sigma}}$ for the δ of Def.3. Note that δ_{σ} can be arbitrarily small, e.g. $\delta_{\sigma} \ll \frac{1}{4}$, δ_{σ} decreases with σ . In particular for $2^{\sigma} = k \geq \sqrt{n}$ we have that $\alpha^{4^{\sigma}} \delta^{-n} \leq (\alpha/\delta)^{k^2}$ and thus the inequalities of Def.3 are stronger than the ones of Def.2. Next we show via Lemma 2 that the vectors of SLLL-bases approximate the successive minima in nearly the same way as for LLL-bases.

Theorem 6. Every size-reduced SLLL-basis satisfies

1.
$$\lambda_j^2 \le \alpha^{j-1} \delta^{-7n} \| \boldsymbol{q}_j \|^2$$
 for $j = 1, ..., n$,
2. $\| \boldsymbol{b}_l \|^2 \le \alpha^{j-1} \delta^{-7n} \| \boldsymbol{q}_j \|^2$ for $l \le j$,

2.
$$\|\dot{\boldsymbol{b}}_l\|^2 \le \alpha^{j-1} \delta^{-7n} \|\boldsymbol{q}_j\|^2$$
 for $l \le j$,

3.
$$\|\boldsymbol{b}_j\|^2 \le \alpha^{n-1} \delta^{-7n} \lambda_j^2$$
 for $j = 1, ..., n$.

Proof. We first prove 1. and 2. There clearly exists $l, 1 \le l \le j$ so that $\lambda_i \le ||b_l||$. Using Lemma 2 and size-reducedness we get

$$\begin{aligned} \lambda_j^2 &\leq \|\boldsymbol{b}_l\|^2 \leq \|\boldsymbol{q}_l\|^2 + \frac{1}{4} \sum_{i=1}^{l-1} \|\boldsymbol{q}_i\|^2 \\ &\leq \|\boldsymbol{q}_j\|^2 \alpha^{j-1} \delta^{-7n} [\alpha^{1-l} + \frac{1}{4} \sum_{i=1}^{l-1} \alpha^{1-i}]. \end{aligned}$$

This upper bound on $\|\boldsymbol{b}_l\|^2$ holds for all l and j with $l \leq j$. To finish the proof of 1. and 2. it remains to show that $\alpha^{1-l} + \frac{1}{4} \sum_{i=1}^{l-1} \alpha^{1-i} \leq 1$. This is trivial for l = 1 and holds for $l \geq 2$ as $\alpha \geq 4/3$ and $\sum_{i=1}^{l-1} \alpha^{1-i} \leq \frac{1-\alpha^{1-l}}{1-3/4}$.

3. We note that every lattice basis satisfies $\lambda_j \geq ||\boldsymbol{b}_l|| \geq ||\boldsymbol{q}_l||$ for some $l \geq j$, and thus $\lambda_j^2 \geq ||\boldsymbol{q}_l||^2 \geq \alpha^{-l+i} \delta^{7n} ||\boldsymbol{q}_i||^2$ holds for all $i \leq l$ by Lemma 2. Hence

$$\begin{aligned} \| \boldsymbol{b}_j \|^2 & \leq \| \boldsymbol{q}_j \|^2 + \tfrac{1}{4} \sum_{i=1}^{j-1} \| \boldsymbol{q}_i \|^2 \leq \delta^{-7n} [\alpha^{l-j} + \tfrac{1}{4} \sum_{i=1}^{j-1} \alpha^{l-i}] \lambda_j^2 \leq \delta^{-7n} \alpha^{l-1} \lambda_j^2 \\ \text{holds since } \boldsymbol{b}_j \text{ is size-reduced, and } \| \boldsymbol{q}_i \|^2 \leq \delta^{-7n} \alpha^{l-i} \lambda_j^2. \end{aligned}$$

Bounds for other bases. 1. The proof of Theorem 6 shows that LLL-bases satisfy the inequalities of Theorem 6 with δ^{-7n} replaced by 1, because they satisfy the inequalities of Lemma 2 with δ^{-7n} replaced by 1. Therefore LLL-bases satisfy $\alpha^{1-j} \le \|\boldsymbol{q}_j\|^2 / \lambda_j^2 \le \|\boldsymbol{b}_j\|^2 / \lambda_j^2 \le \alpha^{n-1}.$

2. Every size-reduced basis satisfies the inequalities of Lemma 2 with $\alpha^{j-i}\delta^{-7n}$ replaced by M_1^2 , i.e., $\|\mathbf{q}_i\|^2 \leq M_1^2 \|\mathbf{q}_j\|^2$ for i < j. Retracing the proof of Theorem 6 shows that every size-reduced basis satisfies for j = 1, ..., n

$$\frac{4}{j+3}/M_1^2 \le \|\boldsymbol{q}_j\|^2/\lambda_j^2 \le \|\boldsymbol{b}_j\|^2/\lambda_j^2 \le \frac{j+3}{4}M_1^2.$$

Lemma 2. Every SLLL-basis b_1, \ldots, b_n satisfies

$$\|\mathbf{q}_i\|^2 \le \alpha^{j-i} \delta^{-7n} \|\mathbf{q}_j\|^2 \text{ for } 1 \le i < j \le n.$$

Proof. Every SLLL-basis satisfies

$$D_{l,2^{\sigma}}^{2^{-\sigma}} \le (\alpha/\delta_{\sigma})^{2^{\sigma}} D_{l+1,2^{\sigma}}^{2^{-\sigma}}$$

$$\tag{5}$$

for $\delta_{\sigma} := \delta^{n 4^{-\sigma}}$ and $\sigma = 0, ..., s$ and all l, because $(\alpha/\delta_{\sigma})^{4^{\sigma}} = \alpha^{4^{\sigma}} \delta^{-n}$.

Moreover, we have for all
$$l$$
 and $\sigma = 0, ..., s$:
$$D_{l,2^{\sigma}}^{2-\sigma} \leq (\alpha/\delta_{\sigma})^{2^{\sigma-1}} D_{\frac{l+1}{2},2^{\sigma+1}}^{2-\sigma-1}.$$
(6)

This follows by multiplying both sides of (5) by $D_{l,2^{\sigma}}^{2^{-\sigma}}$, using the equality $D_{l,2^{\sigma}}D_{l+1,2^{\sigma}}=$ $D_{\frac{l+1}{2},2^{\sigma+1}}$ and taking square roots on both sides.

Let
$$i_0, ..., i_{s-1} \in \{0, 1\}$$
 and $l_0, ..., l_s \in \mathbb{N}$ satisfy
$$i + \sum_{\sigma'=0}^{\sigma-1} (1 + i_{\sigma'}) 2^{\sigma'} = l_{\sigma} 2^{\sigma} \qquad \text{for } \sigma = 0, ..., s.$$
(7)

We prove for $\sigma = 0, ..., s$ by induction on σ :

$$\|q_i\|^2 \le \prod_{\sigma'=0}^{\sigma-1} (\alpha/\delta_{\sigma'})^{2^{\sigma'}(\frac{1}{2}+i_{\sigma'})} D_{l_{\sigma},2^{\sigma}}^{2^{-\sigma}}.$$
 (8)

The claim for $\sigma = 0$: $\|\boldsymbol{q}_i\|^2 \le D_{l_0,1} = \|\boldsymbol{q}_i\|^2$ holds as $\sum_{\sigma'=0}^{-1} := 0$, $\prod_{\sigma'=0}^{-1} := 1$, $i = l_0$.

Induction from σ to $\sigma+1$. We see from (7) that $2l_{\sigma+1}=l_{\sigma}+1+i_{\sigma}$. If l_{σ} is odd than $i_{\sigma}=0$ and $l_{\sigma+1}=\frac{l_{\sigma}+1}{2}$. In this case we combine (8) with inequality (6) for $l:=l_{\sigma}$. This yields (8) for $\sigma+1$. If l_{σ} is even, $i_{\sigma}=1$ then we first combine (8) with (5) for $l:=l_{\sigma}$, and we proceed with $l_{\sigma}+1$ as in the previous case with l_{σ} .

Applying the inequalities (6) to the dual basis $b_1^*, ..., b_n^*$ we get for odd l and $\sigma = 0$ s:

$$D_{l+1,2\sigma+1}^{2^{-\sigma-1}} \le (\alpha/\delta_{\sigma})^{2^{\sigma-1}} D_{l,2\sigma}^{2^{-\sigma}}.$$
 (6*)

Let $j_0, ..., j_{s-1} \in \{0, 1\}$ and $l_0^*, ..., l_s^* \in \mathbb{N}$ satisfy

$$j - \sum_{\sigma'=0}^{\sigma-1} j_{\sigma'} 2^{\sigma'} = l_{\sigma}^* 2^{\sigma}$$
 for $\sigma = 0, \dots, s$. (7*)

By duality (8) yields for $\sigma = 1,, s$:

$$D_{l_{\tau}^{*},2^{\sigma}}^{2^{-\sigma}} \leq \prod_{\sigma'=0}^{\sigma-1} (\alpha/\delta_{\sigma'})^{2^{\sigma'}(\frac{1}{2}+j_{\sigma'})} \|\boldsymbol{q}_{j}\|^{2}.$$
 (8*)

The claim of Lemma 2 clearly holds for $j-i \leq 7$ since Def.3 for $\sigma=0$ requires that $\|\boldsymbol{q}_l\|^2 \leq \alpha \delta^{-n} \|\boldsymbol{q}_{l+1}\|^2$. To prove the claim for $j-i \geq 8$ we combine the inequalities (8) and (8*) for a suitable σ . If $j-i \geq 2^{s+2}$ we set $\sigma:=s$, otherwise we choose σ such that $2^{\sigma+1} \leq j-i < 2^{\sigma+2}$, and thus $\sigma \geq 2$. We set $l_{\sigma}:=\lceil (i-1)/2^{\sigma}+1 \rceil$, $l_{\sigma}^*=\lfloor j/2^{\sigma} \rfloor$. Then there exist $i_{\sigma'}, j_{\sigma'} \in \{0,1\}$ such that (7), (7*) hold for σ .

Obviously $l_{\sigma}^* - l_{\sigma} > (j-i)/2^{\sigma} - 3 \ge 2 - 3 = -1$ holds for $2 \le \sigma \le s$ because $(j-i)/2^{\sigma} \ge 2$ for $\sigma < s$ and $(j-i)/2^s \ge 4$ for $\sigma = s$. Hence $l_{\sigma} \le l_{\sigma}^*$.

Case $l_{\sigma} = l_{\sigma}^{*}$. By (8) and (8*): $\|\boldsymbol{q}_{i}\|^{2} \leq \prod_{\sigma'=0}^{\sigma-1} (\alpha/\delta_{\sigma'})^{2^{\sigma'}(1+i_{\sigma'}+j_{\sigma'})} \|\boldsymbol{q}_{j}\|^{2}$, where $i + \sum_{\sigma'=0}^{\sigma-1} (1+i_{\sigma'}+j_{\sigma'})2^{\sigma'} = j$. We see from $\delta_{\sigma'} = \delta^{n} 4^{-\sigma'}$ and $\sum_{\sigma'=0}^{\sigma-1} (1+i_{\sigma'}+j_{\sigma'})2^{-\sigma'} \leq 6-2^{-\sigma+1}$ that

$$\|\mathbf{q}_i\|^2 \le \alpha^{j-i} \delta^{-6n+n2^{-\sigma+1}} \|\mathbf{q}_j\|^2.$$
 (9)

Case $l_{\sigma} < l_{\sigma}^*$. We set $l' := l_{\sigma}^* - l_{\sigma}$. We combine (8), (8*) and $D_{l_{\sigma}, 2^{\sigma}}^{2^{-\sigma}} \le (\alpha/\delta_{\sigma})^{2^{\sigma}l'} D_{l_{\sigma}+l', 2^{\sigma}}^{2^{-\sigma}}$ which follows from (5). This induces into the right side of (9) another factor $\delta_{\sigma}^{-2^{\sigma}l'}$.

For $\sigma = s$ we have $\delta_s^{-2^s l'} = \delta^{-n2^{-s} l'} \le \delta^{-n}$ as $l' < (j-i)2^{-s} < n2^{-s} \le 2^s$. Hence $\|\boldsymbol{q}_i\|^2 \le \alpha^{j-i}\delta^{-7n+2m} \|\boldsymbol{q}_j\|^2$.

For $\sigma < s$ we have l' = 1 because $i - l_{\sigma} \ge 2^{\sigma} - 1$ and $j - i < 2^{2\sigma}$. Hence $\|\boldsymbol{q}_i\|^2 \le \alpha^{j-i} \delta^{-6n} \|\boldsymbol{q}_j\|^2$.

SLLL uses the procedure LLLSeg_{l,1} that breaks locLLL($R_{l,1}$) up into parts, each with a bounded transform $||T_{l,1}||_1 \le 9 \cdot 2^{n+1}$. This keeps intermediate bases of length $O(4^n M_0)$ and limits fpa-errors within LLLSeg_{l,1}.

LLLSeg_{l,1} LLL-reduces the basis $R_{l,1} = \begin{bmatrix} r_{l,l} & r_{l,l+1} \\ 0 & r_{l+1,l+1} \end{bmatrix} \subset R$ after dilating row $(2,R_{l,1})$ so that $r_{l,l}/r_{l+1,l+1} \leq 2^{n+1}$. After the LLL-reduction of the dilated

 $R_{l,1}$ we undo the dilation, by transporting the local transform $T_{l,1} \in \mathbb{Z}^{2\times 2}$ to B. LLLSeg_{l,1} includes global updates between local rounds.

LLLSeg_{l.}

Given $R_{l,1}$, b_1 ,..., b_{l+1} , h_1 ,..., h_l , r_1 ,..., r_l , LLLSeg $_{l,1}$ LLL-reduces $R_{l,1}$.

1. If $r_{l,l}/r_{l+1,l+1} > 2^{n+1}$ THEN [$R'_{l,1} := R_{l,1}$, $row(2, R'_{l,1}) := row(2, R'_{l,1}) 2^{-n-1} r_{l,l}/r_{l+1,l+1}$ locLLL($R'_{l,1}$),

global update: [b_l , b_{l+1}] := [b_l , b_{l+1}] $T_{l,1}$, TriCol $_l$, TriCol $_{l+1}$]

2. locLLL($R_{l,1}$).

Lemma 3. LLLSeg_{l,1} performs O(nd) arithmetic steps. An effectual step 1 decreases $\mathcal{D}^{(1)}$ by a factor $2^{-n/2}$ via a transform $T_{l,1}$ satisfying $||T_{l,1}||_1 \leq 9 \cdot 2^{n+1}$.

Proof. Consider $R'_{l,1}$ after dilation of $\operatorname{row}(2,R'_{l,1})$ which results in $r'_{l,l}/r'_{l+1,l+1} \leq 2^{n+1}$. The local transform $T_{l,1}$ of $\operatorname{locLLL}(R'_{l,1})$ satisfies $||T_{l,1}||_1 \leq 9 \cdot 2^{n+1}$ using Lemma 1 with k=1.

The dilated and LLL-reduced $R'_{l,1}$ satisfies $r'_{l,l}/r'_{l+1,l+1} \leq \sqrt{\alpha} \leq 2$. Undoing the dilation via $[\boldsymbol{b}_l, \boldsymbol{b}_{l+1}] := [\boldsymbol{b}_l, \boldsymbol{b}_{l+1}] T_{l,1}$ yields a basis $R'_{l,1}$ which is LLL-reduced after dilation. Therefore undoing the dilation shrinks $r'_{l,l}$ and $r'_{l+1,l+1}$ by factors that are bounded by the dilation factor $2^{-n-1}r_{l,l}/r_{l+1,l+1}$, and thus increases $r'_{l,l}/r'_{l+1,l+1}$ at most by the dilation factor. Hence, an effectual step 1 yields

$$r_{l,l}^{\text{new}} / r_{l+1,l+1}^{\text{new}} \le 2 \cdot 2^{-n-1} r_{l,l} / r_{l+1,l+1}.$$

It decreases $r_{l,l}/r_{l+1,l+1}$ by a factor 2^{-n} , decreases $r_{l,l}$ by a factor $2^{-n/2}$, and thus decreases $\mathcal{D}^{(1)} = \prod_{l=1}^{n-1} d_l$ by a factor $2^{-n/2}$.

SLLL

INPUT $b_1, \ldots, b_n \in \mathbb{Z}^d$ (a basis with M_0, M_1, M), $\delta, \alpha, \varepsilon$ OUTPUT b_1, \ldots, b_n size-reduced SLLL-basis for δ, ε

- 1. TriCol₁, TriCol₂, l' := 2, $s := \lceil \frac{1}{2} \log_2 n \rceil$ # TriCol_{l'} has always been executed for the current l'
- 2. WHILE $\exists \sigma \leq s, \ l, \ 2^{\sigma}(l+1) \leq l'$ such that $D_{l,2^{\sigma}} > \alpha^{4^{\sigma}} \delta^{-n} D_{l+1,2^{\sigma}}$ # Clearly $r_{1,1},...,r_{l',l'}$ and thus $D_{l,2^{\sigma}}, \ D_{l+1,2^{\sigma}}$ are available DO for the minimal such σ and the minimal l:

 IF $\sigma = 0$ THEN LLLSeg_{l,1} ELSE locLLL($R_{l,2^{\sigma}}$) #global update: transport $T_{l,2^{\sigma}}$ to B, TriSeg_{l,2^{\sigma}}
- 3. IF l' < n THEN l' := l' + 1, TriCol_{l'}, GOTO 2.

Correctness in ideal arithmetic. All inequalities $D_{l,2^{\sigma}} \leq \alpha^{4^{\sigma}} \delta^{-n} D_{l+1,2^{\sigma}}$ hold upon termination of **SLLL**. As TriSeg_{l,2^{\sigma}} results in size-reduced segments $B_{l,2^{\sigma}}$, $B_{l+1,2^{\sigma}}$ the terminal basis is size-reduced.

Theorem 7. Given a basis with M_0 , M **SLLL** finds under fpa of precision $t = 7n + 2\log_2 M_0$ for $n \ge n_0$ an SLLL-basis for δ_- . It runs in $O(nd \log_2 n \log_{1/\delta} M)$ arithmetic steps using integers and fpa numbers of bit length $7n + o(n) + 2\log_2 M_0$.

For $M_0 = 2^{O(n)}$ and d = O(n) **SLLL** runs in $O(n^4 \log n)$ arithmetic steps, and thus in $O(n^{5+\varepsilon'})$ bit operations for every $\varepsilon' > 0$.

Proof. Time bound. It is crucial that $\mathcal{D}^{(2^{\sigma})}$ does not increase within **SLLL**. locLLL $(R_{l,2^{\sigma}})$ leaves $\mathcal{D}^{(2^{\sigma'})}$ unchanged for $\sigma' > \sigma$ and does not increase $\mathcal{D}^{(2^{\sigma'})}$ for $\sigma' \leq \sigma$, because the segments $B_{l,2^{\sigma}}$ of level σ partition B, and this partition refines as σ decreases.

Each locLLL($R_{l,2^{\sigma}}$) execution within **SLLL** decreases $D_{l,2^{\sigma}}$ and $\mathcal{D}^{(2^{\sigma})}$ by a factor $\delta^{n/2}$ by the argument of Theorem 4. As initially $\mathcal{D}^{(2^{\sigma})} = \prod_{l=1}^{m-1} D_{l,2^{\sigma}}^{m-l} \leq M^{n2^{-\sigma}}$ the number of locLLL($R_{l,2^{\sigma}}$)-executions for all l is $\leq \log_{\delta^{-n/2}}(M^{n2^{-\sigma}}) = 2^{-\sigma+1}\log_{1/\delta}M$ for each $\sigma \geq 1$. Each execution requires $O(nd2^{\sigma})$ global steps for TriSeg_{l,2^{\sigma}}, hence all executions require $O(nd\log_{1/\delta}M)$ global steps for each $\sigma \geq 1$. For $\sigma = 0$ each round of LLLSeg_{l,1} requires O(nd) arithmetic steps and decreases $\mathcal{D}^{(1)} \leq M^n$ by a factor $2^{-n/2}$ due to Lemma 3. Hence, there are at most $2\log_2 M$ rounds of SegLLL_{l,1} for all l, requiring a total of $O(nd\log_2 M)$ global arithmetic steps. Thus there are $O(nd\log_2 n\log_{1/\delta}M)$ global arithmetic steps for all $\sigma = 0, ..., s$. The number of local steps, induced by local LLL-swaps of locLLL($R_{l,2^{\sigma}}$), is bounded by $O(n2^{2\sigma}\log_{1/\delta}M)$ for each $\sigma \leq s$, as for SLLL₀ with $r = 2^{\sigma}$. In addition there are n TriCol_l-executions requiring $O(n^2d)$ arithmetic steps. These steps are within the claimed step bound as $M \geq 2^n$. The required sqrt's can be computed within the claimed step bound by Newton iteration.

Correctness under fpa.We first bound the $M_{l,2^{\sigma}}$ -value of the input $R_{l,2^{\sigma}}$ of locLLL and LLLSeg_{l,1}. If $\sigma \geq 1$ then $R_{l,2^{\sigma}}$ is SLLL-reduced as **SLLL** executes locLLL($R_{l,2^{\sigma}}$) for the smallest possible σ , and thus $R_{l,2^{\sigma}}$, a basis of dimension $n' = 2^{\sigma+1} \leq 2\sqrt{n}$, is SLLL-reduced as the inequalities of Def.3 already hold for $\sigma' \leq \lceil \frac{1}{2}(\sigma+1) \rceil = \lceil \frac{1}{2}\log_2 n' \rceil$. Therefore, $R_{l,2^{\sigma}}$ satisfies by Lemma 2: $M_{l,2^{\sigma}} \leq \alpha^{2^{\sigma+1}} \delta^{-7n} \leq 2^n$ for $\delta \geq 0.96$, $\alpha \leq \sqrt{2}$, $2^{\sigma} \leq 2\sqrt{n}$ and $n \geq 16$.

If $\sigma=0$ the execution of LLLSeg_{l,1} on the dilated input $R'_{l,1}$ performs by Lemma 3 a transform $T_{l,1}$ with $||T_{l,1}||_1 \leq 9 \cdot 2^{n+1}$ and the dilated $R'_{l,1}$ satisfies $M_1(R'_{l,1}) \leq 2^{n+1}$.

The fpa-errors of $R_{l,2^{\sigma}}$, $R'_{l,1}$ within **SLLL**. When $r_{i,l}$ is used the basis $\boldsymbol{b}_1,...,\boldsymbol{b}_{l-1}$ already satisfies the bounds of Lemma 2 and $r_{l-1,l-1}/r_{l,l} \leq 2^{n+1}$ holds after dilation of $R'_{l,1}$. The initial $r_{i,l}$ resulting from TriCol_1 ,..., TriCol_l satisfies the inequalities (1),(3),(4) with $\bar{M}_0 \leq M_0$ and $\bar{M}_1^2 \leq \alpha^l \delta^{-7n} 4^n \leq 2^{3n}$. Hence, the initial fpa-error of $\bar{\mu}_{l,i}$ is bounded according to (4) by $O(d7^l M_0^2 2^{-3n} 2^{-t})$.

The loss of precision within $locLLL(R_{l,2^{\sigma}})$ described in Cor.1(1) gets corrected by the global update subsequent to $locLLL(R_{l,2^{\sigma}})$. We see that **SLLL** is correct using fpa with $t = 7n + o(n) + 2\log_2 M_0$ precision bits.

By Lemma 1 and the argument of Theorem 2 all intermediate basis vectors have length bounded by $2^n M_0 || T_{l,2^{\sigma}} ||_1 = 2^{2n+o(n)} M_0$. Therefore, all integers and fpa-numbers in **SLLL** have bit length $\leq 7n + o(n) + 2 \log_2 M_0$.

SLLL-bases versus LLL-bases. LLL-bases with δ satisfy the inequalities of Theorem 6 with δ replaced by 1. Thus $\|\boldsymbol{b}_j\|$ approximates λ_j to within a factor $\alpha^{\frac{n-1}{2}}$ for LLL-bases, resp., within a factor $(\alpha/\delta^7)^{\frac{n-1}{2}}$ for SLLL-bases. However, SLLL-bases for $\delta' = \delta^{1/8}$ are "better" than LLL-bases for δ , in the sense that they guarantee a smaller length defect, because $\alpha'/\delta'^7 = \frac{1}{\delta'^8 - \delta'^7/4} = \frac{1}{\delta - \delta'^7/4} < \frac{1}{\delta - 1/4} = \alpha$.

Dependence of time bounds on δ . The time bounds contain a factor $\log_{1/\delta} 2$,

$$\log_{1/\delta} 2 = \log_2(e) / \ln(1/\delta) \le \log_2(e) \frac{\delta}{1-\delta},$$

since $\ln(1/\delta) \geq 1/\delta - 1$. We see that replacing δ by $\sqrt{\delta}$ essentially halves $1 - \delta$ and doubles the SLLL-time bound. Hence, replacing δ by $\delta^{1/8}$ increases the **SLLL**-time bound at most by a factor 3. In practice, the LLL-time may increase slower than by the factor $\frac{\delta}{1-\delta}$ as δ approaches 1, see [KS01b, Fig.3].

Reducing a generator system. There is an algorithm **SLLL**' that, given a generator matrix $B \in \mathbb{Z}^{d \times n}$ of arbitrary rank $\leq n$, transforms B with the performance of **SLLL**, into an SLLL-basis for δ_{-} of the lattice generated by the columns of B.

6 SLLL-Reduction via Iterated Subsegments.

We present a variant of SLLL-reduction that extends LLL-operations stepwise to larger and larger submatrices $R_{l,2^{\sigma}} \subset R$ by transporting local transforms from level $\sigma-1$ to level σ recursively for $\sigma=1,...,s$, where $n=2^s$. Local LLL-reduction and the transport of local LLL-transforms is done by the new procedure $locSLLL(R_{l,2^{\sigma}})$ that recursively executes $locSLLL(R_{l',2^{\sigma-1}})$ for l'=2l-1,2l,2l+1. SLLL+ does not iterate the global procedure TriSeg iterating instead the faster local procedure locTri.

Unfortunately \mathbf{SLLL}^+ seems to require under $fpa\ t = O(\log(M_0M_1)) = O(n\log M_0)$ precision bits to cover the fpa-errors that get accumulated by the initial TriSeg and by iterating locTri. Obviously, $t = O(n\log M_0)$ precision bits erase under fpa the advantage of \mathbf{SLLL}^+ over \mathbf{SLLL} . \mathbf{SLLL}^+ essentially saves a factor n in the number of arithmetic steps compared to \mathbf{SLLL} but requires fpa-numbers that are n-times longer. We can reduce t by using Scaled LLL-reduction of [KS01b], and by a novel partitioning the \mathbf{SLLL}^+ -reduction into transforms $T_{l,2^{\sigma}}$ with small norm and correcting $R_{l,2^{\sigma}}T_{l,2^{\sigma}}$ by a global update. We plan to include this into a separate paper.

Here we merely analyse **SLLL**⁺ in ideal real arithmetic. **SLLL**⁺ runs in $O(n^2d + n \log_2 n \log_{1/\delta} M)$ arithmetic steps, e.g. for $M_0 = 2^{O(n)}$ and d = O(n) it runs in $O(n^3 \log n)$ arithmetic steps.

Definition 4. A basis $b_1, \ldots, b_n \in \mathbb{Z}^d$ with $n = 2^s$ is an SLLL⁺-basis (or SLLL⁺-reduced) for δ if it satisfies for $\sigma = 0, ..., s = \log_2 n$

$$D_{l,2^{\sigma}} \le (\alpha/\delta)^{4^{\sigma}} D_{l+1,2^{\sigma}} \quad \text{for odd } l \in [1, n/2^{\sigma}]. \tag{10}$$

Unlike to Def.2 and Def.3 the inequalities (10) are not required for even l, this opens new efficiencies for SLLL⁺-reduction. The inequalities (10) hold for each σ and odd l locally in double segments $[B_{l,2^{\sigma}}, B_{l+1,2^{\sigma}}]$, they do not bridge these pairwise disjoint double segments. For $\sigma = 0$ the inequalities (10) mean that $\|\boldsymbol{q}_l\|^2 \leq \alpha/\delta \|\boldsymbol{q}_{l+1}\|^2$ holds for odd l.

The inequalities (10) are preserved under duality. If $b_1, ..., b_n$ is an SLLL⁺basis then so is the dual basis $b_1^*, ..., b_n^*$. We next extend Theorem 3, and show that the first vector of an SLLL⁺-basis is almost as short relative to $(\det \mathcal{L})^{\frac{2}{n}}$ as for LLL-bases.

Theorem 8. Every $SLLL^+$ -basis b_1, \ldots, b_n , where n is a power of 2 satisfies $\|\boldsymbol{b}_1\| < (\alpha/\delta)^{\frac{n-1}{4}} (\det \mathcal{L})^{\frac{1}{n}} \quad and \quad \|\boldsymbol{q}_n\| > (\delta/\alpha)^{\frac{n-1}{4}} (\det \mathcal{L})^{\frac{1}{n}}.$

Proof. Using the inequalities (10) merely for l=1 we prove by induction on σ that $\|\boldsymbol{b}_1\|^{2^{\sigma+1}} \le (\alpha/\delta)^{4^{\sigma}/2-2^{\sigma-1}} D_{1,2^{\sigma}}$ holds for $\sigma = 0, ..., s = \log_2 n$.

For $\sigma=s$ this proves the first claim of the theorem as $D_{1,2^s}=(\det \mathcal{L})^2$ and $4^s2^{-s-1}-\frac{1}{2}=\frac{n-1}{2}$. The second claim holds by duality. The induction claim for $\sigma=0$ means that $\|\boldsymbol{b}_1\|^2\leq \|\boldsymbol{b}_1\|^2$ as $4^0/2-\frac{1}{2}=0$.

Induction from σ to $\sigma + 1$. By SLLL⁺-reducedness we have that $D_{1,2^{\sigma}} \leq$ $(\alpha/\delta)^{4^{\sigma}}D_{2,2^{\sigma}}$. We multiply both sides by $D_{1,2^{\sigma}}$ then the equation $D_{1,2^{\sigma+1}}=D_{1,2^{\sigma}}D_{2,2^{\sigma}}$ yields $D_{1,2^{\sigma}}^2\leq (\alpha/\delta)^{4^{\sigma}}D_{1,2^{\sigma+1}}$.

This and the squared induction hypothesis for σ implies

$$\|\boldsymbol{b}_1\|^{2^{\sigma+2}} < (\alpha/\delta)^{4^{\sigma}-2^{\sigma}} (\alpha/\delta)^{4^{\sigma}} D_{1,2^{\sigma+1}}.$$

This proves the claim for $\sigma + 1$ since $4^{\sigma} - 2^{\sigma} + 4^{\sigma} = 4^{\sigma+1}/2 - 2^{\sigma}$.

Let the given basis $b_1,...,b_n \in \mathbb{Z}^d$ have GNF $R \in \mathbb{R}^{n \times n}$. The local procedures $locSLLL(R_{l,2^{\sigma}})$, $locTri(R_{l,2^{\sigma}})$ are given for input on transformed submatrices $R_{l,2^{\sigma}} = R'_{l,2^{\sigma}} T_{l,2^{\sigma}}$, where $R'_{l,2^{\sigma}}$ is the initial submatrix $R_{l,2^{\sigma}}$ of R and $T_{l,2^{\sigma}}$ is the currently performed transform. We let locSLLL $(R_{l,1})$ coincide with $locll(R_{l,1})$, and we recursively define $locsll(R_{l,2})$ for $\sigma = 1, ..., s$.

 $locSLLL(R_{l,2^{\sigma}})$ ($locSLLL_{l,2^{\sigma}}$ for short)

locSLLL $_{l,2^{\sigma}}$ locally $SLLL^+$ -reduces $R_{l,2^{\sigma}}$ and updates the local transform $T_{l,2^{\sigma}}$. Note that $R_{l',2^{\sigma-1}} \subset R_{l,2^{\sigma}}$ iff $l' \in \{2l-1,2l,2l+1\}$.

1. $T_{l,2^{\sigma}} := I_{2^{\sigma+1}}, \ l' := 2l-1$

$T_{l,2\sigma}$ is always updated to be the product of all previous transforms $T_{l',2\sigma'}$ for $\sigma' < \sigma$ performed within locSLLL_{l,2\sigma}.

2. WHILE l' < 2l + 1 DO

copy $R_{l',2^{\sigma-1}}$ from $R_{l,2^{\sigma}}$

locSLLL $_{l',2^{\sigma-1}}$, transport $T_{l',2^{\sigma-1}}$ to $R_{l,2^{\sigma}}$ and $T_{l,2^{\sigma}}$, locTri $(R_{l,2^{\sigma}})$, update $T_{l,2^{\sigma}}$ for the size-reduction performed by locTri IF $l' \geq 2l$ and $D_{l'-1,2^{\sigma-1}} > (\alpha/\delta)^{4^{\sigma-1}}D_{l',2^{\sigma-1}}$ THEN l':=l'-1 ELSE l':=l'+1.

 $locTri(R_{l,2^{\sigma}})$

locTri($R_{l,2^{\sigma}}$) locally triangulates and size-reduces $R_{l,2^{\sigma}}$ using $O(2^{3\sigma})$ arithmetic steps.

- 1. Produce a copy $[\boldsymbol{b}_1',...,\boldsymbol{b}_{2^{\sigma+1}}']$ of $R_{l,2^{\sigma}}$
- $2. \quad \text{FOR} \quad i=1,...,2^{\sigma+1} \quad \text{DO} \quad \text{TriCol}(\pmb{b}_1'...,\pmb{b}_i',\pmb{h}_1',...,\pmb{h}_{i-1}',\pmb{r}_1',...,\pmb{r}_{i-1}')$
- 3. $D_{j,2^{\sigma}} := \prod_{i=0}^{2^{\sigma}-1} r_{2^{\sigma}j-i,2^{\sigma}j-i}$, for j = l, l+1.

Correctness of $locSLLL_{l,2^{\sigma}}$. We see by induction on σ that upon termination of $locSLLL_{l,2^{\sigma}}$ the basis $R_{l,2^{\sigma}}$ is $SLLL^+$ -reduced, upper-triangular and size-reduced; its local transform is stored in $T_{l,2^{\sigma}}$. Local triangulation of a transformed $R_{l,2^{\sigma}}T_{l,2^{\sigma}}$ results in the same submatrix $R_{l,2^{\sigma}} \subset R$ obtained by global triangulation of the transformed B via $local Triseg_{1,n/2}$.

Upon termination the inequalities (10) hold locally within $R_{l,2^{\sigma}}$ for even and odd l, but possibly $D_{4l,2^{\sigma-2}} > (\alpha/\delta)^{4^{\sigma-2}} D_{4l+1,2^{\sigma-2}}$ since the final locSLLL_{2l+1,2^{\sigma-1}}-execution may revers the inequality $D_{4l,2^{\sigma-2}} \leq (\alpha/\delta)^{4^{\sigma-2}} D_{4l+1,2^{\sigma-2}}$.

$SLLL^+$

INPUT $b_1, \ldots, b_n \in \mathbb{Z}^d$ (a basis with M), $n = 2^s$, δ OUTPUT b_1, \ldots, b_n a size-reduced SLLL⁺-basis

- 1. # compute $R_{1,n/2}$: TriSeg_{1,n/2}
- 2. $locSLLL(R_{1,n/2})$, # global update: $B := BT_{1,n/2}$

Correctness of $SLLL^+$ follows from the correctness of $locSLLL_{1,n/2}$.

Theorem 9. In ideal arithmetic \mathbf{SLLL}^+ computes a size-reduced $SLLL^+$ -basis for δ and runs in $O(n^2d + n \log_2 n \log_{1/\delta} M)$ arithmetic steps.

Proof. For $\sigma = 0, ..., s-1$ let $\#_{2^{\sigma}}$ denote the number of $locSLLL_{l,2^{\sigma}}$ -executions in $SLLL^+$ due to $D_{l,2^{\sigma}} > (\alpha/\delta)^{4^{\sigma}} D_{l+1,2^{\sigma}}$ for all l. By the argument of Theorem 4 each $locSLLL_{l,2^{\sigma}}$ execution counted in $\#_{2^{\sigma}}$ decreases $\mathcal{D}^{(2^{\sigma})}$ by the factor $\delta^{4^{\sigma}/2}$. Initially the integer $\mathcal{D}^{(2^{\sigma})}$ satisfies $\mathcal{D}^{(2^{\sigma})} \leq M^{n/2^{\sigma}}$, and upon termination $\mathcal{D}^{(2^{\sigma})} \geq 1$, hence $\#_{2^{\sigma}} \leq 2n \cdot 2^{-3\sigma} \log_{1/\delta} M$.

Each of the $locSLLL_{l',2^{\sigma-1}}$ -executions within $locTri(R_{l,2^{\sigma}})$ requires an overhead of $O(2^{3\sigma})$ arithmetic steps. This covers the matrix transports and the subsequent $locTri(R_{l,2^{\sigma}})$ -execution. The very first $locSLLL_{l',2^{\sigma-1}}$ -execution within $locSLLL_{l,2^{\sigma}}$ is possibly not counted in $\#_{2^{\sigma-1}}$. We allocate its overhead of $O(2^{3\sigma})$ steps to the overhead of $locSLLL_{l,2^{\sigma}}$. We see that the total overhead of all $locSLLL_{l,2^{\sigma}}$ -executions is $O(2^{3\sigma} + n \log_{1/\delta} M)$ for each $\sigma \leq s$.

Moreover, the initial $\operatorname{TriSeg}_{1,n/2}$ and the final update $B := B T_{1,n/2}$ require $O(n^2 d)$ arithmetic steps. We see that $\operatorname{\mathbf{SLLL}}^+$ runs in $O(n^2 d + n \log_2 n \log_{1/\delta} M)$ arithmetic steps, where $s = \log_2 n$.

Further improvements of \mathbf{SLLL}^+ . It is still possible to improve the time bound of \mathbf{SLLL}^+ via modular reduction and fast matrix multiplication following [St96]. But this will hardly be practical. Other variants of \mathbf{SLLL}^+ are more promising. \mathbf{SLLL}^+ can be modified to achieve the length defect of \mathbf{SLLL} -bases. This is possible by the concept of strong SLLL-reduction of [KS02]. Practicability requires an \mathbf{SLLL}^+ -algorithm that runs under fpa of $t = O(n + \log_2 M_0)$ precision bits instead of the straightforward method with $t = O(n \log_2 M_0)$. We plan to continue in this direction.

Acknowledgement. Damien Stehle, a student of Phong Nguyen, informed me that I previously misused the analysis of Householder transforms in [LH95]. Prop. 1 corrects this error.

References

- [Aj98] M. Ajtai, The Shortest Vector Problem in L₂ is NP-hard for Randomized Reductions. Proc. 30th STOC, pp. 10–19, 1998.
- [Aj03] M. Ajtai, The Worst-case Behavior of Schnorr's Algorithm Approximating the Shortest Nonzero Vector in a Lattice. Proc. 35th STOC, pp. 396–406 2003.
- [AKS01] M. Ajtai, R. Kumar, and D. Sivakumar, A Sieve Algorithm for the Shortest Lattice Vector Problem. Proc. 33th STOC, pp. 601–610, 2001.
- [Ak02] A. Akhavi, Random Lattices, Threshold Phenomena and Efficient Reduction Algorithms. Theoret. Comput. Sci., 287, pp. 359–385, 2002.
- [BM03] J. Blömer and A. May New Partial Key Exposure Attacks on RSA. Proc. Crypto'2003, Lecture Notes in Comp.Sci., 2729, Springer, New York, pp. 27-43, 2003.
- [BN00] D. Bleichenbacher and P.Q. Nguyen, Noisy Polynomial Interpolation and Noisy Chinese Remaindering. Eurocrypt 2000, Lecture Notes in Comput. Sci., 1807, Springer, New York, pp. 53-69, 2000.
- [BS99] J. Blömer and J.P. Seifert, On the Complexity of Computing Short Linearly Independent Vectors and Short Bases in a Lattice. Proc. 31th STOC, pp. 711– 720, 1999.
- [Bo00] D. Boneh, Finding Smooth Integers in Small Intervals Using CRT Decoding. Proc. 32th STOC, pp. 265-272, 2000.
- [Ca00] J. Cai, The Complexity of some Lattice Problems. Algorithmic Number Theory, Lecture Notes in Comput. Sci., 1838, Springer, New York, pp. 1-32, 2000.
- [Co97] D. Coppersmith, Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities. J. Cryptology, 10, pp. 233-260, 1997.
- [Co01] D. Coppersmith, Finding Small Solutions to Small Degree Polynomials. Cryptography and Lattices, Lecture Notes in Comput. Sci., Springer, New York, 2146, pp. 20-31, 2001.
- [DV94] H. Daudé and B. Vallée, An Upper Bound on the Average Number of Iterations of the LLL algorithm, Theoret. Comput. Sci., 123, pp. 395–115, 1994.

- [E81] P. van Emde Boas, Another NP-Complete Partition Problem and the Complexity of Computing Short Vectors in a Lattice. Mathematics Department, University of Amsterdam, TR 81-04, 1981.
- [Ga801] C. F. Gauss, Disquisitiones Arithmeticae. 1801; English transl., Yale Univ. Press, New Haven, Conn. 1966.
- [He85] B. Helfrich, Algorithms to Construct Minkowski Reduced and Hermite Reduced Bases. Theor. Comput. Sci. 41, pp. 125–139, 1985.
- [HJLS89] J. Håstad, B. Just, J.C. Lagarias und C.P. Schnorr, Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers, SIAM Journal on Computing, 18, pp. 859–881, 1989.
- [K84] R. Kannan, Minkowski's Convex Body Theorem and Integer Programming. Math. Oper. Res., 12, pp. 415–440, 1984.
- [KS01a] H. Koy and C.P. Schnorr, Segment LLL-Reduction. Cryptography and Lattices, Lecture Notes in Comput. Sci., 2146, Springer, New York, pp.67–80, 2001. //www.mi.informatik.uni-frankfurt.de/research/papers.html
- [KS01b] H. Koy and C.P. Schnorr, Segment LLL-Reduction with Floating Point Orthogonalization. Cryptography and Lattices, Lecture Notes in Comput. Sci., 2146, Springer, New York, pp. 81–96, 2001. //www.mi.informatik.uni-frankfurt.de/research/papers.html
- [KS02] H. Koy and C.P. Schnorr, Segment and Strong Segment LLL-Reduction of Lattice Bases. TR Universität Franfurt, April 2002, //www.mi.informatik.unifrankfurt.de/research/papers.html
- [Le83] H. W. Lenstra, Jr., Integer Programming With a Fixed Number of Variables. Math. Oper. Res. 8, pp. 538-548, 8, 1983.
- [LH95] C.L. Lawson and R.J. Hanson, Solving Least Square Problems. Siam Publications, 1995 (first published by Prentice Hall, New Jersey 1974).
- [LLL82] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring Polynomials with Rational Coefficients. Math. Ann., 261, pp. 515-534, 1982.
- [Lo86] L. Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity, CBMS-NSF Regional Conference Series in Applied Mathematics, 50, SIAM Publications, Philadelphia, 1986
- [Ma03] A. May, New RSA Vulnerabilities Using Lattice Reduction Methods. Dissertation Thesis, University of Paderborn, October 2003.
- [Mi01] D. Micciancio, A Linear Space Algorithm for Computing the Hermite Normal Form, Proceedings ISSAC 2001, Lecture Notes in Computer Sci., 2146, Springer, New York, pp. 126-145, 2001.
- [MG02] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems, A Cryptographic Perspective. Kluwer Academic Publishers, London, 2002.
- [ML01] S. Mehrotra and Z. Li, Reduction of Lattice Bases Using Modular Arithmetic. TR. Dept. of Industrial Engeneering and Management Sciences, Northwestern University, Evanston, Il. Oct 2001, mehrotra, zhifeng@iems.nwu.edu.
- [NS00] P.Q. Nguyen and J. Stern, Lattice Reduction in Cryptology, An Update. Algorithmic Number Theory, Lecture Notes in Comput. Sci., 1838, Springer, New York, pp. 85-112, 2000. full version http://www.di.ens.fr/pnguyen,stern/
- [S87] C.P. Schnorr, A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. Theoret. Comput. Sci., 53, pp. 201–224, 1987.
- [S88] C.P. Schnorr, A More Efficient Algorithm for Lattice Reduction. J. of Algor. 9, 47–62, 1988.
- [SE91] C.P. Schnorr and M. Euchner, Lattice Basis Reduction and Solving Subset Sum Problems. Fundamentals of Comput. Theory, Lecture Notes in Comput.

- Sci., 591, Springer, New York, pp. 68–85, 1991. The complete paper appeared in Math. Programming Studies, **66A**, 2, 1994, pp. 181–199.
- [S03] C.P. Schnorr, Lattice Reduction by Random Sampling and Birthday Methods. Proc. STACS 2003, Eds. H. Alt and M. Habib, Lecture Notes in Comput. Sci., 2607, Springer, New York, pp. 145–156, 2003.
- [S04] C.P. Schnorr, Gittertheorie und Algorithmische Geometrie. Lecture Notes Universität Frankfurt, Frankfurt, 2004. //www.mi.informatik.unifrankfurt.de/index.html#teaching
- [Sc84] A. Schönhage, Factorization of Univariate Integer Polynomials by Diophantine Approximation and Improved Lattice Basis Reduction Algorithm. Proc. 11-th Coll. Automata, Languages and Programming, Antwerpen 1984, Lecture Notes in Comput. Sci., 172, Springer, New York, pp. 436–447, 1984.
- [St96] A. Storjohann, Faster Algorithms for Integer Lattice Basis Reduction. TR 249, Swiss Federal Institute of Technology, ETH-Zurich, Department of Computer Science, Zurich, Switzerland, July 1996. //www.inf.ethz.ch/research/publications/html.
- [Wi65] J.H. Wilkinson, The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.