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ABSTRACT. Integrability conditions of type L
p along straight lines within a

strip in C are derived for holomorphic functions which are integrable over the
area of the strip.

The Phragmén–Lindelöf principle is a substitute for the maximum-modulus
principle when the domain under consideration is unbounded. One of its in-
numerable applications is Hadamard’s three-lines theorem [1, Section 5.65],
which roughly states that the growth order of a holomorphic function in a strip
in C is determined by the growth order on the boundary of the strip, and that
the suprema over straight lines within the strip are logarithmically convex.
This convexity result was generalized by Littlewood [2, 3] from suprema to Lp-
norms, which in turn has numerous applications, most notably in harmonic
analysis and to Hardy spaces [4].

Not much is known, however, about sufficient conditions for the Lp-integra-
bility of a holomorphic function along straight lines in a strip. Here we remark
on some small steps in that direction. For our discussion, fix the strip

Y
def

= R + i[y1, y2], with −∞ < y1 < y2 < ∞.

Denote by Oc(Y ) the set of functions which are holomorphic in Y ◦ and con-
tinuous on the boundary ∂Y . Let d(λ) be the Lebesgue measure on C. The
Lp-means of a function f ∈ Oc(Y ) are defined as

Mp(y, f)
def

=

( ∫

Im z=y

|f(z)|
p
|dz|

)1/p

, for y1 ≤ y ≤ y2,

for 0 < p < ∞, whenever they exist.
One basic convexity result concerning Lp-means goes back to Hardy, Ingham

and Pólya. We cite it following Narasimhan.
Proposition 1 ([5, Proposition 4, p. 244]). Let f ∈ Oc(Y ) be such that Mp(y, f)
is locally uniformly bounded for y ∈ (y1, y2). Then log Mp(y, f) is convex in y.

Our basic result gives a sufficient condition for the assumption of local uni-
form boundedness in the above theorem in a specal case.
Proposition 2. Let f ∈ Oc(Y )∩L1(Y, d(λ)). Then M1(y, f) is finite and locally
uniformly bounded in y ∈ (y1, y2), and log M1(y, f) is convex there.
Proof. Let I be a compact subset of (y1, y2) and Γ(y) = {z

∣∣ Im z = y}, y ∈ I .
Divide Γ(y) in unit intervals

Lj =
{
x + iy ∈ Γ(y)

∣∣ x ∈ [j, j + 1]
}
, for j ∈ Z.
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Choose neighbourhoods

Wj =
{
z ∈ C

∣∣ dist(z, Lj) < ε
}

whose boundary has distance ε from Lj , where 0 < ε < 1/2 is chosen such that
Wj ⊂ R + iI . Choose a smooth function φ0 ∈ C∞

c (W0) such that φ0 ≡ 1 in a
neighbourhood of L0. Let φj(z) = φ0(z − j) ∈ C∞

c (Wj) be the translates of φ0

for j ∈ Z, and set

Dj =
{
z ∈ C

∣∣ 0 < φj(z) < 1
}
, D̃j =

{
z ∈ C

∣∣ 0 < φj(z)
}
.

Then, Dj = D0 + j is relatively compact in Wj \ Lj , and δ = dist(Dj , Lj) > 0 is
independent of j. This situation is sketched below.

Lj

Wj Wj+1Wj−1

Dj

ε

Γ(y)

The integral formula of Cauchy–Stokes [6, Theorem 1.2.1] yields

f(z) = (φjf)(z) =
1

2πi

(∫

∂D̃j

(φjf)(w)

w − z
dw +

∫

D̃j

∂w(φjf)(w)

w − z
dw ∧ dw

)
,

for all z ∈ Lj . Now φj = 0 on ∂D̃j , and thus the first term vanishes. For the
second term, we use the holomporphy of f in D̃j to conclude ∂w(φjf) = ∂wφj ·f ,
and since ∂wφj = 0 on D̃j \ Dj we can restrict the integral to Dj . The result is

f(z) =
−1

π

∫

Dj

∂φj

∂w

f(w)

w − z
dλ(w), for z ∈ Lj ,

taking −2idλ(w) = dw ∧ dw into account. Therefore we can estimate

sup
z∈Lj

|f(z)| ≤ K

∫

Dj

|f(w)|dλ(w), with K =
1

πδ
· sup

w∈Dj

∣∣∣∣
dφj

dw

∣∣∣∣.

The constant K is independent of j, allowing us to estimate

M1(y, f) =

∫

Γ(y)

|f(z)||dz|

≤

+∞∑

j=−∞

sup
z∈Lj

|f(z)|

≤ K
+∞∑

j=−∞

∫

Dj

|f(w)|dλ(w)

≤ 2K‖f‖L1(I)

≤ 2K‖f‖L1(Y ) < ∞.

Here, a factor 2 appears since we have chosen ε such that at most two neigh-
bouring Wj have nonempty intersection. Since I b (y1, y2) was arbitrary,
M1(y, f) exists in (y1, y2) and is locally uniformly bounded there, with local
bound 2K‖f‖L1(I) on I . Proposition 1 then shows the claimed convexity. �
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Our first generalization is that to Lp, 0 < p < ∞. Here we use subharmonic
functions, which we avoided in the elementary proof of the L1-case above.

Proposition 3. Let f ∈ Oc(Y ) ∩ Lp(Y, d(λ)), for 0 < p < ∞. Then Mp(y, f) is
finite and locally uniformly bounded in y ∈ (y1, y2), and log Mp(y, f) is convex.

Proof. We use the notation of the proof of Proposition 2. Let Dε(z) be the open
disc of radius ε around z ∈ Lj . Now, the function g(z) = |f(z)|p is subharmonic
on Y ◦, and it has the sub-mean-value property [4, Theorem 1.4], which can be
written in the form

rg(z) ≤
1

2π

∫ 2π

0

g(z + reiθ)rdθ,

for z ∈ Lj , and all 0 < r < ε, using that the right hand side is nondecreasing in
r [4, Theorem 1.6]. This inequality can be integrated with respect to r over the
range (0, ε) to yield

g(z) ≤
1

πε2

∫

Dε(z)

g(w)dλ(w).

Letting z vary in Lj , the discs Dε(z) sweep out Wj , and thus

sup
z∈Lj

g(z) ≤

∫

Wj

g(z)dλ(z).

The same summation argument as in the proof of Proposition 2 can be applied
to conclude the proof, where the local constant of uniform boundedness K has
to be replaced by K ′ = 1/(πε2). �

Both proofs above require Γ(y) to have an arbitrarily small, but finite, dis-
tance from ∂Y . To obtain a condition for the existence of Mp in the strip that
depends only on the boundary as in the original Phragmén-Lindelöf theorem,
we have to pose additional conditions. One problem is here, that even if f is Lp

on the boundary, it still can behave rather badly there (it need not even vanish
at infinity). We give a sufficient condition for f to behave good enough on ∂Y ,
valid if f is exact for the Cauchy–Riemann operator ∂.

Corollary 4. Assume there exists F ∈ C1(Y ◦) such that |f |p = ∂F on Y ◦, and
∣∣∣∣
∫

∂Y

F (z)dz

∣∣∣∣ < ∞, and I = sup
x∈R

∣∣∣∣
∫ y2

y1

F (x + iy)dy

∣∣∣∣ < ∞.

Then Mp(y, f) is finite and locally uniformly bounded in y ∈ (y1, y2), and
log Mp(y, f) is convex.

Proof. Set Rj = [−j, j] + i[y1, y2]. Then Stokes’ theorem implies
∫

Rj

|f |
p
dλ(z) =

∫

Rj

∂F (z)dλ(z) =
1

2i

∫

∂Rj

F (z)dz,

where we chose ∂Rj to be positively oriented. Thus
∫

Y

|f |
p
dλ(z) = lim

j→∞

1

2i

∫

∂Rj

F (z)dz

≤
1

2

∣∣∣∣
∫

∂Y

F (z)dz

∣∣∣∣ + I < ∞

by assumption. The claim now follows from Proposition 3. �

One natural generalization of Proposition 3 concerns integrability with re-
spect to a weight function on the strip. We consider the case of polynomial
weights to exhibit the method. This has been used in [7] to construct the dual-
ity theory of hyperfunctions with polynomial growth order in one dimension.
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Corollary 5. Let γ ∈ R and f ∈ Oc(Y ) ∩ Lp
(
Y, (1 + |Re z|)γdλ(z)

)
. Then

Mp,γ(y, f)
def

=

( ∫

Im z=y

|f(z)|p(1 + |Re z|)γ |dz|

)1/p

< ∞,

for all y1 ≤ y ≤ y2, and Mp,γ(y, f) is convex in (y1, y2).

Proof. The function

jγ(z) =
(
(y2 − y1)

2 + (z − iy1)
2
)(γ−p)/2

is holomorphic in a neighbourhood of Y and does not vanish there. Further-
more jγ = O(|Re z|

γ−p
), and thus the function jγf satisfies the assumption of

Proposition 3 if and only if f satisfies the one of this corollary. �
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