The American Journal of Human Genetics, Volume 99

Supplemental Data

Exome Sequencing Identifies Biallelic MSH3

Germline Mutations as a Recessive Subtype

of Colorectal Adenomatous Polyposis

Ronja Adam, Isabel Spier, Bixiao Zhao, Michael Kloth, Jonathan Marquez, Inga Hinrichsen, Jutta Aylar Tafazzoli, Kirfel, Sukanya Horpaopan, Siegfried Uhlhaas, Stienen, Dietlinde Nicolaus Friedrichs, Janine Altmüller, Andreas Laner, Stefanie Holzapfel, Sophia Peters, Katrin Kayser, Holger Thiele, Elke Holinski-Feder, Giancarlo Marra, Glen Kristiansen, Markus M. Nöthen, Reinhard Büttner, Gabriela Möslein, Regina C. Betz, Angela Brieger, Richard P. Lifton, and Stefan Aretz

PCA plot, PC 1 vs PC 2

Figure S1 Results of Principle Component Analysis (PCA). The genotypes of the 100 probands who met coverage standards were compared to HapMap genotype data. A central European origin was indicated for all samples, with the exception of one outlier sample, which was subsequently excluded from further analysis.

Figure S2 *MSH3* mutations in exome sequencing data. Biallelic loss-of-function *MSH3* germline mutations identified via exome sequencing in leukocyte DNA of patients 1275.1 and 1661.1 (visual control of reads in IGV browser).

Figure S2

Figure S3 Candidate genes identified in the present study. All genes (labeled left) are affected by rare heterozygous or biallelic, potentially pathogenic variants in \geq 2 alleles of the cohort. Patients (labeled above) harboring \geq 2 mutated candidate genes are shown in red.

Figure S4 Effects of *MSH3* mutations on protein level. A vector carrying *MSH3* wild type (wt) or a *MSH3* variant was over-expressed in HEK293T cells. The frameshift variants (A) were constructed by site directed mutagenesis of *MSH3* wt. The splice site variants (B) were mimicked by vectors lacking the exon 22 (M2) or exon 17 (M3), respectively. From the predicted effects on protein level, the expected sizes were calculated (C). The Western blot shows MSH3 sizes congruent with the predicted protein alterations. Endogenous wild type MSH3 is found at a size of 130 kDa in all samples, including the negative (neg.) control transfected with a vector not coding MSH3. β-Actin staining was used to assess equal lane loading.

Figure S5 Mapping of deleted exons to protein structure. The human MutSβ structure published by Yang's group shows MSH2 (pale blue) and MSH3 (dark blue) binding to a dinucleotide loop (olive). We highlighted amino acids coded by regions affected by the altered splicing in red (exon 17), orange (exon 22) and purple (C-terminus altered through frameshift).

Figure S6 Expression of MMR partner proteins. Immunohistochemical staining of adenoma tissue shows normal protein levels of other MMR proteins (MLH1, MSH2, MSH6 and PMS2) for the index patients of families 1275 and 1661.

Figure S7 Results for additional microsatellite markers. Four dinucleotide repeat markers (D2S123, D17S250, D10S197, D18S58) and one further tetranucleotide repeat marker (MYCL1) were examined in normal and tumor tissue. Only those markers showing instability are depicted. All results were validated in a second tumor sample.

С

С

A C

3475

Т Ġ A Α G A A G A A G A G Α G A Ċ С

T G

Т Ġ A Α G А À G A Α G À G A G A

TĠA

TĠ

n 16

3460

A A G

A G

A A G

A Á

A Å

A Á

3465

G

G

G

A A

APC / Exon 16

A A

A

GÁGAGAĆC

G

Ä

A

3470

GAGACC

G A G

Figure S8

Figure S8 Somatic APC mutations. Targeted deep sequencing results for the *APC* gene in adenoma-derived DNA from patient 1661.1: Comparison of four independent adenomas with leukocyte DNA identified seven different somatic *APC* mutations (1-2 per polyp) in 6-36% of the reads (the percentage of mutated reads in the forward and reverse reads respectively is shown in brackets). All seven mutations were small deletions of 2-8 nucleotides. In 4/7 mutations, the sequence context proved to be di- or trinucleotide repeats.

PMS2:c.2T>A;p.Met1?

Α

С

PMS2:c.863delA;p.Gln288Argfs*19

Figure S9

I	I.	I	I	1	1
5035180	6035190	6035200	6035210	6035220	e
AGGCCGCCGG	GTTGATAAAGA	AAAAC <mark>-</mark> GTC	IGTCIGIIGA	ACT	
aggeegeegg	gttgataaaga	aaaactgtc	tgtctgttga	ac	
AGGCCGCCGG	STTGATAAAGA	AAAAC <mark>-</mark> GTC	TGTCTGTTGA.	ACTC	
AGGCCGCCGG	GTTGATAAAGA	AAAACTGTC	IGTCTGTTGA.	ACT	
AGGCCGCCGG	STIGATAAAGA STTGATAAAGA		IGICIGIIGA IGTCIGIIGA	ACIC	
aggccgccgg	gttgataaaga	aaaact <mark>-</mark> tc	tgtctgttga	actcc	
aggccgccgg	gttgataaaga	aaaac <mark>-</mark> gtc	tgtctgttga	actcc	
addccdccdd	gttgataaaga	aaaactgtc	tgtctgttga	actc	
radccaccaa	gttgataaaga	aaaac <mark>-</mark> gtc	tgtctgttga	actcc	
raaccaccaa	nttgataaaga	aaaac <mark>-</mark> gtc	tgtctgttga	actcc	
AGGCCGCCGG	TTGATAAAGA	AAAACTGTC	TGTCTGTTGA	ACTCCT	
aggccgccgg	gttgataaaga	aaaac <mark>-</mark> gtc	tgtctgttga	actcctt	
AGGCCGCCGG	STTGATAAAGA	AAAACTGTC	TGTCTGTTGA.	ACTCCTTCC	
AGGCCGCCGG	SIIGATAAAGA STTGATAAAGA	AAAACTGTC	IGICIGITGA. TGTCTGTTGA	ACTCCTTCC	

R

D

Ε

Figure S9 *PMS2* germline mutations. (A) Exome sequencing from leukocyte-derived DNA of patient 1138 revealed the mutations c.2T>A;p.Met1? and c.863delA;p.Gln288Argfs*19 in *PMS2* (reverse sequence, Varbank). (B) Sanger validation of *PMS2* exons 1 and 8 confirmed both mutations (top line shows reference). (C) Immunohistochemical staining of both tumor and normal tissue shows complete loss of PMS2 protein, whereas (D) MLH1 expression is normal. (E) H-E staining.

PARAMETER	MEAN	MEDIAN	ST DEV
# of Reads (M)	65.7	64.6	11.0
Median Coverage (X)	55.6	54.5	9.4
Mean Coverage (X)	66.6	65.3	10.8
% on genome	91.8%	91.9%	0.5%
% on target	66.2%	66.4%	1.7%
% of bases covered at least 4x	96.6%	96.8%	0.6%
% of bases covered at least 8x	94.1%	94.3%	1.1%
% of bases covered at least 20x	84.1%	84.4%	2.8%
Mean error rate	0.5%	0.5%	0.1%
% of PCR duplicate	4.9%	4.7%	1.0%
# of hom. SNVs	11606.8	11650.0	301.1
% of novel hom. SNVs	0.2%	0.2%	0.1%
# of het. SNVs	18474.9	18502	603.7
% of novel het. SNVs	2.3%	2.1%	0.8%

 Table S1. Summary statistics of exome sequencing performance and calling of variants.

het. = heterozygous; hom = homozygous; SNV= single nucleotide variants; st dev = standard deviation

Table S2. Clinical characteristics of the cohort (n	า=102).
---	---------

No. of patients	102				
Gender (female / male)	45 / 57				
Age at diagnosis (years)					
Mean	45				
Standard deviation	14				
Range	14-73				
No. of colorectal adenomas					
21-50	36 (35 %)				
51-100	22 (22 %)				
> 100	16 (16 %)				
"numerous" / "multiple" ^a	28 (27 %				
Colorectal cancer	29 (28 %)				
Duodenal polyps	13 (13 %)				
Extracolonic tumors (details see Table S3)	14 (14 %)				
Family history ^b					
Familial	20 (20 %)				
Simplex	45 (44 %)				
Unclear	37 (36 %)				

^a "numerous" / "multiple" refers to cases where no exact numbers of polyps were mentioned in the clinical reports. However, based on all available information it is very likely that the inclusion criteria are met in these individuals.

^b Family history refers to the presence of a colorectal polyposis in the relatives of the index polyposis patients; "Familial" is defined as the presence of at least one further first or second degree relative with multiple colorectal polyps; "Simplex" is defined as an isolated case with complete unconspicious family history regarding colorectal polyposis or early onset colorectal cancer, and "Unclear" is defined as the situation where a distinction between simplex and familial is impossible, e.g. a first or second degree relative with non-early-onset colorectal cancer and no known colorectal polyposis.

Table S3. Extracolonic tumor spectrum (malignant tumors and rare benign tumors, sorted by location) of the cohort (index patients), including one of the patients with biallelic *MSH3* mutations (ID 1661) and the patient with biallelic *PMS2* mutations (ID 1138).

ID	Extracolonic tumors (age at diagnosis)
	Malignant tumors
1661	astrocytoma (26 y)
1138	primitive neuroectodermal tumor (PNET) of the cerebellum (4 y), pilomatrixoma, three café-au-lait spots
1300	M. Hodgkin (21 y), basalioma (50 y)
666	five basaliomas (34 y and 45 y)
1356	skin cancer (~45 γ)
1375	malignant melanoma (31 y and 47 y)
568	breast cancer (48 y)
696	breast cancer (66 y)
1189	duodenal neuroendocrine, gastrin producing tumour (48 y)
1481	renal cell carcinoma (65 y)
5007	renal cell carcinoma (65 y)
736	prostate cancer (51 y)
	Rare benign tumors
807	retroperitoneal fibrosis (29 y)
1294	adrenal gland adenoma (27 γ)

Table S4Candidate genes affected by rare potentially pathogenic variants identified in the present study.

Pat. ID	Gene	Mutation Type	Geno- type	Coding DNA Change	Predicted Prot. Change	Result of RNA Analysis	Ref. Cov.	Non- Ref. Cov.	San- ger Valid.	Phylo P	dbSNP Accession Number	mRNA Accession Number	TCGA	mRNA Expr.ª	Prot. Expr. ^a	RVIS ^b (Per- centile)	HIS ^c (%)	Gene Function		
5021	BTBD9	nonsense	het.	c.1480C>T	p.Arg494*	na	36	23	yes	1.09	rs377402489	NM_0010	0	т	F	-0.96	0.267	Potential involvement in synaptic		
1245	BTBD9	nonsense	het.	c.1080G>A	p.Trp360*	na	30	25	yes	5.94		99272.1	Ű			(9.1)	(33.3)	plasticity and vesicle recycling		
1558	CD36	frameshift	het.	c.79dupA	p.Met27Asnfs*13	na	82	42	yes									Receptor for thrombospondins; cell		
5019	CD36	frameshift	het.	c.708_709del	p.Ser237Leufs*10	na	139	74	yes		rs146885545	NM_0010	1	-	-	-1.7	0.847	adhesion molecule; transports /		
1163	CD36	nonsense	het.	c.971C>G	p.Ser324*	na	37	23	na	-0.12		01548.2	1548.2		I	(2.6)	(4.7)	reported involvement in <i>apoptosis</i> and <i>cancer stem cell</i> maintenance		
0922	DNAJB7	in-frame deletion	het.	c.122_124del	p.Glu41del	na	48	29	yes	1.01		NNA 1451				0.69	0 106			
1104	DNAJB7	in-frame deletion	het.	c.122_124del	p.Glu41del	na	41	22	yes	1.01		74.1	0	F	F	(85.1)	(70.4)	Likely activity as a cochaperone		
1301	DNAJB7	missense	het.	c.205G>A	p.Gly69Ser	na	27	25	na	4.16										
0929	ECHDC3	splice site	het.	c.591+1G>A	p.Val131_Lys197del	in-frame loss of exon 4	17	20	yes	4.08	rs200347426	NNA 0246				0.42	0 102	Mitochondrially expressed, may be		
1564	ECHDC3	splice site	het.	c.591+1G>A	p.Val131_Lys197del	in-frame loss of exon 4	16	12	yes	4.08	rs200347426	93.4	93.4 1		т	(77.2)	(72.1)	hydratase, and isomerase activities etc.		
5004	ECHDC3	missense	het.	c.667G>A	p.Val223Met	na	12	18	yes	5.20	rs375091889									
5028	KIF4A	missense	hemiz.	c.2387G>A	p.Arg796Gln	na	0	34	na	5.11						0.75		Microtubule motor prot.: molecular		
1283	KIF4A	in-frame deletion	hemiz.	c.2427_2429d el	p.Ser810del	na	11	35	na			NM_0123 10.4	6	т	Т	-0.75 (13.6)		transport; possibly involved in chromosomal stability during mitosis and cell cycle control		
0856	MAGT1	nonsense	homo.	c.71C>G	p.Ser24*	na	0	25	yes	0.52		NM_0321 21.5	0	т	т	0.1 (61.5)	0.104 (71.1)	Magnesium cation transporter, may have a role in N-glycosylation, mutations in this gene cause MRX95 and XMEN-syndrome		
1275	MSH3	frameshift	comp	c.1148delA	p.Lys383Argfs*32	na	67	39	yes											
1275	MSH3	splice site	het.	c.3001-2a>c	p.Val1001Argfs*16	loss of exon 22	57	39	yes	3.40		NM 0024				-0.08	0.486			
1661	MSH3	splice site	comp het.	c.2319-1g>a	p.Thr774_Glu812del	in-frame loss of exon 17	74	74	yes	5.61		39.4	1	Т	F	(47.3)	(16.2)	Mismatch repair prot.		
1661	MSH3	frameshift		c.2760delC	p.Tyr921Metfs*36	r.2760delC	62	48	yes											
1268	MYL5	missense	homo.	c.263T>C	p.Phe88Ser	na	1	69	na	3.67	rs2228354	NM_0024		_	_	1.37	0.174	Component of myosin, involved in		
5053	MYL5	missense	homo.	c.263T>C	p.Phe88Ser	na	0	48	na	3.67	rs2228354	77.1	0	Т	Т	(94.5)	(48.2)	calcium binding for regulation of muscle contraction		

1304	MYLIP	missense	het.	c.515A>G	p.Glu172Gly	na	41	24	na	4.79						0.35	0 163	E3 ubiquitin-prot. ligase, mediates	
1356	MYLIP	missense	het.	c.779C>T	p.Ala260Val	na	20	15	na	5.57	rs201781624	62.3	0	т	na	(74.5)	(50.8)	degradation of myosin regulatory	
5042	MYLIP	missense	het.	c.850G>C	p.Val284Leu	na	23	31	na	6.42		02.0				(/ 1.0)	(0010)	light chain and lipoprotein receptors	
1138	PMS2	start loss	comp	c.2T>A	p.Met1?	na	6	12	yes	2.47		NM_0005	2	т	т	1.48	0.786	Mismatch rangir prot	
1138	PMS2	frameshift	het.	c.863delA	p.Gln288Argfs*19	na	68	68	yes			35.5	2	-	-	(95.3)	(6.1)	wishiaten repair prot.	
0637	PSMB7	missense	het.	c.635C>G	p.Ser121Cys	na	36	38	na	5.98		NNA 0027				0.1	0.528	Proteasome subunit responsible for	
0720	PSMB7	missense	het.	c.125C>G	p.Thr42Ser	na	70	57	na	4.35		NM_0027	, 0	т	Т	(61.45)	0.528	trypsin-like activity; affects anti-	
1304	PSMB7	missense	het.	c.74T>G	p.Leu25Trp	na	34	41	na	5.01		55.5				(01.43)	(14.2)	cancer drug responses	
1224	\$1,02745	nonconco	homo	c 1275C>T	n Arg/50*	22	0	12	VOC	0.72		NM_0122	1	т	F	0.29	0.067	Eatty acid motabolism	
1324	SLC27AJ	nonsense	nomo.	0.1373021	p.Aig455	IIa	0	43	yes	0.72		54.2	1	I		(71.6)	(87.4)		
1189	SSC5D	nonsense	het.	c.2568G>A	p.Trp856*	na	16	10	yes	1.68		NM_0011 95267.1	_	Ŧ	Ŧ	3.78		Scavenger receptor activity, immune	
0922	SSC5D	nonsense	het.	c.1540C>T	p.Gln514*	na	12	18	yes	0.78		NM_0011 44950.1	5	I	I	(99.6)		response	
0637	UGGT2	frameshift	het.	c.3245delC	p.Thr1082Lysfs*6	na	71	46	yes							1 20			
0779	UGGT2	frameshift	het.	c.2156dupA	p.Ser720Glufs*16	na	91	36	yes			NM_0201	⁾¹ 8	т	т	1.28		Quality control for prot. export from	
1181	UGGT2	frameshift	het.	c.390dupC	p.Pro131Thrfs*6	na	52	32	yes			21.5				(93.7)		endoplasmatic reticulum	
5019	WDR35	frameshift	het.	c.2238delG	p.Val747Leufs*29	na	73	55	yes									Required for ciliogenesis and ciliary	
1649	WDR35	nonsense	het.	c.2089C>T	p.Arg697*	na	51	61	yes	1.17		NM 0010	_	_	_	0.48	0.117	transport; reports of connection to	
1268	WDR35	nonsense	het.	c.1922T>G	p.Leu641*	na	59	74	yes	4.48	rs199952377	06657.1 2		т	Т	(78.9)	(65.6)	CASP3, NF-ĸB and CaMKK/AMPK/p38-MAPK pathways and <i>apoptosis</i>	
0922	ZC3H8 ^d	frameshift	het.	c.859_863del	p.Lys287Valfs*3	na	62	18	na			NM 0324				0.22	0.393	Transcriptional repressor of GATA3,	
1606	ZC3H8 ^d	frameshift	het.	c.859_863del	p.Lys287Valfs*3	na	85	20	na			94.2	0	Т	Т	(67.9)	(21.7)	induces <i>apoptosis</i> when overexpressed in thymocytes	

comp.-het. = compound-heterozygous; Cov. = coverage; expr. = expression; F = false; hemiz. = hemizygous; het. = heterozygous; HIS = Haploinsufficiency Score; homo.= homozygous; MRX95 = mental retardation X-linked type 95; nd = not available/applicable; Pat. = Patient; prot. = protein; Ref. = reference allele; RVIS = Residual Variation Intolerance Score; T = true; TCGA = The Cancer Genome Atlas: number of LoF mutations in non-hypermutated CRC; valid. = validation; XMEN = X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia

Italic gene functions have possible implication for tumorigenesis.

^a = The expression of candidate genes was determined using the EST profiles of colon tissue and protein expression data from colon glandular cells provided by UniGene and Human Protein Atlas.

^b = A low (negative) RVIS (-1.85 to -0.55, corresponding to values below the 25th percentile) reflects high intolerance to genetic variation, indicating that these genes are subject of purifying selection.

^c = The HIS, which indicates dosage-sensitive genes, is considered as very low, if the percentage is <10%, and moderately reduced, if the percentage is <40%.

^d = identified in dominant analysis mode with relaxed cutoff (1%) of allele frequency in reference databases for recurrent variants

Table S5 Published MSH3 germline variants in patients with suspected hereditary tumors.

Phenotype	No. of Patients Screened	MSH3 mutation	Exon	Genotype	Predicted Conse- quence	Causal Relevance	Frequency in Controls (ExAC data)	Phenotype Mutation Carriers / Family	Reference
Familial breast cancer		c.162_179del18AGTGAG; p.A57_A62del	1	heterozygous	in-frame	Polymorphism?	a number of in-frame deletions are described in this region		
	99	c.199_207del9;p.P67_P69del	1	heterozygous	in-frame	Polymorphism?	p.Pro66_Ala68del has an allele frequency of 57%	clinical criteria Lynch, broad tumor spectrum	Yang et al. 2015
		c.2305delG;p.V769*	16	heterozygous	frameshift	Loss-of-function?			
Suspected Lynch syndrome		c.2732T>G;p.Leu911Trp	20	Compound-	missense	Rare variant?	allele frequency 0.2%		Duraturo et
	79	c.693G>A;p.Pro	4	heterozygous	silent	Polymorphism	allele frequency in normal controls 15%		al. 2011
Unselected CRC	450	c.2785A>T;p.Ile929Phe	20	heterozygous	missense	VUS			Kraus et al.
	152	c.3130+3A>G	Intron 22	heterozygous	splice?	VUS		late-onset CRC	2015

CRC = colorectal cancer; VUS = variant of unknown significance

SUPPLEMENTAL REFERENCES

Duraturo, F., Liccardo, R., Cavallo, A., De Rosa, M., Grosso, M., and Izzo, P. (2011). Association of low-risk MSH3 and MSH2 variant alleles with Lynch syndrome: probability of synergistic effects. Int J Cancer 129, 1643-1650.

Kraus, C., Rau, T.T., Lux, P., Erlenbach-Wunsch, K., Lohr, S., Krumbiegel, M., Thiel, C.T., Stohr, R., Agaimy, A., Croner, R.S., et al. (2015). Comprehensive screening for mutations associated with colorectal cancer in unselected cases reveals penetrant and nonpenetrant mutations. Int J Cancer 136, E559-568.

Yang, X., Wu, J., Lu, J., Liu, G., Di, G., Chen, C., Hou, Y., Sun, M., Yang, W., Xu, X., et al. (2015). Identification of a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population by next-generation sequencing. PLoS One 10, e0125571.