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Abstract: In its soluble form, the extracellular matrix proteoglycan biglycan triggers the synthesis of
the macrophage chemoattractants, chemokine (C-C motif) ligand CCL2 and CCL5 through selective
utilization of Toll-like receptors (TLRs) and their adaptor molecules. However, the respective
downstream signaling events resulting in biglycan-induced CCL2 and CCL5 production have
not yet been defined. Here, we show that biglycan stimulates the production and activation
of sphingosine kinase 1 (SphK1) in a TLR4- and Toll/interleukin (IL)-1R domain-containing
adaptor inducing interferon (IFN)-β (TRIF)-dependent manner in murine primary macrophages.
We provide genetic and pharmacological proof that SphK1 is a crucial downstream mediator of
biglycan-triggered CCL2 and CCL5 mRNA and protein expression. This is selectively driven by
biglycan/SphK1-dependent phosphorylation of the nuclear factor NF-κB p65 subunit, extracellular
signal-regulated kinase (Erk)1/2 and p38 mitogen-activated protein kinases. Importantly, in vivo
overexpression of soluble biglycan causes Sphk1-dependent enhancement of renal CCL2 and CCL5
and macrophage recruitment into the kidney. Our findings describe the crosstalk between biglycan-
and SphK1-driven extracellular matrix- and lipid-signaling. Thus, SphK1 may represent a new target
for therapeutic intervention in biglycan-evoked inflammatory conditions.
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1. Introduction

Inflammation can be triggered by various external microbial stimuli as well as by endogenous
molecules under sterile conditions. The latter are called damage-associated molecular patterns
(DAMPs) and are released following cell death or tissue injury [1].

Biglycan, a small leucine-rich proteoglycan (SLRP) of the extracellular matrix (ECM) [2] is normally
sequestered in the ECM and therefore inactive as inflammatory trigger [3,4]. However, following
tissue stress, biglycan is proteolytically released from the ECM and in its soluble form acts as a DAMP,
thereby initiating a sterile inflammatory response [5]. Besides its liberation from the ECM, biglycan
can also be synthesized de novo by macrophages and resident cells in inflamed tissues [5–7]. Soluble
biglycan is a high-affinity ligand of the Toll-like receptors (TLR)2 and TLR4, mimicking the response to
gram-positive (via TLR2) and gram-negative (via TLR4) pathogens [5,6]. By binding to TLR2/4 with
downstream activation of the extracellular signal-regulated kinase (Erk)1/2 and p38 mitogen-activated
protein kinases (MAPKs) as well as the nuclear factor κ-light-chain-enhancer of activated B-cells
(NF-κB) pathway, biglycan triggers the synthesis of tumor necrosis factor (TNF)α and interleukin-1
(IL-1)β cytokines [5,8,9].

There are two adapter molecules essential for the TLR signaling: the myeloid differentiation
primary response protein (MyD88) and Toll/IL-1R domain-containing adaptor inducing interferon
(IFN)-β (TRIF). While signaling through TLR4 involves both MyD88 and TRIF adapters the TLR2
signaling pathway requires exclusively MyD88 for NF-κB activation [10]. It is well documented that
the biglycan protein core is solely responsible for the high affinity binding of this proteoglycan to TLR2
and TLR4 [11]. On the other hand, only fully glycanated intact biglycan, consisting of the protein
core and two glycosaminoglycan side chains, is capable of inducing TLR2 and TLR4 signaling [5,8].
The structural motifs of biglycan protein and the adapter molecules involved in these interactions
need further investigations. By selective engagement of TLRs and their adaptor molecules biglycan
tightly regulates inflammatory outcome [6,7,11,12]. Accordingly, biglycan-induced recruitment of
macrophages to the kidney depends on biglycan-triggered transcription and secretion of macrophage
chemoattractants, chemokine (C-C motif) ligand CCL2 and CCL5 [4–6,9,13,14]. Previously, we showed
that circulating biglycan evokes the production of CCL2 in a TLR2/4/MyD88-dependent manner,
whereas the production of CCL5 was TLR4/TRIF dependent [6]. The interactions between biglycan and
different receptors [3,4] orchestrate the recruitment of macrophages to inflamed tissues under disease
conditions such as in lupus nephritis [9] and renal ischemia-reperfusion injury [11,15]. However,
to date, the exact molecular mechanism through which biglycan-induced TLR2/TLR4/MyD88 and
TLR4/TRIF pathways lead to the production of CCL2 and CCL5 remain elusive.

There is growing evidence that sphingolipid signaling plays an essential role in the modulation
of various inflammatory pathways [16]. Sphingosine kinases (SphK)s, with the two isoforms SphK1
and -2, are enzymes, which catalyze the adenosine triphosphate (ATP)-dependent phosphorylation
of sphingosine (Sph) to produce sphingosine 1-phosphate (S1P) [17,18]. S1P is implicated in cellular
processes such as cell survival, proliferation, differentiation, migration, and immune function [18].
Given these roles of S1P, the sphingosine kinases activity is a target in many pathological conditions
such as atherosclerosis, acute pulmonary injury, respiratory distress, tumorigenesis, and metastasis as
well as inflammation [19].

In response to TNFα or IL-1β, SphK1 is phosphorylated by Erk1/2, which increases its
catalytic activity [20]. Furthermore, SphK1 and the production of S1P increase the activity of the
TNF receptor-associated factor 2 (TRAF2) E3 ubiquitin ligase, receptor-interacting protein 1 (RIP1)
polyubiquitination and further NF-κB activation [21]. This potentiates the expression of chemokine
(C-X-C motif) ligand (CXCL) 10 and CCL5 resulting in the recruitment of the mononuclear cells
to the site of inflammation [22]. Moreover, lipopolysaccharides (LPS) induce SphK1 activation via
TLR4 in macrophages, thereby promoting IL-6 generation [23]. Targeting SphK1 in mice by genetic
ablation or pharmacological inhibition ameliorates the inflammatory cytokine production as well as
the pathogenesis of experimental models of arthritis [24,25], hepatitis [26], and pulmonary fibrosis [27].
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Based on these reports, it is tempting to speculate that there is a reciprocal interference between
biglycan and sphingolipid signaling in the regulation of inflammation.

Here we demonstrate for the first time that there is crosstalk between the ECM-derived component
biglycan and SphK1-driven lipid signaling. We show that soluble biglycan enhances the expression
and activity of SphK1 via the TLR4/TRIF pathway in mouse primary macrophages. Biglycan-induced
SphK1 activity is essential for the production of CCL2 and CCL5 chemoattractants. Importantly, we prove
this concept in vivo in soluble biglycan-overexpressing mice deficient for SphK1. Thus, targeting SphK1
may represent a potential therapeutic strategy in biglycan-evoked sterile inflammation.

2. Results

2.1. Biglycan Triggers the Expression and Activity of Sphk1 in Mouse Peritoneal Macrophages

To address the potential interference between biglycan and sphingolipid signaling in
inflammation, thioglycolate-elicited primary macrophages isolated from wild-type (WT) C57BL/6
mice were stimulated with recombinant intact biglycan consisting of the protein core and two
glycosaminoglycan side chains (4 µg/mL). After 30 min of incubation with biglycan already a
significant increase in Sphk1 mRNA level was detected with time-dependent, consecutive Sphk1
expression enhancement up to five-fold after 6 h (Figure 1a, shown at 6 h of incubation).

Int. J. Mol. Sci. 2017, 18, 595  3 of 17 

 

Here we demonstrate for the first time that there is crosstalk between the ECM-derived component 
biglycan and SphK1-driven lipid signaling. We show that soluble biglycan enhances the expression and 
activity of SphK1 via the TLR4/TRIF pathway in mouse primary macrophages. Biglycan-induced SphK1 
activity is essential for the production of CCL2 and CCL5 chemoattractants. Importantly, we prove this 
concept in vivo in soluble biglycan-overexpressing mice deficient for SphK1. Thus, targeting SphK1 may 
represent a potential therapeutic strategy in biglycan-evoked sterile inflammation. 

2. Results 

2.1. Biglycan Triggers the Expression and Activity of Sphk1 in Mouse Peritoneal Macrophages 

To address the potential interference between biglycan and sphingolipid signaling in inflammation, 
thioglycolate-elicited primary macrophages isolated from wild-type (WT) C57BL/6 mice were 
stimulated with recombinant intact biglycan consisting of the protein core and two glycosaminoglycan 
side chains (4 μg/mL). After 30 min of incubation with biglycan already a significant increase in Sphk1 
mRNA level was detected with time-dependent, consecutive Sphk1 expression enhancement up to five-
fold after 6 h (Figure 1a, shown at 6 h of incubation). 

 
Figure 1. Biglycan triggers Sphk1 mRNA expression via TLR4/TRIF/NF-κB and stimulates SphK1 activity 
in macrophages. (a,b) qPCR analysis of Sphk1 normalized to Gapdh mRNA levels in biglycan-stimulated 
(4 μg/mL, 6 h): (a) WT, Tlr2−/−, Tlr4−/− and Tlr2−/−/Tlr4-m macrophages; and (b) WT and Trif-m 
macrophages pre-incubated with MyD88 inhibitor (50 μM, 30 min). (c) Chromatin immunoprecipitation 
with anti-NF-κB p65 antibody in WT macrophages stimulated with biglycan for 60 min followed by 
qPCR for Sphk1. The PCR primers bind at the transcription start site (TSS) or the promoter region. ChIP-
qPCR analysis was normalized to IgG and given as fold induction of untreated control. (d) SphK activity 
assay based on sphingosine phosphorylation in the presence of [γ-32P] ATP in WT macrophages 
stimulated with biglycan for 30, 60, 90 and 120 min. Product separation was performed by TLC and 
detection with PharosFX Plus Molecular Imager (Bio-Rad, Munich, Germany). Arrow indicates [γ-32P] 
S1P. (e) Quantification of the resulting bands in (d). Data are expressed as means ± standard deviation 
(SD). (a,b) n = 5 individual experiments; (c,d,e) n = 3 individual experiments; * p < 0.05; n.s. = not 
significant. TLR: toll-like receptor; TRIF: Toll/IL-1R domain-containing adaptor inducing interferon 
(IFN)-β; NF-κB: nuclear factor κ-light-chain-enhancer of activated B-cells; SphK1: sphingosine kinase 1; 
qPCR: quantitative real-time polymerase chain reaction; ChIP: chromatin immunoprecipitation; WT: 
wild type; IgG: immunoglobulin G; MyD88: myeloid differentiation primary response protein; ATP: 
adenosine triphosphate; TLC: thin layer chromatography; S1P: sphingosine-1 phosphate; Gapdh: 
Glyceraldehyde 3-phosphate dehydrogenase. 

Figure 1. Biglycan triggers Sphk1 mRNA expression via TLR4/TRIF/NF-κB and stimulates SphK1
activity in macrophages. (a,b) qPCR analysis of Sphk1 normalized to Gapdh mRNA levels in
biglycan-stimulated (4 µg/mL, 6 h): (a) WT, Tlr2−/−, Tlr4−/− and Tlr2−/−/Tlr4-m macrophages; and
(b) WT and Trif -m macrophages pre-incubated with MyD88 inhibitor (50 µM, 30 min). (c) Chromatin
immunoprecipitation with anti-NF-κB p65 antibody in WT macrophages stimulated with biglycan
for 60 min followed by qPCR for Sphk1. The PCR primers bind at the transcription start site (TSS)
or the promoter region. ChIP-qPCR analysis was normalized to IgG and given as fold induction of
untreated control. (d) SphK activity assay based on sphingosine phosphorylation in the presence
of [γ-32P] ATP in WT macrophages stimulated with biglycan for 30, 60, 90 and 120 min. Product
separation was performed by TLC and detection with PharosFX Plus Molecular Imager (Bio-Rad,
Munich, Germany). Arrow indicates [γ-32P] S1P. (e) Quantification of the resulting bands in (d). Data
are expressed as means ± standard deviation (SD). (a,b) n = 5 individual experiments; (c,d,e) n = 3
individual experiments; * p < 0.05; n.s. = not significant. TLR: toll-like receptor; TRIF: Toll/IL-1R
domain-containing adaptor inducing interferon (IFN)-β; NF-κB: nuclear factor κ-light-chain-enhancer
of activated B-cells; SphK1: sphingosine kinase 1; qPCR: quantitative real-time polymerase chain
reaction; ChIP: chromatin immunoprecipitation; WT: wild type; IgG: immunoglobulin G; MyD88:
myeloid differentiation primary response protein; ATP: adenosine triphosphate; TLC: thin layer
chromatography; S1P: sphingosine-1 phosphate; Gapdh: Glyceraldehyde 3-phosphate dehydrogenase.
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Next, the receptor and adaptor molecules involved in biglycan-induced Sphk1 expression were
investigated, using WT, Tlr2−/−, Tlr4−/− and Tlr2−/−/Tlr4-m macrophages. Quantitative real-time
polymerase chain reaction (PCR) analysis revealed a similar level of Sphk1 mRNA in WT and Tlr2−/−

macrophages in response to biglycan, but no increase in Tlr4−/− and Tlr2−/−/Tlr4-m macrophages
(Figure 1a). Thus, biglycan signals through the TLR4 to induce Sphk1 mRNA expression.

To identify the TLR4 adaptor molecule involved in biglycan-dependent Sphk1 overexpression,
macrophages from WT and Trif -m mice were pre-incubated for 30 min with the MyD88 inhibitor
(50 µM) prior to stimulation with biglycan. Dysfunctional mutation of TRIF protein completely
abolished biglycan induced Sphk1 expression, whereas the MyD88 inhibitor had no influence on its
expression (Figure 1b). The functionality of the MyD88 inhibitor was proven by its inhibitory effects on
biglycan-dependent induction of TNFα, as described previously [7]. To further demonstrate whether
NF-κB is involved in biglycan/TLR4/TRIF induction of Sphk1, a chromatin immunoprecipitation
(ChIP) assay was performed. Indeed, stimulation with biglycan (30–120 min) potentiated direct
interaction between the NF-κB p65 subunit and the transcription start site (TSS) in WT macrophages
(Figure 1c, shown at 60 min of incubation).

Next, we investigated whether biglycan is capable of inducing SphK1 activity in macrophages.
In fact, 30–120 min of stimulation with biglycan resulted in a 2–3-fold enhancement of SphK1
activity in WT macrophages (Figure 1d,e). Collectively, we demonstrated that biglycan triggers
via TLR4/TRIF/NF-κB the activity of Sphk1 in murine macrophages.

2.2. Sphk2 Deficiency Potentiates Biglycan Triggered Sphk1 mRNA Expression

In the next set of experiments, the influence of biglycan on the expression of the sphingosine
kinase isoform Sphk2 was investigated. Biglycan had no effect on Sphk2 mRNA expression in WT
macrophages during 30 min–6 h of incubation (Figure 2a, shown at 2 h of incubation).
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Figure 2. Sphk2 deficiency potentiates biglycan-triggered Sphk1 mRNA expression. (a,b) qPCR
analysis for mRNA levels of: (a) Sphk2 in WT macrophages stimulated with biglycan (4 µg/mL, 2 h);
and (b) Sphk1 in WT and Sphk2−/− macrophages stimulated with biglycan (4 µg/mL, 2 h). mRNA
expression was normalized to Gapdh and given as fold induction of untreated WT controls. Data are
expressed as means ± SD. (a) n = 5 individual experiments; (b) n = 3 individual experiments; * p < 0.05;
n.s. = not significant.

In various cell types, deficient of Sphk2, a compensatory overexpression of Sphk1 mRNA has
been reported [27,28]. Indeed, Sphk2−/− macrophages stimulated with biglycan for 2 h revealed a
marked overexpression of Sphk1 mRNA (Figure 2b). Taken together, biglycan selectively upregulates
Sphk1 expression in macrophages and this is more pronounced when SphK2 is lacking. Therefore,
in the following experiments biglycan-stimulated Sphk2−/− macrophages were considered as Sphk1
overexpressing cells.

2.3. Biglycan Triggers CCL2 and CCL5 Production in a SphK1-Dependent Manner

Previously, we have shown that biglycan triggers production of macrophage chemoattractants
CCL2 and CCL5 [5–7,9]. As SphK1 modulates expression of various chemoattractants [23,29,30],
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we addressed the issue whether SphK is involved in biglycan-triggered production of CCL2 and CCL5.
Indeed, Sphk1 deficiency resulted in a marked reduction of biglycan-triggered Ccl2 mRNA expression
in macrophages at 2 h of incubation (Figure 3a).
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Figure 3. Biglycan triggers chemokine (C-C motif) ligand (CCL)2 and CCL5 production via SphK1
in macrophages. (a,c) qPCR analysis of mRNA levels of: (a) Ccl2; and (c) Ccl5 in WT, Sphk1−/−, and
Sphk2−/− macrophages stimulated with biglycan (4 µg/mL, 2 h). (b,d) Enzyme Linked Immunosorbent
Assay (ELISA) for: CCL2 (b); and CCL5 (d) in the supernatants of WT, Sphk1−/−, and Sphk2−/−

macrophages stimulated with biglycan (4 µg/mL, 2 h for CCL2 and 6 h for CCL5). (e,f) ELISA for:
CCL2 (e); and CCL5 (f) in the supernatants of WT and Sphk2−/− macrophages stimulated with biglycan
(4 µg/mL, 2 h for CCL2 and 6 h for CCL5) with and without the SphK1 inhibitors PF-543 (100 nM)
applied 30 min prior to biglycan stimulation. mRNA expression was normalized to Gapdh and given
as fold induction of untreated WT control. Data are expressed as means ± SD. (a–f) n = 3 individual
experiments; * p < 0.05.

These data were further confirmed by decreased CCL2 protein abundance in cell supernatants from
Sphk1−/− macrophages after 6 h of incubation with soluble biglycan (Figure 3b). By contrast, in Sphk2−/−

macrophages overexpressing Sphk1 biglycan markedly induced Ccl2 mRNA expression (Figure 3a)
resulting in enhanced CCL2 protein levels (Figure 3b). A similar pattern of biglycan/SphK1-dependent
mRNA (Figure 3c) and protein (Figure 3d, shown at 6 h of incubation) regulation was obtained
for CCL5.

To provide direct proof that biglycan-driven overexpression of CCL2 and CCL5 in cells lacking
SphK2 is caused by SphK1, WT and Sphk2−/−, macrophages were incubated with biglycan in the
presence of PF-543, a specific inhibitor of the SphK1 enzymatic activity [31,32]. As expected, this
inhibitor reduced biglycan-dependent enhancement of CCL2 (Figure 3e) and CCL5 (Figure 3f)
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protein levels in supernatants from WT cells and abolished the chemokine overproduction in
Sphk2−/− macrophages.

Thus, we provide here genetic and pharmacological proof that SphK1 is a crucial downstream
mediator of biglycan-triggered CCL2 and CCL5 mRNA and protein expression in macrophages.

2.4. Biglycan Triggers Expression of Ccl2 via NF-κB, Erk1/2 and p38 MAPK, While Ccl5 Expression is Induced
through NF-κB and p38 MAPK

Our previous results demonstrated that biglycan induces the production of CCL2 in a
TLR2/4/MyD88- and in the case of CCL5 in a TLR4/TRIF-dependent manner [6]. However, the gap
in the signaling pathway between the adaptor and effector molecules had not been characterized.
Therefore, we aimed to identify the kinase, which would be responsible for biglycan-, TLR2/4/MyD88-,
and biglycan-TLR4/TRIF-triggered synthesis of CCL2 and CCL5, respectively. It is known that
biglycan activates phosphorylation of Erk1/2, p38 MAPK and the translocation of NF-κB in
macrophages [5]. Thus, we applied U0126, SB203580 and the IκB kinase (IKK) inhibitor III, the
inhibitors of mitogen-activated protein kinase Erk kinase (MEK), p38 MAPK, and IκB kinase to
WT macrophages for verification. Inhibition of IKK, Erk1/2 and p38 MAPK markedly reduced the
biglycan-triggered Ccl2 mRNA expression (Figure 4a). In contrast, biglycan-dependent Ccl5 mRNA
expression was reduced exclusively via IKK and p38 MAPK inhibitor (Figure 4b).
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Figure 4. Biglycan triggers expression of Ccl2 and Ccl5 mRNA in Erk1/2-, p38 MAPK and
NF-κB-dependent manner. (a,b) qPCR analysis for mRNA levels of: (a) Ccl2; and (b) Ccl5 in WT
macrophages stimulated with biglycan (4 µg/mL, 2 h) with and without MEK/Erk inhibitor U0126
(10 µM), p38 MAPK inhibitor SB203580 (10 µM), and IKK inhibitor III (10 µM). The inhibitors were
applied 30 min prior to the biglycan stimulation. mRNA expression was normalized to Gapdh and
given as fold induction of untreated WT controls. Data are expressed as means ± SD. n = 3 individual
experiments; * p < 0.05; n.s. = not significant. Erk1/2: extracellular signal-regulated kinase; p38 MAPK:
p38 mitogen-activated protein kinase; IKK: IκB kinase; inh: inhibitor.

Thus, biglycan stimulates Ccl2 expression via TLR2/4/MyD88 and downstream activation
of NF-κB, Erk1/2 and p38 MAPK, while Ccl5 expression is triggered by biglycan through
TLR4/TRIF/NF-κB and p38 MAPK.

2.5. Control of Biglycan-Dependent Erk1/2, p38 MAPK and NF-κB Subunit p65 by SphK1 in Macrophages

As Erk1/2, p38 MAPKs, NF-κB, and SphK1 are mediators of the biglycan-triggered production of
CCL2 and CCL5 chemokines, we evaluated whether SphK1 affects Erk1/2, p38 MAPK and NF-κB
subunit p65 phosphorylation. In agreement with previous data, Western blot analysis demonstrated the
phosphorylation of Erk1/2 (Figure 5a), p38 MAPK (Figure 5c) and p65 (Figure 5e) in WT macrophages
incubated with biglycan for 30 min, which is a peak for biglycan stimulation of both Erk1/2 and p38
MAPK [5,7]. However, much less Erk1/2 (Figure 5a,b), p38 MAPK (Figure 5c,d) and p65 (Figure 5e,f)
were found to be phosphorylated in biglycan-stimulated Sphk1−/− macrophages.
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promoter [6,9]. Following transfection, soluble biglycan is released into the bloodstream and 
accumulates in various organs e.g., in the kidney [6,9]. Overexpression of human biglycan in the liver 
was confirmed by qPCR and restriction fragment length polymorphism analysis (data not shown) as 
described previously [6,9]. Plasma and renal levels of human biglycan were verified by Western  
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Figure 5. Biglycan phosphorylates Erk1/2, p38 MAPK and NF-κB p65 in SphK1-dependent manner
in macrophages. (a,c,e) Western blot analysis of: (a) Erk1/2 phosphorylation; (c) p38 MAPK
phosphorylation; and (e) NF-κB p65 phosphorylation in WT and Sphk1−/− macrophages stimulated
with biglycan (4 µg/mL, 30 min). (b,d,f) Quantification of the resulting bands in (a,c,e), respectively,
normalized to: (a) total Erk; (c) total p38; and (e) total p65. Data are expressed as means ± SD. n = 3
individual experiments; * p < 0.05.

These data show that biglycan-induced phosphorylation of Erk1/2, p38 MAPK and p65 is
SphK1-dependent. Thus, biglycan triggers CCL2 and CCL5 production in macrophages through
SphK-controlled activation of Erk1/2, p38 MAPKs and NF-κB.

2.6. Soluble Biglycan Triggers Renal Expression of Ccl2 and Ccl5 and Macrophage Recruitment into the Kidney
in Sphk1-Dependent Manner

To address the in vivo relevance of these findings, human biglycan (pLIVE-hBGN) or empty
pLIVE vector were transiently expressed (3 days) in WT, Sphk1−/− and Sphk2−/− murine livers under
an albumin promoter [6,9]. Following transfection, soluble biglycan is released into the bloodstream
and accumulates in various organs e.g., in the kidney [6,9]. Overexpression of human biglycan in the
liver was confirmed by qPCR and restriction fragment length polymorphism analysis (data not shown)
as described previously [6,9]. Plasma and renal levels of human biglycan were verified by Western
blots [6,9]. As expected from our previous results, the Ccl2 (Figure 6a) and Ccl5 (Figure 6b) mRNA
expression was elevated in WT pLIVE-hBGN vs. control pLIVE-kidneys [6].
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hBGN as compared to pLIVE-hBGN WT kidneys (Figure 6a,b). This was associated with reduced plasma 
levels of CCL2 (Figure 6c) but not of CCL5 (Figure 6d) in pLIVE-hBGN Sphk1−/− mice and enhanced 
concentrations of circulating CCL2 (Figure 6c) and CCL5 (Figure 6d) in pLIVE-hBGN Sphk2−/− vs. WT 
transfected animals. 

In addition, immunostaining for the macrophage marker F4/80 in renal sections from pLIVE-
hBGN-injected mice revealed a lower number of macrophages in Sphk1−/− mice compared to WT (Figure 
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kidney in a Sphk1-dependent manner. 

Figure 6. Biglycan induces Ccl2 and Ccl5 expression through SphK1 leading to renal recruitment
of macrophages. (a,b) qPCR analysis of renal: (a) Ccl2; and (b) Ccl5 mRNA expression levels in
pLIVE-hBGN and pLIVE (control) WT, Sphk1−/− and Sphk2−/− mice, three days of transfection. mRNA
expression was normalized to Gapdh and given as fold induction of pLIVE-treated WT controls.
(c,d) Plasma levels of: CCL2 (c); and CCL5 (d) in WT, Sphk1−/−, and Sphk2−/− mice, 3 days of
transfection. (e) Immunohistochemical staining of the F4/80 macrophage marker (brown, depicted by
arrows) in renal sections of WT, Sphk1−/−, and Sphk2−/− mice after injection of pLIVE-hBGN or pLIVE
control, three days of transfection. Scale bar: 50 µm. (f) Quantification of F4/80+ cells given as cell
count per high-power field (HPF). Data are expressed as means ± SD. n = 3 mice per group; * p < 0.05.

Importantly, biglycan-dependent induction of renal Ccl2 (Figure 6a) and Ccl5 (Figure 6b) mRNA
expression significantly declined in transfected pLIVE-hBGN Sphk1-deficient vs. pLIVE-hBGN WT
mice. On the contrary, the expression of both chemokines was markedly enhanced in Sphk2-deficient
pLIVE-hBGN as compared to pLIVE-hBGN WT kidneys (Figure 6a,b). This was associated with
reduced plasma levels of CCL2 (Figure 6c) but not of CCL5 (Figure 6d) in pLIVE-hBGN Sphk1−/− mice
and enhanced concentrations of circulating CCL2 (Figure 6c) and CCL5 (Figure 6d) in pLIVE-hBGN
Sphk2−/− vs. WT transfected animals.

In addition, immunostaining for the macrophage marker F4/80 in renal sections from
pLIVE-hBGN-injected mice revealed a lower number of macrophages in Sphk1−/− mice compared to
WT (Figure 6e,f). On the other hand, enhanced macrophage infiltration was found in kidney sections
from pLIVE-hBGN-transfected Sphk2−/− vs. WT kidneys (Figure 6e,f).

Thus, biglycan triggers expression of Ccl2 and Ccl5 and the recruitment of macrophages into the
kidney in a Sphk1-dependent manner.
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3. Discussion

The present report reveals sphingosine kinase SphK1 as a key contributor to the biglycan-driven
inflammatory response in macrophages. Here we show that the ECM proteoglycan biglycan promotes
the expression and activity of SphK1 through TLR4/TRIF/NF-κB and thus induces the production of
the inflammatory chemoattractants CCL2 and CCL5 in macrophages. Biglycan triggers the synthesis
and activity of SphK1 in a selective manner having no effect on the regulation of the SphK2 isoform.
Mechanistically, biglycan potentiates the production of CCL2 via TLR2/TLR4/MyD88/Erk1/2/p38
MAPK/NF-κB and CCL5 via TLR4/TRIF/p38 MAPK/NF-κB in a SphK1-dependent manner,
ultimately leading to the recruitment of macrophages into the kidney. The underlying mechanisms are
graphically presented in Figure 7.
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Figure 7. A working model summarizing the mechanisms of biglycan-driven and Sphk1-mediated
production of macrophage chemoattractants CCL2 and CCL5. Following release from the
ECM, biglycan interacts with TLR2 and -4 and triggers production of CCL2 and CCL5 through
TLR2/4/MyD88 and TLR4/TRIF, respectively. By signaling via TLR4, biglycan induces the Sphk1
synthesis in a TLR4/TRIF-dependent manner. Moreover, biglycan induces the activity of SphK1. In turn,
active SphK1 drives the biglycan-mediated production of CCL2 through Erk1/2 p38 MAPK and NF-κB
activation, while CCL5 is induced only through p38 MAPK and NF-κB activation. Consequently, this
leads to the recruitment of macrophages to inflamed tissues. Green arrows underline the effect of
SphK1 on the biglycan-promoted NF-κB activation, MyD88/Erk1/2/p38 MAPK and TRIF/p38 MAPK
pathways. Black arrows describe the biglycan-mediated inflammatory cascade.

This is the first study showing that a component of the sphingolipid signaling network SphK1 is
directly triggered by the ECM component biglycan. Diverse factors, such as TNFα [20,33,34], IL-1β [35],
platelet-derived growth factor (PDGF) [36], transforming growth factor (TGFβ) [37,38], and nerve
growth factor [39] have been reported to regulate SphK1. Among those factors, TGFβ and PDGF are
not induced by biglycan [40,41]. By contrast, it is well known that biglycan acts as a trigger of TNFα
and IL-1β protein in macrophages, requiring at least two hours of stimulation before the cytokines can
be detected [5,9,37]. It is of note that biglycan-induced synthesis and activity of SphK1 as well as the
interaction between NF-κB and Sphk1 TSS occur already after 30 min. Therefore, it is conceivable that
biglycan directly triggers SphK1 expression. At later time points, biglycan-induced TNFα and IL-1β
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might potentiate the direct effects of biglycan on SphK1 production. Hence, our data strongly suggest
that biglycan directly induces SphK1 synthesis and activity.

Our findings regarding biglycan-dependent Sphk1 induction are in agreement with several reports
describing sphingosine kinases and sphingolipid metabolites to be involved in inflammatory reactions
in response to various sterile danger signals or pathogens [17,33]. There are extensive studies, which
show promoting effects of SphK1 on LPS- [20,23,42] and Mycobacterium smegmatis-triggered [43]
expression of pro-inflammatory cytokines. Moreover, LPS cooperates with S1P to augment the
expression of adhesion molecules and pro-inflammatory modulators [44]. S1P was shown to trigger
cell death and NLR family pyrin domain containing 3 (NLRP3) inflammasome-dependent IL-1β
secretion [30]. Additionally, sphingosine might act by itself as an endogenous DAMP [45].

Furthermore, we identified SphK1 as a crucial regulator of biglycan-dependent CCL2 and CCL5
production. Previously, we reported that soluble biglycan evokes CCL2 expression by engaging the
TLR2/TLR4/MyD88 signaling pathway and CCL5 through TLR4/TRIF [6,7,9,11]. Here, we filled
some of the signaling gaps between TLRs/ adaptor molecule complex and downstream cytokine
synthesis. In macrophages genetically ablated or pharmacologically inhibited for SphK1, we discovered
that SphK1 is a crucial mediator of biglycan-triggered Erk1/2, p38 MAPK, and NF-κB activation.
Additionally, we found that biglycan triggers expression of Ccl2 through Erk1/2, p38 MAPK and
NF-κB activation, while Ccl5 expression requires p38 MAPK and NF-κB. Importantly, SphK1 is a
common upstream mediator of biglycan-dependent Erk1/2 p38 MAPK and NF-κB as well as of
CCL2 and CCL5 synthesis. Thus, biglycan triggers the synthesis of SphK1 in macrophages in order
to promote activation of Erk1/2, p38 MAPKs and NF-κB. Notably, this also represents a positive
regulatory acceleration loop where NF-κB is required for SphK1 upregulation, which, in turn, triggers
NF-κB activation. The activation of NF-κB by SphK1 is still controversially discussed. On one hand,
it was shown that in mouse embryonic fibroblasts, SphK1 deficiency abolished TNFα-stimulated NF-κB
activation [21], whereas, on the other hand, in macrophages of either Sphk1 deficient or myeloid-specific
Sphk1/Sphk2 double deficient mice, no defect in TNFα- and LPS-induced inflammatory responses was
detected, and these mice showed unaltered LPS-induced systemic inflammation and death [46].

Based on the literature and our data, it appears that SphK1 engages specific receptor/adapter
molecule complexes, e.g., TLR4/MyD88 for LPS [47], TLR4/TRIF for biglycan, TLR2 for
lipopeptides [48], and TNF receptor for TNFα [49] to stimulate the transcription of CCL2 and
CCL5. Downstream of the receptors NF-κB [50] as well as various kinases such as Erk1/2 [23,51],
protein kinase Cδ [34,52], phosphatidylinositol 3-kinase (PI3K) [23] or p38 MAPK were reported
as mediators of CCL2 and CCL5 synthesis [43,44,51]. TNFα stimulates SphK1-mediated CCL5
through p38 MAPK [53], while Mycobacterium stimulates this cytokine through TLR2/SphK1 in a PI3K,
Akt and IKKα/β-dependent fashion [54,55]. Taken in account a broad range of stimuli, receptors,
adapter molecules, phosphorylation mediators as well as cell types, SphK1 appears to be a promising
therapeutic target to regulate the macrophage CCL2 and CCL5 chemoattractants [56–58].

Our study has unveiled that biglycan selectively induces SphK1, whereas the sphingosine
kinase isoform SphK2 expression remains unchanged upon biglycan stimulation. Additionally,
biglycan-dependent SphK1 induction was more pronounced in Sphk2-deficient macrophages due
to compensatory Sphk1 upregulation. Consequently, higher CCL2 and CCL5 expression was detected
in Sphk2−/− macrophages upon biglycan stimulation. Furthermore, the selective inhibitor of SphK1
activation [31] rescued the Sphk1-driven production of CCL2 and CCL5 in Sphk2−/− macrophages. This
is in accordance with previous reports showing an inversed regulatory pattern of the Sphk1 and Sphk2
gens in various cell types and inflammatory disease models [24,53,59,60]. Furthermore, SphK1 but not
SphK2-mediated S1P accelerates CCL2 expression in mast cells [61]. Thus, our findings provide strong
evidence that biglycan selectively utilizes SphK1 to trigger CCL2 and CCL5 synthesis.

Importantly, we provided an in vivo proof of biglycan-SphK1-dependent CCL2 and CCL5
synthesis and macrophage recruitment. As previously described, transient overexpression of soluble
biglycan [6,7,9,11] resulted in higher renal Ccl2 and Ccl5 expression as well as in enhanced numbers of
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infiltrating macrophages in the kidney [6,9]. Accordingly, the renal expression of both chemokines and
the number of macrophages were markedly reduced in Sphk1−/− mice and abundant in kidneys lacking
Sphk2 vs. WT kidneys. Even though, there are no data addressing biglycan and sphingolipid interaction
directly, SphKs and S1P have been studied in several renal diseases associated with overexpression
of biglycan [11,62–64], namely diabetic nephropathy [65,66], glomerulonephritis [67], fibrosis [68],
nephroblastoma [67] and acute kidney injury [69,70]. In this context, Sphk1 deficiency increases
albuminuria and glomerular connective tissue growth factor expression in diabetic nephropathy [66,70].
However, it was also reported that SphK1 deficiency results in CCL2 reduction and prevention of renal
fibrosis in diabetic nephropathy [65]. In renal ischemia reperfusion injury, however, overexpression of
Sphk1 protects against inflammation and tubular damage [71]. Altogether, these data suggest that the
effect of SphK1 on the outcome of renal inflammation is still controversial and appears to be disease-
and duration-dependent [16]. Here, we report an anti-inflammatory effect of Sphk1 deficiency in
macrophage and kidney directly in a mouse model of transient overexpression of soluble biglycan.

In conclusion, we show for the first time that there is crosstalk between ECM- and
sphingolipid-signaling. We have observed in vitro and in vivo evidence for biglycan-TLR4/TRIF-triggered
SphK1 expression and activity. Our data provide new insights on how biglycan regulates CCL2 and
CCL5 chemokines and macrophage recruitment into the kidney via SphK1. As SphK1 seems to impact
on biglycan signaling upstream of Erk1/2, p38 MAPK and NF-κB, it is conceivable that SphK1 is
a general regulator of various biglycan-triggered inflammatory responses.

4. Materials and Methods

4.1. Animal Experiments

Eight- to twelve-week-old male wild-type C57BL/6 mice were purchased from Charles River
Laboratories (Sulzfeld, Germany). Sphk1−/− and Sphk2−/− mice have been described previously [28,65].
Tlr2−/− and Tlr4−/− mice were kindly provided by Marina Freudenberg (Max Planck Institute for
Immunology, Freiburg, Germany). Tlr2−/−/Tlr4-m mice (Tlr2−/− mice carrying a TLR4 mutation) and
Trif -m mice were a generous gift from Carsten Kirschning (Technical University of Munich, Munich,
Germany) and Heinfried H. Radeke (University of Frankfurt, Frankfurt, Germany), respectively.
All animal work was conducted in accordance with the German Animal Protection Law and was
approved (F143/63, FU/K5591) by the Ethics Review Committee for laboratory animals of the District
Government of Darmstadt, Germany.

4.2. In Vivo Transfection

Eight- to twelve-week-old wild-type C57BL/6, Sphk1−/− and Sphk2−/− male mice were
anesthetized with 2% isoflurane (Abbott, Wiesbaden, Germany) under 1 L/min oxygen supply.
For intravenous delivery, 50 µg of pLIVE-hBGN or pLIVE vector was incubated for 15 min before
injection in sterile filtered 5% glucose containing 6 µl of Turbofect in vivo Transfection Reagent
(Thermo Fisher Scientific, Darmstadt, Germany). The mice received a single intravenous injection
and were sacrificed after 3 days of transfection. Plasma and liver were collected for analysis of hBGN
overexpression. Kidneys were subjected to RNA extraction, Western blotting and histological analysis.

4.3. Immunohistochemistry

Sections (4 µm) of paraffin-embedded kidney samples from mice were blocked with 5%
milk in Tris-buffered saline (TBS) with 0.05% Tween 20 for 1 h and incubated with the primary
rat anti-mouse F4/80 (MCA497, Bio-Rad, AbDSerotec, Puchheim, Germany) antibody for 2 h at
room temperature. The staining was developed with 3,3′-diaminobenzidine (Vector Laboratories,
Peterborough, UK). Counterstaining was performed with Mayer’s Hematoxylin (AppliChem GmbH,
Darmstadt, Germany). The specificity controls included omitting or replacement of primary antibody
with rat unspecific IgG. The number of macrophages was estimated per high-power field (HPF 400×,
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with a minimum of 7 fields counted) (Soft Imaging System, Olympus, Münster, Germany). Histological
examinations were performed by two observers blinded to the conditions.

4.4. Cell Culture and Stimulation

Thioglycolate-elicited macrophages were isolated from peritoneal lavage of wild-type C57BL/6,
Sphk1−/−, Sphk2−/−, Tlr2−/−, Tlr4−/−, Tlr2−/−/Tlr4-m and Trif -m mice and grown in RPMI 1640
(Life Technologies, Darmstadt, Germany) supplemented with 1% penicillin and streptomycin and
2% fetal bovine serum (Biochrom, Berlin, Germany). Cells were stimulated with 4 µg/mL (80 nM)
purified human biglycan [7] in serum-free medium for the indicated time points. For purification of the
native proteoglycan, containing two chondroitin/dermatan sulfate chains, the conditioned medium of
human biglycan-overexpressed 293 HEK cells was collected, passed over a DEAE-Trisacryl-M (Pall)
column and further purified through high performance liquid chromatography [8]. The purity of the
bigycan was verified by silver staining after sodium dodecyl sulfate (SDS) gel electrophoresis. MyD88
inhibitory peptide NBP2-29328 (50 µM; Novus Biologicals, Wiesbaden, Germany) was applied 30 min
prior to stimulation with biglycan. SphK1 inhibitor PF-543 (100 nM, Cayman Chemical, Hamburg,
Germany), MEK inhibitor U0126 (10 µM, Cell Signaling, Frankfurt am Main, Germany), p38 MAPK
inhibitor SB203580 (10 µM, Calbiochem, Darmstadt, Germany) and IKK inhibitor III (10 µM, Merck,
Darmstadt, Germany) were applied 30 min prior to stimulation with biglycan.

4.5. RNA Isolation and Quantitative Real-Time PCR

Total RNA was isolated using the TRI Reagent (Sigma Aldrich, Steinheim am Albuch, Germany)
and was reverse transcribed using the High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Darmstadt, Germany). Real-time quantitative PCR was performed using AbiPrism 7500
Sequence Detection System (Applied Biosystem, Darmstadt, Germany). Quantitative RT-PCR was
performed using TaqMan Fast Universal PCR Master Mix (Thermo Fisher Scientific, Darmstadt,
Germany) and the following primers: Ccl2 (Mm00441242_m1), Ccl5 (Mm01302428_m1), Gapdh
(Mm99999915_g1), Sphk1 (Mm01252547_g1) and Sphk2 (Mm00445021_m1). Relative changes in gene
expression compared to control and normalized to Gapdh were quantified by the 2−∆∆Ct method.

4.6. Chromatin Immunoprecipitation

Preparation of cell extracts, crosslinking and isolation of nuclei was performed with the truCHIP™

Chromatin Shearing Kit (Covaris, Woburn, MA, USA) according to the manufacturers protocol. After
sonification of the lysates with the Bioruptur Plus (10 cycles, 30 s on, 90 s off, 4 ◦C; Diagenode, Seraing,
Belgium), cell debris was removed by centrifugation and the lysates were diluted 1:3 in dilution
buffer (20 mmol/L Tris/HCl pH 7.4, 100 mmol/L NaCl, 2 mmol/L ethylenediaminetetraacetic acid
(EDTA), 0.5% Triton X-100 and protease inhibitors). Pre-clearing was done with 20 µL DiaMag protein
A coated magnetic beads slurry (Diagenode) for 45 min at 4 ◦C. The samples were incubated over
night at 4 ◦C with the antibodies against NF-κB (3 µg Santa Cruz #sc-109, Hedelberg, Germany) or
IgG (3 µg Diagenode # c15410206). Five percent of the samples served as input. The complexes were
collected with 35 µL DiaMag protein A coated magnetic beads (Diagenode) for 3 h at 4 ◦C, subsequently
washed twice for 5 min with each of the wash buffers 1–3 (Wash Buffer 1:20 mmol/L Tris/HCl pH 7.4,
150 mmol/L NaCl, 0.1% SDS, 2 mmol/L EDTA, 1% Triton X-100; Wash Buffer 2:20 mmol/L Tris/HCl
pH 7.4, 500 mmol/L NaCl, 2 mmol/L EDTA, 1% Triton X-100; Wash Buffer 3:10 mmol/L Tris/HCl
pH 7.4, 250 mmol/L lithium chloride, 1% Nonidet P-40, 1% sodium deoxycholate, 1 mmol/L EDTA)
and finally washed with Tris-EDTA (TE)-buffer pH 8.0. Elution of the beads was done with elution
buffer (0.1 M NaHCO3, 1% SDS) containing 1× Proteinase K (Diagenode) and shaking at 600 rpm
for 1 h at 55 ◦C, 1 h at 62 ◦C and 10 min at 95 ◦C. After removal of the beads, the eluent was purified
with the QiaQuick PCR purification kit (Qiagen, Hilden, Germany) and subjected to qPCR analysis.
The following primer pairs for quantification of mouse Sphk1 were used: forward primer 5′-TGA CGC
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GTG CGG AAC CGC AGG-3′ and reverse primer 5′-CTA TCT TCG CAT CGC TTC TTA AAG-3′ for
the TSS of Sphk1.

4.7. Western Blot and ELISA

Total kidneys as well as macrophages were lysed in buffer containing 50 mM Tris/HCl (pH 8),
150 mM NaCl, 0.02% NaN3, 0.1% SDS, 1 µg/mL aprotinin, 1% Nonidet P-40, 0.5% sodium deoxycholate
and protease inhibitors (100 µg/mL phenylmethylsulfonyl fluoride, 0.1 M ε-amino-n-caproic acid,
13 µM EDTA, 5 mM benzammoniumchloride monohydrate and 10 mM N-ethylmaleimide). For sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting, 50 µg of total
protein from each sample were mixed with loading buffer (250 mM Tris/HCl pH 6.8, 8% sodium
dodecyl sulfate, 40% glycerol, 8% β-mercaptoethanol, 0.02% Bromo phenol blue) and boiled at 95 ◦C
for 5 min. Primary antibodies used were: mouse anti-β-actin (A5441, Sigma Aldrich, Steinheim
am Albuch, Germany), rabbit anti-p38 MAPK (9212, Cell Signaling, Frankfurt am Main, Germany),
rabbit anti-P-p38 MAPK (T180/Y182) (9211, Cell Signaling, Frankfurt am Main, Germany), rabbit
anti-p44/42 MAPK (9102, Cell Signaling, Frankfurt am Main, Germany), rabbit anti-P-p44/42 MAPK
(Thr202/Tyr204) (9101, Cell Signaling, Frankfurt am Main, Germany), rabbit anti-P-NF-κB p65
(Ser536) (93H1) (3033, Cell Signaling, Frankfurt am Main, Germany), and rabbit anti-NF-κB p65
(T180/Y182) (sc-109, Santa Cruz, Heidelberg, Germany). Secondary antibodies were HRP-coupled
donkey anti-rabbit (NA934V, GE Healthcare, London, UK) and HRP-coupled sheep anti-mouse
(NA931V, GE Healthcare, London, UK). Mouse CCL2/JE/MCP-1 and CCL5/RANTES DuoSet
(R&D Systems, Wiesbaden, Germany) ELISA kit was employed and followed according to the
manufacturer’s instructions.

4.8. Determination of Sphingosine Kinase Activity

Biglycan-stimulated primary murine macrophages were harvested and incubated with ice-cold
20 mM Tris buffer (pH 7.4) containing 20% glycerol, 1 mM β mercaptoethanol, 1 mM EDTA,
phosphatase inhibitors (40 mM β-glycerophosphate, 1 mM sodium orthovanadate, and 15 mM
sodium fluoride), protease inhibitors (10 µg/mL leupeptin, 10 µg/mL aprotinin, and 1 mM
phenylmethylsulfonyl fluoride). The supernatant was assayed for sphingosine kinase activity by
incubation with sphingosine (Sigma) and [γ-32P] ATP for 15 min at 37 ◦C. The products were separated
on a thin layer chromatography (TLC) plate using 1-butanol/ethanol/acetic acid/water (80:20:10:20)
and visualized on PharosFX Plus Molecular Imager (Bio-Rad, Munich, Germany).

4.9. Statistics

All data are expressed as means ± standard deviation (SD). Two-sided Student’s t-test was used to
evaluate significance of differences between groups. Differences were considered significant at p < 0.05.
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Abbreviations

CCL chemokine (C-C motif) ligand
CXCL chemokine (C-X-C motif) ligand
DAMP damage-associated molecular patterns
ECM extracellular matrix
IL-1 interleukin-1
LPS lipopolysaccharide
MAPK mitogen-activated protein kinase
MyD88 myeloid differentiation primary response protein
NF-κB nuclear factor κ-light-chain-enhancer of activated B-cells
S1P sphingosine-1 phosphate
SphK sphingosine kinase
TLR Toll-like receptor
TNF tumor necrosis factor
TRIF Toll/IL-1R domain-containing adaptor inducing IFN-β
TSS transcription start site
WT wild-type
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