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Abstract: Drug induced liver injury (DILI) is a potentially serious adverse reaction in a few susceptible
individuals under therapy by various drugs. Health care professionals facing DILI are confronted
with a wealth of drug-unrelated liver diseases with high incidence and prevalence rates, which can
confound the DILI diagnosis. Searching for alternative causes is a key element of RUCAM (Roussel
Uclaf Causality Assessment Method) to assess rigorously causality in suspected DILI cases. Diagnostic
biomarkers as blood tests would be a great help to clinicians, regulators, and pharmaceutical industry
would be more comfortable if, in addition to RUCAM, causality of DILI can be confirmed. High
specificity and sensitivity are required for any diagnostic biomarker. Although some risk factors are
available to evaluate liver safety of drugs in patients, no valid diagnostic or prognostic biomarker
exists currently for idiosyncratic DILI when a liver injury occurred. Identifying a biomarker in
idiosyncratic DILI requires detailed knowledge of cellular and biochemical disturbances leading to
apoptosis or cell necrosis and causing leakage of specific products in blood. As idiosyncratic DILI is
typically a human disease and hardly reproducible in animals, pathogenetic events and resulting
possible biomarkers remain largely undisclosed. Potential new diagnostic biomarkers should be
evaluated in patients with DILI and RUCAM-based established causality. In conclusion, causality
assessment in cases of suspected idiosyncratic DILI is still best achieved using RUCAM since specific
biomarkers as diagnostic blood tests that could enhance RUCAM results are not yet available.

Keywords: drug induced liver injury; DILI; RUCAM; Roussel Uclaf Causality Assessment Method;
diagnostic biomarkers; pathogenesis

1. Introduction

Drug induced liver injury (DILI) commonly refers to idiosyncratic DILI and remains a diagnosis
of exclusion [1–11]. This requires a clear differentiation from other liver diseases [1,3], which may
confound the DILI diagnosis [8–11] and prevail with high incidence and prevalence rates in many
countries [12–14]. Among the most common diseases to be excluded are chronic liver diseases such
as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD) and its complication non
alcoholic steatohepatitis (NASH), and acute or chronic viral infections, namely by hepatitis A virus
(HAV), hepatitis B virus ((HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV), as evidenced
by specific serum biomarkers [3,8,9,12]. Compared to chronic liver diseases [12–14], prevalence and
incidence rates of DILI are much lower, around 14/100,000 inhabitants [15–18]. In patients with
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abnormal liver tests (LTs), the diagnosis will be therefore much more likely a chronic liver disease than
a DILI.

The exclusion of alternative causes in cases of suspected idiosyncratic DILI is one of the key
elements of RUCAM (Roussel Uclaf Causality Assessment Method), the preferred diagnostic approach
to assess causality in such setting [1,2,8–11]. Other tools to identify DILI focus on biomarkers as
possible diagnostic tests. However, their performance indicators in idiosyncratic DILI are not yet
settled since definitions of DILI and biomarkers are variable and vague. For instance, some reports
defined idiosyncratic DILI as liver injury caused by synthetic drugs, while other publications included
also single herbs, products of herbal mixtures, and dietary supplements as suspected agents. Additional
reports considered cases of intrinsic DILI due to acetaminophen overdose or intrinsic herb induced
liver injury (HILI) caused by hepatotoxins like unsaturated pyrrolizidine alkaloids (PAs). Finally,
blood biomarkers as aids for clinicians are under evaluation for various purposes like early detection
of liver injury, assessment of disease severity, prediction of prognosis, or strong diagnostic tool in
a routine clinical setting.

In this review, article, newly proposed biomarkers with their advantages and limitations of their
potential use for DILI case assessment are discussed. The focus will be on whether these biomarkers
could assist the RUCAM-based evaluation of suspected idiosyncratic DILI. Such biomarkers would
represent a major progress in the difficult diagnosis of a complex disease.

2. Methods

Relevant studies and reports were identified using a computerized search of the Medline database
that included publications from 1993 to 15 February 2017. We used the following terms: RUCAM,
causality assessment, biomarker, drug hepatotoxicity, and drug induced liver injury. For each term,
we considered the first 50 publications representing specific reports or review articles. The reference
lists of the retrieved publications were hand searched for additional publications. Subsequently,
we reviewed selected reports relevant to the aim of our study and focused on publications in
English language.

3. Definitions

Biomarkers of a liver injury remain an interesting topic in clinical hepatology and are the subject
of abundant publications, some of these are specifically referenced [1,19–40]. DILI and biomarkers are
so complex that any proposals are controversial and uncertainties remain due to insufficient definitions
of the two entities.

3.1. Biomarkers

In the literature search using the term “biomarker definition in drug induced liver injury“,
the report of the original RUCAM of 1993 [1], quoted by 1050 publications, was presented on top,
namely place one, of a long list of publications that provided overall 1,310,000 hits for the search terms
used. According to the definition proposed in 1993, a biomarker is a laboratory test sensitive and
specific enough to confirm the drug-related nature of a liver injury [1]. This definition is still valid
and was expanded in recent years. Indeed, biomarkers are single or a panel of proteins, nucleic acids,
or protein-metabolite adducts. If the described biomarkers are drug independent and merely assess
liver injury due to any cause, the term “DILI biomarker” is incorrect and should not be used. Ideally,
a biomarker of DILI must not only be the signature of a liver injury but also identify the offending
drug or, at least, a class of chemical entities. Most biomarkers under investigation are of limited value
because they are based on animal studies, lack of validation in humans, and are not easily available in
clinical practice.
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3.2. Liver Injury

DILI is classified according to the idiosyncratic or intrinsic toxicity of the offending product
(Figure 1). Specific criteria differentiate idiosyncratic DILI from intrinsic DILI. In addition, DILI refers
not only to drugs but also to herbs, herbal mixtures, herbal products, and dietary supplements. Liver
injury due to non-drug products should better be classified as herb-induced liver injury (HILI) [40–42]
with the same DILI classification: idiosyncratic HILI and intrinsic HILI.
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Figure 1. Characteristics of idiosyncratic DILI and intrinsic DILI. Adapted from a previous report [10].
Abbreviation: DILI, Drug induced liver injury.

4. Key Issues of Biomarkers in Suspected DILI

Back in 1990s, there was no consensus on a laboratory test sensitive and specific enough to confirm
the drug-related nature of an idiosyncratic liver injury. The lack of a validated biomarker and other
considerations such as the disputed subjective opinion of experts assessing individual DILI cases led
to set up RUCAM [1]. This CAM (Causality Assessment Method) was validated by using cases of liver
injury with positive rechallenge [2] and is applied worldwide to help assess causality for suspected
DILI and HILI [3]. Establishing a new and valid biomarker for idiosyncratic DILI requires DILI series
with verified diagnosis and robust causality assessment. This should be achieved by using RUCAM [3],
putting aside vague opinion-based and unstructured approaches [3,10].

Yet in 2016, the EMA (European Medicines Agency), in the frame of IMI (Innovative Medicines
Initiative) projects and more precisely the SAFE-T (Safer and Faster Evidence-based Translation)
consortium [19], published a Letter for support of DILI biomarker [20] where the lack of sensitive
and specific clinical tests to diagnose, predict and monitor idiosyncratic DILI are addressed again and
considered these limited tools as a major hurdle in drug development when it comes to evaluate a
liver injury. The EMA letter seems to be preliminary, with no straight forward proposals in clinical
trials and clinical practice [20]. The need of DILI biomarkers in clinical trials is described by the
EMA as follows [20]: (1) early or earlier detection of DILI as compared to current diagnostic rules;
(2) ability to predict DILI outcome, with particular emphasis on severe DILI and acute liver failure;
(3) prognosis and monitoring of progression and regression of DILI; (4) assessment of liver adaptation;
and (5) searching for and predicting of early intrinsic liver injury in clinical trials [20]. Several described
biomarkers received critical comments [21], as summarized in Table 1.

Two other reports analyzed the potential value of new biomarkers in DILI [21,22]. They detail
several considerations with respect to their validity [21,22]. From different viewpoints, all three
publications addressed issues of biomarkers to improve the diagnosis of DILI [20–22], while other
reports provided additional information [23–40].
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4.1. Early Detection

The EMA letter asked for one or a set of biomarkers for an early diagnosis of DILI as
compared to current diagnostic rules (Table 1) [20]. Among the potential biomarkers there were
CK-18 (Cytokeratin-18), microRNA-122 (microarray RNA-122), total HMGB-1 (High Mobility Group
Box protein-1), GLDH (Glutamate dehydrogenase), SDH (Sorbitol dehydrogenase) proposed as
marker for hepatocyte necrosis, ccCK-18 (caspase-cleaved CytoKeratin-18) proposed as marker
for apoptosis, hyperacetylated HMGB-1, and MCSFR-1 (Macrophage colony-stimulating factor
receptor-1) proposed as marker for immune activation (Table 1) [20]. Other proposals included
M-30 (apoptosis), M-65 (apoptosis/necrosis), and microRNA-192 (unspecified liver damage) [21].
Some of the proposed biomarkers are not liver or not drug specific, others are difficult to be assessed
due to the requirement of mass spectroscopy (Table 1) [21]. Microarray RNAs (microRNAs) including
microRNA-122 have been evaluated in experimental liver injury and in human intrinsic DILI caused
by N-acetyl-para-aminophenol (APAP), also called acetaminophen or paracetamol, but uncertainty
exists on their diagnostic value in human idiosyncratic DILI [40]. Microarray RNAs circulating in the
blood may be found with low levels in healthy individuals and with higher levels in patients with
various diseases such as cancer, cell and organ transplantation, coronary heart disease, stroke, sepsis,
burns, or confined to specific organs [27,40]. Of more interest and better studied are the mechanisms
by which microRNAs leave damaged cells and enter the blood [40].

For many decades, serial analyses of routine LTs (liver tests) like ALT (alanine aminotransferase),
AST (aspartate aminotransferase), ALP (alkaline phosphatase), and total bilirubin (TBIL) have
traditionally been used for detection of DILI with marketed products and during clinical trials [1–3].
In trials, however, a more stringent diagnostic approach is suitable in order to ensure the safety of
subjects by detecting incipient DILI that may otherwise be missed using traditional LTs (Table 1) [20,21].
To fill up this gap, various new biomarkers are under consideration that hopefully will have a
specificity and sensitivity high enough to out-perform and replace in the future traditional LTs [20–40].
However, it seems that none of the biomarkers listed under early recognition of liver injury fulfills
these requirements (Table 1) [20,21]. In each case of suspected liver injury, additional approaches are
required like RUCAM to identify this reaction as drug-related event after exclusion of alternative
causes [3] that are much more frequent than DILI [9]. Neglecting hepatic co-morbidities including
flares of a pre-existing chronic liver disease [43,44] or viral infections such as HEV [45] can lead to an
erroneous DILI diagnosis, even in a clinical trial setting [45].

In clinical practice with marketed products, early recognition of DILI by prospective use of
specific biomarkers is hardly possible since the patients usually do not consult at the early phase of the
liver injury. Instead, ALT or ALP should be used as recommended for DILI evaluation in connection
with causality assessment using RUCAM [1–3,23]. The exclusion of alternative causes according to
the clinical setting and a predefined list is mandatory to reduce the risk of wrong DILI diagnosis
(Figure 2) [3]. At the moment, the use of traditional low cost LTs is the most convenient approach.
They are available everywhere and allow for an early suspicion of DILI without the need of a battery
of other, costly laboratory tests including possible biomarkers of unknown sensitivity and specificity
(Table 1) [21,22]. They should be performed as soon as clinical symptoms appear including abdominal
discomfort, nausea, and reduced appetite as early warning signs, while jaundice, pruritus, dark urine
and pale stools are late and indicate dangerous stages of progressing liver injury [43].

Based on DILI and HILI cases with a high causality grading assessed by RUCAM [3], evidence
is still lacking to validate new sensitive and specific diagnostic biomarkers that would allow early
recognition of true idiosyncratic drug-induced liver injury (Table 1, Figure 3) [20–23].
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Table 1. Published proposals of possible biomarkers for unspecified liver injury or idiosyncratic DILI
in clinical trials.

Proposed Aim Biomarker Detection Comments References

1. Early
recognition of

liver injury

CK-18,
microRNA-122,
total HMGB-1,
GLDH, SDH.

Hepatocyte
necrosis

Earlier detection unsure as compared to
ALT and TBIL. GLDH and SDH are older

parameters with unclear advantages.
EMA [20]

CK-18 fragments not liver specific;
marker of caspase cleaved proteins in
apoptotic cell death. HMGB-1 necrosis

marker, but not liver specific;

Fontana [21]

microRNA-122 lacks investigations
regarding specificity and sensitivity for

idiosyncratic DILI.
Teschke et al. [40]

ccCK-18, M-30 Apoptosis
Presently, unclear advantage. EMA [20]

CK-18 fragments not liver specific. M-30
apoptosis marker, no test performance. Fontana [21]

M-65 Apoptosis/Necrosis Total apoptosis and necrosis marker. Fontana [21]

microRNA-122,
microRNA-192.

Unspecified
liver damage

Liver specific release from
damaged hepatocytes. Fontana [21]

Hyperacetylated
HMGB-1, MCSFR1. Immune activation

Presently, undetermined advantage for
any aspect of trial security. EMA [20]

Acetylated HMGB-1 innate immune
activation factor, acetylation requires

mass spectroscopy for detection.
Fontana [21]

2. Outcome None specified. NA Details for DILI outcome not presented,
unclear conditions. EMA [20]

3. Prognosis,
progression

Hyperacetylated
HMGB-1,

Osteopontin, total
Keratin-18, MCSFR1.

Risk of progression

For biomarkers of DILI prognosis and
monitoring of progression, still yet

undetermined advantages as compared
to ALT and TBIL in assessing progression

to severe DILI (Hy’s law criteria).
HMGB-1 is not liver specific.

EMA [20],
Fontana [21]

4. Regression None specified. NA

Monitoring disease regression by a new
biomarker requires more details from
EMA, as present LTs are informative

enough and need no substitution.

EMA [20]

5. Adaptation None specified. NA

A new biomarker for assessing liver
adaptation during drug treatment is not

justified as available LTs and need
no replacement.

EMA [20]

6. Intrinsic
liver injury

Total HMGB-1,
total Keratin-18,
caspase-cleaved

keratin-18,
microRNA-122,

GLDH

Intrinsic
liver injury

Exclusion of intrinsic liver injury is a
hallmark of pre-clinical studies prior to
and not during clinical trials to ensure

safety of probands.

EMA [20]

HMGB-1 is not liver specific. Fontana [21]

Cytokeratin-18 fragments are
not liver specific.

Abbreviations: ALT, Alanine aminotransferase; ccCK, caspase-cleaved CytoKeratin; CK, CytoKeratin; DILI, Drug
induced liver injury; EMA, European Medicines Agency; GLDH, Glutamate dehydrogenase; HMGB, High Mobility
Group Box (protein); Hy, Hyman Zimmerman; LTs, Liver tests; MCSFR, Macrophage colony-stimulating factor
receptor; microRNA, microarray RNA; NA, Not available or not assessed; SDH, Sorbitol dehydrogenase; TBIL,
Total bilirubin.
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Figure 3. Checklist of differential diagnoses in cases of suspected idiosyncratic DILI. This tabular
listing is adapted and derived from a previous publication [3]. Although not comprehensive, it is to be
used as a guide and in connection with RUCAM [3]. Abbreviations: AAA, Anti-actin antibodies; AMA,
Antimitochondrial antibodies; ANA, Antinuclear antibodies; ASGPR, Asialo-glycoprotein-receptor;
BMI, Body mass index; CT, Computed tomography; CYP, Cytochrome P450; DILI, Drug induced
liver injury; DPH, Pyruvate dehydrogenase; HAV, Hepatitis A virus; HBc, Hepatitis B core; HBV,
Hepatitis B virus; HCV, Hepatitis C virus; HEV, Hepatitis E virus; HIV; human immunodeficiency
virus; LKM, Liver kidney microsomes; LP, Liver-pancreas antigen; LSP, Liver specific protein; MRC,
Magnetic resonance cholangiography; MRT, Magnetic resonance tomography; p-ANCA, Perinuclear
antineutrophil cytoplasmatic antibodies; PCR, Polymerase chain reaction; RUCAM, Roussel Uclaf
Causality Assessment Method; SLA, Soluble liver antigen; SMA, Smooth muscle antibodies; TSH,
Thyroid stimulating hormone; TTG, Tissue transglutaminase.
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4.2. Prediction of Outcome

Valid biomarker(s) that would predict DILI outcome, with particular emphasis on severe DILI
and acute liver failure [20] are not yet identified, nor was any procedural approach discussed (Table 1).

4.3. Prognosis and Progression

Assessing DILI prognosis and monitoring disease progression are important issues related to
disease severity [20]. Proposals included hyperacetylated HMGB-1, Osteopontin, total Keratin-18 and
MCSFR-1 (Table 1), which had been selected for their possible potential as clinical DILI biomarkers,
should be incorporated into future clinical trials to anticipate a risk for progression of hepatocellular
injury to severe DILI [20]. For this investigational study, it is proposed that patients with an initial
DILI diagnosis based on elevations of ALT alone or in combination with TBIL should be included [20].
However, concern has been expressed that HMGB-1 may not be liver specific (Table 1) [21].

Currently, in clinical trials as well as clinical practice, disease severity of suspected DILI is well
assessed by ALT and TBIL [1–3,23] in order to detect an hepatocellular injury and jaundice that would
impose to assess causality and if it is a probable DILI, to discontinue the drug treatment [43,44,46].
This recommendation known as Hy’s law after the late Hyman Zimmerman, is based on a 10%
mortality risk of DILI if the following three criteria are met: (1) serum ALT or AST >3 × ULN,
combined with serum TBIL elevated to >2 × ULN; (2) exclusion of a cholestatic component (the liver
injury should be of hepatocellular type, ratio R should be >5) as outlined in the RUCAM description [3];
and (3) no other cause of acute or chronic liver injury can be found. The latter condition requires a
careful exclusion of alternative causes (Figure 2), which is a RUCAM component [3]. Such serum
ALT and bilirubin values may be indicators for ongoing severe liver injury and/or biomarkers for
severe liver injury [43,44,46]. It is unclear whether other parameters or new biomarkers perform better
(Table 1) [21–23].

Expectations were high with the use of a software program named eDISH (evaluation of
Drug-Induced Serious Hepatotoxicity), which was established in order to facilitate early recognition of
a safety signal in clinical trials, partially based on Hy’s law [47]. However, eDISH is not applicable for
a single case of suspected DILI as it was established for clinical trials. In addition, suspected severe
DILI detected by eDISH should be validated only after causality assessment by a robust method such
as RUCAM [3] resulting in a probable or highly probable causality grading [43].

4.4. Regression

Monitoring disease regression was considered another important point deserving one or a set
of new biomarkers, but proposals were not provided how this issue should be handled (Table 1) [20].
RUCAM clearly described details how serum ALT or ALP decrease following drug cessation [1,3].

4.5. Adaptation

Biomarkers are also needed to predict liver adaptation. In other words, to identify patients
who will worsen DILI from those who will recover from the initial injury despite drug treatment
continuation (adaptors) (Table 1) [20]. However, the rationale for the need of a new biomarker is unclear,
since ALT, AST, ALP or TBILI are already available to monitor the liver adaptation, although they
cannot predict such process [43,48]. Indeed, liver adaptation or tolerance with small LT increases [43,48]
below the threshold values of liver injury [3] is commonly observed during treatment with drugs such
as statins, tacrine, and antituberculosis medications, namely INH (Isonicotinic acid hydrazide) [48].
Their continued use often leads to normalization or stabilization of LTs [43].

4.6. Intrinsic Liver Injury

EMA also argued that in clinical trials there is a need of early search for intrinsic liver injury and
proposed as potential biomarkers total HMGB-1, total and caspase-cleaved keratin-18, miR-122, and
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GLDH; these parameters should be incorporated within 24 hours in early stage clinical trials before
ALT increases (Table 1) [20]. However, some of these parameters are not liver specific [21] or are also
suggested to be used for early detection of idiosyncratic DILI (Table 1). Overall, these suggestions are
difficult to reconcile, since any potential intrinsic liver injury must have been excluded prior to clinical
trials by appropriate measures, otherwise subjects run a high risk of liver injury that could have been
prevented (Table 1).

5. Idiosyncratic Drug Induced Liver Injury

5.1. Pathogenetic Aspects

Developing new biomarkers that would improve the diagnosis or better characterize the clinical
course of idiosyncratic DILI requires understanding of pathogenetic events and mechanisms of this
liver injury, not or hardly reproducible in experimental studies [1–10]. Steps from hepatocyte uptake of
the drug to cell death are described in various review articles [21,48–52]. For obvious reasons, a direct
access to the liver of patients with idiosyncratic DILI is not feasible, except perhaps through invasive
liver biopsy. This would allow to get tissue specimens for liver histology or electron microscopy,
but such approach just for scientific purposes must clearly be ruled out for ethical reasons. Therefore,
assessing mechanisms of idiosyncratic DILI in order to search for potential biomarkers has to analyze
parameters in fluids such as blood or urine which could reflect metabolic changes in the liver, focusing
for instance on (1) organelle injuries or (2) specific pathological biochemical processes. Potential
biomarkers must fulfill at least two criteria, liver specificity and drug specificity, but little evidence
exists that these requirements are met. Proposed parameters seemingly reflect in part injuries of other
organs or caused by other toxins rather than drugs (Table 1).

Most popular is a three-step working model of idiosyncratic DILI mechanism [49,51]. In the
first step, drugs or their metabolites cause direct cell stress, trigger immune reactions and impair
mitochondrial functions. This initial hit causes in a second step mitochondrial membrane permeability,
which in a third step initiates apoptotic or necrotic cell death [49,51].

As expected, proposals for pathogenetic mechanisms in idiosyncratic DILI involve a large number
of intermediates, structural proteins, and liver cell organelles [21,48–52]. Some of them are summarized
in Figure 2. Most of the mechanisms were not studied from data of patients with idiosyncratic DILI but
with intrinsic DILI due to APAP overdose. Extrapolation of these data to idiosyncratic DILI is highly
speculative and not demonstrated. Furthermore, proposals for idiosyncratic DILI in humans [21,48–52]
were derived from in vitro experiments or from animal studies using drugs such as acetaminophen
that cause intrinsic liver injury.

Considerations on pathogenetic concepts for idiosyncratic DILI were mostly based on
circumstantial evidence and remain a matter of debate, in absence studies in humans. For instance,
how do we know for sure that drug metabolism in the liver of patients with idiosyncratic DILI leads to
reactive metabolites such as ROS (Reactive Oxygen Species), covalent binding, and oxidative stress
with hepatic GSH (Glutathione) depletion (Figure 2) and why DILI occurs only in few patients?
With respect to the possible immune reactions (Figure 2) [21,48–52], how they were analyzed and
how they could induce significant idiosyncratic liver injury in patients who rarely have clinical or
laboratory signs of immune reactions? These questions may appear provocative, but are at the heart of
the search for biomarkers in idiosyncratic DILI [20–31].

5.2. Clinical Characteristics

Patients with idiosyncratic DILI present with a broad spectrum of signs and symptoms,
which include jaundice similar to other liver diseases (Figure 3) [3]. Excluding alternative causes
is mandatory in cases of suspected idiosyncratic DILI, which by definition is a diagnosis of
exclusion [3,8,9]. Indeed, an analysis of 13,336 cases of suspected DILI revealed that 34.2% of the
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cases were not DILI, since the reported liver injury should have been attributed to other causes [9],
with a broad range of liver diseases (Table 2) [8,9].

Table 2. Frequency of specified alternative causes of idiosyncratic DILI.

Alternative Causes n Frequency %

Biliary diseases 39 11.89
Autoimmune hepatitis 35 10.67

Hepatitis B or C 28 8.54
Hepatic tumor 26 7.93

Ischemic hepatitis 24 7.32
Hepatitis E 20 6.10

Sepsis 20 6.10
Liver injury due to comedication 19 5.79

Viral Hepatitis 18 5.49
Past liver transplantation 17 5.18

Alcoholic liver disease 16 4.88
Fatty liver 9 2.44

Non-alcoholic steatohepatitis 9 2.44
Hepatitis C 6 1.83

Cardiac hepatopathy 5 1.52
Thyroid hepatopathy 4 1.22

Primary biliary cholangitis 3 0.92
Primary sclerosing cholangitis 3 0.92

Gilbert syndrome 3 0.92
CMV Hepatitis 2 0.61
EBV Hepatitis 2 0.61

Hemochromatosis 2 0.61
Wilson disease 2 0.61

Paracetamol overdose 2 0.61
Postictal state 2 0.61
Bone disease 2 0.61
Lymphoma 2 0.61

Preexisting liver cirrhosis 2 0.61
Hepatitis B 1 0.31

Benign recurrent intrahepatic cholestasis 1 0.31
Rhabdomyolysis 1 0.31

Polymyositis 1 0.31
Chlamydial infection 1 0.31

HIV infection 1 0.31
Total 328 100%

Among the study cohort, clearly defined alternative diagnoses were available for 328 patients. Updated details
from previous reports [8,9]. Abbreviations: CMV, Cytomegalovirus; DILI, Drug induced liver injury; EBV, Epstein
Barr virus; HIV, Human immunodeficiency virus.

In clinical practice, the diagnosis of idiosyncratic DILI and HILI cannot rely on specific and
sensitive diagnostic biomarker (Table 1, Figure 4) and may only be suspected in patients with
increased serum ALT or ALP values under a drug therapy, requiring causality assessment by
RUCAM (Figure 5) [3]. Very few drugs cause specific laboratory abnormalities. For instance, specific
autoantibodies were reported against cytochrome P450 (CYP) such as CYP2C9 (by tienilic acid,
not anymore marketed), CYP1A2 (by dihydralazin), CYP3A4 (by antiepileptic drugs), and CYP2E1
(by halothane) [50]. These assays are still restricted to research laboratories, considering that these
autoantibodies may also be seen in drug-exposed persons without concomitant DILI [50]. Similarly, the
use of lymphocyte-stimulations tests is problematic due to limited access and lack of standardization
and reproducibility in suspected DILI [3,50].
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For idiosyncratic DILI, risk factors are known [7,40] such as genetic susceptibility linked to human
leucocyte antigen (HLA) alleles [7,53], comedication [7], alcohol use [10,44], preexisting chronic liver
diseases [44], drug lipophilicity, extensive metabolic rates and high daily doses of drugs [54,55]. Some
factors are scored items in RUCAM, which should preferentially be used to assess overall causality [3].
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Idiosyncratic DILI is a complex disease, and causality assessment is complicated by many
variables confounding the diagnosis (Figure 6) [9], conditions that cannot be handled appropriately
or compensated by potential biomarkers (Table 1) [20–32] or other approaches including liver
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RUCAM is internationally the most frequent tool to assess causality of idiosyncratic DILI [1–3,10]
and was the first causality assessment method (CAM) that clearly defined criteria of liver injury by
using liver test thresholds, based on multiples of ULN (upper limit of normal) of LTs as diagnostic
criterion [1]. Liver injury is currently defined by ALT elevation above 5 × ULN [3]. For ALP, elevation
above 2 × ULN, provided that ALP is of hepatic origin [3].

In addition, RUCAM was the first CAM that ever recognized the importance of various types of
suspected DILI [1]. Based on DILI case analyses and due to the variability of their clinical features, three
types of liver injury pattern were defined. The liver injury patterns were classified as hepatocellular,
cholestatic, and mixed liver injury [1,3,10]. This classification was later confirmed as discriminant in
terms of population and clinical features [57]. Specific and individual scores had to be determined
for each liver injury type as they showed differences of clinical features and courses, with focus on
challenge, dechallenge, and rechallenge characteristics. For causality assessment using RUCAM, only
two instead of three types of liver injury are necessary, i.e. hepatocellular injury and cholestatic/mixed
liver injury (Table 3) [1,3,10].

Table 3. Scores of RUCAM items for hepatocellular injury and cholestatic or mixed liver injury.

Data elements Assessed in RUCAM Hepatocellular Injury Cholestatic or Mixed Liver Injury

• Time frame of latency period From +1 to +2 From +1 to +2

• Time frame of dechallenge From −2 to +3 From 0 to +2

• Recurrent ALT increase −2 -

• Recurrent ALP increase - 0

• Risk factors 0 or +1

• Separated comedication From −3 to 0

• Search for individual alternative causes From −3 to +2

• Markers of HAV, HBV, HCV, HEV
• Markers of CMV, EBV, HSV, VZV
• Evaluation of cardiac hepatopathy
• Liver and biliary tract imaging
• Doppler sonography of liver vessels

Requires individual scoring

• Prior known hepatotoxicity From 0 to +2

• Unintentional reexposure From −2 to +3

Data above are condensed for a quick overview and adapted from a previous report [3]. Details of each criterion
and score are given in the RUCAM worksheet, which in its original, not condensed form is to be used for causality
assessment [3]. Abbreviations: ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; CMV, Cytomegalovirus;
EBV, Epstein Barr virus; HAV, Hepatitis A virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; HEV, Hepatitis E
virus; HSV, Herpes simplex virus; RUCAM, Roussel Uclaf Causality Assessment Method; VZV, Varicella zoster virus.

Providing transparency and valid results, RUCAM represents a structured, standardized,
quantitative, and liver injury specific diagnostic tool, using scores to quantify final causality levels [3].
Briefly, it attributes scores to key items (Table 3); for instance, the score of search for non-drug causes in
RUCAM including markers for acute viral infection, hepatobiliary imaging, cardiac hepatopathy, and
autoimmune diseases goes from −3 to +2. The sum of the individual scores provides the final score
for each suspected drug. The range of the final scores from +14 to −9 points and allows for grading
causality: ≤0, relationship excluded; 1–2, unlikely; 3–5, possible; 6–8, probable; ≥ 9, highly probable [3].
Therefore, RUCAM-based causality grading is objective, does not require expert rounds, has many
advantages (Table 4), and differs substantially from other CAMs including expert-based opinion [3].
The latter CAM is, by definition, subjective without scored key items and not transparent [3,11], it may
also be challenged due to overdiagnosing and overreporting because data are incomplete or alternative
causes and comedication are neglected or minimized [11].
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Table 4. Advantages and limitations of RUCAM.

Advantages of RUCAM

• Structured and quantitative, liver specific method
• Prospective use and timely decision
• Stepwise clinical approach
• User-friendly and cost-saving method
• No need of an expert panel
• Timely use at bedside
• Clearly defined key items of clinical features and course
• Full consideration of comedication(s) and alternative causes
• Consideration is given to prior known hepatotoxicity
• Incorporation of results of unintentional reexposure
• Individual scoring system of all key items
• Validated method (gold standard)
• Worldwide use

� International registries
� Regulatory agencies
� Pharma companies
� DILI published case reports and case series

• Transparent documentation
• Possible, step by step, reevaluation of DILI cases by peers

Limitations of RUCAM

• RUCAM was not designed for suspected chronic DILI, which is mostly an unrecognized preexisting
liver disease

• RUCAM may require help from expert hepatologists when a suspected DILI occurs on a complicated
preexisting liver disease.

Additional details are provided in a recent article [3]. Abbreviations: DILI, Drug induced liver injury; RUCAM,
Roussel Uclaf Causality Assessment Method.

7. Intrinsic Drug Induced Liver Injury

7.1. Pathogenetic Aspects

The mechanism of intrinsic DILI due to acetaminophen overdose has been well studied, since this
drug is best known to cause experimental liver injury as well as severe liver injury including acute liver
failure in humans. Many reports focused on this specific type of intrinsic DILI, considering clinical
and experimental aspects [7,33,58–70]. Pathogenetic considerations derived from experimental APAP
hepatotoxicity were transferred to idiosyncratic DILI (Table 1, Figure 2) and in support of the proposed
three-step events of pathogenetic mechanisms [21–23], certainly a risky approach.

Early experimental studies showed that chronic alcohol use increased the risk of APAP liver
injury, likely through a mechanism involving in part hepatic microsomal alcohol-induced CYP2E1 [58],
as confirmed by subsequent studies [7,59]. To summarize, three phases describe APAP metabolism [59].
The majority of the dose is conjugated by UDP-glucuronosyltransferases (UGT) and sulfotransferase
(SULT) to metabolites that are excreted in the urine. The remaining APAP is metabolized mainly
by CYP2E1 and to a smaller extent by CYP1A2 and 3A4 to a highly reactive toxic metabolite,
N-acetyl-para-quinone imine (NAPQI). This metabolite binds preferentially to mitochondrial proteins,
especially under conditions of GSH depletion, impairs mitochondrial ATP-synthase, and reduces ATP
production. With modified human hepatocytes, the same mechanism of liver injury was shown,
starting with GSH depletion and moving through protein adduct and superoxide formation to
oxidative stress and mitochondrial membrane dysfunction and disruption, triggering cell necrosis [59].
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Consequently, pathogenetic mechanisms are well described for intrinsic DILI due at least to APAP, a
single drug, as opposed to idiosyncratic DILI due to a vast variety of drugs.

Of similar interest are pathogenetic aspects of intrinsic HILI as outlined previously [40], especially
those related to herbs of the Traditional Chinese Medicine (TCM) containing unsaturated pyrrolizidine
alkaloids (PAs) [34,35] or to the herb Germander [36–39]. However, a more detailed discussion on
these aspects is outside the scope of this article.

7.2. Clinical Characteristics

Clinical features of intrinsic DILI caused by APAP are well described [33] and similar to those of
idiosyncratic DILI [1,4,5,18]. They include abdominal pain, marked weakness, ALT elevation but late
jaundice. It is a good example for a RUCAM-based causality assessment in intrinsic DILI [33] used
prospectively to ensure data completeness. RUCAM also assessed causality of co-medicated drugs
that all had lower causality gradings as compared to APAP [33].

7.3. Biomarkers

As opposed to idiosyncratic DILI (Table 1, Figure 4) [20–23], use of biomarkers is more promising
for intrinsic DILI [7]. For instance, valid diagnostic biomarkers were developed on the basis of
pathogenetic events leading to APAP liver injury [70] and are in clinical use [7,33,60–69]. Indeed,
acetaminophen-protein adducts in serum and urine are valid biomarkers in patients with acute liver
failure without reliable past medical history or other clinical information [70]. In addition, serum
parameters such as microRNA-122 or keratin-18 are under consideration to predict the prognosis and
outcome of patients with acute liver failure due to APAP [7], but they are certainly not valid diagnostic
biomarkers due to a questionable sensitivity and specificity (Table 1) [21].

With serum microsomal epoxide hydrolase, a diagnostic biomarker is available for intrinsic HILI
caused by Germander [36–40,50], also known as the herbal TCM Shi Can [40]. Other diagnostic
biomarkers such as serum pyrrole-protein adducts are available for HILI due to the herbal TCM
San Chi (Gynura segetum), which contains unsaturated PAs causing hepatic sinusoidal obstruction
syndrome (HSOS) [34,35,40].

8. Future Challenges and Perspectives of Biomarkers

For diagnostic biomarkers to be used in idiosyncratic DILI, major issues are still to be addressed
(Figure 7). In particular, they must be liver specific and drug specific. Validation of new biomarkers
must be ascertained with DILI cases of high causality gradings using RUCAM. Developing new
diagnostic biomarkers will be difficult in the absence of experimental models that would reflect
characteristics of human idiosyncratic DILI. At present, no valid diagnostic biomarker is available or
in use which could help establish the diagnosis, would assist or even replace RUCAM for causality
assessment in idiosyncratic DILI.

The EMA presented preliminary proposals for new biomarkers in idiosyncratic DILI [20] but
the suggestions require refinements (Table 1). A step forward, would be for the EMA to include
suggestions made by the FDA [46] in order to achieve a transatlantic common approach for biomarkers.
Such cooperation via the SAFE-T (Safer and Faster Evidence-based Translation) Consortium is also
recommended [19] and could save financial resources and reduce the need of man-power.
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9. Conclusions

Efforts are underway in search for a single diagnostic laboratory test to help simplify the diagnosis
in patients with suspected liver injury caused by drugs and herbs. No diagnostic biomarker is currently
available in routine for DILI diagnosis. DILI is and remains a complex disease, with variable clinical
and pathogenetic aspects and a diagnosis of exclusion. RUCAM is the worldwide most applied tool
to validly assess causality in suspected idiosyncratic DILI cases. Future studies will have to answer
whether new biomarkers can assist RUCAM assessing causality cases of suspected DILI. The validity,
specificity and sensitivity of future diagnostic biomarkers must be proven using liver injury cases with
established RUCAM-based causality of at least probable but better highly probable causality gradings.
Aiming at diagnosing DILI, biomarkers are useless if they merely reflect unspecified liver diseases
or toxic liver injury. In addition and ideally, diagnostic biomarkers should be drug or herb specific.
To find a single biomarker or a set of biomarkers for an early DILI diagnosis in all patients is a big
challenge due to the high number of potential hepatotoxins, the multiple pathogenetic mechanisms,
and the variable predisposition of the patients to toxic liver injury.
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Abbreviations

ALD Alcoholic liver disease
ALF Acute liver failure
ALP Alkaline phosphatase
ALT Alanine aminotransferase
APAP N-acetyl-para-aminophenol
AST Aspartate aminotransferase
ATP Adenosine triphosphate
CMV Cytomegalovirus.
CAM Causality assessment method
CK Cytokeratin
ccCK Caspase-cleaved CytoKeratin
CYP Cytochrome P450
Cys Cysteine
DILI Drug induced liver injury
EBV Epstein Barr virus
eDISH Evaluation of Drug-Induced Serious Hepatotoxicity
EMA European Medicines Agency
FDA Food and Drug Administration in Washington, DC
GLDH Glutamate dehydrogenase
GSH Glutathione
GST Glutathione S-transferase
HAV Hepatitis A virus
HBV Hepatitis B virus
HCV Hepatitis C virus
HEV Hepatitis E virus
HILI Herb induced liver injury
HLA Human leucocyte antigen
HMGB High Mobility Group Box (protein)
HSOS Hepatic sinusoidal obstructions syndrome.
IMI Innovative Medicines Initiative
INH Isonicotinic acid hydrazide
LTs Liver tests
MCSFR-1 Macrophage colony-stimulating factor receptor-1
microRNA Microarray RNA
NAFLD Non-alcoholic fatty liver disease
NAPQI N-acetyl-para-quinone imine
NASH Non-alcoholic steatohepatitis
MCSFR Macrophage colony stimulating factor receptor
PAs Pyrrolizidine alkaloids
PCR Polymerase chain reaction.
R Ratio
ROS Reactive oxygen species
RUCAM Roussel Uclaf Causality Assessment Method
SDH Sorbitol dehydrogenase
SAFE-T Safer and Faster Evidence-based Translation
SULT Sulfotransferase
TBIL Total bilirubin
TCM Traditional Chinese Medicine
UGT UDP-glucuronosyltransferases
ULN Upper limit of normal (range)
VZV Varicella zoster virus
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