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Zusammenfassung

Der LHC Teilchenbeschleuniger am Kernforschungsinstitut CERN bei Genf wurde
in der Hoffnung gebaut, Antworten auf aktuelle Fragestellungen der physikalischen
Grundlagenforschung finden zu können. Fragen wie „Wie waren die Eigenschaften
des frühen Universums?“, „Können wir erklären wie Masse entsteht?“ oder „Was sind
dunkle Materie und dunkle Energie?“ sind dabei nicht nur für die Teilchenphysik
von Interesse, sondern auch wichtige Problemstellungen der Astrophysik. Die Expe-
rimente am LHC wurden jeweils mit unterschiedlichen Zielsetzungen entwickelt. Das
ALICE Experiment wurde vornehmlich dahingehend konzipiert, einen besonderen
Materiezustand zu untersuchen. Der Zustand höchstmöglicher Dichte und Tempera-
tur, wie man ihn heutzutage höchstens noch in den gewaltigsten Explosionen findet,
die das Universum kennt: In dem letzten Todesstoß großer Sonnen, die in Supernova-
Explosionen für einige Tage die Helligkeit einer ganzen Galaxie überbieten. In den
vergangenen Jahrhunderten waren einige unserer Galaxie so nahe, dass sie tagsüber
sichtbar waren. Geschichtlich betrachtet ist der zu untersuchende Materiezustand
aber in einem noch viel größeren Zusammenhang wichtig: bei der „Geburt“ unse-
res Universum. Man geht davon aus, dass in der ersten Mikrosekunde das gesamte
Universum aus eben diesem bestand.

In Anlehnung an das aus der Elektrodynamik bekannte Plasma wird dieser
Zustand „Quark-Gluon-Plasma“ (QGP) genannt. Während in einem gewöhnlichen
Plasma die Bestandteile der Atome (Atomkerne und Elektronen) sich frei bewegen,
sind in dem QGP die Bestandteile der Protonen und Neutronen quasi frei: die Quarks
und Gluonen. Zusammengefasst werden diese auch Partonen genannt. Aufgrund der
Eigenschaften der starken Kernkraft ist dies nur dann der Fall, wenn genügend Ener-
giedichte vorhanden ist. Unter normalen Bedingungen sind die Quarks und Gluonen
in Hadronen gebunden. Man nennt dies auch das „Confinement“. Die Eigenschaft
der starken Kernkraft, dass bei hohen Energiedichten das Confinement aufgehoben
wird, nennt sich „Asymptotic freedom“. Ähnlich wie in thermodynamischen Pha-
senübergängen kann der Übergang von normaler Materie zu der QGP Phase dabei
entweder über Energiezufuhr oder Dichteerhöhung geschehen, wobei entsprechend
entweder ein heißes oder ein kaltes QGP entsteht. Die notwendigen Energiedichten
sind dabei aber so hoch, dass dies unter Laborbedingungen nur in Schwerionenkol-
lisionen geschehen kann.

Die annäherend auf Lichtgeschwindigkeit beschleunigten Bleikerne, die dazu Ver-
wendung finden, treffen an speziellen Punkten im Beschleuniger zusammen, wo sich
die beiden entgegengesetzten Strahlen schneiden. Dies sind eben jene Punkte, um
welche die vier LHC Experimente gebaut wurden. Aus den beiden auf höchste Ener-
gie beschleunigten Strahlen treffen dort zwei Bleikerne, die aufgrund ihrer Geschwin-
digkeit stark Lorentz-kontrahiert sind und deren innerer Zeitablauf durch Zeitdi-
latation stark verlangsamt ist, in ultrarelativistischen Kollisionen aufeinander. Da
Bleikerne eine gewisse Ausdehnung haben, die Nukleonen (Protonen und Neutro-
nen) also eine gewisse räumliche Verteilung aufweisen, gibt es eine ganze Bandbreite
von möglichen Stößen. Sie können sich entweder streifen, je halb oder voll treffen.
Je zentraler der Stoß ist, desto mehr Nukleonen sind daran beteiligt. Diese werden
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daher auch „Participants“ genannt, während die beim Stoß unbeteiligten Nukleo-
nen „Spectators“ genannt werden. Sind genügend Participants aufeinander getroffen,
so wird das Confinement aufgehoben und die Partonen sind dann für einen kurz-
en Zeitraum im entstandenen QGP ungebunden. Dies ist ein dann expandierendes
Medium, welches sich mit der Zeit abkühlt. Es hat sich gezeigt, dass das expan-
dierende Medium dabei hydrodynamisch beschrieben werden kann. Die nach der
Kollision einsetzende kollektive Bewegung des Mediums wird auch Fluss genannt.
Unterhalb der kritischen Temperatur hadronisieren die Partonen bis zum „chemical
free-out“, wo durch das Beenden der inelastischen Stöße die Hadronenzusammenset-
zung festgesetzt bleibt. Im darauf folgenden „kinetic freeze-out“ werden schließlich
auch elastische Stöße unterbunden, womit dann die Impulsverteilung der Hadro-
nen festgeschrieben ist. In nicht-zentralen Stößen sind die Participants anisotrop
im Raum verteilt. Die Exzentrizität der Participants spiegelt sich dann direkt in
einer Exzentrizität des QGP wider. Die Form des QGP ist dabei ähnlich der eines
American Footballs, dessen Symmetrieachse in der azimutalen Ebene liegt. Diese
steht senkrecht zu der Ebene, die von der Achse entlang des Teilchenstrahls und
der Strecke, welche die Mittelpunkte der beiden sich treffenden Kerne verbindet,
aufgespannt wird. Diese so definierte Ebene wird auch “Reaction Plane” genannt.
Dadurch, dass Teilchen, die das QGP durchqueren, in der azimutalen Ebene also
je nach Winkel unterschiedliche Wegstrecken durch das QGP zurücklegen müssen,
führt die azimutale räumliche Anisotropie des QGP zu einer azimutalen Anisotro-
pie in der Impulsverteilung der vom QGP abgestrahlten Hadronen. Aufgrund der
Geometrie ist insbesondere das zweite harmonische Moment der Fourierzerlegung
der Anisotropie betroffen. Dieses wird auch das “elliptische” Moment genannt. Es
stoßen aber nicht nur die Nukleonen der beiden Kerne aufeinander, sondern es kön-
nen, aufgrund der extrem hohen kinetischen Energie, direkt die Partonen des einen
Kerns mit denen des anderen in harten Stößen kollidieren. Deren Produkte bewegen
sich dann innerhalb des Mediums und werden durch dieses beeinflusst. Äquivalent
zu diesem Effekt der starken Kernkraft ist der elektromagnetische Energieverlust
eines geladenen Teilchens beim Durchfliegen eines Gases. Durch das Betrachten die-
ser Produkte lassen sich dann Rückschlüsse über die Art und Weise der Interaktion
mit dem Medium ziehen und somit auch über die starke Kernkraft selbst. Ein gutes
Beispiel für Produkte von harten Partonenstößen sind schwere Quarks, sogenannte
charm und bottom Quarks.

Der Energieverlust stark wechselwirkender Teilchen innerhalb des QGP ist zwar
einerseits von Interesse, andererseits ergibt sich auch die Schwierigkeit, dass eben
durch diese starke Wechselwirkung kaum etwas ungehindert nach außen dringt, so-
dass die Prozesse, die innerhalb des QGP stattfinden, wie hinter einem Vorhang
ablaufen. Es gibt allerdings auch Teilchen, die Produkte von Zerfällen sind, die nicht
stark wechselwirken: Die Leptonen. Wenn Leptonen innerhalb des QGP generiert
werden, so können sie fast ungehindert nach außen gelangen. Sie stellen somit eine
sehr geeignete Sonde dar. Ein wichtiger Vertreter der Leptonen ist das Elektron.

Damit erklärt sich auch das Ziel der vorliegenden Arbeit: Die Messung des zwei-
ten harmonischen Moments der Anisotropie der azimutalen Impulsverteilung von
schweren Quarks stammenden Elektronen, welche in Schwerionenkollisionen von
2.76 TeV pro Nukleon erzeugt wurden. Damit sollen Rückschlüsse auf die Stärke
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der Thermalisierung der schweren Quarks und auf die Weglängenabhängigkeit des
spezifischen Energieverlustes bei der Wechselwirkung mit dem expandierenden Me-
dium gezogen werden. Es wird dabei nicht gezielt nach den Zerfallsprodukten von
bestimmten schweren Quarks beinhaltenden Hadronen gesucht, sondern es sollen
die Elektronen von allen schweren Quarks beinhaltenden Hadronen gleichzeitig ge-
messen werden. Im Gegensatz zur direkten Messung soll somit eine möglichst große
Statistik aufgenommen werden können. Dazu wird der elliptische Fluss aller Elek-
tronen gemessen, die von schweren Quarks stammen könnten und anschießend der
Anteil jener abgezogen, die nicht von schweren Quarks stammen.

Die dargestellten Prozesse, von der Kollision über das Deconfinement der Nu-
kleonen in freie Partonen, bis hin zur Hadronisierung der Partonen, geschehen in
einem Zeitraum, der ähnlich ist zu der Zeit die das Licht braucht, um das QGP
selbst zu durchqueren (∼ 10−24 s). Solch kurze Prozesse können nicht aufgenom-
men werden. Stattdessen werden die Zerfallsprodukte und deren Eigenschaften ge-
messen. Dazu werden um den Kollisionspunkt zwiebelartig verschiedene Detektoren
aufgebaut, die unterschiedliche Aspekte der ausfliegenden Teilchen messen. Der dem
Kollisionspunkt nächstliegende Detektor hat dabei die Aufgabe festzustellen, ob die
ihn durchfliegenden Teilchen in der primären Kollision entstanden sind oder in se-
kundären Zerfällen. Im ALICE Experiment ist dafür das „Inner Tracking System“
(ITS) unter anderem zuständig. Ihn umgebend ist die „Time-Projection Chamber“
(TPC). Dieser Gasdetektor misst den Verlauf der Teilchenspuren und deren spezifi-
schen Energieverlust und führt entsprechend die Impulsbestimmung und die Teilche-
nidentifikation durch. Die Identifikation der Elektronen geschieht in dieser Arbeit im
Verbund mit dem „Time-Of-Flight“ Detektor (TOF), der mithilfe der Laufzeitmes-
sung ebenfalls zur Teilchenidentifikation beiträgt. Dabei werden im ersten Schritt
alle Spuren verworfen, deren Laufzeit weit außerhalb der zu erwartenden Laufzeit
von Elektronen liegt. Im nächsten Schritt werden auch jene Spuren verworfen, deren
von der TPC gemessene Energieverlust zu weit von der Erwartung abweicht. Diese
Vorgehensweise soll sicherstellen, dass auch in jenen Impulsbereichen, wo einer der
beiden Detektoren eine unzureichende Trennschärfe besitzt, trotzdem möglichst nur
die Elektronen in die Messung einbezogen werden.

Die Analyse beruht auf Daten der ALICE Kollaboration, welche Ende 2011 auf-
genommen wurden. Das zweite Moment der Anisotropie der Impulsverteilung der
dabei gemessenen Elektronen wird mithilfe den weitverbreiteten “Event Plane” und
“Scalar Product” Methoden ausgewertet und untereinander verglichen. Dabei wird
die Anisotropie relativ zu der die Reaction Plane approximierenden Event Plane
bestimmt, welche ihrerseits aufgrund der Anisotropie der in der Kollision erzeugten
Teilchen gemessen wird. Diese wird in der vorliegenden Analyse mithile des V-Zero
Detektors gemessen, welcher sich wegen seiner Positionierung im Experiment insbe-
sondere dazu eignet, da aufgrund seines Abstands zu den in der TPC analysierten
Teilchen andere nicht-kollektive Teilchenkorrelationenen stark unterdrückt werden.
Um eine möglichst reine und gut definierte Stichprobe an Elektronen zu erhalten,
wurden nur Kollisionen und Teilchenspuren in die Stichprobe aufgenommen, deren
Parameter nicht außerhalb strenger Grenzen vom experimentellen Aufbau vorge-
gebenen Betriebsoptimum abweichen. Infolge der Qualitätsüberwachung wurde eine
suboptimale Kalibrierung der TPC vorgefunden. Diese Korrelation der TPC-Signale
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mit der Multiplizität der aufgenommenen Kollisionen und dem longitudinalen Win-
kel der Teilchenspuren wurde in einer eigens durchgeführten Nachkalibirerung ent-
fernt.

Die Elektronenidentifikation mithilfe von TPC und TOF lässt erwarten, dass ei-
ne gewisse Kontamination der Stichprobe auch unter optimalen Umständen nicht zu
verhindern ist. Um festzustellen, wie stark die als Elektronen deklarierte Stichpro-
be mit anderen Teilchen verunreinigt ist, werden die TPC-Signale, auf deren Basis
die letzte Stufe der Teilchenidentifikation erfolgt ist, mit passenden Dichteverteilun-
gen gefittet. Aus den Integralen dieser Verteilungen innerhalb des Annahmebereichs
wird dann auf die Reinheit der Elektronen in der Strichprobe geschlossen. Der dazu
implementierte Fitalgorithmus macht sich dabei zu Nutze, dass die Parameter der
Verteilungen sich nur stetig und langsam mit steigendem Impuls verändern. Robuste
und effiziente Fitmethoden wurden dazu aufbauend auf aktuelle Forschungsergeb-
nisse implementiert, um die Trends der Parameter auch über die Bereiche hinweg
verfolgen zu können, wo aufgrund der Kontamination signifikante Abweichungen
unumgänglich sind. Als Dichteverteilung hat sich eine Kreuzung zweier bekannter
parametrischer Dichteverteilungen als besonders gut einsetzbar erwiesen. Von der
Normalverteilung ausgehend können damit Asymmetrie und Kurtosis stetig verän-
dert werden, dabei steht nicht nur der gesamte leptokurtische Bereich zur Verfügung,
sondern auch weite Teile des platykurtischen Bereiches. Um die gefundene Vertei-
lung innerhalb des Fitalgorithmus gebrauchen zu können, mussten ihre Parameter
orthogonalisiert werden. Dies geschah nur für die Parameter, die das erste und zwei-
te Moment steuern und dies auch nur näherungsweise für die notwendige Region in
der Umgebung des mesokurtischen Bereichs. Es ist aber prinzipiell möglich, die Ap-
proximation mithilfe der vergestellten Methode beliebig zu verbessern. Die Messung
der Elektronen wird dann um die so bestimmte Kontamination korrigiert.

Die so gemessenen Elektronen stellen dabei die „inklusive“ Messung dar. Um
auf die beabsichtigte Messung des elliptischen Flusses von schweren Flavours zu
gelangen, müssen von dieser inklusiven Messung noch alle Komponenten abgezogen
werden, die nicht von schweren Quarks stammen. Dies geschieht mithilfe einer Simu-
lation der Zerfälle von leichten Hadronen und von direkten Photonen. Diese stellen
die Hauptquellen der Elektronen des Hintergrundes dar. Dabei werden die gemessene
Impulsverteilung und der gemessene elliptische Fluss von geladenen Pionen skaliert,
um so die Spektren der anderen leichten Hadronen (Eta, Omega, Eta-prime und
Phi) zu erstellen. Im Fall der direkten Photonen sind nicht nur die gemessenen
reelen Photonen wichtig, sondern zu gleichen Anteilen die sogenannten virtuellen
Photonen. Im Gegensatz zu reelen Photonen, die nur bei Vorhandensein von Detek-
tormaterial in ein Elektronenpaar konvertieren können, kann die Photonenquelle bei
ausreichender Energie auch direkt Leptonenpaare bilden. Diese Komponente ist in
Photonenmessungen nicht enthalten und musste anhand der vorhandenen Daten für
reele Photonen rechnerisch ermittelt werden. Die sich mit dieser Methode ergebende
Menge an Leptonenpaaren wurde mit Messungen der Zerfallskanäle von sogenann-
ten Dalitz-Zerfällen verglichen, es konnte eine sehr gute Übereinstimmung gefunden
werden.

Die Zerfälle der in der Simulation generierten Hadronen in Elektronen wurden
mithilfe der PYTHIA6 Bibliothek durchgeführt. Die Wahrscheinlichkeit und die Ki-
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nematik einer Konversion von Photonen wurde in einer an die GEANT4 Bibliothek
angelehnte Implementation berechnet. Die vorhandenen, auf GEANT3 basierenden,
hochgenauen Routinen hatten sich als sehr langsam und ineffizient erwiesen, sodass
mithilfe der eigenen Implementierung die Simulationszeit und die notwendige Spei-
chergröße um über je eine Größenordnung gesenkt werden konnten. Die Elektronen
der virtuellen Photonen folgen einer Kinematik, die dem Pionzerfall ähnelt. Es hat
sich gezeigt, dass sich diese Kinematik für die vorliegende Analyse nicht signifi-
kant von einer Konversion unterscheidet. Dies wurde bestätigt mit Vergleichen von
Konversionen von Zerfallsphotonen und Dalitz-Elektronen, wo diese beiden Zerfalls-
kanäle sich ebenfalls nicht signifikant voneinander unterscheiden.

Die so in der Simulation generierten Elektronen können schließlich jeweils, ge-
wichtet auf Basis der Impulsverteilung ihrer Quellen, in den sogenannten Cocktail
zusammengenommen werden. Um sicherzustellen, dass das Ergebnis stabil ist und
sich andere Annahmen nicht signifikant auf den Cocktail niederschlagen, wurden
systematische Tests durchgeführt.

Im letzten Schritt kann nun der Elektronencocktail von der inklusiven Messung
abgezogen werden, was schließlich das Endergebnis dieser Arbeit darstellt. Das Er-
gebnis ist ein signifikanter elliptischer Fluss von schweren Quarks stammenden Elek-
tronen, der sich in seinem Impulsverhalten und in der Abhängigkeit zur Zentralität
entsprechend den hydrodynamischen Annahmen verhält, dass schwere Quarks eben-
falls am Fluss teilnehmen und/oder bereits frühzeitig thermalisiert sind und somit
trotz ihrer großen Masse und anfänglich sehr hohem Impuls sehr stark mit dem
umgebenden Medium interagieren. Dieses Ergebnis bestätigt somit sowohl die ALI-
CE Messungen über den muonischen Kanal als auch die direkte Rekonstruktion der
schweren Quarks enthaltenden Hadronen sowie die vorangegangenen Messungen am
RHIC.

Insbesondere zusammen mit den entsprechenden Messungen des nuklearen Mo-
difizierungsfaktors, wo die in Proton-Proton und Blei-Blei Kollisionen gewonnen
Impulsspektren miteinander verglichen werden, ergibt sich eine Möglichkeit aktuelle
Modellrechnungen einzuschränken.

Durch die zur Zeit vorgeschlagenen Verbesserungen an den ALICE Detektoren,
welche für zukünftige Datenaufnahmeperioden zur Verfügung stehen werden, wird
es möglich sein, mithilfe nur weniger Änderungen an dieser Analyse erste getrennte
Ergebnisse für charm und beauty Flavours zu erhalten.



VIII



Abstract

The elliptic flow of heavy-flavour decay electrons is measured at mid-
rapidity |η| < 0.8 in three centrality classes (0-10%, 10-20% and 20-40%)
of Pb-Pb collisions at √sNN = 2.76 TeV with ALICE at LHC. The col-
lective motion of the particles inside the medium which is created in
the heavy-ion collisions can be analyzed by a Fourier decomposition of
the azimuthal anisotropic particle distribution with respect to the event
plane. Elliptic flow is the component of the collective motion character-
ized by the second harmonic moment of this decomposition. It is a direct
consequence of the initial geometry of the collision which is translated
to a particle number anisotropy due to the strong interactions inside the
medium. The amount of elliptic flow of low-momentum heavy quarks is
related to their thermalization with the medium, while high-momentum
heavy quarks provide a way to assess the path-length dependence of the
energy loss induced by the interaction with the medium.

The heavy-quark elliptic flow is measured using a three-step proced-
ure. First the v2 coefficient of the inclusive electrons is measured using
the event-plane and scalar-product methods. The electron background
from light flavours and direct photons is then simulated, calculating the
decay kinematics of the electron sources which are initialised by their
respective measured spectra. The final result of this work emerges by
subtracting the background from the inclusive measurement. A signific-
ant elliptic flow is observed after this subtraction. Its value is decreasing
from low to intermediate pT and from semi-central to central collisions.
The results are described by model calculations with significant elastic
interactions of the heavy quarks with the expanding strongly-interacting
medium.
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Preface
Ever since people asked why nature is as it is, and tried to find laws describing their
observation, the understanding of how nature behaves evolved. One such law, for
example, describes how apples fall onto Newton’s head. Some other describe how
planets orbit the sun. Very soon it was realised that these laws have a lot in common,
and actually describe the same fundamental force from different perspectives: we
now call this force “gravity”. In the following centuries we have realized that there
are also other fundamental forces, each having its own very special way of behaving.
We call those other forces: electromagnetic, weak nuclear and strong nuclear force.
Many questions have been answered up to now. But as it is very often the case,
each answer comes at a price, and in science price tags usually say: “another even
more fundamental question”.

All physics fields like astrophysics, solid state physics, or nuclear physics have
different perspectives on our universe. They can thus observe different aspects of the
fundamental forces. The achievements in one field can lead to unveilings in others.
Amusingly this mutual impact is very strong between two seemingly very distant
fields: astrophysics and nuclear physics. In fact, both are not that distant at all
when, for example, looking at the goals of current nuclear physics experiments:

• What were the properties of the very early universe?

• Can our models explain the origin of mass?

• What is dark matter, what dark energy?

• Can we explain the evolution of our universe?

These questions are obviously also very fundamental astronomical questions; an-
swering all of those questions is the goal of the experiments built near Geneva at
CERN.1

Each field has its own very special methods of teasing out more knowledge from
nature’s seemingly bottomless reservoir. The way nuclear physics is today trying
to endeavour its sub microscopic view of the world was first travelled by Ernest
Rutherford with his scattering experiment. From his experiment we know that
the naming of the so-called atom was premature: Since then nuclear physicists are
engaged in finding the right description of the substructure of something we today
still call “indivisible”.

1The first question is the search of the characteristics of the Quark-Gluon-Plasma, which we
shall encounter again later; this will be addressed by ALICE. The second is the search after the
Higgs Boson; ATLAS and CMS seem to have finally found this last missing particle of the Standard
Model. The question about the nature of dark energy is assigned to CMS only, and last but not
least LHCb will try to find out more about the CP-violation of the weak nuclear force, which is
important for the asymmetry of matter and antimatter.
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1 Introduction
This thesis will begin by introducing the reader to all concepts necessary for under-
standing the current work and its implications. The concept is that people unrelated
to the subject should be able to at least grasp the basics. This is done by first laying
out the fundaments in a narrative style, starting from a quick historical review. For
a more quantitative treatment Chapter 2 introduces the mathematical framework
needed for Chapter 3 which will derive the physical relations needed in this work
from basic principles. Chapter 4 then introduces the experimental setup used to
perform the measurement before the idea to the analysis is presented in Chapter 5.
The analysis itself is shown in Chapter 6 and Chapter 7 while the result is presented
in Chapter 8. The work is then summarised in Chapter 9.

1.1 The Origins of Particle Physics
The idea that it is impossible to divide matter endlessly was a concept by early
Greek philosophers. Thus it was thought that all matter is built out of smallest
components, which they called ατoµoς. Later, chemists of the 17th and 18th century
showed that certain substances cannot be further divided by chemical methods.
Those substances where called chemical elements and it was assumed that these
elements where built out of atoms.

The idea of indivisible atoms had soon to be revised. First signs were the great
number of elements and the periodicity of their characteristics. This became clearer
as the first steps of the emerging nuclear physics were taken:

William Conrad Röntgen’s discovery in 1895, the X-rays, led to an extensive
search of other radiation sources. Just a year later Henri Becquerel discovered the
radiation of uranium salts by their peculiarity of exposing photographic plates in the
dark. In 1898 Marie Curie was able to show that this radiation must be an attribute
of the uranium atoms themselves and cannot be explained by chemical reactions.
She called this spontaneous radiation of the material “radioactivity”. Due to the
high radiation, Marie and her husband Pierre found two more elements later that
year, Polonium and Radium.

Trying to bring some systematics into the different types of radiation, they were
named alphabetically in Greek in the order of decreasing interaction with matter.
In 1909 Rutherford’s experiment of scattered alpha particles on a gold foil led to the
conclusion that atoms consist of a small positively charged nucleus surrounded by
negative electrons. Just two years later Niels Bohr joined the knowledge of quantum
mechanics and the outcome of Rutherford’s experiment into his model of the atomic
structure.

The restriction to the distinct energies alpha particles have, being emitted by
the sources, let soon arise ideas about how to accelerate those charged particles for
further experiments. The particle accelerator was invented.

As in 1932 the neutron was found, the nucleus was complete and together with
the prediction of the neutrino in 1930 all observations could be well described. This
idyllic atmosphere soon vanished in 1937 as a new particle was detected coming
with cosmic rays, the muon. The surprise about this unexpected particle, which
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was found to be like an electron but heavier, is best summarised in I. I. Rabi’s
comment: “Who ordered that?”

Until the late 1950’s literally hundreds of new particles where found in scattering
experiments and could be arranged in two groups: leptons and hadrons. Because of
the large number of hadrons the situation was comparable to the situation at the
end of the 19th century; where there were simply too many chemical elements for
these truly to be called elementary. It was not until the 1960’s when deep-inelastic
scattering experiments of electrons and nucleons finally made it clear that hadrons
could not be elementary either and had to be built up out of even smaller compon-
ents, which then were called partons [1–3]. However an unambiguous understanding
of their nature was missing until the quark model proposed by Murray Gell-Mann
and George Zweig [4, 5] became commonly accepted in 1964 as the predicted Ω−
particle was found [6].

This brought a high degree of tidiness into the overwhelming big “particle zoo”
of the 1960’s. Since then this theory evolved into what we today call the Standard
Model. [7–9]

1.2 The Standard Model of Particle Physics
The Standard Model is a theory that describes the known particles and their in-
teractions. At its base there are three quantum field theories: Quantum Electro-
dynamics (QED) [10], Quantum Chromodynamics (QCD) [11] and the Higgs theory
[12]. QED describes the properties and interactions of particles carrying electric or
weak charges while QCD describes colour-charged particles and the Higgs theory
explains the emergence of mass of all particles.

Matter is composed of fermions, which are half-integer spin particles, while in-
teractions are described as an exchange of the virtual vector gauge bosons of the
respective field, which have an integer spin. Quarks and leptons are fermions re-
specting the Pauli Principle and obeying the Fermi-Dirac-statistics, whereas the
bosons obey the Bose-Einstein-statistics, and do not respect Pauli’s Principle. The
Standard Model includes 12 fermions, 12 anti-fermions, 12 force mediating bosons
and the long predicted and most probably finally found Higgs boson [13].

There are six quarks and six leptons and equally many antiparticles. Quarks
possess all known charges, and interact thus via all known forces, which makes them
unique in that way. They have a mass, they have electric charge and, as well as
all other particles, they carry weak charge. In addition to that, quarks also carry
another type of charge: the colour charge. Unlike electric and weak charge, of which
there are two forms (plus and minus), mass has only one form, while colour charge
has six: red, green, blue, anti-red, anti-green and anti-blue. Due to the so-called
colour confinement (or just confinement) quarks are bound together to form colour-
neutral composite particles. There are two known quark configurations, although
more are imaginable [14]: a quark and an anti-quark form a meson, while three
quarks form a baryon. These colourful names of the colour charges were chosen
because of the following similarity: In principle one can think of the classical colour
theory (in its additive form) where anti-red would be cyan, anti-green magenta and
anti-blue would be yellow; the confinement would demand composite particles to be
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Generation Charges
1 2 3 Mass m [eV/c2] Electric z [e] Colour Weak Tz [g]

Quarks u c t 2.3 M 1.27 G 173 G 2/3 r,g,b 1/2
d s b 4.8 M 95 M 4.18 G -1/3 r,g,b -1/2

Leptons e− µ− τ− 511 k 106 M 1.78 G -1 0 -1/2
ν1 ν2 ν3 ≈ 0 0 0 1/2

Table 1.1: Eigenstates of the fermions according to the Standard Model [15]. The mass is shown
for the mass eigenstates, and the weak charge is shown for the left handed weak eigen-
states. The weak eigenstates of the neutrinos νe, νµ and ντ are linear combinations of
the mass eigenstates ν1, ν2 and ν3, and the weak eigenstates of the quarks d’, s’ and
b’ are linear combinations of the mass eigenstates d, s and b. For the charged leptons
the mass and weak eigenstates coincide.

white.
The remaining six fermions, the leptons, all miss the colour charge, while the

three neutrinos also miss the electric charge, which leaves them to interact solely by
weak interaction, hence making them hardly detectable. Fermions are grouped in
three generations, which are sorted by increasing mass. Second and third generation
charged particles decay with very short half-lives, making all visible matter to consist
of only first generation charged particles and the very weakly interacting neutrinos
of all generations. Table 1.1 summarises the properties of the fermions.

In the Standard Model everything is embedded in the QED, QCD and Higgs
quantum fields. When two particles approach each other, the force between them is
described as an exchange of virtual gauge bosons. Each charge produces a corres-
pondent fundamental force, and each force has its gauge bosons to mediate it. The
higher the absolute amount of charge, the higher the force and the higher the coup-
ling of the gauge boson to the particle. The bosons have to put back the distance
between the interacting particles, by propagating through space. The more massive
the boson the shorter the distance it can propagate. Both, the coupling and the
propagation contribute to the effective strength of the force. Of course the bosons
do not only exist in this virtual form, but also as real particles. In this case these
are excitations of the respective quantum fields which materialize in the production
of the real boson. For more on virtual particles see also Chapter 7.1.

The strongest force is the so-called strong nuclear force; it’s mediated by the
gluons between colour charged particles. There are eight gluons, each carrying
another colour charge. These are the particles which bind colour charge carrying
particles together, even themselves, thus their suggestive name. The next strongest
fundamental force is the electromagnetic force, which is mediated by the (electrically
neutral) photon between electrically charged particles. Since there is a strong nuclear
force, we also know of a weak nuclear force: this is mediated by the massive W+,
W− and Z0 bosons between all fermions. This force is the only one to not produce
bound compounds, and can thus only be sensed by the transitions it generates,
which otherwise would be forbidden; e.g. the beta decay of unstable isotopes (Table
1.2 summarises the properties of the bosons).

The symmetries which are at the base of QED strictly forbid any explicit mass
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Interaction Couples Gauge Mass m El. z Col. Weak Tz eff. rel. eff.
to Boson [GeV/c2] [e] [g] Range Strength

Strong colour 8 gluons 0 0 yes 0 10−15 1
Electromg. electric photon 0 0 0 0 ∞ 10−2

Weak weak W±, Z0 80, 91 ±1, 0 0 ± 1
2 , 0 10−18 10−14

Gravitation mass graviton ? 0 0 0 0 ∞ 10−38

Table 1.2: The interactions and their gauge bosons [7]. Each gluon has one of the following colour
combinations: rḡ, rb̄, gr̄, gb̄, br̄, bḡ, rr̄ − gḡ, rr̄ + gḡ − bb̄. Only for the W± bosons
does the indicated weak charge directly show the coupling strength. The Z0 coupling
is given by Tz−z·x

cos ΘW
, with x = sin2 ΘW ≈ 0.23, where ΘW is the Weinberg angle.

terms; these would otherwise lead to a complete breakdown of the theory. This
contradicts sharply the observation, where most of the fermions and some of the
bosons do have a mass. Looking at the masses of the four bosons of the electroweak
sector, the discrepancy is especially striking; the need of an asymmetry in the context
of QED is obvious here. The contradiction is that QED which is an incredibly exact
theory2, whose predictions accurately match the observations, is mathematically
incapable of including one of the otherwise most important properties of the particles
it describes (their mass).

It was however found that there could be a way of preserving the theory and its
underling symmetry as they are, by “outsourcing” the problem to a then necessary
additional scalar field, the so-called Higgs field. This field would break the necessary
symmetries spontaneously, whenever the particles would couple to it, thus gaining
their mass. In this way both, the mass and the symmetry breaking, would not be
part of the QED theory itself but a consequence of the interaction of the QED field
with this Higgs field. This was a purely mathematical concept, which needed not
necessarily be what happens in reality. However the consequence of this additional
field would be that, just like the other fields, it could be stimulated to become
excited, producing the real bosons of this field. Thus the detection of the Higgs
boson was a major breakthrough, showing that this theory really describes the
reality.

There is one other fundamental force which was left out until now: Gravity.
It is however by far the weakest of all four forces, which is why it is completely
disregarded by the Standard Model. There are however some very extreme cases
where all four forces become important (e.g. neutron stars). There a complete
description of the problem is currently not possible. This is the limit of today’s
Standard Model. There are ambitions to have gravity included into the theory, thus
implying the existence of another gauge boson, the graviton. [7, 8]

1.2.1 Comparison of the Fundamental Forces

The fundamental forces can be compared by considering the potential energy between
two particles (see Chapter 10.1 for an explanation of the quantities shown). The

2QED and the general relativity theory are the two most accurate theories humanity has pro-
duced until now
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electrical potential energy between a positron and an electron of charge e which is
propagated by virtual photons is given by:

Wel(r) = − e2

4πε0r
= −α

r
, α = e2

4πε0~c
≈

1
137

The gravitational potential energy between two electrons of massme which is propag-
ated by the hypothetical virtual graviton is given by:

Wgr(r) = −Gm
2
e

r
= −αG

r
, αG = Gm2

e

~c
≈ 2 · 10−45

The weak-force potential energy between any two particles with weak charge g which
is propagated by the virtual W±-meson of mass mW is given by:

Ww(r) = −g
2

r
exp

(
−mW r

~c

)
= −αw

r
exp

(
−mW r

~c

)
, αw = g2

~c
≈ 3 · 10−2

The strong-force potential energy between two quarks which is propagated by virtual
gluons is given by:

Ws(r) = −4
3
αs
r

+ kr, αs ≈ 1

It can be seen that the electrical and the gravitational potential energy have the same
distance behaviour. The first term of the strong force is also equivalent, however
there is this second linear term kr, called “string tension”. The naming comes from
the image of a string of gluons spanned between the two quarks. For small r the
behaviour is according to the first term while for large r the linear term takes over.
The energy needed to separate two quarks increases until there has been so much
energy put into the gluon string that a quark-antiquark pair is being generated, each
bound to one of the initial quarks. This dynamic inseparability of quarks is called
confinement and implies that multiple quarks are bound together in hadrons.

When two nucleons are next to each other, there is a reminiscent of the strong
force which acts attractive, even though nucleons themselves are “white”. This is
due to the fact that the net quarks of hadrons are surrounded by a sea of gluons and
virtual quark-antiquark pairs. While the net colour is indeed white, the equilibrium
is dynamic and results in a time-dependent polarization. The Yukawa force potential
energy between any two nucleons is propagated by a virtual pion with mass mπ and
is given by:

Wy(r) = −g
2
s

r
exp

(
−mπr

~c

)
, αs = g2

s

4π

1.2.2 Asymptotic freedom

The different α’s in the expressions of the potential energy of forces are the coupling
constants of the respective force. The difference in coupling strength has a big
influence on the ease of the theoretical descriptions; e.g. QED calculations can
generally be solved with a perturbation theoretical ansatz, because the interaction
probability with an increasing number of photons is decreasing with a factor of
α ≈ 1/137 for each additional photon. In QCD however the coupling strength αs is
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QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)(–)

Figure 1.1: Summary of measurements of αs as a function of the energy scale Q shows how the
coupling decreases with increasing energy. [15]

of the order of 1, which means that the decrease in probability of coupling with an
increasing number of gluons is nowhere near that small as for QED, thus a solution
with perturbation theory is not generally possible. One of the situations where
a solution is possible is in the environment which is being produced in heavy-ion
collisions. This is the bigger picture of the scope of this analysis.

However, these coupling constants are not strictly constant. This fact is called
“running coupling” and is characterized by the dependency on the transferred mo-
mentum Q which is proportional to the temperature3 and to the inverse of the
distance (T ∝ Q ∝ 1/r). The vacuum around electrically charged particles polar-
izes, and shields the charge somewhat. The charge seems to diminish moving away
from it, or equivalently, the coupling constant α increases with Q. The effect is
different for colour charged particles, because now the mediating boson itself carries
colour charge. This leads to the reversed behaviour called anti-shielding. Thus αs
is dependent on the energy scale ΛQCD ≈ 200MeV and decreases with Q [15]:

αs(Q2) = g2
s(Q2)
4π ≈ 1

b0 ln
(
Q2/Λ2

QCD

)
Which means that towards large Q (Q > ΛQCD) the strength of the strong force is
being asymptotically reduced, the particles become free and the confinement is
lifted (see also Figure 1.1). The 2004 Nobel Prize in Physics was awarded exactly for
this discovery to J. D. Gross, F. Wilczek [16] and H. D. Politzer [17]. For the high Q
region this means that for theoretical calculations the well-established perturbative
ansatz can be used, just like in QED. Calculations in the non-perturbative regime
can be performed with lattice-QCD, which decreases the infinite space-time degrees
of freedom to a finite number [18–21].

The behaviour of α(Q) and αs(Q) suggests that at some Q (or T ) both are equal.
This is the main building block of a grand unified theory (GUT) which would have

3in case a temperature can be defined
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Figure 1.2: Phase diagram of quarks and gluons (Figure by the CBM Collaboration). In normal
matter quarks and gluons are bound in hadrons, which compose the nuclei, at density
1 and temperature 0 (300 K ≈ 0.026 eV). Also shown are the traces of the matter
during heavy-ion collisions in current accelerators and the early universe. There the
transition was about 1µs after the Big Bang. In the core of neutron stars quark-gluon
plasma might exist at low temperatures due to their immense density. [25]

to show that from this point on not only the strengths are equal but also the physics
of the electro-weak and strong force.

1.3 QCD Phase Diagram

In 1975 first theories emerged describing a state of matter where quarks and gluons
are asymptotically free [22, 23]. At high energy densities, achieved either by high
temperature or high compression, nuclear matter undergoes a phase transition lift-
ing the confinement of the strongly interacting quarks and gluons, making them
essentially free particles. In analogy to QED this phase was later called quark-
gluon plasma (QGP) [24]. An illustration of our current understanding of the phase
diagram of nuclear matter is depicted in Figure 1.2. There are three regions: ordin-
ary hadronic matter, cold dense QGP and hot QGP. These are separated by phase
transitions of unknown order at the transition temperature and transition density.
There is also speculation about the existence of a critical point [26]. At low baryon
density and temperature there is the normal hadronic matter with confined quarks
and gluons. At small temperatures, around ten times the density of nuclei is needed
to approach nucleons so much that their wave functions overlap, thus losing their
identity and dissolving into a big nuclear lump containing free quarks and gluons
[27–29]. The transition temperature needed for a low-baryon-density medium to
reach the QGP phase is in the region of 150− 200 GeV [30–32].

This state of matter is not only of theoretical relevance. Our universe is thought
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to have been in this state right after the Big Bang, where only a low4 net baryon
density was present but, due to the high temperatures, a high energy density was
available. When the universe had expanded enough it cooled down below the critical
temperature and quarks and gluons combined to hadrons. Also today QGP might
naturally exist: The interior of neutron stars is thought to be a highly compressed,
low-temperature QGP [33], while during the very extreme explosions of core-collapse
supernovae there might be a brief period where a high-temperature QGP state is
sustained [34, 35].

1.4 Ultra-relativistic nucleus-nucleus collisions
The very nature of the strong force to always bind together the colour charged
partons is in the way to studying it. Thanks to the asymptotic freedom, ultra-
relativistic heavy-ion collisions are a way to get large numbers of free partons, by
crossing the phase transitions boundary towards the QGP phase. It has been ex-
pected for many years that a hot QGP phase can be produced by the conditions
generated in heavy-ion collisions, through large momentum transfers and at small
distances. Being propelled by the accelerator to great energies, the colliding nuclei
produce high densities and high temperatures. The confinement is lifted, freeing
quarks and gluons. An equilibrium is reached shortly thereafter, and a thermal-
ized QGP phase of strongly coupled quarks and gluons is established. Due to its
high pressure the resulting QGP is expanding into a fireball bringing quarks and
gluons back to their confinement eventually. While this fireball expands and cools
down, inelastic interactions between hadrons cease thus fixing the hadron compos-
ition of the medium. This stage is called “chemical freeze-out” and is followed by
the “thermal freeze-out”, when the mean free path exceeds the system size and the
elastic interactions also come to an end, fixing also the momentum distribution.

1.4.1 Initial Conditions

As for every other experiment, it is important to understand the initial conditions
before undertaking the experiment itself. In contrast to fixed target experiments,
the laboratory frame in collider experiments is identical to the centre-of-mass frame
of the two colliding ions. In this frame the two colliding ions are Lorentz contracted
along the transversal direction and their internal interactions are slowed down due
to the time dilation.

The two nuclei collide with a central separation called impact parameter,
which together with the beam axis defines the reaction plane. Small impact
parameters characterize central collisions, while peripheral collisions are char-
acterized by a large impact parameter. The more central a collision the more nuc-
leons of one nucleus will be colliding head-on with nucleons from the other nucleus.
Non-colliding nucleons are called spectators, while colliding nucleons are the par-
ticipants. In a collision with enough participants, these will form the QGP while

4The low net baryon density is due to the fact the in the first instances our universe had as much
matter as anti-matter. Later this balance lost its equilibrium probably due to the CP-violation in
the weak interaction.
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Spectators

Participants

b

before collision after collision

Figure 1.3: UrQMD Simulation of a heavy-ion collision: moments before and after. The incoming
ions are Lorentz contracted. The impact parameter b describes the distance between
the ion centres.

the spectators will continue their travel almost unaffected. Figure 1.3 shows an
UrQMD simulation5 of the moments just before and after the collision.

There are many models on the market for the initial conditions. A very simple
way to characterize the initial geometry is the Monte Carlo Glauber model.

Monte Carlo Glauber model

In this two-dimensional statistical model, the nucleons are placed inside the nuclei
according to the Woods-Saxon probability density, which for small nuclei is similar
to a Gaussian distribution. Each nucleon is described by a circle of an area equal
to its inelastic cross section σpp,inel, which represents the probability of having an
inelastic collision in a proton-proton collision. This has to be priorly determined in
separate nucleon-nucleon collisions.
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Figure 1.4: Glauber model used for calculating
the number of binary collisions. [36]

A collision of two such nuclei is
shown in Figure 1.4. The two nuclei
are overlaid with the impact parameter b
being the distance of the centres. Over-
lapping nucleons of the two nuclei pro-
duce a binary collision. The coordin-
ate system shown is aligned to the par-
ticipant plane, which results from a
linear fit of the participants. Due to
fluctuations the participant plane is not
identical to the reaction plane ΨRP . The
non-spherical, almond shape of the
participants is characterized by a non-
zero eccentricity. As explained later in
Chapter 3 this spatial anisotropy leads
to anisotropies in other variables. [37]

5http://urqmd.org/

http://urqmd.org/
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Parton Distribution Functions

In a heavy-ion collision, there are not only collisions of the participating nucleons,
but in fact there are also collisions on the partonic level of the nucleons. Thus, apart
from the geometrical configuration of the nucleons, it is important to describe the
momentum distribution of all the parton species inside the nucleon. This is done by
so-called parton distribution functions (PDFs). Typically PDFs are measured
by deep-inelastic scatterings experiments. [38–40]

Nuclei are, however, a bound state of multiple nucleons. This can lead to de-
partures of the parton distribution compared to the free-nucleon PDFs. Effects due
to this difference are called initial state effects. Depending on the momentum
transfer and the parton momentum there can be effects like a depletion of the quark
density (called shadowing), or an enhancement (called anti-shadowing). This is a
field of study on its own and can have a significant influence on the measurements.
Corrections to the free parton distribution functions due to the binding of nucleons
in a nucleus are called nuclear PDFs (nPDFs). [41–43]

1.4.2 Formation of the QGP

Motivated by the high number and high density of participants, and due to the huge
energy density involved, it is expected that a QGP phase is established, dissolving
the participant nucleons.

In this work, the hydrodynamic picture will be used. Thus, instead of following
the evolution of every single parton, as done in so-called transport models, the bulk
of the partons are treated as a fluid analysing their collective behaviour. For more
in the subject see Chapter 3.

Embedded into this fluid there can be products of exceptionally hard scatterings
of the initial partons. These can be heavy quarks or high-momentum light partons.
The formation probability and the momentum of these hard scattering products
are given by the PDFs of the two partons scattering, and the cross section of the
production process. When the initial scattering is hard, there is a high momentum
transfer Q, and the production cross sections can be computed perturbatively.

1.4.3 Hadronization

The expansion of the QGP quickly lowers its temperature. At the phase bound-
ary, the colour charged partons can no longer behave as free particles, but have to
hadronize into colour neutral hadrons. Thus, at the phase transition, the relevant
degrees of freedom of the system change from partonic to a hadronic nature.

The heavy quarks and high-momentum light quarks, which were produced in
hard partonic scatterings, hadronize respectively into heavy-flavour hadrons and
jets of light hadrons. The momenta of these with respect to the parton momentum
are given by the fragmentation functions (FF), which can be measured in e+e− re-
actions. Because the initial hard scattering is on a much faster time scale than the
time dilated initial configuration and the later fragmentation, the production and
fragmentation processes can be viewed as independent. This effect is called factoriz-
ation, because the total production probabilities factorize under these assumptions.
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Thus, the cross section of producing the hadron h in the fragmentation of the parton
c, which is the product of a hard scattering of the partons a and b of the nucleons
A and B, is given by:

dσhardAB→h = PDFA,a
(
pa
pA
, Q2

)
·PDFB,b

(
pb
pB
, Q2

)
·dσhardab→c

(
pa
pA
,
pb
pB
, Q2

)
·FFc→h

(
ph
pc
, Q2

)

1.4.4 Signatures of the QGP

Due to the very short time the QGP state is sustained, and the confinement which
permits only colour neutral hadrons to be the final states that can be observed, it is
not straight forward to study the QGP. Thus, a series of different observables and
signatures has to be considered. All observables are monitored depending on the
centrality, as the formation of the QGP should be highly dependent on the number
of binary collisions. Additionally, the observables should be compared between
collisions of pp, pA and AA6 at comparable collision energy per nucleon to verify
the influence of the initial state effects.

Because of the strong interaction of the partons inside a QGP, there is the anti-
cipation that there are modifications of the observables from expectations without a
medium. The expectations for heavy-ion collisions without a QGP, can be directly
deduced from proton-proton collisions, with a numerical scaling to the number of
binary collisions inside the heavy-ion collision. Departures from these expectations
can be due to either the aforementioned initial state effects or from in-medium modi-
fications of the observables, called final state effects. Because both, initial and
final state effects currently represent very active fields of study, it is often not trivial
to disentangle those two.

Kinematic Probes

The global experimental observables average transverse momentum 〈pT 〉, hadron
rapidity distribution dN/dy and transverse energy distribution dET/dy are directly
connected to the thermodynamic characteristics temperature, entropy density and
energy density of the fireball, which forms at the collision. At the phase transition
towards a QGP a sudden rise of the degrees of freedom should be visible in the
change of energy density and entropy as function of temperature.

Jet Quenching

When two partons hit head-on (interact via a single gluon exchange), they deflect
each other back-to-back with high virtuality. The virtuality is reduced by subsequent
gluon radiation or quark-antiquark production. Due to the confinement this collim-
ated spray of partons hadronizes and forms a jet. In case a QGP forms, the partons
should experience collisional and radiative energy loss due to the strong interac-
tion with the colour-charged medium. This should alter the jet structure [44], and
multi-particle correlations [45], as well as introduce a path-length and momentum
dependent suppression of hadrons.

6Whereas “pp” mean proton-proton collision and “AA” heavy nuclei collisions, in our case lead
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Strangeness Production

Due to strangeness conservation, strange particles can only be produced in pairs.
The threshold energy needed is given by the mass of the produced pair. However,
inside a QGP where the confinement is lifted, strange quarks pairs can be produced
directly, lowering the threshold considerably [46]. Thus, an enhancement of multi-
strange hyperons is expected.

Quarkonium Production

While initially thought as an observable directly related to deconfinement in the
fireball, recent work shows that there are various mechanisms altering the production
of charmonium and bottomium states: While the unbound colour charge of the
medium provides a Debye-like screening, resulting in a suppression of individual
states depending on the distance of the quark pairs and the temperature of the
medium [47], additional quarkonia could be formed via statistical hadronization at
the phase boundary [48, 49], or, earlier, via coalescence in the QGP [50].

Electromagnetic Probes

Leptons and photons are probes for the earliest moments of the interaction. Since
they are not influenced by the strong force they can leave the fireball much less
obstructed than hadrons. Thus, information about the characteristics of the medium
before the freeze-out can be gained.

Collective Flow

As shown later in Chapter 3, it is possible to treat the QGP by hydrodynamical
models, where thermodynamic quantities like temperature, pressure and viscosity
lead to collective movements of the particles.

1.5 Units
The units used throughout calculations are mostly arbitrary, as long as they are
used consistently. Historical reasons and convenience are the important factors
when considering unit systems. Typically for day-to-day business the International
System of Units “SI” is most widely used. Historically its origins date back to the
French revolution, were the revolutionary vibe not only enforced radical changes
in the political system but also sought to abolish everything which was felt to be
only remotely connected to it. Base of the system are seven units7: second, metre,
kilogram, ampere, kelvin, mole, and candela [53]. This system is convenient for
common day-to-day use: Usual sizes are of the orders of the meter, and usual
weights are of the order of a kilogram.

7While the upcoming redefinition of the SI will significantly change the definitions of the base
units, the base units themselves will be the same. The future definition of the SI which was
recommended by the International Committee for Weights and Measures (CIPM) will most likely
be approved at the 26th General Conference on Weights and Measures (CGPM) expected in 2018.
[51, 52]
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Unit Value of one unit in SI
energy eV 1.6022 · 10−19 kg·m2

s2

speed c 299792.458 m
s

length fm 10−15 m
momentum eV/c 5.3442 · 10−25 kg·m

s
mass eV/c2 1.7827 · 10−30 kg

temperature eV/kB 11600 K
time fm/c 3.3356 · 10−24 s

Table 1.3: Unit system used in high energy physics

In high-energy physics however these units are inconvenient. Instead the energy
scale used is based on the electron volt, which is the amount of energy an electron
has after being accelerated by an electric potential of 1 Volt. The length-scale used
is based on the femtometre, which is approximately the size of a nucleon. The speed
is defined relative to the speed of light and the time scale is relative to the time light
needs to cross a femtometre. The units used in this work are given in Table 1.3.



16



17

2 Relativistic Kinematics
Due to the high energies the incoming projectiles are accelerated to, not only these
are moving at relativistic speed, but also the particles created in the collisions.
Thus, a very brief introduction to special relativity shall follow. This chapter in-
troduces the mathematical framework of the theory of special relativity needed for
this work, which was first proposed by Albert Einstein in a series of articles [54–58].
From this some important relations are derived and additional important definitions
mentioned.

2.1 Minkowski Space
The mathematical arena of Einsteins special relativity is the Minkowski space, which
is a four-dimensional vector space with the following inner porduct as its structure:

a · b = 〈a, b〉 := a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − ~a ·~b (2.1)

The elements of this inner product space are four-dimensional vectors, called 4-
vectors, which are composed of the time as the zeroth component and with the re-
maining three components taken from the classical three-dimensional space vectors.
Bold variables shell represent 4-vectors, italic variables with indices represent com-
ponents and variables with a vector arrow on top are the Euclidean 3-vectors of the
space dimensions. For the definition of the inner product the signature (+,−,−,−)
was used and not the equally possible (−,+,+,+). Because of the changing signs
in this definition of the scalar product, the structure of this vector space is different
from a four-dimensional Euclidean space, where the signature is exclusively positive
(or negative).

A side effect of these mixed signs is that it is not possible to globally define an
orthonormal basis common to all observers. Thus, in order to cope with skewed
coordinate systems it is necessary to borrow from differential geometry, just like it
is done in general relativity. Let there be two ways of defining components of a
vector, one with an upper index and one with a lower index:

a := {aµ} =


a0

a1

a2

a3

 {aµ} =


a0
a1
a2
a3


Components with lower index are related to components with upper index by the
definition:

a0 := a0, ai := −ai , i ∈ {1, 2, 3} (2.2)

Components with upper index are called contravariant, and components with lower
index are called covariant. The names are a reminder that the mathematical basis
of the Minkowski space is multilinear algebra and the covariant description is dual
to the contravariant. The inner product can thus be rewritten into a form which
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looks more natural, hiding the minus signs:

a · b = a0b
0 + a1b

1 + a2b
2 + a3b

3 =
3∑

µ=0
aµb

µ =
3∑

µ=0
aµbµ =: aµbµ = aµb

µ

Using the Einstein notation the summation sign over the common index will always
be dropped, taking it as implicit over the necessary variables.

By introducing the metric tensor

gµν := diag(1,−1,−1,−1) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = gµν

the inner product can also be written as:

aν = gµνa
µ

aν = gµνaµ

a · b = aµb
µ = gµνa

νbµ = gµνa
νgµνbν = gµνg

µνaνbν = aνbν

2.2 Lorentz Transformation
Having defined the mathematical structure, it can now be filled with life inserting
the physics. The coordinates x, y and z are used as indeces for classical 3-vectors
and 0, 1, 2, and 3 for relativistic 4-vectors. Using the following definitions

β = v

c
, γ = 1√

1− β2

we can introduce the 4-vectors of space-time, velocity and energy-momentum:

x =


x0

x1

x2

x3

 =


ct
x
y
z

 v =


v0

v1

v2

v3

 =


γc
γvx
γvy
γvz

 p = m0v =


γm0c
γm0vx
γm0vy
γm0vz

 =


E/c
γpx
γpy
γpz

 =


p0

p1

p2

p3


These vectors are measured relative to a specific frame. Going to a different frame
which moves relative to the initial frame, is done by means of the Lorentz trans-
formation. Any Lorentz transformation Λ can be associated with a transformation
matrix Λ := {Λµ

ν}. The vectors measured relative to this new frame are then:

a′ = Λa, a′µ = Λµ
νa

ν

The defining property of the Lorentz transformation can be expressed as a require-
ment on Λ:

gµνΛµ
αΛν

β = gαβ (2.3)
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Any such transformation preserves the inner product of the underlying Minkowski
space (Equation 2.1) by construction:

a′ · b′ = a′νb
′ν = gµνa

′νb′ν = gµνΛµ
αΛν

βa
αbβ = gαβa

αbβ = aβb
β = a · b (2.4)

Inner products can thus be calculated in the most convenient frame, the results
are universal. More technically, the symmetry constraints are encapsulated by the
term SO(1,3)8. The situation is very similar to four-dimensional rotations, which
are termed SO(4) and are preserving the usual Euclidean inner product and where
the defining property (equivalent to Equation 2.3) of a rotation matrix R can be
expressed as R−1R = 1.

Given a transformation Λ, the form of its inverse can be derived from Equation
2.3:

(Λ−1)µν = (ΛT )µν = Λν
µ = gανg

βµΛα
β

Which means:

Λ =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3
Λ2

0 Λ2
1 Λ2

2 Λ2
3

Λ3
0 Λ3

1 Λ3
2 Λ3

3

 ⇒ Λ−1 =


Λ0

0 −Λ1
0 −Λ2

0 −Λ3
0

−Λ0
1 Λ1

1 Λ2
1 Λ3

1
−Λ0

2 Λ1
2 Λ2

2 Λ3
2

−Λ0
3 Λ1

3 Λ2
3 Λ3

3


Of all possible transformations, one is especially important: the Lorentz boost. It
is the transformation between frames of the same orientation and same acceleration
but at different relative speeds. For a relative movement of the frames in arbitrary
direction with velocity ~β we can introduce the Lorentz matrix:

Λ =


γ γβx γβy γβz
γβx 1 + λβ2

x λβxβy λβxβz
γβy λβyβx 1 + λβ2

y λβyβz
γβz λβzβx λβzβy 1 + λβ2

z

 , λ = γ − 1
β2 (2.5)

2.3 Important Relations
With the definitions above some important relations can be found. Throughout this
work the convention c = 1 will be used.

The velocity of a particle in its rest frame (β = 0, γ = 1) is v = (1, 0, 0, 0), while
its momentum is p = (m0, 0, 0, 0).

v · v = vµvµ = vµgµνv
µ = v2

0 − v2
1 − v2

2 − v2
3 = v2

0 − ~v2 = 1

p · p = pµpµ = pµgµνp
µ = p2

0 − p2
1 − p2

2 − p2
3 = p2

0 − ~p2 = m2
0 (2.6)

As shown in Equation 2.4 these results are independent of the frame. The second
identity can be rearranged to:

8indicating that the transfomations are continuous (S) (determinant is positive), orthogonal
(O) (unit determinant) and are conserving the inner product of the underlying vector space with
an indefinite signature of (+,−,−,−)
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p2
0 − p2

1 − p2
2 − p2

3 = p2
0 − ~p2

⇔ m2
0 = E2 − p2

⇒ E2 = p2 +m2 (2.7)
This is the energy-momentum relation which is of utmost importance in high-energy
physics. In multi-particle systems, the former expression defines the invariant mass
W :

W 2 =
(∑

E
)2
−
(∑

p
)2

(2.8)
In case that all particles are decay products of some decayed mother particle it holds
that the invariant mass equals the mass of the decayed particle: W = m0.

In our context, energy E always means total energy. Subtracting the rest mass,
we get the kinetic energy.

Ekin = E −m =
√
p2 +m2 −m = m(γ − 1) (2.9)

Furthermore it is of use to realize that:

p

E
= β,

E

m
= γ

Another useful definition in the framework of special relativity is the rapidity. It
is an alternative measure to speed, preserving the additivity known from classical
physics.

y = 1
2 ln

(
E + p

E − p

)
= tanh−1

(
p

E

)
= tanh−1 (β)

However, in our case we are only interested in the projection along the beam (see
also Chapter 4.2.1 for an explanation of the coordinate system used):

y = 1
2 ln

(
E + pz
E − pz

)
= tanh−1

(
pz
E

)
(2.10)

In experimental physics another more convenient measure is used, the pseudorapid-
ity. In contrast to rapidiy, it has the advantage of being mass independent and can
thus be used as an alternative to the polar angle θ. For highly relativistic particles
(p� m) it is identical to rapidity. In the limit of m→ 0 Equation 2.7 yields E = p
and Equation 2.10 can be transformed to:

η = 1
2 ln

(
p+ pz
p− pz

)
= tanh−1

(
pz
p

)
= − ln

[
tan

(
θ

2

)]
(2.11)

This definition is useful because particle production upon a collision is usually given
in terms of rapidity, while in high-energy experiments rapidity is approximately
equivalent to the pseudorapidity which is just a geometrical measure.

The projection of the produced particle’s momentum onto the transverse plane
is another very important measure.

pT =
√
p2
x + p2

y (2.12)
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The more energy of the incoming projectiles is converted in the collision, the more
particles are generated with transverse momentum. Often we will restrict ourselves
to statements which are true only at vanishing longitudinal momentum (pz = 0),
describing what happens in the transverse plane at η = 0. In this context we can
also define the projection of the total energy onto the transverse plane, it is called
transverse mass:

E =
√
m2 + p2 p=pT=⇒

√
m2 + p2

T =: mT (2.13)

Similarly we can define the transverse kinetic energy:

Ekin = E−m =
√
m2

0 + p2−m p=pT=⇒
√
m2

0 + p2
T −m = mT −m := KET (2.14)

2.4 Invariant Cross Sections
In high-energy physics, measurements are not based on single occurrences but on
statistical repetition of the interesting events. The rate at which these events occur
is given by the product of the luminosity L of the beam (closely related its intensity)
and the cross section σ of the process.

dN

dt
= L · σ

The total amount of events is simply given by the integral over time; the longer we
record, the more events we will have recorded:

N =
ˆ
L · σdt = σ

ˆ
Ldt

The luminosity is given by the experimental setup and is unrelated to the physical
cross section, which is what we try to measure (see also Chapter 4 and Equation 4.1).
Thus for a given data sample N and σ are different by just a constant. Often, it is
important to not only measure the total cross section, but to identify how it depends
on other variables. We will typically evaluate our results momentum-dependent:

d3σ

dp3 ∝
d3N

dp3

While the cross section is a Lorentz-invariant quantity the differential cross-section
as introduced above is not. To achieve this, a multiplication with the energy is
needed:

E
d3σ

dp3 ∝ E
d3N

dp3

Depending on the situation other coordinate systems may be preferred:

d3σ

dp3 = d3σ

dpxdpydpz
= d3σ

pTdpTdϕdpz
= d2σ

2πpTdpTdpz
= d2σ

2πEpTdpTdy
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3 Hydrodynamics of the QGP
Useful properties of the produced QGP and of the particles radiated from it will
be derived in this chapter. First it will be shown that it is not unreasonable to
assume that hydrodynamics can be applied to the system, then, after laying out the
framework of the calculations, all important relations will emerge from very few and
basic principles. This chapter was strongly influenced by the following publications:
[59–63].

For a sound hydrodynamic description, it is necessary that thermodynamic vari-
ables such as temperature and pressure can be defined. The number of particles in
a QGP produced by the two colliding 208Pb82+ ions is certainly high enough for a
thermodynamic description. However, the QGP is expanding at a relativistic pace.
Such a system can certainly not be in a global equilibrium, which would be necessary
for a standard thermodynamic description. With global thermodynamic equilibrium
violated, the best we can hope for, is that at least parts of the system are in a local
equilibrium.

The applicability of hydrodynamics is strongly related to the Knudsen number:

Kn = λ

R

In a fluid the mean free path λ must be small compared to the size of the system R,
implying Kn� 1. Measurements at RHIC and estimations for the LHC show that
during the high temperature phase it is very probable that the system is at least
at some point in time in local thermodynamical equilibrium and such that at least
there hydrodynamics is applicable [60, 64].

3.1 Thermodynamic Definitions
In the following a small volume element of the QGP shall be described as being
in local thermodynamic equilibrium where the following properties are regarded as
well defined:

• Volume V

• Pressure P

• Internal energy U

• Baryon number N

• Entropy S

• Baryon chemical potential µ

• Energy density ε = U/V

• Entropy density s = S/V

• Baryon density n = N/V
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The fundamental thermodynamic relation describes the change in internal energy
expressed in terms of changes in the variables S, V and N :

dU = TdS − PdV + µdN (3.1)

The equation holds for all systems in equilibrium. The transition to relativistic
thermodynamics is done by recognizing that N is not simply the number of particles,
since this is not conserved in relativistic systems. The system can however have other
conserved quantities, which in our case is the baryon number.

The internal energy is a homogeneous function of the first degree:

U(αS, αV, αN) = αU(S, V,N)

Taking this and the previous expression (Equation 3.1) together with Euler’s the-
orem on homogeneous functions it follows:

U = TS − PV + µN

For the fluid cell we want to study this translates to:

ε = Ts− P + µn (3.2)

3.2 Assumptions
The hydrodynamics of a QGP fluid cell will be derived from the axiomatic assump-
tion that it almost9 reaches local thermodynamic equilibrium in its rest frame10,
describing a perfect fluid. Thus, the fluid, isotropically distributed in this cell, is
inviscid and neither has shear stresses nor is it heat conductive.

We will further assume that the fluid is baryonless (n = 0). This assumption is
not as absurd as it sounds. Although there are indeed nucleons hitting in a collision,
meaning that there is net baryon number, there is also the huge collision energy11.
Thus there are so many quarks and anti-quarks pairs being generated, that the net
baryon number density is very small.

The entropy of an inviscid fluid is conserved throughout its evolution. With both
S and N conserved, the fluid cell will undergo an isentropic evolution. Under these
assumptions and with U = εV the fundamental thermodynamic relation (Equation
3.1) simplifies to:

dU = d(εV ) = εdV + V dε = −PdV

⇔ dε

ε− P
= −dV

V

With s = S/V it follows:

ds

dV
= d

dV

(
S

V

)
= − S

V 2 = − s
V

⇔ d(ln s) = ds

s
= −dV

V
= dε

ε− P
(3.3)

9We will in fact let some place for small departures from perfect equilibrium.
10the frame in which its net momentum vanishes
112.76 TeV per nucleon, each weighing 940 MeV
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3.3 Relativistic Hydrodynamics
The energy and momentum of a such a fluid cell in its rest frame is given by the
energy-momentum tensor Trf .

Trf =


ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P


The local energy density ε is related to the local pressure P by the equation of state.
The equation of state describes how the fluid behaves, as well as its phase diagram.
So in the language of hydrodynamics, this is in fact what we are actually after.

With the Lorentz transformation matrix Λ we can change the energy-momentum
tensor T to a moving frame. Since it is enough to have T expressed to the first order
in the fluid velocity, the matrix of the Lorentz transformation (Equation 2.5) can
be simplified to:

Λ =


γ γβx γβy γβz
γβx 1 + λβ2

x λβxβy λβxβz
γβy λβyβx 1 + λβ2

y λβyβz
γβz λβzβx λβzβy 1 + λβ2

z

 ≈


1 βx βy βz
βx 1 0 0
βy 0 1 0
βz 0 0 1

 , λ = γ − 1
β2

In its matrix form the Lorentz transformed energy-momentum tensor reads:

T = ΛTrfΛT =


ε (ε+ p)βx (ε+ p)βy (ε+ p)βz

(ε+ p)βx P 0 0
(ε+ p)βy 0 P 0
(ε+ p)βz 0 0 P


In the typical relativistic representation the elements of matrix T are called T µν and
can be written using the Einstein notation:

T µν = (ε+ p)uµuν − Pgµν (3.4)

where gµν = diag(1,−1,−1,−1) is the metric tensor and u is the 4-velocity with
components uµ.

u =


γ
γβx
γβy
γβz


Energy and momentum conservation is generally expressed by the vanishing deriv-
atives of T µν , the so-called continuity equation:

∂µT
µν = 0

Inserting here the above expression for T µν (Equation 3.4) the following four equa-
tions emerge:
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∂ε

∂t
+ ~∇ · ((ε+ P )~u) = 0

∂

∂t
((ε+ P )~u) + ~∇P = ~0 (3.5)

This, together with the equation of state and the continuity equations for all other
conserved quantities represents a closed system of equations. To study just the
propagation of small disturbances in the fluid, the energy density and pressure can
be rewritten as a constant with small perturbations δε and δP respectively:

ε = ε0 + δε

P = P0 + δP (3.6)
Inserting this into the previous expression (Equation 3.5) and linearising we finally
get:

∂(δε)
∂t

+ (ε0 + P0)~∇ · ~u = 0 ⇔ −∂(δε)
∂t

= (ε0 + P0)~∇ · ~u

(ε0 + P0)∂~u
∂t

+ ~∇(δP ) = ~0 ⇔ (ε0 + P0)∂~u
∂t

= −~∇(δP )

The first equation is the energy conversation: if the system volume increases (~∇·~u >
0), the energy density decreases (−∂(δε)/∂t < 0). The second equation is Newton’s
second law: the system inertia (ε0 +P0) times its acceleration (∂~u/∂t) equals to the
force on the volume (−~∇(δP )). The force pushes the fluid towards lower pressure.
In our case of a QGP in vacuum, the QGP will thus expand.

3.4 Transverse Expansion
To analyse the expansion we go back to the vector part of the continuity equation
(Equation 3.5) and assume that the expansion builds up with vanishing initial value
(~u(t = 0) = ~0).

∂

∂t
((ε+ P )~u) = −~∇P

⇔
�
�
�

~u
∂ε

∂t
+ ε

∂~u

∂t
+

�
�
�

~u
∂P

∂t
+ P

∂~u

∂t
= −~∇P

⇔ ∂~u

∂t
= − 1

ε+ P
~∇P

Together with Equation 3.3 and the velocity of sound cs =
√

(∂P/∂ε) we thus get
the acceleration in the two transverse directions:

∂ux
∂t

= − 1
ε+ P

∂P

∂x
= −c2

s

∂(ln s)
∂x

∂uy
∂t

= − 1
ε+ P

∂P

∂y
= −c2

s

∂(ln s)
∂y

(3.7)

We insert a distribution for s matching the density profile of the collision, which we
take as a Gaussian for simplicity:
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Figure 3.1: Spatial distribution of a non-central collision in the transverse plane.

s(x, y, z) = s0 exp
(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
(3.8)

with σx and σy being the transverse widths of the distribution (Figure 3.1). Inserting
this into the transverse acceleration (Equation 3.7) and integrating over t we get the
time-dependent speed of the expansion:

ux = −
ˆ t

0
c2
s

∂

∂x

(
− x2

2σ2
x

)
dt =

ˆ t

0

c2
sx

σ2
x

dt = c2
sx

σ2
x

t

uy = −
ˆ t

0
c2
s

∂

∂y

(
− y2

2σ2
y

)
dt =

ˆ t

0

c2
sy

σ2
y

dt = c2
sy

σ2
y

t (3.9)

When the collision is non-central, it results by definition that σx < σy, which implies
ux > uy. The expansion is strongest along the shorter axis of the overlap region,
because here the pressure gradient is largest.

3.5 Transverse Mass Scaling
The particles in the fluid have a momentum distribution due to the fluid temperat-
ure. In contrast to the usual treatment of statistical quantities, we will allow our cell
to not completely reach equilibrium by requesting maximum entropy for the particle
distribution not measured by the Boltzmann-Gibbs entropy (S = −k∑i pi ln pi) [65]
but by the Tsallis entropy instead [66]:

S = −k
∑
i

pqi lnq pi

With the Tsallis index q representing the departure from equilibrated and uncorrel-
ated microstates, and defining the q-logarithm and q-exponential [67], which in the
limit q → 1 reduce to the usual logarithm and exponential (see also Figure 3.2 left
panel):

lnq(x) := x1−q − 1
1− q expq(x) := [1 + |x| (q − 1)]

sign(x)
q−1

Requesting that the particle distribution is of maximum entropy, it can be shown
that in the rest frame of a fluid cell of volume dV , having dN particles in the
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Figure 3.2: Comparison of the q-exponential with the normal exponential (left) and comparison
of the fermionic with the bosonic spectrum (right). With x = mT /T and calculated
at a realistic q = 1.15 [68, 69].

momentum range dp3 with energy E and degeneracy g, and depending on the particle
type (fermion/boson: +/− respectively) the momentum distribution is [70]:

d3n

dp3 = 1
dV

d3N

dp3 = g

(2π)3

[
expq

(
E − µ
T

)
± 1

]−1
≈

g

(2π)3 expq
(
−E
T

)
(3.10)

We already said that we want to examine a baryonless fluid, which implies that
µ = 0. We also drop the distinction between bosons and fermions12, thus getting
the Tsallis-Boltzmann momentum distribution, which would further reduce to the
Maxwell-Boltzmann distribution in the limit q → 1. In the following we want to
restrict ourselves to particles moving faster than the fluid. The energy of a particle
of momentum p in the fluid cell with velocity u as measured in the laboratory frame
can be written as:

E = pµuµ = p0u0 − ~p · ~u = u0
√
m2

0 + ~p2 − ~p · ~u

In the last step Equation 2.6 has been used. We further restrict ourselves to the
radial direction, studying particle production at η = 0. This implies pz = 0 and
p = pT . Together with the definitions of transverse momentum (Equation 2.12) and
transverse mass (Equation 2.13) the last expression can be now written as:

E = mTu
0 − pTuT (3.11)

And thus the momentum distribution becomes:

d3N

dp3 � expq
(
−mTu

0 − pTuT
T

)
(3.12)

12For a mT of a few times the Tc onwards this approximation is very good (shown in Figure 3.2
right panel)
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Figure 3.3: Comparison of pp (left) and Au+Au (right) data to mT -scaling at √sNN = 200 GeV
at the RHIC [75]

In the picture of a motionless fluid (uT = 0 , u0 = 1), this momentum distribution
becomes the so-called Tsallis momentum spectrum:

d3N

dp3 � expq
(
−mT

T

)
(3.13)

This result is strictly true only for the particles that are moving through the medium.
Inspired by the Cooper-Frye freeze-out picture [71] we however assume that the
hadronization does not change the momentum distribution, which means that all
particle species (pion, kaon, kaon...) will have the same momentum spectrum when
expressed in mT . This is the mT -scaling property. And indeed in pp as well as in p-
Pb collisions where there should be no fluid and thus no fluid motion, Equation 3.13
describes the data very accurately: for both, unidentified and identified particles [72–
74]. For heavy-ion collisions the underlying spectrum must be tweaked, and the mT -
scaling property is less accurate. Figure 3.3 shows a compilation of measurements
together with a parametrisation based on mT -scaling.

This pure hydrodynamic derivation does not work however for Ion-Ion collisions,
where the strongly interacting medium produces effects of non-thermodynamical
nature, especially for high momenta. This introduces deviations from the functional
form described here. Thus there the momentum spectra are described by functional
forms with a different high momentum behaviour, like e.g. proposed by Hagedorn
[76]. The differences are however still rather subtle and it is indeed nice to see that
one can reach this important result from first principles.

3.5.1 Breakdown of mT -Scaling

Up to now a motionless fluid was assumed in the calculation, which is not exactly
true in heavy-ion collisions. Additionally to this, also the interactions of the particles
with the medium introduce subtle changes to the spectra, so that these are no
longer accurately described by the Tsallis function. For a first estimation of the
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consequence of a finite flow to the grade of the mT -scaling approximation, however,
these additional effects shell be disregarded and the spectra are further assumed to
be Tsallis-like.

The mT -scaling property is extensively used when a particle’s momentum spec-
trum is being calculated based on another particle’s momentum spectrum measure-
ment. Usually the particle measured is the pion, thus the momentum spectrum of
some other particle P of mass mP would be approximated due to mT -scaling to:

d3NP

dp3 ≈
d3Nπ

dp3

expq
(
−
√
m2
P+pT
T

)
expq

(
−
√
m2
π+pT
T

)
While the particle ratio would be approximated to:

⇔

(
d3NP
dp3

)
(
d3Nπ
dp3

) ≈ expq
(
−
√
m2
P+pT
T

)
expq

(
−
√
m2
π+pT
T

) (3.14)

Figure 3.4 shows the discrepancy between the left hand side (real spectrum ratio)
and the right hand side (mT -scaling ratio) of Equation 3.14 as well as their double
ratio. It was calculated for the kaon with the pion as baseline and using a realistic
combination of the fluid velocity, temperature and Tsallis index ([68, 69, 77, 78]).
The overall scaling factor must be measured, and introduces its own uncertainty.

With increasing particle pT , the grade of themT -scaling approximation increases,
the flow becomes more and more negligible. So for Pb-Pb collisions, the situation is
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Figure 3.5: Thermal Model particle ratios compared with measurements from RHIC (left) and
LHC (right) [80].

rather obscure: in the low momentum region, below 2− 4 GeV/c, the spectrum can
be described by a Tsallis momentum spectrum, where however due to the presence
of flow the simple mT -scaling does not work, and in the high momentum region the
mT -scaling does work but the spectrum is not of the simple Tsallis form anymore.

Although not perfect, in practice the mT -scaling is still sufficiently accurate for
many studies. Also in this work it is extensively used.

3.6 Particle Ratios
Instead of analysing the momentum spectrum of the generated particles, the mo-
mentum distribution (Equation 3.10) can also be used to obtain the number of
particles of a given species emitted by a fluid element. Integrating over all momenta
we get for each particle species i:

ni = gi
(2π)2

ˆ ∞
0

p2dp

expq
(
E−µB
T

)
± 1

Again assuming the Cooper-Frye freeze-out picture, this expression can be directly
viewed as a statement for each produced particle species. Thermal models based
on this approach [48, 49] have turned out to be very accurate in describing the
real particle ratios in a wide energy range [79, 80]. Figure 3.5 shows the measured
particle ratios compared to thermal model global fit.

3.7 Chemical and Kinetic Freeze-Out
While in pp collisions the temperatures extracted from measurements of the particle
ratios and the mT spectra are similar, in heavy-ion collisions this is no longer the
case. The temperature from the momentum distributions is significantly below that
of the particle rations. The former is called kinetic freeze-out temperature Tk and
the latter chemical freeze-out temperature Tch. Temperatures extracted at the LHC
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are: Tk ≈ 100 MeV [68, 69, 77] and Tch ≈ 165 MeV [80]. The interpretation of the
observation that Tk < Tch ≈ Tc is that there is a two-step procedure:

Inelastic interactions in the expanding and cooling medium cease at Tc, thus
fixing the hadron composition. When the mean free path exceeds the system size,
also the elastic interactions come to an end, fixing the momentum distribution.

3.8 Anisotropic Flow
As shown in Chapter 3.4 in case of non-central collisions, the initial spacial aniso-
tropy (Equation 3.8) is translated into a velocity, or momentum anisotropy (Equa-
tion 3.9). To get a momentum dependent result of this anisotropy, the observation
of the transverse expansion (Equation 3.9) is now to be incorporated into the mo-
mentum distribution (Equation 3.12).

But first the problem needs to be expressed in polar coordinates, because these
are more natural to this problem. Any angular distribution can be described in a
Fourier-decomposition. The polar form of the Gaussian profile (Equation 3.8) of the
entropy on the transverse plane with eccentricity εn then becomes:

s(r, ϕ) = s0 exp
(
− r2

2σ2
r

(
1 + 2

∑
n

εn cosnϕ
))

(3.15)

Inserting this into the polar form of the transverse acceleration (equivalent to Equa-
tion 3.7)

∂ur
∂t

= − 1
ε+ P

∂P

∂r
= −c2

s

∂(ln s)
∂r

yields the polar form of the transverse speed (equivalent to Equation 3.9):

ur(ϕ) = t
c2
sr

σ2
r

(
1 + 2

∑
n

εn cosnϕ
)

= vT

(
1 + 2

∑
n

εn cosnϕ
)

with vT = tc2
sr/σ

2
r being the transverse fluid speed. With u0 =

√
1 + ~u2 and ex-

panding to the first order in εn it follows:

u0(ϕ) =

√√√√1 + (vT
(

1 + 2
∑
n

εn cosnϕ
)

)2 ≈ v0 + v2
T

v0 2
∑
n

εn cosnϕ

Both u(ϕ) and u0(ϕ) can now be inserted into Equation 3.11:

E = mTu
0 − pTuT =

(
mTv

0 − pTvT
)

+
(
mT

v2
T

v0 − pTvT
)

2
∑
n

εn cosnϕ

This in turn is inserted into the general expression of the momentum distribution
(Equation 3.10) yielding a ϕ-dependent momentum distribution:

d3N

pTdpTdpzdϕ
� expq

(
−mTv

0 + pTvT
T

+ −mTv
2
T/v

0 + pTvT
T

2
∑
n

εn cosnϕ
)
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Figure 3.6: Elliptic flow of particles of different masses based on Equation 3.17 with a fluid
velocity of 0.65 c [77].

The first term is the momentum distribution as known from Equation 3.12 and the
second is the anisotropic flow. The latter is a relatively small modulation to the
total spectrum. In that case the q-exponential approximately splits while the q can
be dropped altogether for the modulation part:

d3N

pTdpTdpzdϕ
� expq

(
−mTv

0 − pTvT
T

)
exp

(
pT −mTvT/v

0

T
2vT

∑
n

εn cosnϕ
)

While the first term is the already known momentum distribution, the second term
can be further simplified with exp(x) ≈ 1 + x:

d3N

pTdpTdpzdϕ
= N0 ·

1 + 2
∑
n

vT εn
T

(pT −mT
vT√

1 + v2
T

) cosnϕ


The ϕ-dependent momentum distribution can now be rewritten in terms of vn to a
Fourier-like decomposition

⇒ d3N

pTdpTdpzdϕ
= N0 ·

(
1 + 2

∑
n

vn cosnϕ
)

(3.16)

by defining the Fourier coefficient vn:

vn := vT εn
T

pT −mT
vT√

1 + v2
T

 (3.17)

Analysing this result for a given fluid velocity vT it can be shown that the vn coeffi-
cient increases almost linearly with pT . At the same pT , higher-mass particles have
a lower vn, a feature called mass ordering (Figure 3.6). The result is mathematically
consistent only when the particles move at speeds higher than the speed of the fluid,
thus when the term in brackets of the above equation is positive.

Throughout the derivation we have argued that we analyse an inviscid fluid.
However, from string theory it appears that there is a non-zero lower bound to how
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Figure 3.7: The measured identified-particle elliptic flow (left) is reasonably described by the
KET -scaling (right) [89]

low the viscosity can get [81, 82]. Due to its dissipative effects, viscosity drives down
the vn, with ever stronger suppression of the higher orders [83].

Furthermore, due to the interaction of particles traversing the medium with the
medium, and the path-length dependence of the energy-loss, the vn decreases at
intermediate pT and remains low at higher pT . [84–86]

3.9 Scaling Properties of Anisotropic Flow
The quarks and gluons of the QGP will eventually hadronize into measurable par-
ticles. During this hadronization, partons close in phase space have the chance to
coalesce. In this picture, the hadron momentum will be the sum of the momenta
of its recombined partons. Indeed, at RHIC it was found that the absolute vn of
different particle species scale with the number of valence quarks [87, 88].

vhadronn (pT ) =
∑
i

vpartonn (xi · pT ) , xi = pparton
phadron

This scaling property is called quark number scaling, it is not perfect however. The
scaling property is improved when not the momentum but the kinetic energy is
viewed as conserved. With the restriction to the radial direction (η = 0, p = pT ) we
can use the definition of the transverse kinetic energy (Equation 2.14) and write:

vhadronn (KET ) =
∑
i

vpartonn (xi ·KET ) , xi = pparton
phadron

Figure 3.7 shows the scaling behaviour with ALICE measurements. Both scalings
are rather empirical findings and cannot not reproduce all the data in every detail.

3.10 Non-Flow Effects
All correlations among particles which are not due to the collective effects of the
expanding fluid are called non-flow effects. These comprise two- and multi-particle
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correlations due to momentum conservation, quantum statistics, resonances or jet
production. In phase space such correlations are, however, of a more local nature
than flow and usually scale inversely to the number of analysed particles. Observing
particles at very different pseudorapidities suppresses such non-flow effects from flow
measurements effectively and efficiently. [90–92]
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4 Experimental Setup

4.1 The Large Hadron Collider

The Large Hadron Collider is a ring accelerator at the European Organisation of
Nuclear Research (commonly called CERN) situated near Geneva, at the border of
Switzerland and France. In 2001 the construction of the LHC started, replacing
the predecessor accelerator LEP (Large Electron-Positron Collider) in its 26.7 km
circumference tunnel. Almost exactly 25 years after its approval by the CERN
Council on December 16th 1994, the first pp collisions were recorded on November
23rd 2009.

The peak centre-of-mass collision energy of the collider is 14 TeV for protons. To
achieve this, the LHC consists of 1392 superconducting dipole magnets generating
a magnetic field of 8.33T, to guide the two particle beams of opposing directions
on their way through the tunnel. With this magnetic field it is possible reach an
energy of up to 5.52 TeV for fully stripped lead ions 208Pb82+. The two beams,
which are 20 cm apart, are focused by 392 superconducting quadrupole magnets
to a size of only 16µm in transverse direction. The magnets are cooled to 1.9 K,
which is well below the transition temperature of the NbTi alloy windings in the
magnets, to maximise the field strength required for the highest particle energies
and for preserving the Helium in its superfluid phase.

Before being injected into the LHC particles are successively pre-accelerated in
an accelerator cascade starting at the linear accelerator LINAC 2 / LINAC 313

followed by the accelerator rings PSB / LEIR13, PS and SPS (Figure 4.1). Once in
the LHC, particles are further accelerated up to the peak energy.

The actual layout of the LHC is not a perfect circle, but includes eight 528 m
straights and eight arcs. In the middle of four of the straights the two particle beams
cross each other. These are the spots are where the collisions happen and are called
interaction points (IP). Each of the four experiments of the LHC has one of these
points at its centre. The other four straights house the beam cleaning, dumping and
accelerating facilities. In Table 4.1 the main parameters of the LHC are shown.

For all today’s experiments it is important to collect lots of statistics. This is due
to the fact that many of the interesting physics processes have a low cross section
and are thus very rare. In this context the beam intensity or the so-called luminosity
L is an important measure.

L = NaNbnfr
4πσxσy

(4.1)

Due to technical reasons, the two beams (a and b) are not continuous, but consists of
a number of bunches N where each bunch consists of a number of particles n. These
bunches have a revolution frequency fr and a transversal profile with the widths σx
and σy. The units of the luminosity are cm−2s−1. When multiplied with the total
cross section of a given process it yields the rate of that process. [93, 94]

13The first mentioned accelerator is used for protons exclusively, the second mentioned is for
lead ions.
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Figure 4.1: The CERN accelerator complex. Protons are starting their way at LINAC 2 and lead
ions at LINAC 3. [95]

Parameter Value
Total length 26.659 km
Minimal radius 2805 m
Momentum at injection per proton 450 GeV/c2

Maximal momentum per proton 14 TeV/c2

Dipole field at 450 GeV/c2 0.535 Tesla
Dipole field at 7 TeV/c2 8.33 Tesla
Revolution frequency 11.245 kHz
Particles per bunch 1.15 · 1011 / 108

Bunches per beam 2808 / 592
Transverse beam size at interaction 16.7µm
Longitudinal bunch size 7.55 cm
Luminosity 1034 cm−2s−1 / 1027 cm−2s−1

Table 4.1: Main parameters of the LHC. [93, 95]
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Figure 4.2: The ALICE Experiment and its detectors.

4.2 A Large Ion Collider Experiment (ALICE)

ALICE is an experiment devoted to the study of strongly interacting matter and
the characteristics of the Quark-Gluon-Plasma in heavy-ion collisions.

The aspect of ALICE is dominated by the huge magnet of the old LEP experi-
ment L3, which is being reused (Figure 4.2). Its dimensions are almost 15 m cubed,
giving enough room for most of the particle detectors. Only the forward spectro-
meter of the muon detector resides outside the magnet. The other detectors are
placed onion-like around the interaction point.

Scope of this magnet is to create a homogeneous magnetic field in which charged
particles are forced to circular trajectories with radii dependent on their momentum.
The particle mass, in fact the quantity of interest, can only be identified with the
help of additional measurements. The magnetic field of 0.5 T which is the lowest of
all LHC experiments allows reconstruction down to very low transverse momenta.

As a large number of particles are produced in heavy-ion collisions, detectors
must be endowed with high spatial resolutions to be able to trace the trajectories.
Data taking must be capable of routing and saving enormous amounts of data.

The ALICE experiment incorporates 18 detectors, that can be divided into two
groups: the Central-Barrel detectors, and the forward detectors.
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4.2.1 Orientation of the Coordinate System

The ALICE coordinate system is a right-handed orthogonal Cartesian system with
its point of origin at the beams’ interaction point (IP). [96]

z-Axis is parallel to the beam. The experiment side pointing towards positive z is
called side A (as in anti-clockwise direction on the accelerator) and the side
pointing towards negative z is called side C (clockwise). The muon arm is on
side C, at negative z.

x-Axis is perpendicular to the beam direction, aligned with the local horizontal
and pointing to the accelerator centre. Positive x is from the IP toward the
accelerator centre (side I, inward), negative x is outward (side O, outward).
Figure 4.2 is shown as seen from side I.

y-Axis is perpendicular to the x-axis and the beam direction, pointing upward.
Positive y is from the IP upward (side U), negative y is downward (side D)

The x and y axes span the transverse plane. The azimuthal angle ϕ is in this plane,
increasing from the x-axis at ϕ = 0 towards the y-axis at ϕ = π/2. The polar angle
θ increases from the z-axis at θ = 0 (η =∞) towards the transverse plane at θ = π/2
(η = 0).

4.2.2 Central-Barrel Detectors

The central barrel incorporates all main detectors. The most important detectors
have full azimuthal coverage in the pseudorapidity range of |η| < 0.9. The interplay
of these detectors provides an excellent particle identification, good track and vertex
resolutions with a wide transverse momentum reach. [97]

Time Projection Chamber

The Time Projection Chamber (TPC) is the main ALICE detector, and with its
active volume of 88 m3also the biggest. Its size is key for its task: High-resolution
particle tracking and high-efficiency particle identification.

The TPC (Figure 4.3) consists of a cylindrical filed cage that is surrounded by
an airtight containment vessel with two end-plates sealing off at the base. The
two end-plates are equipped with two rings of 18 multi-wire proportional chambers
(MWPC) with 557 568 readout pads. Halfway through the cylinder (at η = 0) there
is the central electrode. With its high voltage, and together with the grounded
end-plates, it provides the necessary electric field along which charged particles can
drift. Filled with a Ne CO2 gas mixture charged particles flying through the gas lose
energy by colliding with the gas molecules, ionising the gas along their path. The
electrons from the ionized atoms drift along the field towards the readout planes,
measuring the location and the drift time of the electron, reaching a resolution of
about 0.8 − 1.2 mm in all three dimensions. The particle tracks are reconstructed
joining all measured ionization electron positions to continuous tracks. The magnetic
field of the L3 magnet bends the tracks, which allows to assign a momentum to each
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Figure 4.3: Layout of the ALICE TPC

track. Together with the track length, the total amount of ionization along the
whole track is measured and provides the dE/dx-measurement.

The average amount of energy loss per unit length and thus the amount of
ionisation electrons is dependent on the properties of the gas and the properties of
the particle. It is given by the Bethe-Bloch equation:〈

−dE
dx

〉
= 4πNAr

2
emec

2z2Z

A

1
β2

[
1
2 ln

(
2mec

2β2γ2Wmax

I2 − β2 − δ (βγ)
2

)]
(4.2)

where NA is Avogadro’s number, me is the electron mass, re is the classical electron
radius. z is the charge of the particle, β is its velocity and γ the Lorentz factor. A and
Z is the mass number and the proton number of the gas, I is its effective ionization
potential and Wmax is the maximum energy transfer allowed in each interaction of
the particle of mass M with the gas:

Wmax = 2mec
2β2γ2

1 +
(
2γ + me

M

)
me
M

At low particle energy the Bethe-Bloch equation formula is dominated by the term
β−2 and thus the energy loss falls steeply. With further increasing velocity the
energy loss stabilises and rises slightly in the relativistic regime until it saturates in
the high relativistic region. Based on the amount of energy loss and combined with
the momentum measurement particles can be identified.

The size of the TPC was chosen given the following considerations: The minimum
possible inner radius of the TPC (rin ≈ 85 cm) is given by the maximum acceptable
hit density, the outer radius (rin ≈ 250 cm) is determined by the minimum track
length required for the expected dE/dx resolution (σTPC ≈ 5%) and the cylinder
length of 5.1 m is trade-off between the maximum acceptable drift time and the
minimum acceptable polar acceptance. [15, 98–101]
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detector layer radial acceptance resolution
position (cm) azimuth polar transverse plane along beam

SPD 1 3.9 full |η| < 2.0 100µm 600µm
2 7.6 |η| < 1.4

SDD 3 15.0 full |η| < 0.9 200µm 600µm
4 23.9

SSD 5 37.8 full |η| < 1.0 300µm 2400µm
6 42.8

Table 4.2: Active area of the ITS layers

Inner Tracking System

The Inner Tracking System (ITS) is the innermost detector of ALICE. Its main
objective is to determine the primary and secondary vertices. It improves the mo-
mentum and angle resolution of the reconstructed particles and contributes to the
particle identification, especially for low-momentum particles. It consists of three
types of two-layered silicon detectors, from inside to outside these are: The very
high-resolution silicon pixel detector (SPD) situated at radii of 4 cm and 7 cm,
which is followed by the silicon drift detector at 15 cm and 24 cm, and lastly the
layers of the silicon strip detectors at 39 cm and 44 cm.

The first two layers are not only crucial for the primary and secondary vertex
determination. A match of an inward-track prolongation from the outer detectors
can provide important information for separating decay electrons from primary par-
ticles and decay electrons from secondary particles. Thus electrons from gamma
conversions outside of the innermost layers can be completely suppressed, bringing
down the relevant material budget.

The analogue readout of the four outer layers, provide the possibility for a dE/dx
measurement. [102, 103]

Transition Radiation Detector

The Transition Radiation Detector (TRD) is a gas detector, at a radial position
2.9 < r < 3.7 m (Figure 4.4). It serves mainly two independent purposes in ALICE:
It completes the particle tracking between TPC and TOF and distinguishes between
pions and electrons in momentum regimes where TPC and TOF are not efficient.
The TRD is sub-sectioned into 18 super-modules, containing 5 stacks of 6 readout
chambers each, totalling into 540 readout chambers. The readout chambers consist
of a radiator of 48 mm thickness and a drift chamber of 37 mm thickness. At the
entrance of the drift chamber there is the drift electrode, which is followed by the
cathode and anode wires and finally the readout pads. By the applied high voltage
between the drift electrode and the anode wires, ionisation electrons drift towards
the amplification region. The cathode wires separate the drift from the amplification
region and guarantee a homogeneous field in the drift region.

Each readout chamber has about 2000 readout pads with an active area of 0.725×
8.5 cm2. The pads of the 6 readout chambers of each stack have an alternating tilt
of 2° in the pad plane. The pads are thus rather parallelograms than rectangles.
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Figure 4.4: Layout of the ALICE TRD (green) and TOF (yellow)

This layout increases the total resolution along the longer side of the pad in beam
direction.

As the TPC the TRD measures the charges released by a traversing particle.
However, additionally to the ionization according to the Bethe-Bloch equation, the
TRD radiator generates transition radiation for highly relativistic particles. The
transition radiation was predicted by Ginzburg and Franz in 1946 [104] for non-
relativistic particles and was first detected in 1959 by Goldsmith and Jelley [105]. A
particle traversing the border of two regions with different dielectric constants may
emit transition radiation. The energy is given by the following expression

d2W

dωdϑ
= 2α~ϑ3

π

( 1
γ2 + ϑ2 + ω2

1
ω2

)−1

−
(

1
γ2 + ϑ2 + ω2

2
ω2

)−1
 , (4.3)

where ω is the frequency, ϑ the angle of emitted radiation, ω1,2 are the plasma
frequencies of the two media and finally γ is the Lorenz factor of the particle. This
equation has a maximum at an angle of ϑ = 1/γ and thus the radiation gets preferably
emitted in forward direction. The total energy is given by integrating Equation 4.3
over all angles and photon frequencies to

W =
¨ (

d2W

dωdϑ

)
dωdϑ = γ

α~
3

(ω1 − ω2)2

ω1 + ω2
, (4.4)

which is linearly dependent on the Lorenz factor of the particle.
However as the intensity is very low, the probability of a single emitted photon

at one transition is of the order of the fine structure constant α, making many trans-
itions necessary. The total probability for the emission of transition radiation (TR)
inside a readout chamber is raised by the radiator, providing many transitions. It
consists of a sandwich of two Rohacell HF71 foam sheets and mats of polypropylene
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Figure 4.5: Cuts through a TRD readout chamber (a). Simulation of the average pulse height of
different particles (b).

fibres. These components were chosen as a compromise between TR yield, radiation
thickness and mechanical stability.

Transition radiation from ultra-relativistic electrons is in the energy range of soft
to hard X-rays (< 50 keV [106]), which get absorbed by the gas, thus ionising it,
when entering the drift chamber. Providing a high absorption probability is crucial
as only then the TR photon can be detected. As the photo effect is proportional to
the atomic number of the gas atoms, the gas used in the TRD chambers consists
mainly of Xenon which has an atomic number of 54. Figure 4.5 shows the working
principle. [107]

Time-of-Flight Detector

The Time-of-Flight detector (TOF) is exclusively dedicated to particle identific-
ation. It consists of Multi-gap Resistive-Plate Chambers (MRPC) with 157 248
readout pads distributed in 18 azimuthal sectors at distance of 3.8 m from the beam
pipe, just outside the TRD (see also Figure 4.4). Each pad has an active area of
2.5 × 3.5 cm2. To measure the time of flight the TOF requires a high-resolution
start-of-time measurement, which is provided by the T0 detector. With a total
time-resolution of 85 ps it contributes to the particle identification in the transverse
momentum region where the TPC signals of the different particles have their cross-
ings, and thus the dE/dx method cannot yield an unique answer (see also Figure
6.4). For this, it is necessary to match the track prolongation from the TPC with
hits in the TOF. [108, 109]

Electromagnetic Calorimeter

The Electromagnetic Calorimeter (EMCal) is a Pb-scintillator sampling calorimeter
consisting of 12672 towers with alternating layers of Pb and polystyrene scintillator
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each covering an active area of 12× 12 cm2. It has an acceptance of 107° in azimuth
and a polar acceptance of |η| < 0.7 at a distance of 4.5 m from the beam pipe. The
EMCal completes the measurements of jet properties and enhances the capabilities
of measuring high pT photons, neutral hadrons, and electrons. Matching the track
momentum measured with the other detectors with the collected energy measured
by the EMCal provides a powerful method for separating electrons from the other
particles. [110]

Photon Spectrometer

The Photon Spectrometer is an electromagnetic calorimeter of high granularity,
providing photon and neutral pion identification, and separating direct from decay
photons. Its acceptance is restricted to the very mid-rapidity region of |η| < 0.12,
and to 100° in azimuth.

High Momentum Particle Identification Detector

The High Momentum Particle Identification Detector is a proximity focusing Ring
Imaging Cherenkov detector with a liquid radiator. It provides π±/K± andK±/ (p, p̄)
separation up to 3 GeV/c and 5 GeV/c respectively. [100]

4.2.3 Forward Detectors

In ALICE all detectors which have their acceptance in the range |η| > 1 are called
to be in forward direction.

Muon Spectrometer

The Muon Spectrometer is exclusively devoted to the measurement of muons. Many
important hadronic observables have muonic decay channels. As all leptons, muons
do not interact strongly and can thus, once generated, propagate mostly unobstruc-
ted through the QGP.

The Muon Spectrometer is located in the forward part of the ALICE detector
and covers an angular region of 2° < θ < 9°, corresponding to a pseudorapidity of
2.5 < η < 4.0. It is composed of a dipole magnet, a trigger system and a tracking
system. These are all located outside the ALICE L3 magnet, and are behind several
absorbers which extend into the L3 magnet towards the interaction point in a conic
form. The absorber stops most of the flux of hadrons, electrons and gammas, and
thus guarantees a very high muon purity. However, although not being stopped,
the muons arriving have experienced multiple scatterings inside the absorber, which
leads to a reduced momentum resolution.

T0

The T0 supplies a fast timing signal which is used for a wake-up call to the TRD, it
delivers the time reference for the TOF and determines the z position of the primary
interaction. It consists of two rings of 12 Cherenkov counters mounted around the
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Figure 4.6: Centrality estimation using the V0 (left) and the ZDC (right)

beam pipe at opposite positions relative to the interaction point at z = −72.7 cm and
z = 375 cm covering the pseudorapidity ranges 2.9 < η < 3.3 and −4.5 > η > −5
respectively at full azimuthal coverage. [111]

V0

The V0 consists of two ring-arrays of plastic scintillator counters on opposing sides of
the interaction point (A and C side). The V0A subdetector covers the pseudorapidity
range 2.8 < η < 5.1 while the V0C covers the range −1.7 > η > −3.7. It is used to
reject background events for the MUON detector, it provides minimum–bias triggers
for the central barrel detectors in both pp and ion-ion collisions, and it serves as an
indicator of the centrality percentile of the collision via the deposited energy of the
event (shown in Figure 4.6 left).

Additionally the detector generates a coarse event classification for ion-ion col-
lisions based on three multiplicity levels: minimum–bias, semi–central, and central
ion–ion collisions. [111, 112]

ZDC

Zero Degree Calorimeters are hadronic calorimeters used to collect the energy of the
spectator nucleons. The Zero degree ElectroMagnetic calorimeters (ZEM) are used
to collect the energy from gammas which is correlated to the energy of the collided
participant nucleons. The correlation of the ZDC signal to the ZEM signal provides
an additional centrality measure (shown in Figure 4.6 right). Additionally the ZDC
can be used a luminosity monitor.

Two sets of hadronic ZDCs are located at 116 m on either side of the Interaction
Point (IP) and two ZEMs are placed at about 7 m from the IP. [113]

FMD

The main purpose of the Forward Multiplicity Detector is to provide information
about the charged particle multiplicity at pseudorapidities not covered by ITS. To-
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gether with the ITS it provides a gap-less measurement of the charged particle
multiplicity distributions the range −3.4 < η < 5.0. [111]

PMD

The Photon Multiplicity Detector measures multiplicity and the spatial distribution
of photons, enabling the determination of the interaction plane, and the study pf
event-by-event fluctuations in the forward rapidity region.

4.2.4 Trigger Setup

Modern collider experiments search for improbable and thus rare events. For being
able to still have enough statistics, high collision frequencies are needed. Saving
continuously all data from all detectors is not an option for the ALICE experiment,
since due to the high granularity, the detectors produce huge amounts of data while
operating. Thus a trigger system must be implemented, to be able to activate the
detectors and the data taking only when physical important events occur.

The Central Trigger Processor (CTP) combines and synchronises the trigger
decisions from the triggering detectors, and sends the result to all detectors. Some
detectors are continuously operational, some need a very early activation, and other
can handle longer delays. Thus the triggering system is divided in multiple stages.
The first trigger decision, called L0, must be delivered 1.2µs after the collision took
place. For that the triggering detectors contributing to this decision must hand in
their decision already 800 ns after the collision. Only very fast detectors can achieve
that. Slower trigger detectors, like the TRD, may have a delay up to 6.1µs and
contribute to the L1 trigger signal, which is then delivered after 6.5µs. After 88µs
the last trigger signal (L2) is delivered. It is used as a past-future protection, to
veto against previous L1 triggers.

Being the fastest detector in the central barrel, the SPD can provide a multi-
plicity and topology based L0 trigger signal to other detectors. Additionally the
TOF provides L0 triggers to select ultra-peripheral collisions, minimum bias events
in proton-proton collisions and cosmic muons for the calibration of central detectors
and cosmic-ray physics. The EMCal can be used to trigger on hard jets, photons
and electrons at either L0 or L1.

4.2.5 ALICE-Software

In the ALICE Collaboration each sub-detector group is responsible for building and
testing their detectors, mounting them into the experiment, and maintaining them.
During operation detectors will generate data, which is analysed or reconstructed.
The reconstruction algorithms must be in a working, well tested state when the
experiment starts. This is only possible when all data output of the experiment
can be simulated long before first collisions. This is especially challenging when
taking into account the comparable low collision energies of previous experiments:
e.g. RHIC has a peak energy of 500 GeV in pp and 200 GeV per nucleon in AA,
which means that the models describing the expected characteristics of collisions at
LHC were extrapolations with quite big uncertainties.
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All reconstruction and simulation algorithms of the detector data are written
in C++, and follow the concept of object oriented programming. The individual
detector algorithms have a common interface and are concentrated into one package
called AliRoot, which uses ROOT as its base. ROOT is a framework, which provides
standardisation among different platforms (i386, AMD64, ppc ...), methods for many
programming problems (mathematical, input and output, graphical...) and a C++
interpreter. Through this interpreter all methods within the compiled libraries of the
AliRoot and ROOT framework can be called directly. Commands to the interpreter
can be saved in so-called macros.

The AliRoot package is being developed with the help of an online version con-
trol system, called git. All changes are committed into the development repository
including a short description. The version control system saves not only the newest
version, but also all necessary information for extracting previous versions. This is
a very important feature as in such a big project as AliRoot it is indeed possible
that multiple incompatible changes are committed almost simultaneously by differ-
ent people. All changes since the beginning of the development can be viewed by
help of an online interface14. By branching in the current development repository,
git also provides the possibility of creating stable releases. There the update policy
is restricted to bug fixes only.

14http://git.cern.ch/pubweb/

http://git.cern.ch/pubweb/
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5 Heavy-Flavour Elliptic Flow
Charm and bottom quarks are called heavy-flavour quarks or simply heavy quarks.
They are called heavy because their mass is large compared to the relevant energy
scale inside the QGP15:

mQ � ΛQCD

Because of this property, heavy quarks can be described perturbatively even at low
momenta, in contrast to the light quarks or gluons which can be treated perturbat-
ively only at high momenta. Due to their high mass, heavy-quark pair production
is limited to the initial stage of the collisions, almost exclusively in primary and
secondary hard partonic scattering processes [114]: The total heavy-quark yield is
dependent mostly on the initial state, and not expected to be changed significantly
by any final-state effects. Final-state effects which are the interactions of the quarks
with the medium [115], are described by radiative [116, 117] and collisional energy
loss [118, 119], and should produce a mass-dependent softening of the momentum
distributions. Experiencing the full evolution of the medium, heavy-flavour hadrons
and their products are thus effective probes to study its properties.

A way to study the heavy-quark energy loss in strongly interacting matter is
to analyse that modification of the momentum spectra, by comparing the particle
yield in heavy-ion collisions with pp collisions. This can be quantified by the nuclear
modification factor RAA :

RAA = 1
〈Ncoll〉

dNAA/dpT
dNpp/dpT

= 1
〈TAA〉

dNAA/dpT
dσpp/dpT

where dNAA/dpT is the measured invariant yield in nucleus-nucleus collisions and
dNpp/dpT (dσpp/dpT ) is the corresponding invariant yield (cross-section) in pp colli-
sions. 〈Ncoll〉 and 〈TAA〉 are the average number of binary collisions and the nuclear
overlap function in a given centrality bin, which are obtained via Glauber model cal-
culations [37, 120] (see also Chapter 1.4.1). A strong suppression of heavy flavours
was found at both RHIC [121–125] and at the LHC [126–129].

It was shown in Chapter 3 that describing the QGP as a thermalized fluid, the
emergence of anisotropic flow (Equation 3.17) is a direct consequence of the spatial
anisotropy of the collision system expressed in its azimuthal eccentricity (Equation
3.15). Particles emitted in the reaction plane have a shorter in-medium path length
than those emitted perpendicularly to it, leading to a positive elliptic flow [130, 131].

Measurements of light flavours at RHIC [132, 133] and at the LHC [36, 134–136]
show a large elliptic flow at low momenta, which is decreasing towards central colli-
sions. This is considered as an evidence for the collective hydrodynamical expansion
of the medium [137–139].

For heavy flavours the amount of the elliptic flow of low-to-intermediate mo-
mentum heavy quarks indicates the degree of thermalization of these heavy quarks,
while at higher momenta this it is giving indications of the path-length dependence
of the in-medium energy-loss. Measurements of heavy flavours that where conducted
at RHIC [124, 140] at √sNN = 200 GeV show a clear non-zero elliptic flow, while

15Although the top quark is also heavy, it does not produce any stable bound states



50 5.1 Subtraction Method

measurements at lower energy are found to be consistent with zero. At the LHC,
the ALICE collaboration has measured the D-meson’s elliptic flow at mid rapidity
[141, 142] and heavy-flavour decay muons at forward rapidity [143]. Together with
the related paper [144], this work extends the existing ALICE data, by quantifying
the elliptic flow of heavy quarks through a measurement of the decay electrons at
mid rapidity.

5.1 Subtraction Method
A very obvious way to measure heavy quarks is to measure the products of the
coalescence of these heavy quarks directly. However, there is a variety of different
hadrons into which heavy quarks can coalesce. And all these heavy-flavour carry-
ing hadrons have in common that they have a wealth of different decay channels
themselves, making it complicated to have a high-statistics pure sample.

In contrast to directly measuring the heavy-flavour hadrons, this work tries to go
a different route, by measuring the decay electrons of all heavy hadrons at a time.
Inspired by work previously conducted at the PHENIX experiment at RHIC [124,
145], a background electron cocktail will be subtracted from the inclusive electron
measurement to reach the desired result. Due to the still relatively large branching
ratios of the semi-leptonic decays of the heavy-quark hadrons and the high electron
reconstruction capabilities of ALICE, there is the educated guess of an increased
statistics compared to the direct measurement of heavy hadrons. At the very least
this measurement will provide another perspective on the issue together with a
different systematic.

The general idea is to measure the elliptic flow of all decay electrons (a.k.a.
the inclusive measurement, Chapter 6), and then subtract the elliptic flow of all
decay electrons from light hadrons (a.k.a. the background measurement, Chapter
7), resulting into the elliptic flow of decay electrons from heavy hadrons, which is
the intended measurement of this work (Chapter 8):

vHFE2 = (1 +RSB)vincl2 − vback2
RSB

(5.1)

where RSB is the ratio of the heavy-flavour decay electron yield to that of the non-
heavy-flavour background electrons.

5.2 Quantifying Anisotropic Flow
A number of different methods measuring the anisotropic flow in heavy-ion collisions
have been published up to now: [90, 146–149]. The method used in this work is
the so-called event plane method, which is generally one of the most widespread in
use. Additionally the inclusive measurement and the needed data of the light flavour
hadrons is cross-checked with the scalar-product method.

As shown in Chapter 3.8 anisotropic flow can be quantified by an azimuthal
Fourier decomposition of the particle yield (Equation 3.16). However there it was
tacitly assumed that the orientation of the symmetry axis of the collision is known.
This defined the alignment of the problem in space (see Figure 3.1). This can of
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Figure 5.1: Definition of the angles used in the flow measurement. The coordinate system defined
by the collision is arbitrarily rotated against the coordinate system of the experiment.

course only be true in a simulation, but not in the experimental measurement. There
the Fourier decomposition of a given collision is actually given by

d3N

pTdpTdydϕ
= N0

(
1 + 2

∑
n

vn cosn(ϕ−Ψn)
)

(5.2)

where Ψn is the azimuthal angle of the symmetry axis in this collision as measured
in the laboratory system (see Figure 5.1). Next it will be shown how this axis can
be defined and how the vn parameters can be measured experimentally.

5.2.1 Event-Plane Determination

The reaction plane is the plane parallel to the beam connecting the centres of the
two nuclei. This is however impossible to measure experimentally because we cannot
take such a microscopic point of view during the measurement. The participant
plane is the plane described by the symmetry axis of the participant nucleons. Due
to fluctuations of the nucleons in the nuclei, the reaction plane and the participant
plane do not coincide exactly. The only fact that the participant plane can be defined
implies that there is a spatial anisotropy of the participants. As shown in Chapter
3.8 this is the spatial anisotropy (Equation 3.15) which induces exactly the particle
number anisotropy we are after (Equation 5.2). So it seems to be the symmetry
axis about which to measure the anisotropic flow. However, in our experiments
we measure the products of the collision of the participant nucleons, and not the
nucleons themselves. Thus, also the participant plane is impossible to measure.

Assuming that each of the recorded events comprises exactly one collision, the
best we can do is to extract the symmetry axis of each event from the azimuthal
particle number distribution. A such defined event plane should be close to the
participant plane.

A very direct way to evaluate the event plane angle Ψn and the vn parameters
simultaneously for each event is to simply fit the azimuthal particle number dis-
tribution in the wanted (pseudo-) rapidity bin over all momenta with the needed
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harmonics of the Fourier series [150]:

dN

dϕ
= N0

(
1 + 2

∑
n

vn cosn(ϕ−Ψn)
)

(5.3)

⇔ 1
2N0

dN

dϕ
− 1

2 =: f(ϕ) =
∑
n

vn cosn(ϕ−Ψn)

This procedure has however a very important limitation: The particles used to
determine the event plane angle and the flow parameters are exactly the same.
Thus, when only the flow of a specific particle species is of interest, this would be
limiting the event plane determination to just this particle species, unnecessarily
decreasing the precision. In general it is advantageous to split the measurement
in two: determine the event plane for each event with all available particles, and
then evaluate the vn parameters for the particle species analysed averaging over all
events.

It can be shown that:

vn cosn(ϕ−Ψn) = vn cos(nΨn) cos(nϕ) + vn sin(nΨn) sin(nϕ) =

= an cos(nϕ) + bn sin(nϕ)

with the Fourier coefficients an := vn cos(nΨn) and bn := vn sin(nΨn). Yielding the
usual form of a Fourier series:

f(ϕ) =
∑
n

vn cosn(ϕ−Ψn) =
∑
n

an cos(nϕ) + bn sin(nϕ)

For a given function f(ϕ) the Fourier coefficients can be expressed as:

an = 1
π

ˆ π

−π
f(ϕ) cos(nϕ), bn = 1

π

ˆ π

−π
f(ϕ) sin(nϕ)

Taking an and bn as components of a vector, defines the flow vector ~Qn:

~Qn :=
(
an
bn

)
(5.4)

By the definitions of an and bn, ~Qn can be rewritten in terms of nΨn which can be
identified as the azimuthal angle of ~Qn:

~Qn =
(
vn cos(nΨn)
vn sin(nΨn)

)

tannΨn = sin(nΨn)
cos(nΨn) = vn sin(nΨn)

vn cos(nΨn) = bn
an

(5.5)

The final expression gives an indication on how to compute the event plane angle
directly in the data, when we identify f(ϕ) with the azimuthal particle distribution
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of the given event. Thus an and bn are just sums over all particles weighted with
the sine or cosine of the particle’s azimuthal angle:

an = 1
N

∑
i

cos(nϕi), bn = 1
N

∑
i

sin(nϕi) (5.6)

By introducing weights into the sums of an and bn it is possible to further increase
the sensitivity of the measurement, and decrease the measurement errors [146, 149].
It was shown that the optimal choice of weights, maximising the measurement value,
is given by the resulting measurement of v2(pT ) itself [146]. This circular dependence
is of course highly unfortunate. A very rough approximation is however enough, and
thus the following very simple parametrisation is usually used instead:

wi(pT ) =
pT pT < 2 GeV/c

2 else

5.2.2 Measuring Flow Relative to the Event Plane

Having calculated the event plane for each event we are now in the position of
evaluating the Fourier series for all events, identifying f(ϕ) now with the azimuthal
particle distribution of all events:

f(ϕ) =
∑
n

vn cosn(ϕ−Ψn)

Since the term in the cosine is completely determined for each particle, we can regard
this expression as a Fourier series in its normal form, with all sine terms missing:∑

n

vn cos(x)

Using the knowledge from the previous paragraph we can identify vn as the Fourier
parameter:

vn = 1
π

ˆ π

−π
f(ϕ) cos(x) = 1

π

ˆ π

−π
f(ϕ) cosn(ϕ−Ψn) =

= 1
N

∑
i

cosn(ϕi −Ψn) =: 〈cosn(ϕ−Ψn)〉 = vn (5.7)

In contrast to the event plane determination (Equation 5.6) the sum now runs over
all particles of all events.

5.2.3 Event Plane Resolution

Up to now, and especially so in Chapter 3, it was implicitly assumed that the event
plane angle Ψn is perfectly determined. However in Equation 5.6 the sum runs
over all the particles of one collision. Having only a finite number of particles in
each event deteriorates the quality of the result, the less particles there are. Thus
the event plane angle determined has an intrinsic statistical uncertainty due to the
number of particles present in the event. This measured event plane angle Ψ′n is off
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by a value ∆ of the real event plane angle Ψn, which could have been measured had
there been an infinite number of particles in that same event: ∆ = Ψ′n −Ψn. Thus
instead of measuring vn = 〈cosn(ϕ−Ψn)〉 (Equation 5.7), the following is actually
measured: 〈

cosn(ϕ−Ψ′n)
〉

= 〈cosn(ϕ− (Ψn + ∆))〉

This can be simplified16 taking into account that different events have uncorrelated
Ψ and ∆, which results in a factorisation of the averages, and that both Ψ and ∆
are symmetrically distributed around 0 and thus 〈sinX〉 = 0:

〈cos(ϕ− (Ψ + ∆))〉 = 〈cosϕ cos(Ψ + ∆) + sinϕ sin(Ψ + ∆)〉 =

= 〈cosϕ (cos Ψ cos ∆ + sin Ψ sin ∆) + sinϕ (sin Ψ cos ∆ + cos Ψ sin ∆)〉 =
= 〈cosϕ〉 (〈cos Ψ〉 〈cos ∆〉+ 〈sin Ψ〉����〈sin ∆〉)+〈sinϕ〉 (〈sin Ψ〉 〈cos ∆〉+ 〈cos Ψ〉����〈sin ∆〉) =

= (〈cosϕ〉 〈cos Ψ〉+ 〈sinϕ〉 〈sin Ψ〉) 〈cos ∆〉 = 〈cos(ϕ−Ψ)〉 〈cos ∆〉
The term 〈cosn∆〉 is called the event plane resolution: σEP := 〈cosn∆〉. Thus the
result of Equation 5.7 can be recovered even if only Ψ′n can be measured instead of
Ψn, as long as σEP can be estimated:

vn = 〈cosn(ϕ−Ψn)〉 =

〈
cosn(ϕ−Ψ′n)

〉
σEP

(5.8)

A way to estimate the event plane resolution is to separate the particles of each
event in multiple groups (A, B,..) and measure the event plane angle for each of
these groups (Ψ′A,n,Ψ

′
B,n,..). The ∆ of each event is then estimated by comparing

these subevent plane angles.
The simplest case is to take two equal subevents A and B, where Ψ′A,n and Ψ′B,n

are measured. Equivalently to the event plane resolution we define the subevent
plane resolution: σsEP,A := 〈cosnδ〉, where δ = Ψ′A,n − Ψn. But since the groups A
and B are on an equal footing in average the same holds also for group B: σsEP,B =
σsEP,A = σsEP . Thus we can write:

σ2
sEP = 〈cosnδ〉2 =

〈
cosn(Ψ′A,n −Ψn)

〉2
=
〈
cosn(Ψ′A,n −Ψn)

〉 〈
cosn(Ψ′B,n −Ψn)

〉
To this16 we can add appropriate sine terms since, due to the symmetry property of
Ψ , these average to 0 as long as the subevents are uncorrelated:

〈
cos(Ψ′A,n −Ψn)

〉 〈
cos(Ψ′B,n −Ψn)

〉
+

0︷ ︸︸ ︷〈
sin(Ψ′A,n −Ψn)

〉 0︷ ︸︸ ︷〈
sin(Ψ′B,n −Ψn)

〉
=

=
〈
cos(Ψ′A,n −Ψn) cos(Ψ′B,n −Ψn) + sin(Ψ′A,n −Ψn) sin(Ψ′B,n −Ψn)

〉
=

=
〈
cos

(
(Ψ′A,n −Ψn)− (Ψ′B,n −Ψn)

)〉
=
〈
cos(Ψ′A,n −Ψ′B,n)

〉
⇒ σ2

sEP =
〈
cosn(Ψ′A,n −Ψ′B,n)

〉
16suppressing the n’s due to the lack of space



5 HEAVY-FLAVOUR ELLIPTIC FLOW 55

Thus the subevent resolutions for both of the groups are equal and can very simply
be measured by just averaging the cosine of the difference of those two subevent
plane angles. The event plane resolution scales approximately with the particle
multiplicity like 1/

√
N (see [90, 146]). Assuming that the groups A and B each

divide the total event by half, we get:

σEP = σsEP
√

2 =
√

2
〈
cosn(Ψ′A,n −Ψ′B,n)

〉
(5.9)

The deduction of the subevent resolution assumed that the subevents are uncorrel-
ated by anything else than flow. This is not true in the presence of non-flow effects
(Chapter 3.10). However, due to the fact that the correlation length of these effects
is generally smaller than for flow, it is possible to suppress them by measuring the
particles at very different pseudorapidities (η). For example by introducing an η-gap
between the two subevents A and B.

When however it is not wished or not possible to define two equal subevents,
because for example the detector itself is not symmetric, then it is necessary to
define three subevents (A, B and C). These can then be arbitrarily distributed in
space. It can be shown that the event plane resolution of detector A is then given
by the three subevent resolutions σsAB, σsAC and σsBC :

σEP,A =

√√√√σ2
sABσ

2
sAC

σ2
sBC

, σ2
sXY =

〈
cosn(Ψ′X,n −Ψ′Y,n)

〉
(5.10)

5.2.4 Scalar Product Method

It has been shown that a slight variation of the above can further improve the
sensitivity of the measurement, decrease the errors and increase its robustness in
face of fluctuations [Adler2002, 151]. The determination of the vn parameters
(Equation 5.8) is changed by introducing a weight, which is the length of the event’s
flow vector (Equation 5.4):

vn =

〈∣∣∣ ~Qn

∣∣∣ cosn(ϕ−Ψ′n)
〉

σSP
=

〈
~Qn · ~u

〉
σSP

(5.11)

Because of the properties of the scalar product, it is possible to write the expression
as a scalar product of the flow vector ~Qn and the unit vector of each particle’s
azimuthal trajectory ~u. The same is true for the denominator which corresponds to
the event plane resolution (Equation 5.9). It can be written in terms of two subevent
flow vectors as:

σSP =
√

2
∣∣∣ ~QA,n

∣∣∣ ∣∣∣ ~QB,n

∣∣∣ 〈cos(Ψ′A,n −Ψ′B,n)
〉

=
√

2
〈
~QA,n · ~QB,n

〉
And in case it is not possible to define two equal subevents, it follows for the three
subevents:

σSP =

√√√√√
〈
~QA,n · ~QB,n

〉 〈
~QA,n · ~QC,n

〉
〈
~QB,n · ~QC,n

〉 (5.12)
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6 Inclusive Electron Measurement
This chapter discusses the measurement of the inclusive electron sample. The in-
clusive measurement determinates the electron spectra of all electrons. To get the
electrons from heavy flavours only, the background electron spectra must be sub-
tracted, this will be described later in the subsequent chapters.

6.1 Data Sample and Run Selection
The data sample used in this work is from the LHC data taking period LHC11h
recorded by ALICE in fall 2011. Each data taking period takes roughly one month.
During this time the data taking is split into separate runs. The length of each run
is dependent on the running conditions of the experiment. A run can be as short
as a few minutes and as long as many hours. A typical problem of the period were
readjustments of the TPC high voltage, and hardware failures of the ITS.

After data taking, the run is saved and several quality assurance and calibration
procedures are carried out. Any problems with data taking, quality assurance or
calibration are saved in the run condition table. Only good runs are taken into
account for this work’s analysis. Additionally runs are also excluded when there
is evidence for unusual detector behaviour. Figure 6.1 shows a comparison of runs
with the usual TPC signal of the period and the signal of the additionally excluded
runs. The runs included in the analysis are:

167987, 167988, 168310, 168311, 168322, 168325, 168341, 168342, 168361, 168362,
168458, 168460, 168464, 168467, 168511, 168512, 168514, 168777, 168826, 168988,
168992, 169035, 169040, 169044, 169045, 169091, 169094, 169099, 169138, 169144,
169145, 169148, 169156, 169160, 169167, 169238, 169411, 169415, 169417, 169418,
169419, 169420, 169475, 169498, 169504, 169506, 169512, 169515, 169550, 169553,
169554, 169555, 169557, 169586, 169587, 169588, 169590, 169591, 169835, 169837,
169838, 169846, 169855, 169858, 169859, 170027, 170040, 170081, 170083, 170084,
170085, 170088, 170089, 170091, 170155, 170159, 170163, 170193, 170203, 170204,
170207, 170228, 170230, 170268, 170269, 170270, 170306, 170308, 170309, 170311,
170312, 170313, 170315, 170387, 170388, 170572, 170593

The colour coding of this list indicates the magnetic field setup of the L3 magnet
for the respective run: blue for negative field and red for positive field.

Figure 6.1: TPC signal of excluded runs (left) and of normal runs (right).
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Figure 6.2: Centrality dependence of the number of events provided by the trigger setup (a) and
the same quantity after all event cuts (b).

6.2 Event Selection
There are three main trigger scenarios used in this data sample: kCentral, kSemi-
Central and kMB. The former two are centrality triggers imposing a minimum-
multiplicity threshold for the V0 detector, while the latter is the minimum-bias
trigger, which is activated whenever the following three conditions are met:

• a signal in two readout chips of the outer layer of the SPD

• a signal in the V0A

• a signal in the V0C

The purpose of the minimum bias trigger is to provide an event sample characterized
by an as even as possible distribution of all event properties. For most analyses the
amount of statistics provided by this trigger is however not enough. In this case and
when there are certain centralities of interest the semi-central or central triggers
provide a 10-fold or even higher increase in statistics. In this work the minimum
bias and semi-central triggers have been used to provide a flat distribution of events
in the considered centrality range (shown in Figure 6.2 a).

In order to avoid an asymmetric acceptance in the ITS, the position of the
collision, the so-called primary vertex, must be inside a range of 10 cm from the
nominal centre of ALICE. With a nominal bunch length of σb = 7.55 cm [93] this
equals almost exactly 2 standard deviations of the vertex position distribution with
a nominal width of σz = σb/

√
2 = 5.33 cm.

6.2.1 Pile-Up Protection

Due to the intensity of the beam and the relatively long drift time of the TPC
there is the possibility of an undetected second collision of other two nuclei. In
this case the recorded event would include both collisions, while the tracks from
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Figure 6.3: Correlation of the two centrality measures (a) and of the two track definitions (b)
and the respective 3 sigma regions

the second collision would contaminate the tracks from the primary collision. This
behaviour was analysed using correlations between two definitions of centrality and
two definitions of found tracks.

The primary definition of the centrality percentile used throughout this work is
based on the V0 detector (see also Figure 4.6). The second definition used for the
correlation is based on the number of TPC tracks.

The second correlation analysed is comparing directly the number of tracks using
two definitions: the number of standalone TPC tracks (AOD filter bit 1) and the
number of global tracks with refits in TPC and ITS (AOD filter bit 16).

Both correlations are shown in Figure 6.3 together with the event cuts used. The
cuts are based on linear fits of the bin-wise parameters of Gaussian fits of the sliced
correlation plots including three standard deviations around the central region. It
is important for the cut to be at a constant sigma value independently from the
centrality, to not introduce a centrality dependence (see Figure 6.2 b).

6.3 Track Selection

The particle tracks which are considered to be electrons and are included in the
analysis must have passed certain quality cuts. The first quality cuts are introduced
by the data reduction mechanism. The whole raw data of the experiment is only
saved temporarily. From the raw data the important properties of the particle
trajectories are extracted and saved in the so-called ESD data sample. Since this
data is still very large and can be processes only very slowly, the data is further
compressed into the AOD data sample, by removing very low quality tracks. There
are different samples of AOD data saved which can be chosen by setting a filter bit.
The data sample used was AOD145 with filter bit 16. Additionally the following
track cuts were applied:



60 6.3 Track Selection

Tracking

In order to predominantly select primary particles only tracks originating with a
maximal distance of closest approach (DCA) to the primary vertex of the event
where chosen.

All accepted tracks are required to have the tracking status bits “ITS refit” and
“TPC refit” set. This indicates a successful termination of the Kalman filter tracking
algorithm. To further increase the track quality, tracks with an increased fraction
of clusters which are shared between multiple tracks were rejected as well as tracks
with a low total number of assigned ITS and TPC clusters.

ITS Pixel Requirement

A very crucial cut for the analysis is the requirement of hits in the first two ITS layers,
the pixel layers. Electrons are not only produced directly by decaying particles, but
can also be produced by converting photons. Since gammas have many sources
which are unrelated to the heavy flavour this work is interested in, it is important
to decrease the amount of electrons produced in gamma conversions as much as
possible. Requiring hits in the first two layers of the ITS radically reduces the
amount of these electrons, since conversions are then only possible in the beam
pipe, in part of the first pixel layer and in the air in between. However due to
the huge amount of particles in the ITS pixel layers, there is the possibility that
hits are wrongly associated to particle tracks, which are then included in the data
sample although the electrons were actually produced in gamma conversions after
the ITS pixel layers. The consequences of these so-called late electrons are studied
in Chapter 7.6. The sources of gammas as well as the conversion into electrons are
discussed in Chapter 7.

Summary of all track cuts:

• Pseudorapidity range: |η| < 0.8

• DCAxy < 1 cm, DCAz < 2 cm

• Rejecting tracks with kinks

• ITS requirements:

– ITS refit status bit
– At least 4 ITS clusters
– A hits in both ITS pixel layers (kBoth)
– χ2 per ITS pixel ≤36

• TPC requirements:

– TPC refit status bit
– At least 110 TPC clusters
– At least 80 TPC clusters used for PID
– Fraction of TPC clusters shared between multiple tracks less than 10%
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Figure 6.4: The PID cuts for the TOF (a) and the TPC (b)

6.4 Particle Identification
In this analysis particle identification (PID) effectively means electron identification,
since these are the only particles of interest. The electrons are identified using the
TPC and TOF detectors (Chapter 4.2.2).

6.4.1 TOF PID

The Time-Of-Flight detector measures the arrival time at which it is hit by charged
particles with high precision (< 100 ps), relative to a start signal which is generated
by the T0 detector. Figure 6.4 (a) shows the arrival times for all particles which
passed the track quality cuts (Chapter 6.3) relative to the expected arrival time
of electrons. Tracks are said to pass the TOF PID cut when their arrival time is
within the region of three standard deviations around the electron expectation. It
can be seen that the pions are merging into this region very early (< 1 GeV/c),
while the kaons and protons enter this region only at around 2 GeV/c and 4 GeV/c
respectively. To remove these pions, kaons and protons from the electron sample an
additional PID cut is applied in the TPC.

6.4.2 TPC PID

The particle identification with the TPC is based on the Bethe-Bloch equation
(Equation 4.2). Charged particles going through a gas will ionize the gas, losing
energy per unit path length (dE/dx). This ionization energy is determined by the
TPC by measuring the ionized charges along the track. Figure 6.4 (b) shows the
measured TPC dE/dx for all particles which passed the track quality cuts and the
TOF PID cut, relative to the expected energy loss of electrons. The pions can now
be efficiently removed by rejecting anything with negative relative dE/dx.

It can be seen that there are still some kaons and protons visible in the low
momentum region, even though in this momentum region the arrival time of the
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particles is far more than 12σ away from the electron expectation in the TOF. This
behaviour is evidence for a misassociation of TOF hits and TPC tracks. Apparently
the TOF’s high precision time measurement is deteriorated by a suboptimal choice
of its spacial granularity. Any resulting contamination of the electron sample with
unwanted particles is analysed in Chapter 6.6 and then subtracted from the final
result of the inclusive electron measurement.

6.5 TPC Post-Calibration
Although the data sample used should actually be calibrated, it has turned out that
in the case of the TPC, the calibration was not completely meeting the demands.
As shown in Figure 6.5 (a) and (b), the mean of TPC signal has a drift with respect
to the event multiplicity and shows a wiggle around the expectation when compared
against the track’s pseudorapidity. Both of which should in fact be flat. Additionally
the units of the ordinate should exactly match the width of one standard deviation
of the electrons’ TPC signal, which is not exactly the case. Especially the departure
of the mean from the expectation is problematic since the TPC PID cut is supposed
to cut exactly there. A systematic departure means unnecessarily increasing the
pion contamination or cutting into too much of the electrons.

Since the multiplicity of an event is completely uncorrelated to the track pseu-
dorapidity it is possible to correct the two effects mostly independently. The only
interconnection between the two corrections is that both move the same quantity
and thus correcting both effects in one go would actually produce an overcorrec-
tion. Thus an iterative approach was used were first the wiggle against the track
pseudorapidity is corrected for and then, after a repeated analysis step of the pseu-
dorapidity corrected data, the multiplicity drift.

The correction is done by first selecting a momentum range where the electrons
are best separated from the other particles. The momentum range used was at
around 0.75 GeV/c. As shown in Figure 6.4 (b) the distance of the electrons to
the pions is almost at its maximum, while the kaons and protons are sufficiently
far away, and the total amount of electrons is still very high. Vertical slices of the
histograms shown in Figure 6.5 (a) and (b) are fitted with an appropriate distribution
function in the electron range. A good description is provided by a slightly skewed
version of the Gaussian distribution (see Chapter 10.4 for details). A typical fit of
the TPC signal of such a single multiplicity bin with this distribution is shown in
Figure 6.5 (c). The mean and sigma extracted from the fits of the momentum and
pseudorapidity slices are plotted in Figure 6.5 (d) and (e). These plots are then
finally fit with an appropriate function, which is a linear function in case of the
multiplicity drift and a multi-trigonometric function in case of the eta dependence.
These fits are then introduced as a correction for the data, processed during the
data analysis.

6.6 Contamination
It is of utmost importance to have a clean electron sample. Significant contamination
of the electron sample with other particles can influence the results. Thus, at least
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Figure 6.5: Dependency of the TPC signal against pseudorapidity (a) and track multiplicity.
Typical bin-wise fit of the TPC signal in the electron range (c). Fit of the bin-wise
fit parameters (d) and (e).
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from a quality assurance point of view, the contamination of the electrons must be
checked. It is clear from Figure 6.4 that there must be some degree of contamination
left even after the last PID cut in the TPC.

The contamination C of a given particle species j at a given momentum bin p
is calculated by fitting the signals s of all the individual particle species i in the
final PID detector with an appropriate distribution function fi(s)|p and compare
the integrals of the distributions in the PID cut range of this detector. In this case,
this detector is the TPC with a signal range of [0..3]. Thus the purity P of a given
particle species j is given by:

1− Cj(p) = Pj(p) =
´ 3

0 fj(s)|pds∑
i

´ 3
0 fi(s)|pds

(6.1)

The distribution function used to fitting the TPC signals is, as in Chapter 6.5, a
skewed Gaussian for the electrons, protons and kaons. For the pions an even more
general distribution is used: a “variakurtic” skewed Gaussian (see Chapter 10.4 for
details). In contrast to what has been done in the TPC post-calibration, not only
must now all the particle species be fitted but this also has to be done at all momenta.
This is a much more demanding task, since at certain momenta the particles’ TPC
signals overlap (see Figure 6.4). To further complicate the situation, not the bulk
of the distributions is of interest but their tails, which are also mostly overlapping
between the particles.

6.6.1 Clean Samples

The procedure to find the appropriate distribution function is greatly helped when
the particle signals can be analysed separately, without the overlaps. At the expense
of a reduced statistics it is possible to identify pions, protons and electrons by using
a kinematic technique. For this, so-called V 0 candidates are identified. These are
short-lived neutral particles decaying into two inversely charged long-lived particles.
These are identified by tracking all unlike-charged particle pairs, and selecting all
with a maximal closest distance and with a total momentum originating next to the
events primary vertex.

Particles with such a topology are γ, K0
S, Λ and Λ̄, with the following decay

channels:

• γ → e+e−

• K0
S → π+π−

• Λ0 → π−p and Λ̄0 → π+p̄

Armenteros and Podolanski [152] have shown that it is possible to discriminate
between these mother particles by the virtue of two kinematic variables: the trans-
verse momentum of the decay particles relative to the mother (qT ) and the longit-
udinal momentum asymmetry α:

α = q+
L − q−L
q+
L + q−L
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Figure 6.6: The Armenteros-Podolanski plot is used to create the clean samples. (a) is the raw
plot, (b) is contrast-enhanced version used for selecting the particles.

Figure 6.6 shows the so-called Armenteros-Podolanski plot of the two variables. The
initial plot (a) has been processed to enhance the contrast reaching the final binary
decision plot (b), used to decide whether a V 0 candidate is accepted. This is done
using methods known from image processing for detecting regions of interest. The
algorithm implemented uses the principles of the so-called Laplacian of the Gaussian
method (see Chapter 10.5 for details). Candidates in the marked regions produce
the clean TPC signal samples.

The charged-kaon clean samples needed for the very low momentum region where
produced using a very tight TOF cut of one standard deviation. The remaining
contamination is in this case higher than for the other particles. Like e.g. in case
of the protons where the pions are also produced in the Λ decays and are selected
by the same cut as the protons. However in the needed momentum range of the
respective clean samples, each is still clearly distinguishable in the TPC signals.

6.6.2 Fitting of the TPC signals

The key to fitting the TPC signals of all particle species over the whole momentum
range is to realize that the momentum bins are highly correlated. Going from one
momentum bin to the next, will barely change the distribution of the TPC signals.
In an iterative method it is thus possible to first fit the particle signals in non-
overlapping momentum regions, use robust fits on the distribution parameters to
denoise them in the observed range and to interpolate or extrapolate to an extended
range for the next iteration.

Depending on the parameter different robust fits have been used: Since the mean
position and width of the electron signals has already been corrected in Chapter
6.5, a simple constant fit was enough. The mean positions of the other particles can
be fitted with variations of the Bethe-Bloch equation (Equation 4.2). It turned out
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that the skewness of all the particle distributions, apart from the pion, is momentum
independent and can be fit with a constant. For the pion a log-linear fit was used.
The scales of the distributions were fitted with splines using a custom made interface
library to the cubic spline curve fitting capabilities of the ALGLIB C++ library17

performing a penalized spline regression.
Due to the bin-wise fitting of the distributions to the TPC signal, the distri-

bution parameters have a natural statistics jitter. In the overlapping momentum
regions there can be very significant false departures due to unavoidable ambiguities
in individual momentum bins. Of course, due to the high correlation of the mo-
mentum bins, the distribution parameters should in fact change only very smoothly
throughout the whole momentum range. This is guaranteed by an iterative proced-
ure, where each iteration itself is a multi-step procedure: In each momentum bin
the particle species signals are first individually fit using fitting parameters of the
previous bin, as well as the clean samples of the particle signals as seeds. This is fol-
lowed by a joined fit of all particles distributions. This is repeated for all momentum
bins. An iteration ends after fitting the last momentum bin with the smoothing of
the bin-wise parameters. This smoothing is based on a robust fit of each of the
distribution parameters. The robust fitter used is described in Chapter 10.6. In
each iteration, more and more parameters are being fixed and the momentum range
is increased also into the overlapping regions.

6.6.3 Contamination Results

Based on the parameters extracted by fitting the TPC signals, it is possible to calcu-
late the electron purity for each momentum bin by evaluating Equation 6.1. Figure
6.7 shows the results of the contamination analysis. The protons cross the electron
band at around 1 GeV/c, and towards the high end of the range, the pions come
ever closer. From about 0.5 GeV/c to 3 GeV/c, there is an additional component,
which can be seen more clearly in the plot of the function fits (b) as an enhancement
on the right side of the electron signal. It will be refered to as “gras”. This seems
to originate from tracks with wrongly merged clusters. As most of the particles
produced are pions, it is safe to assume that pions also represent the majority of
this contribution.

6.7 Event-Plane Flatness
Following the discussion in Chapter 5.2.1 the event plane is an important ingredient
for the flow measurement. The detector used for the event plane determination is
the V0 detector. It consists of two subdetectors at two opposite points in forward
and backward direction around the interaction point (see also Chapter 4.2.3). Its
pseudorapidity coverage places the V0 detector at a very different position in phase
space compared to the central barrel which is at mid-rapidity. The fact that the
analysis uses particles reconstructed by the central barrel detectors, can be exploited
by using the V0 detector for the event plane determination thus suppressing non-flow
effects (see Chapter 3.10).

17http://www.alglib.net/

http://www.alglib.net/
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Figure 6.7: Purity of the electron sample, and the composition of the contamination (a). Also
shown are examples of the fits used to evaluate the contamination at two momenta
(b, c).
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Figure 6.8: The distribution of the event-plane angle is already very flat so that it does not
influence the flow measurement.

The event plane is defined by the position of the two colliding nuclei. Since
this positioning is completely random, for a full azimuth acceptance detector with
perfect alignment and calibration the distribution of the event plane angle should be
perfectly flat for a large data set. It is crucial to check this property, since deviations
would contribute to a fake measurement of flow. Figure 6.8 shows the distribution
of the reconstructed event plane angle and its contribution to the components of
the flow vector ~Q (see Equation 5.4). The deviation from perfect flatness is around
two orders of magnitude lower than the expected amount of true flow, making a
correction unnecessary.

6.8 Event-Plane Resolution
An important ingredient to a flow measurement is the determination of the event-
plane resolution. As discussed in Chapter 5.2.3 the resolution is limited not only be
the detector resolution, but also due to the number of particles present in the event
at hand. Had the same event included more (or less) particles, the resolution would
have been better (worse).

The two halves of the V0 detector, V0A and V0C, are taken together to de-
termine the event plane. Since these two subdetectors have an asymmetric pseu-
dorapidity coverage in forward and backward direction (see Chapter 4.2.3) it is not
possible to divide the total event in two equal subevents. It is thus necessary to
include a third detector to determine the resolution (see Chapter 5.2.3) which is
then calculated by the three-subevents method (Equation 5.10). The third detector
included is the TPC. Since this is the very detector used for the analysis, care must
be taken to remove analysed particles from the sample to not contaminate the result
with autocorrelations. Since the data of both V0A and V0C are taken together for
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the event plane determination, the V0 must be taken as one of the three needed
subevents and the V0A and V0C cannot be separated. The other two subevents are
then the forward and backward halves of the TPC. Figure 6.9 shows the subevent
plane resolution of the three subdetector combinations and the resulting event plane
resolutions.

6.9 Inclusive Electron Flow
Figure 6.10 (a) shows the v2 extracted from the inclusive electron sample analysed.
Due to the hadron contamination and the available statistics, the momentum range
of the analysis was restricted to 1−6 GeV/c. The repeated analysis using the scalar
product method is showing a result consistent with the event plane method.

The systematic uncertainty (Figure 6.10 b) is the result of combining the follow-
ing sources of uncertainty:

• variations of the tracking cuts (±0.0075 units v2)

• variations of the PID cuts (up to ±0.0075 units v2)

• the measured variation of the event plane resolution inside the centrality bin
(±5.5%)

Checks of systematic deviations due to the field polarity and the particle charge
yielded no significant changes outside the statistical uncertainty.

The subtraction of the hadron contamination is performed using Equation 5.1,
while RSB is here the ratio of the amount of electrons to the amount of contamina-
tion. The hadron contamination was subtracted according to the pion elliptic flow
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Figure 6.10: Inclusive electron elliptic flow (a). The systematic uncertainty and the contributions
to it (b). The figures of the other centralities analysed are attached in the appendix
(Figure 10.1 and Figure 10.2).
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measurement presented in Chapter 7.3 (and shown in Figure 7.5). The different
sources of uncertainty together with the uncertainty on the amount of contamina-
tion and on the pion spectrum are propagated using a numerical estimation of the
second order approximation to the full propagation (see Chapter 10.7 for details).
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7 Background Electron Cocktail
The previous chapter describes how the inclusive electron measurement has been
performed. To extract the heavy-flavour electrons from the inclusive electron meas-
urement, the so-called background has to be subtracted. This chapter shows how
the background is evaluated.

The background electrons would ideally comprise all unwanted electrons which
cannot be rejected in the inclusive measurement. Of interest are electrons from
heavy hadrons in this work. Thus, the other main electron sources that need to be
subtracted are leptonic and semi-leptonic decays of light mesons and conversions of
decay and direct photons. The method used to subtract these electrons from the
inclusive measurement is based on the so-called cocktail subtraction method (see
Chapter 5.1).

In this method the background is simulated by calculating the decay kinematics
of all the unwanted electron sources into electrons. Each source particle (also called
mother particle) is generated in a Monte Carlo event generator, based on measured
mother particle spectra. The electrons generated by the simulated decay kinematics
are then mixed together into the electron cocktail, which is then subtracted from
the inclusive measurement.

The simulation which was implemented for this work is based on a simulation of
the following sources:

• Dalitz decays of π0, η, ω, η′, φ

• Leptonic decays of η, ρ0, ω, η′, φ

• Conversions of decay photons from π0, η, ρ0, ω, η′

• Conversions of real prompt and thermal photons

• Virtual prompt and thermal photons

The input to the simulation are the source particle pT and v2 spectra, which in the
case of the mesons are entirely based on the ALICE measurements of charged pions
(π±).

7.1 Virtual Photon Production
Photons, and especially virtual photons are an important contribution to the cock-
tail. Thus it is important to understand their production channels.

Whenever a photon is produced by a source, it would have been instead possible
for the source to have produced an electron-positron pair under certain circum-
stances. In the theory the production of an electron-positron pair is treated by
allowing the photon source to not only produce the photons at their specific mass
(mγ=0), but of any mass. Particles produced at a different mass than their usual
mass are called off-shell particles or virtual particles. The difference in mass between
the particle produced and the specific unique mass a real particle of this type has
is called virtuality. According to Equation 2.7 the mass of a particle fixes the rela-
tion of energy to momentum. Raising the precondition of a specific mass basically
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means that the particle source is allowed to produce the particle with uncorrelated
energy and momentum. Since real particles of a specific type always have an unique
mass, the particles produced at different masses must somehow lose this virtuality
(additional mass).

For a high energy photon source, this means that the produced photons can
be so massive that they immediately decay into electron-positron pairs. A very
significant publication on this topic is from Kroll and Wada [153]. The number of
virtual photons Nγ∗ee of mass mγ∗ee decaying into a pair of electrons each of mass me

per real photon Nγ is given by:
(

1
Nγ

dNγ∗ee

dmγ∗ee

)
free

= 2
3πα

1
mγ∗ee

1 + 2
(
me

mγ∗ee

)2

√√√√1− 4

(
me

mγ∗ee

)2

(7.1)

This expression is 0 for mγ∗ee < 2me, because a pair production needs at least the
energy equivalent to the masses of the particles to be produced. For 2me < mγ∗ee <
3me the function increases almost “vertically” until it levels off and drops for higher
masses as 1/mγ∗ee . We see in the expression that the probability of a virtual photon
scales with 1/α, which is a direct consequence of the QED Lagrangian. Although
being thus two orders of magnitude below the number of real photons, the electrons
of both, real and virtual photons, compete because the conversion of real electrons
introduces the same factor 1/α.

The total number of virtual photons (and thus the number of real electron-
positron pairs) is then given by integrating the above formula over all masses. How-
ever any attempt of doing so immediately fails with the integral diverging. If this
rather surprising result had been true, it would have meant that every photon source
produced an infinite number of electron-positron pairs. With a reassuring glimpse
towards the lamp standing next to us, the expression obviously is still missing an
important constraint.

Virtual photons, or in general virtual particles, are called virtual because they
are the hypothetic particles needed to explain the propagation of the forces within
the quantum field theories. In principle we could even completely skip the virtual
photon stage, and view the above expression just as a statement on the production
of electron pairs of a given invariant mass (Equation 2.8) per real photon. This
invariant mass however is an other way of giving the electron pair a specific centre
of mass energy. Viewed from this perspective it is not that surprising at all anymore
that the first attempt to integrate must have failed. The omission of course was that
a lamp cannot produce more energy than it has power, and that a particle cannot
decay into something more massive than itself. In case we have a total energy
constraint Emax, the above formula must thus read:(

1
Nγ

dNγ∗ee

dmγ∗ee

)
Emax

=
(

1−
(
mγ∗ee

Emax

)2
)3

·
(

1
Nγ

dNγ∗ee

dmγ∗ee

)
free

(7.2)

This additional factor suppresses the function towards Emax. In case of a particle
P decaying, the energy constraint is given by the particles rest mass: Emax = mP .
When we have a given particle decaying into photons, the above expression is only
true in case of exactly point-like particles. For particles of finite size, the expression
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must be corrected by multiplying it with the so-called form factor F (q), which is
the Fourier transform of the spatial charge distribution:(

1
Nγ

dNγ∗ee

dmγ∗ee

)
P

= FP (mγ∗ee) ·
(

1
Nγ

dNγ∗ee

dmγ∗ee

)
Emax=mP

(7.3)

The relevant decay channel where virtual photons play a major role, is the variant
of the two photon decay, where one of the photons is replaced by a virtual photon.
This decay channel is called Dalitz decay, and is significant for this work for π0,
η and η′ mesons. To sufficient precision, the form factor for a particle P can be
written as:

FP (q) = 1
1 + q2

Λ2
p

(7.4)

The relevant particle-dependent scale ΛP , is also related to the so-called slope para-
meter bP or to the geometrical size of the particles charge radius: Λ2

P = m2
P/bP =

6~2c2/ 〈r2
P 〉 [154–156]. Some of the more recent measurements with the smallest

uncertainties on the parameters are currently: 〈r2
π〉 = 0.431 ± 0.013 fm2 [154, 156,

157], Λ−2
η = 1.95 ± 0.18 GeV−2 [154, 156, 158, 159] and bη′ = 1.30 ± 0.16 [154, 156,

159].

7.1.1 Numerical Considerations

During the simulation of the background electrons, it is necessary to compute the
number of virtual photons per real direct photon for a given global energy constraint.
For this the following integral over Equation 7.2 must be computed:

Nγ∗ee =
ˆ ∞

0
dmγ∗ee

(
1
Nγ

dNγ∗ee

dmγ∗ee

)
Emax

=
ˆ Emax

2me
dmγ∗ee

(
1
Nγ

dNγ∗ee

dmγ∗ee

)
Emax

(7.5)

While this integral does have a closed-form solution, it is not exactly a short, fast
to evaluate, expression. And since it must be evaluated in a relatively big numerical
range, it is also of questionable numerical stability. The situation can be massively
improved by including knowledge about the physics of the problem into the expres-
sion.

The first observation is that at high mγ∗ee Equation 7.1 has a very simple asymp-
totic behaviour. In this case, high means mγ∗ee � me, which is the same as me → 0:

a(mγ∗ee) = lim
me→0

(
1
Nγ

dNγ∗ee

dmγ∗ee

)
free

= 2
3πα

1
mγ∗ee

(7.6)

The asymptote has a very simple integral. We will use its integral instead of the
full expression and tweak the integration limits such that the result corresponds
to the integration over Equation 7.2. This works, because the function is below its
asymptote in the whole range. The factor distinguishing Equation 7.1 from Equation
7.2 acts only at high mγ∗ee suppressing the function towards Emax. And thus the high
mass behaviour of Equation 7.2 can be expressed by directly applying this factor to
the asymptote a. For the integral over the function this suppressing effect can be
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simulated by moving the upper limit of the integration towards smaller masses by
some fraction x:

ˆ Emax

2me
a(mγ∗ee) ·

(
1−

(
mγ∗ee

Emax

)2
)3

dmγ∗ee

!=
ˆ x·Emax

2me
a(mγ∗ee)dmγ∗ee

⇒ x = exp
(
−11

12 + Polynom3

(
m2
e

E2
max

))

upper limit = lim
me→0

(x) · Emax = exp
(
−11

12

)
· Emax

In the same limit as before (me → 0) the third degree polynomial vanishes, and the
upper limit of the integration over a must thus be exp(−11/12) · Emax such that it
equals the integration over a in the whole range including the suppressing factor.

Of course the electron mass is actually not 0. For this to be corrected for the
lower limit of the integration must now be moved. This new lower limit can be
found by requesting that the integral over the asymptote matches the integral over
the whole function:

ˆ exp(− 11
12)·Emax

L
a(mγ∗ee)dmγ∗ee

!=
ˆ ∞

0
dmγ∗ee

(
1
Nγ

dNγ∗ee

dmγ∗ee

)
Emax

⇒ L = L
(
m2
e, E

2
max

)
The resulting lengthy algebraic expression for L can be simplified under the assump-
tion that Emax � me. Under this assumption Emax diverges relative to a given finite
me:

lower limit = lim
Emax→∞

L = exp
(5

6

)
·me

Thus the approximation to the full integral is given by:

Nγ∗ee ≈
ˆ exp(− 11

12)·Emax

exp( 5
6)·me

a(mγ∗ee)dmγ∗ee =
4 log Emax

me
− 7

6πα (7.7)

This approximation is usable for Emax > 10 MeV starting with an error of 2%,
and dropping very steeply by more than 20 dB per decade. Figure 7.1 shows a
comparison of this approximation to the full calculation.

The number of needed virtual photons is not the only parameter that has to be
computed during the simulation. The other value needed for the virtual photons is
the mass assigned. This must be drawn from a distribution according to Equation
7.2. The method used is the so-called rejection sampling and is shortly introduced in
Chapter 10.3. It requires an envelope to the distribution, with the obvious candidate
being the asymptote a from Equation 7.6. Its integral is given by:

A(x) =
ˆ x

2me
a(mγ∗ee)dmγ∗ee =

2 log x
2me

3πα

And the enveloping cumulative distribution E is then:

E(x, Emax) = A(x)/A(Emax)
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Figure 7.1: The virtual photon production is increasing with the energy due to the increasing
volume of phase space the generated lepton pair can populate. For performance reas-
ons, the expression used to compute the amount of virtual photons needed (Equation
7.7) is an approximation to the full calculation (Equation 7.5).

With the also needed inverse of the cumulative distribution being:

E−1(y, Emax) = 2me

( 2me

Emax

)−y

7.1.2 Dalitz Decay Branching Ratios

The branching ratios of the relevant background electron sources into electrons are of
utmost importance. However, not only decays into electrons are important, equally
important are high-probability decays into photons, since photons can convert into
electron pairs, when going through the detector material. For some particles, like
the pion, the branching ratios are very precisely measured, for others, the results
are less exact, and for some particles the relevant branching ratios are not available
at all. The situation is especially bad for the η′, where one of the most important
decay channels into electrons, the Dalitz decay, is measured only up to an upper
bound. It is however possible to calculate a prediction for the branching ratio using
the expression provided by Kroll and Wada (Equation 7.3 and Equation 7.4). Doing
this for particles where the Dalitz decay is measured provides a possibility to test
how well the virtual photon calculations compare to measurements. The measured
branching ratios are taken from the PDG publications [15].

Having calculated the probability pγ∗ee|P of a virtual photon electron-positron pair
per real photon by integrating over Equation 7.3 for the particle P , it is possible
to calculate the branching ratio of the Dalitz decay BR(P → γe+e−) in relation to
the given branching ratio of the two-photon decay BR(P → 2γ). This is done by
viewing pγ∗ee|P as the probability of a Bernoulli trail for each of the two photons to be
a virtual photon. The total probability of having k virtual photon electron-positron
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π0 η η′

BRPDG(→ 2γ) (98.823± 0.034) % (39.41± 0.20) % (2.20± 0.08) %
BRPDG(→ γe+e−) (1.174± 0.035) % (6.9± 0.4) · 10−3 < 9 · 10−4

BRPDG(→ 2(e+e−)) (3.34± 0.16) · 10−5 (2.40± 0.22) · 10−5 —
pγ∗

ee|P (5.9146± 0.0004) · 10−3 (7.90± 0.02) · 10−3 (8.59± 0.03) · 10−3

B(2, pγ∗
ee|P , 0) (98.8206± 0.0001) % (98.426± 0.003) % (98.17± 0.02) %

B(2, pγ∗
ee|P , 1) (1.1759± 0.0001) % (1.568± 0.003) % (1.70± 0.01) %

B(2, pγ∗
ee|P , 2) (3.4983± 0.0005) · 10−5 (6.25± 0.03) · 10−5 (7.37± 0.06) · 10−5

BRKW (→ 2γ) (98.8206± 0.0001) % (39.41± 0.20) %* (2.20± 0.08) %*
BRKW (→ γe+e−) (1.1759± 0.0001) % (6.28± 0.03) · 10−3* (3.81± 0.14) · 10−4*
BRKW (→ 2(e+e−)) (3.4983± 0.0005) · 10−5 (2.50± 0.02) · 10−5* (1.65± 0.06) · 10−6*

Table 7.1: Dalitz decay branching ratios of π0, η and η′. *Values are scaled to the measured
PDG value of the two-photon decay branching ratio of the respective particle.

pairs from the two possible photons is thus given by the binomial distribution with
B(n = 2, p = pγ∗ee|P , k). Scaled with the measured (a.k.a. PDG) branching ratio of
the two-photon decay thus yields the Kroll-Wada estimate of the branching ratio of
the Dalitz decay.

pγ∗ee|P =
ˆ
dmγ∗ee

(
1
Nγ

dNγ∗ee

dmγ∗ee

)
P

BRKW (P → (2− k) · γ, k · (e+e−)) = B(2, pγ∗ee|P , k) · BRPDG(P → γγ)
B(2, pγ∗ee|P , 0)

Since the total width of the pion is entirely given by photonic decays, this scaling
is not necessary. Thus for the pion it holds that BRKW (π → (2− k)γ, k(e+e−)) =
B(2, pγ∗ee|π, k) and this procedure calculates directly all the relevant branching ratios:
π0 → 2γ, π0 → γe+e− and π0 → 2(e+e−). Table 7.1 shows the results for π0, η and η′
mesons. The calculated Kroll-Wada branching ratios are consistent with the current
PDG measurements. For the pion all three branching ratios are entirely inside
the one standard deviation of the measurements. This is also true for the double
Dalitz decay of the eta, while the single Dalitz decay branching ratios are about
1.5 standard deviations apart. The calculated branching ratio of the single Dalitz
decay of the eta prime was used in the cocktail simulation, since the measurements
provided only an upper limit. We can conclude that the calculations of the virtual
photons are well inside the uncertainties of the most precise measurements currently
available. Although outside the scope of this work it should be mentioned that in
principle it would be possible to extend the discussion to Dalitz muons by exchanging
the binomial distribution with the multinomial distribution.

7.2 Mother Particle pT Spectra
Many of the mother particles needed for this analysis as input for the simulation, are
not easily measured in the needed precision. Being the lightest meson, an abundancy
of pions is produced in each event. Pions were first anticipated by H. Yukawa in the
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1930’s as being the particles mediating the strong force between nucleons, giving
rise to an attractive potential binding the nucleons into the atomic nuclei. Pions
are a spinless bound two-particle state consisting of the two first generation quarks
with opposing spin. There are three pions: the charged |π+〉 =

∣∣∣ud̄〉, its antiparticle
|π−〉 =

∣∣∣ud̄〉 and the neutral mixed state |π0〉 =
(
|uū〉+

∣∣∣dd̄〉) /√2. Being the
lightest meson, pions cannot decay under the strong force. While the electromagnetic
decay is possible for the neutral pion, which decays into two photons, the charged
pion can only decay weakly by coupling to the W±-boson. Due to a remarkable
interplay of the properties of the weak force with the pion’s zero total spin, it can
only decay into the energetically unfavourable configuration of a neutrino and a
muon18. Because of the small volume of phase space remaining and due to the fact
that the weak coupling is considerably weaker than the electromagnetic coupling,
the life time of the charged pion is 10 orders of magnitude longer than that of the
neutral pion. Making it one of the few hadrons that can be measured directly and
not by reconstructing its decay products. Thus measurements of charged pions are
easily surpassing measurements of other identified particles in both, accuracy and
precision.

As shown in Chapter 3.5, all particles decayed by a hydrodynamic QGP should
in principle follow the same mT -distribution, in case of a vanishing flow. However it
was also shown that even with a finite flow the approximation may still be usable,
especially in the momentum range the inclusive measurement is conducted. This is
why this analysis uses the measured charged-pion spectrum as a baseline for themT -
scaling to describe the momentum distribution of all the other mesons concerned.

7.2.1 Pion pT Spectrum

There are ALICE measurements for both charged and neutral pions [78, 160, 161].
While the neutral pion measurement would be the natural choice, since only these
are part of the electron background, the measurement of the charged pion is of
much higher accuracy. And since there are no reasons for the two spectra to be
fundamentally different, the measurement of the charged-pion momentum spectrum
is used instead.

To produce the background electrons, the Monte Carlo simulation needs this
spectrum as input. Thus the spectrum must be fitted with an appropriate functional
form. Figure 7.2 shows the neutral and charged pion measurements as well as the
fit to the charged-pion spectrum using a modified Hagedorn function [76]. This is
the baseline for the mT -scaling.

Since all the momentum spectra are steeply falling, it would be problematic to
directly use these as probability densities for the respective particles. This would
produce a very strongly momentum-dependent statistics, with a lot of entries at
very low momenta and almost nothing a high momenta. Thus instead the simula-
tion produces the particles following a uniform distribution using the momentum
spectra as a weight for each produced particle in consequence of its momentum it

18Compared to the decay π± → e±νe which is forbidden due to helicity, the decay π± → µ±νµ
is energetically unfavourable because the µ mass (105 MeV) is a large fraction of the π± mass (140
MeV)
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Figure 7.2: pT spectrum of charged and neutral pions as well as the fit

was generated at. The weight must however be taken into account in the whole
simulation and analysis chain.

Systematic Uncertainty

The systematic uncertainty of the pion momentum spectrum is given by the fit error
and the deviation of the neutral pions to the fitted charged pions. Both errors can
be evaluated from the scattering and the systematic errorbars of the points in Figure
7.2. This is done by fitting the ratio of the measured spectrum to the spectrum fit
(lower panel of Figure 7.2) with a one-parameter linear fit, representing only the
scale. While a deviation of the parameter fit value from 1 represents a systematic
shift, the error of this parameter can be viewed as the standard error of the mean
(σm) of the deviations of the n data points about the fit:

σm = σ√
n

Solving for σ, which usually represents the standard deviation of each of the n
samples, and thus using this equation backwards, one gets a constant systematic
error, effectively equalizing the systematic errors and the scattering of the n points
over the whole range.

The uncertainty on the fit due to the scattering and the systematic error of the
charged pions about their fit is 5%, while the neutral pions have a 9% scattering.
Additionally there is also a systematic shift of 5%. This error is correlated between
all other particles whose spectra are based on mT -scaling.
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Figure 7.3: The quality ofmT -scaling as compared to measured kaons. This plot can be compared
to Figure 3.4 of the hydro calculations in Chapter 3.5.

Factor Error References
η/π 0.476 0.03 [162, 163]
ρ/π 1.0 0.3 [162, 166]
ω/π 0.85 0.06 [162, 165]
η′/π 0.4 0.12 [162, 166]
φ/π 0.25 0.08 [162, 164]

Table 7.2: Scaling factors used the mT -scaling

7.2.2 mT -Scaling Factors

While the mT -scaling describes the mT dependence of the spectrum it does not
predict the total scale. As mentioned in Chapter 3.6 it is possible to extend the
model to include a global fit for all particle types, however, this is not what is
usually done. It is easier to simply scale the mT -scaled spectrum to a previous
measurement: [162–165]. The scaling factors used are shown in Table 7.2. With
the scaling factors set, it is worth taking a look at the functional form. Figure 7.3
shows a comparison of measured kaons to the mT -scaled pions. This comparison
shows quantities similar to the calculations in Chapter 3.5. Comparing this plot
with Figure 3.4 confirms the expectations on the quality of the mT -scaling. We see
that above about a momentum of 1.5 GeV/c the mT -scaling works relatively well.
Since the mass of the kaon is very similar to that of the eta, this result should be
applicable there too. The effect of a different scaling is analysed in Chapter 7.6.

Systematic Uncertainty

The systematic error component entering the momentum spectrum of each particle
wheremT -scaling is applied follows directly from the uncertainties on themT -scaling
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factors shown in Table 7.2.

7.2.3 Direct Photon pT Spectra

The situation for the direct photons is more complicated than for the mesons. In a
heavy-ion collision, there is a huge number of photons produced by many different
processes:

• hard photons from parton Compton scattering and parton annihilation

• hard photons from parton bremsstrahlung and parton fragmentation

• photons from pre-equilibrium

• medium-induced photons

• thermal photons from the QGP and hadron gas

• decay photons

Apart from the decay photons, all other photons listed are called direct photons. The
direct photons minus the thermal photons are called prompt photons. The following
ALICE measurements are used: [167, 168]. Compared to the momentum reach of the
pion measurement, the direct photon measurements are relatively restricted. This
might be problematic for the simulation since a converting photon is source of two
electrons. It must be secured that the simulated electrons have a reach well above
the reach of the inclusive electron measurement. To extend the momentum region
of the measurements towards high momenta, the Next-To-Leading Order (NLO)
calculations of prompt photons from W. Vogelsang [169] are used additionally. The
NLO calculations must be scaled for the given centrality. Since photons do not
interact strongly, this can be easily done by scaling with the number of binary
collision.

The fit to the data was produced in a two-step procedure. First the data of
the NLO calculation was fit with a modified Hagedorn function. Then the ALICE
direct-photon measurements were fit adding an exponential part for the thermal
component of the spectrum and a free scale parameter for the now fixed Hagedorn
part. Figure 7.4 shows a fit of the scaled NLO calculations together with the ALICE
measurement. It can be clearly seen that the ALICE measurement increases towards
low momentum much faster than the NLO calculations. This is due to the thermal
photons, which are not included in the calculations. Since the amount of thermal
photons is directly linked to the medium temperature, and the medium temperature
is increasing with centrality, the relative and absolute amount of thermal photons
increases also with centrality.

Systematic Uncertainty

The systematic uncertainty (25%) is extracted just like for the pion by fitting the
ratio of the fit to the data. The uncertainty extracted from the NLO calculations
(5.6%) is completely outweighed by the errors on the measurements.
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Figure 7.4: Direct-photon pT spectrum in three centrality bins. The thermal photon yield in-
creases going towards more central collisions.
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7.2.4 Virtual Direct Photons

Each photon source does not only produce real photons, but also, to a lesser degree,
lepton pairs. The coupling of the source to the lepton pair via a virtual photon can
be seen as a decay of an emitted massive virtual photon with an immediate decay
into the lepton pair. These electron-positron pairs are of course background to the
measurement of this work and must be subtracted. However, as the mother photon
is just a virtual photon, it cannot be part of any photon measurement. Thus the
virtual photon contribution must be estimated based on the amount of real photons.

In this work, the production of virtual photons is estimated by linking it to the
production of real photons using Equation 7.2 as explained in Chapter 7.1. For
each real photon produced based on the measured real photon spectra, a fraction of
virtual photons of a specific mass is produced. In the simulation this is realized by
using a weight for the virtual photons, that is given by the integral of Equation 7.2.
And the mass is given at random using Equation 7.2 as the probability distribution.
Following the discussion in Chapter 7.1 a global energy constraint must be provided.
This constraint represents the maximal mass the virtual photon can have such that
the electron-positron pair produced by it does not violate global energy conservation.

In principle this means that the momentum spectrum of real photons is scaled
with the integral of Equation 7.2 to get the virtual photon spectrum. However,
a simple spectrum scaling does not work in this analysis because we are not only
interested in the pT spectrum of the mother particles, but also in the pT spectrum
and especially the v2 of the daughter electrons. Thus the actual kinematics of the
electron-positron pair must be simulated. This was done by treating the virtual
photon as a real massive particle that decays into an electron-positron pair. This
procedure is roughly comparable to what has been previously conducted at meas-
urements at RHIC [124].

Figure 7.1 shows the number of virtual photons per real photon. The fraction of
virtual photons is ever increasing with the global energy constraint.

Systematic Uncertainty

Apart from the value of α the procedure used is based entirely on theoretical cal-
culations, without any relation to measurements. Thus no systematic uncertainties
can attributed to the virtual photon component of the cocktail. The validity of the
calculations have however been tested in Chapter 7.1.2.

7.3 Mother Particle v2 Spectra

Similarly to themT -scaling of the meson pT spectra, for the elliptic flowKET -scaling
is used to estimate the meson v2 spectra. As for the pT spectra, the baseline is the
charged pion. Since elliptic flow is the intended measurement, it is also the most
important ingredient for the background electron cocktail.
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7.3.1 Pion v2 Spectrum

There are three relevant analyses of the elliptic flow of identified particles in ALICE:
two low-pT and one high-pT measurement [89, 135, 170, 171]. The two low-pT
analyses differ only in the elliptic flow measurement method used, one using the
event-plane method (Chapter 5.2.2), and the other using the scalar product method
(Chapter 5.2.4). The high-pT analysis also uses the event plane method. This was
the key argument to use the event-plane method as primary method in this work
as well. Figure 7.5 (a) compares the two low-pT measurements. Since these two
measurements are almost identical, the two data sets are completely interchangeable.

As for the momentum spectra, the v2 spectra must be fit in order to be usable by
the Monte Carlo simulation. The low and high pT measurements were merged using
the high-pT points as an extension to the low-pT points. The functional form used
to fit the spectrum, is based on two sigmoidal functions: one for the raising region
and the other in the falling region of the spectrum. These two regions are merged
using a trigonometric crossover function. The fit is produced by first fitting the two
regions individually and then fitting them together with the crossover function.

The light hadron measurements are segmented in smaller centrality bins than
the centrality bin analysed in this work (20-40%). The two centrality bins 20-30%
and 30-40% are thus merged by scaling each with its momentum spectrum, which
is encoded into the statistical errors of the data points.

Systematic Uncertainty

The systematics of the fit are shown in Figure 7.5 (b). They are the result of an
individual power-law fit of the lower and upper error of the data. While the error
on the data is the squared sum of the statistical and systematic error bars.

The spectrum fit is the spectrum of charged pions, however the simulation must
actually produce neutral pions. In contrast to the charged pion, the flow meas-
urement of the neutral pion is rather involved, directly affecting the spread of the
measurements and their uncertainties. This is the reason the charged pion data is
used for the parametrisation instead. However, available neutral pion measurements
for the LHC show a discrepancy to the charged pion in the range +10%/ − 20%,
depending on the measurement [172, 173]. This range was taken as an additional
systematic uncertainty for the pion v2 spectrum.

Similarly as for the pion pT systematic error, the pion v2 error component is
correlated among all particles where KET -scaling is used.

7.3.2 KET -Scaling

As discussed in Chapter 3.9 it was found that similarly to the situation of the mo-
mentum spectra, the elliptic flow of light hadrons are also interrelated. Being an
empirical finding, KET -scaling is not a perfect property. Figure 7.6 show the com-
parison between the measured kaon and the pion-basedKET -scaling approximation.
Because of the similar mass of the kaon to the eta, it is assumed that the kaon can
be an approximation to the eta.
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Figure 7.5: Comparison of the elliptic flow of the measured π± using the event plane and the
scalar product method (a) and the fit to the data (b).
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Figure 7.6: The quality of KET -scaling as compared to measured kaons.

Systematic Uncertainty

The systematic uncertainty for the KET -scaling is extracted from the lower panel
of Figure 7.6. It shows the absolute difference of the scaling to the data relative
to the maximum of the data and a constant fit to it. This is used as systematic
uncertainty for all mesons. Of course the systematics extracted from the kaons is
actually not applicable to anything else other than the eta, however, the eta is by
far the most important meson after the pion.

As shown in Figure 7.12 (b) the higher mass mesons represent only a very small
fraction of the total cocktail, with a maximal aggregated weight of 5% at a transverse
momentum of 3 GeV/c. From Figure 3.7 it can be seen that there the φ is off by less
than 20%. Since it is the heaviest meson included in the cocktail, it can be assumed
to represent the worst-case scenario. This means that the additional uncertainty
contribution to the total systematic error is less than 1%.

7.3.3 Direct-Photon v2 Spectrum

The elliptic flow of direct photons has been measured by PHENIX at RHIC and
ALICE at the LHC [172, 174]. Figure 7.7 shows the 20-40% ALICE data and the
fit to it. Like for most ratio plots in this work, the straight line in the lower panel
is not just fixed, but is actually a fit to the ratio points reassuring that the initial
fit has worked as expected. Unfortunately this analysis did not produce results for
other relevant centralities, with the 0-10% and 10-20% percentiles missing. When
these percentiles are of interest, it is possible to use the ratio of the respective
pion spectra as a scaling factor. Of course this introduces an additional systematic
uncertainty, on top of what is shown in Figure 7.7. This additional uncertainty has
been extracted by cross-validating the 3 available centralities of this analysis (0-20%,
20-40% and 0-40%). The uncertainty thus extracted is in the range of about 15 to
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Figure 7.7: The fit to the direct-photon measurement

25% on the spectrum. To be on the safe side, the 25% figure has been taken for all
scaled centralities.

What is also visible in Figure 7.7 is that the fit function does not cross into
the negative. Letting the function go lower would actually strongly increase the
final result’s numerical value in the respective momentum region. Up to today no
measurement of any particle type has ever yielded any significant measurement of
negative elliptic flow in the relevant momentum region. Also from the theoretical
point of view, at least from the discussion in Chapter 3.4 it appears implausible
to expect any negative elliptic flow. Thus the negative region has been declared
unphysical for the scope of this work.

7.4 Electron Generation

The previous chapter described the properties of the simulated electron sources.
From each of these sources, there are different ways electrons to be generated.
Mesons, like the pion or the eta, can produce electrons either by directly decay-
ing into them in semi-leptonic decays, or through photon decays, with the photons
subsequently converting into electron-positron pairs inside the detector material.

The most important decay channels are those decay channels producing the
most electrons. This depends on the initial amount of mother particles, on the decay
probability into electrons, or on the decay probability into photons multiplied by the
conversion probability of the photons into electron pairs. The two most important
decay channels are the pion Dalitz decay (π0 → γe+e−) and the pion two-photon
decay π0 → 2γ with the subsequent conversion into electron pairs (γ → e+e−).



7 BACKGROUND ELECTRON COCKTAIL 89

 (GeV/c)
T

p
1 10

2v

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

pion input spectrum

extracted pion spectrum

 spectrum±extracted Dalitz e

 = 2.76 TeVNNs20-40% Pb-Pb 
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7.4.1 Decay Electrons

After the generation of the electron sources, the simulation includes a particle de-
cay step, where PYTHIA 6 [166] is used as a decayer. This decayer produces the
daughter particles based on relativistic kinematic calculations. A critical ingredi-
ent is the decay channel probability, called branching ratio. The branching ratios
used were the newest ones available by the PDG publications [15]. For the heav-
ier mesons, there are usually many different decay channels possible, with only a
minority actually producing any electrons. To avoid this inefficiency, only the decay
channels producing electrons where taken into account, updating the particle weight
according to the decay channels probability.

For the eta prime the newest measurement available by the PDG publications
provide only an upper limit for one of the most important decay channels, the Dalitz
decay. In order to have a reasonable value for this channel, its expected probability
was calculated (see Chapter 7.1.2 for details). Figure 7.8 shows a comparison of
the elliptic flow of the decay electrons and the mother pion extracted from the
simulation. The electrons are shifted towards smaller pT because they are always
produced in pairs. The maximum of the spectrum is slightly below the maximum of
the mother pions, because the electrons are decayed with an opening angle, reducing
the spatial correlation and thus the eccentricity of the spacial distribution somewhat.

7.4.2 Conversion Electrons

When photons pass through matter, a number of different phenomena are observed.
From low to high energy of the photon this can be the photoelectric effect, Thomson
or Compton scattering or pair production. In our case we are dealing with high
energetic photons of at least a few hundreds of MeV. In this domain, only the
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electron pair production is relevant.
Pair production is usually simulated by providing the geometry of the whole

detector, and passing the photons step by step through the model. Depending on the
currently neighbouring material of the photon in each step, it is randomly decided
how to proceed to the next step. In the ALICE software framework this is usually
done by the geant3 library [175]. This high-quality procedure is however extremely
slow in computing time, and it would not be possible to produce the statistics
needed for this work in reasonable time, and having it saved within reasonable
storage space19.

Instead the relevant procedures of the geant4 library [176] were adapted to imme-
diately produce a pair production for each photon independently on its surrounding.
This slows down the simulation by only 10% and is thus a factor four faster, uses
a quarter of the storage space and produces an order of magnitude more statistics
compared to the usual procedure. However, the pair production simulated corres-
ponds to an infinite radiation length. To obtain the desired result, the momentum
distribution must be scaled to the needed radiation length. This scaling factor is
simply given by the mean probability of the pair production itself, as described in
Chapter 10.2:

1− exp
(
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)
1 = p̄pair

The results from both procedures (“full” and “fast”) are compared for the pion,
where also a third calculation is possible. This third possibility consists of directly
scaling the Dalitz electron spectrum with the above probability and the ratio of the
branching ratios of the 2-photon decay to the Dalitz decay:

conversion
Dalitz = (2 ·BRγγ +BRDal) · p̄pair

BRDal

This can be only approximative though, since here it is not possible to correct for
the photon momentum-dependent conversion probability. Hence, for low momenta
this component overestimates the amount of conversion electrons, as can be seen in
Figure 7.10 (a). Of course, simply scaling a momentum spectrum does not represent
a sound kinematic calculation, and thus there is no possibility to get any elliptic
flow spectrum from this method. However, analysing the decay channels of pions
into electrons (Figure 7.9) we can see that the Dalitz decay (π → γe+e−) and the
2-photon decay (π → 2γ) with a subsequent gamma conversion (γ → e+e−) are in
fact very similar.

We can thus expect the elliptic flow of conversion electrons to be the same as for
Dalitz decay electrons. Figure 7.10 (b) compares the elliptic flow of the conversion
electrons calculated by the two methods (“full” and “fast”) and the Dalitz decay
electrons. It can be clearly seen that our expectation is fulfilled. This result means
that in fact for the pion we could actually really just scale the momentum spectrum

19A single simulation of the needed six per centrality already takes a day of CPU time and uses
50GB of storage space



7 BACKGROUND ELECTRON COCKTAIL 91

e−

u E
D

γ∗

u�
e+

�
�v
ū γ

≈

u γ

Du
�
�v
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Figure 7.9: Similarity of the pion Dalitz decay and the 2-photon decay with subsequent gamma
conversion. Due to this the Dalitz decay is sometimes also called internal conversion.

and use as v2 spectrum the result from the Dalitz decay electrons. However, this
cannot be done for the heavier mesons which have completely unrelated decay chan-
nels. Figure 7.10 (c) compares the v2 of electrons from the direct electron decay of
the rho meson, with the electrons for the gamma conversions of rho decay gammas.
It can be seen that the elliptic flow of the direct electrons is completely different from
the conversion electrons. In all three plots the “fast” conversion mechanism is inside
the statistical errors of the “full” calculation but provides much more statistics.

7.4.3 Electrons from Virtual Direct Photons

As shown in the previous paragraph, the kinematics of the pion Dalitz decay (in-
ternal conversion) and the conversion decay photons (external conversion) are suf-
ficiently similar, such that all the electrons produced by pions have effectively the
same elliptic flow spectrum Figure 7.10 (b). It is thus appealing to extend this argu-
mentation to all virtual photons by assuming that all electrons originating from the
same source share the same elliptic flow spectrum, be they produced by conversions
of real photons or decay of virtual photons. In fact the only thing special to the
virtual photons of the pion is the pion form factor and the relatively low global
energy constraint given by the pion mass. While the form factor represents only
higher order correction to the virtual photons, the pion mass is indeed low.

To secure the argumentation, it is worth testing it with a heavier particle. Figure
7.11 (a) compares the elliptic flow of electrons from eta Dalitz decays with the elliptic
flow of conversion electrons originating from eta and pion. While both eta electron
spectra move in lock step, the pion electrons are considerably different. Thus at a
particle four times the mass of the pion, the electrons show a significantly different
spectrum, but the result concerning the difference between electrons from Dalitz
decays and conversions is the same as for the pion. This test should increase the
confidence that indeed electrons from virtual photons generated by any source should
have an elliptic flow similar to that from conversion electrons of photons from the
same source. And indeed, the implemented decay kinematics of virtual photons
provides exactly this finding: Figure 7.11 (b). The virtual photon calculations can
thus be regarded as consistent.
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Figure 7.10: The “full” and “fast” conversion mechanisms are inside each others statistical errors.
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Figure 7.11: Elliptic flow of the Dalitz e± compared to conversion e± from η mesons (a) and
the elliptic flow of electrons from virtual and conversions of real direct photons (b).
Electrons from the same sources have the same elliptic flow, independently whether
they were produced in a conversion of a real photon or via a virtual photon.
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7.5 Cocktail Mixing
The systematic uncertainties of the mother particle elliptic flow spectra are strongly
momentum dependent (see also Figure 7.5). It is thus necessary to produce three
separate simulations: one were the v2 is taken from point value of the mother particle
v2 spectra, and one each for the lower and upper end of the systematic error bars
respectively. Otherwise, the three simulations are identical, especially concerning the
momentum spectra of the particles, which can thus be added together increasing the
statistics. All other systematics are taken as flat in momentum, and can thus be
applied directly on the electron level, avoiding an unreasonable amount of individual
simulations. Then, the momentum and the elliptic flow spectra of all electrons are
extracted in groups differentiated by their source particle.

Due to the fact that the branching ratios of the leptonic decays of the mesons are
around two orders of magnitude smaller than for the photon decays, it is necessary
to separate these two cases: One simulation restricted to the leptonic decays and
another one for the photon decays. This increases the amount of necessary simu-
lations by a factor of two, resulting in a total number of six simulations for each
mother particle species.

The electrons generated from the simulated mother particles must be merged
into one sample to produce the background electron spectrum. Electrons from each
source particle have different spectra, as shown in Figure 7.12 (a). The combined
momentum spectrum is then simply the sum of the separate momentum spectra
of the daughter electrons. In order to get the proper elliptic flow spectrum of the
combined sample, the elliptic flow spectra of electrons from each species must be
weighted with its respective relative momentum spectrum. Figure 7.12 (b) shows
the normalized momentum spectra which are used as a weight for the elliptic flow
spectra. The weighted spectra can then be added together producing the intended
result of the background electron elliptic flow spectrum, shown in Figure 7.12 (c).

Systematic Uncertainty

To be able to produce the total systematic uncertainties, the cocktail is mixed mul-
tiple times: each time with errors corresponding to a different error component.
The uncertainties of the electron spectra which originate in the uncertainties of
the mother particle spectra must be propagated to the combined sample taking ac-
count of the correlations. Particle spectra based on mT or KET -scaling share the
systematics of the pion spectra, while the systematics of the mT and KET -scaling
themselves are only shared between electrons of the same mother. The errors of
these created systematic error cocktails are then finally added under the assump-
tion of being completely uncorrelated among themselves. Figure 7.12 (d) shows the
contribution of the error components to the total systematic error.

7.6 Systematic Studies
The following systematic studies were performed to test the stability of the electron
background cocktail under modified assumptions.



7 BACKGROUND ELECTRON COCKTAIL 95

 (GeV/c)
T

p
2 4 6 8 10 12

),
 |y

|<
0.

8
-2

dy
 (

(G
eV

/c
)

T
N

/d
p

2
 d

Tpπ
1/

2

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

)/2-+e+cocktail: (e
0π

η
ρ
ω

φ
'η

γdirect 

(a)

 (GeV/c)
T

p
2 4 6 8 10 12

w
ei

gt
hs

, |
y|

<
0.

8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|<0.8, kBothη = 2.76 TeV, |NNs20-40% Pb-Pb 

± conversion eγ π
± conversion eγ η
± conversion eγ ρ
± conversion eγ ω
± conversion eγ' η

± conversion eγ φ
± conversion eγreal 

± decay e0π
± decay eη
± decay eρ
± decay eω
±' decay eη

± decay eφ
± eγvirtual 

(b)

 (GeV/c)
T

p
0 2 4 6 8 10 12

 (
co

ck
ta

il)
2

 v±

B
ac

kg
ro

un
d 

e

0

0.05

0.1

0.15

0.2

0.25

|<0.8η = 2.76 TeV, |NNs20-40% Pb-Pb, 

(c)

 (GeV/c)
T

p
0 2 4 6 8 10 12

re
la

tiv
e 

un
ce

rt
ai

nt
y

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

stat error from simulation
 spectrum2measured v

 measured of wrong mother2v
 spectrum

T
measured p

 measured of wrong mother
T

p
 scalingTKE

 scalingTm
total systematics

|<0.8η = 2.76 TeV, |NNs20-40% Pb-Pb, 

(d)

Figure 7.12: Absolute (a) and relative (b) pT spectra of simulated electrons. The background
electron elliptic flow (c) and the constituents of its systematic error (d). The figures
of the other centralities analysed are attached in the appendix (Figure 10.3 and
Figure 10.4).
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7.6.1 Momentum Spectra Scaling

Due to mostly missing measurements, the spectra of all mesons apart from the pion
must be estimated. The method of estimating these momentum spectra is based on
mT -scaling of the measured charged pion spectrum (see also Chapter 3.5). Thanks
to a measurement of the η/π0-ratio in 7 TeV proton-proton collisions [163], it is
possible to assert the influence of a different scaling to the cocktail.

Figure 7.13 (a) shows a comparison of the measured data and the mT -scaling. In
the high momentum part, the fit is influenced heavily by the high-uncertainty points,
producing an overshoot which appears quite unphysical. From Chapter 3.5, Figure
3.4 and Figure 7.3 there is the data-backed expectation that mT -scaling should be
rather good at high momenta. Nevertheless, a test using this fit to the η/π0-ratio
was used, by scaling it with the 2.76 TeV Pb-Pb π± measurement (Figure 7.2).

The resulting cocktail (Figure 7.13 b) shows no significant departures from the
mT -scaling based cocktail.

7.6.2 Reconstruction Resolution

The background electron cocktail is based on completely corrected measurements
of the electron sources. This means that all the detector effects have been decon-
voluted from the respective spectra. The measurement of the inclusive electrons
(Chapter 6) however does still include the detector effects. Since the background is
subtracted from the inclusive measurement to get the final result, there are now two
possibilities to get a really consistent treatment: Deconvolute the detector effects
from the inclusive measurement or convolute the detector effects to the background.

It appeared easier to perform the latter. For this, resolution maps have been
extracted from full simulations, characterizing the detector resolution (shown in
Figure 7.13 c and d). The resolution maps were applied as an after-processing to the
electron background simulation by randomly smearing the electron tracks according
to the resolution maps. Comparison on the final background electron cocktail level
shows that the detector resolution does not significantly change the electron cocktail
(shown in Figure 7.13 (f) with blue markers).

7.6.3 Late Electrons

The inclusive electrons are all required to pass a cut asking for hits in the first ITS
layer. This cut is supposed to reduce the amount of conversion electrons included
in the final sample. Since electrons produced in conversions after the first ITS layer
cannot have produced a signal in it.

However it turned out that this is not strictly true because there is a probability
to wrongly associate hits in the first ITS layer with tracks of an electron from a
later conversion. This probability is especially high at high occupancies in the ITS
(central events) and at low momenta. The amount of these late electrons has been
calculated in a full simulation for the 0-10% and 20-40% centrality (shown in Figure
7.13 e). Being an effect based on tracking mismatching, it is quite natural that
these electrons were additionally found to have a somewhat lower reconstruction
resolution than the normal electrons.
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Figure 7.13: Alternative of the estimation of the η momentum spectrum (a) and its effect on the
cocktail (b). Electron momentum (c) and φ resolution (d), amount of late electrons
(e) and their effects on the cocktail (f).
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When both effects are taken together, the electron reconstruction resolution and
the additional late electrons, no significant deviation outside of the statistical un-
certainties can be made out (shown in Figure 7.13 (f) with red markers).
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8 Background Subtraction
Having measured the inclusive electron sample in Chapter 6 and having estimated
the electron background using the cocktail method in Chapter 7, it is now possible
to finally calculate the heavy-flavour-electron elliptic flow by subtracting one from
the other.

8.1 Signal-to-Background Ratio
According to Equation 5.1 it is important to determine the ratio of the amount of
electrons from heavy flavours (HFE) to the amount of electron from the other sources
(non-HFE). This work uses the already available result of this ratio, provided by
another analysis. The paper presenting the final ALICE result of the elliptic flow
of heavy-flavour electrons [144] is a merger of that analysis and this work. The
approach of determining the needed quantity shall now be outlined.

The so-called signal-to-background ratio (RSB) needed to subtract the electron
background from the inclusive electron sample is simply given by:

RSB = NHFE

NnonHFE

While both, the amount of heavy-flavour electrons (NHFE) and the amount of non-
heavy-flavour electrons (NnonHFE) cannot be measured directly, only the sum of
both is measured by the inclusive sample (Nincl):

Nincl = NnonHFE +NHFE

These two expressions can be rearranged to:

RSB + 1 = NHFE

NnonHFE

+ NnonHFE

NnonHFE

= NHFE +NnonHFE

NnonHFE

= Nincl

NnonHFE

(8.1)

The amount of non-heavy-flavour electrons (NnonHFE), however, can be measured
indirectly by an additional analysis step.

8.1.1 Low-Mass Dielectrons

Figure 8.1 (a) shows a typical low-mass dielectron spectrum. It can be seen that
the charm (cc̄) and beauty (bb̄) contribution is dominant at high masses, which
is of course rather intuitive considering the high masses of the quarks involved.
Towards lower masses, the spectrum is dominated by the contributions of the light-
flavour hadrons (π0, η, ω, η′, φ) which are part of the electron background cocktail
calculations presented in Chapter 7. It can be seen that at very low invariant masses
(< 0.1 GeV/c2) the contribution of charm and beauty is completely outshined by
the light hadrons. Thus a sample of reconstructed very low invariant mass electrons
will include almost exclusively electrons from the background electron sources.

The analysis of reconstructing these electron pairs exploits the fact that due
to the lepton number conservation of the electromagnetic and strong nuclear inter-
actions, the electron pairs produced in particle decays must in fact consist of an
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Figure 8.1: Low-Mass dielectron spectrum (a) and the reconstruction of like sign (LS) and unlike
sign (ULS) electron pairs (b). Dielectrons of low masses are dominated by the electron
pairs from light hadrons.

electron and a positron. All random unlike-sign (ULS) electron pairs of a collision
are thus candidates for being products of decayed particles, while like-sign (LS)
pairs can only be purely random combination. The mass of the decaying particle
is converted into the kinetic energy of the electron pair due to energy conservation,
while the total momentum of the pair must correspond to the momentum of the
decayed particle. In the rest frame of a particle decaying into an electron pair, mo-
mentum conservation further restricts the two electrons to be emitted back-to-back.
Transforming into the lab frame, this topology is changed due to the Lorentz boost
(see also Chapter 2.2). The relatively low masses of the particles decaying and their
relatively high momenta lead to a very small opening angle of the pair as measured
in the lab frame. The opening angle cut is a very important measure used in the
reconstruction, greatly reducing the number of purely random pairs.

Figure 8.1 (b) shows the reconstructed unlike-sign (ULS) and like-sign (LS) elec-
tron pairs. The random combinatorics of electrons not representing a real particle
decay can be removed by subtracting the like-sign from the unlike-sign pairs:

N rec
nonHFE = N rec

ULS −N rec
LS

8.1.2 Reconstruction Efficiency and Resulting RSB

In order for the sample to include only the non-heavy-flavour electrons, and following
the previous discussion, a low invariant-mass cut of < 70 MeV/c2 is introduced.
It is thus clear that the measurement cannot include all produced electron pairs.
Furthermore, a real detector is also restricted by its reconstruction efficiency and its
geometrical acceptance. The reconstructed sample of pairs thus represents only a
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Figure 8.2: Signal-to-Background Ratio

fraction of the pairs produced:

εrecnonHFE ·NnonHFE = N rec
nonHFE

⇔ NnonHFE = N rec
nonHFE

εrecnonHFE
(8.2)

This non-heavy-flavour reconstruction efficiency (εrecnonHFE) is computed using a Monte
Carlo (MC) calculation. The HIJING [177] Monte Carlo production used (LHC12a17d
fix and LHC12a17e fix) is enriched with additional π0 and η in order to increase the
statistics. Following the same argumentation as for the simulation produced for the
background cocktail, these additional particles are distributed following a uniform
momentum distribution, to not produce a very strongly momentum-dependent stat-
istics. The weights used for the particles follow the mother particle spectra presen-
ted in Chapter 7.2. The reconstruction efficiency is calculated by reconstructing the
simulated data sample and dividing the momentum spectrum of the reconstructed
particles with the spectrum of the simulated particles.

With the non-heavy-flavour electrons determined by using Equation 8.2, it is
possible to compute the signal-to-background ratio by using Equation 8.1, which is
shown in Figure 8.2.

8.2 Final Result and Discussion
With all ingredients determined, it is now possible to proceed with the subtraction
procedure according to Equation 5.1. vincl2 is the elliptic flow of the measured in-
clusive electron sample as it is shown in Figure 6.10 (a), vback2 is the elliptic flow
of the background electrons as shown in Figure 7.12 (c), and RSB is the ratio of
heavy-flavour electrons to the non-heavy-flavour electrons which is shown in Figure
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8.2. Although not explicitly stated in the expression, all the variables are thus mo-
mentum dependent. The elliptic flow of the heavy-flavour electrons (vHFE2 ) is shown
in Figure 8.3 (a). It is superimposed to the vincl2 and vback2 . The errors of the input
variables have been propagated to the output using a numerical estimation of the
second-order approximation to the full propagation (see Chapter 10.7 for details).
The result shows a heavy-flavour electron v2 significantly above 0, at significance
level of over 4σ in the centralities 20-40% and 10-20%. It is below the v2 of both,
the non-heavy-flavour background and the inclusive electrons and it is decreasing
with pT and centrality in parallel to both. In the lower momentum range, the dom-
inant contribution is expected to be coming from charm quarks, and in the higher
momentum region from beauty.

In the hydrodynamic picture, this suggests that at least the charm quarks do
also participate in the collective expansion of the medium together with the light
flavours, which hints to considerable interaction with the medium, confirming the
observations from the RAA measurements [126–129]. Since most heavy quarks should
be produced early in the initial hard scatterings, and due to the so-called “dead
cone effect”, where the gluon radiation of high-mass partons should be drastically
suppressed [178, 179], heavy quarks should neither already be thermalized at the
time the medium builds up, nor should they become thermalized on the time scale of
the lifetime of the medium [180]. Thus the findings of the measurements are rather
surprising. This result is also consistent with the ALICE measurements of the flow
of D mesons [141, 142] and of heavy-flavour muons [143] at forward rapidity and
with the previous results from RHIC [124, 140].

8.2.1 Comparison to Model Calculations

Figure 8.3 shows the comparison of the measurement with the following theoretical
model calculations:

BAMPS is a partonic transport model, simulating the 3+1D space-time evolution
of multi-parton scatterings in the QGP by solving the Boltzmann equation. All
interaction processes of light partons are included. The two versions provided
differ in the treatment of the heavy flavours: The model “BAMPS” includes
only the binary elastic collisions, with the cross-sections scaled to roughly
match the contribution of radiative processes, which are not included. The
model “BAMPS + rad” is an update to the first, adding a full treatment of
the relevant radiation processes. The running coupling is explicitly taken into
account for all interactions modelled. Both models use vacuum fragmentation
functions. [181, 182]

MC@sHQ+EPOS is a perturbative QCD model including interactions from col-
lisional energy loss in a 3+1D fluid-dynamical expanding medium, radiative
interactions with high-energy corrections due to the QCD analogon of the
Landau-Pomeranchuk-Migdal effect with a running coupling. Initial condi-
tions are obtained from a flux-tube approach (EPOS). The hadronization takes
place at the transition temperature, via coalescence and fragmentation. [183]
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Figure 8.3: Elliptic flow of heavy-flavour electrons compared with the inclusive measurement and
the background cocktail (a) and compared with model calculations (b). The figures of
the other centralities analysed are attached in the appendix (Figure 10.5 and Figure
10.6).
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POWLANG is a pQCD event generator (POWHEG) at next-to-leading order
(NLO) accuracy with CTEQ6M parton distribution functions corrected by
EPS09 nuclear modifications, interfaced with a PYTHIA parton shower which
is iteratively transported through an expanding viscous hydrodynamical back-
ground medium based on the relativistic Langevin equation. Fragmentation
is based on vacuum fragmentation functions. [184, 185]

TAMU is a non-perturbative heavy-flavour transport model based on a Fokker-
Planck Langevin dynamics with strong coupling by resonance formation and
dissociation in a 2+1D evolving tuned ideal hydrodynamic medium constrained
by measured light-hadron spectra. Energy loss is based on elastic processes in
the partonic stage and by diffusion in the hadronic stage. The hadronization
includes a component of recombination of the heavy quarks with light-flavour
hadrons in the QGP. [186]

Models which quantitatively describe the elliptic flow of heavy-flavour electrons well,
do also describe the elliptic flow of D mesons [141, 142] and heavy-flavour muons
[143]. Together with the heavy-flavour RAA measurements [126–129], the elliptic
flow from heavy flavours constrain the current models.

8.3 Outlook
The ALICE experiment is going to recieve significant upgrades in the upcoming
years. The upgrade will include the following hardware changes [103, 187]:

• a new beam pipe with smaller diameter to allow the first ITS layer to move
nearer to the interaction point

• a new high-resolution ITS detector with decreased radiation length

• a new high-speed TPC with continuous read out

• upgrade of the readout electronics of the TRD, TOF and the Muon Spectro-
meter for high-rate operation

• upgrade of the forward detectors
The upgrade of the TPC will replace the wire chamber layout with a layout based on
Gas Electron Multipliers (GEMs). Through the possibility of continous operation
it will increase the maximal readout rate to 50kHz. This will provide a luminos-
ity increase of an order of magnitide, increasing the statistics respectively. The
increase in resolution of the new ITS will provide the possiblity of better signal-
to-background ratios. Its lower radiation length will decrease the contribution of
conversion electrons and the movement of the first layer nearer to the interaction
point will increase the separation possibility between primary and secondary parti-
cles. All these changes will contribute to a significant reduction of the systematic
uncertainties. With these upgrades it will be possible to perform this analysis addi-
tionally discriminating between charm and beauty contributions. This would be of
utmost interest since in the bottom sector the contribution of secondary processes
is expected to be insignificant.
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9 Summary
The LHC particle accelerator was built to find answers to current most fundamental
questions of particle physics and astrophysics. Its four main experiments have been
developed with different emphasis on these questions. The general-purpose experi-
ment ALICE was built with a focus to study the properties of the condensed matter
which is generated in the heavy-ion collisions. It is the state of matter of the highest
temperatures and pressures, naturally existing only in the most extreme events
known: In supernova explosions and during the first microsecond at the beginning
of our universe, right after the Big-Bang. This state of matter is characterized by the
disintegration of the atomic nucleus into its nucleons and further into its component
partons, called quarks and gluons. Borrowing from its electromagnetical equivalent,
this state of matter is referred to as quark-gluon plasma (QGP).

Being produced mostly at the very first instant of a heavy-ion collision, heavy
quarks are a unique probe for studying the properties of the QGP. The interactions
with the surrounding medium can be expressed by radiative and collisional energy
loss. An efficient way to study heavy quarks is via their decay electrons, which can
leave the strongly interacting QGP mostly unobstructed. Through measurements
of collective phenomena, it was found that the QGP can be described to very high
accuracy by a strongly interacting fluid.

The collective motion of the particles inside the medium can be analyzed by a
Fourier decomposition of the azimuthal anisotropic particle distribution. Elliptic
flow is the component of the collective motion characterized by the second harmonic
moment of this decomposition. It is a direct consequence of the initial geometry of
the collision which is translated to a particle number anisotropy due to the strong
interactions inside the medium. The amount of elliptic flow of low-momentum heavy
quarks is related to their thermalization with the medium, while high-momentum
heavy quarks provide a way to assess the path-length dependence of the energy loss
induced by the interaction with the medium.

The analysis is based on a three-step procedure: Inclusive electron measurement,
estimation of the background electrons and subtraction of the background from the
inclusive measurement. The first part of the thesis describes the inclusive electron
measurment. The elliptic flow was measured using two of the most widely used
methods: the event-plane method and the scalar-product method. A very good
agreement was found with insignificant differences between both methods. Due to
its particle-identification capabilities, the ALICE experiment is especially suited for
these kind of electron measurements. This work is based on a partricle identifica-
tion (PID) using the Time-Projection Chamber (TPC), the Inner Tracking System
(ITS) and the Time-Of-Flight detector (TOF). To increase the electron purity as
much as possible, only high-quality runs were included in the analysis, rejecting runs
with any detector issues. The available calibration of the TPC signal was further
improved to provide accurate PID cuts, rejecting as much contamination as reas-
onably possible. Custom data fitting procedures were implemented to estimate the
remaining contamination of the electron sample, which was finally subtracted from
the measurement.

The second part presents a method of calculating the electron background. Here
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the electrons from light hardons and direct photons are evaluated in a simulation of
the respective particle decays. The necessary inputs to the simulation are previous
ALICE measurements of the momentum and elliptic flow spectra of charged pions
and direct photons. The spectra of other relevant light hadrons are based onmT and
KET scaling of the pion spectra. The virtual photons are based on the real photon
measurement taking into account the increasing probability of leptonic pair produc-
tion with increasing available energy. Electrons are generated using PYTHIA6 as
a decayer and electrons from gamma conversions are handled by a custom imple-
mentation of GEANT4 code providing a fast simulation. The spectra of electrons
from the different sources are extraced from the simulation and added to produce
the background electron cocktail. Additional sytematic studies were conducted to
prove the stability of the resulting cocktail spectra under different assumption.

The final result of this work emerges by subtracting the background electron
cocktail from the inclusive electron measurement. The result shows a positive el-
liptic flow decreasing with pT and towards more central collisions, which is in line
with expectations based on hydrodynamics. This is consistent with the fact that
charm participates to the expansion of the medium at low momenta. At high mo-
menta, the expected path-length dependence of the heavy-quark energy loss from
model calculations results in a small positive elliptic flow, which is consistent with
the measurements within systematic errors. The dominant contribution at low mo-
menta is expected to come from charm, while at higher momenta from bottom
quarks. This confirms previous results of the direct measurements of charm hadrons
and measurements of heavy-flavour decay muons at forward rapidity. Compared to
results from RHIC the elliptic flow of heavy quarks seems not have increased any
further.

Thanks to the increase in statistics, the improvement of the ITS and the TPC and
the availability of a full Transition Radiation Detector (TRD), it can be expected
that future periods of the Pb-Pb data taking, results separating charm and beauty
will be reachable.
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10 Appendix

10.1 Potential Energy
In order to describe the behaviour of the forces it is necessary to introduce some
basic physics concepts. The interaction between particles is described by a force
field ~F (~x), which is a vector field. The work W is then given by the line integral
along the path of movement C:

W (C) =
ˆ
C

~F (~x) · d~x

If this integral is independent of the path, then the field is called a conservative force
field. In this case the work is only dependent on the starting and end point of the
path (~a and ~b), which means that no work is done on any closed path:

W (~a,~b) =
ˆ ~b

~a

~F (~x) · d~x

˛

C

~F (~x) · d~x = 0

In this case it is possible to define a scalar field V called potential, such that:

~F (~x) = ~∇V (~x) , ~∇ =


∂
∂x
∂
∂y
∂
∂z


Work is then given simply by the difference of the potentials at the starting and end
points and is called potential energy:

Wpot(~a,~b) =
ˆ ~b

~a

~F (~x) · d~x = V (~b)− V (~a)

In case it is possible to simplify the problem further, such that the field is not
dependent of the position but only on the distance to the origin, the field is then
called a central force field with a central force potential.

~F (r) = ~∇V (r)

Wpot(ra, rb) =
ˆ rb

ra

~F (r) · dr = V (rb)− V (ra)

The potential energy is usually defined relative to a point at r = ∞ at which the
potential energy is zero:

Wpot(r) :=
ˆ ∞
r

~F (r′) · dr′ = V (∞)− V (r) = 0− V (r) = −V (r)
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10.2 Radiation Length and Pair Production

The passage of particles through the detector material is important to consider.
High energy electrons lose energy by bremsstrahlung and high energy photons can
convert into electron-positron pairs. The relevant scale of the probability to do so is
given by the radiation length X0. The radiation length represents 7/9 of the mean
free path of the photon and the distance where the electron has lost 1− 1/e ≈ 0.63
of its energy. By the choice of materials detectors are made such that the actual
radiation length inside the detector X is only a fraction of the total radiation length
X0. The probability of a pair production is thus given by:

ppair = 1− exp
(
−7

9 ·
X

X0

)

The nominal radiation length X/X0 is usually given for particles travelling perpen-
dicular to the detector material, having a minimal path length through the material
(x0). For the central barrel this means for particles with pseudorapidity η = 0.
Particles at other pseudorapidity will have an increased path length through the
material (x):

x (θ (η))
x0

= 1
sin (θ (η))

The dependence between θ and η is given by Equation 2.11. For this analysis the
pseudorapidity range is |η| < 0.8. In this range the particle production can be
assumed to be rapidity independent and thus the mean excess path length of the
particles can easily be calculated:

x̄

x0
= 1

2η

ˆ η

−η

1
sin (θ (η)) = 1

2
exp (η)− exp (−η)

η

In this case the mean probability of a pair production is given by:

p̄pair = 1− exp
(
−7

9 ·
X

X0
· x̄
x0

)

This probability is true only for photons with infinite momentum. Photons with
a finite momentum will have an additional multiplicative probability component
which is dependent on the photon momentum and the material Z. For photons
above 1GeV/c this component is approximately 1.

10.3 Random Number Sampling

In Monte-Carlo simulations it is usually of need to generate a random number ac-
cording to a given distribution. In this work this could usually be done relying onto
the capabilities of the ROOT framework. The method used is a numerical inverse
transform sampling working in small bins.
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10.3.1 Inverse Transform Sampling

The primary observation used is that, if x is a random variable with cumulative
distribution F , then y = F (x) is a uniform random variable with support [0, 1].
Thus a random variable can be generated having a given probability density f , by
generating a uniform random variable y with support [0, 1] and using the inverse of
the cumulative distribution to get x = F−1(y). This works only when the cumulative
distribution F is invertible. Apart from some pathological cases this can however
always be done in small bins with converging quality of the approximation of F with
a simple polynomial. Thus F must be a real analytic function.

10.3.2 Rejection Sampling

In cases when F−1 is sufficiently complicated to evaluate, a different method might
be of use: It may be possible to define an envelope e to f such that it remains
sufficiently near, and has an invertible cumulative distribution E which is easily
evaluable. In such a case the sampling can be performed exactly like for the inverse
transform sampling: x = E−1(y) with y being generated according to a uniform
distribution with support [0, 1]. Additionally the value x thus found must now be
rejected with a probability representing the amount the envelope e overestimates the
density f at this value x. This can be achieved by drawing an additional random
variable t from a uniform distribution with support [0, x]. x is than rejected whenever
t > f(x).

10.4 Parametric Distribution Functions
The distribution of large data samples can often be described by a Gaussian. This
empirical finding is mathematically explained by the central limit theorem. However,
in real world data and when high precision is necessary, distributions can signific-
antly deviate from Gaussian distributions. They can be skewed, be leptokurtic or
platykurtic. This paragraph will introduce two distribution functions: One which
can transition from a Gaussian into a skewed version of the Gaussian, and another
building on top of the first one, with additionally variable excess kurtosis.

The Pearson distribution family [188–190] is not an option. Since an unbound
support is necessary, the only possibility would be the Pearson IV function. However
this function cannot reach into the negative excess kurtosis region (platykurticity).
The situation is thus similar to the other candidate, the Johnson SU distribution
family [191]. There the reachable skewness is additionally increasingly limited with
decreasing kurtosis (going from leptokurtic to mesokurtic).

10.4.1 Skewed Gaussian

The first function is the skewed normal distribution (φα(x)) which was first suggested
by O’Hagan and Leonard [192]. The distribution is constructed from the normal
distribution (φ(x)) and the cumulative normal distribution (Φ(x)):

φ(x) = exp (−x2/2)√
2π
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Φ(x) =
ˆ x

−∞
φ(t)dt = 1

2

(
1 + erf

(
x√
2

))

φα(x) = 2φ(x)Φ(αx)

Location (ξ) and scale (ς) are added similarly as for the Gaussian itself:

φ(x)→ φξ,ς(x) =
φ
(
x−ξ
ς

)
ς

=
exp

(
− (x−ξ)2

ς2

)
ς ·
√

2π

Φ(x)→ Φξ,ς(x) = Φ
(
x− ξ
ς

)
= 1

2

(
1 + erf

(
x− ξ
ς ·
√

2

))

⇒ φξ,ς,α(x) = 2φξ,ς(x)Φξ,ς(αx)

The parameter α is responsible for changing the asymmetry of the distribution,
however it simultaneously also has effects on the position and the width. This is
highly unsatisfactorily because it means that the parameters are not orthogonal.
Such functions are not very well suited as fitting functions because the correlations
between the parameters make the minimization process of the fitting algorithm very
hard. Luckily it is possible to orthogonalize the parameters, simply by requiring the
location (ξ) and scale (ς) to coincide with the mean (m) and standard deviation (σ)
respectively. It thus remains only to calculate the mean and sigma of the skewed
Gaussian φξ,ς,α(x):

mξ,ς,α − ξ = m0,ς,α =
ˆ ∞
−∞

xφ0,ς,a(x)dx = α · ς√
1 + α2

√
2
π

(10.1)

σ2
ς,α

ς2 = σ2
1,α =

ˆ ∞
−∞

x2φ0,1,α(x)dx−
(ˆ ∞
−∞

xφ0,1,α(x)dx
)2

= 1−m2
0,1,α = 1− 2α2

(1 + α2)

The parameters can finally be orthogonalized with the following two substitutions:

ξ → m−m0,ς,α , ς → σ

σ1,α

The skewed Gaussian with uncorrelated parameters is thus:

φ̂m,σ,α(x) = φ{m−m{0, σ
σ1,α

,α},
σ

σ1,α
,α}(x)

For α = 0 this distribution is identical to the Normal distribution. The parameter
α does not represent directly the skewness, it is however perfectly correlated to it.
The skewness, a.k.a. the third standardized moment γ1 = µ3/σ3, can be changed in
the interval γ1 ∈]− 1..1[.
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10.4.2 “Variakurtic” Skewed Gaussian

In some situations more general distributions are needed, where the kurtosis is also
variable in addition to the location, width and skewness. The suggested “variakur-
tic” skewed Gaussian is based on the first version of the generalized Gaussian [193].
This is a symmetric distribution with a kurtosis parameter (β):

φβ(x) =
β · exp

(
− |x|β

)
2 · Γ(1/β)

Φβ(x) =
ˆ x

−∞
φβ(t)dt = 1

2 + sign(x) ·
γ
(
1/β, |x|β

)
2 · Γ(1/β)

With γ(x, y) being the lower incomplete gamma function. Location (ξ) and scale
(ς ′) are added as for the Gaussian:

φβ(x)→ φξ,ς′,β(x) =
φβ
(
x−ξ
ς′

)
ς ′

=
β · exp

(
−
∣∣∣x−ξ
ς′

∣∣∣β)
2 · ς ′ · Γ(1/β)

Φβ(x)→ Φξ,ς′,β(x) = Φβ

(
x− ξ
ς ′

)
It is important to note that the width is influenced by β already at this stage. Before
continuing this must be corrected for:

ς ′ → ς ·

√√√√Γ(1/b)
Γ(3/b)

⇒ φ̂ξ,ς,β(x) = φ
{ξ,ς
√

Γ(1/b)
Γ(3/b) ,β}

(x) , Φ̂ξ,ς,β(x) = Φ
{ξ,ς
√

Γ(1/b)
Γ(3/b) ,β}

(x)

Using this generalized Gaussian instead of the Normal distribution as a base for con-
structing the skewed Gaussian generates the suggested “variakurtic” skewed Gaus-
sian:

φξ,ς,α,β(x) = 2φ̂ξ,ς,β(x)Φ̂ξ,ς,β(αx)
Similarly to the skewed Gaussian the parameters α and β have considerable crosstalk
to the position and width but also among themselves. A stringent resolution of this
situation is however much more complicated in this case, since the integral in the
equivalent calculation to Equation 10.1 appears to not be analytically solvable. It
is however possible to reach an approximated solution for the correction of location
and scale by integrating a Taylor expansion of the problem in β around the point
of no excess kurtosis. With increasing order the integrals get increasingly more
complicated such that it was only possible to find an analytic solution up to the
linear term. The quadratic term was found numerically. Due to the length of the
numerical solution however, only the first two terms of the Taylor expansion are
presented:

m0,ς,α,β = α · ς√
1 + α2

√
2
π

+β − 2
ς−1

[
3 (1 + α2) (1 + ln (1 + α2))− 2α2 lnα

α−1 · (1 + α2)3/2 2
√

2π
− 4 sinh−1 α

2
√

2π

]
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σ2
ς,α,β

ς2 = σ2
1,α,β = 1−m2

0,1,α,β

⇒ ξ → m−m0,ς,α,β , ς → σ

σ1,α,β

⇒ φ̂m,σ,α,β(x) = φ{m−m{0, σ
σ1,α

,α,β},
σ

σ1,α,β
,α,β}(x)

For β = 2 the distribution is identical to the skewed Gaussian. The parameters α
and β are responsible for skewness and kurtosis but are somewhat correlated. This
can be resolved with a numerical mapping between them and skewness and kurtosis.
The kurtosis can range from extremely leptokurtic over mesokurtic to moderately
platykurtic. The useful skewness range of the distribution is increasingly limited
with increasing platykurticity.

10.5 Feature Detection
Feature detection is a term in image processing referring to algorithms used for
detecting specific features of images. The features needed to be detected are so-
called blobs, these are regions that have significantly different properties than the
surrounding. The method used is the so-called Laplacian of the Gaussian. The
input image is blurred by a Gaussian kernel with a radius bigger than one pixel.
Finally the Laplace operator is applied to the image:

∆I = ∇2I = ∂2I

∂x2 + ∂2I

∂y2

While the derivative is defined as a pixel operation:

∂

∂x
I(xi, yj) = I(xi+1, yj)− I(xi−1, yj)

2
∂

∂y
I(xi, yj) = I(xi, yj+1)− I(xi, yj−1)

2
The result of this method is a high-contrast image where detected regions are marked
by a high intensity compared to a flattened low-intesity surrounding.

10.6 FAST-ELTS: An Efficiency Regaining Fast Least Trimmed
Squares Fitter

The ROOT software package provides several fitting algorithms, some intended for
general fitting and one for robust fitting. However, the general fitters are much more
flexible than the robust fitter, in the sense that the robust fitter puts restrictions in
the functional form of the fitting function and cannot be used with general forms or
with external function (as needed for fitting arbitrary functions defined in external
libraries). The situation was resolved by implementing a robust fitter around the
already existing general fitters.

The fitter is a custom three-step implementation based on a combination of the
two-step FAST-LTS algorithm by Rousseeuw and Driessen (2006) [194] and the
efficiency regaining step ELTS(n) published by Doornik (2011) [195].
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The initialization step selects the non-robust least squares minimum-residual
subset from a probabilistic minimal choice of points. The number of points in each
subset is taken such that the least squares problem is not underdetermined. The
number of subsets drawn from the given set of points is calculated depending on
the expected maximal contamination of the original set and the amount of points
needed in each subset such that there is a high probability to have at least one
subset without any contamination.

Based on the initialization with a minimal number of points the second step tries
to find all other not contaminated points by minimizing the total χ2 of non-robust
fits on maximal subsets of permutations of points sorted by the residual. The size
of the subset is given by the expected maximal contamination, with all other points
with greater residual presumably being the contamination.

Often there is no good way to have an accurate expectation on the amount of
contamination. In such cases it is safe to assume the maximal possible contamination
of up to 50%. However, whenever the contamination is much lower the efficiency of
the fit would be unnecessarily low. In this case the last step can now try to include
as many points as possible without letting the fit deteriorate.

10.7 Error Propagation
Nothing really existing is truly perfect. Perfection is only an idealisation of the
world. This Plato inspired statement extends to physical experiments and has a
direct impact on the workflow of the experimentalist (thought experiments like the
ones extensively and famously utilised by Einstein being of course the noteworthy
exception). Any result measured will be influenced by the deviations of the actually
existing setup to the conceptual perfection. It is thus paramount to not only arrive
to a result, but to also consider the inherent uncertainties and propagate them to
this final result. This leads to a probability statement of the region around the
measurement value. Thanks to the central limit theorem, the probability distribu-
tion of a final value will very often be approximately normally distributed. The size
of the uncertainty is commonly quoted as the size of one standard deviation.

It is possible to propagate the uncertainties of the input variables Xi to the
output variable Y of a calculation by the following expression [196]:

fY (y) =
˙

dx1 · · · dxn · δ (y − Y (x1, . . . , xn)) · fX1(x1) · · · fXn(xn)

with fA(a) being the probability density of the random variable A being evaluated at
a. While the propagation is thus fully determined, finding a solution can be a lengthy
task. However, it is possible to reach an approximate solution by a simulation:
The input variables are then randomly drawn from their probability distribution
and the output variable is saved in a histogram. Whatever way is proceeded, it is
clear that the underlying distribution functions of all input variables are needed in
any case. This is a stronger precondition than it might appear. When the input
variables are not under direct control, the underlying distributions might simply not
be known. Very often it is the case that the only information at hand is the mean
and an uncertainty interval. Of course it would be possible to simply assume normal
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distributions to recover the previous expression, however it appears unreasonable to
proceed with the full complexity of this solution given that the actual distributions
are guessed.

10.7.1 Linear Approximation

A very often used method for the propagation of uncertainties is based on a first order
expansion of Y (X) around the expectation values of the Xi. With the correlation
coefficient ρij of the input variables Xi and Xj and their standard deviations σi and
σj respectively, this yields:

E[Y ] = Y (E[X1], . . . , E[Xn])

σ2
Y =

∑
i

(
∂Y

∂xi

)2

σ2
i + 2

∑
l<m

(
∂Y

∂xl

)(
∂Y

∂xm

)
ρlmσlσm

While this can be easily computed for any expression, it can also be numerically
estimated to high accuracy: Observing the variations ∆±i of Y due to variations of
the input Xi by an amount of ±1σXi around E[Xi]:

∆+i = Y (E[X1], . . . , E[Xi] + σi, . . . , E[Xn])− E[Y ]

∆−i = E[Y ]− Y (E[X1], . . . , E[Xi]− σi, . . . , E[Xn])
If ∆+i ≈ ∆−i = ∆i does not hold for any i, than the linear approximation cannot
be used. In case it can be used the standard deviation of the output variable can
be written as:

σ2
Y =

∑
i

∆2
i + 2

∑
l<m

ρlm∆l∆m

10.7.2 Deviations from Linearity

When ∆+i ≈ ∆−i does not hold, the linearity assumption cannot be further sus-
tained and the expansion of Y (X) must be extended to the second term. It can be
shown [196] that a numerical estimation to the second order approximation is given
by:

E[Y ] ≈ Y (E[X1], . . . , E[Xn]) +
∑
i

∆̄i

σ2
Y ≈

∑
i

∇̄2
i

with ∆̄i = (∆+i −∆−i) /2 and ∇̄i = (∆+i + ∆−i) /2. Due to the noticeable depar-
ture from linearity of Equation 5.1 for relatively small values of RSB in comparison
to relatively large uncertainties (see also Figure 8.2), this procedure was adopted to
calculate the size of the errorbars throughout this work.

10.8 Figures for the Centralities 0-10% and 10-20%
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Figure 10.1: Inclusive electron elliptic flow (a). The total systematic uncertainty and the contri-
butions to it (b).
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Figure 10.2: Inclusive electron elliptic flow (a). The total systematic uncertainty and the contri-
butions to it (b).
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Figure 10.3: Absolute (a) and relative (b) pT spectra of simulated electrons. The background
electron elliptic flow (c) and the constituents of its systematic error (d).
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