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Abstract: This paper presents a comprehensive extension of pricing two-dimensional derivatives
depending on two barrier constraints. We assume randomness on the covariance matrix as a way of
generalizing. We analyse common barrier derivatives, enabling us to study parameter uncertainty
and the risk related to the estimation procedure (estimation risk). In particular, we use the distribution
of empirical parameters from IBM and EURO STOXX50. The evidence suggests that estimation risk
should not be neglected in the context of multidimensional barrier derivatives, as it could cause price
differences of up to 70%.
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1. Introduction

It is a well-established fact that both volatility and correlation play significant roles in modelling
financial markets. For instance, volatility is crucially important in asset pricing models and dynamic
hedging strategies, as well as in the determination of option prices. Besides financial derivative
specifications, such as maturity and the strike price, volatility is the most influential parameter and
the most difficult to quantify. Similarly, correlations play a vital role in the market and its derivatives.
However, since the correlation meltdown during the financial crisis in 2008, where all correlations were
moving close to one altogether, people have been more aware of the importance of correlation and
vanishing diversification effects, not only for risk management, but also for multi-asset derivatives.

Consequently, and unlike the other specifications, volatility, as well as correlation have to be
modelled as time-dependent processes. The best solution to this challenge is a stochastic covariance
model, as those stochastic matrices tackle both features, volatility and correlation, simultaneously
(see [1–3]). In such a context, when it comes to the actual pricing of products, practitioners
either determine model parameters from option prices (usually called calibration) or obtain the
parameters from historical observations of the underlying (estimation methodology). The first
approach has plenty of limitations; for instance, the correlation can not be ‘implied’ due to a lack
of freely-tradable multivariate derivatives; hence, one has to incorporate hidden processes into the
calibration methodology, leading to high non-linearity. This makes the calibration unstable numerically.
On the other hand, the second approach requires plenty of data points even though these parameters
may not remain constant for long periods. Moreover, stochastic covariance models suffer from
higher complexity, which is particularly problematic for path-dependent products like barrier options.
The pricing of these products is nowadays unfeasible in stochastic covariance models. In a nutshell,
stochastic covariance models do not lead to an analytical solution or numerically-feasible methods for
the pricing of path-dependent derivatives (see [4] for a discussion).
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This takes us back to the constant covariance case, the Black–Scholes framework. Although we
have seen already that this assumption does not capture empirical observations, it also fails to
incorporate a second fact: the parameters are unknown. In other words, when using sample data,
one deals with point estimates instead of the true value of the parameters. A rigorous approach should
work with the point estimator instead of the actual estimate. Point estimators are random variables that
would account for the uncertainty related to the estimation procedure. In most cases, point estimates
are extremely sensitive to small changes in the estimation procedure (maximum likelihood versus a
Bayesian approach), the number of data observations (large versus small sample sizes) or the type
of parameter (e.g., mean versus variance); and in general, the distribution of the point estimator is
not known in closed form (i.e., it does not belong to a known family of distributions). This analysis
is called estimation risk, as it describes the risk or the inaccuracy related to substituting the sample
estimate for the true unknown parameters.

Estimation risk was considered very early in the seminal work of [5], which finds little impact on
simple European-type option prices. On the other hand, Lence, S.H. et al. [6] detected a significant
impact on portfolio allocation. More recently, Jacquier, E. et al. [7] shows the importance of estimation
risk in model assessment for general contingency claims in a one-dimensional setting using a Bayesian
approach. The work in [8] deals with non-path-dependent one-dimensional option prices to assess
the estimation risk with similar findings. Nevertheless very little has been done to assess estimation
risk for path-dependent products, in particular the most popular barrier options. One possible reason
for this lack of analysis in the literature is the difficulties in finding closed-form solutions for barrier
products. The work of [9] pioneered closed-form expressions in the presence of one barrier, while [1]
provided the framework to price analytically options with two barriers. More recently, the limitations
on analytical expressions for more than two barriers were highlighted in the work of [10] (three barriers)
and [11] (more than three). All previous findings were in a constant covariance setting. There is no
analytical solution available for more than one barrier in the presence of stochastic covariance (see [4]
for a discussion).

In this paper, we work with random covariance and study the effect of this randomness in pricing
barrier products. By doing so, we extend the existing literature of pricing path-dependent products
beyond the constant covariance case to a richer, more realistic, random covariance setting. As there
are many potential barrier products, we have decided to work with one and two barrier cases in
two dimensions. The closed form pricing of the chosen products can be seen as particular cases of the
framework of [1]. This paper contributes to the existing literature in the following way:

• We present a framework to price different derivatives whose payoff involves two separate barriers
and two underlyings.

• We present an empirical analysis where the distribution of the covariance is studied. We examine
their goodness of fit and run the corresponding statistical hypothesis test on real data. The selected
distributions are used to price two exemplary derivatives.

• A numerical analysis of the sensitivities with respect to theoretical distribution parameters
is performed on the same exemplary derivatives. This analysis highlights a large impact of
estimation risk on barrier option prices.

This paper is organized as follows. In the next subsection, we give a short overview of the
framework and discuss requirements for modelling random correlation and volatility. Section 2.1 deals
with the products of interest and presents the market model, where the covariance is modelled explicitly.
Next, we highlight the effect of uncertainty in the covariance on a numerical analysis of a variety of
different European options. We find that there are cases where the option price differs significantly
from those that would be obtained via a traditional procedure disregarding the estimation risk.
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1.1. Overview of Models for a Random Covariance (Σ̃)

The randomness in covariances can be modelled in various ways. In this paper, we cover explicit
and implicit frameworks. The randomness in the explicit case is modelled with two additional sources
of randomness, one for variance (c̃) and one for correlation (ρ̃). In the implicit approach, we add
randomness to the eigenvalues (c̃λ) of the covariance matrix, which subsequently leads to random
variances and correlations.

To discuss possible distributions for these frameworks, we consider distributions from
two different approaches: The first approach is an empirical analysis, where we propose distributions
based on previous studies. The second approach derives possible distributions from theoretical
considerations on the estimators.

By reviewing the relevant literature for the first (so-called empirical) approach, we follow [12,13],
who found that the distribution of the logarithms of the standard deviations, as well as the correlation
of daily returns are close to Gaussian. To ensure that the boundary condition of the correlation remains
in the interval [−1, 1], we truncate the distribution outside this interval.

In deriving possible distributions within the second (so-called theoretical) approach, the most
obvious choice of distributions to model the randomness in covariances is the Wishart distribution.
This distribution is the distribution of the sample covariance matrix of a multivariate Gaussian
vector ([14]). In other words, the Wishart distribution can be understood as drawing a sum of
squares from a multivariate normal distribution. Unfortunately, the Wishart is too complex and
highly dimensional; hence, it does not ensure a numerically-tractable analytical solution; hence,
we could not consider it for our analysis. This observation led us to impose three requirements
when choosing a workable distribution. First, we want to control the mean and the variance of
the distribution and, therefore, the mean and the variance of the randomness; hence, the preferred
distribution should be based on two parameters at least. Second, the distribution has to ensure
a positive definite covariance matrix for the underlyings. Thirdly, we should use, whenever possible,
distributions derived from prevalent frameworks.

For instance, if a variance is as in [15], Lepage, T. et al. [16] have shown that the stationary
distribution of the stochastic process of this variance is a gamma distribution. The gamma distribution
can be justified in several ways. First, it fulfils all of the requirements, such as a relation to a stochastic
volatility model, positive support and a sufficient number of convenient parameters. Second, it is
a special case of the Wishart distribution (in the case of non-integral degrees of freedom). Therefore,
we can understand it as a simplification of our most obvious and initial guess. Third, the gamma
distribution is a generalization of the chi-squared distribution, the latter arising as the conditional
distribution of a CIR process. We also used the lognormal distribution for the variance, which has been
a standard choice for decades, becoming recently popular via SABRmodels [17].

To sum up, we assume the following two possible distributions for the random variance parameter
(explicit framework) c̃, as well as for the randomness in the eigenvalues (implicit framework) c̃λ:

• Gamma distribution: α (shape)> 0, β (scale)> 0:

f c̃(c̃, α, β) =
1

Γ(α)βα
c̃α−1e−

c̃
β

• Log-normal distribution: µ (mean) ∈ R, σ (standard deviation) > 0:

f c̃(c̃, µ, σ) =
1

c̃
√

2πσ
e
−
(

(ln(c̃)−µ)2

2σ2

)

Similar to the requirements on distributions for variance and eigenvalues, we demand additionally
that possible distributions for modelling the correlation (explicit framework) shall be concentrated



Risks 2016, 4, 35 4 of 25

on [−1, 1]. The following bounded distributions remain in the interval [−1, 1] and ensure therefore the
boundary condition of the correlation, which is modelled with the random variable ρ̃:

• Linear transformation of the beta distribution (note the beta distribution becomes the uniform
distribution when α = 1, β = 1): ρ̃ = g(X) = 2 ·X− 1, where X follows a beta distribution in [0, 1],
α, β (shape) > 0.

fX(x, α, β) =
xα−1(1− x)β−1

B (α, β)
⇒ fρ̃(ρ̃, α, β) =

(
ρ̃+1

2

)α−1
(1− ρ̃+1

2 )β−1

B (α, β)
·
∣∣∣∣ ∂

∂ρ̃
g−1(ρ̃)

∣∣∣∣
• Truncated normal distribution in [a, b], with φ standard normal probability density function and

Φ standard normal cumulative density function, µ (mean) ∈ R, σ (standard deviation) > 0,
a (minimum value) ∈ R, b (maximum value) ∈ R:

fρ̃(ρ̃, µ, σ, a, b) =
1
σ φ
(

ρ̃−µ
σ

)
Φ
(

b−µ
σ

)
Φ
(

a−µ
σ

)
(We take a = −1 and b = 1. There is no need to truncate the distribution
(in numerical/practical terms) because the probability of values outside the interval [−1, 1]
is negligible.)

These choices for the correlation can be traced back to transformations in the work of [18–20].
It should be pointed out that we could have also used the sampling distributions for variance and
correlation (in a Gaussian setting). It is known that the distribution of the variance estimator follows
a scaled chi-squared distribution ([21]), whereas the maximum likelihood estimation of the correlation
coefficient can be found in [22]. These choices did not perform well in the empirical section; this is
why they are not considered in more detail.

2. Results: Mathematical and Financial Framework

In this section, we first describe the financial products of interest (Section 2.1) followed by their
pricing under a random covariance framework (Section 2.2). Section 2.3 specifies the implicit and
explicit models to be used for the covariance.

2.1. Products of Interest

The numerical part of this paper focuses on the pricing of two-dimensional derivatives with
either one or two barriers. For example, we assume two underlyings S1 and S2 and the following
payoff structures:

g(S1(T), S2(T)) · 1{τ1>T}1{τ2>T}

g(S1(T), S2(T)) · 1{τ1>T}

where g(·) denotes the non-path-dependent payoff and τi is defined as the stopping time, where the
underlying crosses the barrier for the first time:

τi = inf {t ∈ [0, T] | Si(t) < Mi(t)} i = 1, 2.

In this framework, we allow for either a constant (Mi(t) = M∗i ) or a time-dependent barrier
(Mi(t) = M∗i ert). These are the financially meaningful barriers; other types of barriers may be possible,
but there is very little literature on multidimensional non-constant barriers.

The presented formulas are also valid for other cases than double down-and-out constraints,
because all other cases can be expressed as down-and-out indicators, if the case requires, by reflecting
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the underlying and the barrier and adjusting their drifts (see [1]). The formulas can also handle
less than two barrier constraints by simply assigning a very small value to the according barrier
(i.e., M∗i ∼ 0). Within the empirical and numerical analysis in Section 3, we will consider the following
two exemplary functions:

Double digital option : g1(S1, S2) = 1{S1(T)>K1,S2(T)>K2}

Correlation option : g2(S1, S2) = (S1 (T)− K1)
+ · (S2 (T)− K2)

+

S1 and S2 can be seen as any arbitrary underlying, e.g., market indices, stocks, foreign exchanges
or even prices of commodities. The events τ1 and τ2 represent the crossing times of the corresponding
barriers Mi(t), which can either be constant or time dependent, e.g., if they take into account
default risk.

These two considered ‘g’ functions have been already studied in [23] and without the barrier
constraints in [24], as well as in [25]. The payoff of the double digital option becomes due in the
cases where the underlying stocks exceed the predetermined strike prices at maturity. The payoff of
this option is determined at the onset of the contract, and unlike plain vanilla calls, the payoff does
not depend on how much the option expires in the money. Therefore, the investor only needs the
sense of direction and not additionally the magnitude of the further developments of the underlying.
Similarly, the payoff of correlation options is only paid when both underlyings expire in the money.
In the case of correlation options, the payoff heavily depends on how much the underlyings exceed
their strike prices, as it represents the product of two European calls. Moreover, these options can be
used to hedge the risk of changing correlation because the value of correlation options depends on the
difference between the product and the sum of all considered options.

2.2. General Theorem with Σ̃

In this section, closed-form expressions for the price of the financial derivatives of interest
are introduced. First, we present the theorem for random covariance Σ̃ in a two-dimensional setting
with two barriers. Following this, we set up different models to model the random covariance
Σ̃ specifically. The system of processes or market variables is defined on a filtered probability
space (Ω, (Ft)t≥0, Q,F ), where F0 contains all subsets of the (Q−) null sets of F and (Ft)t≥0 is
right-continuous. We change the constant covariance model (see [1]) where σi and ρij are constants by

introducing randomness to Σ =
(

σiσjρi,j

)
, hence changing the notation for random covariance to Σ̃.

The processes under the risk-neutral measure Q are defined as follows:

dSi
Si

= rdt + σidWi,t i = 1, 2

< dWi,t, dWj,t >= ρijdt
(1)

The following result is about the pricing of a product at time t̂ under random covariance.
In general, the price of an option at arbitrary initial time t̂, denoted as C(t̂, Ŝ, M1, M2), is determined
via risk-neutral valuation, where we use for convenience Ŝ, t̂ for backward and S, t for forward
variables. We will assume that the threshold M is time dependent for the underlying in group A
(Si with i ∈ A) and time independent for all others (Si with i /∈ A), and the domain of integration for Σ̃
is denoted by Ω.

Theorem 1. The random covariance theorem:

C
(
t̂, Ŝ, Σ̃, M1, M2

)
= E

[
EQ[e−r(T−t̂) · g(S (T)) · 1τ1>T,τ2>T | Ft̂ ∧ FΣ̃] | Ft̂

]
=

∫ ∞

m1

∫ ∞

m2

∫
Ω

g(S (T)) · p(T, x, m1, m2; τ, x̂, Σ̃) fΣ̃(Σ̃)dΣ̃dx
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p(T, x, m1, m2; τ, x̂, Σ̃)

= e∑2
i=1 αi(xi−x̂i)+(b−r)(τ)|det(J−1)| · ( 2

βτ
)

∞

∑
N=1

e−
ω̂2+ω2

2τ · sin(
Nπθ

β
)sin(

Nπθ̂

β
) · I Nπ

β
(

ω̂ ·ω
τ

)

where fΣ̃(Σ̃) is the probability density function of Σ̃ and (S1(T), S2(T)) is denoted by S(T) and (S1(t̂), S2(t̂))
by Ŝ. The variables and parameters are defined as follows:

τ = T − t̂, x̂i = xi(t̂) =


ln
(

Si(t̂)
Si(0)

)
for i /∈ A

ln
(

Si(t̂)e−rt̂

Si(0)

)
for i ∈ A

, mi = ln
(

M∗i
Si(0)

)

(similar with the forward variables, xi(t)). All of the parameters (b, α, B, J, ẑ1, ẑ2, z1, z2, ω̂, ω, θ̂, θ, β) depend
indirectly or directly on Σ̃.

b =
2

∑
i=1

Biαi +
1
2

2

∑
i=1

2

∑
j=1

σ̃iσ̃jρ̃ijαiαj,

(
α1

α2

)
= −Σ̃−1 · B

where:

B = (B1, B2)
′ , Bi =


σ2

i
2 i f i ∈ A

σ2
i
2 − r i f i /∈ A(

ẑ1

ẑ2

)
= J−1 ·

(
x̂1 −m1

x̂1 −m1

)
,

(
z1

z2

)
= J−1 ·

(
x1 −m1

x2 −m2

)

J is the lower triangular matrix of the Cholesky decomposition of the covariance matrix Σ̃ and I Nπ
β

is the Bessel

function of the first kind.

ω =
√

z2
1 + z2

2, tan θ =
z1

z2
, θ ∈ [0, β]

tan β = −

√
1− ρ2

12

ρ12
, β ∈ [0, π]

Proof. See the Appendix A for a sketch of the proof.

It should be emphasized that the inner expectation is w.r.t the risk-neutral measure, while the
outer expectation is w.r.t the historical measure. The rationale for this is that the σ-algebra generated
by the random covariance is not forward looking, as it contains information available today (t̂).

2.3. Particular Models and Simplifications

2.3.1. Implicit Modelling Framework: Eigenvalue Model 1 (Source of Randomness c̃λ1 , c̃λ2 ,..., c̃λk )

For the first model, we use the eigenvalue decomposition of the covariance matrix,
which is a popular technique for analysing multivariate data and dimensionality reduction.
By modelling eigenvalues through appropriate random variables, variance and correlation become
implicitly modelled.

In the constant covariance model where σi and ρij are constants, the covariance matrix can be
written as: Σ = PDP′, D = diag(λ1, λ2, ..., λn), where D is the diagonal matrix of eigenvalues and
P the corresponding eigenvector matrix. Next, we add randomness to Σ by modelling the k-largest
eigenvalues λ1, ..., λk in the diagonal matrix D using random variables c̃λ1 , ..., c̃λk . The remaining
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eigenvalues λk+1, ..., λn are constants. Therefore, the covariance matrix Σ̃ is modelled in the
following way:

Σ̃ = PD̃P′, D̃ = diag(c1λ1, c2λ2, ..., cnλn)

where ci =

{
c̃λi ∼ f c̃λi

for i = 1, . . . , k

1 else
and f c̃λi

is the probability density function for c̃λi .

This setting implies:

σ̃2
i =

n

∑
j=1

p2
ijcjλj

σ̃2
ij =

n

∑
k=1

pik pjkckλk

ρ̃ij =
∑n

k=1 pik pjkckλk√
∑n

k=1 p2
ikckλk

√
∑n

k=1 p2
jkckλk

(Please note that the tilde (~) implies that the corresponding parameters depend on the random
variables c̃λ and are therefore also random variables.)

As one can see in the derived correlation, a single common source of randomness for all
eigenvalues would result in constant correlation.

Corollary 1. Random covariance, Eigenvalue Model 1: Given the following market model:

dSi
Si

= rdt + σ̃idWi,t i = 1, 2

< dWi,t, dWj,t >= ρ̃ijdt
(2)

The payoff function g(S(T)) is as defined in Section 2.1, and t̂ is an arbitrary initial time. The price of the
option C(t̂, Ŝ, M1, M2) is determined via:

C
(
t̂, Ŝ, M1, M2

)
=
∫ ∞

m1

∫ ∞
m2

∫
(R+)k g(S(T)) · p(T, x, m1, m2; τ, x̂, c̃λ) · fλ̃(c̃λ)dc̃λdx

(3)

where the function p(T, x, m1, m2; τ, x̂, c̃λ) and all parameters and variables are defined as in Theorem 1.

2.3.2. Implicit Modelling Framework: Eigenvalue Model 2 (k = 1, Source of Randomness c̃λ1 )

If one sets k = 1 in the previous model, only the first and largest eigenvalue λ1 is scaled
by a random variable c̃λ1 . By modelling only the largest eigenvalue, it is often possible to retain
most of the variability in the original variables. The following model has just one more dimension
compared to the pricing formulas with constant covariance (Model (1)), but the variance and
correlation are not modelled explicitly. The remaining eigenvalues λ2, ..., λn are constants from D.
Therefore, the covariance matrix Σ̃ is modelled in the following way:

Σ̃ = PD̃P′, D̃ = diag(c̃λ1 λ1, λ2, ..., λn)

Corollary 2. Random covariance, Eigenvalue Model 2: Given the following market model:

dSi
Si

= rdt + σ̃idWi,t i = 1, 2

< dWi,t, dWj,t >= ρ̃ijdt
(4)
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The payoff function g(S(T)) is as defined in Section 2.1, and t̂ is an arbitrary initial time. The price of the
option C(t̂, Ŝ, M1, M2) is determined via:

C
(
t̂, Ŝ, M1, M2

)
=
∫ ∞

m1

∫ ∞

m2

∫ ∞

0
g(S(T)) · p(T, x, m1, m2; τ, x̂, c̃λ1) · fλ̃(c̃λ1)dc̃λ1 dx

where the function p(T, x, m1, m2; τ, x̂, c̃λ1) and all parameters and variables are defined as in Theorem 1.

As is evident from the corollary, there is only one extra integral to the constant covariance
setting, making this the simplest closed-form generalization that keeps random both volatilities
and correlations.

2.3.3. Explicit Modelling Framework: One-Factor Model (Source of Randomness c̃, ρ̃)

After introducing an implicit way of modelling the covariance, we present an explicit way of
modelling randomness, which is based on [26]. In the explicit case, we use a one-factor model to relax
the restrictive assumption of constant covariance. We model the correlation and volatility explicitly;
therefore, the covariance matrix Σ̃ can be written in the following way:

Σ̃ = V · C ·V

V =


σ1
√

c̃ 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 σn

√
c̃

 , C =


1 k1k2ρ̃2 · · · k1knρ̃2

k1k2ρ̃2 . . .
...

...
. . . kn−1knρ̃2

k1knρ̃2 · · · kn−1knρ̃2 1


where the i-th variance is modelled through σ2

i c̃. The variables σi are constants, and c̃ is a random
variable with a suitable distribution. Moreover, we assume that the source of randomness for the
correlation ρ̃2 is the same for all S, but still a random variable with an appropriate distribution.
The correlation between Si and Sj is kik jρ̃

2, where ki and k j are constant scaling factors.

Corollary 3. Random covariance, one-factor model: Given the following market model:

dSi
Si

= rdt + σi
√

c̃
(

ki ρ̃dWt +
√

1− ki ρ̃2dZi,t

)
i = 1, 2

< dWt, dZi,t >= 0
(5)

where Wt and Zi,t are independent Brownian motions. The payoff function g(S(T)) is as defined in Section 2.1,
and t̂ is an arbitrary initial time. The price of the option C(t̂, Ŝ, M1, M2) is determined via:

C
(
t̂, Ŝ, M1, M2

)
=

∫ ∞

m1

∫ ∞

m2

∫ ∞

0

∫ 1

−1
g(S (T)) · p(T, x, m1, m2; τ, x̂, c̃, ρ̃) · f c̃(c̃) fρ̃ (ρ̃) dρ̃dc̃dx

where the function p(T, x, m1, m2; τ, x̂, c̃, ρ̃) and all parameters and variables are defined as in Theorem 1.

In this and the following corollary, there are only two extra integrations compared to the constant
covariance setting, making this the simplest closed-form generalization that models random volatilities
and correlations explicitly.



Risks 2016, 4, 35 9 of 25

2.3.4. Explicit Modelling Framework: Special Case in Two Dimensions with More Flexibility (Source of
Randomness c̃, ρ̃)

In the two-dimensional case, there is no advantage of the one-factor model (Model (5)) over the
following, more flexible model based on [23]:

Corollary 4. Random covariance, special case two dimensions: Given the following market model:

dSi
Si

= rdt +
√

c̃σidWi,t i = 1, 2

< dW1,t, dW2,t >= ρ̃dt
(6)

where W2,t and W1,t are correlated Brownian motions. The payoff function g(S(T)) is as defined in Section 2.1,
and t̂ is an arbitrary initial time. The price of the option C(t̂, Ŝ, M1, M2) is determined via:

C
(
t̂, Ŝ, M1, M2

)
=

∫ ∞

m1

∫ ∞

m2

∫ ∞

0

∫ 1

−1
g(S (T)) · p(T, x, m1, m2; τ, x̂, c̃, ρ̃) · f c̃(c̃) fρ̃ (ρ̃) dρ̃dc̃dx (7)

where the function p(T, x, m1, m2; τ, x̂, c̃, ρ̃) and all parameters and variables are defined as in Theorem 1.

3. Empirical and Numerical Analysis

In this section, we demonstrate the applicability of the introduced random covariance models.
To do so, we select historical financial market data and analyse empirical distributions for the
parameters c, ρ and cλ. We introduce two different measures of fit and run the according statistical
hypothesis tests. Second, we define and compare the prices of certain financial products in a constant
covariance framework to the prices derived by random covariance models. In the last step, we move
from empirical parameters and distributions to theoretical scenarios and analyse further effects of the
modelled random variables.

The end purpose of this section is to provide a better understanding of the effects of random
covariance and, therefore, failing to take into account estimation risk. Whereas the standard and naive
approach (Model (1)) assumes that covariance is constant and is based directly on historical log returns,
our generalized approaches (Models (2) and (5)) of random volatility and correlation replace these
parameters with a suitable random variable and capture the risk of inaccurate prices caused by the
failure of taking into account estimation risk.

We quantify the effects and differences between the constant covariance and the random
covariance models by analysing a double-digital barrier option D1, its sub-product D11,
a double-barrier correlation option C1 and its one-barrier sub-product C11.

Double-digital double-barrier option D1 = 1{S1(T)>K1,S2(T)>K2}1{τ1>T,τ2>T}

Double-digital single-barrier option D11 = 1{S1(T)>K1,S2(T)>K2}1{τ1>T}

Double-barrier correlation option C1 = (S1 (T) > K1)
+ (S2 (T) > K2)

+ 1{τ1>T,τ2>T}

Single-barrier correlation option C11 = (S1 (T) > K1)
+ (S2 (T) > K2)

+ 1{τ1>T}

S1(0) = S2(0) = 100

K1 = K2 = 90

r = 0.02, T = 1

M1 = 70, M2 = 80
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The parameters σ1, σ2 and ρ12 are determined in the empirical section. Next, we motivate the
choice of the mentioned derivatives.

Two assets’ double-barrier digital options are similar to standard digital options, with the
exception that they possess two strike prices K1 and K2 and the additional consideration of two
down-and-out barriers. If the spot prices at expiry S1(T) and S2(T) of the underlying fall above their
strike prices and if their barriers M1 and M2 are not crossed during the lifetime, the payoff returns
one, else it returns zero. The additional consideration of (down-and-out) barriers reduces the price
of the options ([27]) in such a way that the investor profits from a positive trend of the underlyings.
The usefulness of these options is based on the fact that investors are able to earn a fixed amount of
money in a short period of time. Unlike other exotic options, the payout of multi-asset digital options is
constant, regardless of the price of the stock at maturity. Moreover, these options provide a good hedge
for investors to protect their portfolios against changes in the stock market such as the fluctuation
of the underlyings due to volatility in the international market. Furthermore, these cash-or-nothing
options can be used to hedge against jump risks where the underlying may be illiquid and suddenly
jump to another level. The double-digital options are easier to trade because investors require just the
sense of direction of the price movement of the underlying asset and not additionally the magnitude
of this movement.

As a second two-dimensional barrier product, we analyse a double-barrier correlation option.
From a mathematical perspective, this derivative can be understood as a geometric basket of a call or
put option with additional consideration of barrier constraints. The payoff of these options is only paid
in the cases where all included options expire in the money and the barrier related underlyings did not
cross their barriers. As the name implies, the value of these derivatives depends on the correlation:
the higher the correlation of the underlyings, the higher the probability that the investor receives the
payoff (in the case that either calls or puts are included). From an economic perspective, correlation
options are of particular interest because they are able to cover the risk of changing correlations.
The value of correlation options mirrors the difference between the geometric basket and the sum of
all considered options. Therefore, Bakshi, G. et al. [24,28] state correlation options offer a convenient
way of hedging cross market, cross currency or cross commodity risks.

3.1. Empirical Analysis of Historical Data

To derive empirical parameters from real stock market data, we created a dataset consisting of
daily log returns of IBM (WKN: 851399 ISIN: US4592001014) and EURO STOXX50 (WKN 965814 ISIN
EU0009658145) over the period from 1 January 1990 to 31 December 2013 (Figure 1). We take log
returns into account, which are available for both time series. For the mentioned period of 24 years this
approach results in 5998 log returns. The log returns are computed from the daily adjusted close prices
(adjusted close prices are the stock or indices prices adjusted for all applicable splits and dividend
distributions), which can be found at http://finance.yahoo.com/. As suggested by [29], we annualize
the daily volatility by multiplying by the square root of 250

(
≈ 5998

24
)
, which is the number of trading

days instead of the number of calendar days.
Summary statistics:

Log Returns µannualized σannualized ρ

S1 EURO STOXX 50 4.33% 21.84%
0.3071

S2 IBM 10.22% 28.81%
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Figure 1. Historical series of EURO STOXX50 (primary axis) and IBM (secondary axis).

In the next step, we compute the needed parameters for the explicit model (6), as well as for
the implicit model (2). Hence, we use a moving window approach to compute the parameters
c, ρ and λ based on different non-overlapping samples of a window size k. Always starting from
31 December 2013 and going backwards in time, this approach results in a sample of size n =

⌊ 5998
k
⌋
.

The computed parameters σ2
i,s ρi, λi,1 and λi,2, (i = 1, ..., n, s = {EURO STOXX 50, IBM}) for each

window of size k are used to compute the empirical cumulative distribution function and to derive the
maximum likelihood estimates for the theoretical distributions. While the procedure for determining
the correlation for both time series is straight forward, the common driver of randomness in volatility
and eigenvalues needs some more investigations. After computing the parameters σ2

i,s1
, σ2

i,s2
, λi,1 and

λi,2 for each of the time series separately, the samples (c̄, c̄λ1 and c̄λ2) for the common randomness
drivers are derived by:

c̄ =
n⋃

i=1

⋃
s

σ2
i,s

1
n ∑n

i=1 σ2
i,s

(s ∈ {EURO STOXX 50, IBM})

c̄λ1 =
n⋃

i=1

λi,1
1
n ∑n

i=1 λi,1
, c̄λ2 =

n⋃
i=1

λi,2
1
n ∑n

i=1 λi,2

In the explicit case, random volatility is modelled by
√

c̃σ, where the constant σ2 is already
derived as 21.84% for EURO STOXX 50 and 28.81% for IBM. For the random driver in volatility, as
well as for the random driver in eigenvalues, we divide the samples by their mean, ensuring that the
parameters c and cλ vary around one.

Measures of Goodness

Next, we evaluate the goodness of approximation of each of the suggested distributions in
Section 1.1 by performing a test on the distributions of their variances, eigenvalues and correlations.
By reviewing the literature for different measures of goodness of fit, it turns out that the number of
statistical hypothesis tests for testing non-normal distributions is very limited (whereas there is a wide
variety for testing normality). Nevertheless, the Kolmogorov–Smirnov (KS) test appears to be the
standard nonparametric method as a goodness of fit test. To provide more substantiated results, we
also take the Cramér–von Mises criterion as an alternative to the KS test into account ( Kuiper’s test
and the Anderson–Darling test are also reasonable alternatives to the selected test, but these tests are
only available for certain distributions):

Kolmogorov–Smirnov statistic = sup |Fn(x)− F(x)| (8)

Cramér–von Mises criterion = n
∫ ∞

−∞
[Fn(x)− F(x)]2 dF(x) (9)

where Fn(x) is the empirical and F(x) the theoretical cumulative distribution function. While the
Kolmogorov–Smirnov test is just based on the biggest distance between the empirical and the



Risks 2016, 4, 35 12 of 25

theoretical cumulative distribution function, the Cramér–von Mises criterion considers all of
the deviations of the empirical distributionfrom the theoretical cumulative distribution function.
After introducing two different measures of goodness, we study the different empirical cumulative
distribution functions of c, ρ, cλ1 and cλ2 . We choose two different moving window sizes: k1 = 50 and
k2 = 100; we obtain the resulting distribution, compute the maximum likelihood estimates (MLE) and
provide the results from the statistical tests.

As one can infer from Figure 2 and Table 1, the obtained p-values from both test statistics
(Equations (8) and (9)) hint that the transformed beta distribution and the truncated normal distribution
are good choices to approximate the empirical distribution of ρ.

(a)

(b)

Figure 2. Possible and empirical distributions of ρ. (a) k1 = 50; (b) k1 = 100.

Table 1. Parameters and p-values for ρ.

ρ p-Values
MLE

KS-Test CvM-Test

k1 k2 k1 k2 k1 k2 k1 k2

Beta Dist. 0.502 0.924 0.730 0.937 αρ 11.92 14.52 βρ 6.64 8.06

Normal Dist. 0.771 0.912 0.835 0.970 µρ 0.28 0.29 σρ 0.22 0.20

The parameters for the truncated normal distribution for ρ are estimated from the
non-truncated distribution. The correct and more complex approach (see [30]) is negligible
because the probability of values outside the interval [−1; 1] is very small and the impact of the
truncation is very small.

The p-values of Table 2, as well as Figure 3 show that the lognormal distribution approximates
the empirical distribution of c. The small p-values from both hypothesis tests give evidence that the
gamma distribution can be rejected as a suitable distribution of the empirical volatility driver.
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Table 2. Parameters and p-values for c.

c p-Values
MLE

KS-Test CvM-Test

k1 k2 k1 k2 k1 k2 k1 k2

Gamma Dist. 0.015 0.339 0.011 0.164 αc 1.39 1.61 βc 0.72 0.62

Lognormal Dist. 0.304 0.589 0.282 0.649 µc −0.4 −0.34 σc 0.88 0.82

(a)

(b)

Figure 3. Possible and empirical distributions of c. (a) k1 = 50; (b) k1 = 100.

Figure 4 and Table 3 illustrate that the distribution of the first eigenvalue can be better
approximated than the empirical distribution of the second eigenvalue. Furthermore, the lognormal
distribution performs consistently better than the gamma distribution. This observation holds under
both measures of goodness, for both moving window sizes and for both eigenvalues. In some cases (KS
test and CvM-test for a moving window size of k1 = 50), the gamma distribution can even be rejected.

Table 3. Parameters and p-values for cλ.

cλ p-Values
MLE

KS-Test CvM-Test

k1 k2 k1 k2 k1 k2 k1 k2

cλ1

Gamma Dist. 0.208 0.505 0.165 0.607 αc1 1.71 2.02 βc1 0.58 0.50

Lognormal Dist. 0.608 0.925 0.698 0.950 µc1 −0.32 −0.27 σc1 0.80 0.74

cλ2

Gamma Dist. 0.046 0.320 0.022 0.157 αc2 1.88 2.22 βc2 0.53 0.45

Lognormal Dist. 0.319 0.545 0.239 0.458 µc2 −0.29 −0.24 σc2 0.73 0.67
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(a) (b)

(c) (d)

Figure 4. Possible and empirical distributions of c1 and c2. (a) k1 = 50; (b) k1 = 100; (c) k1 = 50;
(d) k1 = 100.

After studying the distribution for exemplary moving window sizes k1 = 50 and k2 = 100,
we present the test results for moving window sizes for k = 10, 11, ..., 150 to obtain more general and
consistent results. Afterwards, we summarize the main findings.

While higher p-values in Figures 5–7 just support the assumption that the theoretical distribution
matches the empirical one, small p-values of one of the tests provide very strong evidence against this
assumption (the null hypothesis). The following can be inferred from Figures 5–7:

• ρ̃ : The truncated normal distribution, as well as the transformed beta distributions are good
choices to approximate the empirical distribution with an acceptable degree of deviation, except for
very small and unreliable moving window sizes. The works of [12,13] confirm that the (truncated)
normal distribution is a good choice.

• c̃ : In our setting, the lognormal distribution approximates the empirical distribution of c̃
consistently better than does the gamma distribution. This finding is consistent with [12,13], who found
that the distribution of logarithmic standard deviations of daily returns is close to Gaussian.

• c̃λ : As one can infer from Figure 7, the approximations of the empirical distributions of
the volatility driver of the two eigenvalues differ in a reasonable manner. The volatility of the first
eigenvalue can be better approximated with the proposed theoretical distribution than can the volatility
of the second. Nevertheless, under both measures of fit, the lognormal distribution approximates the
empirical distribution of cλ1 and cλ2 consistently better than does the gamma distribution.
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Figure 5. Different measures of fit for correlation.

Figure 6. Different measures of fit for volatility.

(a)

Figure 7. Cont.
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(b)

Figure 7. Different measures of fit for eigenvalues resp. cλ1 , cλ2 . (a) cλ1 ; (b) cλ2 .

3.2. Pricing Derivatives with Empirical Parameters

Here, we use standard numerical integral functions of MATLAB (besseli to compute I Nπ
β

and

trapz for double integrals) to generalize the constant covariance case in [1] to the random frameworks.
We used a discretization of 0.05, integration limits of ±2.7 and limits of the infinite sum of 27, which
ensure sufficient accuracy. The parameters from Tables 2 and 3 are used to analyse the actual effect of
random covariance. Therefore, we investigate the effects of the modelled random parameters c̃, ρ̃ and
c̃λ on the prices of the mentioned double-digital option, its sub-product and on the correlation option
with its less dimensional sub-product. This is done within our toy scenario of moving window sizes of
k1 = 50 and k2 = 100. For this toy scenario, we assume that c̃ and c̃λ follow a lognormal distribution,
while ρ̃ follows a truncated normal distribution. The parameters of these distributions can be inferred
from Tables 2 and 3.

As one can infer from Table 4, the difference in prices between the constant covariance and the
random covariance could be very large. While the prices of D1 with random covariance are at least
11% higher than the constant covariance prices, the prices of the correlation option C1 are at most
11% lower by taking the random covariance into account. Therefore, random covariance could either
lead to higher or to lower option prices, depending on the product at hand. In other words, failing to
take into account estimation risk can lead to situations where the sell side underestimates the price
of product D1 by 26% or the investor of C1 is charged 11% more. By comparing the explicit model
with the implicit model, it can be observed that the explicit model consistently leads to higher price
deviations from the constant covariance framework than the implicit model. Table 4 also highlights
the differences between the double-barrier products and the single-barrier products. Both products
D1 and C1 are more sensitive to the random covariance than the less dimensional barrier products
D11 and C11. Just by adding another barrier constraint, the impact of random covariance can be up to
6.9 percentage points higher (D1, D11 explicit model, k1). In other words, the impact of uncertainty
increases when we deal with double-barrier products.
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Table 4. Empirical price differences between constant and random covariance.

Constant Random

Covariance Explicit Model (6) Implicit Model (2)

Price Rel.Diff Price Rel. Diff

Price k1 k2 k1 k2 k1 k2 k1 k2

D1(t) 0.3331 0.4192 0.4062 25.8% 21.9% 0.3777 0.3693 13.4% 10.9%
D11(t) 0.4284 0.5098 0.4957 18.9% 15.6% 0.4676 0.4604 9.1% 7.4%
C1(t) 0.3639 0.3235 0.3299 −11.1% −9.3% 0.3415 0.3476 −6.1% −4.5%
C11(t) 0.3952 0.3587 0.3661 −9.2% −7.4% 0.3783 0.3854 −4.3% −2.5%

3.3. Analysis of Derivatives with Theoretical Parameters

In the final step, we move from the empirical parameters and distributions to theoretical scenarios
and analyse further effects of the modelled random variables, as well as the impact of the sample size
to highlight the price differences caused by parameter uncertainty (estimation errors). For reasons of
simplicity, we slightly change the following parameters:

σ1 = 0.2, σ2 = ρ12 = 0.3

To investigate the separate effects of varying distributions of c̃, ρ̃ and c̃λ, we assume that ρ̃ follows
a transformed beta distribution, while c̃ and c̃λ follow again a lognormal distribution.

We start by analysing the explicit effect of varying the distribution parameters of correlation
ρ̃ and volatility c̃, followed by an analysis of the implicit effect on the covariance through random
eigenvalues, where we distinguish between modelling just one eigenvalue and all eigenvalues.

3.3.1. Explicit Model

First, we investigate the separate effects of increasing uncertainty about rho:
To measure theoretical price impacts resulting from uncertainty about correlation, we assume

that ρ̃ follows a transformed beta distribution. We force the transformed beta distribution to vary
around the mean of ρ12 = 0.3. As one can observe from Figure 8, with decreasing variation of the beta
distribution, the prices of D1, as well as C1 with random correlation converge to the price obtained
with constant covariances. The increasing uncertainty about the correlation leads to slightly higher
product prices of D1 and C1.

While a very high uncertainty about the correlation leads to an increase of 3% in the product price
of C1, the impact (about 0.5%) on the double-digital is even smaller. One of the reasons for the increase
in prices is that higher correlation coefficients lead to higher probabilities of getting a payoff, whereas
lower correlations lead to lower prices because the probability of crossing one of the barriers increases.
Nevertheless, the impact of randomness in correlation is minimal although significant, because the
correlation itself has a low impact on the prices of D1 and C1. Next, we examine the separate effect of
increasing uncertainty about volatility:

The impact of increasing uncertainty about volatility is quite significant for all of the considered
products D1, C1, D11 and C11. Again, we assume that c̃ follows a lognormal distribution with a forced
mean to one. As already observed in the empirical section, the considered randomness leads to
an increase in the double-digital options and to a decrease of the prices of the correlation options.
Therefore, the seller of double-digital options should be aware of the fact that whenever he or she does
not know volatility with a reasonable certainty, he or she might sell his or her option with a higher
premium. Analogously, the investor in a correlation option should consider that he or she might claim
a lower option price if there is a high degree of uncertainty about volatility.

In the case of the double-digital option D1, lower volatility leads to higher product prices,
because the probability of expiring in the money increases, as well as not crossing any barrier. The effect
of decreasing volatility for C1 is ambiguous. On the one hand, the probability that one of the barriers
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will be crossed decreases, and this raises the price. However, on the other hand, the vanilla call options
suffer from decreasing volatility (positive vega), because the probability of ending up in the money
decreases. Due to the fact that the payoff structure of correlation options includes the product of two
vanilla call options, here decreasing volatility leads to decreasing product prices. As one can infer
from Figure 9, the considered lognormal distribution with µc = −1.125 and σc = 1.5 attaches much
weight to prices obtained with low volatility; therefore, the random price of D1 is lower than the
constant price.

Figure 8. Effect of increasing uncertainty about ρ̃ and price differences between random and
constant correlation.

Figure 9. Cont.
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Figure 9. Effect of increasing uncertainty about c̃ and price differences between random and
constant volatility.

By separating the uncertainty about rho and volatility, as shown in Figures 8 and 9, we can observe
that the main driver for the price difference in Table 4 is the randomness in volatility. Increasing
uncertainty about volatility can lead to a 74% higher product price of D1 and to a 26% lower product
price of C1. In the analysis of increasing uncertainty about volatility, we also consider the sub-products.
Due to the fact that the sub-products D11 and C11 consider just one barrier constraint, they are less
sensitive to changes in volatility. Therefore, uncertainty about volatility can lead to a price difference
of −26% for C11 and 44% for D11. Due to the payoff structure, the difference between D1 and D11 can
be around 30 percentage points, whereas the highest price differences of C1 and C11 is around two
percentage points.

3.3.2. Implicit Model

Next, we switch the explicit modelling to an implicit framework, which has the advantage that
we are able to model the covariance with just one source of randomness in the respective eigenvalue.
We start by analysing the effect of an increasing uncertainty about the first and largest eigenvalue
(k = 1).

As one can infer from the computed price differences in Figure 10, the modelled randomness
in the largest eigenvalue of the covariance matrix leads to lower price differences than in Figure 9.
Modelling only the first eigenvalue implies certainty about the second eigenvalue. This certainty is also
reflected in the resulting volatilities. According to Model (2), our toy scenario results in the following
matrix decomposition:

D =

(
0.0958 0

0 0.0342

)
, P =

(
0.3070 −0.9517
0.9517 0.3070

)

Therefore, we can compute the lowest possible values for volatility and correlation:

σ̃1 =
√

p2
11 c̃λ1 λ1 + p2

12λ2

∣∣∣∣
c̃λ1

=0
=
√

p2
12λ2 = 0.1716

σ̃2 =
√

p2
21 c̃λ1 λ1 + p2

22λ2

∣∣∣∣
c̃λ1

=0
=
√

p2
22λ2 = 0.0568

ρ̃12 =
p11 c̃λ1 λ1 p21 + ∑n

k=2 p1k p2kλk√
p2

11 c̃λ1 λ1 + ∑n
j=2 p2

1jλj

√
p2

21 c̃λ1 λ1 + ∑n
j=2 p2

2jλj

∣∣∣∣
c̃λ1

=0

=
p12 p22λ2√

p2
12λ2

√
p2

22λ2

= −1

While modelling only the first eigenvalue to add randomness to the covariance, one can observe
that ρ̃12 is free to assume all possible values. Due to the fact that the lognormal distribution has
a positive support, σ̃1 and σ̃2 always stay above their lowest possible value of 0.1716, respectively,
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0.0568. Thus, restricting the number of modelled eigenvalues to one implies on the other hand that the
practitioner is sure about the fact that σ̃1 and σ̃2 will not be lower than 0.1716 and 0.0568.

While the impact of these conditions leads to the highest possible price difference for D1 of 27.3%
and for D11 of 13.5%, the impact on the correlation options C1 and C11 is very similar. Both prices
of C1 and C11 can differ up to 30% compared to the constant price. As already observed, while the
randomness has the same effect on the products C1 and C11 (around two percentage points), the effect
on D1, D11 can increase to a difference of 14 percentage points.

Figure 10. Effect of increasing uncertainty about one eigenvalue (k = 1) and price differences between
random and constant covariance.

Alternatively to the previous analysis where we only modelled the first and largest eigenvalue,
in the next analysis, we add randomness to both eigenvalues (k = 2) with a lognormal distribution
(Figure 11).

Volatilities are now able to take all possible values, which results in more extreme scenarios,
which on the other hand can lead to a price difference of 58% of D1, 38% of D11 and −25% for C1

and C11. While there are high price differences between D1 and D11, the effect on C1 and C11 are at
a comparable range.

To sum up, in the numerical section with theoretical parameters, the high differences between
prices derived with constant and random covariance leads us to conclude that the distribution of point
estimates should not be neglected. Furthermore, we detected that the additional consideration of
a second barrier always magnifies the effect of random covariances.
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Figure 11. Effect of increasing uncertainty about both eigenvalues (k = 2) and price differences between
random and constant covariance.

4. Conclusions

This paper showed that closed-form formulas for pricing derivatives in a constant covariance
framework from [1] can easily be generalized to introduce randomness in covariances. Therefore,
we presented two different kinds of random covariance models, where the randomness in volatility
and correlation is either explicitly or implicitly modelled. The introduced models are well suited to
capture the discussed estimation risk, which originates from assuming the point estimate as the true
value instead of considering theoretical or empirical distributions. In the numerical part of this paper,
we derived empirical distributions of real data and highlighted the differences between the prices of
well-known derivatives determined with constant and random covariances.

The price differences in some scenarios increased to 74% for a double-digital double-barrier option
and could be in the range of −26% for a double-barrier correlation option. The impact with regard to
single-barrier options is lesser. Furthermore, we mainly point out two findings. First, randomness in
volatility is the major driver for price differences. Second, derivatives with a larger number of barriers
are more sensitive to random covariance and, therefore, have a higher estimation risk.
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Appendix A. Proof of Theorem 1

The proof of this theorem is fully based on [1] with the simple addition of an iterative expectation.
The cited paper provides the solution to the inner expectation EQ[e−r(T−t̂) · g(S (T)) · 1τ1>T,τ2>T |

Ft̂ ∧ FΣ̃]. Once this inner piece is known, then we integrated the covariance out numerically.
First, we find the inner expectation via risk-neutral valuation:

C(t̂, Ŝ, M1, M2) = EQ[e−r(T−t̂) · g(S(T)) · 1τ1>T,τ2>T | Ft̂],

with:
τi = inf{t ∈ (t̂, T] | Si(t) < Mi(t)} i = 1, 2.

By using the Feynman–Kac theorem, the Kolmogorov backward equation is obtained:

2

∑
i=1

2

∑
j=1

1
2

ρijσiσjŜiŜj
∂2C

∂Ŝi∂Ŝj
+

2

∑
i=1

rŜi
∂C
∂Ŝi

+
∂C
∂t̂
− rC = 0,

with conditions:

C(t̂, M1, Ŝ2, M1, M2) = 0 = C(t̂, Ŝ1, M2, M1, M2),

C(T, Ŝ, M1, M2) = g(Ŝ(T))

Next, we perform the following transformations:

x̂i(t̂) =


ln
(

Ŝi(t̂)
Ŝ(0)

)
for i /∈ A

ln
(

Ŝi(t̂)e−rt̂

Ŝ(0)

)
for i ∈ A

, mi = ln

(
M∗i

Ŝ(0)

)
,

G(t̂, x̂, m1, m2) = er(T−t̂)C(t̂, Ŝ, M1, M2),

with x̂ = (x̂1, x̂2). This leads to:

2

∑
i,j

1
2

ρijσiσj
∂2G

∂x̂i∂x̂j
−

2

∑
i=1

Bi
∂G
∂x̂i

+
∂G
∂t̂

= 0,

with:

Bi =


σ2

i
2 i f i ∈ A

σ2
i
2 − r i f i /∈ A

Next, the first order derivatives are removed by setting:

Z(t̂, x̂, m1, m2) = e−b(T−t̂)e∑2
i=1 αi x̂i · G(t̂, x̂, m1, m2),

with:

b =

(
2

∑
i=1

Biαi +
1
2

2

∑
i=1

2

∑
j=1

σiσjρijαiαj

)
,α1

...
α2

 = −Σ−1 ·

B1

...
B2

 ,
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The choice for α eliminates the first order derivatives with respect to the underlying while the
choice of b eliminates the term Z:

2

∑
i,j

1
2

ρijσiσj
∂2Z

∂x̂i∂x̂j
+

∂Z
∂t̂

= 0

with boundary and terminal conditions:

Z(t̂, m1, x̂2, m1, m2) = 0 = Z(t̂, x̂1, m2, m1, m2),

Z(T, x̂, m1, m2) = e∑2
i=1 αi x̂i g(Ŝ(T))

Using Feynman–Kac representation, the function Z can be written as:

Z(t̂, x̂, M1, M2) = EQ

[
e∑2

i=1 αixi(T) · g∗(x(T)) · 1τ1>T,τ2>T | F̂t

]
,

with x(T) = (x1(T), x2(T)) and

dxi = σidWi, E
[
dWidWj

]
= ρijdt

τi = inf{t ∈ (t̂, T] | xi(t) < mi} i = 1, 2.

Next, we find the transition probability density function q(T, x, m1, m2, τ, x̂), which in the
backward variables satisfies the following PDE:

∂q
∂τ

=
2

∑
i=1

2

∑
j=1

1
2

ρijσiσj
∂2q

∂x̂i∂x̂j

with τ = T − t̂, T > t and initial and boundary conditions:

q(T, x, m1, m2, 0, x̂) =
2

∏
i=1

δ(x̂i − xi),

q(T, x, m1, m2; τ, m1, x̂2, x̂2) = 0, q(T, x, m1, m2; τ, x̂1, m2, x̂2) = 0.

This is the system of equations solved in [1], Theorem 2.2, page 222.
Recall the following relation between Z and q holds:

Z(t̂, x̂, M1, M2) =
∫ ∞

m1

∫ ∞

m2

e∑2
i=1 αixi · g∗(x) · q(T, x, m1, m2; T − t̂, x̂)dx2dx1

These are the steps in He et al.’s (1998) proof:
First, the second order mixed term derivatives are eliminated using a Cholesky decomposition of

the covariance matrix Σ = J J′.

q(T, x, m1, m2, τ, x̂) = h(T, z, m1, m2, τ, ẑ)|det
(

J−1
)
|

where h satisfies the heat equation.
Second, a transformation to polar coordinates on (ẑ1, ẑ2) is performed.

h(T, ω, θ, m1, m2; τ, ω̂, θ̂) = R(ω̂, m1, m2) ·Θ(θ̂, m1, m2).
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R(ω̂, m1, m2) and Θ(θ̂, m1, m2) are found exactly as in [1], pages 223 to 224, leading to solutions:

R(ω̂, m1, m2) ∼ J Nπ
β
(ω̂ · λ), N = 1, ...

Θ(θ̂, m1, m2) ∼ sin(
Nπθ̂

β
), N = 1, ...

where tan β = −
√

1−ρ2
12

ρ12
, β ∈ [0, π] and J Nπ

β
is the fundamental solution of the first kind for the Bessel

equation. Substituting the expressions for R, Θ into the heat equation leads to a general solution of
the form:

h(T, ω, θ, m1, m2; τ, ω̂, θ̂)

=
∫ ∞

0

∞

∑
N=1

cN(λ) · sin(
Nπθ̂

β
) · J Nπ

β
(ω̂ · λ) · e−

λ2τ
2 dλ.

where cN(λ) are constants.
Third, this general solution has to satisfy the initial value condition for τ = 0. Integrating with

respect to λ leads to:

h(T, ω, θ, m1, m2; τ, ω̂, θ̂)

= (
2

βτ
)

∞

∑
N=1

e−
ω̂2+ω2

2τ · sin(
Nπθ

β
)sin(

Nπθ̂

β
) · I Nπ

β
(

ω̂ ·ω
τ

).

We conclude that the price (inner integral) is:

C(t̂, Ŝ, M1, M2)

= e−r(T−t̂)
∫ ∞

m1

∫ ∞

m2

g(S(T)) · e∑n
i=1 αi(xi−x̂i)+b(T−t̂)

|det(J)| · h(T, ω, θ, m1, m2; T − t̂, ω̂, θ̂)dx
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