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Zusammenfassung

Diese Arbeit basiert auf folgenden Publikationen:

• “Systematic Investigation of Negative Cooper-Frye Contributions in Heavy Ion
Collisions Using Coarse-grained Molecular Dynamics” [1]

• “Cooper-Frye Negative Contributions in a Coarse-Grained Transport Approach” [2]

• “Deviations of the Energy-Momentum Tensor from Equilibrium in the Initial
State for Hydrodynamics from Transport Approaches” [3]

• “Influence of kinematic cuts on the net charge distribution” [4]

• “Particle production and equilibrium properties within a new hadron transport
approach for heavy-ion collisions” [5]

• “Forced canonical thermalization in a hadronic transport approach at high den-
sity” [6]

• “Effective dynamical coupling of hydrodynamics and transport for heavy-ion
collisions” [7]

Die Dichte des Atomkerns ist für alle Kerne annähernd gleich und beträgt rund
ρ0 = 0.16 fm−3 = 2.7 · 1017 kg

m3 . Unsere normale Raumtemperatur ist im Vergleich zu
nuklearen Energieniveaus so klein, dass man sie für Atomkerne als annähernd Null
betrachten kann. Es gibt allerdings Orte im Universum, an denen sich Kernmaterie in
einem extremen Zustand befindet. Zum Beispiel kann die Dichte beim Kollaps von
Typ II Supernovae bis zu 4ρ0 betragen, im Zentrum von Neutronensterne sogar bis zu
9ρ0 und wenige Mikrosekunden nach dem Urknall war die Materie nicht nur extrem
dicht, die Temperatur war auch höher als 1012 K. In den 1970er Jahre wurde theoretisch
vorhergesagt, dass bei solchen Temperaturen und Dichten die gewöhnlichen Protonen
und Neutronen nicht mehr existieren können. Ein neuer Zustand der Materie werde
erzeugt, das sogenannte Quark-Gluon-Plasma (QGP).
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Das QGP kann man experimentell in hoch-energetischen Kollisionen von schweren
Ionen untersuchen, was manchmal “Urknall im Labor” genannt wird. Eine Reihe von
Experimenten an Ionenbeschleunigeranlagen sind der Erforschung der QGP-Physik
und der Materie bei extremen Dichten und Temperaturen gewidmet. Diese Beschleu-
niger sind der RHIC (Relativistic Heavy Ion Collider) in Brookhaven bei New York,
der LHC (Large Hadron Collider) in Genf, sowie auch die zukünftige Beschleuniger-
anlagen FAIR (Facility for Antiproton and Ion Research) an der GSI (Gesellschaft für
Schwerionenforschung) in Darmstadt, NICA (Nuclotron-based Ion Collider fAcility)
in Dubna (Russland) und JPARK-HI in Japan. Dort werden verschiedene Ionen auf
ultrarelativistische Energien beschleunigt und zur Kollision gebracht. Die Ergebnisse
dieser Kollisionen erlauben es, die Eigenschaften der stark wechselwirkenden Materie
zu erforschen. Eine der wichtigsten Fragen der Schwerionenforschung heutzutage ist,
ob es einen Phasenübergang zwischen hadronischer Materie und QGP gibt und falls
ja, bei welcher Temperatur und Dichte dieser erfolgt. Wenn es einen Phasenübergang
gibt, stellt sich auch die Frage, welcher Ordnung er ist und wo der kritische Punkt liegt.
Durch Variation der Kollisionsenergie kann man verschiedene Punkte des Phasen-
diagramms erreichen. Man erwartet, dass der kritische Punkt bei mittleren Energien,
Elab ' 20–200 A GeV, beobachtet werden kann. Die zukünftigen Experimente, und
auch das Beam Energy Scan Program am RHIC, arbeiten in diesem Energiebereich,
um den kritischen Punkt zu untersuchen. Das macht die detaillierte Simulation von
Schwerionenkollisionen bei mittleren Energien aktuell und interessant.

Heutzutage gibt es zwei Arten von dynamischen mikroskopischen Modellen zur
Beschreibung von Schwerionenkollisionen: Relativistische Hydrodynamik und Trans-
portsimulationen. Modelle, die Hydrodynamik und Transporttheorie in ihrem je-
weiligen Anwendungsbereich verbinden, werden als Hybrid-Modelle bezeichnet.
Hydrodynamik beschreibt experimentelle Observablen besonders gut bei hohen Kolli-
sionsenergien. Ein lokales thermodynamisches Gleichgewicht, welches notwendig für
die Anwendbarkeit relativistischer Hydrodynamik ist, wird bei hoher Energie schnell
erreicht und lange erhalten. Das System ist groß und dicht genug, sodass die mittlere
freie Weglänge viel kleiner als die Systemgröße ist und für eine erhebliche Zeit erhalten
bleibt. Im Gegensatz dazu ist hadronischer Transport bei kleinen Energien anwendbar,
kalibriert und relativ gut verstanden. Welche Methode kann man für die mittlere Ener-
gie wählen? Sind die typische Näherungen und Vermutungen der Hybrid-Modelle
noch gültig im mittleren Energiebereich? Diese Näherungen werden in dieser Arbeit
untersucht und beurteilt. Zusätzlich wird eine neue Simulationsmethode vorgestellt,
die es erlaubt, manche Annahmen wegzulassen.
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Eine wichtige Annahme von Hybrid-Modellen ist eine schnelle lokale Therma-
lisierung im gesamten Volumen der Reaktion. Bei hoher Energie ist die schnelle
Annäherung zum thermischen Gleichgewicht gut erforscht und begründet (obwohl
die Diskussion darüber, welcher Thermalisierung-Mechanismus dominiert, noch sehr
aktiv ist). Bei mittleren Energien ist die Annäherung zum Gleichgewicht weniger gut
erforscht. Allerdings ist die Nähe zum lokalen thermischen Gleichgewicht eine not-
wendige Bedingung für die Anwendbarkeit von Hydrodynamik. Ist das Gleichgewicht
bei mittleren Energien überhaupt erreicht? Wenn ja, wie schnell? Auf diese Fragen
wird hier mit Hilfe eines Transport-Modells UrQMD (Ultra-relativistic Quantum Mo-
lecular Dynamics) sowie des sogenannten “coarse-graining”-Verfahrens eingegangen.
Hierfür wird der Energie-Impuls-Tensor Tµν für jeden Punkt des kartesischen Gitters
bestimmt, das sich über das ganze System erstreckt. Mittels Tµν wird die Abweichung
vom Gleichgewicht bestimmt. Der wichtigste Beitrag zum Ungleichgewicht ist die
Anisotropie von Tµν. Das Gleichgewicht wird nie im gesamten System erreicht, jedoch
ist ab einer bestimmten Zeit tiso(Elab, b, σ) ein ausreichendes Volumen genug isotropi-
siert, um Hydrodynamik anwenden zu können. Dabei ist Elab die kinetische Energie
des Projektils pro Nukleon, b der Stoßparameter, der die Zentralität der Kollision cha-
rakterisiert, und σ ist ein Ausschmierung-Parameter des coarse-graining-Verfahrens.
Die gefundene Abhängigkeit (für eine Vielzahl der Transport-Simulationen, ermittelt
im coarse-graining-Verfahren) lässt sich näherungsweise mit der folgenden Formel
beschreiben: tiso = 2R(Elab/2mN)

−1/2 + ασ.

Hybrid-Modelle verwenden Hydrodynamik im Bereich hoher Dichten und Transport-
Simulationen im Bereich niedriger Dichten. Der Übergang zwischen diesen zwei Ver-
fahren beruht auf bestimmten Näherungen und Annahmen. Man vermutet, dass dieser
Übergang sehr schnell ist und auf einer Hyperfläche erfolgt. Die hydrodynamischen
Gleichungen werden im ganzen Vorwärtslichtkegel gelöst und die Hyperfläche wird
nur aus der Hydrodynamik aposteriori bestimmt, nicht dynamisch aus kombinierten
Hydrodynamik und Transporttheorie Gleichungen. Die Teilchen werden aus der Hy-
drodynamik gemäß der Cooper-Frye-Formel produziert und anschließend im Rahmen
der Transporttheorie beschrieben. Sie können nicht in den hydrodynamischen Bereich
zurückkehren und rückstoßen. Diese Näherungen führen zu negativen Beiträgen
der Cooper-Frye-Formel. Bei hohen Energien sind diese Beiträge vernachlässigbar,
aber bei mittleren Energien wurden sie nie systematisch untersucht. In dieser Arbeit
werden die negative Cooper-Frye-Beiträge in Gold-Gold Kollisionen bei Elab = 5–160
A GeV für verschiedene Hadronen in verschiedenen kinematischen Regionen mit-
hilfe des “coarse-grained” Transport-Modells UrQMD bestimmt. Diese Rechnung
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nimmt ein thermisches Gleichgewicht auf der Hyperfläche an. Die größten negative
Beiträge liegen für Pionen bei mittlerer Rapidität vor und machen nicht mehr als
15% aus. In Transport-Modellen kann man auch explizit die Teilchen zählen, welche
die Hyperfläche von außen nach innen überqueren — das entspricht den negativen
Cooper-Frye-Beiträgen ohne Annahme eines Gleichgewichts. In dieser Arbeit wird
gezeigt, dass diese negativen Beiträge im Nichtgleichgewicht erheblich kleiner sind
als im Gleichgewicht.

Die negativen Cooper-Frye-Beiträge vermeidet man in einem neuen Modell, das
in dieser Arbeit konstruiert wird. In gewöhnlichen Transport-Modellen im Bereich
hoher Dichten wird eine Thermalisierung künstlich erzwungen, was intensiven Mehr-
Teilchen- Kollisionen oder der Bildung des Quark-Gluon-Plasmas entspricht. Dieses
Verfahren wurde mit dem Transport-Modell SMASH implementiert und getestet.
Drei Algorithmen der Thermalisierung wurden verglichen und der neuentwickelte
“biased Becattini-Ferroni” Algorithmus erwies sich als ausreichend zuverlässig und
effizient. In einem kontrollierten Szenario einer expandierenden Kugel wurde gezeigt,
dass SMASH mit erzwungener Thermalisierung die Expansionsgeschwindigkeit und
die Energiedichte zwischen Hydrodynamik und Transporttheorie aufweist. Bei der
Simulation von Schwerionenkollisionen mit diesem Modell wurden folgende Beob-
achtungen gemacht: im Vergleich zum Transport wird mehr Seltsamkeit erzeugt, der
mittlere transversale Impuls wird aufgrund der Druckisotropisierung erhöht und
Bereiche hoher Dichten leben länger. Alle diese Merkmale sind den Hybrid-Modellen
ähnlich, aber ohne die oben genannten Nachteile. Insgesamt führt die erzwungene
Thermalisierung zu den erwarteten Ergebnissen.

Im Rahmen dieser Doktorarbeit wurde auch ein erheblicher Beitrag zur Enwicklung
des SMASH-Modells selbst geleistet, inbesonders was Nukleon-Nukleon-Potentiale,
Fermi-Bewegung, Pauli-Blockierung, Thermodynamik und Detaillierte Balance be-
trifft. Das relativistische Transport-Modell SMASH ist für Simulationen der Kolli-
sionen von Ionen, Protonen oder anderen Hadronen geeignet. Ein gesamter Kolli-
sionsprozess wird als eine Sequenz von elementaren 2→ 2 Kollisionen, Zerfällen,
Resonanz-Bildungen und Teilchen-Propagation simuliert. Die Potentiale beeinflussen
die Trajektorien der Teilchen während der Propagation und sind für Schwerionen-
kollisionen niedriger Energien (z.B. für Simulationen des FOPI Experiments an der
GSI in Darmstadt) besonders wichtig. Bei solchen Energien ist es auch wichtig die
Quanteneffekte für Fermionen, die Pauli-Blockierung und Fermi-Bewegung in einem
Atomkern zu berücksichtigen. Zusätzlich zu diesen Effekten wurde das oben genannte
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“coarse- graining”-Verfahren in SMASH implementiert. Das hat die oben beschriebenen
Simulationen mit erzwungener Thermalisierung ermöglicht.

Zusammengefasst lauten die wichtigsten Resultate dieser Arbeit:

• Entwicklung eines neuen Modells mit erzwungener Thermalisierung im Bereich
hoher Dichten. Diese Thermalisierung entspricht intensiven Mehr-Teilchen- Kol-
lisionen oder der Bildung des Quark-Gluon-Plasmas.

• Systematische Beurteilung der negativen Cooper-Frye-Beiträge in Schwerionen-
kollisionen im Energiebereich Elab = 5–160 A GeV. Die negativen Cooper-Frye
Beiträge limitieren die Präzision der Hybrid-Modelle in diesem Bereich.

• Analyse der lokalen Thermalisierungsgrade in Schwerionenkollisionen im Ener-
giebereich Elab = 5–160 A GeV.

• Erheblicher Beitrag zu der Entwicklung des Transport-Modells SMASH.
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Chapter 1.

Motivation

The cosmological standard model of the universe traces history back to the Big Bang —
an event that created a lot of very dense and hot matter, which immediately started to
cool and expand. In the first microseconds after the Big Bang the temperature was so
high that no atoms could exist. The universe was filled with radiation and a special
state of matter known as quark-gluon plasma. Remarkably, today it is possible to
create quark-gluon plasma in the laboratory by colliding heavy ions at ultra-relativistic
energies.

The major goal of several modern experiments is to study the properties of the
quark-gluon plasma and to understand its transition to the usual hadronic matter.
Since the quark-gluon plasma is created in heavy ion collisions for only approximately
10−22 seconds it is impossible to observe it directly. Conclusions about the initial stages
of heavy ion collisions need to be drawn from the debris measured in the detector.
Theoretical models and simulations of heavy ion collisions are required to understand
the initial stages of these collisions from the measured produced particles.

This thesis is devoted to a particular kind of simulations: transport and hydrody-
namical simulations as well as their fusion, which play a big role in the interpretation
of the experimental results. Hydrodynamical approaches are especially successful at
high collision energies, while hadronic transport approaches are particularly useful
at low energies. Currently one of the most prominent tasks of heavy ion collisions
experiments is the quest for a critical point and the investigation of the phase transition
between ordinary hadronic matter and the quark-gluon plasma. This transition is
expected at intermediate energies (see Table 1.2 for the convention of “low”, “inter-
mediate” and “high” energies adopted in the thesis). The goal of this thesis is to

1
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Figure 1.1.: Size and energy scales from atoms to quarks. This thesis deals in the range of
atomic nuclei and hadrons.

investigate the possibilities and consequences of applying relativistic hydrodynamics
and transport approaches at intermediate beam energies.

In the following sections some basic vocabulary of heavy ion collisions is briefly
introduced: hadrons, baryons, mesons; quarks, gluons and quark-gluon plasma, color
confinement, etc. More comprehensive explanations can be found in textbooks, for
example [8]. Besides the brief introduction to the field, the goal of this chapter is to
demonstrate the motivation of the thesis, its relevance and its position in the more
general context of heavy ion collision studies.

1.1. Introduction

1.1.1. Atoms and atomic nuclei

Heavy ions are the atoms of heavy elements (from Fe to U) with some or even all of
the electrons stripped off. Descending from larger to smaller length scale, the physics
of energetic heavy ion collisions involves atoms, atomic nuclei, hadrons, quarks and
gluons. The relevant spatial scales range from the atomic scale of order 10−10 m down
to 10−16 m as shown in the left part of Figure 1.1. The binding energy scales are
demonstrated in the right part of Fig. 1.1 and range from eV to GeV per bound object.
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The existence of atoms is of common knowledge nowadays, so atoms seem to
be a good starting point to discuss physics on smaller scales. Disassembling any
macroscopic object to smaller and smaller parts one will inevitably arrive at atoms of
one of the elements from the Mendeleev’s periodic table: hydrogen, carbon, oxygen,
nitrogen, sulfur, iron, or any other of more than 110 elements. First introduced by
ancient Greek philosophers Democritus and Leucippus as purely theoretical objects,
today atoms can be directly observed in the electron microscope, moreover even
manipulations with individual atoms are possible.

Starting from Rutherford experiments (Nobel prize in chemistry 1908) it is known
that atoms have a dense nucleus, which is 1000 times smaller than the whole atom,
but contains 99.9 % of its mass. The nucleus of size 1− 10 fm consists of nucleons
(electrically charged protons and neutral neutrons) bound together with energies from
1 to 8 MeV per nucleon. Even the electrons in the inner shells of heavy elements are
bound by at most 0.1 MeV per electron, so electrons can be detached from a nucleus
without destroying the nucleus itself. Initial ionization is experimentally achieved by
using strong electric fields, further ionization - by accelerating the ions and letting
them fly through thin stripping foils.

Protons, neutrons and electrons exist as well as individual particles. Protons
and electrons are stable outside of atoms (their measured average lifetime upper
bounds are larger than the age of the Universe). Neutrons live around 880 s in
average, decaying into a proton, electron and anti-neutrino. The fact that all kinds
of atoms consist of only 3 particles - protons, neutrons and electrons - is indeed very
satisfying, but it has turned out that the whole particle zoo is much richer. Hundreds
of short-living particles were discovered during the past century in cosmic rays and
in high-energy proton-proton, proton-electron, electron-positron and other collisions
in particle accelerator experiments. The variety of discovered particles has posed the
question, which of them are fundamental and how they can be classified.

1.1.2. Elementary particles

Presently the above mentioned classification questions are answered by the Stan-
dard Model of particles and interactions [10]. Few particles are considered to be
elementary - by definition this means they are point-like and do not have excited states.
Elementary particles can still be unstable and decay into other elementary particles.
They are characterized by mass, electric charge and spin - an intrinsic form of angular
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Figure 1.2.: Elementary particles of the Standard Model, their properties and interactions [9].

momentum measured in units of h̄. In Figure 1.2 all elementary particles are listed
together with their properties according to our present knowledge.

Depending on the spin, particles are classified into fermions (spin 1
2 , 3

2 , 5
2 , etc) and

bosons (spin 0, 1, 2, etc). The difference between bosons and fermions is however not
limited just to numerical values of spin. It has a very deep implication, manifested as
the spin-statistics theorem: two fermions are not allowed to be in the same quantum
state (this rule is also referred to as Pauli exclusion principle), while any number of
bosons can be in the same quantum state. It is due to Pauli’s principle that electrons in
atoms cannot reside on one orbital, but create structures of orbitals that give elements
their chemical properties. It also plays a role in atomic nuclei, because protons and
neutrons are fermions. So are the quarks, of which they are composed of.

In the Standard Model there are 12 fermions, 4 bosons with spin 1 and the Higgs
boson with spin 0. All the interactions between fermions are described as an exchange
with a boson, that is why the bosons of the Standard Model are also called force
carriers. The exchange of a gluon g corresponds to the strong interaction, the exchange
of W ± or Z bosons is the weak interaction and exchange of a photon γ describes
the electromagnetic interaction. The Higgs boson was introduced as a mathematical
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construction necessary to provide the W ± and Z bosons mass, which could not be
introduced directly without violating gauge symmetry. In 2012 the Higgs boson was
discovered as a physical particle. In 2013 a Nobel prize was awarded to Englert and
Higgs, who predicted the Higgs boson in 1964.

All 12 fermions in Fig. 1.2 can interact weakly, i.e. exchange W ± or Z bosons. How-
ever, only 6 of them interact strongly, i.e. exchange gluons. The strongly-interacting
fermions are called quarks, the rest are called leptons. Leptons include electron, muon,
tau-lepton and neutrinos. For every fermion there is also an antiparticle, which has
identical mass and spin, but opposite electric charge. The first 3 columns of the table
in Fig. 1.2 are called generations. One can notice that particles in each generation are
heavier than in the previous. This remains an observed fact and has no underlying
theoretical explanation. Lighter three quarks, u, d and s, are often referred to as ”light
quarks”, the rest are ”heavy quarks”. The type of quark, one of the six possible, is also
called flavour.

This thesis is devoted almost exclusively to the quark sector and the strong interac-
tion. The weak and electromagnetic interactions can be neglected for the purposes of
this thesis, because on the time scales of order 100 fm/c ' 10−22 s, which are relevant
for heavy ion collisions, strong interactions are much more intense than all the other
interactions. For example, it takes around 10−24 s to form a pion in a proton-proton
collision via strong interaction, 10−17 s for it to decay via electromagnetic interaction
and 10−8 s to decay via weak interaction. On the one hand, this allows to simulate
heavy ion collisions neglecting electromagnetic and weak interactions. On the other
hand, it makes photons and dileptons useful penetrating probes, which are emitted
once and do not rescatter during the hadronic fireball evolution.

1.1.3. Hadrons and color confinement

So far, quarks and gluons were introduced as elementary particles subjected to the
strong interaction. In the following their property called ”color” is introduced and
their bound states are discussed.

In general any particles may form bound states, if their interaction is attractive.
For example e− and e+ can form positronium, e− and µ+ also form a bound state,
connected by the electromagnetic interaction. There are no known bound states
produced purely by weak interaction, although conjectured heavy neutrinos from
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extensions of the Standard Model would form a bound state [11]. In contrast, strong
interaction forms a plethora of bound states, called hadrons.

Not every combination of quarks and antiquarks appears as a bound state in nature.
Experimentally known are only qq̄ states called mesons and qqq states called baryons.
Explaining the absence of states like qq or qqq̄ involves a property of quark called
”color”. It is unrelated to the spectrum of reflected or transmitted light called color
in our daily life, but there is an analogy that will be explained further. Quark color
has 3 eigenvalues, often denoted as r, g and b. The number of colors Nc = 3 and the
necessity to introduce it is justified by several reasons:

• Experimentally known hadrons like ∆++(uuu) or Ω−(sss) would be forbidden
by the Pauli principle, if the only quantum number of quarks was the spin. The
measured spin of ∆++ is 3/2, which implies that every u quark that it is composed
of has spin projection 1/2. So without additional quantum numbers all u-quarks
are in the same quantum state, which violates Pauli principle. With color ∆++

and Ω− are allowed by Pauli principle, because every quark is in a different color
state.

• A number of experiments have measured the ratio of produced hadrons to µ−µ+

pairs in e− e+ collisions, R = σ(e+e−→ hadrons)
σ(e+e−→ µ+µ−)

. This ratio is proportional to Nc

and measurements indicate Nc = 3.

• If one takes the standard model with an arbitrary number of colors Nc, then
it would be non-renormalizable because of the so-called axial anomaly in the
electroweak sector. The anomaly is only canceled for Nc = 3. As a side note, this
anomaly cancellation also requires that fermions are grouped into quark-lepton
families.

• All the hadrons found in nature are invariant under transformations in the color
space, or in mathematical terms, hadrons are singlet representations of the SU (3)
group (more details are given in the appendix C). Here the analogy with our daily
life color comes into play: like red, green and blue superimposed result in white,
colored quarks compose ”colorless” hadrons. Here ”colorless” actually means
that hadrons do not change - are invariant - under the SU (3) transformations in
color space. It turns out (see appendix C for details) that combinations qqq, qq̄,
qq̄qq̄, qqqqq̄ have singlet representations of SU (3) group and thus can be colorless,
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while combinations like qqq̄, qq, qqqq or single quarks cannot be colorless by any
means.

The observed existence of only colorless objects in nature is often referred to as color
confinement or simply confinement, because the color is confined inside of hadrons. To
acknowledge the role of color, the microscopic quantum field theory describing the
strong interaction is called quantum chromodynamics (see section 1.3.1 for details). In
addition to baryons and mesons color confinement allows many other combinations of
quarks, including the pentaquark qqqqq̄. Remarkably, in 2015 two kinds of pentaquarks
were discovered by the LHCb collaboration at the Large Hadron Collider at CERN [12].

Confinement implies that no single free quark can be observed. This statement has
been tested experimentally by multiple experiments [13], measuring the cross-section
for the inclusive reaction

pp→ q(q̄)X .

The best upper limit for the cross-section of such a reaction is currently set by the
CMS collaboration and constitutes σ < 2.3× 10−40 cm2. This has to be compared to
the total pp cross-section, which is of order 100 mb or 10−25 cm2. This implies that if
single quarks are produced in pp collisions then at the maximum average rate of 10−15

per collision. So far no single quark was observed.

Quantum chromodynamics (QCD) explains confinement in the following way.
From the lattice formulation of QCD one can obtain a phenomenological quark-
antiquark potential

V(r) = −α

r
+ κr , (1.1)

which grows with distance. If one tries to separate a quark and an antiquark and
pull them apart, their interaction energy is large enough to produce a new quark-
antiquark pair out of vacuum. So, instead of a separated quark and antiquark one
obtains two mesons. This explanation does not provide a full understanding of
confinement. For example, it is still unclear under which conditions quarks are not
confined.

QCD predicts that at high collision energy the interaction between quarks be-
comes small. This phenomenon is called asymptotic freedom (see section 1.3.1). The



Motivation 8

heating/compression

Figure 1.3.: Hadrons with confined color turn into a gas of quarks with deconfined color at
heating and/or compression.

asymptotic freedom implies that there is a possibility to obtain deconfined quarks at
sufficiently high temperature and density.

1.1.4. Quark-gluon plasma

As mentioned before, it follows from asymptotic freedom of QCD that very hot
and/or very dense matter consists of almost non-interacting quarks. It was suggested
[14] that by heating and compressing matter in high-energy heavy ion collisions one
obtains an almost ideal gas of deconfined quarks. The naive illustrative picture of this is
shown in Figure 1.3.

Asymptotic freedom was established theoretically in the framework of zero-temperature
field theory for the interaction of two quarks. In a heavy ion collision the physics is
significantly different: the size of the system is much larger than the size of a single
nucleon and one can therefore speak of the formation of a medium. Will the asymp-
totic freedom hold in the thermal bath created by the medium? This question was
answered by Eduard Shuryak in 1978 in the one-loop approximation. He computed
the gluon propagator and the potential between two quarks in the thermal medium of
temperature T [15]:

V(r) =
Q

4πr
e−mr (1.2)

m2 =
1
3

g2(Nc + N f /2)T2 (1.3)
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Figure 1.4.: Schematic phase diagram of strongly-interacting matter.

This potential is similar to the Debye screening potential in a classical plasma,
therefore the hot and dense medium of quarks was called quark-gluon plasma. It
has been produced experimentally at the Relativistic Heavy Ion Collider (RHIC) in
2000 [16–19]. Additionally it has been shown that the quark-gluon plasma behaves
like a fluid with a very low viscosity [20–22]. Low viscosity implies that the QGP
obtained in Au+Au collisions at RHIC is strongly-coupled, in contrast to an earlier
picture of a weakly-couple gas (see [23] for a review of this paradigm shift).

What are the physical properties of the quark-gluon plasma? How and under
which conditions does the transition from hadronic matter to the quark-gluon plasma
occur? Is there a phase transition or only a smooth cross-over? If phase transition then
of which order? Is there a critical point and if yes, where is it located and what are
the critical indices? Are there additional phases? These are some of the questions that
motivate modern heavy ion collision experiments and theoretical investigations. Many
of these questions are directly related to the phase diagram of the strongly-interacting
matter.
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1.1.5. Phase diagram of strongly-interacting matter

One of the most important tasks of modern heavy-ion collision experiments is to
study the phase diagram of strongly-interacting matter [24]. A sketch of the theoretical
and experimental knowledge about the phase diagram is given in Figure 1.4 in terms
of temperature T and baryon chemical potential µb. The chemical potential refers
to the energy increase of the system after adding one baryon, it also characterizes
the asymmetry between baryons and antibaryons. At µb = 0 the energies needed to
add a baryon or an antibaryon to the system are identical and therefore baryon and
antibaryon numbers are equal. At high µb baryons are strongly preferred.

Strictly speaking, the diagram can have two additional axes, isospin chemical
potential µI3 and strangeness chemical potential µs. On this diagram, it is assumed
that µs = µI3 = 0. Non-zero isospin chemical potential is important for neutron
stars, because it characterizes the asymmetry between protons and neutrons, which is
significant in these cosmological systems. More important for heavy ion collisions is
the transition between hadron gas and quark-gluon plasma. At high collision energies
approximately equal amounts of baryons and antibaryons are produced, so µb is small.
The region of µb

T ≤ 2 is covered by lattice QCD calculations [25–27], which conclude
that in this region there is no phase transition, only a smooth cross-over. The value
of the pseudocritical temperature where the chiral susceptibility has its maximum is
Tc = 153 MeV [28–30]. Unfortunately, lattice QCD is limited to the vicinity of µb = 0
due to the sign problem [31].

At non-zero µb a first-order phase transition is predicted by multiple models
and phenomenological studies (see summaries in [32] and [33]). A first order phase
transition occurs in massless two-flavour QCD [34, 35] as well as in the two flavour
linear sigma model and Nambu-Jona-Lasinio model [36], in a model based on the
statistical bootstrap [37] and in a model with an effective potential for two-flavour
massive QCD [38]. However, none of these models can be described as fully realistic.
The point where the first order phase transition ends and cross-over starts is called
critical point. In the vicinity of the critical point multiplicity fluctuations become large
[39,40]. At RHIC and at NA61 experimental measurements of multiplicity fluctuations
are ongoing to locate the critical point. Future FAIR, NICA and J-PARC facilities have
search and possibly studies of the critical point as a part of their motivation (see more
in section 1.2).
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The nuclear matter liquid-gas phase transition with its own critical point around
Tnucl

c ≈ 20 MeV was studied both theoretically and experimentally in ion collisions
[41, 42]. There are many indications in favor of a phase transition. These include
temperature saturation over a broad range of energies, flattening of the caloric curves,
sudden opening of the high fragment multiplicity channel, the onset of collective
expansion, the abnormally high partial energy fluctuations, the bimodal distribution of
exclusive observables, and the finite size and Fisher scalings. However, the numerical
value of the critical point still has a large uncertainty and even the discovery of the
transition is still debatable.

The color superconductor phase was theoretically predicted at very large baryon
densities and low temperatures [43, 44]. At these high densities, possibly occurring
in the cores of neutron stars, gluons acquire large mass, as quarks form a condensate
and massive excitations over condensate dominate physics, so that ”QCD at high
densities and low temperatures may in many ways be much more similar to QCD at
low densities than to a weakly coupled quark-gluon plasma” [45].

The chemical freeze-out line results from an attempt to quantify features of the
phase diagram from the experimental side [46]. By definition chemical freeze-out
is the instant, when inelastic number-changing hadronic reactions cease, because
of the expansion of the system, and hadron multiplicities are fixed, ”frozen”. The
thermal (also called “hadron resonance gas”) model postulates simultaneous sharp
chemical freeze-out for all hadron species. Despite this rough approximation, this
model provides a surprisingly good description of hadron multiplicities in heavy
ion collision for collision energies ranging from a few GeV per nucleon pair to 2.76
TeV [46–48]. Temperature TFO and chemical potential µFO

b at the chemical freeze-
out are parameters of thermal models extracted from fitting multiplicities at each
experimental collision energy. Lattice QCD studies hint that the freeze-out curve lies
near the phase transition curve for low µb [49].

Different parts of the phase diagram are studied with different theoretical ap-
proaches and it is an important task to connect them. Describing different parts of
the phase diagram in a unified approach would allow to connect properties of neu-
tron stars, heavy ion collision experiments at high energies and measurements of the
nuclear phase transition.
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1.1.6. Big bang and neutron stars

The physics of hadrons and quark-gluon plasma has deep connections to cosmology,
in particular to the early universe evolution and to neutron stars. Our universe is
known to be uniform on a very large scale of 100 Mpc, but it is extremely non-uniform
on a smaller scale. Indeed, the density of neutron star is 40 orders of magnitude larger
than the density of cosmic voids. It is suggested that the phase transition from a
hot quark-gluon plasma to hadrons during the first microseconds after the Big Bang
could be partly responsible for such a non-uniformity. For example, in [50] lumps of
quark matter floating in the Universe are suggested and in [51] the impact of the QCD
transition on inhomogeneities in the baryon to photon ratio is studied.

After the Big Bang the universe was extremely hot, small and was cooling and
expanding [52], similarly to the fireball in heavy ion collisions, although the initial
temperature was higher - of order 1018 GeV at Plank time of 10−43 s in contrast to initial
temperatures of several hundred MeV in heavy ion collisions. At 10−7 s the Universe
has already reached conditions testable in modern heavy ion collisions experiments.
Of course, between the universe and ion collisions there are differences in geometry.
The expansion of the universe was spherical, while heavy ion collisions have a collision
axis. However, due to the formation of a quark-gluon plasma, similarities in expansion
and cooling and also in the sequence of freeze-out processes heavy ion collisions are
sometimes called the Little Bang.

Hadronic and quark-gluon plasma physics are also related to neutron stars and
conjectured quark stars [53]. Neutron stars are remnants of type II supernovae explo-
sion, typically detected as millisecond radio pulsars. They can neither be too light,
otherwise they would be destroyed by centrifugal force; nor too heavy to avoid col-
lapse into a black hole. Observed neutron stars have masses approximately between
1 and 2 solar masses and radius from 10 to 20 kilometers [54]. Simultaneous precise
measurements of mass, radius and rotation period of neutron stars would put stringent
constraints on the nuclear equation of state at high densities. For example, precise mea-
surements of the masses of PSR J1614-2230 (M = 1.97± 0.04MSun) and PSR J0348-0432
(M = 2.01± 0.04MSun) [55, 56] have excluded many quark matter equations of state,
which could not produce such heavy neutron stars. Nevertheless, there is still enough
room for stars with quark core [57, 58]. Astrophysical measurements of neutron stars
probe the lower temperature and high density region of the phase diagram in Fig. 1.4
and are thus complementary to heavy ion collision studies.
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1.1.7. Structure of the thesis

Going from atoms to neutron stars, the introductory part of this thesis has out-
lined the general motivation driving heavy ion collision experiments and theoretical
calculations all over the world. Section 1.2 overviews the experimental studies of
heavy ion collisions and demonstrates substantial interest on intermediate energies,
where the search of the critical point is or will be performed. Section 1.3 constitutes a
brief overview of theory related to heavy ion collisions. This is necessary to show the
inter-relations between different theoretical approaches and to introduce transport,
hydrodynamical and hybrid approaches, which play a big role in this thesis.

Chapter 2 contains a mathematical part of methodology necessary for the next
parts. It provides a detailed description of the coarse-graining method, fluidization
and particlization - the interfaces between hydrodynamics and transport, studied in
this work.

The assumptions behind hydrodynamical and hybrid approaches that were fulfilled
at high energies may become challenging at intermediate energies. The first of these
assumptions is rapid thermalization over the whole fireball volume in heavy ion
collisions. The local thermalization at energies Elab = 5 − 160 GeV per nucleon
(
√

sNN = 3-17 GeV) is studied in a coarse-grained transport approach in chapter 3.
The degree of thermalization is estimated by quantifying local deviations of energy-
momentum tensor and baryon four-current in the Landau rest frame from the thermal
equilibrium. chapter 3 is based on publication [3].

Another assumption adopted by hydrodynamical and hybrid approaches at high
energies is that particles emitted from the region of hydrodynamical evolution cannot
return back and cause feedback to hydrodynamics. Neglection of this feedback is
typically manifested as so-called ”negative Cooper-Frye contributions” - negative
numbers of particles emitted from certain regions of the phase-space. At high energies
at midrapidity they are negligible. Does this hold for intermediate energies? This
question is investigated in chapter 4 based on publication [1].

Chapter 5 (based on [5]) introduces the SMASH transport approach, which was
used for the following computations. In chapter 6 (based on [6]) a novel approach
to simulate hydrodynamical regime at high density avoiding negative Cooper-Frye
contributions is suggested and tested. This approach is based on performing forced
canonical thermalization in the high-density region of the pure hadronic transport.
Chapter 7 summarizes the main results of this work.



Motivation 14

1.2. Heavy-ion collision experiments

An important part of the motivation for this thesis stems from ongoing and planned
heavy ion experimental programs. That is why in this section a short overview of
heavy ion experiments is given. Only experiments with the relativistic beam of kinetic
energy Elab > 1 GeV per nucleon are considered. This condition cuts off heavy ion
programs devoted to nuclear physics, such as heavy ion experiments in Saclay (France),
Uppsala (Sweden), East Lansing (USA) or RIKEN experiment (Japan). In the world
there is only a limited number of accelerators operating at Elab > 1 GeV per nucleon,
the information about them is summarized in table 1.1. They are all synchrotrons with
a beam revolving continuously in a circular beam pipe. Typically multiple experiments
are taking advantage of the beam.

Pioneering experiments in heavy ion collisions were performed in the 1970ies at
Bevalac at Lawrence Berkley Laboratory (LBL) in the US and at Synchrophasotron
in Dubna (Russia). They managed to create compressed nuclear matter and study
its properties. The most important results of Bevalac include studies of the equation
of state of nuclear matter [72], collective phenomena [73, 74] and low-mass dileptons
[75]. Synchrophasotron studied cumulative effect, HBT-correlations [76] and nuclear
multifragmentation [77]. These experiments were operating at beam energies below 2
GeV per nucleon. In 1990 SIS18 started to operate in the same energy regime. SIS18
experiments FOPI and KaoS have performed systematic studies of pion production
[78], strangeness production [79, 80] (including subthreshold production of Σ-baryon
[81] and φ-meson [82]) and collective flow studies [83]. HADES continues these studies
[84] and extends them to investigations of dilepton production [85, 86]. Hadronic
transport approaches were successfully applied to describe the results of experiments
at Bevalac and SIS18.

Beam energies of Elab = 2 - 14.5 GeV (
√

sNN = 2.7 - 5.5 GeV) were covered by the
Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory, first
colliding lighter 16O and 28Si nuclei and then heavier 197Au nuclei. Exclusive particle
spectra [87–89] were measured for π± , K± , p, p̄, Λ, Λ̄ and ϕ. Directed (v1) [90] and
elliptic (v2) flow [91] were investigated. Pion interferometry [92] allowed to extract
the produced fireball size. The overall conclusion was that “there is no evidence
for any onset of new behavior beyond hadronic scattering as the beam energy or
centrality is changed” [93], because the results of AGS were well-reproduced by
the hadronic transport models RQMD and ARC [93]. Another conclusion was that
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Table 1.1.: Summary of heavy ion accelerators at energy Elab > 1 GeV. Operation time is given
only for heavy ion period: e.g. Bevalac started operation in 1960, but heavy ion
program was initiated in 1971. Note that only accelerated projectile ions are listed
in the table, but not target ions.

Accelerator Place Lab. Time Ebeam [GeV]
√

sNN [GeV] Projectile
ions

HI Experi-
ments

Refs.

Bevalac Berkley
USA

BNL 1971-1993 0.4 - 2.1 2 - 2.7

O, C,
Ne,
Fe, Xe,
U

Plastic Ball,
Streamer
chamber,
EOS, DLS

[59, 60]

Synchro-
Phasotron

Dubna
Russia

JINR 1970-2003 0.1 - 4.5 1.9 - 3.5 d - Si [61]

Nuclotron 1993-now 0.1 - 4.5 1.9 - 3.5 d - Xe,
Au BM@N [62, 63]

NICA 2023- 2 - 5.5 4 - 11 d - Au MPD [64, 65]

SIS18
Darmstadt
Germany GSI 1990-now 0.1 - 2 1.9 - 2.7 d - Au,

π

FOPI,
HADES,
KaoS

[66]

SIS100(300) 2022- < 14 (44) < 5.5 (9.2) d - U,
π

CBM,
PANDA,
NUSTAR

[66]

AGS Brookhaven
USA

BNL 1980-1999 2 - 14.5 2.7 - 5.5 O, Si,
Au

E802, E859,
E866, E917,
E814, E877,
E810, E891,
E895, E910

[66, 67]

RHIC 2000-now 3.85 - 100 7.7 - 200
Au,
Cu, U,
d

STAR,
PHENIX,
PHOBOS,
BRAHMS

[68]

SPS Geneva
Switzerland

CERN 1983-now 20 - 200 6.3 - 19.4 O, S,
In, Pb

NA35,
CERES(NA45),
NA49, NA57,
NA60,
WA98, NA61
(SHINE)

[66, 69]

LHC 2008-now 1380 (Pb)
2760 (PbPb)
5400 (pPb) Pb

ALICE, AT-
LAS, CMS,
LHCb

[70]

MR
Tsukuba
Japan JPARC 2024- 1 - 19 2 - 6.2 d - U [71]
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the produced particle multiplicities correspond to thermal equilibrium in the grand-
canonical ensemble [94], which turns out to be true also for higher collision energies.

At the Super Proton Synchrotron (SPS) at CERN a sequence of experiments was
carried out using oxygen, sulfur and lead beams at Elab = 20-200 GeV per nucleon
corresponding to

√
sNN = 6.4-19.4 GeV. At the highest SPS energy NA35 experiment

reached the theoretically required energy density for quark-gluon plasma formation
in S+S collisions [69]. The goal of the later experiments in a larger Pb+Pb system was
to look for the onset of quark-gluon plasma formation by decreasing collision energy.
The experiments NA45, NA50 and WA98 measured low-mass dielectron spectra [95],
dimuon spectra [96] and direct photons [97]. NA57 has measured multistrange hadron
production [98]. Very extensive and systematic measurements of hadron production
were conducted by NA49 experiment [99]. Overall, big attention at SPS was devoted
to electromagnetic and strange particle observables as potential signals of the quark-
gluon plasma formation. Among these signals are ”Kink, Step and Horn” [100, 101]: a
sharp maximum in the K+

π+

(√
s
)

(Horn), sudden change in the number of pions per
participant (Kink) and a plateau in the

√
s dependence of inverse slop parameter of the

kaon transverse momentum spectra (step). Hadronic transport models were unable to
describe the Horn and especially the Step [102]. This is consistent with the hypothesis
of quark-gluon plasma observation, although does not serve as unambiguous evidence.
NA61, the successor of NA49 experiment, is now operating at the same energies that
NA49, but with a broader range of collision system sizes [103]. NA61 also puts more
attention to measuring hadron multiplicity fluctuations.

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory
started its operation in 2000 using AGS as a preaccelerator. The beam time at RHIC is
dedicated almost completely to heavy ion collisions (there is also a polarized proton
collision program). Unlike all the previous experiments, RHIC is a collider. Initially
experiments at a center of mass collision energy of

√
sNN = 200 GeV and 130 GeV per

nucleon were conducted. Later the Beam Energy Scan program was launched with the
motivation to find the critical point of the phase diagram (see Fig. 1.4) and the collision
energy was systematically decreased down to 7.7 GeV at the cost of beam luminosity
[68]. The smallest experiment at RHIC, PHOBOS, has measured global observables,
including charged particle multiplicities, in a large window of rapidity [104]. BRAHMS,
PHENIX and STAR have performed systematic measurements of hadronic spectra
[105, 106], collective flow of identified hadrons [107, 108], jet quenching, heavy flavour,
fluctuations and correlations in large Au+Au/Cu+Cu and in small d+Au systems. The
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spectra and elliptic flow of identified particles at low transverse momentum is well-
described by ideal relativistic hydrodynamics [109–111], as well as by hydrodynamics
with hadronic afterburner [112]. This led to the statement that a nearly ideal fluid was
created at RHIC [16–19]. Viscous relativistic hydrodynamics was applied to describe
the RHIC v2(pT) data [20–22] and it was shown that an extremely low viscosity to
entropy density ratio η

s from 0.08 to 0.2 1 is preferred by data. The applicability of
hydrodynamics, early thermalization, high v2 and low η/s signal that a strongly-
interacting fluid is produced at RHIC. Additional convincing arguments that this fluid
is indeed the quark-gluon plasma were jet quenching [113] and the scaling of v2 with
the number of constituent quarks [114, 115] (although constituent quark scaling being
a signature of quark-gluon plasma is debatable [116]). Currently, the RHIC beam
energy scan is focused on the search of the critical point and therefore event-by-event
fluctuations of conserved charges became important observables [117].

The Large Hadron Collider (LHC), which started its operation in 2010, has con-
tributed significantly to the field of heavy ion collisions. LHC makes use of a spe-
cialized detector ALICE (A Large Ion Collider Experiment) dedicated to heavy ion
collisions, but also CMS (Compact Muon Solenoid), ATLAS (A Toroidal LHC Appara-
tuS) and LHCb play significant role in heavy ion measurements. LHC, in addition to
its main p + p program, is colliding Pb + Pb at

√
sNN = 2.76 TeV, as well as p + Pb at

√
sNN = 5 TeV. With energy an order of magnitude higher than at RHIC, there is no

doubt in the literature that the quark-gluon plasma is produced at LHC. HBT corre-
lation measurements (see [76] for explanation of the method) show that the hot and
dense fireball at LHC is larger than at RHIC and leaves longer until decoupling [118].
Fourier harmonics of dN

dφ were measured up to v6 and are well-described by hydro-
dynamics. Jet quenching turned out to be smaller than at RHIC consistently with
perturbative QCD predictions. The biggest surprise from LHC was that the smaller
systems like p + Pb or high-multiplicity p + p were exhibiting large v2 and were de-
scribed well by hydrodynamics, which seems to be consistent with the production of
quark-gluon plasma.

Future experiments are dedicated to the search of the critical point of strongly
interacting matter and a possible phase transition between hadrons and quark-gluon
plasma. The future accelerators are FAIR (Facility for Antiproton and Ion Research,
includes SIS100 accelerators) [119] at GSI (Gesellschaft für Schwerionenforschung) in
Darmstadt, Germany; NICA (Nuclotron-based Ion Collider fAcility) [65] at JINR in

1Dimensionless since kB = h̄ = c = 1 is used, in SI has dimension kB
h̄ .
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Collision energy
√

s [GeV] Accelerators

“Low” . 4.5 Bevalac, Nuclotron, SIS, AGS
“Intermediate” ≈ 5 – 20 SPS, RHIC (BES), FAIR, NICA, JPARC
“High” & 130 RHIC, LHC

Table 1.2.: Convention for the naming of energy ranges of relativistic heavy ion collisions.

Dubna, Russia; and JPARC-HI [71] at Japan Proton Accelerator Research Complex
(JPARC) in Japan. All of them concentrate on the intermediate or lower energy region,
where the critical point and the first-order phase transition are expected. NICA will be
a collider using the existing Nuclotron as an injector. This will allow to increase energy
to
√

s = 4-11 GeV, accelerating all kinds of ion beams. FAIR will be a major addition
to SIS18 accelerator at GSI, operating with fixed target at low energies up to

√
s =

4.9 GeV at a very high beam rate and with possibility of antiproton and rare isotope
beams. JPARC-HI energies are

√
s = 2-6.2 GeV and the high beam rate is planned, as

for FAIR, of order 1011 ions per cycle.

Two observations can be drawn from this brief heavy-ion experiment overview.
Firstly, the experimental interest is shifting towards lower and intermediate energies.
This is manifested by the RHIC beam energy scan program, NA61 at SPS, as well
as future experiments FAIR, NICA and JPARC-HI. Secondly, with some exceptions
the results of the low-energy experiments are well-described by hadronic transport
approaches and the results of high-energy experiments are well-described by the
hydrodynamics. Understanding the results of future experiments at intermediate
energies requires extending theoretical approaches calibrated at low and high energies.

The terms “low energy”, “intermediate energy” and “high energy” are frequently
used throughout the thesis. The ranges are defined only approximately and are
partly motivated by the experimental programs. Table 1.2 summarizes the convention
adopted in the text.

1.3. Heavy-ion collisions theory
The theory of heavy ion collisions is rather versatile: the approaches range from

completely microscopic and static lattice QCD to macroscopic relativistic hydrody-
namics. The theoretical approaches may be divided into four branches as shown in
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Figure 1.5.: Theoretical approaches to heavy ion collisions.

Fig. 1.5: field-theoretical, transport, hydrodynamical and statistical. This thesis is
devoted mainly to transport and hydrodynamical approaches, as well as their fusion
called hybrid approaches. That is why the discussion about them is more extensive.
The other approaches are just briefly listed here supplied with short descriptions,
underlining their connections to hydrodynamics and transport.

1.3.1. Quantum chromodynamics

The modern microscopic theory describing interactions of quarks and gluons is
quantum chromodynamics (QCD). Its Lagrangian is composed of interacting quark
fields |Ψ〉, which carry flavor, color and spin indices (therefore 6× 3× 4 components)
and gluon fields A with Lorentz indices and a color index taking 8 possible values
corresponding to the number of SU (3) generators (see appendix C):

L = −∑
f

Ψ f

[
γµ∂µ −

i
2

gγµ Aa
µλa −m f

]
Ψ f −

1
4

Ga
µνGµν

a (1.4)

Gµν
a = ∂µ Aν

a − ∂ν Aµ
a + f abc Aµ

b Aν
c (1.5)

Here λa are the Gell-Mann matrices introduced in appendix C, f abc are SU (3)
structure constants,

[
λa
2 , λb

2

]
= f abc λc

2 . Parameters of the QCD Lagrangian are the
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Figure 1.6.: Dependence of strong coupling constant on the energy scale. The decrease of
coupling with energy scale is called asymptotic freedom.

quark masses m f and the interaction constant g. In principle, this Lagrangian contains
the full description of strong interactions, but the equations arising after quantizing it
are notoriously hard to solve.

QCD is a renormalizable theory [120] and after renormalization the dependence of
parameters g(µ2) and m f (µ

2) emerges, where µ is the energy scale. The first calculation
of g(µ2) was performed in 1973 by David Gross, Frank Wilczek and David Politzer.
They received the Nobel Prize in 2004 for this calculation. Their main result can be

expressed as follows [121] in terms of αs =
g2

4π :

dαs
d ln(µ)

=
α2

s
π

β1 +

(
α2

s
π

)2

β2 + . . . (1.6)

β1 = −
[

11
6

Nc −
2
3

n f

]
(1.7)

Here Nc = 3 is the number of colors and n f = 6 is the number of flavors. One
can see that β1 is negative, so the coupling decreases with the energy scale µ. This
means that the interaction between quarks at high energies or equivalently at small
distances vanishes. This conclusion was confirmed by many scattering experiments,
see Figure 1.6. The effect itself is called asymptotic freedom. Although quarks are
always confined, asymptotic freedom provides the chance to observe quasi-free quarks.
This possibility was an important motivation for heavy ion collisions, until it has been
realized that even at the highest LHC energies the quark-gluon plasma is still strongly
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coupled. Indeed, the scale µ in Eq. (1.6) is set not by the very high collision energy
√

s,
but by the temperature of the formed medium, which is below 1 GeV.

Besides providing the motivation for heavy ion studies, perturbative QCD is
used to compute jet production cross-sections and jet quenching at high pT in the
quark-gluon plasma. Also multiple perturbative calculations were performed for finite-
temperature QCD to determine quark-quark potentials in the quark-gluon plasma
[122]. Perturbative calculations are useful at high energies, where the strong-coupling
constant is small according to the Eq. (1.6). However, when µ decreases the QCD
coupling diverges at the scale of ΛQCD∼ 300 MeV [123]. One of the consequences is
that perturbative QCD cannot deal with hadrons. This gap is bridged by lattice QCD,
described further and by other field-theoretical approaches described in section 1.3.2.

Lattice QCD is a non-perturbative approach to QCD based on path integrals in
a discretized space-time. There are many ways to discretize the QCD action, but
all of them should converge to the same results in the continuum limit a→ 0 and
Nτ→∞, where a is lattice spacing and Nτ is number of points in Euclidean time.
Within lattice QCD the lower lying part of the hadronic spectrum can be computed,
but most importantly for heavy ion physics it provides the equation of state of strongly-
interacting matter at zero chemical potential. Due to Taylor expansion in µ

T at µ = 0 the
lattice QCD equation of state is available in the region µb

T ≤ 2 [25–27]. This equation
of state is widely used in hydrodynamical approaches. Lattice QCD calculations are
extremely computationally demanding, so many simplifying assumptions are often
made: large quark masses, massless quarks or small Nτ. Calculations with physical
masses in (2+1)-flavor QCD (meaning that two light quarks with equal masses and
a strange quark are considered) and with continuum extrapolation are only recently
feasible [124].

1.3.2. Other field-theoretical approaches

Field-theoretical approaches are mostly based on the QCD Lagrangian (see Eq. 1.4).
As mentioned before, perturbative QCD cannot deal with low-energy phenomena.
This gap is partially bridged by non-perturbative Dyson-Schwinger equations involv-
ing dressed quark and gluon propagators [125]. They are rigorous, based on QCD
and able to capture physics at all energy scales, but unfortunately this is an infinite
system of equations that requires truncation. Other approaches covering low-energy
physics are effective field theories, where the degrees of freedom are hadrons, not
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quarks or gluons [126]. Such approaches are usually based on the concept of chiral
symmetry. These approaches are able to predict hadronic cross-sections, decay widths
and branching ratios, which then can be inserted as an input to transport models.
The disadvantage of effective field theories is that they are non-renormalizable and
therefore their precision is limited and the applicability range is restricted to low
collision energies. Additionally, every hadron species needs to be inserted should by
inserted to the effective theory Lagrangian explicitly, making realistic and detailed
calculation extremely elaborate.

While chiral effective theories are applied at low energies, at high energies the
effective theory called Color Glass Condensate (CGC) [127, 128] is useful. Proton-
proton or nucleus-nucleus collisions involve two energy scales: the large (”hard”)
scale of the parton-parton collision energy and the small (”soft”) scale of inter-parton
interactions within the nucleons. The computation of the reaction cross-sections is
possible within perturbative QCD for the parton-parton scattering. The soft part is
neither accessible by perturbative QCD nor by lattice QCD, so it is encapsulated into
the parton distribution functions (PDF) [129, 130] measured mainly by experiments at
HERA e−p collider in Hamburg. PDFs depend on two parameters - the momentum
transfer Q2 and the variable x which corresponds, at lowest order in perturbation
theory, to the longitudinal momentum fraction carried by a parton in the hadron. For
small x gluon PDFs dominate in the nucleons, so one can say that at small x nucleons
consist of a large number of gluons.

CGC is based on the concept of saturation, which can be explained as follows.
Schematically one can write a factorization theorem for the hadronic cross-sections:

σpp =
∫ 1

0
dx1dx2 PDF(x1, Q2)PDF(x2, Q2)σpartonic

(
x1, x2, Q2, αs(µ

2),
Q2

µ2

)
(1.8)

The total cross-section should be limited. This follows from unitarity [131] and
poses a restriction on the parton distribution function at low x: PDFs should grow
not faster than O

(
log 1/x

x

)
for small enough x, x < xs(Q

2) - a phenomenon called

saturation. Instead of x < xs(Q
2) condition for fixed Q2 one can also introduce

Q2 > Q2
s (x) condition for a fixed x. These considerations allow the CGC approach to

separate small x and large x physics. Within the CGC the nucleons are approximated
as a combination of classical gluon fields at small x and valence quarks at large x as
sources of these fields. The CGC picture is applicable for the very initial state of heavy
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ion collisions, but at time of order Q−1
s the gluon medium becomes dilute and the

basic assumption of saturation is no longer reached. A suggested solution is to couple
CGC initialization to hydrodynamics [132] or transport approaches [133].

Another set of approaches to the strongly coupled regime inaccessible by pertur-
bative QCD is exploiting dualities between strongly coupled quantum field theories
and weakly-coupled gravitational theories, such as the famous AdS/CFT duality [134].
This kind of approach was used to compute the shear viscosity to entropy density ratio
η
s in a strongly-coupled conformal field theory and find the well-known low value of
η
s = 1

4π [135]. The gauge-gravity duality has also been applied to study the approach
of fireball in heavy ion collisions to equilibrium [136]. Moreover, the whole heavy
ion collision process at high energies can be considered as a dual of two gravitational
shock waves colliding [137]. Although very powerful, duality approaches for heavy
ion collisions can currently serve only for qualitative insights, since no dual theory of
QCD has yet been found.

1.3.3. Statistical approaches

Statistical approaches avoid describing the complex evolution of the fireball in
heavy ion collisions. Instead it is assumed that at chemical freeze-out all the hadrons
are in thermal and chemical equilibrium at the same temperature T. This allows to
describe the fireball at freeze-out as an ideal gas of hadrons and hadronic resonances.
The inclusion of resonances as degrees of freedom encapsulates hadron-hadron in-
teractions according to the Bernstein-Dashen-Ma theorem [138]. The latter assumes
that hadron interactions proceed via narrow resonances, which is not always true: for
example see Fig. 5.5 for pp cross-section, which has no resonant structures. Under the
mentioned assumptions in the grand-canonical ensemble for an ideal Boltzmann gas
one obtains

Ni =
giVeµi/T

2π2 T3
(mi

T

)2
K2

(mi
T

)
, (1.9)

where Ni is the multiplicity of the hadron species i, gi is its degeneracy and mi

is its mass. This equation has to be supplied with conservation laws to fix chemical
potentials, resonance decays have to be taken into account for comparison with experi-
mental data and various corrections are possible - see [46, 139] for details. The overall
model is called Hadron Resonance Gas (HRG) model. Although the HRG model is
very simple and its assumptions are rather naive, it describes hadron multiplicities in
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heavy ion collisions remarkably well from AGS to LHC energies with three parameters:
the temperature T, the baryon chemical potential µb and the volume V [46, 140–144].
Hadron Resonance Gas was also applied in the canonical ensemble with respect to
strangeness conservation [145–147]. In the canonical ensemble hadron multiplicities
in pp collisions [148] and even e+e− collisions [149] can be described, although for the
latter the description quality is not as high.

The parameters T(
√

s), µb(
√

s) and V(
√

s) extracted from the fits to multiplicities at
different collision energies

√
s exhibit characteristic meaningful patterns. Temperature

of freeze-out T increases with collision energy and saturates at around 160 MeV. The
chemical potential decreases with collision energy and goes to zero at LHC, while
the volume V behaves exactly as the volume extracted from HBT radii - it has a
minimum at SPS energies. The saturation of the temperature may be explained by the
statistical bootstrap model by Hagedorn [150, 151], which describes hadrons as ”bags”
being composites of one another. The bootstrap model yields an exponential hadron
spectrum and it originally predicted a limiting temperature TH ' 150-170 MeV, above
which hadrons cannot exist. This limiting temperature was later reinterpreted as a
transition temperature from hadrons to quarks [152]. It is believed that the value at
which the freeze-out temperature saturates is the Hagedorn temperature TH [46].

The Hadron Resonance Gas model only allows to describe hadron multiplicities.
To access momentum and rapidity spectra HRG was extended by including the overall
motion of the hadron gas. A freeze-out at some predefined hypersurface is performed
according to the Cooper-Frye formula [153]. Such models are called blast-wave models.
They have the freedom to select the freeze-out hypersurface, so there are several
modifications [154–156]. Blast-wave models allow to describe transverse hadronic
spectra using a common radial expansion velocity β common for all hadron species
as an additional parameter. Generally, blast-wave models are not able to produce
higher-order flows: v2, v3, etc. The description of anisotropic flow requires more
involved dynamical approaches.

The temperatures Tkin obtained from the blast wave fits to spectra are typically
lower than the temperatures Tchem from HRG fit of multiplicities. This is because
inelastic reactions that change chemical content cease earlier than pseudoelastic and
elastic reactions that can only modify spectra. In other words, chemical freeze-out
happens earlier, when the temperature of the medium is higher. The kinetic freeze-out,
after which the spectra are not modified, occurs later.



Motivation 25

1.3.4. Hydrodynamic approaches

In contrast to statistical models, hydrodynamical approaches describe the evolu-
tion of the fireball starting from thermalization until the freeze-out. Two necessary
applicability conditions of hydrodynamics are that every part of the system is in the
vicinity of local thermal equilibrium and the mean free path is much smaller than the
system size,

lm f p � L . (1.10)

Typical expansion velocities in heavy ion collisions are comparable to the speed of
light, so the hydrodynamical theory must be relativistic. Relativistic hydrodynamics
was initiated in 1953 by the works of Landau for multiparticle production in high-
energy collisions of proton-proton, proton-nucleus or nucleus-nucleus collisions [157,
158]. The Landau model assumed high collision energy, so that two colliding nuclei
are represented as flat disks due to Lorentz contraction. After colliding these two
disks stop completely and the resulting flat disk expands longitudinally. The model
predicts a Gaussian rapidity spectrum, which was indeed observed at AGS and SPS
for the net charge. At higher energies nuclei do not seem to stop as rapidly as the
Landau model assumes, but rather pass through each other. This is represented by
the flat region of dN/dy at midrapidity. Such a situation is described well by the
Bjorken hydrodynamical model [159], which assumes longitudinal boost invariance.
The Bjorken model allows to make a simple estimate of the energy density achieved in
the collision, which is used to judge by a comparison to the critical energy density of 1
GeV/fm3, if the quark-gluon plasma was produced.

Modern approaches (recent overview [160]) go far beyond these approximations.
However, the main equations of hydrodynamics, which are nothing else but conserva-
tion of energy, momentum and charges, are written in the same form as in the seminal
papers of Landau [157, 158]:

∂µTµν = 0 (1.11)

∂µ jµ = 0 , (1.12)

where Tµν is the energy-momentum tensor of the fluid and jµ is a 4-current of
conserved charges. What has changed is
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• the dimensionality of the problem

• the equation of state (EoS)

• the initial conditions and event-by-event simulations

• the freeze-out conditions

• viscous corrections

In the following these aspects are described in more detail in this order. Transverse
expansion is included in (2+1)D and (3+1)D simulation. This is important to describe
transverse flow, in particular the dependence of v2(pT), where v2 is the second Fourier
harmonics of the azimuthal angle distribution dN

dϕ . Unlike the Landau or Bjorken
models, these partial differential equations are not analytically solvable and have to
be solved numerically.

The equation of state closes the system of hydrodynamic evolution equations,
connecting pressure with energy density and conserved charge densities:

p = p(ε, n) (1.13)

All the properties of the fluid are encoded in the EoS. It is a big advantage of the
hydrodynamics that the EoS can be explicitly varied. In this way one can study the
implications of the conjectured quark-gluon plasma to hadron gas phase transition on
the experimental observables [161]. At low µb the EoS is constrained by lattice QCD,
but at higher µb it can only be conjectured using phenomenological models.

The initial condition for hydrodynamics is the energy density ε(x, y, z) and the
baryon density nb(x, y, z) at a fixed time t or at a fixed proper time τ =

√
t2 − z2,

where the z-axis is along the beam direction. Initial conditions play an important role
as they provide spatial anisotropies, which then develop into momentum anisotropies
vn measured in experiment. In earlier studies initial conditions were smooth and based
on the overlap geometry of the colliding nuclei, see [162] for a review. In recent works
they are typically lumpy and generated by microscopic transport models [163–165],
Color Glass Condensate approach [166, 167], IP-Glasma [168], Monte Carlo versions of
the Kharzeev-Levin-Nardi (MC-KLN) [169, 170] or the Glauber model (MC-Glauber)
[171–173]. Some approaches were developed to classify this zoo [174], but the true
initial condition is still to be found.
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Because of the initial state fluctuations from collision to collision, event-by-event
calculations have to be performed. Instead of smooth averaged initial condition and
one hydrodynamic evolution one performs many simulations with different initial
conditions and then averages results. These approaches are not equivalent, since
hydrodynamical equations are nonlinear. Event-by-event simulations are necessary to
reproduce the higher flow harmonics, from v3 up to v6 [175–177].

The earlier hydrodynamical simulations were stopped at a fixed time or proper time,
a so-called isochronous freeze-out. In modern simulations the freeze-out is typically
performed at a fixed temperature, energy density or Knudsen number. Freeze-out is
discussed in more detail in chapter 4.

In ideal hydrodynamics the energy momentum tensor in the rest frame of the fluid
element is written as

Tµν
ideal =


ε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (1.14)

where ε is local energy density and p is pressure. Suppose that the local fluid
velocity is ~β. Then the four-velocity takes the following form

uµ = (γ, γ~β) , (1.15)

where γ =
(

1− β2
)−1/2

. To boost the energy-momentum tensor to the laboratory
frame one multiplies it by Lorentz-matrices:

Tµν = Λµ
αΛν

βTαβ (1.16)

Λµ
ν =

 γ −γ~β

−γ~β δij + (γ− 1)
~βi
~β j

β2

 =

 u0 −ui

−ui δij + (1 + u0)−1uiuj

 (1.17)

Therefore, in the laboratory frame
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Tµν
ideal = εuµuν − p(gµν − uµuν) , (1.18)

where gµν = diag(1,−1,−1,−1). In ideal hydrodynamics the four-current is a
vector (n, 0, 0, 0), where n is the density, boosted to the laboratory frame:

jµ = nuµ (1.19)

Ideal hydrodynamics requires strict local thermodynamic equilibrium and neglects
possible dissipative effects. Small departures from local equilibrium and dissipation
are taken into account by viscous hydrodynamics. The equations of dissipative rela-
tivistic fluid dynamics were first formulated by Eckart [178] and then by Landau and
Lifshitz [179]. Both were relativistic generalizations of Navier-Stokes theory and are
often referred to as first order theories. It turned out that these generalizations are
acausal, i.e. the speed of sound can exceed the speed of light. This was remedied in
the Israel-Stewart second order hydrodynamics [180]. Recently a systematic expansion
in Knudsen number has been developed [181], which improves on the 14-moment
approximation of Israel and Stewart.

Viscous hydrodynamics is applied with great success to simulate heavy ion colli-
sions [22, 182–185]. It allows to describe anisotropic flow from v2 to v6 up to pT = 2.5
GeV at RHIC and LHC, extract shear viscosity η/s and bulk viscosity ζ/s and even
some attempts to obtain the temperature dependence of η/s from experimental data
are being made [164, 186, 187].

A recent development is anisotropic hydrodynamics [188,189]. Unlike the usual
viscous hydrodynamics, which is an expansion near thermal equilibrium, anisotropic
hydrodynamics expands around a non-equilibrium anisotropic state. This makes it
applicable for the early stages of heavy ion collisions, where the momentum anisotropy
is very large and conventional hydrodynamics cannot be applied.

1.3.5. Transport approaches

The most general microscopic approaches to heavy ion collisions that consider
non-equilibrium evolution are approaches based on relativistic transport theory [190].
Transport theory is formulated in terms of the one-particle distribution function
f (t,~r,~p), which is nothing else but the density in phase space. Assuming that the
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number of particles in a given region of phase space can change only via collisions
and decays and neglecting all other sources of correlations one can write

df
dt

=
∂f
∂t

+
∂f
∂~r

p
E
+

∂f
∂~p

~∇U = Icoll , (1.20)

where Icoll is an expression called collision integral. This is the non-relativistic clas-
sical Boltzmann equation, but it is nevertheless relevant for quantum systems. It can
be derived from the quantum BBGKY-hierarchy of equations for the N-particle density
matrix, truncating it at the two-particle level and performing a Wigner transformation.
This truncation assumes that the density is not too high:

λCompton � lm f p , (1.21)

where λCompton = hc
M is the Compton wavelength and lm f p ' (ρσ)−1 is the mean

free path. This defines the limit of applicability for the Boltzmann equation, which
can however be overcome by introducing different degrees of freedom. Another
assumption made during the truncation is the so-called hypothesis of molecular chaos:

f2(p1, x1; p2, x2) = f (p1, x1)f (p2, x2) , (1.22)

which implies the neglection of all phase space-correlations between particles. The
collision integral is written for the classical case as

Icoll =
∫ d3p2

E2

d3p′1
E1

d3p′2
E′2
×W(p, p2→ p′1, p′2)× ( f ′1 f ′2 − f f2) . (1.23)

In the quantum case, the Boltzmann equation was first formulated by Uehling and
Uhlenbeck and therefore the equation is called BUU (Boltzmann-Uehling-Uhlenbeck):

Icoll =
∫ d3p2

E2

d3p′1
E1

d3p′2
E′2
×W(p, p2→ p′1, p′2)× ( f ′1 f ′2(1 + a f )(1 + a f2)− f f2(1 + a f ′1)(1 + a f ′2)) .

(1.24)

Here a = 1 for bosons and a = −1 for fermions. One can see that the quantum
BUU equation differs from the classical Boltzmann only by factors that account for
quantum statistics in the collision term.
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The physical meaning of Boltzmann or BUU equations is very simple: for a given
time interval dt the number of particles in a phase-space cell has changed (left part) as
much as the number of particles that entered it from other cells via collisions or decays
(right part, gain term) minus the number of particles that escaped to other cells via
collisions or decays (right part, loss term). The Boltzmann equation can be written in a
manifestly covariant notation:

pµ ∂f
∂xµ + m

∂Kµf
∂pµ = Icoll , (1.25)

where Kµ is Minkowski-four-force vector. The Boltzmann equation as written
above is just for one sort of particles experiencing 2→ 2 elastic collisions. In heavy
ion collisions one encounters hundreds of different hadrons, that can also collide
inelastically, decay and form resonances. For this case Boltzmann equation turns
into a coupled system of equations - as many equations as hadron species. This
system is generally solved via Monte-Carlo simulations, where the particles propagate
according to the equations of motion obtained from the left hand side of Eq. 1.25 and
collide/decay simulating the collision integral.

Depending on the degrees of freedom, there are pure hadronic transport codes, used
at low energies [191–195], approaches including hadrons and strings (e.g., RQMD [196],
UrQMD [197], HSD [198], JAM [199], GiBUU [200]), only partons (e.g., [201, 202],
Zhang Parton Cascade [203], BAMPS [204]) or partons, hadrons and string together,
like PHSD [205] or AMPT [206].

Transport simulations are divided into two groups, usually called BUU (Boltzmann-
Uehling-Uhlenbeck) and QMD (Quantum Molecular Dynamics), which differ in the
treatment of potentials. BUU approaches aim at solving the one-body BUU equations
with mean-field potentials depending on the local density. The hypothesis of molec-
ular chaos implies that in BUU approaches all the correlations between particles are
destroyed. The QMD approach solves equations of motion for particles with potentials
depending on distances and momenta. The QMD approach generates correlations
between particles. In the case in which there are no potentials, which is called the
cascade mode, QMD and BUU approaches are identical.

Transport approaches are extremely powerful tools to study heavy ion collisions,
because they do not require local equilibrium, simulate microscopic interactions and
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allow to extract almost any experimentally observable quantity. However, they also
have some disadvantages:

• Strictly speaking, transport approaches are only applicable, if the density is low
enough, so that Eq. 1.21 is fulfilled.

• A lot of phenomenological input is required. Many resonance cross-sections and
branching ratios are not known experimentally. Modeling microscopically the
hadronization process is challenging. String formation and fragmentation can be
modeled in many possible ways. All this creates considerable differences in the
results even between conceptually similar approaches, see e.g. this comparison
[207].

1.3.6. Hybrid approaches

As one can see from the applicability conditions for transport approaches (Eq. 1.21)
and hydrodynamics (Eq. 1.10), transport tends to be applicable at lower densities and
hydrodynamics at higher densities. At the same time, the hydrodynamical equations
can be derived from the Boltzmann equation, therefore the regions of applicability of
hydrodynamics and transport overlap. This motivated the development of hybrid
approaches, which use hydrodynamics at high density and switch to transport at low
density, hopefully in the region, where both are applicable. Hybrid approaches are
very successful in describing experimental data at highest RHIC and LHC energies
[132, 163, 208–214], and for the RHIC beam energy scan [164, 215].

The advantages of hybrid approaches are:

• Theoretical consistency: hydrodynamics and transport are supposed to be applied
within their applicability ranges.

• The hadronic rescattering stage improves the description of experimental data
compared to pure hydrodynamics, in particular it improves the description of
elliptic flow v2 of identified particles and pT spectra of protons and Λ [216].

• The equation of state can be studied explicitly.

• There are no uncertainties related to hadronization in the transport simulation.
The complex hadronization process is encoded in the equation of state.
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These advantages make hybrid approaches excellent simulations at intermediate
energies, relevant for RHIC beam energy scan, NICA, FAIR and JPARC. However, in
this thesis it is argued that some improvements of hybrid approaches are necessary
to perform consistent simulations at intermediate energies. These improvements are
connected to the interfaces between the hydrodynamics and transport.

Modern hybrid approaches assume:

1. Fast thermalization and an ideal fluid form of energy-momentum tensor (Eq.
1.18) at the initialization. At high energies these assumptions seem to be justified,
however at intermediate energies they are not guaranteed. In chapter 3 these
assumptions are verified, testing the deviation of the energy-momentum tensor
from ideal fluid form.

2. At the initialization of hydrodynamics the whole space is assumed to be in
thermal equilibrium. However, the borders of the fireball never really enter the
equilibrated phase. This is cured in the core-corona approach [217], where the
core with high energy density is treated by hydrodynamical equations and the
low-density corona is propagated with transport. At high energies the corona
is negligible, but at intermediate energies it becomes important. It has to be
noted that in [217] core and corona are decoupled: particles from the corona
cannot feedback to the core. This is in line with the next assumption of hybrid
approaches.

3. It is assumed that transport is decoupled from hydrodynamics: particles from
transport cannot cause any feedback to hydrodynamical equations. It turns out
that this assumption becomes more and more challenging when one moves from
higher energies to lower beam energies, as shown in chapter 4.

4. The particlization hypersurface is chosen by hand. Typically, it is a hypersur-
face of constant energy density or temperature, where it is assumed that both
hydrodynamics and transport are applicable. If this assumption is justified then
at particlization hypersurface the amount of particles flying into the hydrody-
namical region would be consistent with the hydrodynamical expectation. In
chapter 4 it is demonstrated that this conjecture is not fulfilled.

I would like to underline that the listed assumptions are well-justified at highest
RHIC and LHC energies, where most of the hybrid approaches were applied, but they
are challenging at RHIC beam energy scan, NICA, FAIR and JPARC energies.
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There is a number of approaches and ideas, which seek for relaxing these assump-
tions. Anisotropic hydrodynamics [188, 189] is applicable for highly anisotropic initial
states, which are out of equilibrium in a particular way. As shown in chapter 3, the
departure from equilibrium in heavy ion collisions at intermediate energies is mainly
due to the pressure anisotropy. This means that anisotropic hydrodynamics is able to
relax the first assumption about fast thermalization.

The next assumptions could be relaxed in an approach, in which coupled hydrody-
namical and transport equations are solved. Attempts to write down the appropriate
equations were already performed. Boundary conditions on a sharp hypersurface sepa-
rating two transport approaches with different distribution functions were formulated
in [218]. These conditions are also suitable for the boundary between hydrodynamics
and transport. However, it is not enough to formulate the boundary conditions. One
also has to supply the rules for how particles thermalize or how they deposit energy
entering the hydrodynamical phase.

This was partially addressed in the hydrokinetic approach [219, 220], where par-
ticles decouple from hydrodynamics continuously governed by rate equations. The
decoupling hypersurface is momentum dependent in such a way that particles do
not return to the hydrodynamical domain. There is also an approach of a transition
layer [221,222], where particle escape probabilities are also governed by rate equations
and particles returning to the hydrodynamical domain are integrated out.

An approach, where coupled hydrodynamical and transport equations are solved
and the boundary is defined dynamically is not fully developed for the relativistic
case. However, the analogous non-relativistic problem often appears in practice and
is solved for many different scenarios. A possible example is the simulation of fluid
flow with complicated boundary conditions: at the boundary the fluid has to be
simulated kinetically and far from the boundary hydrodynamically. This kind of non-
relativistic problem is successfully solved using the domain decomposition methods,
see for example [223] and references therein. Similar ideas are also used in plasma
simulations, see e.g. [224]. An analogous approach for heavy ion collisions would
solve many of the problems that appear in the present hybrid models, in particular the
problem of negative Cooper-Frye contributions (section 2.3).

In chapter 6 an alternative approach to the problem is suggested. Hadronic trans-
port is applied in the whole space, but in the region of high energy density it is
subjected to forced thermalization. This allows to interpolate between transport and
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hydrodynamics. Unfortunately, varying the equation of state in this approach is
challenging, although possible in principle. Hadrons inside the ”hydrodynamical”
high-density region need then to be treated as fictitious particles like in the particle-in-
cell hydrodynamics [225].



Chapter 2.

Interfaces between hydrodynamics and
transport

As one can see from the discussion about hydrodynamical and hybrid models, many
uncertainties in the dynamical simulations of heavy ion collision are coming from
interfaces between different approaches - for hybrid models this is the construction
of the initial state (fluidization) and final state (particlization). In this chapter the
actual calculations at these interfaces are discussed to better understand the source of
uncertainties and to introduce the methodology used in the next chapters. Some parts
of this chapter follow publications [1], [3] and [6].

2.1. Coarse-graining
Coarse-graining is a method to obtain macroscopic variables, such as the rest-frame

energy-density, baryon density or velocity of the fluid from the particles in a transport
approach. This method is used extensively in chapters 3, 4 and 6, as well as in other
works, e.g. [226,227]. An example of coarse-graining is demonstrated in Fig. 2.1, where
the microscopic particles from a transport simulation of heavy ion collision are turned
into energy-density, pressure and velocity, the macroscopic variables necessary for
hydrodynamics.

In the following sections the mathematical expressions for coarse-graining are
derived, starting from the energy-momentum tensor and four-currents for a point-like
particle, and proceeding with a smeared particle or a wavepacket.

35
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2.1.1. Energy-momentum tensor of a point-like particle

The expression for the energy-momentum tensor of a single point-like particle is
well-known in the literature [228], as well as for particles interacting with fields [229].
Here the derivation is repeated to use it later for the wavepacket.

The action of a point-like particle is

S = −m
∫ b

a
dτ = −m

∫ b

a

√
dxµdxµ . (2.1)

Varying the particle trajectory xµ = xµ + δxµ with fixed ends one obtains an action
variation:

δS = −m
∫ b

a

√
dxµdxµ + 2dxµdδxµ + m

∫ b

a

√
dxµdxµ =

= −m
∫ b

a

dxµ

dτ
dδxµ =

= m
∫ b

a

duµ

dτ
dτδxµ , (2.2)

where uµ = dxµ

dτ . Using the expression

duµ

dτ
=

∂uµ

∂xν
∂xν

∂τ
= uν∂νuµ (2.3)

one can rewrite the action variation as

δS = m
∫ b

a
uν∂νuµdτδxµ . (2.4)

In this expression variation of the action depends on the coordinates and velocity
of the particle, that will further be marked with index “p”. Now let us rewrite it in
terms of continuous medium by adding integration over space-time and a δ-function.
The coordinates xµ are coordinates in space, over which integration is performed.

δS = m
∫

dV
∫ b

a
dτδ(4)(xµ − xµ

p(τ))u
ν∂νuµδxµ . (2.5)

The delta-function δ(4)(xµ − xµ
p(τ)) allows to change variables depending on xµ

p to
variables dependent on xµ. Since

∫
dτδ(x0− x0

p(τ)) =
1

u0 , one can rewrite the equation
(2.5) in the following form:
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δS =
∫

dV ∂νTµνδxµ , (2.6)

where the following notation is used

Tµν = mjµuν , (2.7)

jµ = uµδ(4)(xµ − xµ
p(τ)) =

uµ

u0 δ(3)(xi − xi
p(τ)) . (2.8)

Here it was taken into account that ∂µ jµ = 0 due to the equations of motion. It is
convenient to rewrite this in terms of the 4-momentum pµ of the particle:

jµ =
pµ

p0 δ(3)(xi − xi
p(τ)) (2.9)

Tµν =
pµ pν

p0 δ(3)(xi − xi
p(τ)) (2.10)

There is a simpler way to obtain the same formulas. One notices from the Tµν of
the ideal fluid that for a particle at rest

Tµν
rest(~x) = diag(mδ(3)(xi − xi

p), 0, 0, 0) (2.11)

Notice that the δ-function has dimension of fm−3 here. Boosting the energy-
momentum tensor with the 4-velocity uµ using the Lorentz boost matrices from Eq.
(1.17) one obtains

Tµν(~x′) = Λµ
0 Λν

0mδ(3)(x′i − x′ip)
1

u0 =
pµ pν

p0 δ(3)(x′i − x′ip) . (2.12)

Note that the necessary 1
u0 factor is obtained via the δ-function transformation:

d3xδ(3)(xi − xi
p) = d3x′δ(3)(x′i − x′ip) , (2.13)

d3x = u0d3x′ . (2.14)

The primed coordinates x′ here are the lab frame coordinates in contrast to the ones
in the rest frame. For jµ the calculation is analogous.



Interfaces between hydrodynamics and transport 39

2.1.2. Energy-momentum tensor of a wavepacket

As one can see from Eq. (2.9), for finite numbers of point-like particles the energy-
momentum tensor will be non-zero only at the particle positions. For coarse-graining
it is desirable that Tµν is continuous in space. That is why the point-like particles are
not used directly. Instead they are smeared, which may be physically interpreted as
wavepackets in coordinate space.

To introduce a non-pointlike particle one simply replaces the δ-function in space by
a smearing kernel K(~x−~xp, uµ

p, σ), which represents the shape of the wavepacket in
the rest frame. The smearing kernel should satisfy three conditions: K(~r)d3r should be
Lorentz scalar, it should be normalized as

∫
K(~x−~xp)d

3x = 1, and it should approach
a δ-function when the smearing parameter σ approaches zero. Then transforming
from the particle rest frame

Tµν
rest(~x) = diag(mK(~x−~xp), 0, 0, 0) (2.15)

jµ
rest(~x) = diag(K(~x−~xp), 0, 0, 0) (2.16)

exactly as it was done with the δ-function, one obtains:

jµ(~x′) =
pµ

p0 K(~x′ −~x′p(τ)) (2.17)

Tµν(~x′) =
pµ pν

p0 K(~x′ −~x′p(τ)) . (2.18)

Surprisingly, all current popular choices of K in the literature are such that K(~r)d3r
is not a Lorentz scalar:

• Cell averaging: K(~x) =

1/∆V, ~x ∈ ∆V

0, otherwise
. Here K(~x)d3x is not a Lorentz scalar,

since the volume ∆V is not contracted.

• Gaussian distribution with Lorentz contraction in z direction: K(~x) = Nexp
(
− x2+y2+γ2

z z2

2σ2

)
is behaving properly only under boosts in z direction.

• Gaussian in x, y, η coordinates also behaves properly only under boosts in z
direction.
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Let us derive a simple, not too computationally demanding kernel, which satisfies
all aforementioned conditions, in particular K(~x−~xp)d

3x being a Lorentz scalar. In
the rest frame of the particle a Gaussian is taken, assuming that the particle is at the
origin, ~xp = 0:

Kr f (~x) = (2πσ2)−3/2exp(−~x2/2σ2) (2.19)

Let us now express the rest frame coordinates through coordinates ~x′ in the labora-
tory (computational) frame via the Lorentz boost using the matrix from Eq. (1.17).

 t

xi

 =

 u0 ui

ui δij + (1 + u0)−1uiuj

 0

x′j

 (2.20)

The time component on the right hand side is zero because the smearing kernel
needs to be evaluated at a fixed time in the computational frame, not in the particle
rest frame. This derivation is analogous to the standard derivation of the Lorentz
contraction, but the direction of contraction is not necessarily along a coordinate axis.

It follows then that

xi = (δij + (1 + u0)−1uiuj)x′j = x′i + (1 + u0)−1ui(ujx′j) (2.21)

~x2 = xixi = ~x′2 + 2(1 + u0)−1(uix′i)(ujx′j) + (1 + u0)−2(uiui)(ujx′j)2 = (2.22)

= ~x′2 + (ujx′j)2(1 + u0)−1

(
2 +

(uiui)

1 + u0

)
(2.23)

It follows from uµuµ = 1 that uiui = u2
0 − 1 and

(1 + u0)−1

(
2 +

(uiui)

1 + u0

)
= 1 . (2.24)

Therefore,

~x2 = ~x′2 + (ujx′j)2 (2.25)

and the kernel K can be written in the computational frame as
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K(~x′ −~x′p, up, σ) =
u0

(2πσ2)3/2 exp

(
−~x
′2 + (~u~x′)2

2σ2

)
(2.26)

This is the kernel used for all calculations throughout this thesis. The factor u0 was
added to ensure K(x′ − x′p)d

3x′ = Krest(x − xp)d
3xrest, since d3x′ = u−1

0 d3xrest. Let
us check explicitly that the normalization condition is fulfilled. Using the Gaussian
integral

∫ ( n

∏
i=1

dxi

)
e−xi A

ijxj = πn/2 (detA)−1/2 (2.27)

and the fact that the determinant det(δij + uiuj) = u2
0 one indeed finds that

∫
K(~x′ −~x′p)d

3x′ = 1 . (2.28)

It is not a coincidence that the smearing kernel is correctly normalized. It already
follows from the transformation properties, that if it is normalized in one frame, it
is normalized in any frame. One can check that this formula turns into the more
familiar expression from [230], if the particle velocity is directed along the z-axis and
~u = γz(0, 0, βz). Since 1+(γzβz)

2 = γ2
z , it follows that~x′2 +(ujx′j)2 = x′2 + y′2 +γ2

zz′2

and the coincidence of the expressions is established.

The last thing to check is that the smearing kernel approaches the δ-function at
σ→ 0. If this is true in the rest frame, it is true in any frame, so is enough to check it at
the rest frame. This can be immediately seen from the δ-function limit representation

δ(x) = lim
ε→ 0

1√
2πε

e−
x2
2ε . (2.29)

Taking this limit for every dimension one obtains

lim
σ→ 0

Krest(~x−~xp, σ) = δ(3)(~x−~xp) . (2.30)

Finally one notes that the exponential form of the smearing function is by no means
unique. Any normalized function of ~x′2 + (ujx′j)

2 can be incorporated given that in
some limit it gives the δ-function. The reasons to prefer an exponential are firstly,
because it has infinite number of continuous derivatives and secondly, because it
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corresponds to the physical background of the Gaussian wavepacket. An alternative
smearing kernel could be, for example,

Kalternative =


15u0

8πσ3

(
1− ~x′2+(~u~x′)2

σ2

)
|x| < σ

0 |x| > σ

(2.31)

2.1.3. Final expressions for coarse-graining

The derivations from the two previous sections allow to write down the expressions
used in this work for the coarse-graining. Suppose that particles for coarse-graining
are taken from Nev events (Nev transport simulations). Then the following expressions
are valid:

Tµν(~r) =
1

Nev
∑

events
∑

i

pµ
i pν

i

p0
i

K(~r−~ri, ui) (2.32)

jµ(~r) =
1

Nev
∑

events
∑

i

pµ
i

p0
i

K(~r−~ri, ui) (2.33)

K(~r−~ri, u, σ) =
u0

(2πσ2)3/2 exp

(
− (~r−~ri)

2 + (~u · (~r−~ri))
2

2σ2

)
(2.34)

uµ = (u0,~u) =
pµ

m
(2.35)

These expressions in principle allow to compute the energy-momentum tensor and
four-currents on any irregular grid, but in this work only Cartesian grids are used.

2.2. Fluidization
The first interface in hybrid approaches is the transition from transport to fluid,

called fluidization. At fluidization microscopic particles with their coordinates and
momenta have to be converted into a macroscopic continuous hydrodynamic fields:
density, energy density, pressure, etc. In the relativistic case the first step of the
fluidization is the construction of the energy-momentum tensor Tµν and four-currents
jµ as describe above. However, it is by no means guaranteed that they have an
ideal fluid-dynamical form or that they are close to it. Indeed, transport approaches
generally simulate non-equilibrium systems and the Tµν of hydrodynamics is close
to equilibrium. The problem of matching a non-equilibrium Tµν to an equilibrium
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one is relevant for many approaches that construct their initial state from the discrete
degrees of freedom [163–165, 168, 211, 231–233].

This matching problem can be eliminated or minimized by waiting until trans-
port approach reaches equilibrium and only switching to hydrodynamics, when the
necessary degree of equilibration is reached. However, it was argued that a good
description of experimental data requires rather small initialization times of hydrody-
namics (τ ≤ 0.6 fm/c at the highest RHIC energy) [234]. The initial state generated by
transport at this early time is highly off-equilibrium. Such an initial state is suitable for
anisotropic hydrodynamics [188], but in most of the existent approaches it has to be
matched to equilibrium state. The matching procedure is not unique and introduces
uncertainty to the simulation. To demonstrate this uncertainty the matching proce-
dures applied by different approaches are discussed in section 2.2.1. All the discussed
approaches neglect the non-equilibrium part of Tµν.

How good is this approximation? This depends on the degree of thermalization
at the time of fluidization. One way to quantify the degree of thermalization is given
in section 2.2.2. At high energies a number of studies were devoted to understand
the approach to equilibrium in heavy ion collisions. It was studied both in strongly-
coupled and weakly-coupled field-theoretical models (see [235] for an overview). The
strongly coupled ones apply dualities of supersymmetric Yang-Mills gauge theory
for calculations in the strong coupling limit [236, 237]. The weakly coupled ones are
able to achieve fast thermalization in a weak coupling limit, where colliding nuclei
are described in the color-glass condensate framework [127, 238]. The primary effect
in CGC leading to fast thermalization is believed to be plasma instabilities, such as
the chromo-Weibel instability [239]. Both types of approaches predict considerable
momentum space anisotropies at the time, when hydrodynamics is initialized. The
aforementioned studies are relevant for high collision energies. At intermediate
energies thermalization was studied using transport models [240], where momentum
distributions were averaged over a (5× 5× 5) fm3 central cell. This study investigates
global thermalization in a big volume and results in thermalization times much larger
than typical starting times for hydrodynamics. At the same time, it is clear that
thermalization is a local phenomenon. It is reached faster, where the density is higher
and collisions are more intense and probably never reached at the boundary of the
fireball. Therefore, in chapter 3 the deviation from equilibrium at intermediate energies
is studied locally using a coarse-grained transport approach.



Interfaces between hydrodynamics and transport 44

2.2.1. Overview of fluidization in current hybrid models

How do existing approaches perform fluidization, i.e. construct the initial state of
hydrodynamics? How is fluidization time chosen? What fluidization procedures are
applied (it was mentioned already that the procedure is not unique)? This is discussed
in this section.

The modern hybrid models applying fluidization are summarized in Table 2.1. All
the shown approaches need to obtain the ideal fluid part of Tµν and jµ from discrete
degrees of freedom (hadrons, partons, strings). The viscous corrections are neglected
in all models, even if viscous hydrodynamics is applied for the evolution. The only
exception is a recent work by Liu et al. [241], where the initial stage for viscous
hydrodynamics is constructed from free streaming partons and viscous corrections are
explicitly included.

In the relevant approaches [163–165, 168, 211, 231–233] the fluidization is typically
performed either at a constant proper time hypersurface τ = const or at a constant
center of mass frame time hypersurface tCM = const, see Table 2.1. The constant is
often chosen according to the geometrical criterion - the time, when nuclei geometrically
pass through each other: tCM = 2R

γβ = 2R(Elab/2mN)
−1/2, where R is the radius of the

nucleus, ~β is the velocity, γ = (1− ~β2)−1/2, Elab is laboratory frame kinetic energy per
nucleon, and mN is nucleon mass. This time is taken to be the same for all collision
centralities. It was never systematically verified, if the energy-momentum tensor Tµν

and four-currents jµ are close to hydrodynamical form at fluidization. An exception
is the work [244], where the fluidization time t f l is chosen such that the entropy per
baryon does not change any more at t > t f l. The isochronous fluidization has little
physical motivation, it is rather a matter of technical convenience. Indeed, a study has
appeared recently, where fluidization is not isochronous [245].

There are three ways in the literature to match the Tµν and jµ to ideal hydro-
dynamics. The first one is to use only Tµ0, j0, assuming that they have ideal fluid
form Tµν

ideal = (ε + p)uµuν − pgµν, jµ
ideal = nuµ, and adding the equation of state

p = p(ε, n). The following system of equations is then solved (usually iteratively, for
details see [165]):
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Model Initial condi-
tion

Hydro Switching
criterion

Smearing
kernel

Getting
Tµν

ideal

UrQMD
hybrid [163]

UrQMD
cascade

ideal 3+1D,
SHASTA

tCM[fm/c] =

max(2R
√

Elab
2mN

, 1.0)

Gaussian
z-contracted

Tµ0, j0

Skokov-
Toneev
hybrid [231]

Quark-
Gluon-
String-Model

ideal 3+1D,
SHASTA

tCM such
that S/QB =
const

not
mentioned

Tµ0, j0

EPOS [211] Strings
(Regge-
Gribov
model)

ideal 3+1D τ Gaussian
z-contracted

Landau
frame

NeXSPheRIO
hybrid [232,
242]

Strings
(Regge-
Gribov
model)

ideal 3+1D,
SPH

τ = 1 fm/c
[243]

Gaussian in
x, y, τη

Landau
frame

Gale et
al [168]

IP-glasma viscous
3+1D,
MUSIC

τ = 0.2 fm/c
(
√

sNN = 2.76
TeV)

not
mentioned

Landau
frame

Karpenko
hybrid [164]

UrQMD
cascade

viscous 3+1D τgeom Gaussian
with
σ⊥ and ση

Tµ0, j0

Pang et al
hybrid [165]

AMPT ideal 3+1D,
SHASTA

τ Gaussian
with
σ⊥ and ση

Tµ0, j0

Bhalerao et al
hybrid [233]

AMPT viscous
2+1D,
VISH2+1

τ = 0.4 fm/c
(
√

sNN = 2.76
TeV)

Gaussian in
x, y

local CM
frame

Table 2.1.: Fluidization features in different hybrid approaches. Each of these models, includ-
ing those using viscous hydrodynamics, neglects viscous corrections at fluidization.
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T00 = (ε + p)γ2 − p

T0i = (ε + p)γ2~v

j0B = nγ

p = pEoS(n, ε)

(2.36)

The advantage of this method is that it conserves energy and momentum. However,
this method supports switching only to ideal fluid Tµν

ideal, keeping viscous corrections is
hardly possible. Even though the switching method conserves energy and momentum,
one of the models [165], which employs it, violates conservation laws , because in [165]
the whole Tµν is multiplied by a free parameter K, which is then fixed by experimental
multiplicities.

A different procedure takes advantage of the Landau matching condition, deter-
mining the energy density ε and the collective velocity uµ by solving the eigenvalue
problem

Tµνuν = εuµ , (2.37)

using the fact that uµ is a timelike eigenvector of Tµν and satisfies uµuµ = 1. Then
the density n is computed as n = jµuµ. Only after that the pressure is determined from
the equation of state. Note that this way is not equivalent to the previous one: here the
collective velocity does not depend on the equation of state. This method conserves
energy and momentum only if the viscous corrections are kept. If they are neglected
(as in [168,211,232]), then conservation laws are violated. For a simple example assume
that uµ = γ(1, 0, 0, v). In this case, the energy density in the computational frame
is εcomp = γ2(ε + v2T33

L ), where T33
L can be split into the ideal fluid pressure and a

viscous correction. If the correction is neglected, energy conservation is violated.

The third way is applied in [233]. All particles in the cell are boosted to the local
center of mass frame, which moves with velocity ~v = ∑~pi

∑ Ei
, where Ei and ~pi are

energy and momentum of the i-th particle. Energy density is computed as ε(r) =

∑i E′i ·K(~r−~ri), where E′i is the energy of i-th particle in the local center of mass frame,
and K is the smearing kernel. Pressure is determined from the equation of state, local
collective velocity is assumed to be equal to ~v. In this method energy and momentum
conservation are violated, if the viscous corrections are neglected, as in the previous
method.
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2.2.2. Consistency of Tµν and jµ with hydrodynamics

It is important to be able to quantify the deviation of Tµν and jµ from equilibrium. If
the deviation is small enough then one can switch to hydrodynamics. This quantifica-
tion is discussed here. A non-equilibrium energy-momentum tensor and four-currents
can be decomposed as

Tµν = Tµν
ideal + πµν (2.38)

jµ = jµ
ideal + qµ , (2.39)

where Tµν
ideal and jµ

ideal are the energy-momentum tensor and the four-currents of
conserved charges of an ideal fluid defined by Eqs. (1.18-1.19). Such a decomposition
is generally not unique, but depends on the matching conditions. In section 2.2.1 three
kinds of matching conditions used in modern hybrid models are discussed.

For the applicability of hydrodynamics it is required that the corrections to the
ideal fluid-dynamical form of Tµν and jµ are not too large:

||πµν|| � ||Tµν
ideal|| (2.40)

||qµ|| � ||jµ
ideal|| (2.41)

Here ||A|| denotes a norm of tensor A, which satisfies the usual norm definition,
for example ||Aµν|| ≡ Aµν Aµν. Let us rewrite these conditions in a form convenient
for numerical computation. The general expressions for Tµν and jµ in viscous hydro-
dynamics (Landau picture) are the following:

Tµν = ε0uµuν − ∆µν(P0 + Π) + πµν (2.42)

jµ = n0uµ + qµ ,

where Π is the bulk pressure, πµν is the shear stress tensor, n0 is the conserved
quantum number density and qµ is the diffusion current. The viscous corrections to
ideal hydrodynamical Tµν and jµ are supposed to be small:

||πµν|| � ||Tµν|| (2.43)

Π� P0 (2.44)

||qµ|| � n0 (2.45)
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From Eqns. 2.42 one obtains

πµν = Tµν − ε0uµuν +
1
3

∆µν(Tα
α − ε0) (2.46)

P0 + Π = −1
3

∆µνTµν (2.47)

qµ = ∆µ
ν jν (2.48)

One can see that in the Landau rest frame uµ
L = diag(1, 0, 0, 0), π

µ0
L = 0, and q0

L = 0.
The non-zero components are written as follows:

P0 + Π =
1
3
(T11

L + T22
L + T33

L ) (2.49)

π
ij
L = Tij

L − (P0 + Π)δij (2.50)

qi
L = −jiL (2.51)

Let us note that tensor and vector norms are frame-independent, so the consistency
conditions for viscous hydrodynamics can be formulated in any frame. In Eqn. (2.43)
one can substitute ||Tµν|| by its largest component in the Landau frame: ε0. Then Eqn.
(2.43) will turn into

||Tµν
L − diag(ε0, P′, P′, P′)|| � ε0 , (2.52)

where P′ denotes 1
3(T

11
L + T22

L + T33
L ) = P0 + Π. The physical meaning of this

equation is that the diagonal components of Tµν in the Landau rest frame do not
deviate much from P′ and simultaneously the off-diagonal components are small
compared to ε0. The condition for qµ is rewritten as

(j1L)
2 + (j2L)

2 + (j3L)
2 � (j0L)

2 . (2.53)

Here the physical meaning is that relative velocity between Landau and Eckart
frames should be small. To rewrite Π� P0 one has to add an equation of state P0 =

pEoS(ε0, n0) to the system. Then one obtains P′/pEoS(ε0, j0L)− 1 � 1. Consequently,
whether the tensor Tµν is suitable for fluid dynamics or not is also defined by the
equation of state from the fluid dynamics itself. The same Tµν can be consistent with
viscous hydrodynamics with some equation of state, and may fail when the equation
of state is changed. Therefore, we will not study the smallness of bulk corrections
further, but leave this for a future study.
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The conditions for smallness of the shear stress tensor can be split into two: pressure
isotropy and smallness of off-diagonal elements. One has to note that the Landau
frame is defined only up to an arbitrary rotation. Locally one can always choose
coordinates such that T12

L = T23
L = T13

L = 0. However, our coordinates are the global
coordinates of the computational frame and therefore non-diagonal components of
the Tµν

L are in general non-zero. Therefore,

|T11
L − P′|+ |T22

L − P′|+ |T33
L − P′| � ε0 (2.54)

|T12
L |+ |T

23
L |+ |T

13
L | � ε0 (2.55)

To strengthen these conditions, every term is substituted by the right hand side of
the inequality |T11

L − P′| = |T11
L − T22

L + T11
L − T33

L |/3 ≤ |T11
L − T22

L |/3 + |T11
L − T33

L |/3
and ε0 is substituted by by P′. In this way, a set of criteria is obtained that is further
used for numerical calculations.

X ≡ |T
11
L − T22

L |+ |T
22
L − T33

L |+ |T
33
L − T11

L |
T11

L + T22
L + T33

L
� 1 (2.56)

Y ≡ 3(|T12
L |+ |T

23
L |+ |T

13
L |)

T11
L + T22

L + T33
L

� 1

vLE =

√
(j1L)

2 + (j2L)
2 + (j3L)

2/j0L � 1

Z ≡ T11
L + T22

L + T33
L

3 pEoS(ε0, j0L)
− 1� 1

In the following X is referred to as pressure anisotropy and Y as off-diagonality.
Please note that due to the inequality |a− b| ≤ |a|+ |b| it is always fulfilled that X ≤ 2.
For ideal fluid dynamics X = 0. For Y let us remark that

T12∼ ∑
p1p2

p0 ≤
1
2 ∑

p2
1 + p2

2

p0 ∼ 1
2
(T11 + T22) (2.57)

Interchanging indices and substituting this into the definition of Y one gets Y ≤ 3.
For an ideal fluid Y = 0. The measures X and Y are used in chapter 3 to evaluate the
deviation of the Tµν from equilibrium.
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2.2.3. Multicomponent ideal hadron gas equation of state

An equation of state is necessary for one of the fluidization methods, described
in section 2.2.1, as well as for the forced thermalization method in chapter 6 and for
testing the thermodynamical properties of SMASH transport approach in section 5.4.2.
For all these purposes a simple ideal hadron gas grand-canonical equation of state is
used. This equation of state is widely known in literature (see e.g. [240]) and is given
here for reference and completeness.

Suppose that the energy-momentum tensor Tµν, baryon four-current jµ
B and strangeness

four-current jµ
S are constructed from a coarse-grained transport. After their transfor-

mation to the rest frame one obtains the rest frame energy density εrest, the baryon
density nrest

B and the strangeness density nrest
S . The isospin projection density nI3 is not

considered, which is justified, because the isospin chemical potential µI3 is typically
much smaller than µB and µS. To find temperature T, baryon chemical potential
µB and strangeness chemical potential µS the ideal hadron gas equation of state is
employed throughout this thesis:

nrest
B =

T3

2π2(h̄c)3 ∑ giBiλiz
2
i K2(zi) (2.58)

nrest
S =

T3

2π2(h̄c)3 ∑ giSiλiz
2
i K2(zi) (2.59)

εrest =
T4

2π2(h̄c)3 ∑ giz
2
i λi (3K2(zi) + ziK1(zi)) , (2.60)

where the chemical potential µi ≡ µBBi +µSSi corresponds to baryon and strangeness
conservation, zi ≡

mi
T and fugacity λi ≡ exp

(µi
T
)
. Here the sum runs over all hadron

species, mi is the mass of a hadron i, gi is its spin and isospin degeneracy factor, and
Bi and Si are its baryon number and strangeness. The lists of hadronic species used
for the equation of state are slightly different for the investigations in the different
chapters, so they are mentioned at the corresponding places. The system of equations
(2.58-2.60) is solved with respect to temperature and chemical potentials. Then the
equilibrium hadron densities in the rest frame ni and pressure p are computed as

ni =
T3

2π2(h̄c)3 giλiz
2
i K2(zi) (2.61)

p = T ∑ ni (2.62)
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This equation of state does not take into account the effects of quantum statistics
and finite width of the resonances.

2.3. Particlization with Cooper-Frye formula and

negative particle numbers
The second important interface is the transition from hydrodynamics to transport,

the “particlization”. The particlization is the reverse of the fluidization: macroscopic
continuous fields are converted into the microscopic particles. The fluidization is
accompanied by the loss of the microscopic information about the system. At the
particlization, on the contrary, one has to make an assumption about the underlying
microscopic distribution. The most commonly used way of particlization involves
Cooper-Frye formula, which receives the underlying momentum distribution in the
local rest frame f (p) as an input and computes the number of particles crossing a
predefined infinitesimally thin three-dimensional hypersurface Σ. This hypersurface Σ
represents a sharp moving boundary between the transport approach and the hydrody-
namics. The hypersurface is usually determined a posteriori from the hydrodynamical
solution in the whole forward light cone, usually as a hypersurface of constant time,
energy density, temperature, or Knudsen number. Particle distributions on an in-
finitesimal element of hypersurface, dΣ, are then following from the Cooper-Frye
formula:

p0 d3N

d3p
= pµdσµ f (p) , (2.63)

where dσµ a normal four-vector of the hypersurface with length equal to the area of
the infinitesimal surface element. This formula was obtained by Cooper and Frye [153]
with the main feature that it respects four-momentum conservation. Though formula
(2.63) is valid for any f (p), the distribution function is usually assumed to be either the

boosted thermal distribution f (p) = f0(p) =
[

exp
(

pµuµ−µ

T

)
± 1
]−1

(ideal fluid), or

a distribution close to the boosted thermal distribution f (p) = f0(p) + δ f (p) (viscous
fluid), where δ f (p) is the dissipative correction. Here T, µ and uµ = γ(1,~v) are
temperature, chemical potential and the flow velocity of the fluid, respectively.

There is, however, a conceptual problem with the Cooper-Frye formula. Where the
surface is space-like, i.e., its normal vector dσµ is space-like, and pµdσµ < 0 for some ~p.
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Thus if f (p) > 0 for all p, as is the case for the thermal distribution, d3N
d3 p

< 0 for some

~p. This can be easily seen in the local rest frame of a space-like surface (which always
exists since vsur f < c for space-like surfaces), where pµdσµ = ~p ·~n and thus d3N

d3 p
< 0 for

momenta directed inward the surface. On the other hand, for those time-like surfaces
which normal vector points toward the future (i.e., dσ0 > 0), d3N

d3 p
> 0 for any ~p. This

can be also understood as follows: the surface is “escaping” faster than the speed of
light, so no particle can cross it inward. (For a summary of the properties of time-like
and space-like surfaces, see Table 2.2).

time-like surface space-like surface

time-like normal space-like normal
dσµdσµ > 0 dσµdσµ < 0

vsur f > c vsur f < c
∃ RF: dσµ = (± dx dy dz, 0, 0, 0) ∃ RF: dσµ = (0, 0, 0, dt dx dy)

dσ0 > 0⇒ ∀pµ: pµdσµ > 0 ∃pµ: pµdσµ < 0

dσ0 > 0⇒ ∀pµ: d3NCF
d3 p

> 0 ∃pµ: d3NCF
d3 p

< 0

Table 2.2.: Properties of surface elements. gµν = (1,−1,−1,−1). The normal vector is directed

toward lower density. RF abbreviates Reference Frame, d3 NCF

d3 p
denotes particle dis-

tribution from the hypersurface element calculated using the Cooper-Frye formula.

If d3N
d3 p

is interpreted as a phase-space density, negative values of it are clearly un-

physical, but instead of giving a literal phase-space density, the Cooper-Frye formula
rather counts the world lines of particles crossing the surface element dΣ, and assigns
positive weight to particles moving “outward” and negative weight to particles mov-
ing “inward”. Thus the negative values of d3N

d3 p
, the so-called negative Cooper-Frye

contributions, refer to particles flying inward toward the hydrodynamical region, and
which should thus be absorbed back to the fluid.

In pure hydrodynamical models, this poses a problem: Particlization takes place at
freeze-out when rescatterings cease, and particles stream freely. Thus, once particles
cross the particlization surface, there is nothing from where particles could scatter
back toward the surface, and thus there should be no particles flying back. To avoid
this problem, one could choose a completely time-like particlization hypersurface,
for example a hypersurface of a constant time without any negative contributions.
However, it was shown [246] that particle spectra obtained in such an approach are
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dramatically different from spectra on a constant temperature hypersurface. Another
way is to consider a cut-off distribution [247]: p0 d3N

dp3 = pµdσµ f (p)Θ(pµdσµ). Such

a prescription violates conservation laws, unless one adjusts temperature, chemical
potentials, and flow velocity in the particle distribution f (p) [248, 249].

On the other hand, there is no such a problem in hybrid models. Particlization takes
place where rescatterings are abundant, and thus it is natural to have particles flying
back to the fluid-dynamical region. The problem is rather a practical one: What does
the negative weight of a particle mean when one samples the particle distributions at
the particlization surface to create an initial state for the hadron transport? Usually
one simply ignores them (see e.g. Ref. [230]), which violates conservation laws. An
attempt to include these negative weights to the hadron transport was recently made
in Ref [250]. Alternatively, if the transition from fluid to transport takes place in a
region where hydrodynamics and transport are equivalent, the negative Cooper-Frye
contributions coincide with the distribution of particles that backscatter to hydrody-
namical region. Thus all one needs to do is to remove these particles from the cascade,
but this removing is technically challenging, and the problem remains how to find
the region where hydrodynamics and transport lead to equal solutions—assuming
that such a region exists at all! Thus the ultimate solution to the problem would be
to construct a model, solving coupled hydrodynamical and kinetic equations with
the kinetic model providing boundary condition for hydrodynamics. An attempt in
this direction was taken by Bugaev [218, 251, 252], but these ideas have not yet been
implemented in practice.

Fortunately, at high collision energies, the explosive expansion dynamics keeps
the negative contributions on the level of a few percent. The emission of particles
from time-like areas of the surface where no negative contributions appear (so-called
volume emission) is much larger than the emission from space-like areas (so-called
surface emission), and as will be discussed later, large fluid flow velocities reduce
negative contributions from space-like surfaces. Nevertheless, there are very few
studies that actually quote the values of negative contributions, and investigations at
lower collision energies were lacking completely, before the investigation [1], that is
presented in chapter 4.



Chapter 3.

Deviation of Tµν from equilibrium in
Au+Au collisions at Elab = 5–160 A GeV

The importance to quantify the deviation of the local energy-momentum tensor from
equilibrium is discussed in 2.2. This quantification allows to assess the uncertainty aris-
ing from neglecting the non-equilibrium part of Tµν at fluidization, an approximation
adopted by most of the existing approaches (see section 2.2.1 for details).

Therefore, the following questions are addressed here for Au+Au collisions at
Elab = 5–160 A GeV, varying the collision centrality and nuisance parameters:

• How far away are Tµν and jµ from the ideal fluid form at the time of geometrical
overlap — typical fluidization time in many approaches?

• What are the main sources of deviation from equilibrium?

• Is there a better fluidization criterion? Should it depend on centrality?

3.1. Methodology to quantify off-equilibrium

contributions in Tµν and jµ

The calculation is based on the hadronic transport approach called Ultra-relativistic
Quantum Molecular Dynamics (UrQMD 3.4) [197,253], which is similar to the SMASH
transport approach described in detail in chapter 5 . The degrees of freedom in UrQMD
are hadrons, resonances up to a mass of 2.2 GeV and strings and the implemented
processes include binary elastic and inelastic scatterings which mainly proceed via
resonance formation and decays or string excitation and fragmentation at higher

54
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collision energies. The UrQMD particles move along classical trajectories and scatter
according to their free-particle cross-sections. In this study no long range potentials
are employed and particle trajectories between collisions are always straight lines.
Using UrQMD Au + Au collisions at laboratory frame energies Elab = 5, 10, 20, 40, 80
and 160 A GeV are simulated.

The general procedure for the calculations is:

1. Generate many UrQMD events and coarse-grain them using a 2+1D space-time
grid. The space dimensions are chosen to be the event plane xz. A 2+1D grid and
not 3+1D is chosen, because observing the behaviour of some quantity on a 2D
surface versus time is much easier and informative for a human than observing
a quantity on a 3D grid. Additionally, in central collisions due to symmetry the
event plane completely characterizes all the volume. The center of mass frame is
used as the computational frame in the simulation. In all the following text the
time is measured in the center of mass frame. By the UrQMD convention t = 0 is
the moment when the contracted spheres of the nuclear radius first touch each
other in a central collision.

2. Particles from the generated events are used to construct the energy-momentum
tensor Tµν(t, x, z) locally for each grid cell as described in section 2.1.3. To com-
pute Tµν only participants are taken into account, i.e. the particles that took part
in at least one collision.

3. Transform the constructed energy-momentum tensor in each grid cell to the
Landau rest frame according to Eq. (2.37).

4. Verify the weak conditions given by Eqn. (2.56) locally in time and space. The
conditions for smallness of pressure anisotropy, off-diagonality, Eckart velocity
relative to Landau are tested. The condition for smallness of bulk pressure
compared to pressure is ignored, because it depends on the equation of state,
which can be different for different models that use fluidization.

This procedure is nothing but the fluidization of hybrid models with the additional
quantification of the deviations from equilibrium.
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3.2. Sensitivity to statistics, grid spacing and smearing
Before showing the final results, in this section the influence of nuisance parameters

is investigated. Let us first consider the influence of the number of Monte-Carlo events
used to produce Tµν and jµ.

The deviations of Tµν in the simulation from the ideal fluid Tµν
ideal can have two

distinct reasons. The first one is the deviation of the distribution function f (~r,~p) in the
transport approach from equilibrium, this reason is referred to as physical. The second
reason is statistical: due to finite number of particles in the simulation, the distribution
function is not sampled exactly.

Let us consider two energy-momentum tensors: calculated from particles Tµν
part and

a ”true” Tµν:

Tµν
part(~r) =

1
Nev

∑
events

∑
i

pµ
i pν

i

p0
i

K(~r−~ri, pi) (3.1)

Tµν(~r) =
∫ pµ pν

p0 f (~r,~p)d3p (3.2)

Here Nev is the number of events and K(~r − ~ri, pi) is a smearing kernel. The
particular form of the kernel is discussed in section 2.1.2. In the limit of Nev→∞

1
Nev

∑
events

∑
i

K(~r−~ri, pi)
Nev→∞−−−−→ (3.3)∫

d3p d3r′ f (~r′,~p)K(~r−~r′)

For the case of a Gaussian kernel and σ→ 0, the kernel turns into a δ-function and
one retains the ”true” Tµν. To combine these two limits (σ→ 0, Nev→∞) one has to
keep enough particles within a volume of size σ3. Consequently, to obtain the ”true”
Tµν in the simulation, one has to take the limit (ρ is the particle number density)

σ→ 0, Nev ρ σ3→∞ (3.4)

This creates practical limitations for determining the ”true” Tµν in simulations:
decreasing σ by a factor of 10 demands increasing the statistics by a factor of 1000!
Also see regions with lower density are more demanding with respect to statistics. To
get some insights into the effect of statistics, an auxiliary simulation is performed: N



Deviation of Tµν from equilibrium in Au+Au collisions at Elab = 5–160 A GeV 57

(a)

pressure anisotropy,
N pions,
thermal distribution
X = 0.3

X

0

0.5

1.5

2

number of pions N
1 10 100 1000

(b)

off-diagonality,
N pions,
thermal distribution
Y = 0.3

Y
0

0.5

1.5

2

number of pions N
1 10 100 1000

Figure 3.1.: Pressure anisotropy X (panel a) and off-diagonality Y (panel b) of Tµν for particles
sampled according to thermal distributions. The effect of statistics on the deviation
of energy-momentum tensor from the ideal fluid one is demonstrated.

pions are generated, their momenta being sampled from a thermal distribution with
an ad-hoc temperature of T = 0.2 GeV, then ∑ pµ pµ

p0 is computed, pressure isotropy X

and off-diagonality Y of the energy-momentum tensor from Eq. (2.56) are calculated.
The number of pions N was varied and X and Y are plotted versus N. The results can
be seen in Fig. 3.1. For every point the simulation was repeated 100 times and the
standard deviation is displayed as an error. For the thermal distribution X = Y = 0 in
the limit of N→∞, so Fig. 3.1 demonstrates a pure effect of sampling a finite number
of particles.

Fig. 3.1 can be used to specify the number of events needed to reach a good enough
approximation to the ”true” Tµν. For example, for Y = 0.3 as an acceptable level, the
condition of Eqn. 3.4 becomes Nevρσ3 > 100. From Fig. 3.1 one can also see that the
off-diagonality Y is more sensitive to statistics than the pressure isotropy X.

In the previous paragraph the effect of statistics itself was considered rather as
an obstacle to get the physical ”true” Tµν. However, recently event-by-event simu-
lations gained popularity, where the initial state for hydrodynamics is intentionally
constructed from a small number of events to include the fluctuations. Let us see,
how the number of events influences deviations of Tµν from the ideal form in heavy
ion collisions. The Tµν was computed locally on every point of the grid, and as a
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Figure 3.2.: Event plane area percentage, where the pressure isotropy X (panel a) or off-
diagonality Y (panel b) does not exceed 0.3 versus time for different number
of events Nev used to construct Tµν. Number of events Nev = 1 corresponds to the
event-by event case. The dotted line marks the geometrical overlap time.

general characteristic the percentage of the event-plane area is chosen, where X < 0.3
(Y < 0.3). To define the total area numerically, only grid cells, where pressure p > 10−4

GeV/fm3 are taken into account. For this example Au+Au collisions at E = 80A GeV
with the impact parameter b = 6 fm are considered. The smearing parameter σ is 0.8
fm. Results are depicted in Fig. 3.2.

One can see that for this given σ 1000 events are enough for X to saturate, so the
line for Nev = 1000 represents results for the physical pressure isotropy, i.e. due to de-
viation of f (~r,~p) in the transport from equilibrium. For Y at Nev = 10000 almost all the
event area has small off-diagonality, which means that the physical off-diagonality is
small. For event-by-event simulations deviations of Tµν from ideal fluid are dominated
by statistical effects.

In addition to the effect of statistics the effect of other nuisance parameters was
investigated, i.e. the grid spacing and the Gaussian smearing. According to Fig. 3.3,
the grid spacing does not influence the results, if taken sufficiently small. This is
expected, because the grid does not participate in the simulation or in the calculation
of Tµν, it only determines the resolution of the Tµν output. The only effect of the grid
spacing is on the precision of the area calculation by counting cells, here the resolution
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Figure 3.3.: Event plane area percentage, where pressure isotropy X does not exceed 0.3.
Au+Au versus time. E = 80A GeV, centrality b = 6 fm, number of events Nev =
1000. Gaussian smearing σ (right) and grid spacing ∆x = ∆z (left) are varied to
study sensitivity of results to them.

of the output matters. At early times, it makes some difference, because the total area
is small. That is why in the following ∆x = ∆z = 0.6 fm was chosen. At the same time
the Gaussian width σ influences the results very significantly, as it can be seen from
Fig. 3.3. The effect of σ is twofold: on the one hand a larger σ means effective increase
of statistics. On the other hand, if the pressure anisotropy is large at some space point
due to physics, the Gaussian smearing will spread this asymmetry in a 1-2 σ radius.

To characterize the influence of σ in a simpler way, tiso versus σ was plotted, where
tiso is the earliest time when at least 50% of the area have X < 0.3. Let us refer to
this time as isotropization time as it is further described in the following Section. In
Fig. 3.4 this dependence is displayed, the isotropization time is monotonously growing
with σ and is approaching the geometrical time for σ→ 0. Taking the limit σ→ 0 is
computationally challenging, because one has to increase statistics as σ−3, as shown
previously. Instead a reasonable value σ = 0.8 fm was chosen and systematic errors
were assigned to our results, corresponding to changing σ in the range (0.6− 1.0) fm.
Another justification for this treatment is that none of the existing models attempts
to consider the ”physical” limit of σ→ 0, Nevρσ3→∞, all the models use some fixed
width instead.
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Figure 3.4.: Isotropization time (such time that more than 50% of event plane area have pres-
sure isotropy X < 0.3) versus σ.

Figure 3.5.: Space-time evolution of the pressure anisotropy X = |T11
L −T22

L |+|T
22
L −T33

L |+|T
33
L −T11

L |
T11

L +T22
L +T33

L
(see color scale above the Fig.) for collision energy Elab = 80 A GeV and impact
parameter b = 6 fm. If the value of X exceeds color map maximum, it is marked
with the same color as maximum. Solid lines mark the positions of the nuclei, if
they would not interact.

3.3. Results
While in the previous section the effects of nuisance parameters on the energy-

momentum tensor generated from particles were studied, here the dependence on
physical parameters is considered, namely collision energy and centrality. All the
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Figure 3.6.: Example for the behaviour of the pressure anisotropy versus time in Au+Au
collisions at Elab = 80 A GeV and impact parameter b = 6 fm.

following figures are shown for grid spacing ∆x = ∆z = 0.6 fm, Gaussian smearing
σ = 0.8 fm, and number of events Nev = 1000. The smearing kernel is defined as in
section 2.1.3.

3.3.1. Pressure anisotropy

The pressure anisotropy X satisfies the following properties: X ≤ 2 for any tensor
and X = 0, if and only if T11

L = T22
L = T33

L as it is for an ideal fluid. For viscous
hydrodynamics it is necessary that X � 1. Here Xcrit = 0.3 is considered as a limiting
value, when viscous hydrodynamics is still applicable. Changing Xcrit to 0.4 leaves
one with qualitatively the same results and conclusions. Fig. 3.5 gives a qualitative
impression of the space-time evolution of the pressure anisotropy. Even though the
figure shows a particular energy of Elab = 80A GeV and centrality b = 6 fm, some
features are universal for all energies and centralities that were considered:

• On the borders of the expanding system the anisotropy is always high, thus these
regions are never consistent with viscous hydrodynamics.

• After some moment of time a relatively isotropized central region rapidly expands
and never disappears completely during the time evolution

To make quantitative statements let us consider the evolution of the pressure
anisotropy at several points along the x axis (z = 0) versus time. This is shown in
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Figure 3.7.: Percentage of area in the event plane, where pressure anisotropy X < 0.3, for
Au+Au collision energies Elab = 5, 10, 20, 40, 80, 160 A GeV (panels (a) - (f)
correspondingly).

Fig. 3.6. One can see that in the beginning the anisotropy is almost maximal, then it
rapidly decreases and never rises too much again. As shown in the previous section,
Nev = 1000 is enough to suppress the anisotropy due to statistics, so the behaviour of
X in Fig. 3.6 is dominated by physics. However, the impact of statistical fluctuations
can be observed already at t > 5 fm/c: X starts to fluctuate in space and time. One
can see this both in Fig. 3.5 at later times and in Fig. 3.6.

After looking at the space-time evolution of the anisotropy in 2D as in Fig. 3.5 for
different energies, one gets the impression that there is a special moment tiso for each
energy and centrality, before which pressures are highly anisotropic in the whole event
plane and after which there emerges a considerable isotropic region. To quantify this
feeling let us consider the ratio of the area, where X < 0.3 to the total area versus
time. From Fig. 3.7 one can see that there is indeed a steep rise of the isotropized area
at some point in time for every considered energy and centrality. Let us define the
isotropization time tiso such that more than 50% of the area has X < 0.3 at t = tiso. The
behaviour of this isotropization time versus energy and centrality is compared to the
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Figure 3.8.: Isotropization time tiso (see definition in the text) versus energy and centrality.

geometrical criterion in Fig. 3.8. One can see that the isotropization time decreases
with energy, but remains larger than the geometrical criterion for all energies except
5A GeV. It is interesting to note that the isotropization time differs with centrality:
for larger impact parameters b it slightly increases. One might assume that this has
a pure geometrical reason: t0 = 0 is chosen in UrQMD as a moment when nuclei
touch each other in a central collision. However, for peripheral collisions the nuclei

will only touch at t0(b) = R
γv (1−

√
1− (b/2R)2). In Fig. 3.9 one can see that this

naive expectation yields the right trend: tiso rises with centrality and the rise is smaller
for higher energies. However, quantitatively it overestimates tiso for large impact
parameters.

Let us compare the above findings to the study by Bravina et al. [240], where
one central cell of (5× 5× 5) fm3 was chosen to study the pressure anisotropy of the
energy-momentum tensor in Au+Au collisions. An isotropization time was defined,
and it did not change significantly after zooming into the central cell to (1× 1× 1) fm3.
This allowed for the conclusion that isotropization happens rapidly in a large volume.
The isotropization time determined in this study also decreases with collision energy.
All of these results are confirmed in the present study. However, our isotropization
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Figure 3.9.: Isotropization time tiso (see definition in the text) versus centrality. The dotted
lines represent the naive expectation from the collision geometry: tiso(b) = tiso(b =

0) + R
γv (1−

√
1− (b/2R)2).

times are smaller than the ones obtained by Bravina et al. There are two possible
reasons for that. First, the criterion for isotropization used here is less strict: while
here at least 50% of event plane area to have X < 0.3 is required, the central cell
study demands pz/px − 1 < 0.1 in the whole cell, which corresponds to X < 0.065.
Secondly, here only the deviation of the energy-momentum tensor from equilibrium
is considered, but in the study [240] also deviations of hadron multiplicities from
equilibrium are taken into account.

3.3.2. Off-diagonality of Tµν in the local rest frame

The off-diagonality Y = 3(|T12
L |+|T

23
L |+|T

13
L |)

T11
L +T22

L +T33
L

characterizes the size of the off-diagonal

components of the stress tensor compared to the pressure. In ideal hydrodynamics
Y = 0. For the applicability of viscous hydrodynamics it is necessary that Y � 1.
Here Ycrit = 0.3 is considered as a value, after which viscous hydrodynamics is hardly
applicable. An example for the space-time evolution of Y is given in Fig. 3.10. From
this Fig. it can be seen that in the central region Y is always small. On the boundaries
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Figure 3.10.: Space-time evolution of the off-diagonality Y = 3(|T12
L |+|T

23
L |+|T

13
L |)

T11
L +T22

L +T33
L

(see color scale

above the Fig.) for collision energy Elab = 80 A GeV and impact parameter b = 6
fm. If the value of Y exceeds color map maximum, it is marked with the same
color as maximum. Solid lines mark the positions of the nuclei, if they would not
interact.

Figure 3.11.: Space-time evolution of relative velocity between Landau and Eckart frames

vLE =
√
(j1L)

2 + (j2L)
2 + (j3L)

2/j0L (see color scale above the Fig.) for collision
energy in lab frame E = 80A GeV, centrality b = 6 fm. If the value of vLE exceeds
color map maximum, it is marked with the same color as maximum. Solid lines
mark the positions of the nuclei, if they wouldn’t interact.

Y is typically large due to statistical effects. A quantitative study similar to the study
of the pressure isotropy X shows that for all considered energies and centralities more
than 80% of the event plane area have Y < 0.3 for the whole time of the evolution.

3.3.3. Relative velocity between Landau and Eckart frames

The relative velocity between Landau and Eckart frames for the baryon charge vLE

is shown in Fig. 3.11. At high enough statistics the relative velocity between Eckart
and Landau frames is not an important factor. It is significant only on the borders of
the system, where the density is small and statistical effects play a role. But in all the
rest of the volume, for all the considered time evolution it remains small.
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Figure 3.12.: The effect of pT < 2 GeV and |y| < 1 cuts on the space distribution of the

pressure anisotropy X = |T11
L −T22

L |+|T
22
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L −T11

L |
T11
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L
(see color scale above the Fig.)

for collision energy Elab = 80 A GeV and impact parameter b = 6 fm. If the value
of X exceeds color map maximum, it is marked with the same color as maximum.
Solid lines mark the positions of the nuclei, if they would not interact.

3.3.4. The effect of momentum-space cuts

Previously, all participants were included into the Tµν calculation. However, it
is generally believed that soft particles at midrapidity thermalize faster, therefore it
might be insightful to impose cuts in momentum space, if one wants to obtain a more
isotropic Tµν. On the other hand, applying transverse momentum pT and rapidity y
cuts on a perfectly symmetric distribution results in an asymmetry. In addition, these
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cuts decrease the statistics, which leads to an increase of the anisotropy. To study the
effect of the kinematic cuts on the space distribution of the pressure anisotropy X,
Tµν was constructed only from particles with pT < 2 GeV and |y| < 1 . The effect
of cuts on X over space is shown in Fig. 3.12. The statistical effect does not play
a significant role, because the results do not change after increasing the number of
events from Nev = 103 to 104. The large anisotropy at very early times decreases after
imposing cuts. But the anisotropy at later times is strikingly larger with cuts, first of
all in the regions behind the nuclei. While without cuts it was possible to introduce an
”isotropization time”, when X is smaller than 0.3 at more than 50% of the area, with
the cuts the anisotropy is so high all over the space that the isotropization time cannot
be introduced anymore.

3.4. Summary and discussion
The assumption of rapid equilibration was tested at Elab = = 5–160 A GeV using

the coarse-grained UrQMD transport approach. The energy-momentum tensor was
studied locally in space and time and its deviation from the ideal fluid form was
quantified with two numbers: the pressure anisotropy X and the off-diagonality Y.
First of all, it was shown that X and Y depend on the number of UrQMD events Nev

used to construct Tµν. Low statistics implies large deviations, even if the underlying
distribution function is completely thermal and isotropic. An initial state constructed
from less than a few hundred events (or a few hundred testparticles equivalently) is
bound to deviate strongly from the ideal fluid form. The off-diagonality appears to be
mostly produced by this statistics effect. For large statistics Y tends to be small in all
the collision region at all times. The pressure anisotropy does not vanish with large
statistics, it is a physical effect related to the anisotropy of the underlying distribution
function f (~r,~p). As a consequence, the initial state from UrQMD with enough statistics
is suitable for anisotropic hydrodynamics.

Unfortunately, all the results depend on the smearing parameter σ. With larger
σ isotropization is reached later, but the degree of isotropization is higher. From a
practical point of view that means that selecting large σ one has to take larger fluidiza-
tion time. This is in agreement with conclusion of [254] that a larger fluidization time
should be taken for larger σ to obtain the same pion yield. However, strictly speaking,
the physical limit is σ→ 0, σ3ρNev→∞. It was found that at small σ the isotropization
time approaches the time of geometrical criterion tgeom = 2R(Elab/2mN)

−1/2, so the
rapid isotropization at the time of geometrical overlap is partly justified, but only
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in the above mentioned limit. In the existing models the smearing parameters and
statistics are such that at tgeom the anisotropies are very high.

For the pressure anisotropy X it was observed, that it exhibits a similar pattern
for all the considered collision energies and centralities: there is a narrow interval
of time, when it rapidly drops in a considerable volume. This feature allowed us
to introduce and study the isotropization time tiso. The time tiso can be considered
as the time, when UrQMD starts to be compatible with viscous hydrodynamics.
At t < tiso the pressure anisotropy X is too high for viscous hydrodynamics to be
applied. Isotropization time decreases with collision energy, following the same trend
as the geometrical overlap time. Based on this finding a new fluidization criterion is
suggested: tiso = tgeom(E)+∆t0(σ), where ∆t0 depends only on the Gaussian smearing
σ and can be determined from Fig. 3.4. A slight dependence of the isotropization time
on centrality was observed: it increases with impact parameter, but the slope of this
increase becomes smaller and smaller for higher energies. This behaviour has a simple
geometrical interpretation.



Chapter 4.

Cooper-Frye contributions in Au+Au
collisions at Elab = 5–160 A GeV

In most heavy ion collision simulations involving relativistic hydrodynamics, the
Cooper-Frye formula (see section 2.3) is applied to transform the hydrodynamical
fields to particles. As it was discussed in section 2.3, under certain circumstances
Cooper-Frye formula can produce negative numbers of particles, the so-called nega-
tive contributions. Here the magnitude of negative contributions is investigated as
a function of the hadron mass, collision energy in the range of Elab = 5–160 A GeV,
collision centrality and the energy density transition criterion defining the particliza-
tion hypersurface. The microscopic results are compared to negative contributions
expected from hydrodynamical treatment assuming local thermal equilibrium. This
chapter is based on publication [1].

4.1. Methodology
The calculation is based on the hadronic transport approach - Ultra-relativistic

Quantum Molecular Dynamics (UrQMD 3.3p2) [197, 253], already introduced in chap-
ter 3. In this study no long-range potentials are included and particle trajectories
between collisions are always straight lines. Au + Au collisions are simulated with
UrQMD at laboratory frame energies Elab = 5, 10, 20, 40, 80 and 160 A GeV. This
energy region is chosen because UrQMD provides a reasonable description of the
collision dynamics at those energies, and the Cooper-Frye negative contributions are
expected to become significant in this energy range.

The general procedure for our calculations is:

69
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1. Generate many UrQMD events and coarse-grain them on a 3+1D Cartesian space-
time grid. The energy-momentum tensor Tµν and baryon four-current jµ

B are
computed as described in the section 2.1. The grid cell sizes need to be small
enough, so that gradients of all relevant physical quantities within the cell are
small. On the other hand, if the cell sizes are too small one needs to generate
infeasibly many events to damp statistical fluctuations of the Tµν components
from cell to cell, and obtain a smooth surface Σ. To satisfy these conditions and
to ensure energy conservation precisely we choose ∆x = ∆y = 1 fm, ∆z = 0.3 fm
and time step ∆t = 0.1 fm. For the highest collision energy, Elab = 160A GeV, the
gradients are larger, so even smaller grid sizes were taken: ∆x = ∆y = 0.3 fm
and ∆z = 0.1 fm. This choice is further discussed in the section 4.2, where the
sensitivity of results to the grid size is studied. As discussed further in the section
4.2 N = 1500 events are enough to obtain stable results.

2. Find the local energy density in the Landau rest frame of each grid cell, εLRF(t, x, y, z),
and the collective flow velocity in each cell, ~v(t, x, y, z) as described in section 2.2,
according to Eq. (2.37). To apply the Cooper-Frye formula one needs the temper-
ature T and chemical potentials, which do not exist in the microscopic picture.
Strictly speaking they make sense only in the vicinity of thermal and chemical
equilibrium, which may not be the case in our UrQMD simulation. Nevertheless,
the Landau rest frame energy density and net baryon density obtained from
UrQMD are substituted to the ideal hadron resonance gas equation of state (Eqs.
2.58-2.60) to obtain T and chemical potentials, as in the case when deviations
from equilibrium are small. The particle list in the equation of state coincides
with the list of particles in UrQMD. Zero strangeness density is assumed, even if
UrQMD itself allows local non-zero strangeness.

3. Construct the hypersurface Σ of a constant energy density εLRF(t, x, y, z) = εc. In
this way the transition surface in hybrid models is mimicked, which is typically
constructed at energy densities εc = 0.3–1 GeV/fm3 [230]. The isosurface is con-
structed using the Cornelius subroutine [230], that provides a continuous surface
without holes and avoids double counting of hypersurface pieces. The subroutine
provides the normal four-vectors dσµ of the hypersurface. The physical quantities
on the grid, i.e., the energy, net baryon density and the flow velocity, are linearly
interpolated to the geometrical centers of the hypersurface elements.
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4. Calculate the particle spectra on Σ by using the Cooper-Frye formula and by
counting the actual UrQMD particles that cross Σ. To obtain these spectra and to
compare them to each other is the goal of the computation.

This procedure mimics switching from hydrodynamics to transport in a hybrid
model, but here the ”hydrodynamical” picture is obtained by averaging over particle
distributions on a space-time grid. Since all the information is still available in the
underlying microscopic approach, it was possible to compare the negative Cooper-Frye
contributions to the spectrum of actual backscattered particles.

Cooper-Frye formula is applied on the hypersurface. The spectrum from the
Cooper-Frye formula is split into positive and negative parts:

dN+
CF

pTdpTdϕdy
=

g

(2π)3

∫
σ

Θ(pµdσµ) pµdσµ

e(pνuν−µ)/T ± 1
(4.1)

dN−CF
pTdpTdϕdy

=
−g

(2π)3

∫
σ

Θ(−pµdσµ) pµdσµ

e(pνuν−µ)/T ± 1
(4.2)

To evaluate dN/dy or dN/pTdpT the integrations are performed numerically, ap-
plying the 36× 36 points Gauss-Legendre method to integrals transformed to finite
limits.

For comparison with the Cooper-Frye calculation we count the actual microscopic
particles crossing the same hypersurface Σ that is used for Cooper-Frye calculations.
Inward and outward crossings are counted separately. Note that ε > εc inside the
surface and ε < εc outside of it. This is used to find where a particle trajectory crosses
Σ: the energy density is interpolated to the particle trajectory to find the point where
ε− εc changes sign. Each crossing of Σ is counted as positive, if the particle streams
outward and negative, if the particle flies toward higher energy densities.

Both the Cooper-Frye calculation and the particle counting start at the same time
tstart, which depends on the collision energy. Following the prescription from hybrid
models, tstart =

2R
vγ is taken. This is the time two nuclei need to pass through each other.

Numerical values are shown in Tab. 4.1. The same tstart is used for all centralities.
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Elab, A GeV tstart, fm/c

5 8.0
10 5.6
20 4.0
40 2.8
80 2.0

160 1.4

Table 4.1.: The geometrical overlap time tstart versus collision energy Elab. Both the Cooper-
Frye calculation and the particle counting start at the time tstart =

2R
vγ .

4.2. Sensitivity to internal parameters and fulfillment of

conservation laws
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Figure 4.1.: Sensitivity of results to internal parameters of the simulation: grid spacing along z
axis, dz (a), number of events, N (b) and the width σ of Gaussian smearing (c).

Besides physical parameters like the beam energy, Elab, and centrality of the colli-
sion controlled by the impact parameter b, our simulation contains internal parameters
like grid spacing, the width of the smearing Gaussian σ, and the number of events
N. Ideally, one should work in a region of internal parameters, where the results are
independent of them. To see how sensitive our results are to these internal parameters,
the positive and negative contributions to the pion yield at midrapidity, dN

dy |y=0, at
different values of these parameters are evaluated.

The calculation is more sensitive to the grid spacing in z direction, dz, than to the
spacings in x and y directions, dx and dy, since gradients of Tµν are largest in the
longitudinal direction. Although, as shown in Fig. 4.1 a), even the sensitivity to dz
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Figure 4.2.: Energy flux through the surface at different times evaluated as actual flow,
∆E1(t)/dt =

∫ t
t−dt Tµ0dσµ/dt (circles), and as a difference in energy within the sur-

face at different times, ∆E2(t)/dt = (Ein(t)− Ein(t− dt))/dt (rectangles). Lower
panel shows the relative difference between these two measures in %, and thus the
conservation of energy in the calculation.

is weak over a reasonable range of values. The main motivation for choosing the
grid spacing and time step comes in fact from the requirement of energy conservation
discussed later.

The results are very sensitive to the small number of events (see Fig. 4.1 b), but
already N = 500 events provides sufficient statistics for stable results. To be on the
safe side, we have analyzed N = 1500 events for our final results. Unfortunately, our
results are not completely independent of the width σ of the Gaussian smearing, as
shown in Fig. 4.1 c). The number of inward crossing UrQMD pions is most sensitive
to σ. Two effects play a role here: for small σ the surface still has large statistical
fluctuations and small scale structures, “lumps” (See Fig. 2 of Ref [226]), whereas at
large σ the smearing pushes transition surface further out in space. Further out the
densities are smaller, and the UrQMD particle distributions are further away from
equilibrium so that especially the number of particles moving toward the center is
strongly reduced. We choose σ = 1 fm as a reasonable value for our calculations,
but keep in mind that varying σ in the range from 0.6 fm to 1.4 fm causes ∼ 20 %
difference in the number of inward crossings. We consider this a systematic error in
our analysis, but fortunately this uncertainty does not affect our main conclusions.
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To check that energy is conserved in the coarse-graining procedure, we evaluate
the energy flow through the surface during the time step dt, ∆E1(t) =

∫ t
t−dt Tµ0dσµ,

and compare it to the change in energy within the surface during the same time step,
∆E2(t) = Ein(t)− Ein(t− dt), where Ein is total energy of particles inside the surface.
Ideally ∆E1(t) = ∆E2(t) for any dt, but finite cell sizes limit the precision and break
the conservation of energy. The accuracy of ∆E1 ≈ ∆E2 improves when grid spacing
and time step are decreased. Fig. 4.2 shows the energy flux through the surface and
the relative difference between ∆E1(t) and ∆E2(t) in central collisions at energies
Elab = 10, 40, 160A GeV. To achieve better than 5% percent accuracy at all times, small
grid spacing is used with ∆x = ∆y = 1 fm, ∆z = 0.3 fm, and time step ∆t = 0.1 fm/c
in collisions with Elab ≤ 80A GeV, and an even finer grid with ∆x = ∆y = 0.3 fm,
and ∆z = 0.1 fm for collisions at Elab = 160A GeV. When integrated over the whole
collision time, the violation of energy conservation is less than 1% at all collision
energies. A similar check was performed for the net baryon charge, and similar results
were obtained.

4.3. Magnitude of negative Cooper-Frye contributions

estimated from the coarse-grained transport approach
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Figure 4.3.: Upper panel: Hypersurface of constant LRF energy density ε(t, 0, 0, z) = εc = 0.3
GeV/fm3. Lower panel: The fraction of hypersurface elements with (apparent)
temperature T in central Au+Au collisions at the collision energy of Elab = 5, 10,
20, 40, 80, 160A GeV.

Let us start by investigating the properties of the transition hypersurface itself as
a function of beam energy. Figure 4.3 depicts the surface Σ in longitudinal direction
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along the x axis. One can see that with increasing energy, the lifetime of the system
increases. This indicates longer lasting surface emission (from space-like parts of the
surface), which might lead to larger negative contributions. On the other hand, with
increasing energy the longitudinal expansion leads to a larger volume of the final
volume emission (from time-like parts of the surface), which indicates smaller negative
contributions. Thus there are two competing effects, and one has to carry out the
actual calculation to find out how the negative contributions depend on energy.

Distributions of the (apparent) temperature of the hypersurface elements are shown
on the right panel of Fig. 4.3. At each collision energy the temperature distribution is
rather narrow, which means that the constant energy density surface approximately
coincides with a constant temperature surface. As well, the average temperature
increases with increasing collision energy as expected from thermal model fits to
particle yields [143].
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Figure 4.4.: Rapidity distribution of identified particles obtained from Cooper-Frye formula
on the surface Σ and from explicit counting of particles that cross the same surface.
Positive contributions and the net distribution, i.e., positive-negative, are shown
separately. Central Au+Au collisions at Elab = 40 A GeV

Fig. 4.4 compares rapidity spectra of identified particles in Au+Au collisions at
Elab = 40 A GeV obtained by Cooper-Frye calculation and by counting of the micro-
scopic particles. Even though, the results only for one collision energy are shown, all
results are qualitatively the same at all other energies. If UrQMD is close to equilibrium
on a surface at εc = 0.3 GeV/fm3, both approaches should yield similar distributions.
At midrapidity this is the case for nucleons, and with a lesser accuracy for kaons. ∆’s,
Λ’s, ρ’s and η’s which are not shown in the figure depict a behavior similar to nucleons.
However, the pion yields are wildly different indicating that pions are—and thus the
entire system is—far away from chemical equilibrium at least. To cancel the effect
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of non-equilibrium and to visualize the differences in momentum distributions we
consider not the absolute value of the negative contributions, but the ratio of negative
to positive ones, (dN−/dy)/(dN+/dy) or (dN−/dpT)/(dN+/dpT). From Fig. 4.4
it is also apparent that the magnitude of the negative contributions is always small
compared to the positive ones as expected.
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Figure 4.5.: Rapidity distribution of the ratio of negative to positive contributions for different
hadron species: pions (circles), K+ (crosses), ρ (bars), nucleons (rectangles), and
deltas (triangles). Cooper-Frye calculation in central Au+Au collisions at Elab =
40A GeV.

The dependence of the ratio (dN−/dy)/(dN+/dy) on the hadron type is illustrated
in Fig. 4.5 by the Cooper-Frye results. Since for all cases, the microscopic negative
contributions of backstreaming particles are much smaller than the Cooper-Frye ones
we concentrate on showing the maximal effect. Surface temperature and velocity
profiles are identical for all hadrons, so the plot demonstrates first of all the effect of
particle mass. One can see that the average value of (dN−/dy)/(dN+/dy) decreases
with particle mass. This can be understood by considering a small volume of fluid in its
rest frame, and a space-like surface moving through it with a velocity 0 < vsur f < c so
that lower density, i.e., outside, is in the negative direction. To be counted as a negative
contribution, a particle must enter the fluid, and thus have a larger velocity than the
surface. Average thermal velocity decreases with increasing mass, and therefore the
heavier the particle, the fewer of them cross the surface inward. Since relative negative
contributions for pions are several times larger than for other hadrons, in the following
only pions will be considered.
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Figure 4.6.: The ratio of negative to positive contributions on the ε(t, x, y, z) = εc = 0.3
GeV/fm3 surface for pions at midrapidity in central Au+Au collisions at various
collision energies. Circles depict Cooper-Frye result and rectangles the explicit
counting of UrQMD particles.

As could be seen in Fig. 4.4, imposing equilibrium for Cooper-Frye calculation
leads to significantly larger negative to positive contribution ratio at midrapidity
than the counting of UrQMD particles. As shown in Fig. 4.6 this holds for all the
considered energies, showing that the system is out of not only chemical, but also of
kinetic equilibrium. Either the collective flow velocity of pions is different from the
collective velocity of other particles [255, 256] or the dissipative corrections to pion
distribution are very large. It was also checked that the relative microscopic negative
contributions are much smaller in UrQMD at all centralities, for all particle species,
and on isosurfaces of energy density εc = 0.3 and 0.6 GeV/fm3.

On the other hand, the trend as a function of collision energy in Cooper-Frye
and UrQMD calculations is the same: both curves have a maximum at 10-20A GeV
and then decrease with increasing energy. This behavior is a result of a complicated
interplay of several factors: temperature, relative velocities between surface and fluid,
and relative amounts of volume and surface emission, i.e., emission from the time- and
space-like parts of the surface. To gain some insight all these factors are considered
separately. The same argument used to explain the sensitivity of negative contributions
to particle mass, explains why larger temperature leads to larger negative contributions.
Temperature on the constant density surface grows with increasing collision energy
(see Fig. 4.3), which would lead one to expect an increase of negative contributions
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with increasing collision energy. On the other hand, larger relative velocity between
the fluid and surface reduces the negative contributions (again the same argument),
and one can see that the average relative velocity increases with increasing collision
energy. Finally, as argued when discussing Fig. 4.3, the larger the collision energy, the
larger the fraction of volume emission. Which, as mentioned, reduces the negative
contributions.
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Figure 4.7.: The ratio of negative to positive pion contributions as a function of transverse
momentum at midrapidity in central Au+Au collisions at Elab = 5, 10, 20, 40, 80A
GeV.

It is instructive to evaluate the negative contributions as function of transverse
momentum pT as well, as shown in Fig. 4.7 for Cooper-Frye calculation and "by parti-
cles". One can see that the largest negative contributions are located at small pT, which
means that one can reduce the uncertainty caused by the negative contributions by a
low pT cut. Also as a function of transverse momentum, the amount of microscopically
backward streaming particles is much smaller than in an equilibrium scenario.

When discussing Fig. 4.6 it was mentioned that, independent of the energy density
of the surface, the negative contributions are much smaller when counting the UrQMD
particles. Furthermore, in Cooper-Frye calculations the strength of the negative contri-
butions depends on the value of εc where the distributions are evaluated as shown in
Fig. 4.8. Larger εc leads to larger negative contribution at midrapidity and lower at
back- and forward rapidities. This result arises from interplay of two factors: larger
temperature and smaller average vrel for larger energy density. Quite surprisingly
the negative contributions evaluated by counting the UrQMD particles is almost in-
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dependent of the value of εc. This indicates that even in much higher temperature
T∼ 155–160 MeV the microscopic system is not fully thermalised.
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Figure 4.8.: Rapidity distribution of the ratio of negative to positive contributions for pions
on ε(t, x, y, z) = εc = 0.3 GeV/fm3 (circles) and εc = 0.6 GeV/fm3 (crosses)
surfaces in central Au+Au collisions at Elab = 40 A GeV. Full symbols correspond
to Cooper-Frye calculation and open symbols to explicit counting of UrQMD
particles.

The dependence of the contribution ratio on centrality is shown in Fig. 4.9. The
negative contributions decrease with decreasing centrality because the more peripheral
the collision, the larger the fraction of time-like hypersurface elements. This behavior
is illustrated in the right panel of Fig. 4.9. In the limit of very peripheral collisions
the lifetime of the system becomes zero, and thus the surface is time-like everywhere
and there are no negative contributions at all. Temperature and relative velocities
appear to be less important factors in this case than the relative amount of time-like
and space-like hypersurface elements.

Let us finally compare our results to previous studies. In [230] negative contribu-
tions were evaluated on the ε = 0.3 GeV/fm3 transition surface of a hybrid model at
SPS and RHIC energies—Elab = 160A GeV and

√
sNN = 200 GeV, respectively—and

found to be around (dN−π /dy)/(dN+
π /dy) ' 13% and 9% at y = 0. The negative

contributions for 160A GeV are slightly larger than in our calculation. The reason for
this discrepancy lies in the difference of the velocity profiles on the hypersurfaces: In
hydrodynamics the average relative velocity between flow and surface is smaller than
in our transport-based approach, which leads to larger negative contributions.



Cooper-Frye contributions in Au+Au collisions at Elab = 5–160 A GeV 80

(a)

π Cooper-Frye, b = 0 fm
Cooper-Frye, b = 6 fm
Cooper-Frye, b = 12 fm

E = 40A GeV
 εc = 0.3 GeV/fm3

(d
N

- π/d
y)

/(d
N

+ π/d
y)

 [%
]

0
10

20

y-3 -2 -1 1 2 3

(b) E = 40A GeV
 εc = 0.3 GeV/fm3

b = 0 fm
b = 6 fm
b = 12 fm
t = |z|

t [fm/c]

5
10

15
20

z [fm]-20 -10 10 20

Figure 4.9.: Upper panel: Rapidity distribution of the ratio of negative to positive contributions
for pions in Au+Au collisions at Elab = 40 A GeV at various centralities: b = 0
(circles), b = 6 fm (crosses) and b = 12 fm (rectangles). Lower panel: hypersurfaces
along the z axis in the same collisions at the same centralities.

4.4. Summary and discussion
The assumptions of hybrid and hydrodynamical approaches at the end of the hy-

drodynamical evolution lead to the appearance of Cooper-Frye negative contributions
- negative numbers of particles produced by the Cooper-Frye formula at particlization
on the hypersurface elements with a space-like normal. At high collision energies at
midrapidity — the kinematic region probed by RHIC and LHC — the Cooper-Frye
negative contributions are negligible. However, at intermediate energies they were
not studied before.

Here negative Cooper-Frye contributions and backscattering were investigated
using a coarse-grained transport approach. Au+Au collisions at Elab = 5–160 A GeV
energies have been simulated with UrQMD, and a hypersurface Σ of constant Landau
rest frame energy density has been constructed. On this surface two quantities were
computed: The ratio of Cooper-Frye negative to positive contributions, which assumes
local thermal equilibrium, and the ratio of UrQMD particles crossing Σ inward to
crossing Σ outward, which assumes no equilibrium.

It was found that at all collision energies the ratio of inward to outward moving
particles calculated counting the UrQMD particles is much smaller than the same ratio
calculated assuming equilibrium, i.e., the Cooper-Frye negative to positive ratio. This
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finding poses a question to the construction of hybrid models, and the treatment of
freeze-out in hydrodynamical models: If the cascade leads to distributions nowhere
near equilibrium, how are the hydrodynamical and cascade stages to be connected in
a consistent fashion? On the other hand, this result shows that an ideal fluid dynamics
hybrid approach contains the worst case scenario for negative contributions and
even then they are on the order of max. 15% for the pion yield at midrapidity. What
remains to be seen, however, is whether one could get closer to the UrQMD result
with dissipative corrections to the distribution function of Cooper-Frye, or whether
the deviations from equilibrium are so large that dissipative expansion is not feasible.

The largest observed impact of negative contributions is to pion rapidity spectrum
at midrapidity in central collisions. In thermally equilibrated Cooper-Frye calculations
it constitutes 8–13%, but only 0.5–4% in the counting of UrQMD particles. The Cooper-
Frye value roughly agrees with the values obtained previously for hydrodynamics at
160 GeV. Several systematic features were found in these ratios. They are smaller for
larger hadron mass and therefore largest for pions. The relative negative contributions
decrease as a function of collision energy and by going from central to peripheral
collisions. On the other hand, they increase if a higher energy density is chosen as a
surface criterion. The small scale structures on the surface, its “lumpiness”, play a sig-
nificant role: If the surface is not smooth enough both ratios can increase dramatically.
Therefore, an interesting future study could be to compare single fluctuating events to
the averaged result.



Chapter 5.

SMASH transport approach:
implementation and testing

This chapter is largely based on [5]. A significant part of the work on this thesis
was devoted to developing a new transport approach, SMASH (Simulating Many
Accelerated Strongly-interacting Hadrons), which is described in this chapter. SMASH
is used for an investigation carried out in chapter 6. Conceptually the approach is
similar to UrQMD, which was used in chapters 3 and 4. The main difference is that
SMASH is a transport approach of a BUU type, while UrQMD is of QMD type (see
section 1.3.5 for BUU vs. QMD discussion). This difference mainly matters for the
treatment of potentials and in the studies of this thesis potentials are not included.
The reasons to use SMASH in the following investigation are rather technical than
physical: SMASH is developed from scratch under version control, it is written in C++,
it undergoes continuous testing (both from programming and physics side) and the
implementation of forced thermalization approach appeared to be technically easier
in SMASH. The current version of SMASH is 1.0rc, however the studies in chapter 6
were performed with an earlier version SMASH-0.9rc.

As a transport approach SMASH solves a coupled set of Boltzmann equations
(1.20,1.24) via the Monte-Carlo method with the test-particle ansatz

f (x, p) =
1

Ntest
∑ δ(3)(x− xi)δ

(3)(p− pi) . (5.1)

Here every physical particle is represented by Ntest testparticles, which sample the
distribution function. To simulate the left part of the BUU equation (1.20) it is enough

82
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to propagate particles according to their equations of motion. The collision integral
(1.24) is solved via simulating particle collisions and decays.

The testparticle ansatz also requires that interaction cross-sections are modified:

σ 7→ σ ·N−1
test (5.2)

N 7→ N ·Ntest (5.3)

In this way the average scattering rate (number of collisions per unit time per
particle) remains unchanged. The testparticle ansatz has three effects. Firstly, the more
testparticles are used the more precisely the distribution function f (x, p) is sampled.
Due to the geometrical treatment of cross-sections, particles in SMASH can interact
at non-zero distance in contrast to field theory, where all the interactions are local.
So, secondly, the larger Ntest the smaller are the non-locality effects introduced by the
collision criterion. Thirdly, as shown in [257], experimental observables such as particle
spectra and flow obtained using transport models depend on Ntest and saturate when
Ntest is sufficiently large (in case of [257] Ntest = 16 was large enough for saturation).

5.1. Degrees of freedom
The degrees of freedom entering BUU equations in SMASH are hadrons and

strings. The number of coupled BUU equations coincides with the number of degrees
of freedom.

5.1.1. Hadrons in SMASH

All hadrons consisting of the light quarks listed in the Review of Particle Proper-
ties [13], which have an experimental status ”***” or ”****”, are taken into account
in SMASH. This notation for status means that the existence of these hadrons is
experimentally confirmed with high reliability.

The classification of light quark hadrons by quark content using the SU (3) flavour
group is shown in appendix C. These hadrons and their total angular momentum and
radial excitations constitute the hadron spectrum in SMASH.

Currently SMASH has 46 unflavoured mesons, 12 mesons with open strangeness,
17 N baryons, 8 ∆ baryons, 14 Λ baryons, 10 Σ baryons, 6 Ξ baryons and 2 Ω baryons.
In this counting scheme the whole isospin group is considered as one particle, for
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example proton and neutron are counted as one baryon or the group ∆++, ∆+, ∆0 and
∆− is also counted as one ∆ baryon. Antiparticles are also included.

All of these particles are unstable except the proton, but every combination of
(anti- ) quarks in a strong-interaction ground state lives long enough, so that in our
simulations it may be considered as stable. A particle is treated as stable, if its width
does not exceed 10 keV (such as the lightest π, η, K, N, Λ, Σ, Ξ, Ω).

Every particle is characterized by the following parameters taken from experimen-
tal data [13]: the pole mass, the width at the pole mass, quantum numbers, decay
channels and branching ratios. Branching ratios are assumed to be independent of
mass.

5.1.2. Hadron spectral function

Every unstable hadron is characterized by a spectral function A(m2) - the probabil-
ity to find it in a state with mass m, given that it has pole mass M0. In SMASH this
is implemented by sampling the mass m from the spectral function, when the reso-
nance is produced. The particular form of A(m2) used in SMASH, called relativistic
Breit-Wigner function, can be understood from the following considerations.

The quantum field theory propagator of the particle, including interactions can be
written according to Dyson-Schwinger equation as

G(p) =
1

G−1
0 (p) + Σ(p)

, (5.4)

where G0(p) is the propagator of non-interacting particle and Σ(p) is the so-called
self-energy containing quantum loop corrections to the propagator. For the scalar field

G0(p) =
1

pµ pµ −m2
bare

, (5.5)

where mbare is the bare mass in Lagrangian. For the Lorentz group representations
different from scalars (spinors, vector particles, etc) the propagator is still proportional
to the propagator of the scalar field. Splitting the self-energy Σ(p) into real and
imaginary part, one can rewrite the full propagator as
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G(p) =
1

pµ pµ −M2
0 + i Im(Σ(p))

(5.6)

M2
0 = m2

bare − Re(Σ(p)) (5.7)

Here M0 is the physical pole mass with interaction correction. This is the mass
taken from experimental data. Now the time-dependent propagator is the inverse
Fourier transformation

G(t,~p) =
∫ dp0

2π
eip0t 1

pµ pµ −m2
0 + i Im(Σ(p))

. (5.8)

This expression can be interpreted to use in a transport code. The Monte-Carlo
interpretation of the integral in Eq. (5.8) is the following: instead of propagating
an off-shell particle one can propagate an on-shell particle with a mass chosen with
probability

w(m)∼ |m2 −m2
0 + iΓ(m)|−2 (5.9)

Γ(m) = Im(Σ(m)) (5.10)

In general Σ(p) depends on the medium surrounding the particle, which leads
to the off-shell equations of motion [258]. However, in SMASH these in-medium
effects are neglected (the effects of accounting them are discussed in [259] and are
usually small for hadronic observables). Therefore all unstable particles (“resonances”)
are assumed to have the shape of a relativistic Breit-Wigner for the spectral function,
resulting in the probability of a resonance with mass m:

A(m2) =
N
π

mΓ(m)

(m2 −M2
0)

2 + m2Γ(m)2 , (5.11)

where N is a normalization factor chosen in such a way that

∞∫
0

A(m2)dm2 =

∞∫
mmin

A(m2)dm2 = 1 (5.12)
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5.1.3. Resonance width

The total width Γ in the previous expression is not constant, but given by the mass-
dependent function Γ(m). Each resonance has a minimum mass mmin corresponding
to the sum of masses of the lightest decay channels, below which the width, and thus
also the spectral function, vanishes. The total width is computed as the sum of all
partial widths:

Γ(m) = ∑
i

Γi(m) (5.13)

The computation of the decay widths follows the formalism of Manley et al. [260],
where in general the width of a two-body decay R→ ab is written as

ΓR→ab = Γ0
R→ab

ρab(m)

ρab(M0)
. (5.14)

Here m is the actual off-shell mass of the resonance R, M0 is its pole mass, Γ0
R→ab =

ΓR→ab(M0) is the partial width at the pole mass and the function ρab is defined as

ρab(m) =
∫

dm2
adm2

bAa(m
2
a)Ab(m

2
b)

× pcm
m

B2
L(pcmR)F 2

ab(m). (5.15)

In this formula, ma and mb denote the (off-shell) masses of the particles a and b
(which are being integrated over), Aa and Ab are their spectral functions and pcm is
the absolute value of the final-state momentum of a and b in the center-of-mass frame,
which is given by:

~p 2
cm(m, ma, mb) =

(m2 − (ma + mb)
2)(m2 − (ma −mb)

2)

4m2 (5.16)

Finally, L is the orbital angular momentum of a and b in the final state and BL

are the so-called ’Blatt-Weisskopf functions’ [261]. The parameter R is usually called
the ’interaction radius’ and is assumed to have a universal value of R = 1 fm for all
processes. The form factor Fab is only relevant for unstable decay products and will
be discussed further.

The simplest case is that of a resonance R decaying into two stable daughter
particles. Popular examples are ∆→ πN or ρ→ ππ. In this case, the daughters have
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fixed masses (i.e. their spectral functions are just δ functions), so that the integrals
collapse:

ρab(m) =
pcm
m

B2
L(pcmR) (5.17)

As an example, the width for the p-wave (L=1) decays of the ρ and ∆ (mentioned
above) becomes

Γ(m) = Γ0
M0
m

∣∣∣∣ pcm
pcm,0

∣∣∣∣3 p 2
cm,0 + Λ2

p 2
cm + Λ2 , (5.18)

using B2
1(x) = x2/(1 + x2). Here m and M0 are the off-shell and pole mass,

respectively, while pcm and pcm,0 denote the final-state momenta in the center-of-mass
frame for mass m and M0, respectively. Λ = 1/R can be viewed as a cut-off parameter.
For an s-wave (L=0) decay like σ→ ππ, the width simply becomes

Γ(m) = Γ0
M0
m

pcm
pcm,0

, (5.19)

since B2
0 = 1.

In the case that one of the daughter particles is itself a resonance, the width calcula-
tion becomes more difficult, since the mass of this daughter resonance is not fixed and
needs to be integrated over. Examples for this case are N∗(1440) → π∆ or ω → πρ.
As one of the daughters is stable, at least one of the two integrals collapses:

ρab(m) =

m−mb∫
mmin

a

dm2
aAa(m

2
a)

pcm
m

B2
L(pcmR)F 2

ab(m) (5.20)

The remaining integral runs from the minimum allowed mass of particle a (i.e. the
threshold of its lightest decay channel) up to the maximum possible mass of a in the
decay process (given by m−mb). The form factor Fab (by M. Post [262]) is used only if
unstable decay products are involved and is defined as

Fab(m) =
λ4 + 1/4(s0 −M2

0)
2

λ4 +
(
m2 − 1/2(s0 + M2

0)
)2 , (5.21)

where the cut-off factors given in the table 5.1 are used.
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Figure 5.1.: Total and partial decay widths of the N∗(1440)+ resonance as a function of mass.
The vertical and horizontal dashed lines mark the pole mass and width.

Table 5.1.: Cut-off parameter λ for form factor in resonance decay widths.

decay λ [GeV]

πρ 0.8
unstable mesons (e.g. ρN, σN) 1.6
unstable baryons (e.g. π∆) 2.0
two unstable daughters (e.g. ρρ) 0.6

It is easy to see that Fab(M0) = Fab(
√

s0) = 1. Note that this form factor was not
used by Manley originally, but was added only later in the GiBUU implementation.
The effect of the form factor is that it suppresses the high-mass tail (m > M0) and
slightly enhances the low-mass tail (m < M0). Both of these effects get stronger
with decreasing λ (Fab → 1 for λ → ∞). In this aspect SMASH follows the GiBUU
framework for the width parametrization of resonances, since it has been proven to
give a good description of experimental data [200].
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Table 5.2.: Woods-Saxon initialization parameters for some nuclei.

Nucleus A r0 [fm] d [fm]

U 238 6.86 0.556
Pb 208 6.67 0.54
Au 197 6.38 0.535
Cu 63 4.20641 0.597

To demonstrate the result of this formalism, in Fig. 5.1 the theoretical decay width
of the N∗(1440) resonance is shown as a function of mass. The total width is given as
the sum of all partial widths. Each partial width has a threshold that is given by the
sum of the minimal masses of the decay products. The branching ratios are fixed at
the pole mass. One can see that all partial widths increase as a function of mass, since
more phase space is available for heavier resonances. The lifetime correspondingly has
an opposite trend and heavy particles decay faster than low-mass resonances. Since
the width also enters in the production cross section, the production of such low-mass
resonances becomes more unlikely.

5.1.4. Strings

At high
√

s hadron collisions are not described by resonance excitations anymore.
In the regime of

√
s ≥ m1 + m2 + 2 GeV, where m1 and m2 are masses of colliding

particles, SMASH adopts Lund string model [263] to describe multiparticle production
in the hadron-hadron collisions. The used implementation of the Lund string model is
PYTHIA 8 [264]. At the time, when the SMASH transport approach was applied for
the studies relevant for this thesis (see chapter 6), strings were not yet implemented.

5.2. Initial conditions

5.2.1. Nucleus-nucleus collisions

Nucleon Distribution in coordinate space In SMASH a simple Woods-Saxon nu-
cleon spatial distribution is implemented, as demonstrated in Fig. 5.2. The explicit
form reads
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Figure 5.2.: Sampled coordinate space distribution of 208 nucleons is compared to the Woods-
Saxon distribution with the parameters for a lead nucleus.

dN

d3r
=

ρ0

exp
(

r−r0
d

)
+ 1

(5.22)

where r0 is the nuclear radius and d is the diffusiveness, which controls the quick
fall-off of the distribution. For d→ 0, the nucleus would be a hard sphere. The ground
state density ρ0 ≈ 0.168 fm−3 emerges after A nucleons are sampled. The default
value for the diffusiveness is d = 0.545 fm, where more specific values are used for
Au, Pb, Cu and U (see Table 5.2).

Within the sampling procedure nucleons are assumed to be independent. The finite
size of the nucleons and nucleon-nucleon correlations [265] are neglected for simplicity,
as are the neutron skin effects [266]. Deviations from sphericity can optionally be taken
into account up to the quadrupole moment. No measures are taken to initialize the
nucleus in the ground state, like it is done e.g. in [267].

The initial positions of nuclei and the time of initialization are chosen as shown
in Fig. 5.3. Cartesian coordinates are used, where the z-direction corresponds to
the beam direction and x is the impact parameter direction. At the initialization the
projectile center is at xz-coordinates (b/2,−∆z− γ−1

P (RP + dP)) and the target center
is at (−b/2, vT

vP
∆z + γ−1

T (RT + dT)). Here RP,T are the projectile/target radii and dP,T
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Figure 5.3.: Initial positions of nuclei such that contracted spheres of radii (R+ d)P,T will touch
at t = 0 in a central collision.

are the corresponding diffusiveness parameters from the Woods-Saxon distribution.
By vT,P we denote absolute values of the velocities, while γP,T = (1− v2

P,T)
−1/2 are

the associated gamma-factors. The separation of the centers of the nuclei in x-direction
equals the impact parameter b. For deformed nuclei an additional rotation along all
three angles is applied. In this way, the simulation is started at such an initial separation
that the potential of one nucleus does not influence the other one yet, otherwise
initialization in the ground state would not be justified. The initial coordinates and
time are chosen in such a way that the Lorentz-contracted spheres of radii (R + d)P,T

will touch at t = 0 in a central collision. An alternative definition would be that
t = 0 fm corresponds to the maximal overlap of the two nuclei. The additional
distance ∆z = 2 fm is added to avoid missing any nucleon-nucleon collisions. Since
the nucleons are distributed according to Woods-Saxon distributions, there is a small,
but non-zero probability to position a nucleon at a large distance from the nucleus
center. The initial separation distance ∆z is chosen such that all collisions are taken
into account. The initial time is t0 = ∆z/vP, which implies that the projectile is always
moving, vP > 0, while the target can be at rest depending on the reference frame for
the calculation.

Fermi motion In momentum space nucleons optionally get Fermi momenta, then
target and projectile are boosted in z direction according to the chosen energy of the
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reaction and computational frame. The gamma-factor of the boost is γ = EA/MA,
where EA is the energy of the nucleus and MA is its mass. The velocity of the boost is
β = pA/EA. Note that in EA and MA one has to account for the binding energy of the
nucleus. For this an approximation used in the JAM transport code [199] is adopted,
which assumes that all nucleons are equally bound. Thus, the energy of each nucleon
in the rest frame of the nucleus is Ei = MA/A, where A is the number of nucleons.
With this assumption the boost of the longitudinal momenta p′iz to the computational
frame becomes

p′iz = γ(piz + βEi) = γpiz +
pA
MA

MA
A

= pbeam + γpiz , (5.23)

where pbeam is the beam momentum per nucleon and piz are the momenta of
nucleons in the rest frame of the nucleus. In our implementation pbeam and γ them-
selves are computed without accounting for binding energy. Note that there is no
well-established procedure of boosting nuclei accounting for their binding energy.
Codes like UrQMD [197], JAM [199] and GiBUU [200] apply different methods.
Though the typical binding energy per nucleon is much smaller than the nucleon
mass (' 8 MeV/938 MeV ≈ 1%), the different methods of accounting for the bind-
ing energy produce small but noticeable differences in pion multiplicities and mean
transverse momentum at low collision energies of Ekin = 0.4− 2A GeV.

The momentum distribution of nucleons in the ground state nucleus is generated
in the Local Density Approximation (LDA). At every spatial point the momentum
distribution is a uniformly filled Fermi sphere of radius

pF(~r) = h̄c(3π2ρ(~r))1/3 (5.24)

Here ρ(~r) is the density of nucleons at the point~r. A more detailed description
of the density calculation is given in section 5.4. A typical value of pF ≈ 300 MeV
corresponds to an energy of p2

F/(2mN) ≈ 45 MeV. The LDA is probably the easiest
and most naive choice to implement. A more realistic treatment of Fermi motion
includes Hartree-Fock mean-field calculation, which justifies LDA in the range of
momenta from 0.5 to 1 fm−1 [268]. Similar conclusion can be made comparing Fig. 5.4
to experimentally measured momentum distributions [269].

In LDA the momentum distribution of the nucleons can be computed analytically.
In the central part of the nucleus, where the density is almost constant, the momentum
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distribution is just a Fermi sphere. This is indeed reproduced by SMASH, as shown in
Fig. 5.4. For the whole nucleus one has to properly average over the density:

dN

p2dp
∼
∫ dN(r)

p2dp
d3r∼

∫ ∞

0
θ(pF(r)− p) r2dr = r3

max(p)/3, (5.25)

where rmax is the root of the equation pF(rmax) = p. Let us find this root.

( p
h̄c

)3 1

3π2ρ0
=

1
1 + exp((r− R)/d)

(5.26)

(p0
F/h̄c)3 = 3π2ρ0 (5.27)

rmax(p) = R + d · log

( p0
F

p

)3

− 1

 (5.28)

dN

p2dp
∼
(

1 +
d
R

log[(p0
F/p)3 − 1]

)3

θ(p0
F − p) (5.29)

dN

dp3 = A
(

1 +
d
R

log[(p0
F/p)3 − 1]

)3

θ(p0
F − p)

1

(p0
F)

3 , (5.30)

where A is a dimensionless constant, which can be obtained from the normalization

condition. Let us rewrite the previous equation with ξ =

(
p

p0
F

)3

:

dN
dξ

= A
(

1 +
d
R

log[ξ−1 − 1]
)3

θ(1− ξ) (5.31)

Integration results in

∫ 1

0

(
1 +

d
R

log[ξ−1 − 1]
)3

dξ = 1 +
(

πd
R

)2

(5.32)

1
N

dN
dξ

=
1

1 +
(

πd
R

)2

(
1 +

d
R

log[ξ−1 − 1]
)3

θ(1− ξ) (5.33)

As Fig. 5.4 demonstrates, this theoretical expectation is matched by SMASH.

Including Fermi motion is only sensible, if potentials are turned on simultane-
ously. Otherwise, the nucleus will fly apart due to the finite transverse momenta of
the nucleons that need to be compensated by the attractive mean field interaction.
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Figure 5.4.: Momentum space distribution of neutrons compared to the analytical expectation
for a lead nucleus.

Alternatively, the so-called frozen Fermi approximation can be be adopted, where the
Fermi momenta are employed for the collisions, but not for the propagation.

5.2.2. Infinite matter (periodic box) calculations

To simulate infinite hadronic matter or other simple systems like an ideal massless
or massive gas and investigate its thermodynamic properties, box calculations are
performed. There are two initialization options. Firstly, the box can be initialized in the
canonical ensemble with user-defined hadron multiplicities Nj of each hadron species.
In this case Nj does not change from event to event. Secondly, multiplicities can be
sampled from the Poisson distribution

Nj = Poi(nj) , (5.34)

where nj(T, µb, µs) are the grand-canonical thermal multiplicities given by Eq.
(2.61). The coordinates of the N particles (xj, yj, zj) are sampled uniformly in the
box. The momenta of the particles are sampled from the isotropic thermal Boltzmann
distribution with temperature T:
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w(~p) = N · exp(−
√
~p 2 + m2/T)p2dp · sin θdθdϕ , (5.35)

where w(p) is a probability to generate momentum~p, θ and ϕ are angles in spherical
coordinates and N is a normalization factor. Let us denote the total momentum of N
particles sampled from this distribution ptot. One can see that the ensemble average of
ptot is zero,

∫
exp(−

√
~p 2 + m2/T)d3p · px,y,z = 0 , (5.36)

because it involves an integral over an odd function. However, in each single
event ptot 6= 0, which is corrected by changing the momentum of every particle
pj→ pj − ptot/N. After this procedure the thermal distribution is slightly spoiled, the
total energy is changed and angle uniformity is disturbed. This is a small effect for
large numbers of particles, because ptot

Etot
∼ 1√

N
, where Etot is the total energy of the

particles. After letting the system thermalize, the temperature differs by 1-2% from the
initialization temperature. One also has to note that the total energy is not the same
from event to event, it is fluctuating, even without this momentum shift.

5.3. Interactions

5.3.1. Collisions

Collision Criterion

One of the challenges for solving the relativistic BUU equation is to define an
appropriate collision criterion. The Kodama criterion [270] is a fully covariant collision
criterion, but since it involves boosts of several four vectors it is rather inefficient. In
the SMASH approach the geometrical criterion was chosen following the UrQMD
(Ultra-relativistic Quantum Molecular Dynamics) approach [197]. The geometrical
criterion is defined as follows:

dtrans < dint =

√
σtot
π

(5.37)

with
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d2
trans = (~ra − ~rb)

2 − ((~ra − ~rb) · (~pa − ~pb))
2

(~pa − ~pb)
2 (5.38)

where~r and ~p are the coordinates and momenta of the two particles a and b in the
center of mass frame of the binary collision. The time of the collision is determined as
the time of the closest approach in the computational frame:

tcoll = −
(~ra − ~rb) · (~pa/Ea − ~pb/Eb)

(~pa/Ea − ~pb/Eb)
2 (5.39)

where now all coordinate and momentum vectors have to be taken in the computa-
tional frame. The computational frame is usually chosen to be the equal velocity frame
of the two nuclei, which is the same as the center of mass frame in case of symmetric
systems. The computational system is the one that carries the clock that is relevant for
ordering of the collisions, therefore it is crucial to transform the collision times to the
same frame to decide which collision happens first.

An alternative option to include all relevant scatterings at high density is to imple-
ment the solution of the Boltzmann equation by stochastic rates [204, 271, 272]. This
approach has the advantage that multi-particle scatterings can be taken into account
in a straightforward way. On the hadronic level there are of course a lot of different
possibilities that one would need to take into account in such an approach, therefore
this is left for future work. Also, the stochastic rates approach is relying on having
a large number of test particles in each cell, therefore it is not clear how to model
event-by-event fluctuations properly.

Elastic and inelastic reactions

The elastic collisions can be truly elastic, where only momenta are exchanged be-
tween the particles, and pseudoelastic, which proceed through a resonance formations.
In SMASH the meson-meson and baryon-meson reactions are assumed o be fully de-
termined by resonance excitation and decay, e.g. πN→∆→πN or ππ→ ρ→ππ. For
baryon-baryon collisions on the other hand the elastic cross sections are parametrized.
The parametrizations of the elastic pp and pn cross sections in particular are taken
from [273], eq. (44) and (45).

Inelastic interaction in SMASH are 2↔ 2 collisions and 2→ 1 resonance formations.
Many-particle reactions are not implemented, but an effective way to account for them
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is discussed in chapter 6. Cross-sections of resonance formation are completely defined
by the resonance properties and can be computed from the detailed balance principle
using Eq. 5.77. The results of this treatment for π+π− and πN cross-sections is
demonstrated in Fig. 5.5. One can see the a resonant structure of both cross-sections.

Three groups of 2→ 2 reactions are implemented:

1. Single nucleon excitation reactions NN ↔ NN, NN ↔ N∆, NN ↔ NN∗ and
NN ↔ N∆∗.

2. Double nucleon excitation reactions NN ↔ ∆∆, NN ↔ ∆N∗ and NN ↔ ∆∆∗.
Here N∗ and ∆∗ denote all possible excitations of nucleons and Delta-baryons.

3. Strangeness exchange reactions K−N ↔ πY with Y = Λ, Σ.

4. KN ↔ K∆ and inelastic charge exchange KN ↔ KN

For the process NN ↔ N∆, the parametrized energy dependence is based on
a fit to the Dmitriev one-boson-exchange (OBE) model [274]. For NN → NR and
NN → ∆R with R = N∗, ∆∗, the matrix element is assumed to be independent of s,
but can depend on the total isospin and the pole masses ma and mb of the outgoing
particles. The same is true for the parametrizations of double resonance production
NN→ R1R2. For the parametrization details see [5]. The cross-sections are computed
via Eq. 5.67, but additionally isospin factors are taken into account. The reverse
reactions cross-sections are implemented via the detailed balance relations, see section
5.3.3. The resulting NN total cross-section is demonstrated in Fig. 5.5.

For the strangeness exchange reactions the explicit experimental cross-section
parametrizations are taken from [275] and the reverse reactions are implemented via
detailed balance. The KN ↔ K∆ and KN ↔ KN cross-sections are also parametrized
directly following the GiBUU and using expressions from the Appendix A.2.4 of [276].

Angular distributions

Anisotropic angular distributions are currently implemented only for NN → NN,
NN → N∆ and NN → NR (with R = N∗, ∆∗). For elastic nucleon-nucleon collisions
the prescription by Cugnon et al. [279] is followed, using an exponential ansatz
dσ/dt ∝ e−bt, with an energy-dependent parameter b which is fit to data. In the
second case SMASH also follows Cugnon et al. [279], using the same ansatz as for
elastic NN collisions. For the last case of NN → NR the ansatz dσ/dt ∝ t−a is
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Figure 5.5.: Left upper panel: π−-proton (a) and π+-proton (b) cross-sections compared to
data from [13]. Right upper panel: Proton-proton (a) and proton-neutron (b)
cross-sections compared to data from [13]. Lower panel: pion-pion cross-section
compared to data from [277, 278].
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Figure 5.6.: Angular distributions for elastic and inelastic pp collisions at two different energies,
compared to data from [281, 282].

used, with parameters a which fitted to HADES data [280]. Note that in the present
implementation of SMASH all resonances decay isotropically.

In Fig. 5.6 two examples of angular distributions dσ/dt in pp collisions are shown, t
being the Mandelstam variable. The upper plot demonstrates a collision at a relatively
low energy, where essentially only the elastic and single-∆-production channels are
open. The angular distribution of the elastic channel is of course symmetric in the
allowed t-range and matches the data points rather well, even though the slope at
this particular energy appears to be slightly too flat. The distribution for single-∆
production is not symmetric and restricted to a smaller range in t, due to the larger
mass of the ∆ in the final state. Unfortunately there is no inelastic data to compare to
at this energy.

The lower plot in Fig. 5.6 shows a pp collision at a somewhat higher energy, where
additional resonance production channels are open. In principle the distributions
for all these channels are forward/backward-peaked (either exponential or power-
law shaped). This forward/backward peaking is clearly visible for the NN and N∆
final states at least, while those final states with heavier resonances exhibit a more
plateau-like structure, due to the limited phase space and the mass distributions of
the resonances. Here the sum of all inelastic channels is compared to data and indeed
shows a reasonable agreement, again with a slight tendency of being too flat.
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5.3.2. Decays

In section 5.1.2 the time-dependent propagator (Eq. 5.8) was considered to derive
the spectral function of hadrons. This propagator can be integrated for t > 0 by
contour integration resulting in

G(p, t) =
i

2
√
~p2 + M2

0 − iM0Γ
exp

(
−it
√
~p2 + M2

0 − iM0Γ
)

. (5.40)

Assuming that Γ� M0, one rewrites
√
~p2 + M2

0 − iM0Γ = E− iM0Γ
2E and obtains

G(p, t) =
i

2E
e−iEt exp

(
−M0Γ

2E
t
)

(5.41)

Therefore the probability to find the resonance decays exponentially. The lifetime τ

is determined according to

τ =
E

M0

1
Γ(m)

. (5.42)

The factor E
M0

corresponds to the time dilation. In SMASH the lifetime of the
particle is sampled from the exponential distribution:

P(decay in the interval(t, t + dt]) =
dt
τ

e−t/τ . (5.43)

The width Γ(m) is computed according to section 5.1.3. SMASH has only 2-body
decays to maintain detailed balance. All the resonance decays are assumed to be
isotropic in the resonance rest frame.

5.3.3. Detailed balance

Detailed balance is an important principle that allows to express properties of
the reverse reaction, if the properties of the forward reaction are known. Several
equivalent statements are referred to as the principle of detailed balance:

• In thermal equilibrium the rate of forward reactions is equal to the rate of reverse
reactions for every reaction in any region of phase space [283].
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• Matrix elements of the forward reaction are equal to the matrix elements of the
reverse reaction.

• A particular relation holds between the differential cross-sections of forward and
reverse reaction or between the width of 1→ 2 and the cross-section of the reverse
2→ 1 reaction.

Time reversal and detailed balance principle

The equality of the matrix elements of the forward and reverse reaction can be
derived from the time-reversal invariance of the S-matrix. Here for completeness
the derivation given in different paragraphs of textbook [284] is put together. This
reproduction is useful to

• introduce the concept of matrix elements and cross-sections, which are used
throughout the text

• outline the connection between the time-reversal invariance and detailed balance

• set the stage for the derivation of the detailed balance relations for the reactions
involving unstable particles

Let |i〉 be an initial state and | f 〉 a final state wavefunctions of the scattering. The
initial state can be written as

|i〉 = ∑
f
| f 〉〈i|S| f 〉 , (5.44)

where the sum is taken over all possible final states. Here the operator S is con-
nected to the Lagrangian via the formal solution of the equations of motion

S = T exp
(∫
Lintd

4x
)

, (5.45)

where T exp denotes time-ordered exponential, Lint is interaction part of La-
grangian. This expression can be further expanded into formal series, where each
term corresponds to Feynmann diagrams of a particular order. Matrix Si f = 〈i|S| f 〉
is called scattering matrix or S-matrix. Quantities |Si f |

2 are probabilities to go from
state |i〉 to state | f 〉. Taking into account that for the absence of scattering Si f = δi f

and energy-momentum conservation, it is convenient to rewrite
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Si f ≡ 〈i | f 〉 = δi f + i(2π)4δ(4)(Pi − Pf )Ti f , (5.46)

where factor i(2π)4 is there just for further convenience, and Pi and Pf are the 4-
momenta of the initial and final states. Computing |Si f |

2 one obtains the delta-function
squared, a common artifact in field theory. One of the delta-functions can be rewritten
as

δ(4)(Pi − Pf ) = (2π)−4
∫

ei(Pi−Pf )xd4x (5.47)

Since first of delta functions sets Pi = Pf , this one can be interpreted as (2π)−4Vt,
where integration over d4x is performed over the finite volume and time. So, for the
non-diagonal elements

|Si f |
2 = (2π)4δ(4)(Pi − Pf )|Ti f |

2Vt (5.48)

It turns out that in momentum representation wavefunctions that stand in Ti f have

structure like (2EV)−1/2
(

âe−ipx + â†eipx
)

. Therefore, for reaction p1 + p2→ p′1 + p′2
1

it is convenient to introduce

Mi f = (2E1V)−1/2(2E2V)−1/2(2E′1V)−1/2(2E′2V)−1/2Ti f (5.49)

Object Mi f is called the matrix element. For the strong interaction time reversal is a
strict symmetry. This means that the S-matrix has the following property [285]:

Si f ≡ 〈i | f 〉 = ei(ϕi−ϕ f ) 〈 f | i〉 = S f ie
i(ϕi−ϕ f ) (5.50)

From this relation it follows that

|Mi f |
2 = |M f i|

2 (5.51)

Let us prove that Eq. (5.51) is enough for the rates of forward and reverse reactions
to be identical in equilibrium. The proof is presented for 2→ 2 reactions, but it can
be extended analogously for any other collisions. The probability to scatter with final
momenta p′1 and p′2 per unit time follows from Eq. (5.48):

1In this chapter capital P denotes 4-momenta, small p denotes 3-momenta.
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dw = (2π)4δ(4)(Pi − Pf )|Mi f |
2 1

4E1E2V
d3p′1

2E′1(2π)3
d3p′2

2E′2(2π)3 (5.52)

Additionally, there is a factor 1/2, if the particles in the final state are identical.
It follows that the numbers of the forward and reverse reactions (denoting d4Ωp =

d3 p1
2E1

d3 p2
2E2

d3 p′1
2E′1

d3 p′2
2E′2

) are

dN→ = (2π)−2δ(4)(Pi − Pf )|Mi f |
2d4Ωp f (p1)f (p2)

(
1± f (p′1)

) (
1± f (p′2)

)
(5.53)

dN← = (2π)−2δ(4)(Pi − Pf )|Mi f |
2d4Ωp f (p′1)f (p′2) (1± f (p1)) (1± f (p2)) (5.54)

In thermal equilibrium the parts of dN→ and dN← related to the distributions are
identical, therefore in thermal equilibrium

dN→ = dN← (5.55)

Finally, it is important to note that although this relation was derived from time-
reversal invariance, it can also hold if the invariance is broken [285]. Further the
detailed balance relation represented by Eq. (5.51) is linked to the cross-sections.

Detailed balance relations for 2→ 2 reactions

The cross-section σ is defined in the rest frame of the target via an expression for
the number of interactions

dNinter = σvreln1n2dVdt (5.56)

The factor after the cross-section is often called luminosity. This expression can be
written for any frame in the Lorentz-invariant form [286]:

dNinter = σ

√
(~v1 − ~v2)

2 + [~v1× ~v2]
2n1n2dVdt = σ

√
(P1 · P2)

2 −m2
1m2

2

E1E2
n1n2dVdt

(5.57)

The probability to scatter from Eq. (5.52) is connected to the cross-section via

dw = V−1σ

√
(~v1 − ~v2)

2 + [~v1× ~v2]
2 , (5.58)
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where n1 = n2 = V−1 was assumed. Let us denote I =
√
(P1 · P2)

2 −m2
1m2

2. Then

dσ = (2π)−2δ(4)(Pi − Pf )|Mi f |
2 1

4I
d3p′1
2E′1

d3p′2
2E′2

1
1 + δ1′2′

(5.59)

The last factor 1
1+δ

1′2′
accounts for identical particles in the final state. The total

cross-section is the integral of this expression. For the case where the outgoing particles
are resonances the following trick from [287] is applied

d3p
2E

= δ(P2 −m2)d4p =
d3p
2E

δ(M2 −m2)dM2 , (5.60)

where a transformation from variables E,~p to M2 = E2 − ~p2,~p was performed.
For resonances in the final state one substitutes the spectral function of the resonance
A(M2) instead of δ-function. Therefore,

dσ = (2π)−2δ(4)(Pi − Pf )|Mi f |
2 1

4I
d3p′1
2E′1

d3p′2
2E′2

1
1 + δ1′2′

A1(M′21 )A2(M′22 )dM′21 dM′22

(5.61)

The whole expression is Lorentz invariant and the integration over the momenta is
easy to perform in the center of mass frame.

δ(4)(Pi − Pf )
d3p′1
2E′1

d3p′2
2E′2
→ δ(E1 + E2 − E′1 − E′2)

d3p′1
4E′1E′2

(5.62)

d3p′1 = p2
cmdpcmdΩ (5.63)

d(E′1 + E′2) = d
(√

p2
cm + M2

1 +

√
p2

cm + M2
2

)
=

(
1
E′1

+
1
E′2

)
pcmdpcm (5.64)

Here pcm is the momentum of the reaction products in the center of mass frame,
which was introduced in Eq. (5.16). After the change of variables to E′1 + E′2 and
integration over the remaining delta-function, taking into account that in the CM-
frame (E1 + E2)

2 = s and I = pcm(E1 + E2),

dσ/dΩ =
1

64π2s
|Mi f |

2 pcm(s, M′1, M′2)
pcm(s, m1, m2)

1
1 + δ1′2′

A1(M′21 )A2(M′22 )dM′21 dM′22 (5.65)

Finally, in SMASH spin is not an explicit degree of freedom and one has to average
matrix element over spins of the produced particles:
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dσ/dΩ =
1

64π2s

(2S′1 + 1)(2S′2 + 1)
1 + δ1′2′

|Mi f |
2 pcm(s, M′1, M′2)

pcm(s, m1, m2)
A1(M′21 )A2(M′22 )dM′21 dM′22

(5.66)

For numerical simulations it is useful to obtain expressions connecting the cross-
section of the forward reaction to the one of the reverse reaction. It is assumed that in
the forward reaction two incoming particles are stable with pole masses m1 and m2

and the outgoing particles are possibly unstable and their off-shell masses are not yet
known, they will only be sampled after the cross-section is computed and the reaction
takes place. In this way it is easy to understand why the forward reaction cross-section
is averaged over the spectral functions of products.

dσ12→ 1′2′/dΩ =
1

64π2s

(2S′1 + 1)(2S′2 + 1)
1 + δ1′2′

|Mi f (s)|
2×∫

pcm(s, M′1, M′2)A1(M′21 )A2(M′22 )dM′21 dM′22
pcm(s, m1, m2)

(5.67)

In the reverse reaction incoming products already have particular off-shell masses
M1 and M2 and they will form stable particles with masses m1 and m2. Then for the
reverse reaction

dσ1′2′→ 12/dΩ =
1

64π2s

(2S1 + 1)(2S2 + 1)
1 + δ12

|M f i(s)|
2 pcm(s, m1, m2)

pcm(s, M1, M2)
(5.68)

The matrix elements in Eqs. (5.67 - 5.68) are equal as discussed in section 5.3.3.
Dividing the Eq. (5.67) over the Eq. (5.68) one obtains the detailed balance relation for
cross-sections

dσ12→ 1′2′/dΩ
dσ1′2′→ 12/dΩ

=
(2S′1 + 1)(2S′2 + 1)
(2S1 + 1)(2S2 + 1)

1 + δ12
1 + δ1′2′

×

pcm(s, M1, M2)
∫

pcm(s, M′1, M′2)A1(M′21 )A2(M′22 )dM′21 dM′22
p2

cm(s, m1, m2)
(5.69)

Detailed balance relations for 2→ 1 reactions

Similarly to equation (5.61) for 2→ 2 reactions one can express the cross-section for
2→ 1 reactions ab→ R with masses m1, m2 and MR:
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dσ = (2π)−2δ(4)(Pi − Pf )|Mi f |
2 1

4I
d3pR
2ER
AR(M2

R)dM2
R (5.70)

Performing the same transformations as for the 2→ 2 case and taking into account
that M2

R = s one arrives at

σab→ R =
π

2
|Mi f |

2 1√
spcm(

√
s, m1, m2)

AR(s) (5.71)

For the reverse decay R→ ab with possibly unstable products the equation (5.52)
for the probability to decay per unit time is rewritten in the same way as for 2→ 2
reactions resulting in

dw =
dΩ

(2π)2 |M f i|
2
∫

pcm(
√

s, m′1, m′2)A1(m
′2
1 )A2(m

′2
2 )dm′21 dm′22

8s
1

1 + δab
(5.72)

Integrating over dΩ and recalling that the probability to decay per unit time is the
resonance width Γ one finds

ΓR→ ab =
|M f i|

2

8πs

∫
pcm(
√

s, m′1, m′2)A1(m
′2
1 )A2(m

′2
2 )dm′21 dm′22

1
1 + δab

(5.73)

Note that from this equation follows the expression for the off-shell width, Eq.
(5.14), only without the Blatt-Weisskopf factor and the form factor. The latter originate
from the matrix element, which here is assumed to depend only on s. Averaging
matrix elements over spin and taking the ratio of Eq. (5.71) to Eq. (5.73) one obtains
the detailed balance relation

σab→ R = ΓR→ ab
2SR + 1

(2S1 + 1)(2S2 + 1)
(1 + δab)

4π2

pcm(
√

s, m1, m2)ρ(
√

s)
AR(s) (5.74)

ρ(
√

s) =
∫ pcm(

√
s, m′1, m′2)√

s
A1(m

′2
1 )A2(m

′2
2 )dm′21 dm′22 (5.75)

With the additional Blatt-Weisskopf factor BL and a form factor from Eq. (5.21)
ρ(
√

s) is defined as in Eq. 5.15. Furthermore, one can introduce the so-called ’in-width’:

Γin
ab→ R = Γ0

R→ab
pcm(
√

s, m1, m2)B2
L(pcmR)F 2

ab(
√

s)
√

sρab(M0
R)

(5.76)
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Figure 5.7.: Test of the detailed balance for the π-ρ-σ system in a box with periodic boundary
conditions. Multiplicities versus time (a), scaled numbers of forward and backward
reactions for t > 20 fm/c (c), and the same differentially versus the invariant mass
of the reaction, which is equal to the resonance mass in this case (b).

Note that for stable decay products of the resonance it coincides with the resonance
width. With this definition the detailed balance relation is rewritten in the following
form:

σab→ R = Γin
R→ ab

2SR + 1
(2S1 + 1)(2S2 + 1)

(1 + δab)
4π2

p2
cm(
√

s, m1, m2)
AR(s) (5.77)

Testing detailed balance in SMASH

In section 5.3.3 it was shown that from the time reversal symmetry of elementary
interactions it follows that matrix elements of forward and reverse reactions are
identical and in thermal equilibrium forward and reverse reaction rates should be
equal. In SMASH cross-sections are implemented in such a way that the detailed
balance principle is respected: if there is a forward reaction then the reverse one is
always implemented and the cross-sections satisfy the detailed balance relations given
in the section 5.3.3.

To test, if detailed balance actually holds in the calculations, a periodic box was
initialized with multiple particle species. After the matter reaches equilibrium, it was
verified that the rates of forward and backward reactions are identical within statistical
errors. The fact that the box should reach equilibrium is granted by the H-theorem,
which is derived assuming time reversal invariance and the hypothesis of molecular
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chaos (Eq. 1.22). Strictly speaking, in a transport code both assumptions are valid
only in the limit Ntest→∞. At finite Ntest the interactions are non-local due to the
geometrical cross sections. In addition, while two particles with space coordinates
~r1 and~r2 form a resonance at (~r1 +~r2)/2, the products of resonance decay obtain the
same position as the decaying resonance. This breaks the time reversal invariance and
may lead to a small violation of detailed balance, which vanishes at large Ntest. This is
indeed what occurs, as it is shown further.

For the test two configurations were used: a ρ− π − σ box and a N − π − ∆ box.
The first one was initialized with a 100 π+, 100 π− and 100 π0 in a volume of V = (10
fm)3. The reactions ππ ↔ ρ and ππ ↔ σ were allowed, while all the other possible
reactions were switched off. From Fig. 5.7 one observes that the system has reached
chemical equilibrium, since the particle multiplicities in the box have saturated after
around t = 20 fm/c. Starting from this time, forward and backward reactions were
counted. The matrix elements of reactions in the same isospin group differ only
by Clebsch-Gordan coefficients. Thus one expects, for example, that the number
of reactions N(σ ↔ π+π−) = 2N(σ ↔ π0π0). Therefore, the reaction numbers
in Fig. 5.7 were scaled by the isospin and symmetry factors appropriately to make
sure that this expectation is fulfilled. Detailed balance is valid not only for the total
number of reactions, but it also has to be fulfilled differentially in momentum space.
It is demonstrated in Fig. 5.7 that detailed balance is indeed fulfilled differentially
in each invariant mass bin of the reaction. Note that for the ρ− π − σ box detailed
balance for the total (but not differential) number of reactions follows trivially from
the multiplicity saturation.

However, this is not the case for the N − π − ∆ system. The N − π − ∆ box was
initialized with 100 neutrons and 100 protons. The reactions ∆ ↔ Nπ, NN ↔ N∆
and NN ↔ ∆∆ were allowed, with all the other reactions being forbidden. As
demonstrated in Fig. 5.8 for Ntest = 100 detailed balance is violated at maximum by
2%. For Ntest = 1 this violation can reach 10% presumably because of the non-locality
effect described above.

To see if the numbers of reactions within one isospin group relate as expected from
Clebsch-Gordan factors, every number of reactions Ni is multiplied by a factor αi that
compensates for the isospin factors of this reaction. Let us denote 〈Nisospin group〉 =
1
k ∑k

i=1 αiNi, where k is amount of reactions in the isospin group (forward + backward).
If the SMASH result corresponds to the theoretical expectation, then Ni/〈Nisospin group〉
should be strictly 1 for every reaction. One can extract from Fig. 5.7 and from Fig. 5.8
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that SMASH matches this expectation. Table 5.3 shows the origin of compensating
coefficients αi. While most of the Clebsch-Gordan factors are simple, for pn ↔ ∆∆
reactions they are less intuitive. The matrix element for NN ↔ ∆∆ reaction is isospin
dependent, namely |M(I = 0)|2 = κ|M(I = 1)|2, where κ = 8

3 . Here is one explicit
example illustrating the calculation (where states beyond I = 1 have been omitted,
since they drop out):

|pn〉 =

√
1
2
|I = 1〉+

√
1
2
|I = 0〉 (5.78)

|∆−∆++〉 = · · ·+
√

9
20
|I = 1〉 −

√
1
4
|I = 0〉 (5.79)

〈pn|∆−∆++〉2 =
9

40
|M(I = 1)|2 + 5

40
|M(I = 0)|2 (5.80)

〈pn|∆−∆++〉2 =
5κ + 9

40
|M(I = 1)|2 (5.81)

Therefore, the detailed balance in SMASH for a mesonic system and a more complex
situation involving baryons and mesons is fulfilled.

5.3.4. Potentials

To create a more realistic simulation at low beam energies, a minimal version of
mean-field potentials between nucleons is included in the BUU way (see section 1.3.5),
i.e. with potentials dependent on local density rather than distances between particles.
The equations of motions follow from the one-particle Hamiltonian Hi

Hi =
√
~p 2

i + m2
e f f + U(~ri) , (5.82)

where me f f is the mass for stable hadrons and the effective mass for resonances in
accordance with their mass distribution (e.g. Breit-Wigner). At this point, the potential
depends only on the coordinates, but not on the momentum of the particles. The
corresponding equations of motion are then

d~ri
dt

=
∂Hi
∂~pi

=
~pi√

~p 2
i + m2

e f f

, (5.83)

d~pi
dt

= −∂Hi
∂~ri

= −∂U
∂~ri

. (5.84)
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Figure 5.8.: Scaled numbers of forward (triangles right) and backward (triangles left) reactions
for t > 80 fm/c π-N-∆ (b) and the same differentially in the invariant mass of
reaction (a).
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Reaction Clebsch Symmetry Total

ρ+→π+π0 1/2 1 1/2
ρ−→π−π0 1/2 1 1/2
ρ0→π0π0 0 1/2 0

ρ0→π+π− 1/2 1 1/2

σ→π+π− 1/3 1 2/6
σ→π0π0 1/3 1/2 1/6

pπ+→∆++ 1 1 3/3
pπ0→∆+ 2/3 1 2/3
pπ−→∆0 1/3 1 1/3
nπ+→∆+ 1/3 1 1/3
nπ0→∆0 2/3 1 2/3

nπ−→∆− 1 1 3/3

pp→ p∆+ 1/4 1/2 1/8
pp→ n∆++ 3/4 1/2 3/8
pn→ n∆+ 1/4 1 2/8
pn→ p∆0 1/4 1 2/8
nn→ p∆− 3/4 1/2 3/8
nn→ n∆0 1/4 1/2 1/8

pp→∆0∆++ 6/20 1/2 18/120
pp→∆+∆+ 8/20 1/4 12/120

pn→∆−∆++ 67/120 1 67/120
pn→∆+∆0 43/120 1 43/120
nn→∆+∆− 6/20 1/2 18/120
nn→∆0∆0 8/20 1/4 12/120

Table 5.3.: Expected isospin and symmetry factors for number of reactions within isospin
groups at equilibrium. The first numeric column is a Clebsch-Gordan factor, the
second column is symmetry factor, the third one is their product.
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In this formulation, as in any BUU approach, momentum conservation is fulfilled
only on average. Event by event momentum conservation requires that d~pi/dt =

−∂Htot/∂~ri, where Htot = ∑i Hi. The potential is calculated as a function of the local
density

U = a(ρ/ρ0) + b(ρ/ρ0)
τ ± 2Spot

ρI3
ρ0

(5.85)

Here ρ is the Eckart rest frame baryon density and ρI3 is the Eckart rest frame
baryon isospin density of the relative isospin projection I3/I. The density calculation
is described in section 5.4. ρ0 = 0.1681/fm3 is the nuclear ground state density.
Parameters for the Skyrme potential are by default set to a = −209.2 MeV, b = 156.4
MeV and τ = 1.35, while Spot = 18 MeV is the default value for the symmetry potential.
These parameters were agreed on for a recent transport code comparison [207] and
correspond to a rather soft potential with an incompressibility of K = 240 MeV. For
the equations of motion one does not need the potential itself, but its gradient, ∂U/∂~r.
In the symmetry term the positive sign is applied for the potential acting on neutrons
and the minus sign is applied for the potential acting on protons. Currently, the
potential acts only on baryons. The potentials are always calculated after the actions
are performed, right when the propagation happens.

Note that electromagnetic potentials (Coulomb and Lorentz force) are currently
being neglected in the model, since they are typically much weaker than the hadronic
mean fields (even if they are more long-ranged). The Coulomb potential can only play
a role for collisions of large nuclei at very low energies and is completely negligible at
higher energies (FAIR/RHIC/LHC).

Fig. 5.9 shows the nuclear stability over a large time range, much larger than what
is actually relevant for a nucleus-nucleus collision. The nucleons fly apart as expected,
if only Fermi motion without potentials to stabilize the nucleus are included. With
potentials there is the expected oscillatory behavior: The nucleons drift apart due to
Fermi motion and the potentials counteract and push them closer together again. One
can also observe the oscillations of the nucleus during the propagation. This can be
avoided if the nucleus is initialized in its ground state [267]. The observed oscillations
are called a giant monopole resonance or a ”breathing mode” of the nucleus.

Computations with potentials require that time step is small enough - the energy
change per timestep should be much smaller than the energy of the particle:
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Figure 5.9.: Evolution of an average transverse radius rxy =
√
〈x2 + y2〉 of a nucleus over

200 fm/c with different combinations of Fermi motion (FM) and potentials, 29Cu
nucleus (a) and 79Au nucleus (b).

∆E
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' |∂U/∂r|∆t

E
� 1 . (5.86)

5.3.5. Pauli blocking

Pauli blocking is an effective way to obtain the solution of the quantum BUU
equation, Eqs. (1.24-1.25), from classical molecular dynamics. Indeed, the BUU
equations differ from the Boltzmann equations only by (1± f ) factors in the collision
integral. Here the plus sign is for bosons and the minus sign for fermions. One can
interpret these factors as a multiplication of the cross sections by ∏i(1± fi), where
the product is taken over all final states in the reaction and fi ≡ f (ri, pi, t) is the
phase-space density of final-state particle i. This means that for bosons cross sections
are effectively increased and for fermions cross sections are effectively decreased. This
is called Bose enhancement and Pauli-blocking respectively. While Bose enhancement
has been attempted to implement recently in a parton cascade [288], Pauli blocking
is taken into account in many transport approaches. It is known to be especially
important at low collision energies.

The implementation of Pauli blocking consists of two parts: the calculation of the
phase-space density and the rejection of reactions with probability 1−∏i(1− fi). For
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the latter SMASH loops over all baryons in the final state after a collision has taken
place and returns ’true’ for blocking, if a uniformly distributed random number r > fi.
This means that the reaction is not blocked with probability ∏i(1− fi). In this way, no
fermion should be produced or scatter into a phase space bin that is already occupied
by another fermion.

The implementation of the phase space density calculation basically follows the
method used in the GiBUU model, see section D.4.3 in [200]. By definition N(∆Vr, ∆Vp) =

g f (r, p)∆Vr∆Vp, where N is the number of (test)particles in a given phase-space vol-
ume ∆Vr∆Vp and g is the degeneracy. Theoretically, the size of the phase-space goes to
zero ∆Vr, ∆Vp→ 0. In practice ∆Vr, ∆Vp and the way of averaging are chosen to bal-
ance between the smoothness of the obtained distribution function and the resolution
of coordinate and momentum space. This implementation relies on a large number of
test particles (Ntest > 20).

The phase-space density is calculated according to the following equations:

fi(rj, p) = ∑
j:pj∈Vp

1

κ(2πσ2)3/2

∫
∆Vr,|r−rj|<rc

d3r

× exp

(
−
(r− rj)

2

2σ2

)
(5.87)

with κ given as

κ =
2∆Vr∆VpN

(2π)3
4π

(2πσ2)3/2

∫ rc

0
dr

× r2 exp

(
− r2

2σ2

)
(5.88)

Here~rj is a vector connecting the point, where f is calculated, and the position
of the j-th particle. All these expressions can be analytically further evaluated for
rc > rr. This is a reasonable assumption, because the Gaussian cut-off rc has to be
large enough, so that the results do not depend on it. If rc < rr the whole method is
hardly applicable. In GiBUU these integrals are computed numerically, but analytical
expressions for them also exist (see appendix of [5]). For Vp a sphere of radius 80 MeV
is taken.
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Figure 5.10.: Left panel: Ratio of Pauli blocked to total found actions in Cu+Cu and Au+Au
collisions at different beam energies. For reference, the total number of found
actions per event (both blocked and performed) in an Au+Au collision at Ekin =

0.5A GeV is 0.99 · 105, for Ekin = 5A GeV it constitutes 1.32 · 105. The number of
test particles used in the simulation is Ntest = 50. Right panel: Ratio of Pauli
blocked to total found actions in Cu+Cu (filled symbols) and Au+Au (open
symbols) collisions for different numbers of test particles.

Figure 5.11.: Estimated distribution function at collision points is compared to analytical one.
Periodic (20 fm)3 box filled with 640 protons and 640 neutrons that are only
allowed to collide elastically. The initial distribution is Fermi-Dirac distribution
at zero temperature, so all the collisions should ideally be blocked.
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In Fig. 5.10 the number of collisions that is blocked due to prior phase space
occupation has been calculated in central Cu+Cu and Au+Au collisions as a function
of beam energy. One can see that at very low energies there are as many blocked
collisions compared to collisions taking place. The ratio drops rather fast and around
Ekin = 2A GeV only a quarter of the collisions are blocked. It then saturates around
10% for higher beam energies.

The right panel of Fig. 5.10 demonstrates the need for a decent number of test
particles to obtain stable results. If the number of test particles is low the phase-space
volume cannot be calculated with enough precision and therefore, there are too many
collisions allowed. Saturation sets in around Ntest = 20 and is very similar for Au+Au
and Cu+Cu collisions.

One can notice from Fig. 5.10 that even for a very large number of testparticles
there are collisions inside the nucleus, which should never happen in nature. To
demonstrate how these collisions occur, a box with periodic boundaries is initialized
with Fermi-Dirac distribution at zero temperature. In this case no collisions should be
allowed, because analytically f = 1. The estimated values of the phase-space density f
are shown in Fig. 5.11. The estimation of the phase-space density employs smearing,
so the sharp boundary in momentum space is smeared and f is underestimated for
p < pF and overestimated for p < pF. This effect is significant within the momentum
smearing radius |p− pF| < rp. For low momenta in average f is estimated correctly,
but any underestimation in particular events unavoidably causes unwanted collisions.

Since collisions in the nucleus cannot be completely avoided using Pauli-blocking,
sooner or later the nucleus thermalizes due to these collisions. To avoid this unwanted
effect in SMASH collisions within a nucleus are explicitly forbidden unless the nucleon
has already collided with some external particle.

5.4. Thermodynamics in the SMASH transport approach

5.4.1. Thermodynamic quantities from coarse-grained SMASH

Thermodynamic quantities such as net baryon density, total number density, en-
ergy density, temperature, chemical potentials (baryon, strangeness, isospin, etc) are
necessary in several cases. Firstly, densities are used to compute potentials (see section
5.3.4). Secondly, they are needed for the forced thermalization (chapter 6). Thirdly,
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Figure 5.12.: Baryon density estimated in SMASH simulation with smearing σ = 0.5 fm
(dashed line) and 1.0 fm (dotted line) is compared to the true density profile (solid
line). Large Ntest = 1000 for σ = 1 fm and Ntest = 10000 for σ = 0.5 fm is taken to
diminish fluctuations.

thermodynamic quantities are very useful to visualize heavy ion collisions, since they
represent both coordinate and momentum space in an intuitively simple way.

The first step to compute thermodynamic quantities is constructing four-currents
and energy-momentum tensor

Tµν(~r) =
1

NevNtest
∑

events
∑

i

pµ
i pν

i

p0
i

K(~r−~ri, pi) (5.89)

jµ(~r) =
1

NevNtest
∑

events
∑

i

pµ
i

p0
i

K(~r−~ri, pi) , (5.90)

where Nev is the number of events and Ntest is the test particle number. The
formulas were derived in section 2.1, an explicit form of the used smearing kernel K
(Eq. 2.26) is suggested and justified in the same section. In the limit of the smearing
width σ→ 0 and NevNtest→∞ the full smooth quantities are obtained. This limit is
numerically challenging, because when reducing the smearing width σ, one has to
increase statistics, keeping σ3NevNtest = const. Therefore, one takes a reasonably small
σ = 1 fm and keeps in mind the smearing effect, which is demonstrated in Fig. 5.12
for the density calculation of a Pb nucleus comparing σ = 0.5 fm and 1 fm.
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Figure 5.13.: Eckart rest frame net baryon density ρB (left panel) and Landau rest frame hadron
density ε (right panel) at the target center in central Au+Au collision at Elab = 0.8
A GeV in units of the ground state nuclear density ρ0 / ground state nuclear
energy density ε0 = 0.150 GeV/fm3. Simulation is performed in the fixed target
frame. Time dependence for the full SMASH simulation (full line) is compared to
the SMASH simulation with all interactions off (dashed line).

The next step is to transform Tµν and jµ to a local rest frame. In principle, there is a
variety of possible rest frames, e.g. a frame of zero total/pion/baryon/etc momentum
current; a frame of zero entropy current; a frame of zero total/baryon/electric/etc
current; center of momentum frame and so on. All these frames only coincide in
the case of ideal hydrodynamics. For a coarse-grained transport they are different in
general.

SMASH uses three rest frames: Landau rest frame (zero total momentum current or
equivalently T0i = 0 for i = 1, 2, 3), net baryon Eckart frame (zero net baryon current
of j0i

B = 0 for i = 1, 2, 3) and net I3
I Eckart rest frame. The latter two are currently

used to compute baryon density and net I3
I density, which stand in the expression for

potentials (Eq. 5.85).

Since jµ jµ is relativistically invariant, the Eckart rest frame density is obtained as

ρEck =
√

jµ jµ. For net baryon (charge, isospin projection) density a naive weighting of

particles in Eq. (5.90) with their baryon numbers can give rise to jµ jµ < 0, meaning
that Eckart frame is undefined. To avoid this, the density is computed as ρ = ρ+ − ρ−,
where + corresponds to positive baryon number (charge, isospin projection) and −
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corresponds to negative ones. In the left panel of Fig. 5.13 the dependence of the net
baryon density versus time in the middle of the target in the central Au+Au collision
at Ekin = 0.8A GeV in the fixed-target frame is shown. The energy density in the
Landau frame is depicted in the same figure on the right panel. From these plots one
can see that the ground state baryon/energy density values are reproduced, when the
collision term is disabled. Including interactions the baryon/energy density rises to
about 4 times the nuclear ground state densities.

The Landau rest frame (LRF) quantities in SMASH are used for the forced thermal-
ization. The advantage of the Landau rest frame is that it is always well-defined. By
definition, T0i

LRF = 0, the energy flow in the LRF is zero. To find the LRF, one has to find
such a Lorentz boost that after it T0i = 0. To achieve this the generalized eigenvalue
problem

(Tµν − λgµν)hν = 0 (5.91)

is solved, where gµν is the metric tensor. The eigenvectors are normalized so that
hµhµ = 1. Note that this generalized eigenvalue problem is equivalent to a usual
eigenvalue problem for Tµ

ν , however Tµ
ν is neither symmetric nor positively defined,

so numerical solvers look for complex eigenvalues. In contrast, the above generalized
eigenvalue decomposition of Tµν always gives real eigenvalues, since it is symmetric
and positively defined:

Tµν = ΛTdiag(λ1−4)Λ , (5.92)

where Λ is a matrix consisting of eigenvectors hµ. Note that this eigenvector
decomposition is identical to the Lorentz transformation from the rest frame, where
the upper row of the boost matrix (Eq. 1.17) is the required boost four-velocity uµ.
At the same time the upper row is one of the generalized eigenvectors hµ of Tµν.
Therefore, to find the required boost one just has to choose the right eigenvector from
the four solutions of the eigenvalue problem.

Notice that the eigenvalue corresponding to uµ is the LRF energy density ε, the
rest of the eigenvalues of Tµ

ν are non-positive and smaller by magnitude. One can
see this immediately assuming that Tµ

ν is computed from particles directly in the
LRF. Therefore, the normalized eigenvector corresponding to the largest (and the only
positive) eigenvalue is the required 4-velocity of the LRF.
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Figure 5.14.: Landau rest frame energy density T00
L (background color) and velocity of Landau

frame (arrows), both for baryons. Au+Au collision at Ekin = 0.8A GeV with
impact parameter b = 3 fm, Ntest = 20. Color legend is given above. Velocity is
proportional to the arrow length, maximal arrow length corresponds to velocity
of 0.55 c.

To demonstrate the result of this transformation the LRF energy density and collec-
tive velocities uµ are plotted in the x-z-plane in Fig. 5.14 for a Au+Au collision. One
can observe the onset of radial flow after the initial collision of the two nuclei. Note
that the LRF energy density before collision reproduces again the nuclear ground state
energy density.

5.4.2. SMASH equation of state

In Figure 5.15 the equation of state arising from SMASH is compared to UrQMD
and to the parametrized lattice QCD equation of state from [289], which is used in
many hydrodynamical calculations. The SMASH EoS is computed in two ways. First,
the EoS of ideal gas consisting of all SMASH hadrons is calculated according to Eqs.
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Figure 5.15.: Equation of State (EoS) comparison between ideal gas consisting of hadrons
implemented in SMASH (solid lines), in UrQMD (dotted lines) and s95p-v1 QCD
EoS from [289] (dashed line).

(2.58-2.60). This EoS does not take the effects of resonance widths into account. It is
compared to SMASH EoS computed in a different way. A box with periodic boundary
conditions is initialized with a set of hadrons, their multiplicities being computed
according to an ideal gas EoS with pole masses. Then one waits for 1000 fm/c, until
the mixture equilibrates (it is checked the hadron multiplicities saturate over time)
and computes pressure and energy density. The results are plotted in Fig. 5.15: the
SMASH box EoS only slightly deviates from the naive ideal gas EoS. The effects of
non-zero widths tend to decrease pressure slightly at a given energy density.



Chapter 6.

Interpolating between hadronic
transport and hydrodynamics using
forced canonical thermalization

This chapter is based on [6]. As discussed in sections 1.3.4 and 1.3.5, the applicability
of hydrodynamics requires that lm f p � L and the applicability of transport requires
lm f p � λCompton, where lm f p denotes mean free path, L is size of the system and
λCompton is typical Compton wavelength. This complementarity of applicability regions
of hydrodynamical and transport approaches makes hybrid approaches (see section
1.3.6) theoretically attractive, since in a hybrid approach each description is assumed to
act in its region of applicability. Currently, the focus in heavy ion collision experiments
is shifting towards intermediate collision energies (see section 1.2 for review of heavy
ion experiments), at which the observation of the QCD critical point and the first
order phase transition is expected. At the same time at intermediate energies the
assumptions adopted by hybrid approaches become challenging.

A typical hybrid approach starts with generating an initial state, which can be
highly anisotropic and includes event-by-event fluctuations. Then a rapid switch
to relativistic hydrodynamics is performed, which neglects the initial anisotropy of
the energy-momentum tensor. Hydrodynamical equations are solved in the forward
light-cone until some late time. The particlization hypersurface (usually a constant
temperature, energy density or Knudsen number hypersurface) is then determined, a
Cooper-Frye particlization (section 2.3) is performed upon that surface, and particles
are finally allowed to rescatter using hadronic transport. Note that in such approaches,
hydrodynamical equations are solved even out of their region of applicability, where

122
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the Knudsen number is large. The particlization hypersurface is determined a pos-
teriori from hydrodynamics, but not from a dynamical condition considering both
hydrodynamics and transport. Particles in the transport phase have no possibility to
cause feedback to hydrodynamics, which leads to a well-known problem, the so-called
negative Cooper-Frye contributions [1, 247, 248, 251]. At high collision energies, at
midrapidity, which is the kinematical region studied by RHIC and LHC, negative
Cooper-Frye contributions are negligible and the approximation adopted by hybrid
approaches is justified. For lower energies they were estimated in the chapter 4 and
can easily reach the level of 10% for hydrodynamics with smooth initial conditions.
For event-by-event hydrodynamics they are practically unlimited.

Hydrodynamical and hybrid approaches could be completely substituted by trans-
port models at low energies, but this presents two challenges. First, the equation
of state does not explicitly enter the transport model, so it becomes impossible to
study the equation of state directly, without specifying the degrees of freedom. Sec-
ond, at high densities, multi-particle collisions and quantum interference effects gain
importance, as the applicability condition lm f p � λCompton starts to be violated. As
an example, the account of pp̄ annihilations to many mesons and the inverse pro-
cess of many-meson collisions is claimed to be essential to describe anti-proton and
anti-Lambda yields at AGS [272], as well as yields at the LHC [290].

Here a simple approach that attempts to solve or avoid the above mentioned
problems is explored. In a pure hadron transport model it is suggested to perform
forced thermalization in the regions of high density. Physically, such thermalization
corresponds to the extreme limit of N-particle collisions, so intense that thermalization
happens rapidly, replacing the local distribution function by a thermal one. It follows
from the H-theorem, that the thermalized state is unique and independent on the
microscopic details of interaction, which makes it an easy case to consider. In fact
such a treatment is conceptually very similar to a hybrid approach with Smoothed
Particle Hydrodynamics [291], but here hydrodynamics and transport are dynamically
coupled. Forced thermalization involves the EoS, thus allowing to explore the phase
transition. The method is also similar to core-corona separation [217], but the thermal-
ized and transport domains are coupled dynamically and transport can feedback to
the thermalized regions. It remains applicable for small systems and at low collision
energies, where hydrodynamics or hybrid approaches are not applicable. All this
serves as a motivation to test and explore the implications of such an approach.
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6.1. Performing forced canonical thermalization in

SMASH
The forced canonical thermalization is implemented on top of the SMASH cascade

approach described in detail in chapter 5 (specifically the version SMASH-0.9rc was
used). The main assumption of this approach is that if the local rest frame energy
density is high enough rapid thermalization occurs. In practice, the region Ωεc

where
the local rest frame energy density ε is larger than some predefined εc is determined
and particles in this region are substituted by new ones, sampled according to a
thermal distribution conserving total energy, momentum and quantum numbers. In
other words, the non-equilibrium distribution function is replaced by a thermal one
in the transport approach at energy densities ε > εc. This treatment is ideologically
similar to hybrid (hydrodynamical + transport) approaches, but here the boundary
between the ”hydrodynamical” and transport regions is found dynamically and not
aposteriori; also negative Cooper-Frye contributions are not emerging in this approach.

Technically, forced thermalization consists of two steps - coarse-graining to de-
termine the macroscopic densities and thermodynamic properties and the sampling
of the new particles. To coarse-grain a Cartesian grid is spanned over the region of
interest. The number of cells in each direction is a parameter, but its variation in a
reasonable range does not influence results as shown later (see section 6.3). In each cell,
the local energy-momentum tensor and the four-current are computed according to
equations of section 2.1.3. In all simulations smearing width σ = 1 fm is taken, except
for the simulations with the sphere setup, where σ = 0.3 fm is used to avoid too much
smearing and allow for a reasonable comparison of the results to hydrodynamics. The
rest-frame quantities are obtained using Eq. (2.36) with an ideal hadron gas equation
of state (Eqs. 2.58-2.60). The list of hadrons in the equation of state coincides with the
list of all hadrons available in SMASH. This equation of state is discussed in more
detail in section 5.4.2.

After performing these steps, the information about the local rest-frame energy
density ε(~r), the temperature T(~r), the chemical potentials µB(~r) and µS(~r), and the
local Landau rest frame velocity v(~r) is available in each cell of the grid. This allows to
construct a region Ωεc

where ε > εc, from which particles are removed and new ones
are sampled according to the local T, µB,S and v.
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Since this sampling procedure is not uniquely defined, let us now discuss a few
possible options. Denote the set of all conserved quantities (energy, momentum,
baryon number, strangeness, electric charge, etc) in a given event in one cell by
Ccell. The total conserved quantities in the thermalization region in this event are
Ctot = ∑ Ccell, where the sum goes over all thermalization cells.

The first option is to apply the Cooper-Frye formula to every cell, as it is done
at the particlization in many hydrodynamical models. Then the conservation laws
are fulfilled in every cell, but only in the event average. In the introduced notations,〈

Cbe f ore
cell

〉
=
〈

Ca f ter
cell

〉
, but Cbe f ore

cell 6= Ca f ter
cell . The framework of a transport approach,

used here, strictly respects conservation laws in each event, therefore it is desirable
that the forced thermalization also follows conservation laws event-by-event.

Another option is to have exact event-by-event conservation laws, where Cbe f ore
tot =

Ca f ter
tot , but Cbe f ore

cell 6= Ca f ter
cell and

〈
Cbe f ore

cell

〉
6=
〈

Ca f ter
cell

〉
. This approach is applied for

particlization in some hybrid models [163,230]. This method is applied here, because it
is reasonably fast and provides a very good approximation to the next approach, when
it goes about the distribution of total (not cell by cell) hadron multiplicities. In the next
section the implications of this choice are investigated and its different algorithmic
implementations are compared. Such a comparison makes this study useful for hybrid
approaches, since it demonstrates how to perform particlization in a faster and more
controlled way.

One more possibility is to perform microcanonical thermalization in each cell, so
that Cbe f ore

cell = Ca f ter
cell . This can in principle be done using the procedures described

in [292] and [293] for every cell. In this case, it seems that T and µ are not necessary,
but they are actually useful for initializing the Metropolis algorithm, as suggested
in [293]. This method has two disadvantages: first, Metropolis sampling is slow
and the need to perform it in ∼ 104 of cells makes it almost not feasible. The other
disadvantage is a sensitivity to the cell size and Ntest: indeed, in the case of very small
cells there is typically one or zero particles in the cell. Resampling this one particle
conserving all quantum numbers will most probably lead to no change at all. At the
same time, increasing Ntest, one will find more than one particle in such a cell and
thermalization results will change. So a combination of cell size and Ntest becomes a
physical parameter, characterizing a radius of interaction.

As mentioned, in this calculation the second method is used. The initial hadrons
are substituted by a new set of hadrons distributed with probability
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w(~ri, pi)∼ ∏
sorts

1
Nsort!

N

∏
i=1

d3~rid
3~pi

(2πh̄c)3 e−(pν
i uν(~ri)+µi(~ri))/T(~ri)δEδ~pδBδSδC , (6.1)

where Nsortdenotesthemultiplicityo f ahadronspecie.The δ-functions in this expres-
sion denote the conservation of total energy, momentum, baryon number, strangeness
and electric charge. All these quantum numbers should be equal to the quantum
numbers of initial particles in the region Ωεc

. Without the δ-functions, the sampling
distribution from Eq. 6.1 is equivalent to a Cooper-Frye sampling on an isochronous
hypersurface. In this case by integrating over d3~rid

3~pi one can easily see that the
distribution of a particular hadron yield in one cell is Poissonian:

w(Ni)∼
(Vcell ϕi)

Ni

Ni!
(6.2)

ϕi =
gie

µ/T

(2πh̄c)3

∫
d3p e−pνuν/T (6.3)

where ϕi is the average equilibrium density of a given hadron species in the
cell. Strictly speaking, in a case with total energy- and momentum conservation
this consideration is not applicable any more, because now momentum integrations
involve additional global δ-functions, so the distribution in one cell may be different
from Poissonian. However, it is assumed that there are many cells with many particles
in them, so that the global conservation laws affect the local Poisson distributions only
slightly. From these considerations it is clear, that the method prefers larger Ntest and
not too large cells to achieve reliable results. The details of the sampling algorithm
and a test in a thermal box are discussed in the next section 6.2.

Here Boltzmann statistics was assumed instead of more realistic Fermi-Dirac and
Bose-Einstein statistics. This is done intentionally to be consistent with the absence of
Pauli-blocking or Bose-enhancement effects in the transport simulation. For quantum
statistics the multiplicity distribution in a cell is not Poissonian anymore. For bosons
the mean multiplicity increases due to quantum statistics and the variance decreases,
for fermions it is the opposite. Here our model is applied for low collision energies
in the high-density region, where the typical temperatures are around 110 MeV and
typical baryon chemical potentials are of order 700 MeV (see Fig. 6.10). The correction

for pions is then 1
2

K2(2mπ/T)
K2(mπ/T) ≈ 7%, for protons it is 1

2
K2(2mp/T)
K2(mp/T) eµ/T ≈ 4% and for all

the other hadrons it has to be smaller.
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Figure 6.1.: Multiplicity distributions in a thermally initialized box are compared before and
after additional forced thermalization. For a perfect thermalization algorithm
these distributions should coincide. Here the thermalization algorithm is mode
sampling.

The forced thermalization is performed every ∆tth starting from time tstart. Unless
stated otherwise, tstart = 0 fm/c and ∆tth = 1 fm/c are taken. Further ∆tth is varied
to see its effect on observables in Section 6.3. The system evolution before, between
and after thermalizations follows the conventional SMASH cascade, with propagation,
collisions and decays. It is assumed that the N-particle collisions happen momentarily,
at a single point in time.

6.2. Thermal box - testing the sampling algorithm
Thermalization with global conservation of quantum numbers can be performed

with different algorithms. In this section, three algorithms are compared within
a thermal box containing infinite hadronic matter in equilibrium. First, a V = (5
fm)3 box with periodic boundary conditions is created and initialized with thermally
distributed hadrons that are available in SMASH. The multiplicities of each hadron
species are Ni = Poi(φi), where Poi is a Poisson distribution and φi is the thermal
multiplicity of i-th hadron species at a temperature of T = 0.15 GeV and zero chemical
potential µB = 0. The values of temperature and chemical potential are an arbitrary
choice, but they correspond to the relevant conditions in hybrid approaches for heavy
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ion reactions at high beam energies. The initial momenta are sampled from the
Boltzmann distribution with the same temperature. The momenta in the box are
centralized, so that total momentum of the box is zero, pi := pi − 1

N ∑N
j=1 pj. In this

way a box with a thermalized hadron gas is obtained. The total energy and quantum
numbers of such a box fluctuate from event to event.

As a second step the thermalization algorithm is applied, which conserves total
energy, momentum and quantum numbers as described above in Section 6.1. The
space-time grid consists of 103 cells. On this grid, the coarse graining as described
above is performed, taking the periodic boundary conditions into account. After
sampling new particles with three different algorithms the initial multiplicity and
momentum distributions with the ones after forced thermalization are compared. If
everything works as expected, the results are supposed to be identical.

The first algorithm under investigation is the mode sampling used for particlization
in the UrQMD hybrid approach [230]. It consists of seven steps called ”modes”:

1. Choose a cell with probability Vcell
V . Sample particles in the cell according to the

thermal distribution assuming a Poisson distribution around the mean, until the
total energy exceeds Einit. Only particles with the positive strangeness are kept,
reject all the other particles.

2. Compensate strangeness by sampling only particles with the negative strangeness.

3. Sample non-strange hadrons until the total energy exceeds Einit, keeping only
non-strange baryons.

4. Compensate baryon charge by sampling only anti-baryons.

5. Sample non-strange mesons until the total energy exceeds Einit, keeping only
positively charged non-strange mesons.

6. Compensate electric charge by sampling negatively-charged non-strange mesons.

7. Sample neutral mesons until the energy is conserved.

In this work, the original mode sampling algorithm has been improved to increase
the computational speed. Choosing the cell with the probability Ncell

∑cells Ncell
and sam-

pling one particle definitely in there helps to avoid rejections and samples the same
distribution in a faster way. This improvement is especially noticeable at high baryon
chemical potential, such as the one reached in low energy heavy ion collisions. The
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Figure 6.2.: Multiplicity distributions in a thermally initialized box are compared before and
after additional forced thermalization. For a perfect thermalization algorithm
these distributions should coincide. Here the thermalization algorithm is biased
Becattini-Ferroni sampling with rejection by total energy.

average total number of anti-baryons can then be order of 10−5. Sometimes one or
two anti-baryons are needed to compensate the baryon number, but the probability to
sample one in the original algorithm is 10−5 divided by number of cells. Therefore,
many rejection steps are avoided with the newly defined probability.

Applying the mode sampling within the thermal box (see Fig. 6.1), one observes
that the mean values of multiplicities are all reproduced and many multiplicity distri-
butions are also reproduced. However, the π and ρ multiplicity distributions are wider
than the initial ones, which results in a wider distribution for the total multiplicity.
Moreover, the width of the multiplicity distribution follows Γ(π−) > Γ(π0) > Γ(π+),
and similarly for ρ-mesons. To find the origin of this deviation from the expectation,
the mode sampling order has been exchanged - instead of keeping only positively
charged first and compensating with negative particles, only negatively charged are
kept first and compensated with positive afterwards. Such reverse procedure results
in Γ(π+) > Γ(π0) > Γ(π−). This demonstrates that the multiplicity distribution
obtained from the mode sampling is sensitive to the internal algorithm realization,
which is not physical.
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The second considered algorithm is following the idea suggested by Becattini and
Ferroni in [293], where one takes advantage of the fact that the sum of Poissonian
variables is Poissonian itself. However, we implemented a biased version, different
from the original Becattini and Ferroni suggestion. This version turns out to be
numerically more efficient, while the bias is rather modest. The algorithm consists of
the following steps:

1. Compute total average thermal numbers of baryons νB and anti-baryons νB̄.
Sample NB and NB̄ with probability

w(NB, NB̄)∼
ν

NB
B

NB!
ν

NB̄
B̄

NB̄!
δ(NB − NB̄ = Binit) . (6.4)

Such a distribution can be sampled very efficiently using the method discussed
in the Appendix. Then the multiplicities of particular baryons and anti-baryons
are sampled from the multinomial distribution.

2. Compute total thermal average for strange and anti-strange mesons: νS and νS̄.
Then sample NS and NS̄ with distribution

w(NS, NS̄)∼
ν

NS
S

NS!
ν

NS̄
S̄

NS̄!
δ(NS − NS̄ = Sinit − Ssampled) . (6.5)

Then particular numbers of strange and anti-strange mesons are sampled from
multinomial distribution.

3. Same procedure for charged non-strange mesons, in the distribution there is
δ(NC − NC̄ = Cinit − Csampled), where Csampled is the charge of the hadrons sam-
pled in the previous steps.

4. Sample numbers of neutral mesons from Poissonian distributions.

Notice that for this version of the algorithm the distribution of the total number
of particles is too wide. It turns out that this effect can be decreased, if one rejects all
samples where the energy is too far away from the initial energy. Rejecting |Esampled −
Einit|/Einit > 1%, one obtains the correct distribution for the total multiplicity, but
the sampled distributions for π and ρ are slightly wider than the initial ones, see Fig.
6.2. This algorithm is so efficient, because of the fast method to generate pairs of
Poisson-distributed numbers with fixed difference, described in the Appendix. The
simple rejection method used for this purpose in the original paper by Beccatini and
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Figure 6.3.: Multiplicity distributions in a thermally initialized box are compared before and
after additional forced thermalization. For a perfect thermalization algorithm these
distributions should coincide. Here the thermalization algorithm is the unbiased
Becattini-Ferroni sampling with rejection by total energy.

Ferroni is fast enough for the case of small chemical potential, but becomes slow for
µB ' 0.7 GeV reached in the Au+Au collisions at

√
s = 3 GeV - the energy relevant for

our investigation.

Finally, the unbiased algorithm is tested, which is very similar to the previous one,
except that rejection at any step requires the algorithm to start from scratch.

1. Identical to the first step of the biased algorithm.

2. Compute total thermal average for strange and anti-strange mesons: νS and νS̄.
Then sample NS = Poi(νS) and NS̄ = Poi(νS̄). If NS − NS̄ = Sinit − Ssampled, then
proceed further, else start from the very beginning.

3. Similar to previous step for electric charge. If charge conservation not fulfilled,
start over from the first step.

4. Sample neutral non-strange mesons.

5. Sample momenta for all particles, if total energy deviates more than 1% from the
initial energy start over from the first step.
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Figure 6.4.: Thermal box with the unbiased Becattini-Ferroni sampling with rejection by total
energy: testing energy distribution

This algorithm produces the correct multiplicity distributions (see Fig. 6.3). Finally,
Fig. 6.4 shows that the energy distributions are also appropriate using this algorithm.

In the following, the biased Becattini-Ferroni sampling is employed, since it is more
efficient, the bias is small and it does not suffer from internal dependencies like the
mode sampling. For a few cases, it was also checked that the unbiased algorithm
produces identical results. In Fig. 6.5 we compare the performance of the considered
algorithms on an Intel(R) Xeon(R) 2.5 GHz CPU. For the summary of algorithm
properties see Tab. 6.1.

After the application of the sampling algorithm quantum numbers are conserved,
but energy is only conserved with 1% precision and momentum conservation is only
fulfilled on average. This shortcoming is addressed in two steps. First, the momenta
are corrected to match the initial momentum, pi := pi − 1

N (∑N
j=1 pj − pinit). Then, the

particles are boosted to the rest frame of initialization with 3-velocity − pinit
Einit

. In this

frame the sum of momenta is zero, because in the previous step ∑N
j=1 pj = pinit was

forced, so if one scales all momenta with the same factor, the sum will remain zero.
Therefore, all momenta are scaled with a factor (1 + a), such that
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Figure 6.5.: Performance comparison of sampling algorithms: mode sampling, biased and
unbiased Becattini-Ferroni sampling. Thermalization of the (5 fm)3 thermal box
with T = 0.15 MeV, Ntest = 10, µS = 0, µB is varied.

Table 6.1.: Sampling algorithms with total quantum numbers conservation

Name Bias on multiplicity distributions Performance

Mode Sampling
Widths of distributions affected,
bias dependent on implementation

fast

Biased Becattini-Ferroni
Widths of distributions affected,
small bias observed

comparable to Mode Sampling

Unbiased Becattini-Ferroni No bias observed ' 4 times slower than previous

N

∑
j=1

√
m2

j + (1 + a)2p2
j = E′init (6.6)

Finally the particles are boosted back to computational frame and now energy and
momentum are exactly conserved. This procedure biases momentum distributions,
but this bias decreases with higher numbers of sampled particles N. One can observe
in Fig. 6.4, that if N is large enough, this bias is negligible.
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Figure 6.6.: The time evolution of an expanding sphere is compared for ideal hydrodynamics
(SHASTA, dotted lines), hadron cascade (SMASH, solid lines) and the same hadron
cascade enhanced by effective N-particle collisions using forced thermalization
(SMASH+therm, dashed lines). Panels (a) and (b) depict the energy density in the
local Landau rest frame versus radius. Panel (b) is exactly the same plot as panel
(a) with a logarithmic scale, which allows to see the edges of the system. Panel (c)
demonstrates the velocity of the Landau rest frame versus radius.

6.3. Interpolating between transport and hydrodynamics
After establishing the details of the algorithm to effectively include N-particle

collisions in a transport approach, let us compare the influence on the time evolution
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of an expanding system to pure transport and ideal fluid dynamics. The objective is to
prove that this dynamically coupled approach interpolates between the two limits of
kinetic theory. For this purpose, a simple scenario is chosen, namely an expanding
sphere. The sphere of radius R0 = 3 fm is initialized at an energy density of 10 times
nuclear ground state energy densities, ε = 10ε0, and at zero baryon density. In Fig. 6.6
the evolution of the local Landau rest frame energy density and velocity as a function
of the radius r are compared. The ideal hydrodynamics code has been performed
using the SHASTA [294] ideal fluid dynamics solver, which uses a 2003 Cartesian grid
with 0.1 fm grid spacing in each direction. The time step in SHASTA is 0.04 fm/c.
In SMASH, the sphere is initialized with a thermal hadron gas with a temperature
of T ≈ 191 MeV, corresponding to energy density ε = 10ε0. To minimize the effects
of smoothing, the width of the Gaussian smearing kernel is taken to be σ = 0.3 fm.
This is compensated by taking Ntest = 100. In the version of SMASH with the effect of
N-particle collisions, forced thermalization is performed every ∆tth = 1 fm/c in the
region, where energy density is above 2ε0. The thermalization grid has a cell spacing
of 0.5 fm, which can seem rather large, but it was checked that decreasing it by factors
of 2 and 3 does not change the results.

In Fig. 6.6 one immediately notices that transport and fluid dynamics do not
produce identical results, as expected. At the time when, in fluid dynamics, the
rarefaction wave has still not reached the center, in transport the energy density at the
center has already dropped. To understand this difference, one has to consider the
Knudsen number in the transport case. At small times, the scattering rate in SMASH

is 0.73 fm−1, so that the mean free path is lm f p ' 1.5 fm and Kn ' lm f p
R0
' 0.5. At this

Knudsen number hydrodynamics is already on the verge of applicability. Moreover,
this number is averaged over space and over various hadron species. On the edges
of the system one has to compare the mean free path not to R0, but to the distance
to the edge. Furthermore, some hadron species have small interaction cross-sections
with other particles, so their mean free path is large and they are in the ballistic regime,
not in the hydrodynamic one. In Fig. 6.6, panel (c) shows that velocity at the edge in
the hydrodynamics is c, while it is smaller in the transport model, because of massive
particles being present.

SMASH including the effective treatment of N-particle collisions exhibits inter-
mediate behaviour between hydrodynamics and pure transport. At the edges of the
system, where forced thermalization is not happening, it behaves like transport, while
in the center, it is closer to hydrodynamics. By forcing thermalization every ∆tth = 1
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fm/c, the Knudsen number at the center is fixed for some time to Kn ' 〈vtherm〉∆tth
R0

for
all hadron species. So even for hadrons with small cross-sections it becomes hard to
escape the center too early. In fact, one can regulate this closeness to hydrodynamics
by changing ∆tth. For smaller ∆tth one obtains smaller Knudsen number and the result
is thus closer to hydrodynamics. It has to be underlined that the region of forced
thermalization is coupled to the outside region: particles can move in both directions.
This is different from hybrid approaches, where particles from transport have no
chance to feedback to hydrodynamics. Overall, the introduction of effective N-particle
collisions has the expected effect that it interpolates between pure transport and ideal
hydrodynamics.

After studying the effect of forced thermalization in a simple controlled setup, one
can investigate its implications in heavy ion collisions. To understand our results
better, the influence of the thermalization parameters is also considered, such as the
thermalization period ∆tth, the thermalization grid spacing and the energy density
εc, above which the thermalization is enforced. In Fig. 6.7 one can see the effects
of varying these parameters. The “default” ones are Ntest = 10, ∆tth = 1 fm/c,
thermalization grid spacing 0.5 fm in the beam direction and 1 fm in the transverse
plane and εc = 0.3 GeV/fm3. These parameters are varied one by one, keeping all the
rest constant. As one can see in Fig. 6.7, the dependence of the multiplicities on the test
particles number saturate at Ntest = 10, which is the reason this number was chosen
for further investigations. The grid spacing does not affect the final multiplicities,
except a small effect on pions. The grid spacing has no physical meaning and ideally
results do not depend on it. Surprisingly, ∆tth also plays a rather small role, even
though multiplicities are decreasing with a larger thermalization period. This is in
line with the naive expectation that larger ∆tth brings simulation results closer to
a pure transport, where the multiplicity of the strange particles is typically below
equilibrium values. The dependency on εc is also predictable - in the limiting case
of high εc, no thermalization takes place at all, because such high energy densities
are never reached in the collision. So for high εc SMASH with forced thermalization
is equivalent to the normal SMASH cascade. This is also illustrated by Fig. 6.8. For
low εc, a significant volume is thermalized during the evolution, which drastically
increases strange particles multiplicities. This can be attributed to the fact that hadronic
interactions do not provide as much strangeness production as a statistical model
would predict. In Fig. 6.8 one can also see that the lifetime of the high-density region
is prolonged due to the forced thermalization. This is in line with the previously
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Figure 6.7.: Central AuAu collision at
√

s = 3 GeV calculated within SMASH with effective
treatment of N-particle collisions. Final hadron multiplicities are shown versus
test particle number (a), thermalization period ∆tth (b), grid spacing (panel c, x
denotes the factor for number of cells in one dimension, x = 2 means that the grid
is 8 times denser) and energy density εc, above which the thermalization is forced
(d).
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Figure 6.8.: Volume of thermalization region versus thermalization period ∆tth (a) and maximal
volume versus εc (b). Central AuAu collisions at

√
s = 3 GeV simulated by SMASH

with effective treatment of N-particle collisions.

described sphere scenario: transport with forced thermalization becomes closer to
the hydrodynamical regime. The observable consequence of such behaviour may be
larger HBT radii, compared to pure transport.

Another consequence of our model is a drastic increase of strangeness. This is
not surprising, because in the pure transport strange particles are far from thermal
equilibration. The effects of our forced thermalization on multiplicities are shown in
Fig. 6.9, where 3 models are compared: SMASH, SMASH with thermalization, and
UrQMD hybrid [163]. The starting time of the thermalization is taken to match that
of the hybrid approach. Energy density εc is set to 2ε0, in the UrQMD hybrid parti-
clization energy density is also set to 2ε0. One can see that in terms of multiplicities
our model behaves similarly to the UrQMD hybrid approach, even though the un-
derlying transport codes have significant differences in terms of resonance properties
and strangeness production. From the Fig. 6.10 one can see that the average T and µB

inside of thermalization/hydrodynamical region are similar in all three approaches,
which makes comparison sensible.

One more consequence of the forced thermalization is that the pressures in the
longitudinal and transverse directions rapidly equalize. This means that particles from
larger rapidity are redirected to midrapidity and transverse momentum increases.
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Figure 6.9.: Multiplicities in central AuAu collision at
√

s = 3 GeV are compared for SMASH,
SMASH with thermalization, and UrQMD hybrid.
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Figure 6.10.: Average temperature (a) and baryon chemical potential (b) inside of thermal-
ization region for different thermalization periods. Averages are weighted with
energy density, i.e. 〈T〉 = ∑r T(r)ε(r)/ ∑r ε(r). Central AuAu collisions at√

s = 3 GeV simulated by SMASH with (solid lines) or without (dashed lines) ef-
fective treatment of N-particle collisions. Black solid lines correspond to UrQMD
hybrid approach.
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y at midrapidity in central AuAu
collision at

√
sNN = 3 GeV. The model with the forced thermalization is compared

to cascade.

This is illustrated by Fig. 6.11, which shows an increase of mean pT for all particles.
One can see that the mean pT is insensitive to the thermalization period, but it is quite
sensitive to the forced thermalization itself. The most dramatic effect can be seen for
K−. This is probably because, unlike K+ that can be produced in NN→ΛK+ reactions,
more than 80% of K− are produced in the secondary strangeness exchange πΣ→NK−,
πΛ→NK− and Σ∗→NK−. Strangeness exchange reactions preferably deliver their
products to high rapidities. Due to the forced thermalization K− produced at high
rapidities are redirected to midrapidity.

6.4. Discussion
A new approach was introduced, where canonical thermalization is performed in

a pure hadronic transport in the regions of high energy density — the region, where
hydrodynamics would be applied in the hybrid approaches. Unlike hybrid approaches,
this approach automatically guarantees that the high density and the low density part
can exchange particles and that transition hypersurface is determined dynamically.
This approach was implemented and tested using the SMASH hadronic transport as a
basis.
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First, several algorithms for sampling particles respecting conservation laws for
all quantum numbers were compared. The Becattini-Ferroni algorithm for sampling
was found to be the most reliable one while its slightly biased version turned out
to be reasonably efficient. In an expanding sphere scenario it was demonstrated
that SMASH with the forced thermalization exhibits intermediate behaviour between
hydrodynamics and transport. The closeness to hydrodynamics can be regulated by
the thermalization frequency - the more often one thermalizes, the closer the result to
hydrodynamics.

Within this novel approach heavy ion collisions were simulated and results were
compared to transport and hybrid approaches. In the forced thermalization approach
more strangeness is produced compared to pure transport, the mean transverse mo-
mentum is increased due to pressure isotropization and the high-density region lives
longer. All these features are qualitatively similar to hybrid approaches. Note, how-
ever, that the problems of hybrid approaches at particlization (discussed in chapter
4) are absent in the forced thermalization approach. The dependency of final hadron
multiplicities on model parameters was tested in the forced thermalization approach
for Au+Au collisions. Grid spacing did not influence the multiplicities, the thermaliza-
tion frequency changed them only slightly. An interesting behaviour was observed
while varying the testparticles number Ntest. For Ntest ≥ 10 multiplicities saturate. For
smaller Ntest one can see a difference that can be explained by canonical correction. If
one increases energy density εc above which thermalization is forced, less particles are
thermalized and therefore less strangeness is produced. Overall, the forced canonical
thermalization approach leads to the expected results and the straightforward tests
look promising.

In the thermalization procedure one needs the EoS to determine local temperature
and chemical potentials. For this purpose a hadron gas EoS was applied, consistently
with SMASH hadron content. One can also apply another EoS, for example an EoS with
a phase transition, but between thermalizations the propagated degrees of freedom
will be still hadrons, which seems inconsistent. If the quark-gluon plasma only exists at
high energy densities and at the edges of the thermalized blobs the degrees of freedom
are still hadronic, this might allow the direct investigation of EoS of strongly-interacting
matter without explicit hydrodynamic evolution. In the future, these studies can be
extended to higher collision energies and compared to existing experimental data and
can provide predictions for upcoming experiments.



Chapter 7.

Summary

This thesis explores the limitations of traditional hybrid (hydrodynamics + transport)
approaches for simulations of heavy ion collisions at beam energies Elab = 5–160 A GeV
and suggests a new forced thermalization approach, where some of these limitations
are relaxed. After a brief introduction, which motivates heavy ion collisions as an
experimental approach to study the phase diagram of a strongly-interacting matter,
a small overview of experimental facilities is given. It demonstrates a continuing
significant experimental interest to the intermediate energy range studied in this
thesis.

Relativistic hydrodynamics and transport are introduced, mentioning that hydro-
dynamics is calibrated and describes experiments very well at highest RHIC and LHC
energies, while hadronic transport is particularly good at low energies. A reliable
approach at intermediate energies is an important goal: one can either extrapolate the
hydrodynamical and hybrid approaches from higher energies or transport approaches
from lower energies. In this thesis the approximations made by traditional hybrid
approaches are tested and it is argued that they become challenging at intermediate
energies.

Switching from transport to hydrodynamics requires certain degree of equilibration.
Here the degree of local equilibration was quantified for Au+Au collisions at Elab =

5–160 A GeV using coarse-grained transport approach. It was found that the most
important contribution to deviation from equilibrium comes from pressure anisotropy.
Other effects could be diminished if many events from transport code were used
for fluidization. However, if one constructs an initial state for hydrodynamics from
single transport events, not only pressure anisotropy is large, but also off-diagonal
components of energy-momentum tensor deviate significantly from equilibrium. In
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general, it is not obvious whether it is always the case that the degree of isotropization
necessary to switch to hydrodynamics is reached in transport approach at any time.
Here it was shown that it is indeed reached in a significant volume, although somewhat
later than hybrid models typically perform fluidization. The isotropization time
depends on the smearing parameter σ as tiso = tgeom + ασ, where tgeom is the time
of geometrical overlap and α is a proportionality coefficient. It partially justifies the
typical convention of hybrid approaches to perform fluidization at tgeom.

In the hybrid approaches hydrodynamical equations are solved in the whole for-
ward light cone including those regions, where hydrodynamics is not applicable. The
switching hypersurface is chosen aposteriori from the hydrodynamical evolution,
but not from coupled hydrodynamical and transport equations. The particles from
transport cannot cause any feedback to hydrodynamics. These approximations are
manifested in the negative contributions to Cooper-Frye formula. Here it is shown that
the negative Cooper-Frye contributions at midrapidity become significant for interme-
diate energies, which motivates new approaches, that avoid the negative Cooper-Frye
contributions problem.

Such an approach was suggested as a main result of this thesis. In this novel
approach conventional transport simulation is performed, but at the regions of high
energy density, where traditional hybrid model would switch to hydrodynamics,
a forced canonical thermalization is applied. The approach was tested in an artifi-
cial setup and in low energy heavy ion collisions and has shown reasonable results.
The task still remains to apply it to intermediate energies confronting its results to
experimental data.



Appendix A.

Glossary

A.1. Units and conventions
In this thesis a natural system of units is used, where h̄ = c = kB = 1. In this system

all the energies, masses and momenta and temperatures are given in electron-volts (eV,
keV, MeV, GeV, TeV). Energy of 1 eV is the kinetic energy of electron accelarated by
one volt, 1 eV = 1.6 · 10−19 J. The temperature of 1 eV corresponds in SI via E = kBT to
11604.5 K. The typical length scale in the thesis is 1 fm, so conversions between energy
and length are convenient via

E =
h̄c
L

, (A.1)

where h̄c = 0.19732 GeV · fm.

The thesis adopts high-energy physics convention with metric tensor

gµν = diag(1,−1,−1,−1) . (A.2)

The terms “low energy”, “intermediate energy” and “high energy” are frequently
used throughout the thesis. The ranges are defined only approximately, table 1.2
summarizes the convention adopted in the text.

A.2. Abbreviations
Abbreviations used in the thesis are collected in the following table.
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BUU Boltzmann-Ueling-Uhlenbeck (transport equations)
CGC Color Glass Condensate [127, 128]
EoS Equation of State
HBT Hanbury-Brown Twiss correlations [76]
HI Heavy Ion
HIC Heavy Ion Collisions
HRG Hadron Resonance Gas
QCD Quantum Chromodynamics
QGP Quark-Gluon Plasma
QMD Quantum Molecular Dynamics
PDF Parton Distribution Functions [129, 130]

Transport codes (1.3.4)

AMPT A Multi-Phase Transport
BAMPS Boltzmann Approach to Multi-Parton Scatterings
GiBUU Gießen BUU
HSD Hadron-String Dynamics
PHSD Parton-Hadron-String Dynamics
RQMD Relativistic Quantum Molecular Dynamics
SMASH Simulating Many Strongly-interacting Hadrons
UrQMD Ultrarelativistic Quantum Molecular Dynamics

HI centers (1.2)

BNL Berkley National Laboratory (Berkley, USA)
BNL Brookhaven National Laboratory (Brookhaven, USA)
CERN Center for European Nuclear Research (Geneva, Switzerland)
GSI Gesellschaft für Schwerionenforschung (Darmstadt, Germany)
JINR Joint Institute for Nuclear Research (Dubna, Russia)
JPARC Japan Proton Accelerator Research Complex (Tsukuba, Japan)

HI accelerators (1.2)

AGS Alternating Gradient Synchrotron
HERA Hadron-Electron Ring Accelerator
NICA Nuclotron-based Ion Collider Facility
SIS Schwerionensynchrotron
SPS Super Proton Synchrotron
RHIC Relativistic Heavy Ion Collider
LHC Large Hadron Collider



Appendix B.

Sampling two Poissonian integers A
and B with fixed N = A− B

In the algorithms described in chapter 6 one needs to sample N1 and N2 such that

w(N1, N2)∼
ν

N1
1

N1!
ν

N2
2

N2! δ(N1 − N2 = N), N > 0. Let us rewrite it in terms of distribution
for N2:

w(N2) =
∞

∑
N1=0

w(N1, N2)∼
ν

N2+N
1

(N2 + N)!
ν

N2
2

N2!
(B.1)

w(N2) = const
(ν1ν2)

N2

N2!(N + N2)!
(B.2)

Denoting a = 2
√

ν1ν2 and normalizing probabilities, one obtains

w(N2) =
a2N2+N

IN(a)N2!(N + N2)!
(B.3)

This is the known Bessel distribution. The recommendations for sampling it are
taken from the paper by Yuan and Kalbfleisch [295]. Maximal probability for the Bessel
distribution is reached for

m =
1
2

(√
a2 + N2 − N

)
(B.4)

It is suggested by [295] that for m > 6 the Bessel distribution is very close to the
Gaussian distribution, and for m ≤ 6 probabilities can be computed explicitly and the
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number can be sampled from a discrete distribution. Moments of Y∼ Bes(N, a) can
be computed as

EY =
1
2

aRN(a) (B.5)

EY2 = EY
(

1 +
1
2

aRN+1(a)
)

, (B.6)

Then the mean α and σ of the Gaussian are

α = EY (B.7)

σ =

√
EY2 − (EY)2 (B.8)

Here RN(a) = IN+1(a)
IN(a) = [2(N+1)

a , 2(N+2)
a , 2(N+3)

a , · · · ], where [a1, a2, a3, · · · ] denotes

the continued fraction 1
a1+

1
a2+···

.

An alternative method used by Becattini and Ferroni in [293] is to sample two
numbers from Poissonian distributions and reject until the difference is the required
one. Devroye points out that this method requires ea

Iν(a) rejections on average and is
thus only acceptable for moderate values of a and N [296]. In terms of our purposes, it
means that such method works well only for small enough chemical potentials. For
completeness let us add that in response to the approximate sampling method by
Yuan and Kalbfleisch, Devroye has suggested an exact method [296]. However, for the
purposes of chapter 6 the approximate method is sufficient, as Fig. 6.3 demonstrates.



Appendix C.

Hadrons and the SU (3) group

Hadrons are the degrees of freedom implemented in transport models UrQMD and
SMASH used throughout this thesis. In fact, hadrons are one of the main objects
of study of the thesis. Nevertheless, two important questions about hadrons were
omitted in the main part: ”why only certain combinations of quarks and antiquarks
occur as hadrons?” and ”how are hadrons classified?” Both of them are answered
with the help of SU (3) group. By definition SU (3) group is a group of 3× 3 matrices
U such that UU† = 1 and detU = 1. In the following its role in hadron classification
and in explaining color confinement (see section 1.1.3) is acknowledged.

Hadrons and quarks are microscopic objects, so their properties are defined by
the quantum wavefunction |Ψ〉 - a complex function of spatial coordinate, spin and
other variables of particle internal state. The squared module of wavefunction |Ψ|2

is a probability to find particle at a given coordinate in a given state. Finding the
wavefunction of the quantum system is enough to predict its properties.

For a single quark wavefunction is a product of color, flavor, spin and spatial parts:

|Ψ〉 = |Ψcolor〉|Ψflavor〉|Ψspin〉|Ψ(x)〉 (C.1)

Let us concentrate on the color part, which can be represented as a complex vector
with 3 components. During propagation of the free quark color is conserved. Accord-
ing to Noether theorem, every conservation law corresponds to a symmetry, which in
this case is invariance of interactions under multiplication of |Ψcolor〉 by matrices from
SU (3) group, in other words invariance under color rotations.
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In mathematical terms SU (3) is a Lie group and it is fully defined by its Lie algebra
of infinitesimal color rotations: for every matrix U from SU (3)

U = exp

(
8

∑
k=1

iαkλk/2

)
, (C.2)

where αk are arbitrary real numbers and λk/2 matrices are called generators, which
for SU (3) are known as Gell-Mann matrices. Explicitly expressed, λk are

λ1 =


0 1 0

1 0 0

0 0 0

 λ2 =


0 −i 0

i 0 0

0 0 0

 λ3 =


1 0 0

0 −1 0

0 0 0

 (C.3a)

λ4 =


0 0 1

0 0 0

1 0 0

 λ5 =


0 0 i

0 0 0

−i 0 0

 λ6 =


0 0 0

0 0 1

0 1 0

 (C.3b)

λ7 =


0 0 0

0 0 −i

0 i 0

 λ8 = 1√
3


1 0 0

0 1 0

0 0 −2

 (C.3c)

Choosing basis vectors in color space as

r =


1

0

0

 g =


0

1

0

 b =


0

0

1

 (C.4)

one can introduce ladder operators from non-diagonal Gell-Mann matrices and
color isospin projection Ic

3 and color hypercharge Yc operators from diagonal matrices:
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Figure C.1.: Ladder operators of SU (3) group in space of quark colors.

T± = 1
2 (λ1± iλ2)

V ± = 1
2 (λ4± iλ5)

U± = 1
2 (λ6± iλ7)

Ic
3 = 1

2 λ3

Yc =
1√
3
λ8

(C.5)

These operations turn quark and antiquark colors into each other, as illustrated in
Fig. C.1. It is postulated that existing bound states are color singlets, meaning that
acting with matrices C.5 on every single quark and antiquark turns the whole state
into itself. It can be shown that this requirement defines color parts of meson and
baryon wavefunctions uniquely:

|Ψqq̄
c 〉 =

1√
3

(
rr̄ + gḡ + bb̄

)
(C.6)

|Ψqqq
c 〉 =

1√
6
(rgb− rbg + gbr− grb + brg− bgr) (C.7)

Exactly the same mathematics is used for hadron classification, but now SU (3)
is acting in flavor space of the lightest quarks: u, d and s. Note that SU (3) color
symmetry is exact, but SU (3) flavor symmetry is only approximate, because the
masses of light quarks are not identical.

Hadrons should be colorless, but they should not necessarily be flavorless. In
the other words, all the flavor representations are allowed. It can be proven that



combinations of quarks split into irreducible representations of SU (3) in flavor space
in the following way:

3
⊗

3̄ = 1
⊕

8 (C.8)

3
⊗

3
⊗

3 = 10
⊕

8
⊕

8
⊕

1 (C.9)

This means that there are 8 mesons (octet) that turn one into another under SU (3)
flavor transformations and one meson that always turns into itself. As for baryons - 10
baryons (decuplet) transforming into each other and two physically equivalent octets.
The singlet absent in nature, because strictly speaking one has to consider flavor and
spin transformations together and in the representation of SU (3) × SU (2) (the SU (2)
group is here for spin transformations) flavor singlet is absent.

This explains classification of mesons into octet and singlet and baryons into
decuplet and octet as shown in Figure C.2, which presents the lightest mesons and
baryons consisting of u, d, s quarks and their antiquarks. Supplementing this picture
by vector mesons, antibaryons and a tower of excitations and adding those for heavier
quarks one gets a zoo of hadrons that observed in experiment. Few hadrons are
discovered that may fall out of this classification scheme. They are supposed to be
tetraquarks or 6-quark molecules.
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(a) Mesons (b) Baryon octet

(c) Baryon decuplet

Figure C.2.: Classification of hadrons, consisting of light quarks, in the lowest energy state.
The picture is taken from lectures in QCD by F. Jegerlehner.
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