Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy

Sven Warhaut¹, Klara Rebecca Mertinkus¹, Philipp Höllthaler^{2,3}, Boris Fürtig¹, Mike Heilemann², Martin Hengesbach¹ and Harald Schwalbe^{1*}

 ¹ Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen, 60438, Germany
² Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen, 60438, Germany

* To whom correspondence should be addressed. Tel: +49 69 7982 9737; Fax: +49 69 7982 9515; Email: Schwalbe@nmr.uni-frankfurt.de

Present Address: Philipp Höllthaler, Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen, 60438, Germany

Supplementary Tables

Supplementary Table S1. PCR amplified DNA templates used for *in vitro* transcription (written in 5' to 3' direction)^a

¹¹² Asw DNA wt	TAATACGACTCACTATAGGGAGA-TGAAGCCTGATGAGAGCGAAAGC TCGAAACAGCTGTGAAGCTGTC-GCTTCATATAATCCTAATGATATGG TTTGGGAGTTTCTACCAAGAGCCTTAAACTCTTGATTATGAAGTCTGT CGCTTTATCCGAAATTTTATAAAGAGAAGACTCATGAAT	
¹¹² Asw DNA apoB _{STAB}	TAATACGACTCACTATAGGGAGA-ATGGCGCCTGATGAGAGCGAAAG CTCGAAACAGCTGTGAAGCTGTC-GC <u>GC</u> CATATAATCCTAATGATATG GTTTGGG <u>C</u> GTTTCTACCAAGAGCCTTAAACTCTTGATTATGAAGTCT GTCGCTTTATCCGAAATTTTATAAAGAGAAGACTCATGAAT	
Forward Primer	TAATACGACTCACTATAGG	
Reverse Primer	ATTCATGAGTCTTCTCTTTAT	

^a T7 promoter and hammerhead ribozyme sequences are depicted in grey; mutated residues are underlined

Supplementary Table S2. Oligonucleotide sequences used for DNA splinted enzymatic RNA ligation (written in 5' to 3' direction)^a

¹¹² Asw RNA		
Fragment 1, wt	GCODCADADADCCDAADGADA(5-N-D)GGODDGGGAGDDDCDAC	
¹¹² Asw RNA		
Fragment 1, apoB _{STAB}	GC <u>GC</u> CADADADCCDAADGADA(5-N-D)GGDDDGGG <u>C</u> GDDDCDAC	
¹¹² Asw RNA		
Fragment 1, apoA _{STAB}	GCODCADADADCCO <u>CG</u> OGADA(5-N-D)GGO <u>CG</u> GGGAGODOCDAC	
¹¹² Asw RNA		
Fragment 2		
¹¹² Asw RNA	p-GCUU(5-N-U)AUCCGAAAUUUUAUAAAGAGAAGACUCAUGAAU-bi	
Fragment 3		
DNA Splint	ATTCATGAGTCTTCTCTTTATAAAATTTCGGATAAAGCGACAGACTTC	
	ATAATCAAGAGTTTAAGGCTCTTGGTAGAAACTCCCAAACCATATCAT	
	TAGGATTATATGAAGC	

^a Mutated residues are underlined; abbreviations: 5-amino allyl modified uridine (5-N-U), 5'-phosphate (p), 3'biotin linker (bi) **Supplementary Table S3.** Bulk fluorescence anisotropies of Cy3 (Ex/Em = 525 nm / 565 nm) and Cy5 (Ex/Em = 625 nm / 665 nm) in the free form and in the RNA-coupled form at the selected labelling sites of the full-length 112-nucleotide *add* Asw^a

Construct	r
Cy3 free	0.244 ± 0.006
¹¹² Asw L2(Cy3)	0.285 ± 0.004
¹¹² Asw P5(Cy3)	0.296 ± 0.004
Cy5 free	0.127 ± 0.004
¹¹² Asw L3(Cy5)	0.238 ± 0.009
¹¹² Asw P5(Cy5)	0.281 ± 0.008

^a The fluorescence anisotropy *r* was measured at a concentration of ~4 nM single-fluorophore-labelled riboswitch in smFRET immobilization buffer (25 mM K₂HPO₄/KH₂PO₄, 50 mM KCl, pH 7.0) with 2 mM Mg²⁺ at 20 °C. The errors are standard errors obtained over 20 replicates.

Supplementary Figures

Supplementary Figure S1. Overlay of the imino region of the ¹H, ¹⁵N-BEST-TROSY spectrum of the *add* Asw measured at 25 °C (black) with the assigned ¹H, ¹⁵N-HSQC spectrum measured at 10 °C (grey) without and with adenine in presence of 5 mM Mg²⁺. Assigned signals that are missing or shifted beyond linewidth at 25 °C are annotated in grey. The missing signals G81b, U82b, G115b and G112 indicate a destabilization of base pairing in the P4 helix. Assigned signals that appear at 25 °C are annotated in black. U31, G38, U40, U41, G44, G59 and U77 indicate pre-folding of the apoA aptamer. The ¹H, ¹⁵N-HSQC spectra and their assignment at 10 °C were adapted from Reining et al. (2)

Supplementary Figure S2. (A) smFRET histogram analysis of adenine-dependent aptamer docking of the L2,L3-labeled full-length *add* Asw at 2 mM Mg²⁺. The fractional population of the docked (high-FRET) state is indicated in percent. (B) Plot of the fractional population of the docked state determined from the FRET histograms shown in (A) as a function of the adenine concentration. The data have been fitted using the Hill equation to obtain the half-saturating adenine concentration for aptamer docking (K_D) and the Hill coefficient (n).

Supplementary Figure S3. (A) Imino region of the ¹H,¹H-NOESY spectrum of the apoB stabilized mutant apoB_{STAB} of the *add* Asw (0.5 mM) without adenine and Mg²⁺ acquired at 900 MHz and 10 °C. Helices P1b, P2b, P3, P4 and P5 are indicated in green, orange, purple, cyan and blue, respectively. (B) Secondary structure model of apoB_{STAB}. Mutated base pairs are highlighted in comparison to the wildtype. (C) Overlay of the imino region of the ¹H,¹⁵N-HSQC spectra of apoB_{STAB} (0.3 mM) without (grey) and with 10 eq adenine (black) in presence of 5 mM Mg²⁺ measured at 600 MHz and 10 °C. The spectra are superimposable and show that apoB_{STAB} exhibits no adenine dependent base pairing structure.

Supplementary Figure S4. smFRET histogram analysis of Mg^{2+} -dependent aptamer docking of L2,L3-labeled apoB_{STAB} in absence and presence of 100 μ M adenine. The fractional population of the docked (high-FRET) state is indicated in percent.

Supplementary Figure S5. smFRET histogram analysis of Mg²⁺-dependent aptamer docking of L2,L3-labeled wt and apoA_{STAB} in absence and presence of 100 μ M adenine. The fractional population of the docked (high-FRET) state is indicated in percent.

Supplementary Figure S6. Mg^{2+} and adenine-dependent aptamer docking dynamics of the apoAstabilized-mutant apoA_{STAB} of the full-length *add* Asw analyzed by smFRET. (**A**) Representative smFRET time traces of L2/L3-labeled apoA_{STAB} collected at 2 mM Mg²⁺ without adenine. The aptamer domain of single riboswitches either statically remained in a long-lived undocked or docked state (left panel), or exhibited dynamics between short-lived and long-lived undocked and docked states (middle and right panel). Photobleaching events are indicated by a black arrow. (**B**) Transition occupancy density plots (TODPs) for smFRET traces collected at 2 mM Mg²⁺, at 20 mM Mg²⁺ and at 2 mM Mg²⁺ with 100 µM adenine. The fraction of molecules that exhibited dynamics (*dyn*) is indicated in percent. N indicates the number of traces included in each TODP. (**C**) Dwelltime histograms of the undocked state created from the dynamic smFRET traces designated in the corresponding TODP in (B). The data were fitted using single-exponential decay functions to extract the indicated docking rate constants. (**D**) Dwelltime histograms of the docked state created from the dynamic smFRET traces designated in the corresponding TODP in (B). The data were fitted using single-exponential decay functions to extract the indicated undocking rate constants.