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Introduction

Describing the solutions of polynomial equations is, arguably, one of the oldest and basic
problems in mathematics. The study of spaces of such solutions, varieties, therefore
combines techniques from almost all branches of modern mathematics. From a geometric
perspective, it is particularly fruitful to consider solutions in the complex numbers, as
this allows the use of not only algebraic methods, but also techniques from topology and
complex analysis. Moreover, given a geometric object that is cut out by some polynomial
equations, we may perturb the coefficients of these polynomials and thus obtain a natural
notion of “nearby” objects and continuously varying families. It is therefore natural
to study moduli spaces, the space of all varieties satisfying fixed geometric properties,
which can again be endowed with an algebraic structure. Already the first non-trivial
examples, one-dimensional varieties, i.e. curves or equivalently Riemann surfaces, give
rise to interesting moduli spaces. Topologically, a curve is determined by its genus g and
we denote the moduli space of complex, projective curves of genus g byMg.

But what is the best way to picture a complex algebraic curve, let alone a family of
curves? As is often the case, this becomes easier by adding more structure. Consider
a polygon in the complex plane C with sides that are pair-wise parallel and of equal
length. By identifying these pairs of sides by translations, we obtain a topological surface.
Moreover, the embedding of the polygon into the complex plane endows this surface with
a complex structure and even with a flat metric outside of the finitely many vertices of
the polygon. We thus obtain a flat surface (or translation surface). In fact, we have
even more: as the sides were identified by translation, the differential dz on C descends
to a holomorphic differential form that can be extended to the entire Riemann surface,
obtaining zeros exactly at the vertices of the polygon. Conversely, any holomorphic
differential form on a curve X yields such charts and a flat structure outside of the zeros
by integration. A flat surface is therefore a tuple (X,ω) consisting of a complex smooth
projective curve (i.e. compact Riemann surface) together with a non-zero holomorphic
differential ω, see e.g. [Zor06] for details. We denote the moduli space of flat surfaces of
genus g by ΩMg and note that it comes with a natural projection toMg.

Adding the flat structure has many fascinating implications. The flat structure depends
in a holomorphic way on the (relative) periods of the differential ω (equivalently: on
the sides of the corresponding polygon). Moreover, small perturbations yield a new
differential with the same orders of zeros as ω. Denote by µ the partition of 2g − 2
consisting of the orders of the zeros of ω, i.e. µ = (a1, . . . , an) for some n and there exist
pairwise distinct pi ∈ X such that

divω =
n∑

i=1

aipi.
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Introduction

Then the subspaces ΩMg(µ) ⊆ ΩMg consisting only of differentials with associated
partition µ yield a stratification of ΩMg. Now, on each stratum the absolute and relative
(with respect to the zeros) periods of the differential give a holomorphic coordinate
system: locally ΩMg(µ) is biholomorphic to C2g+n−1; again, see e.g. [Zor06] for details.
Furthermore, by identifying C with R2, we obtain a natural action of the group SL2(R)
that shears the polygon and thus acts on the corresponding flat surface. Observe that this
action respects the above stratification. Orbit closures of flat surfaces have been studied
extensively over the last decades, incorporating many techniques from e.g. dynamical
systems, Teichmüller theory and ergodic theory. Recently, there has been a major
break-through: Eskin, Mirzakhani and Mohammadi have shown that any SL2(R)-orbit
closure is in fact cut out by R-linear equations in period coordinates [EMM15]. Note
that the SL2(R)-action is transcendental (the action is on the periods of the differential
ω). Remarkably, Filip has shown that any orbit closure is in fact an algebraic variety
and is defined over Q [Fil16]. However, a classification of all orbit closures is still a wide
open problem, see [EFW17].

A particularly interesting case is the “minimal” case of closed orbits, i.e. 2-dimensional
orbits. The projection of such an orbit closure to the moduli space of curves, Mg,
yields a special algebraic curve, a Teichmüller curve. Not many families of (primitive)
Teichmüller curves are known, see [McM07], [McM06], [KS00], [BM10b] and [MMW17];
see e.g. [MMW17] for a more detailed summary of known results. A flat surface (X,ω)
can only generate a Teichmüller curve if the stabiliser of the SL2(R)-action is sufficiently
large. McMullen observed (originally in the genus 2 case) that this can sometimes be
achieved by requiring a subvariety of Jac(X), the Jacobian of X, that contains the
differential ω, to admit real multiplication with ω as an eigenform (see section 1.2 for
details). In fact, Möller showed that this is a necessary condition [Möl06].

More precisely, McMullen constructed for every quadratic discriminant D a Weierstraß
curve and thereby classified all Teichmüller curves inM2 by analysing when the Jacobian
of the generating flat surface (X,ω) admits real multiplication by the associated quadratic
order OD that respects ω (see section 1.2 for details). However, for genus 3, requiring
real multiplication on the entire Jacobian (i.e. being algebraically primitive) is too strong
a restriction for obtaining infinite families, cf. [BHM16]. By relaxing this condition,
McMullen constructed, again for every quadratic discriminant D, a Prym–Teichmüller
curve WD(4) in genus 3 and WD(6) in genus 4 (see section 1.2 for precise definitions).
Recently, Eskin, Filip and Wright have shown that all but finitely many Teichmüller
curves in genus 3 are of this form [EFW17]. This was suggested by several recent
strong finiteness results, see [BM12], [BHM16], [ANW14], [MW14], [NW14], [AN15] and
[LNW15]. Moreover, Eskin, McMullen, Mukamel and Wright announced the existence of
six exceptional orbit closures, two of which contain an infinite collection of Teichmüller
curves in genus 4. One of them is treated in [MMW17].

Having constructed these Teichmüller curves, it is natural to ask for their topological
type. More precisely, any Teichmüller curve C is a one-dimensional sub-orbifold of
Mg. Therefore, denoting by χ the (orbifold) Euler characteristic, by h0 the number of
connected components, by C the number of cusps and by ed the number of points of
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Introduction

order d, these invariants determine the genus g:

2h0 − 2g = χ+ C +
∑

d

ed

(
1− 1

d

)
,

i.e. they determine the topological type of C.

For the Prym–Weierstraß curves inM2, the situation is as follows. In genus 2, cusps and
connected components were determined by McMullen [McM05a], the Euler characteristic
was computed by Bainbridge [Bai07], and the number and types of orbifold points were
established by Mukamel [Muk14]. See also Hubert-Lelièvre [HL06] for other results
related to the number of elliptic points on translation surfaces in the minimal stratum in
genus 2.

The main goal of this thesis is to determine the topological type, i.e. the genus, of the
Prym–Teichmüller curves inM3 andM4.

In genus 3 and 4, Möller [Möl14] calculated the Euler characteristic and Lanneau and
Nguyen [LN14] classified the cusps of the Prym–Teichmüller curves. Moreover, the
number of connected components in genus 3 was also determined in [LN14]. In the case
of genus 4, Lanneau has communicated to the author that the Prym locus is always
connected [LN16].

In chapter 1, we establish the following result in joint work with David Torres-Teigell.

Except for some extra symmetries occurring for small D, we describe the orbifold
points of the Prym–Teichmüller curves inM3 in terms of integral solutions of ternary
quadratic forms, which lie in some fundamental domain. More precisely, for any positive
discriminant D, we define

H2(D) := {(a, b, c) ∈ Z3 : a2 + b2 + c2 = D, gcd(a, b, c, f0) = 1 }, and
H3(D) := {(a, b, c) ∈ Z3 : 2a2 − 3b2 − c2 = 2D, gcd(a, b, c, f0) = 1,

− 3
√
D < a < −

√
D, c < b ≤ 0,

(4a− 3b− 3c < 0) ∨ (4a− 3b− 3c = 0 ∧ c < 3b) },

where f0 denotes the conductor of D. The extra conditions in the definition of H3(D)
restrict the solutions to a certain fundamental domain. In particular, even though the
quadratic form is indefinite, these conditions ensure that the set H3(D) is finite for all D.

Theorem 0.1 (Theorem 1.1.1). For non-square discriminant D > 12, the Prym–
Teichmüller curves WD(4) for genus three have orbifold points of order 2 or 3.

More precisely, the number e3(D) of orbifold points of order 3 is |H3(D)|; the number
e2(D) of orbifold points of order 2 is |H2(D)|/24 if D is even and there are no points of
order 2 when D is odd.

The curve W8(4) has one point of order 3 and one point of order 4; the curve W12(4) has
a single orbifold point of order 6.
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Note also that WD(4) is empty for D ≡ 5 mod 8 by [Möl14]. The topological invariants
of WD(4) for D up to 248 are given in Table 1.2 on page 44.

Moreover, we provide flat prototypes of the orbifold points in section 1.7.

The Weierstraß curves inM2 and the Prym–Weierstraß curves inM3 have two connected
components if D ≡ 1 mod 8. In genus 2, McMullen [McM05b] provided a spin invariant
to determine on which component a cusp lies. Using this, Bouw and Möller [BM10a]
proved that the two components are Galois conjugate and therefore homeomorphic. In
particular, they have the same number of cusps and orbifold points.

In chapter 2, we obtain analogous results for the Prym–Teichmüller curves inM3.

More precisely, we provide a spin invariant that determines, for each cusp prototype
of [LN14], on which component it lives. Moreover, we explicitly describe the Galois
conjugation of the cusps and show that the two components are again Galois-conjugate.
In particular:

Theorem 0.2 (Theorem 2.1.1). Let D ≡ 1 mod 8, which is not a square. Then the two
components of WD(4) are homeomorphic (as orbifolds). In particular, they have the same
number of cusps and elliptic points.

This completes the topological classification of the Prym–Teichmüller curves inM3.

In chapter 3, again in joint work with David Torres-Teigell, we classify the orbifold points
on the Prym–Teichmüller curves inM4.

In particular, we obtain the following result.

Theorem 0.3 (Theorem 3.1.1). For discriminant D > 12, the Prym–Teichmüller curves
WD(6) have orbifold points of order 2 and 3. More precisely:

• the number of orbifold points of order 2 is

e2(D) =





0 , if D is odd,
h(−D) + h(−D/4) , if D ≡ 12 mod 16,
h(−D) , if D ≡ 0, 4, 8 mod 16,

where h(−D) is the class number of the quadratic order O−D;

• the number of orbifold points of order 3 is

e3(D) = #{a, i, j ∈ Z : a2 + 3j2 + (2i− j)2 = D, gcd(a, i, j) = 1}/12;

• W5(6) has one point of order 3 and one point of order 5;

• W8(6) has one point of order 2 and one point of order 3;

• W12(6) has one point of order 2 and one point of order 6.
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Observe that, essentially due to technical aspects relating the polarisation of the abelian
subvariety of the Jacobian that admits real multiplication (see section 3.2 for details), the
result is much more concise (and more similar to the case in genus 2) than the classification
in genus 3. The topological invariants of WD(6) for non-square discriminants D ≤ 181
are listed in Table 3.3 on page 91.

Again, we provide flat prototypes of the orbifold points in section 3.6.

Furthermore, using the classification of cusps [LN14] and work of Mukamel [Muk14], we
are able to provide exact asymptotics for the growth of the genus of WD(6) with respect
to the discriminant D.

Theorem 0.4 (Theorem 3.1.4). There exist constants C1, C2 > 0, independent of D,
such that

C1 ·D3/2 < g(WD(6)) < C2 ·D3/2.

Moreover, g(WD(6)) = 0 if and only if D ≤ 20.

The general technique for counting orbifold points on Teichmüller curves in genus 2, 3
and 4 is the following: an orbifold point is always a flat surface (X,ω) along with some
holomorphic automorphism α, which admits ω as an eigendifferential. The topological
action of α can be determined using flat geometry. Then, one can attempt to describe
the locus inside the moduli space of curves admitting an automorphism of this form and
count the intersection points of this locus and the Teichmüller curve.

In chapter 4, we attempt to understand these loci more conceptually.

More precisely, we introduce the notion of a C-linear manifold, i.e. a submanifold
M⊆ ΩMg(µ) that is locally cut out by C-linear equations in period coordinates. While
there are many results on R-linear manifolds (see e.g. [Wri15b] for a summary of known
results), C-linear manifolds that are not R-linear have hardly been studied, except for
some general results in [Möl08]. However, [Möl08, Definition 6.4] included an extra
condition (requiring the existence of a certain compactification) that, while it made sense
at the time, does not seem warranted from todays perspective.

First, we provide a large class of examples of C-linear manifolds that are not R-linear:
spaces of eigenforms of cyclic covers of P1. These have been used, e.g., in the previous
chapters to count orbifold points of Prym–Teichmüller curves.

Theorem 0.5 (Theorem 4.3.1). Any family of eigenspaces of a family of cyclic covers
of P1 is a C-linear manifold.

Note that some technical details and calculations regarding cyclic covers are included in
Appendix A, as they are scattered throughout the literature and consistent notation is
important to avoid confusion.

We then introduce the notion of a covering construction of a C-linear manifold. While
there are several notions of covering constructions for R-linear manifolds (cf. [Api16],
[MMW17]), these use the SL2(R)-action and the results of [EMM15] to show that the
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Introduction

cover of an R-linear manifold is again an R-linear manifold. As there is no SL2(R)-action
in the general C-linear case, we provide a slightly technical alternative.

LetM⊆ ΩMg(µ) be a linear manifold, (X,ω) ∈M, ρ a monodromy representation of
(X,ω) andM(ρ) ⊆ ΩMh(ν) the cover associated to ρ (see Definition 4.4.14 for details).
Then we show:

Theorem 0.6 (Theorem 4.4.1). M(ρ) is a linear manifold.

Our construction is split into several parts. We rigidify the manifolds by adding extra
structure (essentially passing to Teichmüller space). We then show that, using this
construction, covers of linear manifolds are again linear (Proposition 4.4.12) and quotients
of (suitable) linear manifolds are again linear (Proposition 4.4.13). This allows us to
define arbitrary covers of linear manifolds and yields a natural notion of a primitive
linear manifold (Definition 4.4.15).

However, a classification of primitive C-linear manifolds even in low genus is still open
and a long-term project. Also, the question of algebraicity, i.e. if an analogous result to
[Fil16] can be shown in the C-linear case, is still wide open; see also the discussion in
section 4.5.

Finally, note that chapter 1 has appeared as [TTZ16] (joint work with David Torres-
Teigell), chapter 2 has been accepted for publication and will appear as [Zac16] and
chapter 3 has appeared as [TTZ17] (again joint work with David Torres-Teigell). The
chapters are essentially verbatim copies of the published versions.
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1. Orbifold points on Prym–Teichmüller curves in
genus three

Prym–Teichmüller curves WD(4) constitute the main examples of known primitive
Teichmüller curves in the moduli space M3. In this chapter, we determine, for each
non-square discriminant D > 1, the number and type of orbifold points in WD(4). These
results, together with the formulas of Lanneau-Nguyen and Möller for the number of
cusps and the Euler characteristic, complete the topological characterisation of Prym–
Teichmüller curves in genus 3.

Crucial for the determination of the orbifold points is the analysis of families of genus 3
cyclic covers of degree 4 and 6, branched over four points of P1. As a side product of our
study, we provide an explicit description of the Jacobians and the Prym–Torelli images
of these two families, together with a description of the corresponding flat surfaces. The
content of this chapter is joint work with David Torres-Teigell and has appeared as
[TTZ16].

1.1. Introduction

A Teichmüller curve is an algebraic curve in the moduli spaceMg of genus g curves that
is totally geodesic for the Teichmüller metric. Teichmüller curves arise naturally from flat
surfaces, i.e. elements (X,ω) of the bundle ΩMg overMg, consisting of a curve X with
a holomorphic 1-form ω ∈ Ω(X). The bundle ΩMg is endowed with an SL2(R)-action,
defined by affine shearing of the flat structure induced by the differential. In the rare
case that the closure of the projection toMg of the SL2(R)-orbit of an element (X,ω) is
an algebraic curve, i.e. that (X,ω) has many real symmetries, we obtain a Teichmüller
curve.

Only few examples of families of (primitive) Teichmüller curves are known, see [McM07],
[McM06], [KS00] and [BM10b]. In genus 2, McMullen was able to construct theWeierstraß
curves, and thereby classify all Teichmüller curves inM2 by analysing when the Jacobian
of the flat surface admits real multiplication that respects the 1-form. However, for genus
3, requiring real multiplication on the entire Jacobian (i.e. being algebraically primitive)
is too strong a restriction for obtaining infinite families, cf. [BHM16]. By relaxing this
condition McMullen constructed the Prym–Teichmüller curves WD(4) in genus 3 and
WD(6) in genus 4 (see section 1.2 for definitions). Recently Eskin–Filip–Wright have
announced that all but finitely many Teichmüller curves in genus 3 are of this form. This
was suggested by several recent strong finiteness results, see [BM12], [BHM16], [ANW14],
[MW14], [NW14], [AN15] and [LNW15].
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1. Orbifold points on Prym–Teichmüller curves in genus three

While the situation for genus 2 is fairly well understood, things are less clear for higher
genus. As curves inMg, Teichmüller curves carry a natural orbifold structure. As such,
one is primarily interested in their homeomorphism type, i.e. the genus, the number
of cusps, components, and the number and type of orbifold points. In genus two, this
was solved for the Weierstraß curves by McMullen [McM05a], Bainbridge [Bai07] and
Mukamel [Muk14]. See also Hubert–Lelièvre [HL06] for other results related to the
number of elliptic points on translation surfaces in the minimal stratum in genus 2.

For the Prym–Teichmüller curves in genus 3 and 4, the Euler characteristics were
calculated by Möller [Möl14] and the number of components and cusps were counted
by Lanneau and Nguyen [LN14]. The primary aim of this paper is to describe the
number and type of orbifold points occurring in genus 3, thus completing the topological
characterisation of WD(4) for all (non-square) discriminants D via the formula

2h0 − 2g = χ+ C +
∑

d

ed

(
1− 1

d

)
(1.1)

where g denotes the genus of WD(4), h0 the number of components, χ the Euler char-
acteristic, C the number of cusps and ed the number of orbifold points of order d, that
is points whose stabiliser in the uniformising group has order d. As WD(4) is either
connected or the connected components are homeomorphic by [Zac16], this characterises
all Teichmüller curves inside the loci WD(4).

Except for some extra symmetries occurring for small D, we describe the orbifold points
in terms of integral solutions of ternary quadratic forms, which lie in some fundamental
domain. More precisely, for any positive discriminant D, we define

H2(D) := {(a, b, c) ∈ Z3 : a2 + b2 + c2 = D , gcd(a, b, c, f0) = 1 }, and
H3(D) := {(a, b, c) ∈ Z3 : 2a2 − 3b2 − c2 = 2D , gcd(a, b, c, f0) = 1 ,

− 3
√
D < a < −

√
D , c < b ≤ 0 ,

(4a− 3b− 3c < 0) ∨ (4a− 3b− 3c = 0 ∧ c < 3b) },

where f0 denotes the conductor of D. The extra conditions in the definition of H3(D)
restrict the solutions to a certain fundamental domain. In particular, even though the
quadratic form is indefinite, these conditions ensure that the set H3(D) is finite for all D.

Theorem 1.1.1. For non-square discriminant D > 12, the Prym–Teichmüller curves
WD(4) for genus three have orbifold points of order 2 or 3.

More precisely, the number e3(D) of orbifold points of order 3 is |H3(D)|; the number
e2(D) of orbifold points of order 2 is |H2(D)|/24 if D is even and there are no points of
order 2 when D is odd.

The curve W8(4) has one point of order 3 and one point of order 4; the curve W12(4) has
a single orbifold point of order 6.

Let us recall that WD(4) is empty for D ≡ 5 mod 8 (see [Möl14, Prop. 1.1]).
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1.1. Introduction

Theorem 1.1.1 combines the content of Theorem 1.5.1 and Theorem 1.5.6. The topological
invariants of WD(4) for D up to 248 are given in Table 1.2 on page 44.

Our approach to solving this problem is purely algebraic and therefore the use of tools
from the theory of flat surfaces will be sporadic.

Two families of curves will play a special role in determining orbifold points on Prym–
Teichmüller curves, namely the Clover family and the Windmill family, which will be
introduced in section 1.3. They parametrise certain genus 3 cyclic covers of P1 of degree
4 and 6, respectively. There are two special points in these families, namely the Fermat
curve of degree 4, which is the only element of the Clover family with a cyclic group of
automorphisms of order 8, and the exceptional Wiman curve of genus 3, which is the
unique intersection of the two families and the unique curve in genus 3 that admits a
cyclic group of automorphisms of order 12.

The fact that orbifold points in WD(4) correspond to points of intersection with these
two families will follow from the study of the action of the Veech group SL(X,ω) carried
out in section 1.2. A consequence of this study is that orbifold points of order 4 and 6
correspond to the Fermat and Wiman curves, respectively, while points of order 2 and
3 correspond to generic intersections with the Clover family and the Windmill family,
respectively.

In order to determine these points of intersection, we will need a very precise description
of the two families or, more precisely, of their images under the Prym–Torelli map. To this
end, we explicitly compute the period matrices of the two families in section 1.4. While
the analysis of different types of orbifold points was rather uniform up to this point, the
Clover family and the Windmill family behave quite differently under the Prym–Torelli
map. In particular, any two images of the Clover family under the Prym–Torelli map are
isomorphic (as polarised abelian varieties).

Theorem 1.1.2. The Prym–Torelli image of the Clover family X is isogenous to the
point Ei×Ei in the moduli space A2,(1,2) of abelian surfaces with (1, 2)-polarisation, where
Ei denotes the elliptic curve corresponding to the square torus C/(Z ⊕ Zi). Orbifold
points on WD(4) of order 2 and 4 correspond to intersections with this family.

In contrast, the image of the Windmill family under the Prym–Torelli map lies in the
Shimura curve of discriminant 6. We show this by giving a precise description of the
endomorphism ring of a general member of this family (see Proposition 1.4.6).

Theorem 1.1.3. The closure of the Prym–Torelli image of the Windmill family Y in
A2,(1,2) is the (compact) Shimura curve parametrising (1, 2)-polarised abelian surfaces with
endomorphism ring isomorphic to the maximal order in the indefinite rational quaternion
algebra of discriminant 6. Orbifold points of WD(4) of order 3 and 6 correspond to
intersections with this family.

The relationship between the Clover family, the Windmill family, and a Prym–Teichmüller
curve is illustrated in Figure 1.1.
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1. Orbifold points on Prym–Teichmüller curves in genus three

X
X2

Xζ6 ∼= Y1/2

Y

WD

P(X )

P(Y)

P(WD)

Figure 1.1.: The Clover family, the Windmill family, and the curve WD insideM3 and
their image under the Prym–Torelli map in A2,(1,2).

In section 1.5, we finally determine the intersections of the Prym–Teichmüller curve
WD(4) with the Clover family and the Windmill family by studying which points in
their Prym–Torelli images admit real multiplication by the quadratic order OD and by
determining the corresponding eigenforms for this action. An immediate consequence is
the following result.

Corollary 1.1.4. The only Prym–Teichmüller curves in M3 with orbifold points of
order 4 or 6 are W8(4) of genus zero with one cusp, one point of order 3 and one point
of order 4, and W12(4) of genus zero with two cusps and one point of order 6.

Note that our result extends that of Mukamel in [Muk14] to genus 3, although our
approach and techniques differ in almost every detail. In the following we give a brief
summary of the techniques used to classify orbifold points of Weierstraß curves in genus 2,
to illustrate the similarities with and differences to our case.

The first difference is that, while in genus 2 all curves are hyperelliptic, this is never
the case for genus 3 curves on Prym–Teichmüller curves by Lemma 1.2.7. Luckily, the
Prym involution is a satisfactory substitute in all essential aspects. In particular, while
Mukamel obtains restrictions on the types of orbifold points in genus 2 by observing the
action on the Weierstraß points, we acquire an analogous result in genus 3 by relating
symmetries of Prym forms to automorphisms of elliptic curves (Proposition 1.2.1).

At this point, however, the similarities between the genus 2 and 3 cases seem to end.
Mukamel shows that the orbifold points on genus 2 Weierstraß curves correspond to
curves admitting an embedding of the dihedral group D8 into their automorphism group
and whose Jacobians are therefore isogenous to products of elliptic curves that admit
complex multiplication. He then identifies the space of genus 2 curves admitting a faithful
D8 action with the modular curve H/Γ0(2). In this model, the curves admitting complex
multiplication are well-known to correspond to the imaginary quadratic points in the
fundamental domain. Thus counting orbifold points in genus 2 is equivalent to computing
class numbers of imaginary quadratic fields, as in the case of Hilbert Modular Surfaces.
Moreover, this period domain permits associating concrete flat surfaces to the orbifold
points via his “pinwheel” construction.

4



1.2. Orbifold points on Prym–Teichmüller curves

By contrast, in genus 3, each orbifold point may lie on the Clover family or the Windmill
family (Proposition 1.3.1). As mentioned above, these two cases behave quite differently.
Moreover, in genus 3 we are no longer dealing with the entire Jacobian, but only with
the Prym part, i.e. part of the Jacobian collapses and the remainder carries a non-
principal (1, 2) polarisation (see section 1.2). In particular, while in Mukamel’s case the
appearing abelian varieties could all be obtained by taking products of elliptic curves,
in genus 3 one is forced to construct the Jacobians “from scratch” via Bolza’s method
(section 1.4). In addition, the whole Clover family collapses to a single point under the
Prym–Torelli map, making it more difficult to keep track of the differentials. All this
adds a degree of difficulty to pinpointing the actual intersection points of the Clover
family and the Windmill family with a given WD(4). One consequence is that we obtain
class numbers determining the number of orbifold points that are associated to slightly
more involved quadratic forms (section 1.5).

Finally, we provide flat pictures of the orbifold points of order 4 and 6 in section 1.7.
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the implementation of his algorithm in [Muk12] that we used in the last section. We also
thank [Par] and [Ste+14] for computational help.

1.2. Orbifold points on Prym–Teichmüller curves

The aim of this section is to prove the following statement.

Proposition 1.2.1. A flat surface (X,ω) parametrised by a point in WD(4) is an orbifold
point of order n if and only if there exists σ ∈ Aut(X) of order 2n satisfying σ∗ω = ζ2nω,
where ζ2n is some primitive order 2n root of unity.

The different possibilities are listed in Table 1.1.

ord(σ) Branching data

(i) 4 (0; 4, 4, 4, 4)
(ii) 6 (0; 2, 3, 3, 6)
(iii) 8 (0; 4, 8, 8)
(iv) 12 (0; 3, 4, 12)

Table 1.1.: Possible orders of σ and their corresponding branching data.

Before proceeding with the proof, we briefly recall some notation and background
information.
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1. Orbifold points on Prym–Teichmüller curves in genus three

Orbifold Points If G is a finite group acting on a Riemann surface X of genus g ≥ 2,
we define the branching data (or signature of the action) as the signature of the orbifold
quotient X/G, that is Σ := (γ;m1, . . . ,mr), where γ is the genus of the quotient X/G
and the projection is branched over r points with multiplicities mi.

Recall that an orbifold point of an orbifold H/Γ is the projection of a fixed point of the
action of Γ, i.e. a point s ∈ H so that StabΓ(s) = {A ∈ Γ : A · s = s} is strictly larger
than the kernel of the action of Γ. Observe that this is equivalent to requiring the image
of StabΓ(s) in PSL2(R) = Aut(H), which we denote by PStabΓ(s), to be non-trivial. We
call the cardinality of PStabΓ(s) the (orbifold) order of s.

In the case of a Teichmüller curve, the close relationship between the uniformising group
Γ and the affine structure of the fibers permits a characterisation of orbifold points in
terms of flat geometry. To make this precise, we need some more notation.

Teichmüller curves Recall that a flat surface (X,ω) consists of a curve X together
with a non-zero holomorphic differential form ω on X, which induces a flat structure by
integration. Hence we may consider the moduli space of flat surfaces ΩMg as a bundle
over the moduli space of genus g curvesMg. Recall that there is a natural SL2(R) action
on ΩMg by shearing the flat structure, which respects – in particular – the zeros of
the differentials. Every Teichmüller curve arises as the projection toMg of the (closed)
SL2(R) orbit of some (X,ω). As SO(2) acts holomorphically on the fibers, we obtain the
following commutative diagram

SL2(R) ΩMg

H ∼= SO(2)\ SL2(R) PΩMg

C = H/Γ Mg

F

f

π

where the map F is given by the action A 7→ A · (X,ω) and C is uniformised by

Γ = Stab(f) := {A ∈ SL2(R) : f(A · t) = f(t) , ∀t ∈ H} = ( −1 0
0 1 ) · SL(X,ω) · ( −1 0

0 1 ) .

Here, SL(X,ω) is the affine group of (X,ω), i.e. the derivatives of homeomorphisms of
X that are affine with regard to the flat structure.

Given t ∈ H, we will write At ∈ SL2(R) for (a representative of) the corresponding element
in SO(2)\ SL2(R) and (Xt, ωt) for (a representative of) f(t) = [At · (X,ω)] ∈ PΩMg.

For proofs and details, see e.g. [Möl11b], [Kuc12], [McM03].

In the following, we will be primarily interested in a special class of Teichmüller curves.
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1.2. Orbifold points on Prym–Teichmüller curves

Prym–Teichmüller curves To ensure that the SL2(R) orbit of a flat surface is not too
large, the flat structure must possess sufficient real symmetries. McMullen observed that
in many cases this can be achieved by requiring the Jacobian to admit real multiplication
that “stretches” the differential. However, it turns out that for genus greater than 2,
requiring the whole Jacobian to admit real multiplication is in general too strong a
restriction to obtain infinite families (cf. e.g. [BHM16]).

More precisely, for positive D ≡ 0, 1 mod 4 non-square, we denote by OD = Z[T ]/(T 2 +
bT + c) with D = b2− 4c, the unique (real) quadratic order associated to D and say that
a (polarised) abelian surface A has real multiplication by OD if it admits an embedding
OD ↪→ End(A) that is self-adjoint with respect to the polarisation. We call the real
multiplication by OD proper, if the embedding cannot be extended to any quadratic
order containing OD.
Now, consider a curve X with an involution ρ. The projection π : X → X/ρ induces a
morphism Jac(π) : Jac(X)→ Jac(X/ρ) of the Jacobians and we call the kernel P(X, ρ)
of Jac(π) the Prym variety associated to (X, ρ). In the following, we will always require the
Prym variety to be 2-dimensional, hence the construction only works for X of genus 2, 3, 4
or 5. Denoting by Ω(X)+ and Ω(X)− the +1 and −1-eigenspaces of Ω(X) with respect to
ρ, and by H+

1 (X,Z) and H−1 (X,Z) the corresponding intersections H1(X,Z) ∩ (Ω(X)±)∨,
the Prym variety P(X, ρ) agrees with (Ω(X)−)∨/H−1 (X,Z). Observe that, when X
has genus 3, the Prym variety P(X, ρ) is no longer principally polarised but carries a
(1, 2)-polarisation. See for instance [BL04, Chap. 12] or [Möl14] for details.

Starting with a flat surface (X,ω) where X admits an involution ρ satisfying ρ∗ω = −ω
and identifying Jac(X) with Ω(X)∨/H1(X,Z), the differential ω is mapped into the Prym
part and hence, whenever P(X, ρ) has real multiplication by OD, we obtain an induced
action of OD on ω. We denote by ED(2g − 2) ⊂ ΩMg the space of (X,ω) such that

1. X admits an involution ρ such that P(X, ρ) is 2-dimensional,

2. the form ω has a single zero and satisfies ρ∗ω = −ω, and
3. P(X, ρ) admits proper real multiplication by OD with ω as an eigenform,

and by PED(2g − 2) the corresponding quotient by the SO(2) action. McMullen
showed [McM03; McM06] that by defining WD(2g − 2) as the projection of the lo-
cus ED(2g − 2) to Mg, we obtain (possibly a union of) Teichmüller curves for every
discriminant D inM2,M3 andM4. In the genus 2 case, the Prym involution is given by
the hyperelliptic involution and the curve WD(2) is called the Weierstraß curve, while the
curves WD(4) and WD(6) inM3 andM4, respectively, are known as Prym–Teichmüller
curves. As we are primarily interested in the genus 3 case, we shall frequently refer to
WD(4) simply by WD.

We are now in a position to give a precise characterisation of orbifold points on Teichmüller
curves in terms of flat geometry.

Proposition 1.2.2. Let H/Γ be a Teichmüller curve generated by some (X,ω) = (Xi, ωi).
Then the following are equivalent.

• The point t ∈ H projects to an orbifold point in H/Γ.
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1. Orbifold points on Prym–Teichmüller curves in genus three

• There exists an elliptic matrix C ∈ SL(X,ω), C 6= ±1 such that AtCA−1
t ∈ SO(2).

• The corresponding flat surface (Xt, ωt) admits a (holomorphic) automorphism σ
satisfying [σ∗ωt] = [ωt] and σ∗ωt 6= ±ωt.

Proof. By the above correspondence, t ∈ H corresponds to some (Xt, [ωt]) ∈ PΩMg and
equivalently to some At ∈ SO(2)\ SL2(R) with [At · (X,ω)] = (Xt, [ωt]).

Now, C ∈ SL(X,ω) is in the stabiliser of At if and only if there exists B ∈ SO(2) such
that

AtC = BAt, i.e. AtCA−1
t ∈ SO(2).

But then, by definition, C ∈ SL(X,ω) is elliptic. Moreover, C ′ := AtCA
−1
t lies in

SL(At · (X,ω)) = SL(Xt, ωt), and as C ′ ∈ SO(2), the associated affine map is in fact a
holomorphic automorphism σ of Xt. In particular, σ∗ωt = ζωt ∈ [ωt], where ζ is the
corresponding root of unity.

Finally, observe that C acts trivially on SO(2)\ SL2(R) if and only if for every A ∈ SL2(R)
there exists B ∈ SO(2) so that

AC = BA, i.e. ACA−1 ∈ SO(2) ∀A ∈ SL2(R)

and this is the case if and only if C = ±1.

Corollary 1.2.3. There is a one-to-one correspondence between

• elements in StabΓ(t),

• elements in SL (At · (X,ω)) ∩ SO(2), and

• holomorphic automorphisms σ of Xt satisfying σ∗ωt ∈ [ωt].

Definition. Given (X, [ω]), we denote the group of automorphisms of (X, [ω]), i.e.
holomorphic automorphisms of X satisfying σ∗ω ∈ [ω], by Aut(X, [ω]).

In the case of Weierstraß and Prym–Teichmüller curves, we can say even more.

Corollary 1.2.4. Let WD(2g− 2) be as above, let (Xt, [ωt]) ∈ PED(2g− 2) correspond to
an orbifold point and let σ be a non-trivial automorphism of (Xt, [ωt]). Let π : Xt → Xt/σ
denote the projection. Then π has a totally ramified point.

Proof. As [σ∗ω] = [ω] and ω has a single zero, this must be a fixed point of σ, hence a
totally ramified point.

Note that the Prym–Teichmüller curves WD(4) and WD(6) lie entirely inside the branch
locus ofM3 andM4 respectively, as all their points admit involutions. In particular, the
Prym involution ρt on each (Xt, ωt) acts as −1, i.e. ρ∗tωt = −ωt, and therefore it does
not give rise to orbifold points.

Corollary 1.2.5. The Prym involution is the only non-trivial generic automorphism of
WD(2g − 2), i.e. the index [StabΓ(s) : PStabΓ(s)] is always 2.
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1.2. Orbifold points on Prym–Teichmüller curves

Moreover, Proposition 1.2.2 gives a strong restriction on the type of automorphisms
inducing orbifold points.

Lemma 1.2.6. The point in WD(2g − 2) corresponding to a flat surface (X, [ω]) is an
orbifold point of order n if and only if Aut(X, [ω]) is generated by an automorphism σ of
order 2n. Moreover, σn is the Prym involution.

Proof. Let Q ∈ X be the (unique) zero of ω. By the above, the automorphisms of (X, [ω])
lie in the Q-stabiliser of Aut(X). But these are (locally) rotations around Q, hence
the stabiliser (and consequently Aut(X, [ω])) is cyclic. As the Prym involution ρ is an
automorphism of (X, [ω]), the group Aut(X, [ω]) has even order.

Conversely, any automorphism σ fixing Q satisfies [σ∗ω] = [ω]. The remaining claims
follow from Corollary 1.2.5.

To determine the number of branch points in the genus 3 case, we start with the following
observation (cf. [Möl14, Lemma 2.1]).

Lemma 1.2.7. The curve WD is disjoint from the hyperelliptic locus inM3.

Proof. Let (X, [ω]) correspond to a point on WD, denote by ρ the Prym involution on X
and assume that X is hyperelliptic with involution σ. As X is of genus 3, σ 6= ρ. But σ
commutes with ρ and therefore τ := σ ◦ ρ is another involution.

Recall that σ acts by −1 on all of Ω(X) and its decomposition into ρ-eigenspaces Ω(X)±.
The −1 eigenspace of τ is therefore Ω(X)+ and the +1 eigenspace is Ω(X)−. In particular,
any Prym form on X is τ invariant, i.e. a pullback from X/τ .

However, by checking the dimensions of the eigenspaces, we see that X/τ is of genus 2,
hence X → X/τ is unramified by Riemann-Hurwitz and we cannot obtain a form with a
fourfold zero on X by pullback, i.e. (X,ω) 6∈ ED(4), a contradiction.

We now have all we need to prove Proposition 1.2.1.

Proof of Proposition 1.2.1. Starting with Proposition 1.2.2 and Lemma 1.2.6, observe
that, since σ 6= ρ, the automorphism σ descends to a non-trivial automorphism σ of the
elliptic curve X/ρ. Since it has at least one fixed point, X/σ ∼= P1 and it is well-known
that σ can only be of order 2, 3, 4 or 6.

For the number of ramification points, since X has genus 3, by Riemann-Hurwitz

4 = −4n+ 2n
∑

d|2n

(
1− 1

d

)
ed ,

where ed is the number of points over which σ ramifies with order d. A case by case analysis
using Lemma 1.2.7 shows that the only possibilities are those listed in Table 1.1.
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1. Orbifold points on Prym–Teichmüller curves in genus three

Remark 1.2.8. Automorphism groups of genus 3 curves were classified by Komiya
and Kuribayashi in [KK79] (P. Henn studied them even earlier in his PhD disserta-
tion [Hen76]). One can also find a complete classification of these automorphism groups
together with their branching data in [Bro91, Table 5], including all the information in
our Table 1.1.

1.3. Cyclic covers

Proposition 1.2.1 classified orbifold points of WD in terms of automorphisms of the
complex curve. The aim of this section is to express these conditions as intersections of
WD with certain families of cyclic covers of P1 inM3.

Let X → P∗ := P1 − {0, 1,∞} be the family of projective curves with affine model

Xt : y4 = x(x− 1)(x− t)

and Y → P∗ the family of projective curves with affine model

Yt : y6 = x2(x− 1)2(x− t)3.

The family X has been intensely studied, notably in [Guà01] and [HS08]. In fact, it is even
a rare example of a curve that is both a Shimura and a Teichmüller curve (cf. [Möl11a],
see Remark 1.3.7 below). Because of the flat picture of its fibers (cf. section 1.7), we will
refer to it as the Clover family.

The family Y is related to the Shimura curve of discriminant 6, which has been studied
for instance in [Voi09] and [PS11]. We will refer to it as the Windmill family, again as a
reference to the flat picture (cf. section 1.7).

Proposition 1.3.1. If (X, [ω]) corresponds to an orbifold point on WD then X is iso-
morphic to some fiber of X or Y.
Moreover, this orbifold point is of order six if and only if X is isomorphic to Xζ6 ∼= Y1/2

the (unique) intersection point of X and Y inM3; it is of order four if and only if X
is isomorphic to X−1; it is of order two if it corresponds to a generic fiber of X and of
order three if it corresponds to a generic fiber of Y.

To state the converse, we need to pick a Prym eigenform on the appropriate fibers of X
and Y .

First, let us briefly review some well-known facts on the theory of cyclic coverings which
will be applicable to both the Clover family X and the Windmill family Y. For more
background and details, see for example [Roh09].

Consider the family Z → P∗ of projective curves with affine model

Zt : yd = xa1(x− 1)a2(x− t)a3 .
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Since we will be interested in coverings of P1 ramified over 4 points, we can choose the
exponent a4 at ∞ so that

∑
ai ≡ 0 mod d, with 0 < ai < d. Moreover, we will suppose

gcd(a1, a2, a3, a4, d) = 1 so that the curve is connected. Note that any (connected) family
of cyclic covers, ramified over four points, may be described in this way.

Let us define gi = gcd(ai, d), for i = 1, . . . , 4. For each fiber Zt, the map πt = π : (x, y) 7→
x yields a cover Zt → P1 of degree d ramified over 0, 1, t and ∞ with branching orders
d/g1, d/g2, d/g3 and d/g4 respectively. Then, by Riemann-Hurwitz, the genus of Zt is
d+ 1− (

∑4
i=1 gi)/2.

Note that the number of preimages of 0, 1, t and ∞ is g1, g2, g3 and g4 respectively.
Denote for instance π−1(0) = {Pj}, with j = 0, . . . , g1 − 1. The following map

z 7→
(
z
d
g1 , ζjdz

a1
g1

d

√
(z

d
g1 − 1)a2(z

d
g1 − t)a3

)
, |z| < ε (1.2)

gives a parametrisation of a neighbourhood of Pj. In a similar way, one can find local
parametrisations around the preimages of the rest of the branching values.

The map π corresponds to the quotient Zt/〈αZ〉 by the action of the cyclic group of
order d generated by the automorphism

αZ := αZt : (x, y) 7→ (x, ζdy) , (1.3)

where ζd = exp(2πi/d). When there is no ambiguity we will simply write α for αZt . Since
these automorphisms will be of great importance, we emphasise their expression in our
particular cases.

Definition. The automorphism

αXt : Xt → Xt
(x, y) 7→ (x, ζ4y)

generates a group of order 4 acting on Xt.
The automorphism

αYt : Yt → Yt
(x, y) 7→ (x, ζ6y)

generates a group of order 6 acting on Yt.

By Lemma 1.2.6, the Prym involutions are given by

ρX := ρXt := (αX )2 : (x, y) 7→ (x,−y) , and
ρY := ρYt := (αY)3 : (x, y) 7→ (x,−y) .

We will denote by P(Xt) and P(Yt) the corresponding Prym varieties.

Note that different fibers of the families X and Y can be isomorphic.
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1. Orbifold points on Prym–Teichmüller curves in genus three

In fact, in the case of the Clover family X any isomorphism φ : P1 → P1 preserving the
set {0, 1,∞} lifts to isomorphisms Xt ∼= Xφ(t) for each t. As a consequence, our family
is parametrised by P∗/S3, where we take the symmetric group S3 to be generated by
z 7→ 1− z and z 7→ 1/z. The corresponding modular maps yield curves inM3 and A3.

As for the Windmill family Y, for each t ∈ P∗ the curves Yt and Y1−t are isomorphic
via the map (x, y) 7→ (1 − x, ζ12y), which induces the automorphism z 7→ 1 − z on P1.
Since any isomorphism between fibers Yt and Yt′ must descend to an isomorphism of P1

interchanging branching values of the same order, it is clear that no other two fibers are
isomorphic, and therefore the family is actually parametrised by P∗/ ∼, where z ∼ 1− z.
In subsection 1.4.2 we will give a more explicit description of this family in terms of its
Prym–Torelli image.

The discussion above proves the following.

Lemma 1.3.2. Let X and Y be the families defined above.

1. The map P∗ →M3, t 7→ Xt is of degree 6. It ramifies over X−1 that has 3 preimages
{Xt : t = −1, 1/2, 2} and Xζ6 that has 2 preimages {Xt : t = ζ±1

6 }.
The only fibers with a cyclic group of automorphisms or order larger than 4 are X−1

that admits a cyclic group of order 8 and Xζ6 that admits a cyclic group of order 12.

2. The map P∗ → M3, t 7→ Yt is of degree 2. It ramifies only over Y1/2 that has a
single preimage.

The only fiber with a cyclic group of automorphisms of order larger than 6 is Y1/2

that admits a cyclic group of order 12.

Proof of Proposition 1.3.1. If (X, [ω]) corresponds to an orbifold point on WD, then X
must belong to one of the families in Table 1.1.

First of all, note that curves of type (iii) admit an automorphism of order 4 with branching
data (0; 4, 4, 4, 4), and therefore they also belong to family (i). Similarly, those of type (iv)
admit automorphisms of order 4 and 6 with branching data (0; 4, 4, 4, 4) and (0; 2, 3, 3, 6)
respectively, and therefore they belong both to families (i) and (ii). As a consequence we
can suppose that X belongs either to (i) or (ii).

Let us suppose that X is of type (i). Looking at the branching data, one can see that X
is necessarily isomorphic to one of the following two curves for some t ∈ P∗

y4 = x(x− 1)(x− t) ,
y4 = x3(x− 1)3(x− t) .

However curves of the second kind are always hyperelliptic, with hyperelliptic involution
given by

τ : (x, y) 7→
(
tx− t
x− t , t(t− 1)

y

(x− t)2

)
.

As points of WD cannot correspond to hyperelliptic curves by Lemma 1.2.7, the curve X
is necessarily isomorphic to some Xt.
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If X is of type (ii), the branching data tells us that X must be isomorphic to some
fiber Yt.
The claim about the order of the orbifold points follows from Lemma 1.2.6 and Lemma 1.3.2.

Remark 1.3.3. Let us note here that the special fiber X−1 is isomorphic to the Fermat
curve x4 + y4 + z4 = 0 and that the unique intersection point of the Clover family and
the Windmill family, that is Xζ6 ∼= Y1/2, is isomorphic to the exceptional Wiman curve of
genus 3 with affine equation y3 = x4 + 1.

1.3.1. Differential forms By the considerations in section 1.2, we are only interested
in differential forms with a single zero in a fixed point of the Prym involution.

Lemma 1.3.4. Let t ∈ P∗.

1. The space of holomorphic 1-forms on each fiber Xt of the Clover family is generated
by the following eigenforms for the action of αX :

ωX1 =
dx

y3
, ωX2 =

xdx

y3
, ωX3 =

dx

y2
.

In particular, the spaces of odd and even forms for the action of ρX are given by
Ω(Xt)− = 〈ωX1 , ωX2 〉 and Ω(Xt)+ = 〈ωX3 〉, respectively.

2. The space of holomorphic 1-forms on each fiber Yt of the Windmill family is
generated by the following eigenforms for the action of αY :

ωY1 =
dx

y
, ωY2 =

ydx

x(x− 1)(x− t) , ωY3 =
y4dx

x2(x− 1)2(x− t)2
.

In particular, the spaces of odd and even forms for the action of ρY are given by
Ω(Yt)− = 〈ωY1 , ωY2 〉 and Ω(Yt)+ = 〈ωY3 〉, respectively.

Proof. By writing their local expressions, one can check that all these forms are holomor-
phic. The action of ρ can be checked in the affine coordinates.

By analysing the zeroes one obtains the following lemma.

Lemma 1.3.5. Let t ∈ P∗.

1. The forms in PΩ(Xt)− having a 4-fold zero at a fixed point of ρX are

• ωX1 which has a zero at the preimage of ∞,

• ωX2 which has a zero at the preimage of 0,

• −ωX1 + ωX2 which has a zero at the preimage of 1, and

• −tωX1 + ωX2 which has a zero at the preimage of t.

They all form an orbit under Aut(Xt).

13



1. Orbifold points on Prym–Teichmüller curves in genus three

2. For t 6= 1/2, the only form in PΩ(Yt)− which has a 4-fold zero at a fixed point of
ρY is ωY2 .

Note that by Lemma 1.3.2 the case of Yt for t = 1/2 is already included in the study of
the X family (see also Remark 1.3.3).

Proof. 1. For any Xt, the preimages of 0, 1, t and ∞ are the only fixed points of ρX .
Using local charts, it is easy to see that these are the only forms with 4-fold zeroes at
those points.

The last statement follows from the fact that Aut(Xt) permutes the preimages of 0, 1, t
and ∞.

2. Observe that the differential dx does not vanish on Yt away from the preimages of 0,
1, t and ∞. Under the parametrisations Equation 1.2, the local expression of dx around
the preimages of 0 and 1 is dx = 3z2dz and around the preimages of t is dx = 2zdz.
Looking at the local expressions, one can see that ωY1 has simple zeroes at the (four)
preimages of 0 and 1, and ωY2 has a 4-fold zero at infinity.

Again using local charts, it is easy to see that a form uωY1 + vωY2 , u, v ∈ C, can have at
most 2-fold zeroes at the preimages of t.

On the other hand, if uωY1 + vωY2 has a 4-fold zero at ∞, then the local expression above
implies that u = 0.

We can now state the converse of Proposition 1.3.1.

Proposition 1.3.6. Let t ∈ P∗ and let OD be some real quadratic order.

1. If P(Xt) admits proper real multiplication by OD with ωX1 as an eigenform then
ωX2 , −ωX1 + ωX2 and −tωX1 + ωX2 are also eigenforms and (Xt, ωX1 ) corresponds to
an orbifold point on WD.

Moreover, if Xt ∼= X−1, then (Xt, ωX1 ) is of order 4; if Xt ∼= Xζ6, then (Xt, ωX1 ) is of
order 6; otherwise, (Xt, ωX1 ) is of order 2.

2. If P(Yt) admits proper real multiplication by OD with ωY2 as an eigenform then
(Yt, ωY2 ) corresponds to an orbifold point on WD.

Moreover, if Yt = Y1/2, then (Yt, ωY2 ) is of order 6; otherwise, (Yt, ωY2 ) is of order 3.

Proof. By the previous lemma, if one of the four forms on Xt is an eigenform for some
choice of real multiplication OD ↪→ EndP(Xt), then the other three are also eigenforms
for the choice of real multiplication conjugate by the corresponding automorphism. The
statements about the points of higher order follow from Lemma 1.3.9 and Lemma 1.3.10.

The rest of the claims follows from Proposition 1.2.1 and Lemma 1.3.2.
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Remark 1.3.7. Note that, while the Clover family X is the same curve insideM3 that is
studied in [HS08] and [Möl11a], the flat structures we consider on the fibers are different
and the families are actually disjoint in ΩM3. More precisely, we are interested in Prym–
Teichmüller curves, i.e. a differential in the −1 eigenspace for the Prym involution, while
the Wollmilchsau Teichmüller curve is constructed as a cover of the elliptic curve Xt/ρ,
i.e. has the flat structure of the differential in the +1 eigenspace. In particular, for our
choices of differential (Xt, ωt), the (projection of the) SL2(R) orbit will never be the curve
X , but the Prym–Teichmüller curve WD(4) whenever the real-multiplication condition is
satisfied.

1.3.2. Homology To calculate the Jacobians of the fibers of the Clover family X and
the Windmill family Y , we also need a good understanding of their homology.

Consider again the general family Z → P∗ introduced at the beginning of section 1.3.
Set P∗t := P∗ − {t} and Z∗t := π−1(P∗t ), where π : Zt → P1 is the projection onto the x
coordinate. We thus obtain an unramified cover and the sequence

1→ π1(Z∗t )→ π1(P∗t )→ Cd → 1,

where Cd denotes the cyclic group of order d, is exact. Let σP denote a simple counter-
clockwise loop around the point P ∈ P1. Then π1(P∗t ) is generated by σ0, σ1, σt and σ∞
and their product is trivial. Observe that these four loops are mapped to elements of
order d/gcd(a1,d), d/gcd(a2,d), d/gcd(a3,d) and d/gcd(a4,d) in Cd respectively. Moreover, cycles in
π1(P∗t ) whose image in Cd is trivial lift to cycles in H1(Zt,Z).

For cycles F,G ∈ H1(Zt,Z), we pick representatives intersecting at most transversely
and define the intersection number F ·G :=

∑
Fp ·Gp, where the sum is taken over all

p ∈ F ∩G and for any such p, we define Fp ·Gp := +1 if G approaches F “from the right
in the direction of travel” and Fp ·Gp := −1 otherwise, cf. Figure 1.2.

In the following, we identify Gal(Zt/P1) = Cd with the dth complex roots of unity and
choose the generator α as exp(2πi/d) (this generator corresponds to αZ in Equation 1.3,
hence the notation). Since all the fibers are topologically equivalent, let us suppose
for simplicity t ∈ R, t > 1. Then, the simply-connected set P1 − [0,∞] contains no
ramification points and therefore has d disjoint preimages S1, . . . , Sd, which we call sheets
of Zt. These are permuted transitively by α and we choose the numbering so that
α(S[n]) = S[n+1], where [n] := n mod d. The sheet changes are given by the monodromy:
a path travelling around 0 in a counter-clockwise direction on sheet [n] continues onto
sheet [n+ a0] after crossing the interval (0, 1) and similarly for the other branch points.

We are now in a position to explicitly describe the fiberwise homology of X and Y .
Let FX denote the lift of σ−1

1 σ0 that starts on sheet number 1 of Xt and let GX denote
the lift of σ−1

t σ1 that also starts on sheet 1 (see Figure 1.2). Observe that FX ·GX = +1.

Similarly, denote by FY and GY the lifts of σ−1
1 σ0 and σ−3

∞ σt, that start on sheet 1 and 5
of Yt, respectively (see Figure 1.3). Observe that FY ·GY = 0.
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0 1 t ∞

F
G

1

1

1

4

Figure 1.2.: The cycles FX and GX on Xt. The upper-left parts of both cycles lie on
sheet number 1. Observe that FX ·GX = 1.

0 1 t ∞

F G

1 1

1 5

Figure 1.3.: The cycles FY and GY on Yt. The upper-left parts lie on sheets number 1
and 5, respectively.

For ease of notation, we will drop superscripts in the following lemma, as no confusion
can arise.

Lemma 1.3.8. Let t ∈ P∗.

1. The cycles F, αF, α2F,G, αG, α2G yield a basis of H1(Xt,Z). Moreover, the cycles

F + αF +G+ αG, −G+ α2G, αF + α2F −G+ α2G, F + 2αF + α2F

span a (1, 2)-polarised, ρ-anti-invariant sublattice of H1(Xt,Z), which we denote
by H−1 (Xt,Z). The complementary ρ-invariant sublattice, H+

1 (Xt,Z), is spanned by
F + α2F,G+ α2G.

2. The cycles F, αF, α3F, α4F,G, αG yield a basis of H1(Yt,Z). Moreover, the cycles

F − α3F, α4F − αF, G, αG
span a (1, 2)-polarised, ρ-anti-invariant sublattice of H1(Yt,Z), which we denote
by H−1 (Yt,Z). The complementary ρ-invariant sublattice, H+

1 (Yt,Z), is spanned by
F + α3F, α4F + αF .

Proof. 1. An elementary but somewhat tedious calculation yields the intersection matrix



0 1 0 1 −1 0
−1 0 1 0 1 −1
0 −1 0 0 0 1
−1 0 0 0 1 0
1 −1 0 −1 0 1
0 1 −1 0 −1 0



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for the above cycles on Xt. As it has rank 6 and determinant 1, these cycles span all of
H1(Xt,Z). Furthermore, this immediately provides us with the relations

α3F = −F − αF − α2F and α3G = −G− αG− α2G,

which confirms the claimed anti-invariance. The change to the second set of cycles yields



0 0 1 0
0 0 0 2
−1 0 0 0
0 −2 0 0

0 2
−2 0




where the upper-left block is the anti-invariant and the lower-right block is the invariant
part. Calculating determinants, we see that both blocks have determinant 4, proving the
claim about the polarisation.

2. Proceeding as before, one finds the following intersection matrix for the cycles on Yt



0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0



,

proving that they generate H1(Yt,Z), and the following one for the second set of cycles



0 2 0 0
−2 0 0 0
0 0 0 1
0 0 −1 0

0 2
−2 0



,

yielding the (1, 2)× (2)-polarisation on the product.

1.3.3. Special points We briefly summarise some of the subtleties occurring at those
points admitting additional symmetries.

The curve X2 In the Clover family X , the fibers over 1/2, −1 and 2 form an orbit under
the action of S3. Over these points, αX extends to an automorphism βX satisfying
(βX )2 = αX , i.e. a symmetry of order 8, making them all isomorphic to the well-known
Fermat curve. More precisely, βX may be obtained by lifting the automorphism that
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permutes two of the branch points and fixes the remaining pair on P1. Note that this
may be achieved in two ways, e.g. for t = 2, we obtain

βX1 : (x, y) 7→
(

x

x− 1
, ζ8

y

x− 1

)
and

βX2 : (x, y) 7→ (2− x, ζ8y).

Observe that βX1 fixes 2 and 0 while interchanging 1 and ∞, while βX2 fixes 1 and ∞
while interchanging 2 and 0. It is straight-forward to check the analogous statement of
Lemma 1.3.5 in this case.

Lemma 1.3.9. Let t be one of 1/2, −1 or 2. Then the two forms from Lemma 1.3.5
with zeros at the fixed points of βX1 are eigenforms for βX1 , while the other two forms are
eigenforms for βX2 .

The curve Y1/2 (or Xζ6) The only member of the Windmill family Y whose automorphism
group contains a cyclic group of order larger than 6 is Y1/2, admitting an automorphism
of order 12, βY(x, y) = (1− x, ζ7

12y), satisfying (βY)2 = αY . In contrast to the case of X2,
however, the automorphism βY generates the full automorphism group.

Recall that, by Proposition 1.3.1, the curve Y1/2 is isomorphic to the curve Xζ6 of the
Clover family. However, here we will use the model of the curve as a member of the
Windmill family.

Note first that βY descends to the automorphism z 7→ 1 − z of P1. Moreover βY fixes
∞ with rotation number ζ12 and therefore βY acts as (1+, 1−, 2+, . . . , 6+, 6−) on the
half-sheets, where we write k+ (respectively k−) for the upper half-plane (respectively
lower half-plane) corresponding to the kth sheet.

By letting the initial points of FY and GY go to 1 and ∞, respectively, and shrinking
the cycles around the preimages of 0, 1, t and ∞ one can use the (equivalent) choice of
cycles pictured in Figure 1.4.

After the shrinking process, the cycles FY and GY in Y1/2 have the shape depicted
in Figure 1.5.

Taking all this into account, one can easily calculate the analytic and rational representa-
tions of βY .

Lemma 1.3.10. The analytic and rational representations of βY with respect to the bases
H1(Y1/2,Z) = 〈FY , αYFY , (αY)3FY , (αY)4FY , GY , αYGY〉Z and Ω(Y1/2) = 〈ωY1 , ωY2 , ωY3 〉
are given, respectively, by

AβY =



ζ−1

12 0 0
0 ζ7

12 0
0 0 ζ−2

12


 RβY =




0 0 1 −1 −1 0
0 −1 1 1 0 −1
1 −1 0 0 1 0
1 1 0 −1 0 1
0 −1 0 1 1 −1
1 1 −1 −1 1 2



.

In particular, ωY2 is an eigenform for βY .
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1+

1−

5+

1−
F G

5+1+

3+

5−

1− 3−

1+3+

5+
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1− 3−
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2+

4−

1−

4−

3−
2−

1−

6−
5−

4+
3+

2+

1+

6+

5+

0 1 t ∞

Figure 1.4.: The shrunk cycles FY and GY , and the process of shrinking around the
preimages of 0, 1, t and ∞, respectively.
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Figure 1.5.: The cycles FY and GY in Y1/2.
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1. Orbifold points on Prym–Teichmüller curves in genus three

1.3.4. Stable reduction of degenerate fibers While the Windmill family is not com-
pact in M3, it turns out that all fibers of its closure in M3, the Deligne-Mumford
compactification, admit compact Jacobians, i.e. that the Torelli image of Y is contained
in A3. Moreover, this analysis will be invaluable when constructing a fundamental domain
for Y later.

The degenerate fibers of Y The degenerate fibers of the Windmill family Y correspond
to t = 0, 1,∞. To describe them, we resort to the theory of admissible covers. For a
brief overview of the tools needed in this special case, see e.g. [BM10b, §4.1] and the
references therein.

The stable reduction when t→ 1 (equivalently, when t→ 0) yields the two components

Y1

1 : y6 = x2(x− 1)5 , of genus 2,

Y2

1 : y6 = x2(x− 1)3 , of genus 1.

The stable reduction when t→∞ yields the three components

Y1

∞ : y6 = x2(x− 1)2 , consisting of two components of genus 1,

Y2

∞ : y6 = x3(x− 1)5 , of genus 1.

A simple calculation gives the following lemma.

Lemma 1.3.11. The degeneration of the (αY)∗-eigenforms of Lemma 1.3.4 for t→ 1 is
given by

ω1
1 =

dx

y
on Y1

1 , ω1
2 =

ydx

x(x− 1)
on Y2

1 , ω1
3 =

y4dx

x2(x− 1)4
on Y1

1 ,

and for t→∞ by

ω∞1 =
dx

y
on Y2

∞ , ω∞2 =
ydx

x(x− 1)
on Y1

∞ , ω∞3 =
dx

y2
on Y1

∞ ,

where the differentials are identically zero on the components where they are not defined.

Via the shrinking process introduced above, one can compute the degeneration of the
cycles in both cases (see Figure 1.7). In the following lemma, we sum up some results
about the homology of the degenerate fibers that we will need in section 1.4.

Lemma 1.3.12. Let F∞, G∞ and F 1, G1 denote the cycles on Y∞ and Y1 corresponding
to the degeneration of FY and GY .

1. F∞ and G∞ live in Y1

∞ and Y2

∞ respectively.
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g = 2 Y1

1g = 1
Y2

1

P1P1

0

∞

1

t

π2 π1

g = 1

g = 1

Y1

∞ g = 1
Y2

∞

P1P1

t
∞

1
0

π1 π2

Figure 1.6.: The stable fibers Y1 and Y∞.

2. There is a decomposition of cycles F 1 = F 1
1 + F 1

2 and G1 = G1
1 +G1

2, where F 1
k , G

1
k

are cycles in the component Yk1 going through the nodal point.

Moreover, one has the following intersection matrices for the sets of cycles {F 1
k , α

YF 1
k , (α

Y)3F 1
k , (α

Y)4F 1
k , G

1
k, α

YG1
k},

for k = 1, 2:



0 1 0 0 1 0
−1 0 0 0 1 1
0 0 0 1 −1 0
0 0 −1 0 −1 −1
−1 −1 1 1 0 2
0 −1 0 1 −2 0




and




0 −1 0 1 −1 0
1 0 −1 0 −1 −1
0 1 0 −1 1 0
−1 0 1 0 1 1
1 1 −1 −1 0 −1
0 1 0 −1 1 0



,

respectively.

Y∞Y1

F1 G1

F2

G2

1

t

0 ∞

F

G

t

∞

0 1

Figure 1.7.: The bases of homology in Y1 and Y∞ as lifts of cycles in P1 by π1 and π2.

Proof. In the case of Y∞, it is obvious from Figure 1.3 that the degeneration of the cycles
FY and GY lie in Y1

∞ and Y2

∞ respectively.

The case Y1 is more delicate. It follows again from Figure 1.3 that the degeneration of
both FY and GY are the union of cycles in Y1

1 and Y2

1 meeting at the nodal point. In
fact, since the points in Y1 corresponding to the preimages of 0 and 1 (respectively t and
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1. Orbifold points on Prym–Teichmüller curves in genus three

∞) lie in different components, it is clear that F 1 (respectively G1) will decompose as
the sum F 1

1 + F 1
2 (respectively G1

1 +G1
2) of cycles in Y

1

1 and Y2

1.

Consider first the component Y2

1, isomorphic to y6 = x2(x− 1)3. Note that the preimages
of 0 and 1 under π2 correspond to the preimages of 1 and t in the general member of our
family Yt. Let us denote by Q ∈ Y2

1 the nodal point and suppose, for simplicity, that its
image q ∈ P1 under π2 lies in the interval [1, 0]. Removing this interval and proceeding
as before we get the picture in Figure 1.8, where the sheet changes follow from studying
the behaviour of FY and GY around the preimages of 1 and t in the general member of
our family (see Figure 1.4).
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Figure 1.8.: Degenerate cycles on Y2

1 and their behaviour around the preimages of t, q
and 1, respectively. Note that F 1

2 ·G1
2 = −1.

One can get a similar picture for the other component Y1

1. Now a tedious but straight-
forward calculation yields the intersection matrices.

1.4. The Prym–Torelli images

To understand the orbifold points of WD, by Proposition 1.3.6, we must determine which
Xt and Yt admit real multiplication that satisfies the eigenform condition. Therefore, the
aim of this section is to concretely calculate the period matrices of the families of Prym
varieties P(Xt) of the Clover family and P(Yt) of the Windmill family.

1.4.1. The Prym variety P(Xt) In the case of the Clover family X , all the fibers Xt
are sent to the same Prym variety by the Prym–Torelli map.
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Proposition 1.4.1. For all t ∈ P∗, the Prym variety P(Xt) is isomorphic to C2/Λ,
where Λ = PΠX · Z4 for

PΠX =

(
−1+i

2
1 1 0

1 −(1 + i) 0 2

)
,

together with the polarisation induced by the intersection matrix

EX =




0 0 1 0
0 0 0 2
−1 0 0 0
0 −2 0 0


 .

In particular, the image of the Clover family X under the Prym–Torelli map is a single
point.

Calculating Jacobians of curves with automorphisms can be done by a method attributed
to Bolza, see [BL04, Chap. 11.7] for details. The idea is to determine, for a given
automorphism σ and fixed choices of basis, the analytic and rational representations Aσ
and Rσ of the automorphisms and use this information to find relations in the period
matrix Π, using the identity

(
Aσ 0
0 Aσ

)(
Π
Π

)
=

(
Π
Π

)
Rσ.

All members of the Clover family X admit, apart from the automorphism αX , the
following two involutions

γ : (x, y) 7→
(
t

x
,
y
√
t

x

)
and δ : (x, y) 7→

(
t(x− 1)

x− t ,
−y
√
t(t− 1)

x− t

)
.

The automorphisms γ and δ are lifts by π of the automorphisms of P1 = X/〈α〉 given by
z 7→ t/z and z 7→ (tz − t)/(z − t), respectively. In particular, these two involutions of P1

generate a Klein four-group acting on the fixed points of ρX .

Note that, although γ and δ do not commute, one has γδγ−1δ−1 = α2, and 〈α, γ, δ〉
has order 16. In fact, for a general member of the family this is the whole group of
automorphisms of the curve (see [KK79, (6)(b)] or [Bro91]).

By Lemma 1.3.4, the action of α∗ on Ω(Xt) is given by



i 0 0
0 i 0
0 0 −1



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in the eigenform basis. The automorphisms γ and δ induce analytic representations

γ∗ =




0 −
√
t 0

− 1√
t

0 0

0 0 −1


 and δ∗ =




−t√
t(t− 1)

−t√
t(t− 1)

0

1√
t(t− 1)

t√
t(t− 1)

0

0 0 −1



.

To calculate the rational representation, let us suppose again t ∈ R, t > 1. Keeping track
of the action of γ and δ on the branching points of π and on the half-sheets of the cover,
one can write down the action of these automorphisms in the homology

γFX = −α2FX +GX + αGX , γGX = −GX ,
δFX = −FX , δGX = −αFX − α2FX − α2GX .

Remark 1.4.2. Observe that γ and δ act as involutions and the quotient is Xt/γ ∼=
Xt/δ ∼= Ei, where Ei is the unique elliptic curve with an order four automorphism.
Indeed, Xt is not hyperelliptic and δ and γ have fixed points (e.g. preimages of

√
t and

t−
√
t(t− 1) on Xt), therefore the quotient has genus 1. Moreover, α commutes with

both δ and γ, hence descends to an order four automorphism of the quotient elliptic curve.

Proof of Proposition 1.4.1. To calculate the Jacobian Jac(X ) write fi := fXi (t) =
∫
FX ω

X
i

and gi := gi(t) =
∫
GX ω

X
i . From the action of α one can deduce that the Jacobian of Xt

in the bases of Lemmas 1.3.4 and 1.3.8 is given by the period matrix

ΠXt =



f1 if1 −f1 g1 ig1 −g1

f2 if2 −f2 g2 ig2 −g2

f3 −f3 f3 g3 −g3 g3


 .

Using the actions of γ and δ both on Ω(Xt) and H1(Xt,Z) one gets the relations

f1 = −
√
tf2 − g1(1 + i) , g2 =

g1√
t
, g1 =

−f2

√
t(1−

√
t+
√
t− 1)

(1 + i)(
√
t− 1−

√
t)

.

By changing to the basis of H−1 (Xt,Z)⊕ H+
1 (Xt,Z) given in Lemma 1.3.8 one gets




(1 + i)(f1 + g1) −2g1 −2g1 + (i− 1)f1 2if1 0 0
(1 + i)(f2 + g2) −2g2 −2g2 + (i− 1)f2 2if2 0 0

0 0 0 0 2f3 2g3




and sees that the Jacobian Jac(Xt) is isogenous to the product P(Xt)×Jac(Xt/ρX ), where
P(Xt) is (1, 2)-polarised and Jac(Xt/ρX ) is (2)-polarised. Note that the polarisation
on P(Xt) is given by the principal 4× 4 minor in the intersection matrix in the proof
of Lemma 1.3.8, which agrees with EX .
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1.4. The Prym–Torelli images

Finally, we can change the basis of Ω(Xt)− by the matrix

Qt =
1√

t− 1f2



−(1 + i)(

√
t−
√
t− 1)

4
√
t

−1 + i

4
i

2
√
t

i(
√
t−
√
t− 1)

2


 , (1.4)

to get the period matrix
(
PΠX 0

0 EΠXt

)
where PΠX :=

(
−1+i

2
1 1 0

1 −(1 + i) 0 2

)
and EΠXt :=

(
2f3 2g3

)
.

Note that PΠX no longer depends on t, proving the final statement.

Remark 1.4.3. These results are equivalent to those of Guàrdia in [Guà01]. However,
we cannot simply apply his results for two reasons. First, we are not restricted to real
branching values and in particular the curve Xζ6 plays a special role. More importantly,
in order to study the points of intersection with the Prym–Teichmüller curves WD, we
need to keep track of the differential forms with a 4-fold zero in each fiber of the family.
As a consequence, we need an explicit expression of the elements of Ω(Xt)−(4), i.e. the
ρ-anti-invariant differential forms with a 4-fold zero, in the basis in which the period
matrix PΠX above is written.

The endomorphism ring EndP(Xt) To see when P(Xt) has real multiplication by a
given order, we need a good understanding of the endomorphism ring. First, however,
we describe the endomorphism algebra.

Proposition 1.4.4. The endomorphism algebra EndQP(Xt) is the algebra isomorphic
to M2(Q[i]) generated by the identity and the automorphisms α, γ, δ and γδ.

Proof. Note that the automorphisms α, γ and δ of Xt preserve the spaces Ω(Xt)− and
H−1 (Xt,Z), so they induce automorphisms of the Prym variety. One can construct their
analytic and rational representations in the bases of Lemmas 1.3.4 and 1.3.8 to obtain

Aα =

(
i 0
0 i

)
, Rα =




1 −2 −2 0
−1 1 0 −2
2 −2 −1 2
−1 2 1 −1


 ;

Aγ =

(
0 1−i

2

1 + i 0

)
, Rγ =




1 0 0 2
1 −1 −1 0
0 0 1 2
0 0 0 −1


 ;

Aδ =

(
1 0
0 −1

)
, Rδ =




1 0 0 0
0 −1 0 0
0 2 1 0
−1 0 0 −1


 .
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1. Orbifold points on Prym–Teichmüller curves in genus three

Since Aα lies in the center of M2(C) and the involutions γ and δ anti-commute, the
endomorphism algebra EndQP(Xt) must contain the (definite) quaternion algebra F =
〈Aα, Aγ, Aδ〉Q ∼= M2(Q[i]). Since |F : Q| = 16, this already has to be the entire algebra
EndQP(Xt) (see [BL04, Prop. 13.4.1]).

Proof of Theorem 1.1.2. Proposition 1.4.4 implies that P(Xt) ∼= Ei × Ei, and the claim
about the orbifold points follows from Proposition 1.3.1.

Recall that, for any polarised abelian variety, the Rosati involution ·′ on the endomorphism
ring is induced by the polarisation. Therefore, given an element ϕ ∈ EndQP(Xt)
with rational representation Rϕ, its image ϕ′ under the Rosati involution has rational
representation E−1RT

ϕE, where E = EX is the polarisation matrix from above. It is
then easy to check that α′ = −α, γ′ = γ, δ′ = δ and (γδ)′ = −γδ. Under the embedding
F ↪→M2(C) given by the analytic representation, the Rosati involution is the restriction
of the involution

M2(C) → M2(C)
B 7→ A−1BHA

, for A =

(
2 0
0 1

)
(1.5)

where BH denotes the hermitian transpose.

This gives us a simple criterion to check whether a specific rational endomorphism
actually lies in EndP(Xt).

1.4.2. The Prym variety P(Yt) In the case of the Windmill family Y, we have the
following characterisation.

Proposition 1.4.5. For all t ∈ P∗, the Prym variety P(Yt) = C2/Λt, where Λt =
PΠYt · Z4 for

PΠYt =

(
2f 2ζ2

6f 1 ζ−1
6

2 2ζ−2
6 2f 2ζ6f

)
,

where f := f(t) =
∫
FY ω

Y
1 is the period map, together with the polarisation induced by the

intersection matrix

EY =




0 2 0 0
−2 0 0 0
0 0 0 1
0 0 −1 0


 .

As above, we use Bolza’s method for calculating the period matrix. Fortunately, in this
case it suffices to regard α := αY .

By Lemma 1.3.4, the action of α∗ on Ω(Yt) is given by


ζ−1

6 0 0
0 ζ6 0
0 0 ζ4

6




in the eigenform basis.
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1.4. The Prym–Torelli images

Proof of Proposition 1.4.5. Again, we write fi := fYi (t) =
∫
FY ω

Y
i and gi := gYi (t) =∫

GY ω
Y
i . Since α3(GY) = ρY(GY) = −GY and (ρY)∗ωY3 = −ωY3 , one has g3 = 0. Using the

action of α on Ω(Yt), one gets that, in these bases, the period matrix of Yt reads

ΠYt =



f1 ζ−1

6 f1 −f1 ζ2
6f1 g1 ζ−1

6 g1

f2 ζ6f2 −f2 ζ−2
6 f2 g2 ζ6g2

f3 ζ−2
6 f3 f3 ζ−2

6 f3 0 0


 . (1.6)

Moreover, by normalising g1 = f2 = f3 = 1 and using Riemann’s relations, one sees that

ΠYt E
−1
(
ΠYt
)T

= 0⇒ g2 = 2f1, and

iΠYt E
−1
(
ΠYt
)T

> 0⇒ 2|f1|2 − 1 < 0.

Writing f := f1, we finally get

ΠYt =



f ζ−1

6 f −f ζ2
6f 1 ζ−1

6

1 ζ6 −1 ζ−2
6 2f 2ζ6f

1 ζ−2
6 1 ζ−2

6 0 0


 . (1.7)

As above, the Jacobian Jac(Yt) is isogenous to the variety P(Yt)× Jac(Yt/ρY), whose
period matrix is obtained by changing to the basis of H−1 (Yt,Z)⊕H+

1 (Yt,Z) of Lemma 1.3.8,
yielding

(
PΠYt 0

0 EΠYt

)
, where PΠYt :=

(
2f 2ζ2

6f 1 ζ−1
6

2 2ζ−2
6 2f 2ζ6f

)
and EΠYt :=

(
2 2ζ−2

6

)
.

The polarisation on P(Yt) is again given by the principal 4× 4 minor in the intersection
matrix in the proof of Lemma 1.3.8, which agrees with EY .

The endomorphism ring EndP(Yt) In this section we study the endomorphism ring
EndP(Yt) and the endomorphism algebra EndQP(Yt) in order to get a description of
the Windmill family Y as a Shimura curve. More precisely, let M denote the maximal
order

M = Z
[
1 + j

2
,
1− j

2
,
i + ij

2
,
i− ij

2

]
(1.8)

in the quaternion algebra

F :=
{
x0 + x1i + x2j + x3ij : xk ∈ Q , i2 = 2 , j2 = −3

} ∼=
(

2,−3

Q

)
.

We will prove the following.

Proposition 1.4.6. The Prym–Torelli map gives an isomorphism between the compact-
ification Y of the Windmill family Y and the (compact) Shimura curve whose points
correspond to abelian surfaces with a (1, 2) polarisation, endomorphism ring EndA ∼= M
and Rosati involution given by Equation 1.9. This curve is isomorphic to H/∆(2, 6, 6).
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1. Orbifold points on Prym–Teichmüller curves in genus three

Recall that a (compact hyperbolic) triangle group is a Fuchsian group constructed in the
following way. Let l, m and n be positive integers such that 1/l + 1/m+ 1/n < 1 and
consider a hyperbolic triangle T in the hyperbolic plane with vertices vl, vm and vn with
angles π/l, π/m and π/n respectively. The subgroup ∆(l,m, n) of PSL2(R) generated
by the positive rotations through angles 2π/l, 2π/m and 2π/n around vl, vm and vn
respectively is called a triangle group of signature (l,m, n). The triangle T is unique up
to conjugation in PSL2(R) and, therefore, so is the associated triangle group described
above ([Bea83, §7.12]). Note that the quadrilateral consisting of the union of the triangle
T and any of its reflections serves as a fundamental domain for ∆(l,m, n) (see Figure 1.9
for a fundamental domain of ∆(2, 6, 6) inside the hyperbolic disc D).

Let us now calculate EndP(Yt). Since the automorphism α of Yt induces an auto-
morphism of P(Yt) and j := 2α − 1 satisfies j2 = −3, there is always an embedding
Q(
√
−3) ↪→ EndQP(Yt). However, the full endomorphism algebra of an abelian surface

is never an imaginary quadratic field (see [BL04, Ex. 9.10(4)], for example) and one
can check that the analytic and rational representations Ai and Ri defined below yield
an element of EndQP(Yt). It is then easy to see that the endomorphism algebra of the
general member of our family agrees with the (indefinite) quaternion algebra F .

Abelian varieties with given endomorphism structure have been intensely studied, notably
by Shimura [Shi63]. Shimura explicitly constructs moduli spaces for such families in much
greater generality than we require here. However, his results specialise to our situation.
To emulate his construction, we begin by observing that since F ⊗ R ∼= M2(R), we can
see F as a subalgebra of M2(R). The following matrices show the relation between the
embedding F ↪→ M2(R), the analytic representation A : F ↪→ M2(C) and the rational
representation R : F ↪→M4(Q)

i =

(√
2 0

0 −
√

2

)
, Ai =

(
0 1
2 0

)
, Ri =




0 0 1 1
0 0 0 1
2 −2 0 0
0 2 0 0


 ;

j =

(
0

√
3

−
√

3 0

)
, Aj =

(
−i
√

3 0

0 i
√

3

)
, Rj =




−1 2 0 0
−2 1 0 0
0 0 −1 −2
0 0 2 1


 ;

ij =

(
0
√

6√
6 0

)
, Aij =

(
0 i

√
3

−2i
√

3 0

)
, Rij =




0 0 1 −1
0 0 2 1
2 2 0 0
−4 2 0 0


 .

By checking which elements of F have integral rational representation, one can see that
the endomorphism ring EndQP(Yt) of the general member of our family agrees with the
maximal order M defined above.

Proceeding as in the case of the Clover family and writing x = x0 +x1i+x2j+x3ij for an
element of F , we note that, by the Skolem-Noether theorem, the quaternion conjugation

28



1.4. The Prym–Torelli images

and the Rosati involution are conjugate. It is not difficult to check that, here, the Rosati
involution is given by

x′ := j−1xj = x0 + x1i− x2j + x3ij , (1.9)

where x = x0 − x1i − x2j − x3ij is the usual conjugation in F . Note that the Rosati
involution in F ↪→ M2(R) agrees with transposition and that, under the embedding
F ↪→ M2(C) given by the analytic representation, it is again the restriction of the
involution

M2(C) → M2(C)
B 7→ A−1BHA

, for A =

(
2 0
0 1

)
. (1.10)

Proof of Proposition 1.4.6. Let us give the construction of the Windmill family as a
Shimura curve. Following [Shi63], one can define the isomorphism

Φ : M −→ Λt

a 7−→ Aa · y , y =
(

2f
2

)

where Aa denotes the analytic representation of a, and check that the polarisation satisfies
E(Φ(a), y) = tr(a · T ) for T = 1

3
j ∈ F . The family of abelian varieties A with a (1, 2)

polarisation together with an embedding M ↪→ EndA and Rosati involution induced
by Equation 1.9 is then given by the Shimura curve H/Γ(T,M), where Γ(T,M) agrees
with the group of elements of norm 1 of M. By [Tak77] this is a quadrilateral group of
signature 〈0; 2, 2, 3, 3〉.
However, for each such variety A, there exist two different embeddings F ↪→ EndQA which
differ by quaternion conjugation on F . As a consequence, the map H/Γ̃(T,M)→ A2,(1,2)

has degree 2, and the Shimura curve constructed above is a double cover of its image,
which is uniformised by the triangle group ∆(2, 6, 6) extending Γ(T,M) (see [Tak77]).

Now, the Prym–Torelli image of Y lies entirely in this family and the proposition
follows.

Proof of Theorem 1.1.2. It is just a reformulation of Proposition 1.4.6 and Proposi-
tion 1.3.1.

Remark 1.4.7. Cyclic coverings of this type are well-known and have been intensely
studied. For example, it immediately follows from the results of Deligne and Mostow
[DM86, §14.3] that the compactified Windmill family Y is parametrised by H/∆(2, 6, 6).
More precisely, the monodromy data of the Windmill family yields (using their notation)
µ1 = µ2 = 1/3, µ3 = 1/2, and µ4 = 5/6, hence we obtain a map from P1 into H/∆(3, 6, 6).
Taking the quotient by the additional symmetry in the branching data here present, it
descends to a map from the basis of Y into H/∆(2, 6, 6), as above.

In our case, the lift of the period map f = f(t) from P1 to the disc of radius 1/
√

2 gives
us a particular model of the Shimura curve introduced above as the quotient of this disc
with the hyperbolic metric by the action of a specific triangle group ∆(2, 6, 6). In order
to find a fundamental domain for this group, we will study the value of the period map
at the special points of the compactification Y of the Windmill family Y, namely the
curves Y1/2, Y1 and Y∞. In particular, we will prove the following.
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1. Orbifold points on Prym–Teichmüller curves in genus three

Proposition 1.4.8. The ∆(2, 6, 6) group uniformising Y is generated by the hyperbolic
triangle with vertices f(1/2) = 3−

√
3+i(
√

3−1)
4

of angle π/2, f(1) = 1
2
ζ6 of angle π/6 and

f(∞) = 0 of angle π/6 inside the disc of radius 1/
√

2 (see Figure 1.9). These vertices
correspond to the curves Y1/2, Y1 and Y∞ respectively.

f(∞)

f(1)

f(0)

f(1/2)

Figure 1.9.: Fundamental domain of ∆(2, 6, 6) on the disc of radius 1/
√

2 with vertices 0,
1/2 and 1

4
(3−

√
3) + i

4
(
√

3− 1) corresponding to special fibers of Y .

Proof. It follows from Lemma 1.3.2(2) that the curve Y1/2 corresponds to the point of
order 2 in the triangle group and, therefore, Y1 and Y∞ correspond to the two points of
order 6. Consider Equation 1.7, giving the period matrix ΠYt of the general member of
the Windmill family.

In the case of Y∞, it follows from Lemma 1.3.11 and Lemma 1.3.12 that
∫
FY ω

∞
1 =∫

GY ω
∞
2 =

∫
GY ω

∞
3 = 0 and one has the following period matrix

ΠY∞ =




0 0 0 0 1 ζ−1
6

1 ζ6 −1 ζ−2
6 0 0

1 ζ−2
6 1 ζ−2

6 0 0


 .

In particular f(∞) = 0.

Similarly, using Lemma 1.3.10 and the fact that AβYΠY1/2 = ΠY1/2RβY one gets

ΠY1/2 =



ϑ ζ−1

6 ϑ −ϑ ζ2
6ϑ 1 ζ−1

6

1 ζ6 −1 ζ−2
6 2ϑ 2ζ6ϑ

1 ζ−2
6 1 ζ−2

6 0 0


 ,

where

ϑ =
3−
√

3 + i(1−
√

3)

4
.

Finally, in the case Y1, it follows again from Lemma 1.3.12 that G1
2 = αF 1

2 − F 1
2 .

Comparing this with the entries of the period matrix ΠYt in Equation 1.6, one finds that
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1.5. Orbifold points in WD

2f(1) = g2(1) = ζ6 − 1. Therefore f(1) = 1
2
ζ2

6 and

ΠY1 =




1
2
ζ2

6
1
2
ζ6 −1

2
ζ2

6
1
2
ζ−2

6 1 ζ−1
6

1 ζ6 −1 ζ−2
6 ζ2

6 −1
1 ζ−2

6 1 ζ−2
6 0 0


 .

Now, since f(∞) = 0 is a point of order 6 of ∆(2, 6, 6), the point 1
2
ζ2

6 corresponding to Y1

(respectively the point ϑ corresponding to Y1/2) is equivalent to f(1) = 1
2
ζ6 (respectively

to f(1/2) = ϑ), by reflecting along the sides of the triangle. We may therefore choose our
fundamental domain as claimed.

1.5. Orbifold points in WD

In this section we will finally determine the orbifold points on WD. By Proposition 1.3.6,
these correspond precisely to the fibers of the Clover family X and of the Windmill
family Y whose Prym variety admits proper real multiplication by OD, together with
an eigenform for real multiplication having a 4-fold zero at a fixed point of the Prym
involution. Remember that OD is defined as Z[T ]/(T 2 + bT + c), where D = b2 − 4c. In
particular, OD is generated as a Z-module by

T :=





√
D

2
, if D ≡ 0 mod 4 ;

1 +
√
D

2
, if D ≡ 1 mod 4 .

We will write TD := T whenever we want to stress the dependence on D.

Let D be a discriminant with conductor f0 and let us recall the sets

H2(D) := {(a, b, c) ∈ Z3 : a2 + b2 + c2 = D , gcd(a, b, c, f0) = 1 }, and
H3(D) := {(a, b, c) ∈ Z3 : 2a2 − 3b2 − c2 = 2D , gcd(a, b, c, f0) = 1 ,

− 3
√
D < a < −

√
D , c < b ≤ 0 ,

(4a− 3b− 3c < 0) ∨ (4a− 3b− 3c = 0 ∧ c < 3b) }

defined in section 1.1.

The number of orbifold points on WD of orders 2, 3, 4 and 6 are given by the following
formulas.
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1. Orbifold points on Prym–Teichmüller curves in genus three

e2(D) :=

{
0 ,
|H2(D)|/24 ,

D ≡ 1 mod 4 or D = 8, 12 ;
otherwise ;

e3(D) :=

{
0 ,
|H3(D)| ,

D = 12 ;
otherwise ;

e4(D) :=

{
1 ,
0 ,

D = 8 ;
otherwise ;

e6(D) :=

{
1 ,
0 ,

D = 12 ;
otherwise .

1.5.1. Points of order 2 and 4

Theorem 1.5.1. The curve W8 has one orbifold point of order 4. Moreover, no other
WD has orbifold points of order 4.

Let D be a discriminant with conductor f0. The number of orbifold points of order 2 in
WD is the generalised class number e2(D) defined above.

Let us recall that the Prym image of any fiber of the Clover family X is given by
P(Xt) = C2/Λ, where Λ = PΠX · Z4 for

PΠX =

(
−1+i

2
1 1 0

1 −(1 + i) 0 2

)

and that we have EndQP(Xt) ∼= M2(Q[i]).

We will first study the possible embeddings of OD in EndP(Xt) as self-adjoint endomor-
phisms.

Lemma 1.5.2. Let A be an element of EndP(Xt). The following are equivalent:

(i) A is a self-adjoint endomorphism such that A2 = D · Id;
(ii) A := A√D(a, b, c) = a · Aγ + b · Aδ + ci · Aγδ for some a, b, c ∈ Z such that

a2 + b2 + c2 = D.

Proof. By Proposition 1.4.4, any element of EndQP(Xt) can be written as A = a ·
Aγ + b · Aδ + c · Aγδ + d · Id, with a, b, c, d ∈ Q[i]. By Equation 1.5 it is clear that A
is self-adjoint if and only if a, b, d ∈ Q and c ∈ Q · i. On the other hand, only scalars
or pure quaternions satisfy A2 ∈ Q, hence d = 0. A simple calculation shows that this
implies D = A2 = a2 + b2 + c2.

Now, one can check that the rational representation of such an element is given by

R√D(a, b, c) =




a+ b+ c −2c 0 2a+ 2c
a −a− b− c −a− c 0
0 2b a+ b+ c 2a
−b 0 −c −a− b− c


 ,

therefore A induces an endomorphism if and only if a, b, c ∈ Z.
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1.5. Orbifold points in WD

The analytic representation

A√D(a, b, c) =

(
b a · 1− i

2
− c · 1 + i

2
a(1 + i)− c(1− i) −b

)

has eigenvectors

ω(a, b, c)+ =



−1 + i

2
· a− c i

b+
√
D

1


 and ω(a, b, c)− =



−1 + i

2
· a− c i

b−
√
D

1


 . (1.11)

The eigenvectors (almost) determine the triple (a, b, c) and the discriminant D.

Lemma 1.5.3. A√D(a, b, c) and A√D′(a
′, b′, c′) have the same eigenvectors if and only if

(i) D = m2E and D′ = m′2E for some discriminant E, with gcd(m,m′) = 1, and

(ii) Both (a, b, c) and (a′, b′, c′) are integral multiples of a triple (a0, b0, c0) ∈ Z3 with a2
0 +

b2
0 + c2

0 = D0.

In particular, A√D(a, b, c) and A√D(a′, b′, c′) have the same eigenvectors if and only
if (a′, b′, c′) = ±(a, b, c). More precisely: ω(a, b, c)+ = ω(−a,−b,−c)− and ω(a, b, c)− =
ω(−a,−b,−c)+.

Proof. Suppose A√D(a, b, c) and A√D′(a
′, b′, c′) have the same eigenvectors, so that

a− c i

b+
√
D

=
a′ − c′ i
b′ ±
√
D′

.

This immediately implies that there has to be some discriminant E such that D = m2E
and D′ = m′2E, where we choose gcd(m,m′) = 1.

The equality above is equivalent to

ab′ ± am′
√
E = a′b+ a′m

√
E

cb′ ± cm′
√
E = c′b+ c′m

√
E .

Since E is not a square, this means am′ = ±a′m, ab′ = a′b, cm′ = ±c′m and cb′ = c′b.
Since m and m′ are coprime we have

a = ma0 , b = mb0 , c = mc0 , and
a′ = ±m′a0 , b′ = ±m′b0 , c′ = ±m′c0 .

for some triple (a0, b0, c0) ∈ Z3. Dividing both sides of a2 + b2 + c2 = D by m2, we obtain
a2

0 + b2
0 + c2

0 = E.

The converse is immediate.
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1. Orbifold points on Prym–Teichmüller curves in genus three

Lemma 1.5.4. Suppose P(Xt) admits real multiplication by OD. Then D ≡ 0 mod 4.

Moreover, there is a bijection between the choices of real multiplication OD ↪→ EndP(Xt)
and the choices of triples (a, b, c) as in Lemma 1.5.2.

Proof. Let OD ↪→ EndP(Xt) be a choice of real multiplication. The rational representa-
tion RT of the element T ∈ OD will be given by R√D(a, b, c)/2 or (Id +R√D(a, b, c))/2
for some (a, b, c) satisfying the conditions of Lemma 1.5.2, depending on whether D ≡ 0
or 1 mod 4 respectively. Therefore

RT (a, b, c) =








a+b+c
2

−c 0 a+ c
a
2

−a+b+c
2

−a+c
2

0
0 b a+b+c

2
a

− b
2

0 − c
2
−a+b+c

2


 , if D ≡ 0 mod 4,




1+a+b+c
2

−c 0 a+ c
a
2

1−a−b−c
2

−a+c
2

0
0 b 1+a+b+c

2
a

− b
2

0 − c
2

1−a−b−c
2


 , if D ≡ 1 mod 4.

A simple parity check shows that RT (a, b, c) is always integral for D ≡ 0 mod 4 and never
integral for D ≡ 1 mod 4.

Conversely, every choice of (a, b, c) gives a different embedding OD ↪→ EndP(Xt)
by Lemma 1.5.3.

Lemma 1.5.5. Let D ≡ 0 mod 4 be a discriminant with conductor f0. A form ω is
an eigenform for real multiplication by OD if and only if it is the eigenform of some
A√D(a, b, c) with gcd(a, b, c, f0) = 1.

Proof. By the previous lemma, any choice of real multiplication corresponds to a triple
(a, b, c) ∈ Z3 as in Lemma 1.5.2.

By Lemma 1.5.3, such an embedding OD ↪→ EndP(Xt), T 7→ A√D(a, b, c)/2 is proper if
and only if gcd(a, b, c, f0) = 1.

Proof of Theorem 1.5.1. By Lemma 1.5.5, the set H2(D) counts choices of proper real
multiplication OD ↪→ EndP(Xt). Since every tuple (a, b, c) ∈ H2(D) gives two eigenforms
and, by Lemma 1.5.3, (a, b, c) and (−a,−b,−c) give the same eigenforms, there are
exactly |H2(D)| eigenforms for real multiplication in P(Xt) for each D ≡ 0 mod 4, up
to scaling. By [Möl14, Prop. 4.6], each of them corresponds precisely to one element
in some PΩ(Xt)−(4). Recall also that, for each t ∈ P∗, the isomorphism induced by the
matrix Qt, defined in Equation 1.4, allows us to see the four differentials of Xt given
by Lemma 1.3.5 in the basis of differentials associated to PΠX .

In the case D = 8, one has

|H2(8)| = |{(±2,±2, 0), (±2, 0,±2), (0,±2,±2)}| = 12.
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1.5. Orbifold points in WD

Using Qt, it is easy to see that the eigenforms associated to the elements of H2(8)
correspond to the elements of PΩ(X2)

−(4). More precisely, these eigenforms coincide,
up to scaling, with the images Qt(ω

X
1 ), Qt(ω

X
2 ), Qt(−ωX1 + ωX2 ) and Qt(−tωX1 + ωX2 ),

for t = −1, 1/2, 2 (recall that X2
∼= X−1

∼= X1/2). For example, by Equation 1.11 the
matrix A√8(2, 2, 0) has as an eigenvector

(
1−i
−2−

√
8
, 1
)
, which is a multiple of Q2(ωX1 ). As

a consequence of Lemma 1.3.9, the curve W8 has one orbifold point of order 4 and no
orbifold points of order 2. In particular, no other WD can contain a point of order 4.

Arguing the same way for D = 12 and using Lemma 1.3.10, one finds the (unique)
orbifold point of order 6 on W12 in accordance with Theorem 1.5.6.

Now, let D 6= 8, 12. By Proposition 1.3.6, we know that Xt 6∼= X2. As, by Lemma 1.3.5,
for each t ∈ P∗ the set PΩ(Xt)−(4) has four elements and the map t 7→ Xt is generically
6 : 1 (cf. Lemma 1.3.2), we have to divide |H2(D)| by 4 ·6 = 24 to get the correct number
of orbifold points.

1.5.2. Points of order 3 and 6

Theorem 1.5.6. The curve W12 has one orbifold point of order 6. Moreover, no curve
WD has orbifold points of order 6.

Let D 6= 12 be a discriminant with conductor f0. The number of orbifold points of order
3 in WD is the generalised class number e3(D) defined above.

In the case of the Windmill family Y we are, by Lemma 1.3.5, only interested in the
case where ωY2 is an eigenform for real multiplication. Using the bases constructed in
Lemmas 1.3.4 and 1.3.8, we get the following.

Lemma 1.5.7. The curve Yt is an orbifold point of WD if and only if the matrix

AT :=

(
TD 0
0 −TD

)

is the analytic representation of an endomorphism of P(Yt) and AT ′ is not for all
discriminants D′ dividing D, where T ′ = TD′.

The orbifold order of Yt is 6 if Yt ∼= Y1/2 and 3 otherwise.

Proof. The form ω2 is an eigenform for real multiplication by OD on P(Yt) if and only
if there is a matrix

(
T 0
γ −T

)
for some γ ∈ C representing a self-adjoint endomorphism

of P(Yt) and, moreover, the corresponding action of OD is proper. By the explicit
description of the Rosati involution in this basis Equation 1.10, the self-adjoint condition
implies γ = 0. Moreover, the action of OD is proper if and only if AT ′ does not induce
an endomorphism for every discriminant D′|D, where T ′ = TD′ .

The claim about the orbifold order follows from Proposition 1.3.1 and Proposition 1.3.6.
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1. Orbifold points on Prym–Teichmüller curves in genus three

Using the period matrix P(Yt) we can compute the rational representation RT for such
an AT in terms of f and find conditions for RT to be integral. Remember that the
parameter f = f(t) lives in the disc of radius 1/

√
2.

Proposition 1.5.8. Let f ∈ C such that |f |2 < 1/2 and let P(Yt) be as above. The
matrix AT induces a self-adjoint endomorphism of the corresponding Prym variety if and
only if there exist integers a, b, c ∈ Z such that

(i) 2a2 − 3b2 − c2 = 2D, and

(ii) f = f(a, b, c,D) :=

√
3bi + c

2(a−
√
D)

.

Figure 1.10.: Points in the disc of radius 1/
√

2 satisfying the conditions of Proposition 1.5.8
for D = 3257 together with the fundamental domain of ∆(2, 6, 6).

Proof. Given an element of EndQP(Yt) with analytic representation A, its rational
representation R is given by

R =

(P(Yt)
P(Yt)

)−1(
A 0
0 A

)(P(Yt)
P(Yt)

)
.

Suppose that AT induces a self-adjoint endomorphism. In particular, the matrix A√D =(√
D 0

0 −
√
D

)
also induces an endomorphism and a tedious but straightforward calculation

shows that the corresponding rational representation is

R√D =




B1 0 B3 B2

0 B1 B2 B4

2B4 −2B2 −B1 0
−2B2 2B3 0 −B1


 ,
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1.5. Orbifold points in WD

where

B1 =

√
D(2|f |2 + 1)

2|f |2 − 1
,

B2 = −2
√

3
√
D(|f |2 − f 2)i

3f(2|f |2 − 1)
,

B3 =

√
3
√
D(|f |2 − f 2)i

3f(2|f |2 − 1)
+

√
D(|f |2 + f 2)

f(2|f |2 − 1)
and

B4 =

√
3
√
D(|f |2 − f 2)i

3f(2|f |2 − 1)
−
√
D(|f |2 + f 2)

f(2|f |2 − 1)
.

We define a := B1 ∈ Z and from the expression above we get that

|f |2 =
1

2
· a+

√
D

a−
√
D
. (1.12)

Moreover, since |f |2 − f 2 = −2i · f Im f , |f |2 + f 2 = 2f Re f and 2|f |2 − 1 = 2
√
D

a−
√
D
, the

expressions above imply

b := B2 =
2(a−

√
D) Im(f)√
3

and c := 2B3 −B2 = −2B4 +B2 = 2(a−
√
D) Re(f) ,

so that

f =
c+
√

3bi

2(a−
√
D)

,

and Equation 1.12 implies that 2a2 − 3b2 − c2 = 2D, as claimed.

Conversely, suppose that a, b, c ∈ Z satisfy the conditions of the proposition and define
f = f(a, b, c,D) as above. The rational representation of AT (at the point corresponding
to f) is given by RT = R√D/2 or (Id +R√D)/2, depending on whether D ≡ 0 or 1 mod 4,
respectively, and therefore

RT =








a

2
0

b+ c

2
b

0
a

2
b

b− c
2

b− c −2b −a
2

0

−2b b+ c 0 −a
2



, if D ≡ 0 mod 4,




1 + a

2
0

b+ c

2
b

0
1 + a

2
b

b− c
2

b− c −2b
1− a

2
0

−2b b+ c 0
1− a

2



, if D ≡ 1 mod 4.
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1. Orbifold points on Prym–Teichmüller curves in genus three

Considering the equality 2a2 − 3b2 − c2 ≡ 2D mod 8, one sees that

• a, b and c are even if D ≡ 0 mod 4, and

• a is odd and b and c are even if D ≡ 1 mod 4

and therefore RT ∈M4(Z) in both cases.

To compute the number of orbifold points on WD, we now count, for each discriminant D,
how many points f(a, b, c,D) in the fundamental domain of ∆(2, 6, 6) satisfy the previous
conditions. Recall from subsection 1.4.2 that we consider the fundamental domain for
the triangle group ∆(2, 6, 6) depicted in Figure 1.9.

Lemma 1.5.9. Let H̃3(D) be the set of triples of integers (a, b, c) such that

(i) 2a2 − 3b2 − c2 = 2D;

(ii) −3
√
D < a < −

√
D;

(iii) c < b ≤ 0;

(iv) Either 4a− 3b− 3c < 0, or 4a− 3b− 3c = 0 and c < 3b.

The set H̃3(D) agrees with the triples (a, b, c) in Proposition 1.5.8 that yield a point
f(a, b, c,D) in the fundamental domain of ∆(2, 6, 6).

Remark 1.5.10. Note that H̃3(D) agrees with the set H3(D) defined above except for
the condition on the gcd. This condition will ensure that the embedding of OD into
EndP(Yt) is proper.

Proof. Recall that we are using the fundamental domain depicted in Figure 1.9, whose
vertices have been calculated in Proposition 1.4.8. Condition (ii) ensures that 0 ≤ |f |2 ≤
1/4 and condition (iii) that 0 ≤ arg f < π/3. Now, the geodesic joining f(0) and f(1) is an
arc of circumference |z − (3 +

√
3i)/4|2 = 1/4. Therefore, f lives on the (open) half-disc

containing the origin, determined by this geodesic, if and only if
∣∣∣∣∣f −

3 +
√

3i

4

∣∣∣∣∣

2

=

(
c

2(a−
√
D)
− 3

4

)2

+

( √
3b

2(a−
√
D)
−
√

3

4

)2

≥ 1

4
.

Expanding this expression and using the previous conditions, one gets the first part of
condition (iv). Since the sides joining f(1) and f(1/2), and f(1/2) and f(0) are identified
by an element of order 2 in ∆(2, 6, 6), we need to count only the points f that lie on one
of them, say the arc of the geodesic joining f(1) and f(1/2). Proceeding as before, we
obtain the second part of condition (iv).

Proof of Theorem 1.5.6. First note that if D = g2D′, then

f(a, b, c,D) = f(a′, b′, c′, D′) if and only if a = ga′, b = gb′ and c = gc′ . (1.13)
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1.6. Examples

Since 12 is a fundamental discriminant, Lemma 1.5.7 and Lemma 1.5.9 imply that W12

has one orbifold point of order 6. Moreover, this is the only curve with an orbifold point
of order 6 because, by Equation 1.13 above, the point f(a, b, c,D) can only correspond
to t = 1/2 if one has D = f 2

0D0 for D0 = 12.

Now let D 6= 12. By Lemma 1.5.7 and Lemma 1.5.9, we only need to prove that H3(D)

is the set of triples in H̃ which are not contained in any H̃3(D′), for discriminants D′|D.
This is true since, by Equation 1.13, (a, b, c) ∈ H̃3(D) is not contained in any H̃3(D′) if
and only if gcd(a, b, c, f0) = 1.

1.6. Examples

Example 1 (W12 and W20). The curve W12 has genus zero, two cusps and one orbifold
point of order 6, and the curve W20 has genus zero, four cusps and one elliptic point of
order 2, cf. [Möl14, Ex. 4.4]. Our results agree with this. These are the curves V (S1)
and V (S2) in [McM06].

Example 2 (W8). By Theorem 1.5.1 and Theorem 1.5.6, we find that W8 has one
orbifold point of order 3 and one orbifold point of order 4. By [LN14, Thm. C.1] the
number of cusps is C(W8) = 1, the curve is connected, and by [Möl14, Thm. 0.2] the
Euler characteristic is χ(W8) = −5/12. We can then use Equation 1.1 to compute its
genus as g(W8) = 0.

Example 3 (W2828). Theorem 1.5.1 and Theorem 1.5.6 also tell us that W2828 has six
orbifold points of order 2. They correspond to the |H2(2828)| = 144 eigenforms for real
multiplication by O2828 in P(Xt), as in Equation 1.11, divided by 24. In Figure 1.11, we
depict the first coordinate of these eigenforms in the complex plane.

As for the orbifold points of order 3, there are twenty of them. They correspond to the
twenty points on the Shimura curve isomorphic to D/∆(2, 6, 6) admitting proper real
multiplication by O2828. In Figure 1.11, we depict the preimage of these 20 points in D,
that is the points f(a, b, c, 2828) as in Proposition 1.5.8.

The number of cusps is C(W2828) = 68, the curve is connected, and the Euler characteristic
is χ(W2828) = −8245/3. Therefore, by Equation 1.1, the genus is g(W2828) = 1333.

1.7. Flat geometry of orbifold points

In this section we will briefly describe the translation surfaces corresponding to the
Windmill family and to the Clover family.

Recall that, by Lemma 1.3.5, the general member Yt of the Windmill family has only one
differential with a single zero, namely ωY2 . Flat surfaces (Yt, ωY2 ) arise from the following
double windmill construction, which also explains the name Windmill family: for each
period τ ∈ C consider the “blade” depicted on the left side of Figure 1.12, where

−→
AF = τ ,
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1. Orbifold points on Prym–Teichmüller curves in genus three

3−3

3

−3

Figure 1.11.: Orbifold points of order 2 and 3 in W2828.
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Figure 1.12.: Double windmill for the period τ ∈ C.

|AF | = |EF |, |AB| = |BC| and |CD| = |DE|. We normalise the differential by fixing
the edge

−→
AB to be i. Now take 6 copies of the blade and glue them together with side

pairing as in the right side of the picture. One can check that this yields a genus 3 curve
and that the corresponding differential has a unique zero, namely the black point in the
picture. Moreover, there is an obvious order 6 automorphism α of the curve, induced by
the composition of a rotation of order three on each of the two windmills and a rotation
of order two of the whole picture around the white point on the common side of the two
windmills. This automorphism fixes the black point and exchanges cyclically the three
white points, the two centers of the windmills and the two crossed points, respectively.

It is again easy to check that α3 corresponds to the Prym involution. Therefore, the
corresponding curve belongs to the Windmill family. The black point corresponds to
the preimage of ∞ under the cyclic cover Yt → P1, the three white points correspond to
the preimages of t, the two crossed points to the preimages of 1 and the centers of the
windmills to the two preimages of 0.
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Figure 1.13.: Double windmill corresponding to the special point (Y1/2, ω
Y
2 ).

Example 4. The special point Y1/2 has an extra automorphism β of order 12. The
corresponding flat surface is depicted below in Figure 1.13. The automorphism β
corresponds to first rotating each of the blades by π/2 around each of the white points
and reglueing, and then composing with α.

Example 5. Each component of the Prym–Teichmüller curve W17 has one orbifold
point of order 3 (cf. [Zac16]). Using the lengths described in [LN14] and Mukamel’s
implemented algorithm from [Muk12], one finds that this orbifold point corresponds to
the S-shaped table depicted in Figure 1.14, where

d =

(
11
√

17− 35

52
,−
√

3 ·
(
17
√

17− 73
)

52

)
,

a =

(√
17− 1

2
, 0

)
,

b = e =

(
−
√

17 + 5

2
, 0

)
,

f = c =

(
−3
√

17− 33

52
,
√

3 ·
(
7
√

17− 27
)

52

)
.

Since the automorphism α of order 6 fixes the zero of the differential and interchanges
cyclically the preimages of 0, 1 and t respectively, one can easily detect these points. The
three preimages of t are, together with the preimage of ∞, the fixed points of the Prym
involution, which is just a rotation of the whole picture through an angle of π. Therefore,
they correspond to the center of the S-table and to the midpoints of edges a and d.

As for the preimages of 0 and 1, they can be found as the fixed points of α2. Since the
angle around the zero of the differential is 10π, the automorphism α corresponds to a
rotation of angle 10π/6 around that point.
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ab
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Figure 1.14.: S-shaped table for the orbifold point of order 3 on W17 (Y axis scaled by a
factor of 5).

Figure 1.15.: Double windmill cut and pasted from the S-shaped table corresponding to
the orbifold point of order three on W17.

Cutting appropriately the S-shaped table into pieces and reglueing them yields the double
windmill in Figure 1.15. Note that in this case the differential is not normalised in the
same way as in our construction.

One can similarly construct the flat surfaces associated to the Clover family via the
following four-leaf clover construction, which is again responsible for the name. Let us
consider the differential ωX1 in Ω(Xt), which by Lemma 1.3.5 has a zero at the preimage
of ∞. Flat surfaces (Xt, ωX1 ) can be constructed in the following way: for each period
τ ∈ C we consider the “blade” on the left side of Figure 1.16, where

−→
AF = τ , |AF | = |EF |,

|AB| = |BC| and |CD| = |DE|. We again normalise the differential by fixing the edge−→
AB to be i. Now we glue 4 copies of the blade with side pairings as in the right side of
the picture. Again, this yields a genus 3 curve together with an abelian differential with a
single zero, namely the black point in the picture. The order 4 automorphism α induced
by a rotation of order four around the center of the windmill fixes four points: the center,
the black point, the white point and the crossed point. The square α2 corresponds to the
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Figure 1.16.: Flat surface corresponding to (Xt, ωX1 ) for the period τ ∈ C.

Prym involution, and therefore the corresponding curve belongs to the Clover family.
In our construction, the black point corresponds to the preimage of ∞ under the cyclic
cover Xt → P1, the white point to the preimage of t, the crossed point to the preimage
of 1 and the center of the windmill to the preimage of 0.
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1. Orbifold points on Prym–Teichmüller curves in genus three

D χ C g e2 e3

17 −5/3 3 0 0 1
20 −5/2 4 0 1 0
24 −5/2 4 0 1 0
28 −10/3 4 0 0 2
32 −5 7 0 0 0
33 −5 7 0 0 0
40 −35/6 6 0 1 2
41 −20/3 8 0 0 1
44 −35/6 6 0 1 2
48 −10 10 1 0 0
52 −25/2 12 1 1 0
56 −25/3 6 1 2 2
57 −35/3 11 1 0 1
60 −10 8 2 0 0
65 −40/3 12 1 0 2
68 −15 14 1 2 0
72 −25/2 10 2 1 0
73 −55/3 17 1 0 2
76 −95/6 14 1 1 2
80 −20 16 3 0 0
84 −25 16 5 2 0
88 −115/6 16 1 1 4
89 −65/3 15 4 0 1
92 −50/3 8 4 0 4
96 −30 20 6 0 0
97 −85/3 21 4 0 2

104 −125/6 10 5 3 2
105 −30 18 7 0 0
108 −45/2 14 5 1 0
112 −40 24 9 0 0
113 −30 18 6 0 3
116 −75/2 20 9 3 0
120 −85/3 12 8 2 2
124 −100/3 16 9 0 2
128 −40 22 10 0 0
129 −125/3 25 9 0 1
132 −45 30 8 2 0
136 −115/3 20 9 2 2

D χ C g e2 e3

137 −40 22 9 0 3
140 −95/3 12 9 2 4
145 −160/3 32 11 0 2
148 −125/2 36 14 1 0
152 −205/6 12 10 3 4
153 −50 30 11 0 0
156 −130/3 16 14 0 2
160 −70 42 15 0 0
161 −160/3 22 16 0 2
164 −60 32 14 4 0
168 −45 16 15 2 0
172 −105/2 22 14 1 6
176 −70 30 21 0 0
177 −65 31 18 0 0
180 −75 32 22 2 0
184 −185/3 22 19 2 4
185 −190/3 26 19 0 2
188 −140/3 12 17 0 4
192 −80 36 23 0 0
193 −245/3 39 21 0 4
200 −325/6 18 17 3 4
201 −245/3 37 23 0 1
204 −65 28 19 2 0
208 −100 48 27 0 0
209 −235/3 35 22 0 2
212 −175/2 28 30 3 0
216 −135/2 32 18 3 0
217 −290/3 42 27 0 4
220 −230/3 32 22 0 4
224 −100 34 34 0 0
228 −105 46 30 2 0
232 −165/2 30 25 1 6
233 −265/3 29 29 0 5
236 −425/6 26 22 3 2
240 −120 40 41 0 0
241 −355/3 49 35 0 2
244 −275/2 52 43 3 0
248 −70 14 26 4 6

Table 1.2.: Topological invariants of the Prym–Teichmüller curves WD for D up to
248. For D ≡ 1 mod 8, we give the homeomorphism type of one of the two
homeomorphic components, cf. chapter 2 or [Zac16].
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2. The Galois action and a spin invariant for
Prym–Teichmüller curves in genus 3

Given a Prym–Teichmüller curve inM3, the aim of this chapter is to provide an invariant
that sorts the cusp prototypes of Lanneau and Nguyen by component. This can be seen
as an analogue of McMullen’s genus 2 spin invariant, although the source of this invariant
is different. Moreover, we describe the Galois action on the cusps of these Teichmüller
curves, extending the results of Bouw and Möller in genus 2. We use this to show that
the components of the genus 3 Prym–Teichmüller curves are homeomorphic. The content
of this chapter appears in published form as [Zac16].

2.1. Introduction

A Teichmüller curve is a curve inside the moduli spaceMg of smooth projective genus
g curves that is totally geodesic for the Teichmüller metric. Every Teichmüller curve
arises as the projection of the GL+

2 (R) orbit of a flat surface (see section 2.2 and the
references therein for background and definitions). Only a few infinite families of primitive
Teichmüller curves are known. McMullen constructed several primitive families in low
genera, among them, for every non-square discriminant D, the Prym–Teichmüller or
Prym–Weierstraß curves WD in genus 3 [McM06].

This family is fairly well understood. In particular, Möller calculated the Euler charac-
teristic [Möl14], Lanneau and Nguyen enumerated the cusps and connected components
[LN14], and the number and type of orbifold points are determined in [TTZ16]. The aim
of this note is to complete the classification of the topological components by showing
that the connected components of WD are always homeomorphic.

To be more precise, in [LN14], Lanneau and Nguyen show that WD has at most two
components for any D and has two components if and only if D ≡ 1 mod 8.

Theorem 2.1.1. Let D ≡ 1 mod 8, which is not a square. Then the two components of
WD are homeomorphic (as orbifolds). In particular, they have the same number of cusps
and elliptic points.

A similar result was obtained by Bouw and Möller [BM10a] for Teichmüller curves in
genus 2. Note that a Teichmüller curve is always defined over a number field but is never
compact. Both approaches rely on determining the stable curves associated to the cusps
of the Teichmüller curve and describing explicitly the Galois action on these cusps. At
this point, it is crucial that we are able to determine of a pair of cusps if they lie on
the same component or not. In genus 2, Bouw and Möller could use McMullen’s spin
invariant [McM05b] to achieve this.
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2. Galois action and spin in genus 3

However, while Lanneau and Nguyen list prototypes corresponding to the cusps of Prym–
Teichmüller curves [LN14], they do not provide an effective analogue of the spin invariant.
Here we give such an invariant, which is, moreover, easy to compute.

Theorem 2.1.2. Let D ≡ 1 mod 8, which is not a square. Given a cusp prototype
[w, h, t, e, ε] (see section 2.2), the associated cusp of WD lies on the component W i

D if
and only if

2i ≡ e+ εmod 4,

for i = 1, 2.

In section 2.3, we prove Theorem 2.1.2 essentially using topological arguments. More
precisely, we analyse the intersection pairing on a certain intrinsic subspace of homology
with Z/2Z coefficients. This is similar to the approach of [McM05b] where the Arf
invariant of a quadratic form that was associated to the flat structure was analysed on
such a subspace, but the nature of these subspaces is different (cf. [LN14, Remark 2.9]).
Note also that in genus 3 the two components lie on disjoint Hilbert Modular Surfaces
(cf. [Möl14, Proposition 4.6]) and that the (1, 2)-polarisation of the Prym variety plays a
special role in this case, essentially yielding a much more compact formula (cf. [McM05b,
Theorem 5.3]).

In section 2.4, we proceed to give an explicit description of the Galois action on Lanneau
and Nguyen’s cusp prototypes (Proposition 2.4.6) and combine this with Theorem 2.1.2
to show that Galois-conjugate cusps always lie on different components of WD, thus
proving Theorem 2.1.1.

Acknowledgements I am very grateful to my advisor, Martin Möller, for many helpful
discussions and comments and to Matteo Costantini and Robert Kucharczyk for valuable
conversations. I also thank the anonymous referees for useful suggestions, in particular
regarding Lemma 2.2.1. I thank [Par] for computational assistance.

2.2. Cusp prototypes

A flat surface is a pair (X,ω) where X is a compact Riemann surface of genus g and
ω ∈ H0(X,ωX) is a holomorphic 1-form on X. Note that X obtains a flat structure away
from the zeros of ω via integrating ω and affine shearing of this flat structure gives an
action of GL+

2 (R). A Teichmüller curve is a GL+
2 (R) orbit of a flat surface that projects

to an algebraic curve inside the moduli spaceMg. See e.g. [Möl11b] for background on
Teichmüller curves and flat surfaces. Not many families of primitive Teichmüller curves
are known; McMullen constructed families in low genera by requiring a factor of the
Jacobian of X to admit real multiplication, the (Prym–)Weierstraß curves. We briefly
review the construction in genus 3, the case with which we are concerned.
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2.2. Cusp prototypes

Prym varieties and real multiplication Let D ≡ 0, 1 mod 4 be a (positive) non-square
discriminant and denote by OD the corresponding order in the real quadratic number
field Q(

√
D). Let X be a genus 3 curve and ρ an involution with X/ρ of genus 1. Then

we define the Prym Variety Prym(X, ρ) as the connected component of the identity of
ker(Jac(X)→ Jac(X/ρ)) and we say that (X, ρ) admits real multiplication by OD if there
exists an injective ring homomorphism ι : OD → End Prym(X, ρ), such that

• every endomorphism ι(s) is self-adjoint with respect to the intersection pairing on
H1, and

• ι cannot be extended to any OD′ ⊃ OD.

In other words, the ρ-anti-invariant part H1(X,Z)− of the homology admits a symplectic
OD-module structure and OD is maximal in this respect.

Prym–Weierstraß curves Denote by WD the space of genus 3 flat surfaces (X,ω, ρ, ι)
with an involution ρ that admit real multiplication ι as above and where additionally ω
has a single (4-fold) zero, is ρ-anti-invariant, and is an eigenform for the induced action
of OD on H0(X,ωX). McMullen [McM06] showed that WD is a union of Teichmüller
curves, the genus 3 Prym–Weierstraß or Prym–Teichmüller curves of discriminant D.
Prym–Weierstraß curves have been studied intensely, see e.g. [McM06], [Möl14], [LN14]
and [TTZ16]. Note, in particular, that WD is empty for D ≡ 5 mod 8.

Again, we note that we explicitly exclude the case that D = d2 is a square, see [LN14,
Appendix B] for some results in this case.

Cusps Recall that a Teichmüller curve C is never compact. We describe the cusps first
in the terminology of flat surfaces. Let (X,ω) be a flat surface generating C and consider
a direction v ∈ P1(R). Recall that a geodesic segment is said to be a saddle connection if
its endpoints are (not necessarily distinct) zeros of ω and its interior contains no zeros of
ω. The direction v is said to be periodic if all geodesics in direction v are either closed or
saddle connections. We say that a cylinder is a maximal union of homotopic geodesics
on (X,ω) and any closed geodesic inside a cylinder is a core curve. The length of a core
curve is the width of the cylinder. A cylinder is called simple if each boundary consists of
a saddle connection. The cusps of C are in one-to-one correspondence with the parabolic
cylinder decompositions on (X,ω), see e.g. [McM05b, §4], [Vee89, §2] or [Möl11b, §5.4].

Prototypes To describe the cusps of WD, Lanneau and Nguyen introduce prototypes
that encode the cylinder decompositions [LN14, §3,4 and C]. We briefly summarise the
results we need.

The following result is a slight refinement of [LN14, Proposition 3.2].

Lemma 2.2.1. Given D non-square and a point (X,ω) on WD, any periodic direction
decomposes (X,ω) into three cylinders.
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2. Galois action and spin in genus 3

Proof. By [LN14, Proposition 3.2], any periodic direction decomposes (X,ω) into either
three cylinders, or two cylinders that are permuted by the Prym involution or one cylinder
(that is fixed by the Prym involution). Obviously, in the last two cases, the ratio of
cylinder circumferences is 1. However, [Wri15a, Theorem 1.9] asserts that adjoining the
ratio of cylinder circumferences to Q gives the trace field of (X,ω), which is Q(

√
D) (cf.

[McM06, Corollary 3.6]), a contradiction.

Remark 2.2.2. Lemma 2.2.1 can be seen as a converse to [LN14, Corollary 3.4].

Following [LN14], after rescaling, applying Dehn-twists, and normalising so that the
horizontal direction is periodic, this decomposition may be encoded in a combinatorial
prototype

PD = [w, h, t, e, ε] ∈ Z5

subject to the following conditions:
{
D = e2 + 8wh, ε = ±1, w, h > 0,

w > λ
2
, 0 ≤ t < gcd(w, h), gcd(w, h, t, e) = 1,

where we set

λ := λP :=
e+
√
D

2
. (2.1)

Moreover, if ε = 1, the stronger condition w > λ is required.

Conversely, given a combinatorial prototype, we obtain a three-cylinder decomposition
into one of the following three geometric types (see Figure 2.1):

• A+: If ε = 1 and λ < w, we obtain a cylinder decomposition with a single (short)
simple cylinder of width and height λ and two cylinders of width w, height h and
twist t.

• A−: If ε = −1 and λ < w, we obtain a cylinder decomposition with two (short)
simple cylinders of width and height λ/2 and a third cylinder of width w, height h
and twist t.

• B: If ε = −1 and λ/2 < w < λ, we obtain a cylinder decomposition with no simple
cylinders but again two short cylinders of width and height λ/2 and a third cylinder
of width w, height h and twist t.

Each geometric prototype corresponds to exactly one cusp of WD.

2.3. Components and spin

In analogy to the situtation in genus 2, Lanneau and Nguyen showed that, for any
discriminant D, the locus WD has at most two components [LN14, Theorem 2.8, 2.10].
More precisely, WD has two components if and only if D ≡ 1 mod 8. In the following, we
denote these components by W 1

D and W 2
D.
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2.3. Components and spin

α+
2,1

β+
2,1

α+
1

β̃+
1

α+
2,2

β+
2,2

α−
1,1

β̃−
1,1

α−
2

β−
2

α−
1,2

β̃−
1,2

α−
1,1

β̃−
1,1

α−
2

β̃−
2

α−
1,2

β̃−
1,2

Figure 2.1.: Prototypes of geometric type A+, A− and B. Observe that all αi are drawn
in a horizontal direction, the βi are drawn vertical. We set αi = αi,1 +αi,2 and
βi = βi,1 + βi,2 when appropriate, and furthermore, for the A+ prototype,
β+

1 = β̃+
1 − β+

2 , for the A− prototype, β−1,i = β̃−1,i − β−2 , and, for the B
prototype, β−2 = β̃−1,1 + β̃−1,2 − β̃−2 and β−1,i = β̃−1,i − β−2 . Thus the αi and βi
give symplectic bases whose periods describe the cylinder heights and widths.
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2. Galois action and spin in genus 3

The aim of this section is to provide an analogue of McMullen’s spin invariant in genus 2
[McM05b], i.e. an invariant that determines if a cusp prototype is associated to a cusp
on W 1

D or W 2
D.

To each geometric prototype PD = [w, h, t, e, ε], Lanneau and Nguyen associate a basis
b = b(PD) of H1(X,Z)− “spanning cylinders”, cf. [LN14, §4]. We will see that, in fact,
the behaviour of the basis will depend only on ε, i.e. geometric type A− and B will not
be distinguished. Hence, we denote the bases by

bε = (αε1, α
ε
2, β

ε
1, β

ε
2),

where αi and βi are as in Figure 2.1. In particular, the periods (with respect to ω) are
∫

α+
1

ω = λ,

∫

α+
2

ω = 2w,

∫

β+
1

ω = iλ,

∫

β+
2

ω = 2t+ 2ih (2.2)

if PD is of geometric type A+ (i.e. ε = 1) and
∫

α−1

ω = λ,

∫

α−2

ω = w,

∫

β−1

ω = iλ,

∫

β−2

ω = t+ ih (2.3)

if PD is of geometric type A− or B (i.e. ε = −1).

Moreover, the intersection form on H1(X,Z)− is of type (1, 2). Clearly, it is described by
the matrices

〈·, ·〉b+ =




0 0 1 0
0 0 0 2
−1 0 0 0

0 −2 0 0


 and 〈·, ·〉b− =




0 0 2 0
0 0 0 1
−2 0 0 0

0 −1 0 0


 . (2.4)

In particular, 〈αi, αj〉 = 〈βi, βj〉 = 0 for any i, j and 〈αi, βj〉 is nonzero iff i = j.

Recall that, for D ≡ 1 mod 4, the quadratic order is OD = Z⊕ TZ, where

T =
1 +
√
D

2
.

As (X,ω) ∈ WD admits real multiplication ι, H1(X,Z)− is an OD-module. In particular,
for odd D, we may view T as an endomorphism ι(T ) on H1(X,Z)−. We now describe
this endomorphism on the cusp prototypes. Note that this calculation essentially appears
already in [LN14, §4], but due to differences in notation and for the convenience of the
reader, we briefly restate the result.

Lemma 2.3.1. Let D be an odd discriminant. Given a prototype PD = [w, h, t, e, ε]
associated to a flat surface (X,ω) the endomorphism ι(T ) acts on H1(X,Z)− in the basis
b(PD) = bε by ι(T )PD = ι(T )ε, where

ι(T )+ =




e+1
2

2w 0 2t
h − e−1

2
−t 0

0 0 e+1
2

2h
0 0 w − e−1

2


 and ι(T )− =




e+1
2

w 0 t
2h − e−1

2
−2t 0

0 0 e+1
2

h
0 0 2w − e−1

2


 .

Note that e is odd iff D is odd.
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2.3. Components and spin

Proof. Note first that T = λ− e−1
2

(cf. (2.1)) and that any γ ∈ H1(X,Z)− satisfies
∫

ι(T )·γ
ω =

∫

γ

ι(T )∨ω = T ·
∫

γ

ω,

as ω is an eigenform. Now, using the periods of b± in (2.2) and (2.3), as well as the
identities λ2 = eλ+ 2wh and T · λ = 2wh+ λ e+1

2
, the representations ι(T )± are obtained

by a straight-forward calculation.

We are now in a position to describe the restriction of the intersection pairing 〈·, ·〉 to
the image of the endomorphism ι(T ) in H1(X,Z/2Z)− (for D odd). To ease notation, we
will no longer distinguish T and ι(T ), as no confusion can arise.
Proposition 2.3.2. Let D be an odd discriminant and T the endomorphism from above.
Let (X,ω) be the geometric prototype associated to the cusp prototype PD = [w, h, t, e, ε].
Then

〈·, ·〉|ImT ≡ 0 mod 2 ⇐⇒ e+ ε ≡ 0 mod 4,

where 〈·, ·〉|ImT is the restriction of the intersection pairing on H1(X,Z)− to the image of
T .

Proof. We begin by observing that, as T is self-adjoint by the condition on real multipli-
cation, we have 〈Tγ, Tδ〉 = 〈T 2γ, δ〉 for any γ, δ ∈ H1(X,Z)−. Moreover, by (2.4), any
two elements b1, b2 ∈ bε satisfy

〈b1, b2〉 6≡ 0 mod 2 ⇐⇒ {b1, b2} =

{
{α+

1 , β
+
1 }, if ε = 1,

{α−2 , β−2 }, if ε = −1.

Therefore, by checking mod 2 the 1, 1 entry of (T+)2 and the 2, 2 entry of (T−)2, we find
(using D = e2 + 8wh) that

〈·, ·〉±|ImT± ≡ 0 mod 2 ⇐⇒ e± 1 = e+ ε ≡ 0 mod 4,

as claimed.
Remark 2.3.3. Note that Lanneau and Nguyen use a similar idea (restriction of the
intersection pairing to the image of an operator mod 2) to show that there are in fact
two distinct components of WD for D ≡ 1 mod 8 [LN14, Theorem 6.1]. However, they
use a different operator T = T (P ) for every prototype and this does not seem a feasible
invariant.

Proof of Theorem 2.1.2. Let D be an odd discriminant. We denote by X → WD the
universal family over the Teichmüller curve WD, see [Möl06, §1.4]. By definition of WD,
each fibre Xt has an involution ρt and the real multiplication gives endomorphisms Tt of
H1(Xt,Z)−, allowing us to consider the restriction of the intersection form 〈·, ·〉t to the
image of Tt and take Z/2Z coefficients. In particular, the map

t 7→ 〈·, ·〉|ImTt mod 2

is continuous and as the range (the space of bilinear operators on an F2 vector space) is
discrete, it is locally constant. Now, Proposition 2.3.2 asserts that two cusp prototypes
PD, P ′D are associated to cusps on the same component if and only if e+ ε ≡ e′+ ε′mod 4
and, as any such e must be odd, this yields the claim.
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2. Galois action and spin in genus 3

2.4. The Galois action on the components

The aim of this section is to prove Theorem 2.1.1. The idea is to show that, for
D ≡ 1 mod 8, the two components of WD are in fact Galois-conjugate in analogy to the
situation in genus 2 (cf. [BM10a, Theorem 3.3]).

To achieve this, we first describe algebraic models of the stable curves associated to the
cusps of WD and then describe the Galois-action on these curves explicitly.

Stable curves While a Teichmüller curve C is never compact, it admits a smooth
completion C. Moreover, after passing to a finite cover, we may pull back the universal
family overMg to C, thus obtaining a family of curves, which we – by abuse of notation –
also denote by X → C and which extends to a family of stable curves X → C, cf. [Möl06,
§1.4].

Much of the geometry of the stable fibres is given by the flat structure. By the above,
given a flat surface (X,ω) on X together with a periodic direction v, we may associate a
cusp (X∞, ω∞) to (X,ω, v), where X∞ is a stable curve and ω∞ is a stable differential on
X∞, see e.g. [Möl11b, §2.5 and §5.4]. In particular, X∞ is obtained from X topologically
by contracting the core curves of cylinders and ω∞ has poles with residue equal to the
cylinder widths at the nodes of X∞.

Lemma 2.4.1. Let c ∈ WD \WD be a point such that the fibre X∞ = X c is singular.
Then X∞ is a trinodal curve, i.e. X∞ is a projective line with three pairs of points
identified.

Proof. This follows immediately from [Möl11b, Corollary 5.11]: let (X∞, ω∞) be the
stable flat surface associated to c. Then, as every component of X∞ must contain a zero
of ω∞, the stable curve X∞ is irreducible. Moreover, (X∞, ω∞) is obtained by contracting
the core curves of a cylinder decomposition on some (X,ω) ∈ WD. But by Lemma 2.2.1,
any such (X,ω) decomposes into three cylinders, hence X∞ is obtained topologically by
contracting three (homologically independent) curves on a genus 3 Riemann surface and
therefore has geometric genus 0 and three nodes.

Using the prototypes of [LN14] from section 2.2, we can describe the singular fibres of
WD more explicitly, in the spirit of [BM10a, Proposition 3.2].

Proposition 2.4.2. The stable curve above the cusp associated to the combinatorial
prototype [w, h, t, e, ε] may be normalised by a projective line with six marked points:
±1,±x1, and ±x3, where

x1 = −s−
√

1− s2

3
and x3 = −s+

√
1− s2

3
for s =





e+
√
D

4w
, if ε = 1,

2w

e+
√
D
, if ε = −1,
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2.4. The Galois action on the components

and the pairs of points (+1,−1), (x1,−x3), and (x3,−x1) are identified in the stable
model.

In particular, the absolute value of s uniquely determines the stable fibres.

Proof. By Lemma 2.4.1, the normalisation of the stable curve X∞ associated to a
cusp of WD is a projective line with three pairs of marked points which we denote by
x1, y1, x2, y2, x3, y3.

Now, the stable differential ω∞ has poles at the nodes of X∞ and the residues at each
node must add up to zero, i.e. we have the crossratio equation

ω∞ =

( 3∑

i=1

ri
z − xi

− ri
z − yi

)
dz =

Cdz
3∏

i=1

(z − xi)(z − yi)
, (2.5)

for the residues ri, some constant C, and after choosing coordinates so that the unique
zero of ω∞ is at ∞.

Moreover, the Prym involution ρ acts on X∞, hence also on the normalisation, where we
choose coordinates so that it acts as z 7→ −z (fixing the zero at ∞) and x2 = 1. Recall
that the stable fibre was obtained topologically by contracting the core curves of the
three cylinders and that two cylinders are exchanged by the involution, one is fixed. We
therefore find

y1 = −x3, y2 = −x2 = −1, y3 = −x1, and r1 = r3.

Comparing coefficients in (2.5), we obtain

x1 = −x3 − 2s and x3 = −s±
√

1− s2

3
for s =

r2

2r1

.

Observe that the choice of sign in x3 interchanges the values of x1 and x3 and that −s
gives the same set of points.

Now, consider the cusp associated to the prototype [w, h, t, e, ε]. If ε = 1, we have
r1 = r3 = w and r2 = λ, while ε = −1 implies r1 = r3 = λ/2 and r2 = w (cf. Figure 2.1).
This determines s.

Conversely, |s| determines the points xi. Identifying the points ±1, x1 and −x3, and x3

and −x1, we obtain a stable curve with three nodes and an involution.

Remark 2.4.3. Note that replacing s with −s in Proposition 2.4.2 gives the same six
points on P1, i.e. the same stable curve. This ambiguity corresponds to the action of the
Prym involution on the stable curve.

Remark 2.4.4. Observe that the stable curve does not “see” the twist parameter t, as
it only depends on the cylinder widths. In particular, cusp prototypes that differ only
in their twist parameter cannot be distinguished by the associated stable curves. This
motivates the following definition.

Definition. Given a prototype P = [w, h, t, e, ε], we define the associated algebraic cusp
prototype as [w, h, e, ε].
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2. Galois action and spin in genus 3

The Galois action As Teichmüller curves are rigid, they are defined (as algebraic
varieties) over a number field [McM09; MV11] and one can show that the absolute Galois
group Gal(Q/Q) acts on the set of all Teichmüller curves (cf. [Möl06, §5], [MV11, §6]),
hence also on the set of cusps of Teichmüller curves.

Moreover, given σ ∈ Gal(Q/Q), let X → C denote the universal family over a Teichmüller
curve. Then the associated family of Jacobians splits with one factor admitting real
multiplication, see e.g. [Möl11b, Corollary 5.7]. Now, σ acts on the universal family X ,
as well as on the associated family of Jacobians, preserving the splitting and the real
multiplication. In the case that C is a Prym–Weierstraß curve inM3, this implies that σ
acts on the family of Prym-varieties over C. In particular, a (fibrewise) ρ-anti-invariant
eigenform for real multiplication by some OD with a single zero is mapped again to a
(fibrewise) ρ-anti-invariant eigenform for real multiplication by OD, as the splitting of the
family, the real multiplication and the multiplicities of the zeros are all preserved by σ.

Note that Galois conjugation on curves in the moduli stack of curves preserves the number
of cusps and number and type of orbifold points. In fact, the number of isomorphic fibers
of the universal family over an orbifold chart near an orbifold point detects the orbifold
order and is preserved by Galois conjugation.

Remark 2.4.5. While a Teichmüller curve C and its Galois conjugate Cσ are homeo-
morphic as orbifolds, they are in general, however, not isomorphic as complex curves.
Indeed, by the calculations of the explicit equation of the Teichmüller curve W ε

17 inM2 in
[BM10a, §7] (the equations are also given in [MZ16, §6] with a different normalisation)
it is not difficult to check that the two components are not isomorphic: using the notation
of [MZ16, (35)], one can calculate the modular j function and clearly j(κ0) 6= j(κσ0 ).

Using the algebraic description of the stable curves, we may describe the Galois action
on the cusps of WD. As this is again independent of the twist parameter t, the action is
given only on algebraic cusp prototypes.

Proposition 2.4.6. Let P = [w, h, e, ε] be an algebraic cusp prototype, let σ ∈ Gal(Q/Q)
be a Galois automorphism that maps

√
D to −

√
D, and denote by P σ the prototype

corresponding to the σ-conjugate cusp. Then, if ε = 1,

P σ =

{
[h,w, e,−ε], if h > λ/2,

[w, h,−e, ε], if h < λ/2,

and if ε = −1,

P σ =

{
[h,w, e,−ε], if h > λ,

[w, h,−e, ε], if h < λ,

where 2λ = e+
√
D, as above.

Proof. Let P = [w, h, e, ε] be an algebraic cusp prototype. By Proposition 2.4.2, the
conjugate cusp will depend only on the action of σ on s. Recall that for ε = 1, we have

s = s(P ) = s+ =
e+
√
D

4w
, i.e. (s+)σ = −−e+

√
D

4w
,
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while for ε = −1

s = s(P ) = s− =
2w

e+
√
D

=
−e+

√
D

4h
, i.e. (s−)σ = −e+

√
D

4h
,

as D = e2 + 8wh.

Now, consider a prototype P ′ = [w′, h′, e′, ε′] such that |s(P )σ| = |s(P ′)| (recall that by
Remark 2.4.3, s is determined only up to sign, due to the action of the Prym involution).
Comparing coefficients in Q(

√
D) and as w, h > 0, it is clear that either ε′ = −ε and

e′ = e or e′ = −e and ε′ = ε. In the first case, w′ = h and h′ = w, while in the second
case w′ = w and h′ = h.

Moreover, observe (using again that D = e2 + 8wh) that

h <
λ

2
⇐⇒ e+

√
D > 4h =

D − e2

2w
⇐⇒

√
D − e

2
< w,

and that any valid prototype [w′, h′, e′, 1] must satisfy w′ > λ′. Hence, comparing h to λ
(respectively λ/2), determines which of the above described choices for P ′ gives a valid
prototype and thus yields the claim.

We now combine Theorem 2.1.2 with Proposition 2.4.6 to show that, when D is odd any
two conjugate cusps are on different components.

Proposition 2.4.7. Let D ≡ 1 mod 8 and PD = [w, h, e, ε] be an algebraic cusp prototype.
Then PD and P σ

D are on different components of WD.

In particular, the cusps associated to
[
D−1

8
, 1,−1,−1

]
and

[
D−1

8
, 1, 1,−1

]
lie on W 1

D and
W 2
D, respectively, and are conjugate.

Proof. Let PD = [w, h, e, ε] be an algebraic cusp prototype and denote by

c(P ) = e+ εmod 4,

the component (see Theorem 2.1.2) of WD that the associated cusp(s) of P lie on. Then,
by Proposition 2.4.6, we have

c(P σ) ≡ −e+ ε ≡ e− εmod 4,

as both e and ε are ±1 mod 4. In particular, c(P ) 6≡ c(P σ) mod 4, hence the cusps lie on
alternate components.

Proof of Theorem 2.1.1: Let D ≡ 1 mod 8, non-square, and W i
D be a Teichmüller curve.

Now, Gal(Q/Q) acts on W i
D and as this action extends to an action on the families of

curves and their Jacobians, respects the (Prym) splitting, and maps eigenforms for real
multiplication to eigenforms (for the same D), it preserves the locus WD. Hence, any
given element of Gal(Q/Q) acts either trivially or interchanges the two components. But
by Proposition 2.4.7, there exists an automorphism that does not fix W i

D and therefore
the components are Galois-conjugate. In particular, they are homeomorphic.
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3. Orbifold points on Prym–Teichmüller curves in
genus four

For each discriminant D > 1, McMullen constructed the Prym–Teichmüller curves WD(4)
and WD(6) inM3 andM4, which constitute one of the few known infinite families of
geometrically primitive Teichmüller curves. In this chapter, we determine for each D the
number and type of orbifold points on WD(6). These results, together with the results
of the chapter 1 (cf. [TTZ16]) and chapter 2 (cf. [Zac16]) regarding the genus 3 case
and with results of Lanneau–Nguyen (cf. [LN14]) and Möller (cf. [Möl14]), complete the
topological characterisation of all Prym–Teichmüller curves and determine their genus.

The study of orbifold points relies on the analysis of intersections of WD(6) with certain
families of genus 4 curves with extra automorphisms. As a side product of this study,
we give an explicit construction of such families and describe their Prym–Torelli images,
which turn out to be isomorphic to certain products of elliptic curves. We also give a
geometric description of the flat surfaces associated to these families and describe the
asymptotics of the genus of WD(6) for large D. The content of this chapter is joint work
with David Torres-Teigell and has appeared as [TTZ17].

3.1. Introduction

A flat surface is a pair (X,ω) where X is a compact Riemann surface of genus g and ω
is a holomorphic differential on X. By integration, the differential endows X with a flat
structure away from the zeros of ω. Consider now ΩMg, the moduli space of flat surfaces
which is a natural bundle over the moduli spaceMg of smooth projective curves of genus
g. There is a natural SL2(R) action on ΩMg by affine shearing of the flat structure and
we consider the projections of orbit closures toMg. In the rare case that the SL2(R)
orbit of (X,ω) projects to an (algebraic) curve inMg we call this the Teichmüller curve
generated by (X,ω) inMg.

Not many families of (primitive) Teichmüller curves are known, see e.g. [MMW17] for
a brief overview. Among them, McMullen constructed the Weierstraß curves in genus
2 [McM03] and generalised this construction to the Prym–Teichmüller curves in genus
3 and 4 [McM06]. Recently, Eskin, McMullen, Mukamel and Wright announced the
existence of six exceptional orbit closures, two of which contain an infinite collection of
Teichmüller curves. One of them is treated in [MMW17].

Any Teichmüller curve C is a sub-orbifold ofMg. Therefore, denoting by χ the (orbifold)
Euler Characteristic, by h0 the number of connected components, by C the number of
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3. Orbifold points on Prym–Teichmüller curves in genus four

cusps and by ed the number of points of order d, these invariants determine the genus g:

2h0 − 2g = χ+ C +
∑

d

ed

(
1− 1

d

)
,

i.e. they determine the topological type of C.
For the Prym–Weierstraß curves, the situation is as follows. In genus 2, cusps and
connected components were determined by McMullen [McM05a], the Euler characteristic
was computed by Bainbridge [Bai07], and the number and types of orbifold points were
established by Mukamel [Muk14]. In genus 3 and 4, Möller [Möl14] calculated the Euler
characteristic and Lanneau and Nguyen [LN14] classified the cusps. The number of
connected components in genus 3 were also determined in [LN14] (see also [Zac16]) and
the number and type of their orbifold points in genus 3 were established in [TTZ16]. In
the case of genus 4, Lanneau has recently communicated to the authors that the Prym
locus is always connected [LN16]. The present paper classifies the orbifold points of these
curves.

Theorem 3.1.1. For discriminant D > 12, the Prym–Teichmüller curves WD(6) have
orbifold points of order 2 and 3. More precisely:

• the number of orbifold points of order 2 is

e2(D) =





0 , if D is odd,
h(−D) + h(−D/4) , if D ≡ 12 mod 16,
h(−D) , if D ≡ 0, 4, 8 mod 16,

where h(−D) is the class number of O−D;
• the number of orbifold points of order 3 is

e3(D) = #{a, i, j ∈ Z : a2 + 3j2 + (2i− j)2 = D, gcd(a, i, j) = 1}/12;

• W5(6) has one point of order 3 and one point of order 5;

• W8(6) has one point of order 2 and one point of order 3;

• W12(6) has one point of order 2 and one point of order 6.

Theorem 3.1.1 combines the results of Theorem 3.3.1, Theorem 3.4.1, and Theorem 3.5.1
and thus completes the topological classification of the Prym–Weierstraß curves. The
topological invariants of WD(6) for nonsquare discriminants D ≤ 181 are listed in
Table 3.3 on page 91.

Recall that the orbifold locus of WD(6) consists of flat surfaces (X,ω) where ω is not only
an eigenform for the real multiplication but also for some (holomorphic) automorphism
α of X. To describe this locus, it is therefore natural to consider instead families F of
curves with a suitable automorphism α and consider the α-eigenspace decomposition
of ΩF . We isolate suitable eigendifferentials ω with a single zero, and check whether
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3.1. Introduction

the Prym part of (X,ω) ∈ ΩF admits real multiplication respecting ω, i.e. find the
intersections of F with WD(6) for some D.

To be more precise, it is essentially topological considerations that not only show the
possible orders d of orbifold points that can occur on a curveWD(6), but in fact determine
the possibilities for the group AutX, in the case that (X,ω) is an orbifold point (see
section 3.2). It turns out that there are essentially two relevant families: curves admitting
a D8 action – giving points of order 2 – and curves admitting a C6 × C2 action – giving
points of order 3. Because of the flat picture of the single-zero differentials on these
families, we will call them the Turtle family (Figure 3.1) and the Hurricane family
(Figure 3.2), see section 3.6 for details. Additionally, these families intersect, giving the
(unique) point of order 6 on W12(6). Also, there is a unique point with a C10 action,
giving the point of order 5 on W5(6). Any orbifold point on WD(6) must necessarily lie
on one of these families (Proposition 3.2.1).
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Figure 3.1.: A C4-eigendifferential of genus 4 with a single zero (the Turtle): the canon-
ical 4-cover of the 4-differential on an elliptic curve pictured in Figure 3.3
(section 3.6).

The difficulty when studying these families comes from obtaining the eigenforms in a
basis where we can calculate the endomorphism ring in order to study real multiplication
or, equivalently, understanding the analytic representation of suitable real multiplication
in the eigenbasis of the automorphism on the Prym variety.

We begin by analysingM4(D8), the 2-dimensional locus of genus 4 curves with a specific
D8 action, see section 3.3. The Turtle family is a 1-dimensional sub-locus of this moduli
space.
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3. Orbifold points on Prym–Teichmüller curves in genus four
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Figure 3.2.: A C6-eigendifferential of genus 4 with a single zero (the Hurricane): the
canonical 6-cover of the 6-differential on P1 pictured in Figure 3.3 (sec-
tion 3.6).

As a by-product, we give an explicit description ofM4(D8). For an elliptic curve E, let
φ denote the elliptic involution.

Theorem 3.1.2. The familyM4(D8) is in bijection with the family

E = {(E, [P ]) : E ∈M1,1, [P ] ∈ (E \ E[2])/φ }

of elliptic curves with a distinguished base point, together with an elliptic pair.

In particular, this family is 2-dimensional; however, the sub-locus X of curves admitting
a C4-eigenform with a single zero is 1-dimensional and in bijection withM1,1\{E2}.

This bijection is induced by the construction of this family as a fibre product of two
(isomorphic) families of elliptic curves over a base projective line.

To determine which points admit real multiplication with a common eigenform, we
fix an eigenbasis of ΩX and consider the Prym–Torelli map PT, which associates the
corresponding Prym variety to a Prym pair (X, ρ). We show that, in the D8 case, the
Prym variety of such a pair is always isomorphic to the product E × E, where E is an
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3.1. Introduction

elliptic curve arising as a quotient of X, and then the Prym variety admits suitable real
multiplication if and only if the elliptic curve has complex multiplication, accounting for
the class numbers.

The Hurricane family behaves quite differently, see section 3.4. We denote by Eζ the
unique elliptic curve with an automorphism ψ of order 6.

Theorem 3.1.3. The Hurricane family agrees with the family

Yt : y6 = x(x− 1)2(x− t)2

of cyclic covers of P1.

However, the Prym–Torelli image of Y is the single point Eζ × Eζ.

The Hurricane family has the advantage that it is 1-dimensional and can be understood
in terms of cyclic covers of P1. However, due to the large automorphism group, the
whole family collapses to a single point under the Prym–Torelli map, which of course
admits real multiplication in many different ways. Now, each fibre Yt gives a different
C6-eigenbasis in ΩEζ × ΩEζ and checking when this basis is also an eigenbasis for some
real multiplication gives the intersections of Y and some WD(6).

The Hurricane family can also be constructed as a family of fibre products over certain
quotient curves. More precisely, all fibres Yt of Y can be seen as a fibre product of two
copies of Eζ over a projective line quotient P1. However, in contrast to the D8 case, the
base of the Hurricane family will not be isomorphic to a modular curve, but it will be a
dense subset inside the curve Eζ .

More precisely, denote by E∗ζ the curve Eζ with the 2-torsion points and the ψ-orbit
of order 3 removed and let φ be again the elliptic involution of Eζ . There is a gener-
ically 6-to-1 map between the set of elliptic pairs of points E∗ζ/φ and the fibres of Y
(cf. Proposition 3.4.10).

Moreover, for each isomorphism class [Y ] ∈ Y , there exist generically 12 elements (up to
scale) in ΩEζ × ΩEζ defining a C6-eigendifferential with a single zero on the curves in
[Y ] (cf. Proposition 3.4.15). This fact explains the factor of 12 in the formula for the
number of orbifold points of order 3.

Using the work of Möller [Möl14] and Lanneau–Nguyen [LN14], Theorem 3.1.1 lets us
calculate the genus of the Prym–Weierstraß curves WD(6). In section 3.7, we describe
the asymptotic growth rate of the genus, g(WD(6)) with respect to the discriminant D.

Theorem 3.1.4. There exist constants C1, C2 > 0, independent of D, such that

C1 ·D3/2 < g(WD(6)) < C2 ·D3/2.

Moreover, g(WD) = 0 if and only if D ≤ 20.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Table 3.1.: Topological invariants of the six Teichmüller curves WD(6) that have genus
0. The number of cusps is described in [LN14], the Euler characteristic in
[Möl14]. For larger D, see Table 3.3 on page 91.

D g e2 e3 e5 e6 C χ

5 0 0 1 1 0 1 −7/15

8 0 1 1 0 0 2 −7/6

12 0 1 0 0 1 3 −7/3

13 0 0 2 0 0 3 −7/3

17 0 0 1 0 0 6 −14/3

20 0 2 1 0 0 5 −14/3

The topological invariants of the geometrically primitive genus 0 Prym–Teichmüller
curves are summarized in Table 3.1.

Theorem 3.1.1 can be seen as the next and final step after [Muk14] and [TTZ16] in
the study of orbifold points on Prym–Weierstraß curves, thus bringing closure to the
topological characterization of such curves. While the general method is similar in the
genus 2, 3 and 4 cases (namely, studying the intersection of the Teichmüller curves with
certain families), the specific phenomena occurring are different.

In genus 2, the situation was simpler essentially due to the fact that the Prym variety
was the entire Jacobian [Muk14]. While the relevant family also had a generic D8

automorphism group, this was a 1-dimensional object, while inM4 this locus is a surface
where the C4-eigendifferentials are contained in an embedded Modular curve.

In genus 3, the defining phenomenon was the fact that the Prym variety was a (2, 1)-
polarised abelian sub-variety of the Jacobian [TTZ16]. Also, for the first time, two
1-dimensional families occured and in the case of C4 curves, the Prym–Torelli image also
collapsed to a point. However, both these families could be described as cyclic covers
of P1 in which case the eigenspace decomposition of ΩX is well understood. The main
technical difficulty in those cases was the explicit calculation of period matrices using
Bolza’s method. Moreover, the formulas obtained were of a slightly different flavour, as
the C6-family turned out to be isomorphic to the compact Shimura curve H/∆(2, 6, 6),
giving a more general class number than in the other cases.

In contrast, in genus 4, for the first time a 2-dimensional locus plays a central role: indeed,
the spaceM4(D8) can be seen as a cyclic cover over an elliptic curve, which makes the
computation of the eigendifferentials with a single zero more difficult, cf. Theorem 3.3.8.
On the other hand, while in almost all cases the Prym variety is isogenous to a product of
elliptic curves (this is the reason for the abundance of modular curves and class numbers
in the formulas), it turns out that in genus 4 the Prym varieties are actually isomorphic
to this product. This results in a closer relationship of the endomorphism rings in this
case and is the reason we obtain an exact class number of a negative discriminant order
in Theorem 3.1.1.
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3.2. The orbifold locus of WD

Table 3.2.: Families parametrising possible orbifold points on Prym–Weierstraß curves.
Here, Xt is a general fibre of X and Et is an elliptic curve that appears as a
quotient of Xt. For genus 2 see [Muk14], for genus 3 see [TTZ16].

g(Xt) d dimX dim PT(X ) Aut(Xt) End(P(Xt, σd))
2 2 1 1 D8 order in M2(End(Et))
3 2 1 0 C2 n (C2 × C4) order in M2(Q[i])
3 3 1 1 C6 order in

(
2,−3
Q

)

4 2 2 (1) 1 D8 M2(End(Et))
4 3 1 0 C6 × C2 M2(Z[ζ6])

In particular, the technical approach in this paper is completely different than the one
in [TTZ16], since the computational aspects of Bolza’s method have been replaced by a
more conceptual description of the families.

The occuring positive dimensional families are summarised and compared to the families
occuring in genus 2 and 3 in Table 3.2.

Finally, in section 3.6, we provide the flat pictures associated to the eigendifferentials in
the Turtle family and the Hurricane family.

Acknowledgements We are very grateful to Martin Möller for many useful discussions
and his constant encouragement to also complete the genus 4 case. We also thank [Par]
for computational assistance.

3.2. The orbifold locus of WD

The aim of this section is to describe the orbifold locus of WD(6) as the intersection
with families of curves with a prescribed automorphism group in M4. In particular,
Proposition 3.2.1 determines the possible orders of orbifold points that may occur.

As usual, we write (g;n1, . . . , nr) for orbifolds of genus g with r points of order n1, . . . , nr.
Recall that, given an automorphism α of order N on X, points of order ni on X/α
correspond to orbits of length N/ni on X. Moreover, we denote by ζd a primitive dth
root of unity.

Proposition 3.2.1. Let (X,ω) ∈ ΩWD be a flat surface that parametrises an orbifold
point of WD of order d. Then there exists a holomorphic automorphism α ∈ AutX of
order 2d that satisfies α∗ω = ζ2dω and one of the following conditions:

1. the order of α is 4 and X/α has signature (1; 4, 4);

2. the order of α is 6 and X/α has signature (0; 3, 3, 6, 6);

3. the order of α is 10 and X/α has signature (0; 5, 10, 10);
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3. Orbifold points on Prym–Teichmüller curves in genus four

4. the order of α is 12 and X/α has signature (0; 3, 12, 12).

Remark 3.2.2. Observe that family (1) is 2-dimensional, family (2) is 1-dimensional
and families (3) and (4) consist of a finite number of points inM4.

Before we proceed to the proof, we first recall some background and notation.

Flat surfaces and Teichmüller curves A flat surface is a pair (X,ω) where X is a
Riemann surface (or equivalently a smooth irreducible complex curve) of genus g and
ω ∈ ΩX is a holomorphic differential form on X. Note that X may be endowed with a
flat structure away from the zeros of ω via integration. We will denote the moduli space
of flat surfaces by ΩMg and note that it can be viewed as a bundle ΩMg →Mg over
the moduli space of smooth, irreducible, complex curves of genus g. The space ΩMg is
naturally stratified by the distribution of the zeros of the differentials; given a partition
µ = (µ1, . . . , µr) of 2g − 2, denote by ΩMg(µ) the corresponding stratum and given a
family F of curves in Mg we set ΩF(µ) := ΩMg(µ) ∩ ΩF . We will use exponential
notation for repeated indices, so that, for instance (1, . . . , 1) = (12g−2).

Recall that ΩMg admits a natural GL2(R) action by affine shearing of the flat structures.
A Teichmüller curve is the (projection of a) GL2(R)+ orbit that projects to an algebraic
curve inMg. See for instance [Möl11b] for background on Teichmüller curves and flat
surfaces.

Prym-Teichmüller curves in genus 4 McMullen [McM06] constructed families of prim-
itive Teichmüller curves in genus 2, 3 and 4, the Prym–Teichmüller (or Prym–Weierstraß)
curves WD(2g − 2). We briefly recall the construction in the genus 4 case. For brevity,
we denote the curve WD(6) by WD in the following.

Let X be of genus 4 admitting a holomorphic involution ρ. We say that ρ is a Prym
involution if X/ρ has genus 2. In particular, this gives a decomposition ΩX = ΩX+ ⊕
ΩX− into 2-dimensional ρ-eigenspaces with eigenvalues 1 and −1 respectively. It also
determines sublattices H1(X,Z)+, H1(X,Z)− ⊂ H1(X,Z) consisting of ρ-invariant and
ρ-anti-invariant cycles that satisfy H1(X,Z)± = H1(X,Z) ∩ (ΩX±)∗. All this implies
that the Prym variety

P(X, ρ) :=
(ΩX−)∗

H1(X,Z)−
= ker(Jac(X)→ Jac(X/ρ))0

is a 2-dimensional, (2, 2)-polarised abelian sub-variety of the Jacobian Jac(X) (see [Möl14]
or [BL04, Ch. 12] for details).

For any discriminant D ≡ 0, 1 mod 4, write D = b2 − 4ac for some a, b, c ∈ Z. The
(unique) quadratic order of discriminant D is defined as OD = Z[T ]/(aT 2 + bT + c),
which agrees with

OD = Z⊕ TDZ, where TD =

{√
D
2
, if D ≡ 0 mod 4 and√

D+1
2

, if D ≡ 1 mod 4,
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3.2. The orbifold locus of WD

provided D is not a square. If D = f 2, the order OD = Z[T ]/(T 2 − fT ) is isomorphic to
the subring {(a, b) ∈ Z⊕ Z : a ≡ bmod f}.
Now let D > 0 be a positive discriminant. We say that a polarised abelian surface A has
real multiplication by OD if it admits an embedding OD ↪→ EndA that is self-adjoint
with respect to the polarisation. We call the real multiplication by OD proper, if the
embedding cannot be extended to any quadratic order containing OD.
Denote by ΩWD the locus of (X,ω) ∈ ΩM4(6) such that

1. X admits a Prym involution ρ, so that P(X, ρ) is 2-dimensional,

2. the form ω has a single zero and satisfies ρ∗ω = −ω, and
3. P(X, ρ) admits proper real multiplication by OD with ω as an eigenform.

McMullen showed that the projection WD of ΩWD toM4 gives (a union of) Teichmüller
curves for every discriminant D [McM06]. In fact, Lanneau has communicated to the
authors that WD is connected for all D [LN16].

Orbifold points on Prym–Teichmüller curves An orbifold point of order d on WD

corresponds to a flat surface (X,ω) ∈ ΩWD such that

• there exists a holomorphic automorphism α ∈ AutX, such that α∗ω = λω for
some λ ∈ C∗ \ {±1};
• the element ρ = αd is a Prym involution satisfying ρ∗ω = −ω;
• ω is an eigenform for real multiplication on the Prym variety P(X, ρ).

Note that this implies that α is of order 2d and must have a fixed point (at the single
zero of ω). Details and background can be found in [TTZ16].

Definition. We will say that (ω1, ω2) is an α-eigenbasis of ΩX− if the ωi are both
eigenforms for the action of α∗.

To study these points, we study the locus of curves inM4 with an appropriate automor-
phism α and an eigenform with a single zero.

Proof of Proposition 3.2.1. Let (X,ω) correspond to an orbifold point in WD of order d.
The Prym involution ρ in genus 4 gives a genus 2 quotient with two fixed points, i.e.
X/ρ ∼= (2; 22). By the argument above, the curve X must possess an automorphism α of
order 2d that admits ω as an eigenform with eigenvalue ζ2d, has at least one fixed point
and satisfies αd = ρ.

The automorphism α descends to an automorphism of X/ρ of order d and, looking at
possible orders of automorphisms on curves of genus 2, one sees that d = 2, 3, 4, 5, 6, 8 or
10 (see for instance [Sch69; Bro91]). Now, points of odd order k on X/α (equivalently,
α-orbits of length 2d/k on X) give unramified points on X/ρ, since they are not fixed by
ρ = αd (more precisely, their preimages on X are not fixed). Points of even order 2k on
X/α (equivalently, α-orbits of length d/k on X) give d/k ramified points on X/ρ.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Since there are only two ramification points on X/ρ and at least one of them necessarily
comes from a fixed point of α, the automorphism α has two fixed points and no more
ramification points of even order. A case-by-case analysis using Riemann-Hurwitz yields
the four options in the statement.

Products of elliptic curves In the analysis of orbifold points on Prym–Teichmüller
curves in genus 4, Klein-four actions and products of elliptic curves will be omnipresent.
The following result will be a crucial technical tool.

Proposition 3.2.3. Let (X, ρ) be a genus 4 curve in the Prym locus admitting a Klein
four-group of automorphisms V4 = 〈ρ, β〉 such that both X/β and X/ρβ have genus 1.
Then P(X, ρ) ∼= X/β ×X/ρβ as (2, 2)-polarised abelian varieties.

Remark 3.2.4. Note that this is in stark contrast to the situation in genus 2 and 3.
Although in those cases V4 actions were also ubiquitous, the Prym variety was always
only isogenous to a product of elliptic curves (cf. [Muk14, Proposition 2.13] and [TTZ16,
Theorem 1.2]) as the Prym variety is (1, 1), respectively (2, 1), polarised in those situations.
In the genus 4 case, the result above yields an even stronger relationship between the
geometry of the quotient elliptic curves and the Prym variety.

Let us first recall some general facts about elliptic curves. An elliptic curve E := (E,O) ∈
M1,1 is a smooth genus 1 curve together with a chosen base point O ∈ E. It always
admits the structure of a group variety with neutral element O. The set of 2-torsion
points with respect to this group law consists of four elements and is usually denoted by
E[2].

Every elliptic curve is isomorphic to Eλ := {v2 = u(u− 1)(u−λ)} for some λ ∈ C\{0, 1},
where we choose the base point O to be the point at infinity. Permuting {0, 1,∞} gives
an isomorphism between the elliptic curves corresponding to

λ , 1− λ , 1

λ
,

1

1− λ ,
λ− 1

λ
,

λ

λ− 1
.

By the uniformisation theorem, every elliptic curve can also be represented as the quotient
of C by a lattice Λ = Z⊕ τZ for some τ in the upper half-plane H. Points in the same
SL2 Z-orbit yield isomorphic elliptic curves, and therefore one can realise the moduli
space of elliptic curvesM1,1 as the quotient H/ SL2 Z. The relationship between τ and
λ is given by the modular λ-function.

Each elliptic curve carries a natural elliptic involution φ, the set of fixed points of
which agrees with E[2] = Fix(φ). In the model Eλ, the elliptic involution is given by
(u, v) 7→ (u,−v) and one has Eλ[2] = {(0, 0), (1, 0), (λ, 0),∞}. The quotient by the
elliptic involution is isomorphic to P1.

The general element ofM1,1 has no further automorphisms fixing the base point. The only
exceptions, which correspond to the orbifold points of H/ SL2 Z, are E2 (corresponding
to τ = i in the upper half-plane) with a cyclic automorphism group of order 4, and
Eζ6 (corresponding to τ = ζ6 in the upper half-plane), where ζ6 = e2πi/6, with a cyclic
automorphism group of order 6.
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3.3. Points of order 2 and 6

Proof of Proposition 3.2.3. Consider the quotients p1 : X → X/β and p2 : X → X/ρβ.
SinceX/V4 has genus 0, the images of the pullbacks p∗1 : Ω(X/β)→ ΩX and p∗2 : Ω(X/ρβ)→
ΩX must both lie in ΩX−, the −1-eigenspace of ρ and in fact generate ΩX−. Therefore,
denoting also by p∗i the induced map between Jacobians and identifying the elliptic curves
with their Jacobians, one has

Ω(X/β)× Ω(X/ρβ) ΩX− ΩX

X/β ×X/ρβ P(X, ρ) JacX

∼=

(p∗1, p
∗
2)

Since the polarisations induced from JacX on X/β ×X/ρβ and on P(X, ρ) are both of
type (2, 2), the map (p∗1, p

∗
2) is necessarily an isomorphism of polarised abelian varieties.

In particular, the proof shows that, in the above situation, we have a natural decomposition

ΩX− = ΩX+
β ⊕ ΩX+

ρβ

into a β and ρβ invariant subspace consisting of the differential forms that arise as
pullbacks from the two quotient elliptic curves.

Definition. Let X be a genus 4 curve with a V4 action. We say that (η1, η2) is a product
basis of ΩX− if η1 ∈ ΩX+

β and η2 ∈ ΩX+
ρβ.

Note that any product basis is a β-eigenbasis. More precisely, we have

β∗η1 = η1 and β∗η2 = −η2, (3.1)

as η2 is ρ-anti-invariant.

3.3. Points of order 2 and 6

The aim of this section is to prove the following formula describing the number of points
of order 2 on each Teichmüller curve WD and the unique point of order 6 on W12 (cf.
Theorem 3.1.1). Let h(−C) denote the class number of the imaginary quadratic order
O−C .
Theorem 3.3.1. Let D 6= 12 be a positive discriminant.

• If D ≡ 1 mod 4 then WD has no orbifold points of order 2.

• If D ≡ 12 mod 16 then WD has h(−D) + h(−D
4

) orbifold points of order 2.

• Otherwise, WD has h(−D) orbifold points of order 2.

Moreover, W12 has one point of order 2 and one point of order 6.

To prove this theorem, we begin by a careful analysis of genus 4 curves admitting an
automorphism of order 4 with two fixed points.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Curves admitting an automorphism of order 4 By Proposition 3.2.1, for (X,ω) to
parametrise a point of order 2 on WD, the curve X must necessarily lie in the locus of
curves with an automorphism of order 4 with two fixed points. In fact, all such curves
admit a faithful D8 action.

Lemma 3.3.2. Let X be a curve of genus 4 and α ∈ AutX an automorphism of order
4 with two fixed points.

Then X/α2 is of genus 2 and there exists an involution β ∈ AutX such that αβ = βα−1,
i.e. 〈α, β〉 ≤ AutX is a D8.

Proof. Since the quotient X/α by such an automorphism yields a curve of genus 1 with
two orbifold points of order 4, this is just case N2 in [BC99]. The proof of Bujalance
and Conder relies on a previous result by Singerman [Sin72, Thm. 1] stating that every
Fuchsian group with signature (1; t, t) is included in a Fuchsian group with signature
(0; 24, t). This group corresponds to the quotient X/〈α, β〉.

In terms of the corresponding curves, the situation is the following. The automorphism
α descends to an involution α of the genus 2 curve X/α2 different from the hyperelliptic
involution β. The hyperelliptic involution lifts to an involution β on X which, together
with α, generates the dihedral group. We will denote by p1 : X → X/β and p2 : X →
X/α2β the corresponding projections.

Definition. We will denote by M4(D8) the family of genus 4 curves admitting an
automorphism of order 4 with two fixed points.

Remark 3.3.3. Note that by Lemma 3.3.2, this family agrees with the moduli space of
Riemann surfaces of genus 4 with D8-symmetry, where we fix the topological action as
in the lemma. Moreover, moduli spaces of curves with automorphisms have been studied
intensively, see e.g. [GDH92] for background and notations.

It turns out that such a curve is essentially determined by its genus 1 quotients.

Proposition 3.3.4. The familyM4(D8) is in bijection with the family

E = {(E, [P ]) : E ∈M1,1, [P ] ∈ (E\E[2])/{±1} }

of elliptic curves with a distinguished base point, together with an elliptic pair.

The bijection is given by X 7→ (X/β, [p1(Fix(αβ))]), where the origin of the elliptic curve
is chosen to be the point p1(Fix(α)).

Remark 3.3.5. Note that this is a 2-dimensional locus inside M4. However, we will
show in Theorem 3.3.8 that the sub-locus X where X admits an α-eigenform in ΩX−

with a single zero is in fact 1-dimensional.
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3.3. Points of order 2 and 6

This classification is obtained by a careful analysis of the ramification data of D8
∼=

〈α, β〉 ≤ AutX.

Consider the following diagram of ramified covers:

X

X/α2 X/β X/α2β

X/α X/〈α2, β〉

X/〈α, β〉

p
p1

p2

π1
π2

Observe that all maps in the diagram are of degree 2.

The involutions β and α2β each have 6 fixed points on X. Together they form three
orbits of length 4 under 〈α, β〉. Similarly, αβ and α−1β have 2 fixed points each, forming
a whole orbit under 〈α, β〉 of length 4. Now, the four points of order 2 in X/〈α, β〉
correspond to the (three) orbits of the fixed points of β and α2β plus the orbit of the
fixed points of αβ and α−1β.

Looking at the ramification data of α and β, one sees that the quotients X/β and X/α2β
by β and α2β = αβα−1 respectively correspond to curves of genus 1. Choosing the image
of Fix(α) as an origin on each quotient, they are in fact isomorphic as elliptic curves,
since β and α2β are conjugate.

Also, the above-described action of α2β and β may be described purely in terms of the
quotient maps: the six branch points of p1 are mapped via p2 to the three 2-torsion
points on X/α2β, while p1 maps the six branch points of p2 to the three 2-torsion points
on X/β.

Proof of Proposition 3.3.4. Denote by φ the elliptic involution on E and let ϕ : E → P1

be the corresponding quotient map, which we normalise such that ϕ(O) = ∞ and
ϕ(P ) = 0. We define X = X(E,[P ]) as the fibre product of the diagram

E
ϕ−→ P1 −ϕ←−− E.

Note that, although there is a degree of freedom in choosing ϕ, this does not affect the
construction.

It is obvious from the ramification data that X(E,[P ]) has genus 4, and the automorphisms
(Q1, Q2) 7→ (Q2, φ(Q1)) and (Q1, Q2) 7→ (Q1, φ(Q2)) of E ×E restrict to automorphisms
α and β of X(E,[P ]) generating a D8. It is straightforward to check that the map
(E, [P ]) 7→ X(E,[P ]) thus defined is inverse to X 7→ (X/β, [p1(Fix(αβ))]).

In particular, these curves satisfy the assumptions of Proposition 3.2.3, and therefore
their Prym varieties are isomorphic to a product of elliptic curves.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Corollary 3.3.6. Let X ∈ M4(D8). Then P(X,α2) ∼= E × E as polarised abelian
varieties, where E ∼= X/β ∼= X/α2β.

As the quotient elliptic curves are isomorphic, we pick some differential form ηE on E
and denote by

ηi = p∗i ηE, for i = 1, 2, (3.2)

the corresponding product basis. Using the explicit description of X as a fibre product
and the expression of α used in the proof of Proposition 3.3.4, one can easily describe
the action of α∗ on these differentials to see that

α∗η1 = −η2 and α∗η2 = η1 .

In particular, α interchanges the spaces ΩX+
β and ΩX+

ρβ.

The eigenspace decomposition For a D8 curve to parametrise an orbifold point, it
must necessarily admit an α-eigenform with a single (6-fold) zero. To determine the
possible eigenforms, we must analyse the decomposition of ΩX into α-eigenspaces. We
denote, as usual, by ΩX− and ΩX+ the −1- and +1-eigenspaces of ΩX with respect to
the (Prym) involution α2.

Proposition 3.3.7. Let X ∈M4(D8). There is a natural splitting

ΩX− = ΩX i
α ⊕ ΩX−i

α

into ±i-eigenspaces of α. The spaces ΩX±i
α are interchanged by β.

Proof. The quotient X/α has genus 1, so it is obvious that ΩX+ decomposes into
α-eigenspaces of dimension 1 with eigenvalue +1 and −1.

On the other hand, since αβ = βα−1, if α∗ω = λω for some λ ∈ C, clearly α∗(β∗ω) =
λ−1β∗ω. In particular, the eigenvalues of α∗ on ΩX− can only be ±i, therefore the space
necessarily decomposes as the sum of the α∗ i-eigenspace and the −i-eigenspace.

Note that any α-eigenbasis (ω1, ω2) of ΩX− will satisfy ω1 ∈ ΩX i
α and ω2 ∈ ΩX−i

α , up to
renumbering. Moreover, any product basis (η1, η2) as in Equation 3.2 gives rise to an
α-eigenbasis

ω1 = η1 + iη2, ω2 = η1 − iη2 . (3.3)

Now, while the familyM4(D8) of curves admitting a D8 action is 2-dimensional, it turns
out that requiring an α-eigenform with a single zero reduces the dimension of the locus
we are interested in by one. Let us define

X =
{
X ∈M4(D8) : ∃ ω ∈ ΩX− α-eigenform with a single zero

}
.

Because of the flat picture of the elements (X,ω) in ΩX−(6), we will call X the Turtle
family (see section 3.6).
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3.3. Points of order 2 and 6

Theorem 3.3.8. The map
X −→ M1,1

X 7−→ X/β ,

where the origin of X/β is chosen to be p1(Fix(α)), induces a bijection between X and
M1,1\{E2}.

The only curve in X where α is extended by an automorphism of order 12 is the one
corresponding to X/β ∼= Eζ6. It agrees with family (4) in Proposition 3.2.1.

Proof. By Equation 3.3 α-eigenforms in ΩX+ are given, up to scale, by ω1 = p∗1ηE +ip∗2ηE
and ω2 = p∗1ηE − ip∗2ηE. We will proceed in several steps.

Step 1: The α-eigenforms in ΩX− can have a zero at most at one of the (two) fixed
points of α.

Otherwise, every differential in ΩX− would vanish at both fixed points of α. In particular,
so would p∗1ηE and p∗2ηE. But the maps pi are unramified at Fix(α) and we know that
ηE has no zeroes in E. Note that, since zeroes of α-eigenforms outside Fix(α) must be
permuted by α, this immediately implies that the differentials ω1 and ω2 lie either in
ΩX (14, 2) or in ΩX (6). Hence it remains to show that ω1, ω2 ∈ ΩX (6).

Step 2: Note that p∗i ηE vanishes only at the six branch points of pi.

In particular neither ω1 nor ω2 vanish at Fix(β) ∪ Fix(α2β), as the two sets of fixed
points are disjoint.

Step 3: Choose λ so that E ∼= Eλ = {y2 = x(x− 1)(x− λ)} with the point at infinity as
a distinguished point, and let [P ] = (A,±B) in these coordinates. Then we claim that
ω1, ω2 ∈ ΩX (6) if and only if 3A− 1− λ = 0.

In fact note that, in this case, the map ϕ : Eλ → P1 in the proof of Proposition 3.3.4 can
be chosen to be (x, y) 7→ x− A, and the points in X(Eλ,[P ]) outside of the branch loci of
the maps pi can be seen as pairs of points

Q =
(

(x, ε1

√
x(x− 1)(x− λ)), (−x+ 2A, ε2i

√
(x− 2A)(x− 2A+ 1)(x− 2A+ λ))

)

∈ Eλ × Eλ ,

where ε1, ε2 ∈ {±1}. Normalising ηE = dx/y and evaluating a local expression around Q
yields

ω1(Q) =
ε1√

x(x− 1)(x− λ)
+

ε2√
(x− 2A)(x− 2A+ 1)(x− 2A+ λ)

=

=
ε1

√
(x− 2A)(x− 2A+ 1)(x− 2A+ λ)± ε2

√
x(x− 1)(x− λ)

ε1ε2

√
x(x− 1)(x− λ)(x− 2A)(x− 2A+ 1)(x− 2A+ λ)

,

and similarly for ω2.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Now, comparing the addends in the numerator and taking squares one sees that the
differential ω1 will vanish at Q, for (exactly) two choices (ε1, ε2) and (−ε1,−ε2), whenever

2(3A− λ− 1)x2 − 4A(3A− λ− 1)x+ 2A(2A− λ)(2A− 1) = 0 .

In particular, if (and only if) 3A− λ− 1 = 0 the differentials do not vanish in the affine
part of Eλ, hence the zeroes of ω1 and ω2 must be at infinity, i.e. in Fix(α), and Step 1
implies that there is only a single zero on X(Eλ,[P ]).

Step 4: The point P = (A,B) ∈ Eλ can be uniquely chosen as a non-2-torsion point
subject to the condition A = (λ+ 1)/3 from above if and only if λ 6= −1, 1/2, 2.

Note that these three values of λ give rise to the same elliptic curve, namely the square
torus E2. In particular, for all P ∈ E2 \E2[2] the curve X(E2,[P ]) has no α-eigenform with
a single zero.

Therefore, for any (E,O) ∈M1,1 \ {E2}, there is a unique choice of [P ], such that the
fibre product X(E,[P ]) admits a D8 action together with an α-eigenform that has a single
6-fold zero.

It remains to check when α can be extended, i.e. when there exists an α′ ∈ AutX(E,[P ])

that satisfies α ∈ 〈α′〉.

However, the proof of Proposition 3.2.1 shows that this can happen only if α′ is of order
12. In this case, (α′)6 = α2 commutes with β, hence descends to an automorphism of
order 6 on the elliptic curve X/β which must therefore be isomorphic to Eζ6 .

On the other hand, denote by ψ ∈ AutEζ6 the automorphism of order 6 on Eζ6 . It is
easy to see that the automorphism (Q1, Q2) 7→ (ψ(Q2), ψ

4(Q1)) on Eζ6 × Eζ6 restricts
to an automorphism of order 12, extending α, on the curve of X corresponding to this
elliptic curve. In fact, the corresponding fibre product is the curve y6 = x(x+ 1)2(x− 1)2,
see also section 3.4.

Moreover, we have the following corollary.

Corollary 3.3.9. Let X be a genus 4 curve admitting an automorphism α of order 4
with two fixed points. If additionally (X,ω) ∈ ΩWD then X ∈ X and ω = ω1 or ω2. In
particular, ω is an α-eigenform and (X,ω) is a point of order 2 on WD.

To check which (X,ωi) ∈ ΩX are on WD, we need to check when P(X,α2) admits
real multiplication with ωi as an eigenform. Note that β∗ interchanges ω1 and ω2, and
therefore it is enough to focus on one of the two eigenforms.

First, we need the following explicit description of the endomorphism ring of the Prym
variety. Recall that the endomorphism ring End(E) of an elliptic curve is either Z or an
order in an imaginary quadratic field.
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Lemma 3.3.10. Let (η1, η2) be the product basis of ΩX− as in Equation 3.2. Then

End(P(X,α2)) = M2(End(E)) ,

where E ∼= X/β. Self-adjoint endomorphisms correspond to matrices satisfyingMT = Mσ,
where Mσ denotes conjugation by the non-trivial Galois automorphism of End(E) on
each entry.

Moreover, ω1 corresponds to the η-representation (1, i) and ω2 to the representation
(1, −i).

Proof. The first part of the lemma follows immediately from Corollary 3.3.6. The claim
about the eigenforms follows from Equation 3.3.

We now have all the ingredients assembled to prove the formula for the points of order 2.

Proof of Theorem 3.3.1. Recall that X classifies an orbifold point of order 2 on WD if
and only if P(X,α2) admits proper self-adjoint real multiplication with the α-eigenforms
ω1 or ω2 as an eigenform. Since these are interchanged by β, it is enough to focus our
attention on ω1.

Again, we set E = X/β. Note that, by Theorem 3.3.8, E must not be isomorphic to Eζ6 .

Assume that D is not a square. Now, in the η-basis of E × E, the form ω1 has the
representation (1, i) (cf. Lemma 3.3.10). In other words, (X,ω1) ∈ ΩX is an orbifold
point on WD if and only if there exists TD ∈M2(End(E)), where

TD =





(
1
2
−
√
−D
2√

−D
2

1
2

)
, if D ≡ 1 mod 4, and

(
0 −

√
−D
2√

−D
2

0

)
, if D ≡ 0 mod 4,

while there is no TD′ ∈M2(End(E)) for D = f 2D′.

As End(E) is integral over Z and 1/2 is not, the case D ≡ 1 mod 4 can never occur. The
other case occurs whenever

√
−D/2 ∈ End(E), and this happens if and only if E has

complex multiplication by the order O−D ⊂ Q(
√
−D).

To determine precisely which orders O−C contain such a maximal TD, note that, by
definition,

√
−D/2 ∈ O−C if and only if D = b2C for some integer b. Moreover, C must be

congruent with 0 or 3 mod 4 so that −C is a discriminant.

For b > 2 the action is never proper, and therefore we can assume b = 1 or 2.

The case b = 1 implies that elliptic curves E not isomorphic to Eζ6 admitting complex
multiplication by O−D always determine an orbifold point of order 2 on WD.

As for b = 2, there are several options. If D/4 ≡ 1 mod 4, then −D/4 ≡ 3 mod 4 is not a
discriminant. If, however, C = D/4 ≡ 3 mod 4, then −C is a discriminant and complex
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3. Orbifold points on Prym–Teichmüller curves in genus four

multiplication by O−C = O−D/4 also gives proper real multiplication by OD on the Prym
part. Finally, if C = D/4 ≡ 0 mod 4, then −C is a discriminant but the Prym then admits
real multiplication by OC , hence the real multiplication by OD is not proper in these
cases.

Moreover, observe that E ∼= Eζ6 if and only if C = 3, i.e. D = 12. On the other hand, if
D = 12, there exists precisely one elliptic curve with proper complex multiplication by
O−12 and hence W12(6) admits one point of order 2 and one point of order 6.

Finally, as it is well-known that there are h(−C) elliptic curves admitting complex
multiplication by O−C , this proves the result.

For the square discriminant case D = f 2, one can follow the same reasoning as above and
use the fact that OD = Z[T ]/(T 2 − fT ) to deduce that the generator T ∈M2(End(E))
must agree with

T =

(
f
2
−if

2

if
2

f
2

)

and an analysis similar to the one above proves the theorem.

3.4. Points of order 3

In this section we prove the formula for the orbifold points of order 3 on WD.

Recall the numbers

e3(D) = #{a, i, j ∈ Z : a2 + 3j2 + (2i− j)2 = D, gcd(a, i, j) = 1}/12.

We have the following description of the orbifold points of order 3.

Theorem 3.4.1. Let D 6= 12 be a positive discriminant. Then WD has e3(D) orbifold
points of order 3.

To describe the points of order 3 on WD, we again describe the intersection with the
locus of curves with a fixed type of automorphism.

Curves admitting an automorphism of order 6 By Proposition 3.2.1, for an (X,ω) to
parametrise a point of order 3 onWD the curveX must necessarily admit an automorphism
α of order six with two fixed points and two orbits of length 2 admitting ω as an eigenform.
Note that in particular X/α has genus 0. Cyclic covers of the projective line have been
thoroughly studied by several authors (see for example [Roh09; Bou05]), see also [TTZ16]
for a brief summary of the facts required here).

Now, there are two families of cyclic covers of P1 of degree 6 with the given branching
data, namely:

Yt : y6 = x(x− 1)2(x− t)2 , t ∈ P1\{0, 1,∞}
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and
Zt : y6 = x(x− 1)2(x− t)4 , t ∈ P1\{0, 1,∞} .

Denote by α = αt the automorphisms (x, y) 7→ (x, ζ6y) of order 6 on Yt and on Zt. Note
that both Yt/α3 and Zt/α3 have genus 2, so ρ = α3 is actually a Prym involution.

The following proposition shows immediately that no member of the Z family can belong
to a Teichmüller curve WD.

Lemma 3.4.2. The space ΩZ− is disjoint from the minimal stratum ΩM4(6).

Proof. It is easy to check (see for example [Bou05]) that for each t the space ΩZ−t is
generated by the differentials

ξ1 =
ydx

x(x− 1)(x− t) and ξ2 =
dx

y
.

They both lie in the stratum ΩM4(12, 4). In fact, a local calculation shows that

div ξ1 = 4P1 +R′1 +R′2 and
div ξ2 = 4P2 +R′′1 +R′′2,

where the Pi are the two fixed points of α and {R′i} and {R′′i } are the α-orbits of length
2.

Now, any element of ΩZ−t different from the generators can be written as a linear
combination ξ = a ξ1 + b ξ2. But, since the ξi vanish at different points, such a differential
can never have a zero at any point of Fix(α), nor at any point in the two α-orbits of
length 2. As a consequence ξ ∈ ΩZ−t (16) and the result follows.

The following lemma detects which fibres of the Y family are isomorphic, together with
the special fibre having a larger automorphism group.

Lemma 3.4.3. The isomorphism z 7→ 1/z of P1 lifts to an isomorphism Yt ∼= Y1/t for
each t ∈ P1\{0, 1,∞}.
In particular, at the fixed point, the automorphism α−1 of the curve Y−1 extends to an
automorphism γ : (x, y) 7→ (1/x, y/x) of order 12.

Proof. As the curve is given in coordinates explicitly as a cyclic cover of P1, this is a
straight-forward calculation.

The intersections of Y and WD will give the orbifold points of order 3 on WD. To make
this statement more precise, we begin by the following observation.

Proposition 3.4.4. For each t the space ΩY−t is generated by the α-eigenforms

ω1 =
ydx

x(x− 1)(x− t) and ω2 =
−ydx√

t(x− 1)(x− t)
.

Up to scale, the only differentials in ΩY−t (6) are ω1 and ω2.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Proof. The local expressions show that these differentials are holomorphic for all t. They
obviously span the α-eigenspace of eigenvalue ζ6 and therefore generate ΩY−t (cf. [Bou05]).

It is easy to see that ω1 (resp. ω2) has a single zero at the single point at infinity (has a
single zero at (0, 0)). Now, for every a 6= 0 the zeroes of the differential

ωa := ω1 + aω2 =
ydx

(x− 1)(x− t)

(
1

x
+ a

)

are located at the points with x-coordinate −1/a. They are either six simple zeroes if
a 6= −1, −1/t, or three zeroes of order 2 otherwise.

Remark 3.4.5. Note that, in contrast to the family X of curves with a D8 action, the
α-eigenspace inside ΩY−t is in fact 2-dimensional. However, we will only be interested in
the two 1-dimensional subspaces of eigenforms with a single zero.

Because of the flat picture of the differentials (Yt, ωi), we will call Y the Hurricane family
(see section 3.6). Note that (ω1, ω2) yields an α-eigenbasis of ΩY−t . The following is a
consequence of Lemma 3.4.2 and Proposition 3.4.4.

Corollary 3.4.6. Let X be a genus 4 curve admitting an automorphism α of order 6
with two fixed points and two orbits of length 2. If (X,ω) ∈ ΩX−(6) then X ∈ Y and
ω = ω1 or ω2. In particular, ω is an α-eigenform.

Corollary 3.4.7. A flat surface (X,ω) parametrising a point on WD corresponds to
an orbifold point of order 3 if and only if there is some t ∈ P1\{0, 1,−1,∞} such that
X ∼= Yt and [ω] = [ω1] or [ω] = [ω2].

It corresponds to an orbifold point of order 6 if and only if X ∼= Y−1 and [ω] = [ω1] or
[ω] = [ω2]

Proof. This is a consequence of Proposition 3.2.1, Lemma 3.4.2 and Proposition 3.4.4.

We must therefore analyse when the Prym part of Yt admits real multiplication. Recall
that the elliptic curve Eζ , where ζ := exp(2πi/6), is the only elliptic curve admitting an
automorphism of order 6 fixing the base point. It corresponds to the hexagonal lattice,
i.e.

Eζ ∼= C/Λζ , with Λζ = Z⊕ ζZ.

Next, we collect some useful observations.

Lemma 3.4.8. Any curve Yt admits an involution β commuting with α, i.e. such that
〈α, β〉 ∼= C6 × C2. Moreover, one has P(Yt, ρ) ∼= Eζ × Eζ.

The general member Zt of the Z family has an automorphism group equal to C6.
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Proof. By Theorems 1 and 2 in [Sin72] there is only one Fuchsian group containing a
generic Fuchsian group of signature (0; 3, 3, 6, 6). The signature of such supergroup is
(0; 2, 2, 3, 6), and the inclusion is of index 2 and therefore normal. As a consequence, the
automorphism group of any general fibre in the Y family or the Z family is at most an
extension of index two of C6.

In the case of Yt, the inclusion induces an extra automorphism β := βt, given by
(x, y) 7→ (x/t,

√
t y/x).

In particular α3 and β generate a Klein four-group such that the quotients Yt/β and
Yt/α3β have genus 1. Therefore they satisfy the conditions of Proposition 3.2.3 and
P(Yt, ρ) ∼= Yt/β ×Yt/α3β. Since α induces an automorphism ψ of order 6 on both Yt/β
and Yt/α3β, they are necessarily isomorphic to the elliptic curve Eζ .

As for the Z family, any such automorphism would induce an automorphism of Zt/α ∼= P1

permuting orbifold points of the same order. Since the exponents at 0 and ∞ and at 1
and t are different, there cannot be such an automorphism.

We will write again p1 : Yt → Yt/β and p2 : Yt → Yt/α3β for the corresponding projections.
The following lemma gives an explicit formula for these two maps that will be needed
later to compute the explicit pullbacks of the differentials on Eζ .

Lemma 3.4.9. Consider the Weierstraß equation {v2 = u3 − 1} defining Eζ. In this
model, the maps p1 and p2 are given by

p1 : Yt → Eζ

(x, y) 7→
( −1

(1 +
√
t)2/3

(x− 1)(x− t)
y2

,
i

(1 +
√
t)

(x− 1)(x− t)(x+
√
t)

y3

)
,

p2 : Yt → Eζ

(x, y) 7→
( −1

(1−
√
t)2/3

(x− 1)(x− t)
y2

,
i

(1−
√
t)

(x− 1)(x− t)(x−
√
t)

y3

)
.

These maps are only unique up to composition with (a power of) α.

Proof. The map Yt → Yt/β induces an isomorphism between the function field C(Yt/β)
and the subfield C(Yt)〈β〉 ⊂ C(Yt) fixed by β∗. This subfield is generated by the rational
functions

ũ := x+ β(x) + 2
√
t =

(x+
√
t)2

x
, ṽ := y + β(y) = y

x+
√
t

x
.

Using the equation of Yt it is easy to check that the generating functions ũ and ṽ satisfy
the relation ṽ6 = ũ3(ũ− c)2, where c = (1 +

√
t)2. One can then check the ramification

points of the degree 6 function (ũ, ṽ) 7→ ũ and easily deduce the isomorphism

Ẽ : ṽ6 = ũ3(ũ− c)2 → Eζ : v2 = u3 − 1

(ũ, ṽ) 7→ (u, v) =

(−ũ(ũ− c)
c1/3 ṽ2

,
i ṽ3

c1/2 ũ(ũ− c)

)
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3. Orbifold points on Prym–Teichmüller curves in genus four

Finally, replacing ũ and ṽ by their values in terms of the coordinates x and y, one gets
the formula for p1.

The same argument replacing β by α3β yields the result for p2.

Fibre products Similarly to the case of the D8 family, one can also construct the
Hurricane family Y of genus 4 curves with a C6 × C2 action as a certain family of
fibre products over two isomorphic elliptic curves. In order to do so, let ψ denote the
automorphism of order 6 on Eζ and consider the following diagram:

X X/β ∼= Eζ

X/α3 X/〈α3, β〉 ∼= P1

P1 ∼= X/α X/〈α, β〉 ∼= P1

p1

ϕ

Clearly, β is the hyperelliptic involution on X/α3. On X/α ∼= P1 the involution β has
two fixed points and the preimages of these points give the six Weierstraß points on
X/α3. Moreover, X → X/α3 is ramified only over the two fixed points of α, while the
map X/α3 → X/α also branches at R′ and R′′, the preimages (on X) being {R′1, R′2}
and {R′′1, R′′2}, respectively.
Now, α and β have no common fixed points, hence the image of the (two) fixed points of
α on X gives the (unique) fixed point O of ψ = α on Eζ . Additionally, β interchanges
R′ and R′′, hence we may name the fibres such that the images R1 of {R′1, R′′1} and R2

of {R′2, R′′2} form the unique ψ-orbit of order 3 on Eζ .

On the other hand, the six Weierstraß points of X/α3 have 12 preimages on X with β
acting on each fibre. Three fibres form the six fixed points of β on X, i.e. the branch
points of p1, while the other three give the fixed points of α3β, which are equivalently
the fixed points of the elliptic involution φ = α3 on X/β, i.e. the three 2-torsion points.
The situation is exactly reversed for the projection p2 : X → X/α3β ∼= Eζ .

Finally, note that in Lemma 3.4.9 the coordinates on Eζ were chosen such that the
projection ϕ : Eζ → P1 ∼= Eζ/φ to the quotient by the elliptic involution maps O to ∞
and both R1 and R2 to 0. Observe that ψ then descends to an automorphism of order 3
on the quotient that fixes 0 and ∞. In particular, we can assume ϕ(ψ(S)) = ζ2

6ϕ(S), for
each S ∈ Eζ .
Now, for each P ∈ E∗ζ := Eζ\(Eζ [2] ∪ {R1, R2}) consider the map ϕP : Eζ → P1,
Q 7→ ϕ(P ) · ϕ(Q). We define Y = YP as the fibre product of the diagram

Eζ
ϕ−−→ P1 ϕP←−− Eζ .

This fibre product admits a group of automorphisms isomorphic to C6 × C2 given by the
restriction of the following automorphisms of Eζ × Eζ :

α(Q1, Q2) = (ψ(Q1), ψ(Q2)) , β(Q1, Q2) = (Q1, ψ
3(Q2)) .
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3.4. Points of order 3

By Lemma 3.4.8, every YP is therefore a fibre of the Y family.

Proposition 3.4.10. The map P 7→ YP gives a 6-to-1 map between the set of elliptic
pairs of points E∗ζ/φ and the fibres of Y.
It descends to a 2-to-1 map between the set E∗ζ/ψ of regular orbits of ψ and the fibres
of Y. Moreover, the only ramification value of this map corresponds to the curve Y−1

admitting an automorphism of order 12.

Proof. Let P ∈ E∗ζ . Note that the construction does not depend on the choice of
{P, φ(P )}. In fact, even for any choice of a different point in the orbit {ψj(P )}5

j=0 the
automorphism of Eζ × Eζ given by (Q1, Q2) 7→ (Q1, ψ

−j(Q2)) induces an isomorphism
between YP and Yψj(P ).

Now, for the point P ′ ∈ E∗ζ such that φ(P ′) = 1/φ(P ), the automorphism (Q1, Q2) 7→
(Q2, Q1) induces an isomorphism between YP and YP ′ .

On the other hand, for any Y ∈ Y take x ∈ Fix(β) and write P = [x] ∈ Y/β ∼= Eζ for its
image in the quotient. It is straightforward to check that Y ∼= YP . Any other choice of
x ∈ Fix(β) or x ∈ Fix(α3β) determines different points in {ψj(P ), ψj(P ′)}5

j=0, defining
the same fibre product.

Remark 3.4.11. Note that the action of ψ on the point P corresponds to the action of
α on the maps pi mentioned in Lemma 3.4.9. The remaining factor of 2 comes from the
(generic) identification of Yt with Y1/t.

Eigenforms with a single zero By Lemma 3.4.8, all Prym varieties in the Y family are
isomorphic. To understand End(P(Yt, ρ)), where ρ = α3, denote by (η1, η2) again the
product basis of ΩY−t given by

ηi = p∗i ηE, for i = 1, 2. (3.4)

It is well known that Oζ := End(Eζ) = Z⊕ Zζ2
6 are the Eisenstein integers.

Lemma 3.4.12. Let (η1, η2) be the product basis of ΩY−t from Equation 3.4. Then

End(P(Yt, α3)) = M2(End(Eζ)) = M2(Oζ).

Self-adjoint endomorphisms correspond to matrices MT = Mσ, where Mσ denotes
conjugation by the non-trivial Galois automorphism of Oζ on each entry.

Proof. This is an immediate consequence of Lemma 3.4.8.

While the product basis gives an easy understanding of the endomorphism ring, and
while in fact any differential in ΩY−t is an α-eigendifferential, we are interested in α-
eigendifferentials with a single zero that are also eigenforms for real multiplication of the
Prym variety. By Proposition 3.4.4, these are precisely the differentials ω1 and ω2 on Yt.
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3. Orbifold points on Prym–Teichmüller curves in genus four

To check whether ω1 or ω2 are eigenforms for real multiplication, we must therefore keep
track of these differentials in the product basis. For this, we set

µ := µt :=

(
1−
√
t

1 +
√
t

)1/3

.

The relationship between the α-eigenbasis and the product basis can be summarised as
follows:

Lemma 3.4.13. Denote by (η1, η2) the product basis. Then

[ω1] = [−µt η1 + η2] , [ω2] = [µt η1 + η2]

gives an α-eigenbasis with ωi having each a single zero on Yt.
In particular, for each isomorphism class of curves [Y ] ∈ Y, with [Y ] 6= [Y−1], there exist
12 elements µt ∈ C∗ such that µt η1 +η2 are precisely the α-eigendifferentials with a single
zero on [Y ].

On the curves [Y−1] there are six different values of µ giving eigendifferentials with a
single zero.

Proof. The differential ω1 + ω2 (resp. ω1 − ω2) is β-invariant (resp. α3β-invariant).
Therefore there exist k1, k2 such that ω1 + ω2 = k1 η1 and ω1 − ω2 = k2 η2, where ηE is a
fixed differential on Eζ .

In particular
−x√
t

=
ω2

ω1

=
k1 η1 − k2 η2

k1 η1 + k2 η2

.

One can solve for k1/k2 to get
k1

k2

= −(x−
√
t)η2

(x+
√
t)η1

,

and then, using Lemma 3.4.9 and choosing ηE = du/v in that model,

k1

k2

= −
(

1−
√
t

1 +
√
t

)1/3

= −µ .

Now, solving t in terms of µ gives

t =

(
µ3 − 1

µ3 + 1

)2

,

and Lemma 3.4.3 implies the rest of the claims.

Note that every value of µ gives two eigendifferentials with single zeros on (generically)
two different fibres of Y , which are identified by six different isomorphisms.

80



3.4. Points of order 3

Lemma 3.4.14. For t 6= −1 we have that in PΩY(6)

(Yt, ω1) ∼= (Yt, ω2) ∼= (Y1/t, ω1) ∼= (Y1/t, ω2)

as flat surfaces and (Yt, ω1) 6∼= (X,ω) for all other (X,ω) ∈ PΩY(6).

Proof. This is clear by Proposition 3.4.4, Lemma 3.4.3 and the fact that β interchanges
the classes of ω1 and ω2.

In particular, we do not have to distinguish between the classes of ω1 and ω2. This
relationship becomes more explicit when expressed in the fibre product construction.

Proposition 3.4.15. Let (µ ηE, ηE) ∈ ΩEζ ×ΩEζ, µ 6= 0 and let P = (A,B) ∈ E∗ζ . The
corresponding α-eigendifferential µ η1 + η2 on YP has a single zero at a fixed point of α if
and only if A = µ2.

In particular, this induces a 12-to-1 map

C∗ → PΩY(6)
µ 7→ [(YP , [µ η1 + η2])] ,

where [P ] = (µ2,±
√
µ6 − 1) is an elliptic pair on Eζ.

Proof. For each P ∈ E∗ζ we will consider the differentials η1 = p∗1ηE and η2 = p∗2ηE on YP .
The proof of this theorem will proceed in a similar way to the proof of Theorem 3.3.8 up
until Step 3.

Step 1: The α-eigenforms in ΩY −P can have zeroes at most at one of the fixed points of α.

Otherwise, every differential in ΩY −P would vanish at both fixed points of α. In particular,
so would η1 and η2, but the maps pi are unramified at Fix(α) and we know that ηE has
no zeroes in E.

Again, zeroes of α-eigenforms must be permuted by α, the orbits of which have length 1,
2 or 6. This immediately implies that α-eigenforms lie either in ΩYP (16) if the zeroes
are located at regular points, in ΩYP (6) if it only has zeroes at a fixed point of α, or
in ΩYP (32) if it has zeroes at the two points of the orbit of length 2 (see the proof
of Proposition 3.4.4). Again, we just need to prove that ω1, ω2 ∈ ΩYP (6).

Step 2: Again, p∗i ηE vanishes only at the six branch points of pi. In particular both η1

and η2 lie in ΩYP (16).

Step 3: Let Eζ ∼= {v2 = (u3 − 1)} with the point at infinity as a distinguished point,
and let (µ ηE, ηE) ∈ ΩEζ × ΩEζ . We claim that, given a point P = (A,B) in these
coordinates, the differential µ η1 + η2 on YP has a single zero if and only if A = µ2.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Note that we can normalise ϕ : Eζ → P1 to be (u, v) 7→ u. By construction of YP as the
fibre product of the maps ϕ, ϕP : Eζ → P1, points in YP outside of the branch loci of the
maps pi can then be seen as pairs

Q =

((
u, ε1

√
u3 − 1

)
,

(
u

A
, ε2

√
u3 − A3

A3

))
∈ Eζ × Eζ ,

where ε1, ε2 ∈ {±1}. Normalising ηE = dx/y, and evaluating locally around Q yields

µ η1 + η2(Q) =
ε1µ√
u3 − 1

+
ε2

√
A3

A
√
u3 − A3

=
ε1µA

√
u3 − A3 + ε2

√
A3(u3 − 1)

A
√

(u3 − 1)(u3 − A3)
.

Comparing again the addends in the numerator and taking squares, one sees that this
differential vanishes at Q (for two choices (ε1, ε2) and (−ε1,−ε2)) whenever

u3 = A · µ
2A2 − 1

µ2 − A .

In particular, whenever the right-hand side is different from 0, 1 and ∞ one has that
the differential µ η1 + η2 necessarily has 6 simple zeroes. The case u3 = 1 corresponds to
µ = 0, which has been treated in Step 2. The case u = 0 corresponds to A = ±1/µ and
yields the differentials with zeroes at the two points of the α-orbit of length 2.

Finally, if A = µ2 the zeroes of the differential must be in Fix(α), and Step 1 then implies
that there is a single zero.

As a consequence, to each µ ∈ C∗ we can associate the elliptic pair of points

[P ] = (µ2,±
√
µ6 − 1) ∈ E∗ζ ,

defining the curve YP together with the differential with a single zero µ η1 + η2. By
Proposition 3.4.10 and the fact that ±µ give the same elliptic pair and, by Lemma 3.4.14,
the same class of flat surfaces, the association is 12-to-1.

We are now finally in a position to prove the formula for e3(D).

Proof of Theorem 3.4.1. First, let D be a nonsquare discriminant and recall the order
OD = Z⊕ TDZ associated to D, where

TD =

{√
D
2
, D ≡ 0 mod 4,√

D+1
2

, D ≡ 1 mod 4.

Then, for i = 1, 2, (Yt, ωi) lies on WD if and only if P(Yt, ρ) admits real multiplication
with ωi as an eigenform. By Lemma 3.4.12 and Lemma 3.4.13 this is equivalent to the
existence of some self-adjoint matrix

A =

(
a b
c d

)
∈M2(Oζ) such that A ·

(
±µ
1

)
= T ·

(
±µ
1

)
.
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3.5. Points of order 5

By Lemma 3.4.14, it suffices to consider +µ. Moreover, by self-adjointness, we have
c = bσ, the Galois conjugate in Oζ , and a, d ∈ Z. The eigenform condition then yields

(a− TD)µ+ b = 0 and bσµ+ d− TD = 0.

The first equation gives

µ =
b

TD − a
and substituting this into the second equation yields

bbσ − ad = T 2
D − (a+ d)TD.

First, we consider the case D ≡ 0 mod 4. Then this gives

bbσ − ad =
D

4
− (a+ d)

√
D

2
.

As the right side of the equation must be an integer, we find a = −d and hence

D = 4bbσ + (2a)2, for D ≡ 0 mod 4.

Similarly, for D ≡ 1 mod 4, we obtain d = a− 1 and thus

D = 4bbσ + (2a− 1)2, for D ≡ 1 mod 4.

It is well-known that the norm squared of an element in Oζ is given by

bbσ = i2 − ij + j2 =
3j2 + (2i− j)2

4
, for b = i+ ζ2

6j.

Hence, P(Yt, ρ) admits a real multiplication by OD with ωi as an eigenform for every
a, i, j ∈ Z such that

a2 + 3j2 + (2i− j)2 = D.

Clearly, this real multiplication is proper if and only if gcd(a, i, j) = 1.

By Lemma 3.4.13 or equivalently Proposition 3.4.15, this gives 12 times the cardinality
of points of order 3.

A similar analysis in the square discriminant case D = f 2 yields, with the same notation
as above, d = f − a and bbσ − a(f − a) = 0. Multiplying by 4 and adding f 2 to both
sides of the equation one gets

D = 4bbσ + (2a− f)2 ,

and the same argument as above proves the result.

3.5. Points of order 5

In this section we will find the orbifold points of order 5 on the Teichmüller curves WD.

Theorem 3.5.1. The Teichmüller curve W5 has one orbifold point of order 5. For any
other discriminant, WD has no orbifold points of order 5.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Curves admitting an automorphism of order 10 By Proposition 3.2.1, flat surfaces
(X,ω) parametrising a point of order 5 on WD will correspond to cyclic covers of degree
10 of P1 ramified over three points with ramification order 5, 10 and 10. There are two
such curves:

V : y10 = x(x− 1)2 , and U : y10 = x(x− 1)8 .

Calculations similar to the ones in the proof of Lemma 3.4.2 and Proposition 3.4.4 give
us the differentials with a single zero on these curves.

Proposition 3.5.2. The space ΩV− is generated by the α-eigenforms

ω1 =
ydx

x(x− 1)
, ω2 =

y3dx

x(x− 1)
.

Up to scale, the only differential in ΩV−(6) is ω1.

The space ΩU− is disjoint from the minimal stratum ΩM4(6).

In particular one has the following corollary.

Corollary 3.5.3. Let X be a genus 4 curve admitting an automorphism α of order 10
with two fixed points and an orbit of length 2. If (X,ω) ∈ ΩX−(6) then X = V and, up
to scale, ω = ω1. In particular, ω is an α-eigenform.

The action of α on P(V , α5) induces an embedding Q(ζ10) ↪→ EndQ(P(V , α5)) and, in
particular, determines an element T5 = α+α−1 = (

√
5+1)/2 for which ω1 is an eigenform.

Proof of Theorem 3.5.1. By the argument above and the maximality of O5, the Prym
variety P(V , α5) admits proper real multiplication by O5 with ω1 as an eigenform.

Now Teichmüller curves ΩWD and ΩWE are disjoint for different discriminants D and E.
Therefore, as ω1 is, up to scale, the only differential with a single zero on V , there can be
no other WD with a point of order 5.

3.6. Flat geometry of orbifold points

In this section we will describe, up to scale, the translation surfaces corresponding to
the Turtle family X , the Hurricane family Y and the curve V. We use the notion of
k-differentials and (1/k)-translation structures, cf. [BCGGM16, §2.1, 2.3].

Note that, whereas in the first two cases we have a 1-dimensional family of flat surfaces,
in the case of V the construction is unique (cf. Corollary 3.5.3). The case of a flat surface
with a symmetry of order twelve, also unique, is given by X ∩ Y , the intersection of the
Turtle family and the Hurricane family (cf. Theorem 3.3.8).
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Figure 3.3.: Left: A 4-differential of genus 1 with a zero and pole, each of order 3.
The length of c and the angle θ give a complex parameter. Center: A
6-differential of genus 0 with a single zero of order 1, a pole of order 5 and
two poles of order 4 each. The length of b and the angle θ give a complex
parameter. Right: The unique (up to scale) 10-differential on P1 with poles
of order 3, 8 and 9.

Points of order 2 We briefly describe the construction of flat surfaces (Xκ, ηκ) ∈ ΩX (6)
(that is curves Xκ with a four-fold symmetry α together with a differential ηκ with a
six-fold zero) in terms of a parameter κ = κ(c, θ).

By Proposition 3.2.1, the quotient Xκ/α is of genus 1 with two fixed points. Therefore, a
4-differential ξ of genus 1 with a zero and a pole, each of order 3, at the two fixed points
will have (Xκ, ηκ) as a canonical cover, i.e. η4

κ = π∗ξ, cf. [BCGGM16]. The polygon
corresponding to ξ is given in Figure 3.3 with an angle of 2π/4 at the pole and 7 · 2π/4
at the zero. Note that the three pairs of sides are identified by translation and rotation
by angle π/2 and that the side c can be chosen as a complex parameter (i.e. the length
of c and the angle θ). The “unfolded” canonical cover, resembling a turtle, is pictured in
Figure 3.1 (section 3.1).

Points of order 3 Similarly, we can construct flat surfaces (Yτ , ητ ) ∈ ΩY(6) admitting
a six-fold symmetry α and a six-fold zero in terms of a parameter τ = τ(b, θ).

By Proposition 3.2.1, the quotient X/α is of genus 0 with two fully ramified points and
two points that are fully ramified over an intermediate cover of degree 3. For the flat
picture, this implies that we have a zero with angle 7 · 2π/6, a pole with angle 2π/6 and
two poles with angles 2π/3, see Figure 3.3 where the sides are identified by translation
and rotation of multiplies of 2π/6 to give a surface of genus 0. Equivalently, this is a
6-differential on P1 with a single zero of order 1, a pole of order 5 and two poles of order
4, admitting a canonical cover with only a single zero, cf. [BCGGM16, §2]. The “unfolded”
canonical cover, resembling a hurricane, is pictured in Figure 3.2 (section 3.1).
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Figure 3.4.: Left: A 12-differential of genus 0 with a pole of order 5 that pulls back to
the zero, and poles of order 11 and 8. Note that this is unique up to scaling.
Center: By taking the canonical double cover, we obtain a 6-differential
on P1 as in Figure 3.3. Right: By taking a triple cover, we obtain a 4-
differential on the elliptic curve Eζ with an automorphism of order 6. If we
cut and re-glue as indicated, we obtain a polygon as in Figure 3.3.

Point of order 6 By Theorem 3.3.1, there is a unique Prym differential (X,ω) with a
symmetry of order 12 situated on W12(6).

By Proposition 3.2.1, we may picture this as a degree 12 cyclic cover of P1 with two points
of order 12 and one point of order 3. Hence, by [BCGGM16], (X,ω) is the canonical
cover of a 12-differential on P1 with a pole of order 5 that pulls back to the zero, and
poles of order 11 and 8 at the totally ramified point and the point of order 3, respectively.
Equivalently, we may glue a quadrilateral with two angles of 7π/12 each and angles of
2π/12 and 2π/3 to give a surface of genus 0, see Figure 3.4. By “unfolding” once, i.e.
taking the canonical 2-cover, we obtain the 6-differential on P1 that exhibits (X,ω) as
a fibre in the Hurricane family (see Figure 3.4). Taking the canonical degree 3 cover,
we can cut and re-glue as indicated in Figure 3.4 to obtain the 4-differential that is a
C12-eigenform on the elliptic curve with an automorphism of order 6 in the shape of the
Turtle family (see Figure 3.3).

Point of order 5 Finally, by Theorem 3.5.1 there is a unique point of order 5, i.e. an
(X,ω) with a symmetry of order 10 and a six-fold-zero differential.

More precisely, X is a degree 10 cyclic cover of P1 ramified over three points, two of
order 10 and one of order 5. Hence, (X,ω) is the canonical cover of a 10-differential ξ on
P1 with a pole of order 3 (that pulls back to the single zero on X) and poles of order 9
and 8 at the second fixed point and the point of order 5 respectively, cf. [BCGGM16,
Prop. 2.4]. Equivalently, the flat picture has angles of size 2π/10, 2π/5 and two angles
of size 7 · 2π/10 each, see Figure 3.3 where the sides are identified by translation and
rotation of multiplies of 2π/10 to give a surface of genus 0. Note that this differential is
unique up to scaling. The “unfolded” canonical cover is shown in Figure 3.5.
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Figure 3.5.: The canonical 10-cover of the 10-differential in Figure 3.3: a C10-eigen-
differential of genus 4 with a single zero Z.

3.7. Genus asymptotics

The aim of this section is to describe the asymptotic behaviour of the genus g(WD) of
WD with respect to D.

As additional boundary components make the calculation of the Euler characteristic for
D = d2 more tedious (cf. [Bai07, §13]), we will assume throughout this section that WD

is primitive, i.e. that D is not a square.

Theorem 3.7.1. There exist constants C1, C2 > 0, independent of D, such that

C1 ·D3/2 < g(WD) < C2 ·D3/2.

More precisely, we give the following explicit upper bound on the genus.

Proposition 3.7.2. The genus of WD satisfies g(WD) < 1 +D3/2 · 35
48π2 .

We also give an explicit lower bound.

Proposition 3.7.3. The genus of WD satisfies

g(WD) ≥ 3

200
D3/2 − D

6
−D3/4 − 150.

Corollary 3.7.4. The only curves WD with g(WD) = 0 are the loci for D ≤ 20.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Proof. By Proposition 3.7.3, g(WD) > 0 whenever D > 1050. The smaller values of D
were checked by computer.

Recall that the genus of WD, g(WD), is given by (D > 12)

g(WD) = h0(WD)− χ(WD)

2
− C(WD)

2
− e2(WD)

4
− e3(WD)

3
,

where χ(WD) is the (orbifold) Euler characteristic of WD, C(WD) denotes the number
of cusps and ed(WD) the number of points of order d on WD. Moreover, by [LN16],
h0(WD) = 1 and by [Möl14, Theorem 4.1],

χ(WD) = −7χ(XD),

where XD is the Hilbert modular surface of discriminant D. Moreover, χ(XD) was
calculated, for fundamental D, by Siegel in terms of the Dedekind zeta function ζD of
Q(
√
D). For non-fundamental D we write D = f 2D0, where f is the conductor of D and(

D0

p

)
for the Legendre symbol, if p is a prime. Furthermore, we set

F (D) =
∏

p|f

(
1−

(
D0

p

)
p−2

)
,

where the product runs over all prime divisors p of f , and thus have

χ(XD) = χ(Xf2D0
) = 2f 3ζD0(−1)F (D) = D3/2ζD0(2)

F (D)

2π4
,

using the functional equation of ζD0 , cf. [Bai07, §2.3]. Finally, using Euler products, we
obtain the classical bounds

ζ(2)2 =
π4

36
> ζD0(2) > ζ(4) =

π4

90

and
ζ(2)

ζ(4)
=

15

π2
> F (D) >

1

ζ(2)
=

6

π2
.

We can now give an upper bound on g(WD).

Proof of Proposition 3.7.2. As C(WD), e2(WD), e3(WD) > 0, these terms may be ne-
glected yielding

g(WD) ≤ 1 +
7

2
χ(XD) < 1 +D3/2 · 35

48π2
,

using the bounds given above.

Obtaining a lower bound is slightly more involved, as it involves bounding the number of
cusps and orbifold points from above. In general, the cusps are hardest to control, but
by [LN14] and [McM05a], we have

C(WD(6)) = C(WD(2)),
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3.7. Genus asymptotics

i.e. the Teichmüller curves of discriminant D inM2 andM4 have the same number of
cusps. Moreover, denote by PD the product locus in A2, i.e. abelian surfaces that are
polarized products of elliptic curves. This is a union of modular curves and, again by
[McM05a],

C(WD) = C(PD).

To bound the cusps we may therefore proceed in complete analogy to [Muk14, §6].

Lemma 3.7.5. The cusps are bounded from above by

C(WD)

2
≤ D3/4 + 150 +

5

4
χ(XD).

Proof. By [Bai07, Theorem 2.22], χ(PD) = −5
2
χ(XD). Moreover, by [Muk14, Proposition

6.5], the number of connected components of PD can be bounded by

h0(PD) ≤ D3/4 + 150.

Therefore, we may write

−C(WD)

2
= −C(PD)

2
= g(PD)− h0(PD) +

χ(PD)

2
+
∑

d

(
1− 1

d

)
ed(PD)

≥ −h0(PD) +
χ(PD)

2
≥ −D3/4 − 150− 5

4
χ(XD),

which yields the claim.

Next, we must bound the number of orbifold points.

Lemma 3.7.6. The number of points of order 2 satisfies e2(D) < D
2
.

Proof. By Theorem 3.3.1, we have e2(D) ≤ h(−D) + h(−D
4

). Now, it is well-known
that class numbers of imaginary quadratic fields may be computed by counting reduced
quadratic forms (cf. e.g. [Coh93, §5.3]), giving h(−D) < D

3
and thus proving the claim.

Lemma 3.7.7. The number of points of order 3 satisfies e3(D) < D
6
.

Proof. By Theorem 3.4.1,

e3(D) ≤ #{a, i, j ∈ Z : a2 + 3j2 + (2i− j)2 = D}/12.

The integers a and j essentially determine i. Moreover, a must have the same parity as
D giving at most

√
D/2 choices (up to sign) and j ranges (again up to sign) over at most√

D possibilities. Accounting for sign choices and dividing by 12 yields the claim.
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3. Orbifold points on Prym–Teichmüller curves in genus four

Remark 3.7.8. The bound from Lemma 3.7.7 can be improved. Indeed, by the theory of
modular forms of half-integral weight, integral solutions of positive definite quadratic forms
can always be realized as coefficients of a suitable modular form, see [Shi73] or e.g. [Leh92]
for the concrete case at hand. In particular, the integral solutions of a2 + 3j2 + (2i− j)2

are coefficients of a modular form of weight 3/2, level 12 and Kronecker character 12.
Hence,

e3(D) < C ·D3/4

for some constant C that is independent of D (cf. e.g. [MZ16, Theorem 2.1] for growth
rates of coefficients of modular forms).

This permits us to also give a lower bound for g(WD), proving Theorem 3.7.1.

Proof of Proposition 3.7.3. By the above bounds, we have

g(WD) = h0(WD)− χ(WD)

2
− C(WD)

2
− e2(WD)

4
− e3(WD)

3

>
9

4
χ(XD)− D

6
−D3/4 − 150,

which yields the claim by the above bounds on χ(XD).
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D g χ C e2 e3 e5 e6

5 0 −7/15 1 0 1 1
8 0 −7/6 2 1 1

12 0 −7/3 3 1 0 1
13 0 −7/3 3 0 2
17 0 −14/3 6 0 1
20 0 −14/3 5 2 1
21 1 −14/3 4 0 1
24 1 −7 6 2 0
28 1 −28/3 7 2 2
29 1 −7 5 0 3
32 1 −28/3 7 2 2
33 2 −14 12 0 0
37 1 −35/3 9 0 4
40 2 −49/3 12 2 2
41 3 −56/3 14 0 1
44 3 −49/3 9 4 2
45 4 −14 8 0 0
48 4 −56/3 11 2 1
52 4 −70/3 15 2 2
53 4 −49/3 7 0 5
56 6 −70/3 10 4 2
57 7 −98/3 20 0 1
60 8 −28 12 4 0
61 6 −77/3 13 0 4
65 8 −112/3 22 0 2
68 6 −28 14 4 3
69 10 −28 10 0 0
72 10 −35 16 2 0
73 10 −154/3 32 0 2
76 11 −133/3 21 4 2
77 9 −28 8 0 6
80 10 −112/3 16 4 2
84 14 −140/3 18 4 1
85 12 −42 16 0 6
88 15 −161/3 22 2 4
89 17 −182/3 28 0 1
92 15 −140/3 13 6 4
93 15 −42 12 0 3
96 18 −56 20 4 0

D g χ C e2 e3

97 21 −238/3 38 0 2
101 14 −133/3 15 0 5
104 18 −175/3 20 6 2
105 27 −84 32 0 0
108 21 −63 21 4 0
109 18 −63 25 0 6
112 22 −224/3 29 2 4
113 26 −84 32 0 3
116 21 −70 25 6 3
117 21 −56 16 0 0
120 29 −238/3 20 4 2
124 31 −280/3 29 6 2
125 21 −175/3 15 0 5
128 25 −224/3 22 4 4
129 37 −350/3 44 0 1
132 29 −84 26 4 0
133 27 −238/3 22 0 8
136 35 −322/3 36 4 2
137 37 −112 38 0 3
140 33 −266/3 18 8 4
141 34 −84 18 0 0
145 46 −448/3 58 0 2
148 39 −350/3 37 2 4
149 30 −245/3 19 0 7
152 37 −287/3 18 6 4
153 45 −140 52 0 0
156 46 −364/3 26 8 2
157 36 −301/3 25 0 8
160 44 −392/3 40 4 4
161 55 −448/3 40 0 2
164 37 −112 34 8 3
165 42 −308/3 18 0 4
168 51 −126 24 4 0
172 53 −147 37 4 6
173 37 −91 13 0 9
176 49 −392/3 29 6 4
177 66 −182 52 0 0
180 52 −140 36 4 0
181 49 −133 33 0 6

Table 3.3.: Topological invariants of the Teichmüller curves WD(6) for nonsquare discrim-
inant. The number of cusps is described in [LN14], the Euler characteristic in
[Möl14].
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4. C-Linear manifolds

The general technique for counting orbifold points on Teichmüller curves in genus 2, 3
and 4 is the following: an orbifold point is always a flat surface (X,ω) together with some
holomorphic automorphism α which admits ω as an eigendifferential. The topological
action of α can be determined using flat geometry. Then, one can attempt to describe
the locus inside the moduli space of flat surfaces admitting an automorphism and an
eigendifferential of this form and count the intersection points of this locus and the
Teichmüller curve.

The aim of this chapter is to study these loci more conceptually.

In particular, such an eigenform condition can be thought of as a C-linear equation in
period coordinates. We will show that this is in fact enough to determine these loci, i.e.
that they are cut out by C-linear equations in period coordinates.

More precisely, we introduce the notion of a C-linear manifold, i.e. a closed submanifold
M⊆ ΩMg(µ) that is locally cut out by C-linear equations in period coordinates. Note
that R-linear manifolds, affine invariant manifolds, have been studied intensely over the
last decades, see e.g. [Wri15b] for a summary of known results. In particular, they are
closely related to the GL2(R)-action on the moduli space of flat surfaces: indeed, any
affine invariant manifold is GL2(R)-invariant and a deep result of Eskin–Mirzakhani–
Mohammadi asserts that the converse is also true, i.e. that any GL2(R)-orbit closure is
in fact an affine invariant manifold [EMM15]. Moreover, Filip has shown that any affine
invariant manifold is in fact algebraic [Fil16].

By contrast, C-linear manifolds that are not R-linear have hardly been studied, except
for some general results in [Möl08]. However, [Möl08, Definition 6.4] included an extra
condition (requiring the existence of a certain compactification) that, while it made
sense at the time, does not seem warranted from today’s perspective. This limits the
applicability of the results of [Möl08] to our situation.

First, we provide a large class of examples of C-linear manifolds that are not R-linear:
spaces of eigenforms of cyclic covers of P1. These have been used, e.g., in the previous
chapters to count orbifold points of Prym–Teichmüller curves.

Theorem 4.0.1 (Theorem 4.3.1). Any family of eigenspaces of a family of cyclic covers
of P1 is a C-linear manifold.

In order to have a chance at achieving any meaningful classification, we need some notion
of primitive C-linear manifold, i.e. a manifold that is not a cover of another. The typical
example of an imprimitive C-linear manifold arises from an eigenspace of a cyclic cover
where the (exponent of the) eigenvalue is not coprime to the degree of the cover, i.e.
arises via pullback from an intermediate cover (see section A.4 for details).
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4. C-Linear manifolds

We therefore proceed to define a covering construction of a C-linear manifold. Of course,
any such covering construction should be induced by ramified covering maps on the
“points”: if N is a cover ofM then the flat surfaces in N should be translation covers, i.e.
of the form (Y, f ∗ω), where (X,ω) is some flat surface inM and f : Y → X is a ramified
cover. Any such cover is uniquely determined by a monodromy representation ρ of the
Riemann surface X (with some marked points, see section 4.4 for details and notation).

LetM⊆ ΩMg(µ) be a linear manifold, (X,ω) ∈M, ρ a monodromy representation of
(X,ω) andM(ρ) ⊆ ΩMh(ν) the cover associated to ρ (see Definition 4.4.14 for details).
Then we show:

Theorem 4.0.2 (Theorem 4.4.1). M(ρ) is a linear manifold.

While there are several notions of covering constructions for R-linear manifolds (cf.
[Api16], [MMW17]), these typically use the SL2(R)-action and the results of [EMM15] to
show that the cover of an R-linear manifold is again an R-linear manifold. As there is no
SL2(R)-action in the general C-linear case, we provide a slightly technical alternative.
We use the fact that linearity of a manifold can be checked in terms of local systems
(Lemma 4.1.3).

This implies that we need to sufficiently rigidify the manifolds involved (by essentially
passing to Teichmüller space) to obtain an actual ramified covering (Lemma 4.4.6).
Once such a map is constructed, we may transport the local systems freely between the
manifolds involved.

We thus split the covering construction into two parts: constructing covers of a manifold
where the translation covers have prescribed monodromy groups (Proposition 4.4.12)
and constructing quotients of a manifold where all points admit a suitable G-action
(Proposition 4.4.13). In particular, these two constructions are inverse to each other.

The main result is that covers and (suitable) quotients of linear manifolds are again
linear (Proposition 4.4.12 and Proposition 4.4.13). This allows us to define arbitrary
covers of linear manifolds that are again linear and we thus obtain a natural notion of
primitive C-linear manifold, see Definition 4.4.15 for a precise definition.

However, a classification of primitive C-linear manifolds is an open project. Also, the
question of algebraicity, i.e. if an analogous result to [Fil16] can be shown in the C-linear
case, is still wide open. We discuss questions and open problems in section 4.5.

4.1. Flat surfaces and period coordinates

Let X be a compact Riemann surface or equivalently a smooth projective complex curve
and let ω ∈ Ω(X) = H0(X,Ω1

X) = H1,0(X) be a non-zero differential form. By integration,
ω endows X with a flat structure outside the zeros of ω. We therefore call the pair (X,ω)
a flat surface. We denote the moduli space of flat surfaces by ΩMg. Note that this space
comes with a natural projection ΩMg →Mg.
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4.1. Flat surfaces and period coordinates

Moreover, due to the presence of automorphisms, these spaces are not algebraic varieties,
but we may remedy this by, for example, adding a level-3-structure. We denote the
corresponding spaces byM[3]

g and ΩM[3]
g , respectively. However, we will abuse notation

and tacitly drop the exponent, unless the distinction explicitly affects our arguments. In
particular, this guarantees the existence of universal families over all our objects.

4.1.1. Period coordinates Given a flat surface (X,ω), consider

divω =
n∑

i=1

aipi,

where pi are the (distinct) zeros of ω and
∑
ai = 2g − 2. Associating to (X,ω) the

partition (a1, . . . , an) of 2g − 2 gives a natural stratification of ΩMg; given a partition µ
of 2g − 2, we denote the corresponding stratum by ΩMg(µ).

The reason for considering this stratification is that the strata may be endowed with
holomorphic period coordinates: for (X0, ω0) ∈ ΩMg(a1, . . . , an) as above, we set N :=
2g + n− 1 and pick a basis γ1, . . . , γN of the relative homology group H1(X0, Z(ω0);Z)
with respect to Z(ω0), the zeros of ω0. The Gauß-Manin connection lets us identify this
group with H1(X,Z(ω);Z) for all (X,ω) in a neighbourhood U0 of (X0, ω0) by parallel
transport. We thus obtain a map

ΩMg(a1, . . . , an) ⊇ U0 3 (X,ω) 7−→
(∫

γi

ω

)N

i=1

∈ CN ,

which turns out to be locally biholomorphic (away from orbifold points), thus providing
analytic charts with transition functions in GL(N,Z) (the change of basis in relative
homology). Equivalently, we may view period coordinates as associating the relative
cohomology class

U0 3 (X,ω) 7→ [γ 7→
∫

γ

ω] ∈ H1(X,Z(ω);C)

to (X,ω); again we use the Gauß-Manin connection to identify these cohomology groups
on U0 to yield complex coordinates on the stratum.

Let µ be a partition of 2g − 2 and K ⊆ C a subfield of C.

Definition 4.1.1. A K-linear manifold is the image of a closed algebraic immersed
manifoldM→ ΩMg(µ) that is locally cut out by linear equations in period coordinates
with coefficients in K ⊆ C.

Note that, in general, a K-linear manifold will not be embedded in the stratum (the
image could have self-intersections). However, this will not be a problem for us, as we
can work with the fibre-product. For notational convenience and as no confusion can
arise, we treatM as an embedded manifold.
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Remark 4.1.2. R-linear manifolds are also known as affine invariant submanifolds and
have been studied extensively over the last decades. Affine invariant manifolds are closely
related to dynamical systems: the group GL2(R) acts naturally on the strata ΩMg(µ)
and any affine invariant manifold is invariant under this action. In fact, the converse
is also true: a deep result of Eskin-Mirzakhani-Mohammadi [EMM15] asserts that any
GL2(R)-orbit closure is an affine invariant manifold. Moreover, Filip [Fil16] showed
that in the case K = R the algebraicity condition is always satisfied, i.e. any closed
submanifold that is locally cut out by R-linear equations in period coordinates is algebraic.

In particular, Teichmüller curves are examples of affine invariant manifolds.

4.1.2. Bundles on manifolds Let i : M ↪→ ΩMg(µ) be an algebraic submanifold. Then
M comes equipped with a universal family f : X →M, i.e. the fibre over (X,ω) ∈M
is X, that is obtained by pullback of the universal family overMg:

XΩMg XΩMg(µ) X X \D

XMg

ΩMg ΩMg(µ) M

Mg

f

i

j

Recall that we have tacitly endowed everything with a level-3 structure such that all
these universal families do in fact exist. Moreover, note that the universal family over
ΩMg(µ) (and its pullback to any submanifold) comes equipped with a universal divisor
D that restricts to the divisor of zeros of ω on every fibre: D|(X,ω) = Dω := divω. Again,
we denote the reduced divisor associated to Dω by Z(ω). We denote by j : X \D ↪→ X
the natural inclusion. There are several natural bundles onM, which we briefly describe.

• The local system of (absolute) cohomology V := R1 f∗C, the fibre over (X,ω) ∈M
being H1(X,C), and the associated vector bundle V⊗OM of rank 2g.

• The local system of relative cohomology Vrel := R1 f∗j!C, the fibre over (X,ω) ∈M
being H1(X,Z(ω);C), and the associated vector bundle Vrel ⊗OM of rank N .

• The Hodge bundle f∗ωX/M on M of rank g, the fibre over (X,ω) ∈ M being
H1,0(X).

• The tangent bundle TM of rank dimM, the fibre over (X,ω) ∈M being T(X,ω)M,
the tangent space ofM at (X,ω).

Note that, as all the involved families are flat, R1 commutes with base change of vector
bundles. Clearly, f∗ωX/M ⊆ V⊗OM is a subbundle. Moreover, by dualizing the exact
sequence of relative homology we see that

0→ H0(X,C) = C→ H0(Z(ω),C)→ H1(X,Z(ω);C)→ H1(X,C)→ H1(Z(ω),C) = 0
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(note that dimZ(ω) = 0) is exact. Equivalently, observe that we obtain the relative
cohomology groups Hi(X,Z(ω);C) as the sheaf cohomology of j!C on X and the above
sequence is therefore an immediate consequence of the exactness of the sequence

0→ j!C→ C→ i∗C→ 0

of sheaves on X. In the relative situation, this induces a surjective map Vrel → V, the
kernel being the relative cohomology cycles.

4.1.3. A criterion for linearity Consider first the case thatM = ΩMg(µ) consists of
the entire stratum. The linear structure of period coordinates identifies the tangent bundle
TM with Vrel ⊗OM, the bundle of relative cohomology, in this case. IfM ↪→ ΩMg(µ)
is a submanifold of a stratum, period coordinates identify a neighbourhood U0 of a point
(X0, ω0) ∈ M with a subset of relative cohomology H1(X0, Z(ω0);C). In the case that
M is locally linear, we may also identify U0 with the tangent space T(X0,ω0)M toM at
(X0, ω0). This allows us to restate Möller’s linearity criterion:

Lemma 4.1.3 ([Möl08, Thm 3.1]). An algebraic submanifoldM⊆ ΩMg(µ) is linear if
and only if there exists a sub-local system L ⊆ Vrel such that i∗(TM) and L⊗OM are
locally isomorphic.

Proof. The above discussion yields a local identification of L and TM. Conversely, if
the tangent bundle is locally constant, M must be locally linear. Note that, as our
description is local, the twist by the line bundle OP(1) appearing in [Möl08] can be
ignored here.

4.2. Automorphisms and cyclic covers

The first non-trivial examples of C-linear manifolds will be cyclic covers of the projective
line. Let α be a holomorphic automorphism of X of order d and consider the map
π : X → Y := X/α. It is a branched cover of order d and the branching behaviour is
determined by the lengths of α-orbits on X.

4.2.1. Families of cyclic coverings By varying the branch points on Y we obtain a
family X of covers of Y , of dimension

dimX = #{branch points of π} − dim AutY.

In the following, we shall restrict to the case where the genus of Y is 0, i.e. Y ∼= P1. In
this case it is well-known that dim AutY = 3 and the advantage is that we may easily
write down coordinates.

Now, for each fibre X of X , we fix the following notation: Let x1, . . . , xn ∈ P1 be
the branch points of π on P1. For convenience, we choose coordinates on P1 so that
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4. C-Linear manifolds

0 6= xi 6=∞ for all i. Furthermore, we denote by a1, . . . , an the monodromy exponent, i.e.
the exponents that make X equal to the normalisation of

π : yd =
n∏

i=1

(x− xi)ai → A1.

In particular, we may choose 0 < ai < d and we have gcd(d, a1, . . . , an) = 1 and∑
ai ∈ dZ, as X is connected. Note that every xi has gcd(d, ai) preimages on X.

Moreover, the data [d; a1, . . . , an] together with the points xi determine the complex
structure of X uniquely. See Appendix A for background and details on cyclic covers.

4.2.2. Decomposition of the VHS The automorphism α acts on the cohomology of
each fibre H1(X,C) and, as it is of finite order, this action is diagonalisable. We use the
notation of [KM16, §6.5]. We identify G := Gal(X/P1) ∼= Z/dZ and pick a primitive d-th
root of unity ζ := ζd so that the α generates G and its action is given by

α : x 7→ x, y 7→ ζy

and we set χ : G→ C× to be the character of G given by χ(α) = ζ−1. We thus have the
eigenspace decomposition

H1(X,C) =
d⊕

k=1

H1(X,C)χk .

As the action of α respects the symplectic pairing on H1, this decomposition is orthogonal.
Note that the action of α also respects the Hodge decomposition H1(X,C) = H1,0 ⊕ H0,1

and we therefore also obtain a decomposition of H1,0 and H0,1.

This decomposition carries over to the relative setting: By varying x1, . . . , xn inB :=M0,n,
we obtain a family f : X → B. Moreover, this family is locally topologically trivial and
therefore R1f∗C is a local system on B (with fibre H1(Xt,C) for t ∈ B) and gives rise to
a VHS on B. We write

R1f∗C =
d⊕

k=1

Lk

for the splitting of the VHS. Again the splitting is orthogonal with respect to the
symplectic pairing. By abuse of notation, we use Lk to also denote the fibre of Lk over
a point of B if no confusion can arise; we furthermore write L0,1

k ⊆ Lk ⊗ OB for the
subbundle of holomorphic forms.

4.2.3. Eigendifferentials We briefly review some well-known facts about cyclic covers,
see Appendix A for more background and details. By representation theory, more
precisely the Chevalley-Weil formula, we know that

rkLk = #

{
i : ai 6= 0 mod

d

gcd(k, d)

}
− 2 and rkL1,0

k =
d∑

i=1

〈
kai
d

〉
− 1,
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where 〈x〉 := x−bxc denotes the fractional part of x. Note that, in particular, rkLk = n−2
if gcd(k, d) = 1. Moreover, in this case, a basis of L1,0

k is given by

ωlk = xlfk
dx

yk
, 0 ≤ l ≤ dimL1,0

k − 1, and fk =
n∏

i=1

(x− xi)b
kai
d
c. (4.1)

For general k, set e = d
gcd(d,k)

and consider the intermediate cover π′ : X → X/αe, where
πe : X/αe → X/α ∼= P1 is a cyclic cover of degree e and π′ is of degree d

e
. Note that

Lk (on X) is the pullback of the corresponding eigenspace on X/αe, where the above
results apply. More precisely: given an l-eigenform on X/αe, i.e. some form ωl such that
α∗ωl = ζ leωl for some primitive e-th root of unity ζe, clearly

α∗(π′)∗ωl = (π′)∗α∗ωl = ζ le(π
′)∗ωl = ζ

d
e
l

d (π′)∗ωl.

Therefore, the l-eigenforms on X/αe pull back to d
e
l-eigenforms on X. Choosing l =

k
gcd(d,k)

, we clearly have gcd(e, l) = 1 and d
e
l = k. Moreover, by the above dimension

formula, we see that the pullback is in fact all of L1,0
k :

L1,0
k = (π′)∗L1,0

k
gcd(k,d)

.

4.2.4. Strata of eigendifferentials By explicitly calculating the normalisation of the
algebraic model yd =

∏
(x − xi)ai , one can calculate the divisor of each eigenform to

check in which stratum it lies, see Appendix A for details. We give a brief review of the
facts.

For 0 ≤ k < d, we set r(k) := rkL1,0
k − 1 =

∑N
i=1

〈
kai
d

〉
− 2 and, for every 1 ≤ i ≤ N , we

define the integers:

z(i, k) :=
d

gcd(d, ai)

(
1−

〈
kai
d

〉)
− 1.

Now, a generic eigendifferential in ω ∈ L1,0
k has a simple zero at every point over the fibres

above r(k) unramified “floating” points (i.e. points in p1, . . . , pr(k) ∈ P1 \{x1, . . . , xN ,∞})
and possibly zeros over ramification points xi as well as over the point ∞ ∈ P1. More
precisely: ω has the following configuration of zeros:

• a simple zero at each of the d preimages of the points p1, . . . , pr(k);

• for every 1 ≤ i ≤ N : a zero of order z(i, k) (if z(i, k) 6= 0) over each of the gcd(ai, d)
points over xi.

Note that ω does not have any other zeros, in particular there is no zero above the point
∞ ∈ P1.

Remark 4.2.1. If gcd(k, d) > 1, the formula for z(i, k) is also valid. Observe, however,
that in this case z(i, k) is always strictly positive if ai ≡ 0 mod d

gcd(d,k)
, i.e. the intermediate

cover is not ramified over xi.

Definition 4.2.2. With the above notation, we set µ(k) to be the stratum of a generic
eigendifferential in Lk.
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4. C-Linear manifolds

4.3. C-linearity of cyclic covers

The aim of this section is to prove the following result, see also [Möl08, Prop 6.1]:

Theorem 4.3.1. Any family of eigenspaces of a family of cyclic covers of P1 is a C-linear
manifold.

More precisely: let [d; a1, . . . , an] be a cyclic cover of P1 and Lk the kth isotypical compo-
nent of H1(X,C) (as defined above). Then

M(k; [d; a1, . . . , an]) := {(X,ω) ∈ ΩM(µ(k)) : ω ∈ Lk} ⊆ ΩM(µ(k))

is a C-linear manifold.

For the rest of this section, we fix a cyclic cover [d; a1, . . . , an] of P1 with branch points
x1, . . . , xn ∈ P1 such that

∀i : 0 6= xi 6=∞, 0 < ai < d,
n∑

i=1

ai ∈ dZ.

Moreover, for x ∈ P1, we denote by {p1, . . . , pm} = π−1(x) where we choose the numbering
such that α(pi) = pi+1 where the indices are to be understood modulo n. Moreover, we
set a(x) := ai if x = xi and a(x) = d otherwise. We begin with some observations that
will help us calculate the relative periods.

Lemma 4.3.2. Let ω ∈ L1,0
k . Then for any 1 ≤ i ≤ m

1. there exists λi ∈ C, independent of ω, such that
∫ pi

p1

ω = λi

∫ p2

p1

ω;

2.
∫ pi

p1

ω = 0 if a(x) 6= 0 mod d
gcd(k,d)

.

Proof. 1. This follows immediately from the fact that ω is an eigenform. Pick ζ ∈ C
such that α∗ω = ζω. As αi−1(p1) = pi for any i, clearly

∫ pi+1

pi

ω =

∫ αi−1(p2)

αi−1(p1)

ω =

∫ p2

p1

(αi−1)∗ω = ζ i−1

∫ p2

p1

ω.

Using this, we see that
∫ pi

p1

ω =
i−1∑

l=1

∫ pl+1

pl

ω =

( i−2∑

l=0

ζ l
)∫ p2

p1

ω.

2. Assume first that k and d are coprime. As α acts transitively on the fibre, αm(pi) =
pi for all i. Thus, also

∫ pi

p1

ω =

∫ αm(pi)

αm(p1)

ω = ζm
∫ pi

p1

ω.
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4.3. C-linearity of cyclic covers

Note that m < n, as gcd(a(x), d) < d, i.e. π is ramified over x. But as gcd(k, d) = 1,
ζ is an n-th primitive root of unity, in particular, ζm 6= 1, as m < n, hence the
claim follows.

In the general case, consider again the map π′ : X → X/αe where e = d
gcd(k,d)

. Then
there exists some k′ = k

gcd(k,d)
-eigendifferential ω′ such that ω = (π′)∗ω′. But as k′

and e are coprime, we are again in the above situation and thus
∫ pi

p1

ω =

∫ pi

p1

(π′)∗ω′ =

∫ π′(pi)

π′(p1)

ω′ = 0,

as π′(pi) and π′(p1) lie on the same fibre of πe : X/αe → X/α (note that πe is
indeed branched at x, as gcd(a(x), e) < e).

Lemma 4.3.3. Let ω ∈ L1,0
k , x′ ∈ P1 and {p′1, . . . , p′m′} = π−1(x′). Then, for any

1 ≤ i ≤ m there exist λi, λ′i ∈ C, independent of ω, such that

1.
∫ p′i

p1

ω = λi

∫ p2

p1

ω + λ′i

∫ p′1

p1

ω;

2.
∫ p′i

p1

ω = λi

∫ p2

p1

ω, if a(x′) 6= 0 mod d
gcd(k,d)

.

Proof. 1. Again, pick ζ ∈ C such that α∗ω = ζω. As αi−1(p1) = pi for any i and using
Lemma 4.3.2, we see that

∫ p′i

p1

ω =

∫ pi

p1

ω +

∫ p′i

pi

ω = λi

∫ p2

p1

ω +

∫ αi−1(p′1)

αi−1(p1)

ω

= λi

∫ p2

p1

ω +

∫ p′1

p1

(αi−1)∗ω = λi

∫ p2

p1

ω + ζ i−1

∫ p′1

p1

ω.

2. This is an immediate consequence of the first part and Lemma 4.3.2.

Proof of Theorem 4.3.1. Denote the length of µ(k) by N . Then dim ΩMg(µ(k)) = 2g +
N−1. Moreover, dimM(k; [d; a1, . . . , an]) = n−3+rkL1,0

k , as the base space isM0,n and
dimM0,n = n− 3 (for n ≥ 3) while the fibres are the isotypical components L1,0

k . Hence
we must show thatM(k; [d; a1, . . . , an]) is (locally) cut out by 2g+N−1−(rkL1,0

k +n−3)
linear equations in period coordinates.

For (X,ω) ∈ M(k; [d; a1, . . . , an]), consider first the 2g absolute periods. Recall that
Lk is a sub-local system of R1f∗C and ω is in a fibre of L1,0

k ⊂ Lk ⊗OB. Moreover, as
the decomposition of the VHS is orthogonal with respect to the symplectic pairing, this
implies that the periods of ω with respect to any absolute homology cycle in the dual of
the complement of Lk is zero; we therefore obtain 2g − rkLk (linear) conditions on the
absolute periods.

Next we consider the relative periods. Fix some zero p ∈ X of ω and set e := d
gcd(k,d)

. Then
the relative period coordinates are given by integrating ω over the N − 1 relative cycles
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4. C-Linear manifolds

[q − p], connecting p to another zero q of ω. By the considerations in subsection 4.2.4, ω
has simple zeros at each of the d preimages of some points p1, . . . , pr(k) ∈ P1\{x1, . . . , xn},
where r(k) = rkL1,0

k − 1, and, consequently, N − dr(k) zeros at some of the preimages of
the ramification points xi. Note, however, that by Remark 4.2.1 there will always be a
zero above xi if ai ≡ 0 mod e.

Combining Lemma 4.3.3 and Lemma 4.3.2, we obtain linear relations between all relative
periods except for relative periods connecting p to

• one point in the fibre over each of p1, . . . , pr(k) and

• one point in the fibre over each xi with ai ≡ 0 mod e.

In other words, we obtain N − 1 − (rkL1,0
k − 1 + #{i : ai ≡ 0 mod e}) linear relations

among the N − 1 relative periods. Using the above relations in the absolute periods and
that

rkLk = # {i : ai 6= 0 mod e} − 2,

we obtain 2g+N−1−(rkL1,0
k +n−3) linear relations in period coordinates as required.

4.4. Covering constructions

To obtain any meaningful classification of C-linear manifolds, we must first develop a
notion of covering construction, i.e. when a linear manifold is a cover or the pull-back
of some linear manifold in a lower genus stratum. The prototype is the case of the
pullback of an eigenspace of a cyclic cover of degree d to some cyclic cover of degree
de, obtaining an eigenspace for an eigenvalue of non-coprime order to the degree. Of
course, the subtlety lies in detecting which C-linear manifolds arise via such covering
constructions.

Similar to the approach of Apisa ([Api16]), we consider fibre-wise ramified covers and
therefore mark the ramification points. We thus consider strata of flat surfaces with
marked points. We denote the zeros of ω by Z(ω). However, while Apisa uses the SL2(R)
action and the classification results of Eskin-Mirzakhani-Mohammadi [EMM15] to show
that his covering constructions are again R-linear manifolds, we will instead show this
directly using Lemma 4.1.3, thereby refining a result of Möller [Möl08, Prop 3.4].

LetM⊆ ΩMg(µ) be a linear manifold, (X,ω) ∈M, ρ a monodromy representation of
(X,ω) andM(ρ) ⊆ ΩMh(ν) the cover associated to ρ (see Definition 4.4.14 for details).

Theorem 4.4.1. M(ρ) is a linear manifold.

This will allow us to define the notion of a primitive linear manifold (Definition 4.4.15).

We begin by introducing strata of differentials with marked points to control ramified
covers of flat surfaces inside linear manifolds.
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4.4. Covering constructions

Definition 4.4.2. Let µ be a partition of 2g− 2 and n ∈ N. Then we define the stratum
of abelian differentials with marked points

ΩMg(µ, 0
m) := {(X,ω; q1, . . . , qm) : (X,ω) ∈ ΩMg(µ) and qi ∈ X \ Z(ω)}.

We denote the natural forgetful map by fm : ΩMg(µ, 0
m) → ΩMg(µ). Moreover, for

(X,ω; q1, . . . , qm) ∈ ΩMg(µ, 0
m) we set Σ := Z(ω) ∪ {q1, . . . , qm} and write (X,Σ) :=

(X,ω; q1, . . . , qm) if no confusion can arise.

As above, we may define period coordinates for strata with marked points: we integrate
ω against the relative homology cycles H1(X,Σ,C) to obtain local coordinates. Indeed,
if we pick two points q1, q2 ∈ X \ Z(ω) and some p ∈ Z(ω), we have that

∫ q1

p

ω =

∫ q2

p

ω ⇐⇒
∫ q2

q1

ω = 0 ⇐⇒ q1 = q2,

as we may calculate the integral in a chart that does not contain any zeros of ω. In
particular, this implies that we can reconstruct the marked points on X knowing only
the relative periods with respect to ω.

Lemma 4.4.3. Let M ⊆ ΩMg(µ) be a linear manifold and m ∈ N. Then f−1
m (M) ⊆

ΩMg(µ, 0
m) is also a linear manifold. Moreover, dim f−1

m (M) = dimM+m.

Proof. Pick (X,ω) ∈M and a period coordinate chart U ⊂ ΩMg(µ) such thatMU :=
U ∩M is cut out by linear equations. By definition, the preimage f−1

m (U) is also a
coordinate chart for period coordinates (of ΩMg(µ, 0

m)) and the absolute periods as well
as the relative periods involving only the zeros of ω satisfy the same (linear) relations in
f−1
m (MU) as inMU . Moreover, there are no constraints on the choice of the points qi;
hence the dimension increases by m and all equations are linear.

Covers and quotients of flat surfaces Strata with marked points allow us to define
covering constructions. Our constructions are similar to the one in [Api15, §3] but differ
in several important details. First, we review the notion of a translation cover of a flat
surface; while this is treated in many places in the literature, we include the details
as this will be vital for recognising which flat surfaces arise as translation covers. We
begin by describing the case of Galois covers, as this will allow us to move freely in
both directions: pulling back differentials “downstairs” (denoted (X,ω)) and pushing
forward (invariant) differentials “upstairs” (denoted (Y, η)) along branched covers. As
any cover is a composition of Galois covers, we can then combine these techniques to
prove Theorem 4.4.1.

Given a differential with marked points (X,Σ) := (X,ω; q1, . . . , qm), pick a point x ∈ X\Σ,
d ∈ N and a monodromy representation ρ : π1(X \ Σ, x)→ Sd such that G := ρ(π1(X \
Σ, x)) has d elements. It is well-known that ρ determines a unique branched Galois cover
fρ : Y → X of degree d that is unramified outside of Σ: indeed, set Y ′ = H/ ker ρ. Then
the inclusion ker ρ ⊆ π1(X\Σ, x) induces a unique holomorphic étale cover f̃ρ : Y ′ → X\Σ
such that ker ρ = (f̃ρ)∗π1(Y ′, y) for any choice of y ∈ f̃−1

ρ (x). By the Riemann extension
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4. C-Linear manifolds

theorem, there exists a unique Riemann surface Y together with a holomorphic branched
covering map fρ such that the following diagram commutes:

Y ′ Y

X \ Σ X

f̃ρ fρ

We set Σ′ := Y \ Y ′ and observe that Σ′ := f−1
ρ (Σ) ⊂ Y . Now we define the holomorphic

differential η := f ∗ρω on Y ; note that Z(η) ⊆ Σ′. Moreover, the stratum of η is determined
only by the choice of ρ and the stratum of ω. In summary: the data of a differential with
marked points (X,Σ) of genus g together with a point x ∈ X \Σ and a normal subgroup
ker ρ ≤ π1(X \ Σ, x) determines a unique flat surface (Y, η) of genus h together with d
choices of a point y in the fibre of x.

Note moreover that, by construction, G acts freely and holomorphically on Y ′ and this
action extends to a holomorphic action on Y and the holomorphic quotient map is
ramified at most at the zeros of the G-invariant differential η. In fact, fρ (and f̃ρ) is the
quotient by G. This lets us reverse this construction.

Consider a flat surface (Y, η) of genus h together with a subgroup G ⊆ Aut(Y ) of
holomorphic automorphisms that fix η and act freely on Y \ Z(η). Then η descends
to a holomorphic differential ω on the quotient X := Y/G of genus g. Again, the
stratum of (X,ω) is determined by the stratum of η and the action of G. Moreover,
we additionally mark any ramification points q1, . . . , qm of fG : Y → Y/G = X on X
that are not zeros of ω. Clearly, by choosing any point y ∈ Y \ Z(η) and the subgroup
(fG)∗π1(Y \ Z(η), y) ⊆ π1(X \ Σ, x), the two constructions are inverse to each other.

Therefore, the data (X,Σ, x; ρ) determines a stratum ν = ν(ρ) and a unique flat surface
(X,Σ, x)ρ := (Y, f ∗ρω) ∈ ΩMh(ρ)(ν(ρ)) of genus h = h(ρ) with marked points Σ′ given
by the zeros of η = f ∗ρω together with a holomorphic action of G = π1(X \ Σ, x)/ ker ρ.
Note, however, that as a pointed flat surface there are d choices of (Y, η, y) corresponding
to the d preimages of x permuted by the Deck group of fρ.

Conversely, the data (Y, η, y;G) where G is a subgroup of Aut(Y ) acting as above,
determines a unique stratum µ = µ(G) and a unique flat surface (Y, η)/G := (X,Σ) ∈
ΩMg(G)(µ(G), 0m(G)) of genus g = g(G) with m = m(G) marked (ramification) points.
Moreover, we recover the normal subgroup (fG)∗π1(Y \ Z(η), y) ⊆ π1(X \ Σ, x).

Covers of strata As the above construction is essentially topological, it is not well-
defined on a stratum. To remedy this, we must include a Teichmüller marking. Fix a
reference surface (S,Σ) ∈ ΩMg(µ, 0

m) together with a point s ∈ S \ Σ and consider
ΩTg,1(Σ), the space of pointed flat surfaces in ΩMg(µ, 0

m) endowed with a Teichmüller
marking, i.e. an isotopy class of a homeomorphism φ : (S,Σ, s)→ (X,Σ, x) that maps
s to x and restricts to a homeomorphism S \ Σ → X \ Σ. In particular, φ induces
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4.4. Covering constructions

an isomorphism φ∗ : π1(S \ Σ, s) ∼= π1(X \ Σ, x). Denote by Mod(Σ) = Modg,n+m the
mapping class group of S that fixes Σ (forgetting the extra marked point). Then the
quotient of ΩTg,1(Σ) by Mod(Σ) coincides with the stratum ΩMg(Σ). Observe that
ΩTg,1(Σ) is naturally endowed with period coordinates.

We now fix, once and for all, a monodromy representation ρ : π1(S \ Σ, s) → Sd with
image a group G as above. By covering space theory, this induces an étale cover
fG : S ′ \ Σ′ → S \ Σ and we choose, once and for all, a point s′i ∈ f−1

G (s), (i = 1, . . . , d).
Denote by h the genus of S ′. Then we can associate to any (X,Σ, φ, x) ∈ ΩTg,1(Σ) a
monodromy representation ρ◦φ−1

∗ : π1(X \Σ, x)→ Sd and thus a flat surface (Y, η) with a
group G(Y ) ⊆ Aut(Y, η) such that (Y, η)/G(Y ) = (X,ω), as described above. Moreover,
we may lift φ along the unramified coverings S ′\Σ′ → S\Σ and Y \Z(η)→ X\Σ to obtain
a homeomorphism ψ : S ′ \ Σ′ → Y \ Z(η). Replacing φ by an isotopic homeomorphism
yields a homeomorphism isotopic to ψ. By setting y := ψ(s′i), we obtain a unique point

σG,i((X,Σ, φ, x)) := (Y, η, ψ, y) ∈ ΩTh,1(ν)

and thus obtain d maps σG,i : ΩTg,1(Σ)→ ΩTh,1(ν).

Quotients of strata We can (essentially) reverse this construction. However, we must
first describe the image of the maps σG,i inside ΩTh,1(ν).

To describe the subset of a stratum ΩMg(ν) with a fixed group action, we pass again
to the Teichmüller space. Again, we fix a reference surface (S ′, η0) ∈ ΩMh(ν) together
with a point s′ ∈ S ′ \ Z(η0) and a group G ⊆ Aut(S ′, η0) as above. Hence we obtain a
quotient surface fG : S ′ → S = S ′/G onto which the G-invariant differential η0 descends.
We denote the differential on S by ω0 and by Σ the set of zeros of ω0 and ramification
points of fG; the image of the (unramified) point s′ is denoted by s.

Then we define ΩTh,1(G) as the space of flat surfaces (Y, η, ψ, y,G(Y )) with a Teichmüller
marking ψ : (S ′, Z(η0), s′)→ (Y, Z(η), y) (i.e. sends zeros of η0 to zeros of η of the same
order and maps s′ so y) and a group G(Y ) ⊆ Aut(Y, η) such that the induced group
action ψ∗G(Y ) of G(Y ) on (S ′, η, s) is topologically equivalent to the action of G on S,
i.e. there exists a homeomorphism φ between the quotients that lifts to a homeomorphism
φ̃ on S ′ that is isotopic to the identity:

S ′ S ′

S ′/G S ′/ψ∗G(Y )φ

φ̃

Remark 4.4.4. Note that this is in fact a necessary condition: indeed, the Teich-
müller marking ψ is only defined up to isotopy. Consider isotopic homeomorphisms
ψ0, ψ1 : (S ′, Z(η0), s

′) → (Y, Z(η), y) and an automorphism α : Y \ Z(η) → Y \ Z(η).
Then the homeomorphism ψ−1

1 ψ0 : S ′ → S ′ descends to a homeomorphism S ′/ψ−1
0 αψ0 →

S ′/ψ−1
1 αψ1 and is isotopic to the identity on S.
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In particular, this implies that G(Y ) acts freely on y and this lets us associate to
every (Y, η, ψ, y,G(Y )) the quotient (X,Σ, φ, x), where X = Y/G(Y ), ω is the induced
differential of genus g and Σ denotes the zeros of ω and ramification points of G(Y ),
as above. Moreover, x is the image of y and φ is the induced Teichmüller marking
φ : (S,Σ, s)→ (X,Σ, x).

Thus we obtain a natural map πG : ΩTh,1(G)→ ΩTg,1(Σ).

Moreover, this space is in fact a subset of the stratum of Teichmüller space.

Lemma 4.4.5. The forgetful map ΩTh,1(G)→ ΩTh,1(ν) is an injection.

Proof. This follows from the fact that different holomorphic automorphisms are not
isotopic. Indeed, consider a surface Y ′ with groups of holomorphic automorphisms G and
H that act freely and such that there exists a homeomorphism ϕ : Y ′/G→ Y ′/H that
lifts to a homeomorphism ϕ̃ : Y ′ → Y ′ that is isotopic to the identity. Then ϕ̃ induces an
isomorphism of the deck groups by conjugation. But as ϕ̃ is isotopic to the identity, this
implies G = H, as isotopic holomorphic automorphisms are already equal.

This allows us to talk about covers and quotients of (subsets of) strata.

Lemma 4.4.6. With the above notation, given a flat surface (S ′, η′, s′) ∈ ΩMh,1(ν) and
a group G ⊆ Aut(S ′, η′) as above, we obtain an unramified cover

πG : ΩTh,1(G)→ ΩTg,1(Σ)

of degree d, where ΩTg,1(Σ) has the reference surface (S ′/G,Σ, s) with the Teichmüller
markings induced by G.

Conversely, given a flat surface (S, ω, s) ∈ ΩMg,1(µ, 0
m) together with a monodromy

representation as above, we obtain d sections σG,i : ΩTg,1(Σ) → ΩTh,1(G) of πG that
correspond to the d choices of the point s′ on the ramified cover S ′ → S.

Proof. This follows from the above discussion. As the marked point is always chosen
outside of the ramification locus of G, the map πG is unramified of degree d. Moreover,
covering space theory asserts that the constructions are unique (up to the choice of a
point in the fibre) and that πG is surjective.

Representation theoretic viewpoint Recall that the Teichmüller space can be described
by Fuchsian representations of the fundamental group of a surface. More precisely, denote
by S a fixed reference surface of genus g together with n marked points p1, . . . , pn ∈ S.
Then we say that a representation Rg,n : π1(S \ {p1, . . . , pn})→ PSL2(R) is fuchsian, if
it is faithful with discrete image and the quotient of H by the image of Rg,n is of finite
hyperbolic area and homeomorphic to S \ {p1, . . . , pn}. However, this construction is up
to the choice of the preimage on H, the universal cover of S, of a base-point s, i.e. up to
conjugation by PSL2(R). In other words, Tg,n is the space of fuchsian representations up
to conjugation by PSL2(R).

106



4.4. Covering constructions

This descriptions seems useful for describing our covering construcions, as it would allow us
to fix, once and for all, a subgroup of π1(S \ {p1, . . . , pn}) and restrict the representations
to construct coverings. However, for Lemma 4.4.6, the choice of a basepoint on the
curve was essential. The choice of lift to the fibre in the universal cover must still be
remedied by conjugation, but this makes it more subtle. Moreover, the marked points
add subtle geometric aspects to the otherwise completely algebraic description of the
representations. Also, describing the locus with a suitable group action is not very
practical in this language.

Therefore, describing the constructions using the language of fuchsian representations
does not seem feasible.

Covers and quotients of linear manifolds We can now extend these constructions
to any submanifold M ⊆ ΩMg(µ, 0

m) and submanifolds N ⊆ ΩMh(ν) admitting an
appropriate group action.

Definition 4.4.7. Fix (S,Σ) ∈M, s ∈ X \ Σ and ρ : π1(S \ Σ, s)→ G ⊆ Sd as above.

Then we denote by Tg,1M ⊆ ΩTg,1(Σ) the lift of M to the corresponding stratum of
Teichmüller space. Furthermore, we denote by Th,1M(G) ⊆ ΩTh,1(G) the preimage of
Tg,1M under πG.

Clearly, the quotient manifold can only be constructed if N ⊆ ΩMh(ν) does in fact
admit a lift to some ΩTh,1(G) for some group G.

Definition 4.4.8. Fix (S ′, η0) ∈ N and s′ ∈ S ′ \ Σ′ as above. If there exists a G ⊆
Aut(S ′, η0) such that the lift Th,1N ⊆ ΩTh,1(ν) is contained in ΩTh,1(G) (via the action
induced by the Teichmüller marking with reference point (S ′, Z(η0), s′)), we denote this
lift by Th,1NG. In this situation, we say that N admits a compatible G-action and denote
by Tg,1N /G ⊆ ΩTg,1(Σ) the image of Th,1NG under πG.

Remark 4.4.9. Choose the section σi,G of πG corresponding to s′ ∈ S ′. Then Tg,1N /G
is the preimage of Th,1NG under σi,G.

The following observation ensures that these constructions descend under the action of
the appropriate mapping class group. Denote, as above, by Mod(G) = Modg,n+m the
mapping class group of S ′ that fixes Z(η0) (forgetting the extra marked point).

Lemma 4.4.10. πG is equivariant with respect to the action of the appropriate mapping
class groups.

Proof. This is clear from the above constructions: the action of the mapping class group
changes the marking and is thus compatible with the described constructions.

In particular, this implies that Th,1M(G) and Tg,1N /G are invariant under the mapping
class groups Mod(G) and Mod(Σ). We denote the quotients by

M(G) := (Th,1M(G))/Mod(G) ⊆ ΩMh(ν) and
N /G := (Tg,1N /G)/Mod(Σ) ⊆ ΩMg(µ, 0

m).
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Remark 4.4.11. Note that, given a linear manifold M ⊆ Mg(µ, 0
m) together with a

monodromy representation ρ as above, the manifold Th,1M(G) (and thusM(G), etc.) is
not at all uniquely determined. The following results will, however, be independent of the
choices made in the construction.

Linearity of covers Of course, this construction is only useful if the cover of a linear
manifold is again a linear manifold. Apisa’s covering construction uses the SL2(R) action
and the classification results of [EMM15] in an essential way [Api15, Lemma 3.3]. In our
situation, this is obviously not possible.

Proposition 4.4.12. LetM⊆ ΩMg(µ, 0
m) be a linear manifold.

Then Th,1M(G) ⊆ ΩTh,1(ν) andM(G) ⊆ ΩMh(ν) are linear manifolds.

Proof. By Lemma 4.1.3, the tangent bundle ofM⊆ ΩMg(µ, 0
m) is a sub-local system

L ⊆ Vrel of the local system of relative cohomology onM. Moreover, local systems on
M lift to local systems on Tg,1M. By abuse of notation, we also denote the lifts by L
and Vrel. Note that Vrel

g gives the period coordinates on ΩTg,1(Σ) and L is the tangent
bundle of Tg,1M inside Vrel.

Moreover, as πG is unramified, π∗GL is the tangent bundle on Th,1M(G). Also, pulling
back the relative cohomology Wrel to ΩTh,1(G) equips it with a G-action and we denote
by (Wrel)G the G-invariant sub-bundle. The situation is summarised in the following
diagram:

π∗GL π∗GVrel ∼= (Wrel)G Wrel

L Vrel Th,1M(G) ΩTh,1(G) ΩTh,1(ν)

Tg,1M ΩTg,1(Σ)
πG

i

Note that we may identify (Wrel)G with π∗GVrel. Indeed, denote again by fg : X → ΩTg,1(Σ)
and fh : Y → ΩTh,1(G) the corresponding universal families and by j : X \D ↪→ X and
j′ : Y \ D′ ↪→ Y the universal divisors (i.e. fibre-wise the zeros of the differential and
the marked points). Moreover, let π : Y → X be the map induced by πG. Then
Vrel = R1(fg)∗j!C and i∗Wrel = R1(fh)∗j′!C. But the maps j and j′ are determined only
by the Teichmüller marking. Indeed, fibre-wise we are in the following situation: let Y
be a fibre of Y and X the corresponding fibre of X . Denote by S and S ′ the reference
surfaces inside the strata (with marked points Σ and Σ′) and by φ and ψ the Teichmüller
markings from the above construction of πG. Then j and j′ are induced by the following
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commuting cube:
S ′ S ′ \ Σ′

Y Y \D′

S S \ Σ

X X \D

ψ

πX

φ

fG

j′Y

jX

In particular, they only depend on the fixed cover fG and the Teichmüller marking
and therefore we obtain an inclusion π∗j!C ↪→ j′!C in families. Moreover, by the same
argument, the pulled-back relative cohomology classes are also G-invariant in families and,
checking fibre-wise, this inclusion yields an isomorphism π∗GVrel ∼= (Wrel)G as claimed.

Now, Th,1M(G) is linear if (Wrel)G is in fact a sub-local system of Wrel (note that π∗GL is
a sub-local system of π∗GVrel ∼= (Wrel)G by construction). But again, this is the case, as
the group action at each point is determined only by the Teichmüller marking. Thus the
G-splitting of the relative cohomology group H1(S ′,Σ′;C) is transported to every fibre
by the Teichmüller marking and is thus compatible with the linear structure of i∗Wrel,
which is also obtained through the Teichmüller marking.

Finally, by the definition of period coordinates, the quotient by the mapping class group
is also a linear manifold.

Linearity of quotients To construct general covers of linear manifolds, we also need our
quotient construction to be well-behaved.

Proposition 4.4.13. Let N ⊆ ΩMh(ν) be an algebraic linear manifold that admits a
compatible G-action (cf. Definition 4.4.8) for some G.

Then Tg,1N /G ⊆ ΩTg,1(Σ) and N /G ⊆ ΩMg(µ, 0
m) are linear manifolds.

Proof. The proof is similar to the proof of Proposition 4.4.12, except that we now pull
back the local systems along the map σG,i.

General covers We now discuss the case of general (i.e. not necessarily Galois) covers.
Let f : Y → X be a (finite degree) unramified cover of (possibly punctured) Riemann
surfaces and fix x ∈ X and y ∈ f−1(x). Then (Y, y) is determined by the subgroup
f∗π1(Y, y) ⊆ π1(X, x); note that conjugating f∗π1(Y, y) in π1(X, x) gives the same cover
f but changes the base point in the fibre. Equivalently, the cover f : (Y, y)→ (X, x) is
determined by the corresponding monodromy representation ρ : π(X, x)→ Sd. Moreover,
we can construct the Galois closure of f : denote by N the normal core of f∗π1(Y, y),
i.e. the intersection of all its conjugates in π1(X, x). Then N ≤ π1(X, x) is a normal
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4. C-Linear manifolds

subgroup of finite index and thus induces a Galois covering g : Y ′ → X with Galois group
G = π1(X, x)/N :

Y ′

Y

X

g

h

f

Note that Y ′ is unique up to the choice of a point y′ ∈ f ′−1(x). Moreover, h : Y ′ → Y is
also Galois with Galois group H := f∗π1(Y, y)/N .

Starting with a monodromy representation ρ : π1(X, x)→ Sd, we denote the corresponding
groups by G(ρ) and H(ρ).

Definition 4.4.14. LetM⊆ ΩMg(µ, 0
m) be a linear manifold and (X,Σ) ∈M. Then

we setM(ρ) =M(G(ρ))/H(ρ).

Proof of Theorem 4.4.1. The statement now follows immediately from Proposition 4.4.12
and Proposition 4.4.13.

This finally gives us a well-defined notion of primitive linear manifold.

Definition 4.4.15. LetM⊆ ΩMg(µ, 0
m) and N ⊆ ΩMh(ν) be linear manifolds. Then

we say that N is a cover of M if there exists a monodromy representation ρ such
that dimN = dimM and N ⊆ M(ρ). Moreover, we say that a linear manifold N is
imprimitive if there exists a linear manifoldM such that N is a (non-trivial) cover of
M. A linear manifold N is primitive if it is not imprimitive.

4.5. Questions and open problems

We end this section by formulating some questions and open problems in the theory of
C-linear manifolds, as directions for possible future research.

R-linear manifolds have been extensively studied and there are many known examples.
Building on Theorem 4.3.1, it is natural to ask for other new explicit examples of C-linear
manifolds.

Question 4.5.1. What are other explicit examples of C-linear manifolds that are not
R-linear?

Motivated by the example of the Prym loci and the examples that appear in the
classification of orbifold points on Teichmüller curves, a natural candidate would be a
bundle of eigenforms for an endomorphism with a complex eigenvalue over a Shimura
curve. In most known examples (e.g. [McM06], [Muk14], [MMW17], etc.) any such
endomorphism is induced by an automorphism of the underlying Riemann surface. The
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difficulty in the case of a more general endomorphism is that the action on the relative
periods of the eigendifferential is a priori not known, see also [Wri13] for related ideas.

Moreover, much progress has been achieved recently in the classification of affine invariant
manifolds and in low genus the picture is now fairly complete [EFW17], [MMW17], [BM12],
[BHM16], [ANW14], [MW14], [NW14], [AN15] and [LNW15]. It would be interesting to
classify, at least in low genus, primitive C-linear manifolds that are not R-linear.

Question 4.5.2. What primitive C-linear manifolds that are not R-linear arise in low
genus?

Such a classification was already attempted for genus 2 curves in [Möl08, Theorem 4.1].
However, due to the extra conditions imposed on the boundary in [Möl08, Definition 6.4],
that classification is not complete.

A major breakthrough in the theory of affine invariant manifolds was achieved recently by
Filip [Fil16], who was able to show that all affine invariant manifolds are in fact algebraic.
A similar question can be asked for C-linear manifolds.

Question 4.5.3. Let ι : M→ ΩMg(µ) be an immersion of a closed manifoldM whose
image is cut out locally by C-linear equations in period coordinates. Is the image of ι
necessarily algebraic?

Filip used techniques of Mixed Hodge Structures in [Fil16]. It would be interesting
to apply such techniques to C-linear manifolds. Moreover, this might yield a more
conceptual understanding of Theorem 4.4.1.
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A. Cyclic covers of P1

In this appendix we collect some facts about cyclic covers of P1. In particular, we give an
explicit description of the algebraic model, the canonical divisor and intermediate covers.
All of this is fairly well-known but scattered throughout the literature.

A.1. The topological model

Let X be a Riemann surface with an automorphism α of order d such that X/α ∼= P1.
Then π : X → X/α ∼= P1 displays X as a (ramified) cyclic cover of P1 of order d. The
Riemann-Hurwitz formula relates the ramification data of π to the genus g of X:

2g − 2 = −2d+
∑

p∈X
(ep − 1),

where ep is the ramification index of π at p, i.e. the number of preimages of π(p′) for
some p′ in a small neighbourhood of p. Note that ep = 1 for all but finitely many points
in X. In particular, for all p ∈ X,

#π−1(π(p)) =
d

ep
,

and ep = ep′ if π(p) = π(p′) (α acts transitively on each fibre).

We denote the points p ∈ X with ep > 1 as ramification points and their images on P1 as
branch points. We define the branch locus as

S := {x ∈ P1 | ∃ p ∈ X : ep > 1 and π(p) = x}.
Moreover, π is Galois cover (with Galois group 〈α〉 ∼= Z/dZ) and we obtain an unramified
(topological) cover by considering

π′ : X \ π−1(S)→ P1 \ S.
As such, it corresponds to a unique normal subgroup of the fundamental group π1(P1 \S).
We denote the branch points of π by x1, . . . , xn ∈ P1 and choose generators γ1, . . . , γn of
π1(P1 \ S), where γi is a simple counter-clockwise loops around xi.

Fix an integer d and choose points x1, . . . , xn ∈ C \ {0} and integers a1, . . . , an satisfying
0 < ai < d and

∑
ai ∈ dZ. We denote a tuple

[d; a1, . . . , an], d ∈ Z, 0 < ai < d,

n∑

i=1

ai ∈ dZ,

together with a tuple (x1, . . . , xn) ∈ (C \ {0})n as a (combinatorial) ramification datum.
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A. Cyclic covers of P1

A.2. The algebraic model

We now give an explicit algebraic model for the complex curve associated to the ramified
covering (Riemann surface) of section A.1. To this end, we construct cyclic covers over
A1 and glue two of these together to obtain a cyclic cover over P1.

Fix a combinatorial ramification datum [d; a1, . . . , an] and distinct points x1, . . . , xn ∈
C \ {0} as above and set

f(x) =
n∏

i=1

(x− xi)ai and π : C ′ = SpecC[x, y]/(yd − f(x))→ SpecC[x] = A1,

where π is induced by the inclusion map of rings. Hence, on the set of C-valued points, π
is the projection (x0, y0) 7→ x0. By abuse of notation, we will often identify the geometric
point x0 with the maximal ideal (x− x0) ≤ C[x].

Clearly, π is of degree d and unramified outside xi. However, if ai > 1, the model C ′ is
singular at π−1xi. We therefore pass to the normalisation Cnorm → C ′ and consider the
fibre. To ease notation we set a = ai and pass to local coordinates so that it suffices to
consider the situation

Cnorm → SpecC[x, y]/(yd − xa)→ SpecC[x].

The fibre over 0 consists of e = gcd(d, a) irreducible components. Indeed, if we set
d′ = d/ gcd(d, a) and a′ = a/ gcd(d, a), clearly

SpecC[x, y]/(yd − xa) = SpecC[x, y]/
e∏

i=1

(yd
′ − ζ iexa

′
),

where ζe is some fixed eth root of unity. Hence, the fibre consists of a product of e
irreducible components that are cusps with equation yd′ = xa

′ with d′ and a′ coprime.
The normalisation map of such a cusp is well-known to be bijective. Indeed, consider the
map of rings

ϕ : C[x, y]/(yd
′ − xa′)→ C[ta

′
, td
′
], x 7→ td

′
, y 7→ ta

′
.

This map is clearly well-defined and surjective. It is in fact an isomorphism as we can
find integers l,m ∈ Z such that the map to the function field

C[t] 3 t 7→ xlym ∈ Quot
(
C[x, y]/(yd

′ − xa′)
)

restricts to a map ϕ−1 : C[ta
′
, td
′
] → C[x, y]/(yd

′ − xa′) that is clearly the inverse to ϕ.
The normalisation of C[ta

′
, td
′
] (in C(t)), on the other hand, is clearly the embedding

into C[t] and the geometric map from A1 to the cusp is bijective, the fibre over the cusp
(at the ideal (ta

′
)) being

Spec
(
C[t]⊗C[ta′ ,td′ ] C[ta

′
, td
′
]/ta

′)
= SpecC[t]/ta

′
,

i.e. a single non-reduced point.
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To summarise: the fibre of π over xi consists of gcd(d, ai) points and the local parameter
in the normalisation is described by the ring homomorphism

C[x](x−xi) →
(
C[x, y]/(yd − f(x))

)
(y,x−xi) → C[t

ai
gcd(d,ai) , t

d
gcd(d,ai) ] ↪→ C[t], (A.1)

where x− xi 7→ td/ gcd(d,ai) and y 7→ tai/ gcd(d,ai) (and everything else is invertible).

We now glue two such covers together to obtain a ramified cover of P1. Denote by
SpecC[u] = A1 a second copy of A1 that we glue to SpecC[x] in the usual way to obtain
a P1:

SpecC[x] ⊃ SpecC[x]x ∼= SpecC[u = 1/x]u ⊂ SpecC[u].

Then we can set

g(u) =
n∏

i=1

(
u− 1

xi

)ai
= u

∑
aif

(
1

u

)∏(−1

xi

)ai

(note that the product is simply a unit) and glue the cover

C ′′ = SpecC[u, z]/(zd − g(u))→ SpecC[u] = A1

to C ′ along the open preimages of C[x]x and C[u = 1/x]u and thus obtain a curve
π : C → P1. More precisely, we can set N =

∑n
i=1 ai and check in the function field

K(C):

zd = g(u) = εuNf

(
1

u

)
= ε

f(x)

xN
= ε

yd

xN
,

where ε is some unit, which provides the desired isomorphism and incidentally also shows
that C is unramified over ∞ ∈ P1 if and only if d|N . In this case, we set N ′ = N/d and
observe that

u =
1

x
, z = ε′

y

xN ′
, (A.2)

where ε′ is some unit, as both sides were dth powers in K(C). We have thus shown:

Proposition A.2.1. Given the combinatorial ramification data [d; a1, . . . , an], the nor-
malisation of the projective curve with affine model given by

yd =
n∏

i=1

(x− xi)ai = f(x)

is the Riemann surface X with ramification data [d; a1, . . . , an] (over P1) and the ram-
ified maps of Riemann surfaces is the morphism π induced by the embedding C[x] →
C[x, y]/(yd − f(x)).

A.3. The canonical divisor

Given a ramification datum, we can now, using the (normalisation of) the algebraic model
computed in section A.2, compute the canonical divisor on the cyclic cover π : X → P1.
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We begin, again, by a topological observation: using the Riemann-Hurwitz formula, we
can, by the above observations, calculate the degree of the canonical divisor as

2g − 2 = −2d+
∑

p∈X
(ep − 1) = −2d+

n∑

i=1

gcd(ai, d)

(
d

gcd(ai, d)
− 1

)

= (n− 2)d−
n∑

i=1

gcd(ai, d).

(A.3)

On the other hand, consider the (meromorphic) global section of the canonical divisor
dx on P1. Clearly, it has no poles or zeros on A1 = SpecC[x] but admits a double zero
at infinity, as

dx = d

(
1

u

)
= −du

u2

on the coordinate patch C[u = 1/x]. Similarly, we consider the global section of the
canonical divisor π∗dx = dx on X: the defining equation yields the relation

dyd−1dy = f ′(x)dx = f(x)
n∑

i=1

ai
x− xi

dx

and this already shows ordp dx = 0 if y 6= 0, i.e. if p is not a ramification point. At
the ramification points, we must compute the order of dx on the normalisation. More
precisely, over the ith branch point xi, the normalisation has gcd(d, ai) components and,
for each component the normalisation map is given by Equation A.1 as x 7→ td/ gcd(d,ai)

yielding
dx = d(td/ gcd(d,ai)) = εt

d
gcd(d,ai)

−1
dt,

which results in a zero of order d
gcd(d,ai)

− 1 at each of the gcd(d, ai) ramification points
in the fibre over xi.

Finally, π is unramified over ∞ ∈ P1 and at each of the d preimages we can calculate the
order of dx with the coordinate change Equation A.2:

dx = d

(
1

u

)
= −du

u2
.

In other words, dx has a double pole at each of the d preimages over ∞. In particular,
dx is not a holomorphic section of the canonical bundle. We can, however, compare our
calculation to the Riemann-Hurwitz formula to do a reality check: combining the above,
we have

div dx =
n∑

i=1

gcd(d, ai)

(
d

gcd(d, ai)
− 1

)
− 2d = 2g − 2

in accordance with Equation A.3.

To construct holomorphic global sections, we consider instead, for k ∈ N, the differentials
dx
yk
. By the same argument as above, ordp

dx
yk

= 0 if p is no ramification point. Over
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the branch point xi, we pass again to the normalisation of the gcd(d, ai) cusps and by
Equation A.1, we can use x 7→ td/ gcd(d,ai) and y 7→ tai/ gcd(d,ai) to see that locally

dx

yk
=

dtd/ gcd(d,ai)

tkai/ gcd(d,ai)
= εt

d
gcd(d,ai)

−1−k ai
gcd(d,ai) dt,

and therefore that ordp
dx
yk

= d
gcd(d,ai)

− 1− k ai
gcd(d,ai)

for each of the gcd(d, ai) preimages
of xi. In particular, we observe that

d− gcd(d, ai)

ai
≥ k (A.4)

for dx
yk

to be holomorphic at (each) preimage p of xi.

Finally, we consider again the situation over the (non-branch point) ∞ ∈ P1. At each of
the d preimages, we use again the coordinate change Equation A.2 to see that

dx

yk
= ε

1

zkxkN ′
d

(
1

u

)
= ε′ukN

′−2 du

zk
,

where zk is a unit and N ′ =
(∑

ai
)
/d. In particular, we see that dx

yk
vanishes with order

kN ′ − 2 at each point over ∞. Again, we observe that dx
yk

is holomorphic over each
preimage of ∞ if and only if

k
n∑

i=1

ai ≥ 2d (A.5)

is satisfied. Again, we calculate the degree as a reality check and see:

deg
dx

yk
=

n∑

i=1

gcd(d, ai)

(
d

gcd(d, ai)
− 1− k ai

gcd(d, ai)

)
+ d

(
k

d

n∑

i=1

ai − 2

)

= 2g − 2,

by Equation A.3, as above.

Note that if we consider any x′ 6= xi for all i, we observe that

(x− x′)edx

yk

has a zero of order e at x′, behaves like dx
yk

outside of x′ and ∞ and transforms as

(x− x′)e =

(
1

u
− x′

)e
=

1

ue
(1− ux′)e

at ∞. Hence it adds a pole of order e at (each point over) ∞, as 1− ux′ is invertible at
u = 0. Similarly, if we set x′ = xi for some i, we add a zero of order d

gcd(d,ai)
e to each of

the gcd(d, ai) preimages of xi and again a pole of order e to each of the d preimages of
∞.
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A.4. Intermediate covers

Consider a divisor e | d. We set d′ = d
e
. Then the projection π : X → X/α factors

through X → X/αe → X/α. In particular, we may again give an algebraic model for
X/αe by

ye =
n∏

i=1

(x− xi)ai = f(x),

where we may now consider the ai modulo e. We set [ai]e := ai mod e. Indeed, the map
of rings

C[x, y]→ C[x, y]/(yd − f(x)), x 7→ x, y 7→ yd
′

clearly factors through C[x, y]/(ye − f(x)). Note that πd′ : X → X/αe is (a ramified
cover) of degree d′, while πe : X/αe → X/α is of degree e. By abuse of notation, we do
not distinguish between the algebraic models and their normalisations and the morphisms
between the algebraic models and their normalisations1 unless this is required for explicit
computations.

As we want to pull back differential forms from X/αe to X, we briefly discuss the
ramification behaviour of these maps.

The discussion in section A.2 explains the ramification behaviour of πe: each point
xi ∈ P1 = X/α has gcd(ai, e) preimages (in the normalisation). In particular if the
number of preimages of xi on X is a multiple of e, then xi is unramified with respect to
πe, otherwise it is ramified with index e/ gcd(ai, e).

We now turn our attention to the morphism π′ := πd′ . Clearly it is unramified outside
the preimages of xi on X/αe. Consider a point x′i in the gcd(ai, e) preimages of xi
on X/αe. Then each x′i has gcd(ai, d)/ gcd(ai, e) preimages on X, hence each of the
gcd(ai, d)/ gcd(ai, e) preimages of x′i on X has a ramification index of

eq =
d

e

gcd(e, ai)

gcd(d, ai)
⇐⇒ π′(q) ∈ π−1

e (xi).

Equivalently, we may consider the normalisation of π′ in this situation. Consider a
preimage x′i of xi ∈ X/α on the normalisation of X/αe and a preimage q of x′i on the
normalisation of X. The same arguments as in section A.2 imply that the induced map

1 Note that, by the universal property of the normalisation, for any morphism π : X → Y , there exists
a unique morphism πnorm : Xnorm → Y norm making the diagram

Xnorm Y norm

X Y

∃!πnorm

π

commute, as the composition Xnorm → X
π→ Y is a morphism of a normal variety into Y and thus

factors through the normalisation.
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between the normalisations of the algebraic models of X/αe and X/α is locally induced
by

C[t] ⊇ C[t
[ai]e

gcd(ai,e) , t
e

gcd(ai,e) ]→ C[t
[ai]d

gcd(ai,d) , t
d

gcd(ai,d) ] ⊆ C[t], t 7→ t
d
e

gcd(ai,e)

gcd(ai,d) , (A.6)

i.e. this map of rings describes the π′ locally on the fibres. Note that the the local
exponent ai for a non-ramified point is 0 so that the map is simply the identity t 7→ t in
this case.

This allows us to pull back differentials. Consider the l-eigendifferential

ωrl =
r∏

i=1

(x− pi)
N∏

i=1

(x− xi)
⌊
l[ai]e
e

⌋
dx

yk

on X/αe, where the points pi are pairwise distinct and do not coincide with the xj on P1.
The discussion in section A.3 yields the local form of ωrl around every point on X/αe:
around a point away from all the preimages of the pi and xi, it is simply of the form dt;
at each of the e preimages of the points pi it has a simple zero, i.e. is of the form tdt and
around each of the gcd(ai, e) preimages of the point xi, it is of the form

t
e

gcd(e,ai)
(1+
⌊
l[ai]e
e

⌋
)−l [ai]e

gcd(e,ai)
−1

dt;

finally, around each of the e preimages of the point ∞ ∈ P1 it is of the form

t
∑N
i=1( l

e
[ai]e−

⌊
l[ai]e
e

⌋
)−r−2dt.

We can therefore describe the divisor of the pullback (π′)∗ωrl by applying Equation A.6
to each of the local situations. Note that

d
(
t
d
e

gcd(ai,e)

gcd(ai,d)
)

= t
d
e

gcd(ai,e)

gcd(ai,d)
−1

dt.

We thus obtain that (π′)∗ωrl is again of the form dt around every preimage of every point
outside of {pi, xj} and has a simple zero at each of the d preimages of each point pi; at
each of the gcd(d, ai) preimages of each point xi it is of order

d

gcd(d, ai)

(
1 +

⌊
l[ai]e
e

⌋)
− d

e

l[ai]e
gcd(d, ai)

− 1 =
d

gcd(d, ai)

(
1−

〈
l[ai]e
e

〉)
− 1;

finally, at each of the d preimages of ∞ it is of order

N∑

i=1

(
l

e
[ai]e −

⌊
l[ai]e
e

⌋)
− r − 2 = 0.

It is straight-forward to check that these orders do indeed add up to 2g(X)− 2.
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Zusammenfassung

Die zentralen Objekte der Dissertation sind Familien von flachen Flächen. Dabei besteht
eine flache Fläche (X,ω) aus einer kompakten riemannschen Fläche (äquivalent einer
glatten projektiven komplexen algebraischen Kurve) und einer holomorphen Differential-
form ω ∈ H1,0(X) \ {0}. Indem wir ω integrieren, können wir X außerhalb der Nullstellen
von ω mit einer flachen Metrik versehen, beziehungsweise mit einem komplexen Atlas,
dessen Kartenwechselabbildungen lokal durch Translationen gegeben sind. Weiterhin
bezeichnen wir den Modulraum der projektiven komplexen algebraischen Kurven von
Geschlecht g mit Mg und den Modulraum der flachen Flächen von Geschlecht g mit
ΩMg. Es gibt eine natürliche Projektionsabbildung π : ΩMg →Mg.

Die Gruppe SL2(R) operiert auf dem Modulraum der flachen Flächen durch Scheren der
flachen Struktur. In dem (seltenen) Fall, dass C = π(SL2(R)·(X,ω)) inMg eindimensional
(also eine Kurve) ist, nennen wir C eine Teichmüllerkurve.

Die Menge der bekannten Teichmüllerkurven ist recht überschaubar: Es gibt eine Reihe
von „klassischen Beispielen“, die auf Veech und Ward zurückgehen und später von Bouw
und Möller verallgemeinert wurden (sie liefern Beispiele für Teichmüllerkurven mit beliebig
großem Fasergeschlecht). Weiterhin gibt es die Weierstraßkurven, eine unendliche Familie
von Teichmüllerkurven im ModulraumM2, die von McMullen und Kalta entdeckt wurden.
McMullen ist eine Beschreibung aller Teichmüllerkurven in M2 gelungen. Weiterhin
hat er unendliche Familien in M3 und M4 konstruiert, die Prym-Teichmüllerkurven.
Kürzlich haben Mukamel, McMullen und Wright neue Familien in Geschlecht 4 entdeckt.
Andererseits gibt es eine Reihe starker Endlichkeitsaussagen, die vermuten lassen, dass
es sich bei diesen Familien um ein spezielles Phänomen in niedrigem Geschlecht handelt.

Teichmüllerkurven sind als Kurven inMg auf natürliche Weise Orbifolds. Topologisch
lassen sie sich daher durch ihr Geschlecht g klassifizieren, welches sich aus, h0, der
Anzahl der Zusammenhangskomponenten, C, der Anzahl der Spitzen, χ, der Orbifold-
Eulercharakteristik, und aus ed, der Anzahl der Orbifoldpunkte von Ordnung d, mit Hilfe
der Formel

2h0 − 2g = χ+ C +
∑

d

ed

(
1− 1

d

)

ermitteln lässt.

Die Weierstraßkurven in M2 sind ausführlich studiert worden. McMullen trieb die
topologische Klassifikation voran, indem er die Anzahl der Spitzen und Zusammenhangs-
komponenten klassifizierte. Seine Doktoranden Bainbridge und Mukamel bestimmten
die (Orbifold-)Eulercharakteristik und die Typen und Anzahl der Orbifoldpunkte der
einzelnen Kurven, so dass das Geschlecht dieser Teichmüllerkurven bestimmt werden
konnte.
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Die Prym-Teichmüllerkurven WD(4) inM3 und WD(6) inM4 sind wie die Weierstraß-
kurven inM2 durch quadratische Diskriminanten indiziert. In diesen Fällen wurde die
Eulercharakteristik von Möller berechnet, die Berechnung der Anzahl der Spitzen sowie
der Zusammenhangskomponenten erfolgte durch Lanneau und Nguyen.

Das Hauptziel dieser Dissertation ist die Bestimmung des topologischen Typs aller
Prym-Teichmüllerkurven inM3 undM4.

Das erste Resultat der Dissertation ist in gemeinsamer Arbeit mit David Torres-Teigell
entstanden.

Mit Ausnahme einiger Spezialfälle für kleine Diskriminanten, die wir separat behandeln,
beschreiben wir die Orbifoldpunkte auf den Prym-Teichmüllerkurven in M3 durch
ganzzahlige Lösungen quadratischer Formen. Genauer definieren wir für jede positive
Diskriminante D

H2(D) := {(a, b, c) ∈ Z3 : a2 + b2 + c2 = D, gcd(a, b, c, f0) = 1 }, und
H3(D) := {(a, b, c) ∈ Z3 : 2a2 − 3b2 − c2 = 2D, gcd(a, b, c, f0) = 1,

− 3
√
D < a < −

√
D, c < b ≤ 0,

(4a− 3b− 3c < 0) ∨ (4a− 3b− 3c = 0 ∧ c < 3b) },

wobei f0 den Führer vonD bezeichnet. Die zusätzlichen Bedingungen in der Definition von
H3(D) schränken die Lösungen auf die innerhalb eines gewissen Fundamentalbereiches
liegenden ein und sorgen dafür, dass es nur endlich viele solcher ganzzahligen Lösungen
gibt.

Theorem 1 (Theorem 1.1.1). Für nicht-quadratische Diskriminanten D > 12 hat die
entsprechende Prym-Teichmüllerkurve inM3 nur Orbifoldpunkte von Ordnung 2 und 3.

Genauer: Die Zahl e3(D) der Orbifoldpunkte von Ordnung 3 ist |H3(D)|; die Zahl e2(D)
der Orbifoldpunkte von Ordnung 2 ist |H2(D)|/24, falls D gerade ist und es gibt keine
Punkte der Ordnung 2 falls D ungerade ist.

Weiterhin hat die Kurve W8(4) genau einen Punkt der Ordnung 3 und einen Punkt der
Ordnung 4; die Kurve W12(4) hat einen einzigen Orbifoldpunkt der Ordnung 6.

Weiterhin geben wir eine Tabelle mit den topologischen Invarianten der Teichmüller-
kurven (Tabelle 1.2 auf Seite 44), sowie Prototypen an, die die flache Struktur dieser
Orbifoldpunkte explizit geometrisch beschreiben (siehe Abschnitt 1.7).

Für den Beweis des Theorems betrachten wir zwei Familien zyklischer Überlagerungen
von P1 inM3, die Kleeblattfamilie X und die Windmühlenfamilie Y (die Namen erklären
sich durch die flachen Prototypen in Abschnitt 1.7). Weiterhin betrachten wir ihr Bild un-
ter der Prym-Torelli-Abbildung, das heißt wir ordnen jeder Kurve eine (1, 2)-polarisierte
abelsche zweidimensionale Prym-Varietät zu, die durch die Prym-Involution aus ihrer
Jacobischen hervorgeht (siehe Abschnitt 1.2). Mit Hilfe klassischer Methoden, die auf
Bolza zurückgehen, können wir sowohl die Periodenmatrizen als auch die Prym-Varietäten
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im Fall dieser zyklischen Überlagerungen explizit beschreiben und diese auf reelle Multi-
plikation untersuchen. Die Schnittpunkte mit den Prym-Teichmüllerkurven sind genau die
Punkte, die ein geeignetes Differential und eine damit verträgliche reelle Multiplikation
zulassen.

Wir erhalten zudem strukturelle Resultate bezüglich der Familien X und Y und sehen,
dass sich diese sehr unterschiedlich verhalten.

Theorem 2 (Theorem 1.1.2). Das Bild der Prym-Torelli-Abbildung der Familie X ist
isogen zu dem Punkt Ei × Ei im Modulraum A2,(1,2) der abelschen Flächen mit (1, 2)-
Polarisierung. Dabei bezeichnet Ei die zum quadratischen Torus C/(Z ⊕ Zi) gehörige
elliptische Kurve. Orbifoldpunkte der Ordnung 2 und 4 auf WD(4) entsprechen Schnitt-
punkten mit dieser Familie.

Insbesondere unterscheidet sich diese Situation stark von der in Geschlecht 2 von Mukamel
untersuchten. Daher sind durchgehend andere Methoden notwendig.

Im Gegensatz dazu liegt das Prym-Torelli-Bild der Y-Familie dicht in einer Shimurakurve
von Diskriminante 6.

Theorem 3 (Theorem 1.1.3). Der Abschluss des Prym-Torelli-Bildes der Y-Familie in
A2,(1,2) ist die (kompakte) Shimurakurve, die (1, 2)-polarisierte abelsche Flächen parame-
trisiert, deren Endomorphismenring isomorph zu der Maximalordnung in der indefiniten
Quaternionenalgebra von Diskriminante 6 ist. Orbifoldpunkte der Ordnung 3 und 6 auf
WD(4) entsprechen den Schnittpunkten mit dieser Familie.

Mit Hilfe dieser expliziten Darstellungen gelingt es uns die Schnitte mit den Teichmüller-
kurven WD(4) explizit zu zählen, um die oben genannten Formeln zu erhalten.

FürD ≡ 1 mod 8 zeigen Lanneau und Nguyen, dass die zugehörige Prym-Teichmüllerkurve
in zwei Zusammenhangskomponenten zerfällt. Das gleiche Verhalten wurde auch schon
von McMullen für die Weierstraßkurven in M2 beobachtet. McMullen gab für die
Weierstraßkurven sowohl eine Klassifikation der Spitzen als auch eine Spin-Invariante an,
mit der man entscheiden kann, auf welcher Komponente eine Spitze einer Teichmüllerkurve
liegt. Mit Hilfe dieser Invarianten und der Klassifikation der Spitzen konnten Bouw und
Möller zeigen, dass die Komponenten der Weierstraßkurven Galois-konjugiert und daher
insbesondere homöomorph sind.

Zwar wurden die Spitzen der Prym-Teichmüllerkurven von Lanneau und Nguyen klassifi-
ziert, es war aber nicht bekannt, wie sich die Spitzen auf die einzelnen Komponenten
verteilen.

In einem weiteren Kapitel der Arbeit wird eine Spin-Invariante für Prym-Teichmüllerkurven
beschrieben, mit deren Hilfe man bestimmen kann, welche Spitze auf welcher Komponente
liegt. Mit Hilfe dieser kann das zweite Resultat der Dissertation gezeigt werden:

Theorem 4 (Theorem 2.1.1). Sei D ≡ 1 mod 8 kein Quadrat. Dann sind die zwei Zu-
sammenhangskomponenten der zugehörigen Prym-Teichmüllerkurve inM3 homöomorph.
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Insbesondere hat also jede der Komponenten gleich viele Spitzen und Orbifoldpunkte
und das gleiche Geschlecht.

Die Idee des Beweises ist es, in Analogie zu der Arbeit von Bouw und Möller die
Galois-Operation auf den Spitzen explizit anzugeben. Mit Hilfe der Spin-Invariante
(Theorem 2.1.2) zeigen wir, dass eine Spitze und ihre Galois-konjugierte Spitze nicht
auf derselben Komponente liegen. Daher sind die Zusammenhangskomponenten Galois-
konjugiert und damit insbesondere auch homöomorph.

Damit ist die topologische Klassifikation der Prym-Teichmüllerkurven inM3 abgeschlos-
sen.

Das nächste Ergebnis der Dissertation ist wieder in gemeinsamer Arbeit mit David
Torres-Teigell entstanden und liefert eine analoge Klassifikation der Orbifoldpunkte für
die Prym-Teichmüllerkurven inM4.

Theorem 5 (Theorem 3.1.1). Für alle Diskriminanten D > 12 hat die entsprechende
Prym-Teichmüllerkurve inM4 nur Orbifoldpunkte von Ordnung 2 und 3.Genauer gilt:

• Für die Anzahl e2(D) der Punkte von Ordnung 2 gilt

e2(D) =





0 , falls D ungerade ist,
h(−D) + h(−D/4) , falls D ≡ 12 mod 16 ist und
h(−D) , falls D ≡ 0, 4, 8 mod 16 ist.

Dabei bezeichnet h(−D) die Klassenzahl der quadratischen Ordnung O−D.
• Für die Anzahl e3(D) der Punkte von Ordnung 3 gilt

e3(D) = #{a, i, j ∈ Z : a2 + 3j2 + (2i− j)2 = D, gcd(a, i, j) = 1}/12.

• W5(6) hat einen Punkt der Ordnung 3 und einen Punkt der Ordnung 5.

• W8(6) hat einen Punkt der Ordnung 2 und einen Punkt der Ordnung 3.

• W12(6) hat einen Punkt der Ordnung 2 und einen Punkt der Ordnung 6.

Bemerkenswert ist, dass es im Geschlecht-4-Fall, ähnlich wie im Geschlecht-2-Fall, einen
direkten Zusammenhang zu elliptischen Kurven mit komplexer Multiplikation gibt und
daher „konventionelle“ Klassenzahlen auftauchen, siehe Abschnitt 3.2.

Um genauer zu sein: Die Grundidee des Vorgehens ist ähnlich wie im Geschlecht-3-Fall.
Allerdings stößt man in diesem Fall auf das Problem, dass der Lokus inM4 der Kurven
mit der „richtigen“ Automorphismengruppe, der Diedergruppe D8, mit dem man die
Teichmüllerkurven schneiden möchte, zweidimensional ist (es handelt sich nicht mehr
um eine zyklische Überlagerung des P1, sondern einer elliptischen Kurve). Sie lässt sich
allerdings explizit durch elliptische Kurven beschreiben und eine Bedingung an das
Differential, die von der Teichmüllerkurvendefinition herkommt, verringert die Dimension
wieder um 1.
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Theorem 6 (Theorem 3.1.2). Die FamilieM4(D8) steht in Bijektion zu der Familie

E = {(E, [P ]) : E ∈M1,1, [P ] ∈ (E \ E[2])/φ },

die aus elliptischen Kurven zusammen mit einem ausgezeichneten Basispunkt und einem
elliptischen Punktepaar besteht. Hier bezeichnet φ die elliptische Involution.

Insbesondere ist diese Familie zweidimensional; allerdings ist die Teilmenge der Kurven,
die eine C4-Eigenform mit einer einzigen Nullstelle zulassen, nur eindimensional und
steht in Bijektion zuM1,1 \ {E2}.

Die Bijektion geht in diesem Fall direkt aus einer expliziten Beschreibung von Kurven mit
einer D8-Wirkung als geeignetes Faserprodukt geeigneter elliptischer Kurven hervor, siehe
Abschnitt 3.3. Wir beschreiben dann das Prym-Torelli-Bild dieser Familie und zeigen,
dass die reelle Multiplikationsbedingung der Prym-Teichmüllerkurve gerade komplexer
Multiplikation der zugehörigen elliptischen Kurve entspricht. Da die Klassenzahl die
Anzahl elliptischer Kurven mit komplexer Multiplikation ist, lässt sich die Anzahl der
Punkte der Ordnung 2 durch diese ausdrücken.

Für die Punkte der Ordnung 3 muss man wieder eine zyklische Überlagerung des P1

betrachten. Allerdings besteht das Prym-Torelli-Bild auf Grund der vielen Automor-
phismen nur aus einem einzigen Punkt (Theorem 3.1.3). Durch sorgfältige Analyse der
Eigenbasis und der auftretenden reellen Multiplikation erhalten wir die obige Formel
für die Punkte der Ordnung 3. Wir geben außerdem eine explizite Konstruktion solcher
Kurven als Faserprodukt der zum Hexagon gehörenden elliptischen Kurve mit sich selbst
an, siehe Abschnitt 3.4.

Des Weiteren geben wir wieder Prototypen für die flache Struktur mit Hilfe sogenannter
k-Differentiale an, siehe Abschnitt 3.6. Außerdem können wir in diesem Fall genaue
Aussagen zum Wachstum des Geschlechts machen.

Theorem 7 (Theorem 3.1.4). Es gibt Konstanten C1, C2 > 0, die unabhängig von D
sind, so dass

C1 ·D3/2 < g(WD(6)) < C2 ·D3/2.

Wir können die Konstanten recht explizit angeben und sehen daher insbesondere, dass
WD(6) genau dann Geschlecht 0 hat, wenn D ≤ 20.

Da bei der Klassifikation der Orbifoldpunkte die Analyse von Familien von flachen
Flächen mit Automorphismen durchgehend eine wichtige Rolle spielte, werden diese im
letzten Abschnitt der Dissertation etwas systematischer untersucht.

Die Ordnungen der Nullstellen eines holomorphen Differentials ω auf einer Kurve von
Geschlecht g definieren eine Partition µ von 2g − 2. Andererseits können wir zu jeder
Partition µ von 2g − 2 die Teilmenge ΩMg(µ) ⊆ ΩMg definieren, die aus den (X,ω)
bestehen, deren Nullstellenordnungen der Partition µ entsprechen. Die ΩMg(µ) bilden
eine natürliche Stratifizierung des Modulraums ΩMg. Die einzelnen Strata können
mit Periodenkoordinaten versehen werden, so dass sie lokal biholomorph zu CN für
N = 2g+ |µ|−1 sind. Ein bedeutendes Ergebnis von Eskin, Mirzakhani und Mohammadi
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besagt, dass jeder SL2(R)-Bahnabschluss durch R-lineare Gleichungen beschrieben wird;
ein bedeutendes Ergebnis von Filip besagt, dass diese immer algebraisch sind.

Wir führen den Begriff einer C-linearen Mannigfaltigkeit ein, d.h. einer Mannigfaltigkeit
M ⊆ ΩMg(µ), die lokal durch C-lineare Gleichungen in Periodenkoordinaten ausge-
schnitten wird. Zunächst geben wir eine Klasse von Beispielen an.

Theorem 8 (Theorem 4.3.1). Der Raum der Eigendifferentiale einer zyklischen Überla-
gerung von P1 ist eine C-lineare Mannigfaltigkeit.

Als letztes wird eine Überlagerung C-linearer Mannigfaltigkeiten definiert. Da man sich
in diesem Fall nicht der SL2(R)-Aktion und der damit zusammenhängenden Klassifikati-
onssätze bedienen kann, ist diese recht technisch.

Theorem 9 (Theorem 4.4.1). Eine Überlagerung einer C-linearen Mannigfaltigkeit ist
eine C-lineare Mannigfaltigkeit.

Trotzdem ist eine Klassifikation primitiver (d.h. nicht aus einer Überlagerung hervorgehen-
der) C-linearer Mannigfaltigkeiten noch nicht absehbar. Im abschließenden Abschnitt 4.5
werden einige weiterführende offene Fragen formuliert.

Das Kapitel 1 ist als gemeinsame Arbeit mit David Torres-Teigell als [TTZ16] erschienen,
Kapitel 2 wurde zur Veröffentlichung angenommen und wird als [Zac16] erscheinen und
Kapitel 3 ist, wieder als gemeinsame Arbeit mit David Torres-Teigell, als [TTZ17] erschie-
nen. Diese Kapitel unterscheiden sich nur marginal von den veröffentlichten Versionen.
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