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Abstract
We performed an intercomparison of river discharge regulated by dams under four
meteorological forcings among five global hydrological models for a historical period by
simulation. This is the first global multimodel intercomparison study on dam-regulated river
flow. Although the simulations were conducted globally, the Missouri–Mississippi and
Green–Colorado Rivers were chosen as case-study sites in this study. The hydrological models
incorporate generic schemes of dam operation, not specific to a certain dam. We examined
river discharge on a longitudinal section of river channels to investigate the effects of dams on
simulated discharge, especially at the seasonal time scale. We found that the magnitude of dam
regulation differed considerably among the hydrological models. The difference was attributable
not only to dam operation schemes but also to the magnitude of simulated river discharge
flowing into dams. That is, although a similar algorithm of dam operation schemes was
incorporated in different hydrological models, the magnitude of dam regulation substantially
differed among the models. Intermodel discrepancies tended to decrease toward the lower
reaches of these river basins, which means model dependence is less significant toward lower
reaches. These case-study results imply that, intermodel comparisons of river discharge should
be made at different locations along the river’s course to critically examine the performance of
hydrological models because the performance can vary with the locations.
1. Introduction

Humans have constructed approximately 60 000 dams
and reservoirs worldwide (Avakyan and Iakovleva
1998, ICOLD 2016) with the aim of providing stable
access to water resources and preventing riverine
© 2017 IOP Publishing Ltd
disasters. Humans also use riverine water for
irrigation, and municipal and industrial purposes.
Currently, most of the world’s large rivers are regulated
by dams (Nilsson et al 2005). To simulate river
discharge affected by human impacts worldwide,
global hydrological models (GHMs) implementing
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dam regulation and water abstraction schemes are
necessary (Biemans et al 2011, Bierkens 2015, Nazemi
and Wheater 2015a, 2015b).

Hydrological simulations are subject to uncertain-
ties arising from various factors. Among them,
uncertainties from meteorological forcings and hydro-
logical models are predominant. Firstly, the various
global meteorological data sets compiled fromobserved
data with various compilation methodologies may
contain different atmospheric conditions (including
precipitation), which affects simulated runoff and river
discharge (e.g. Müller Schmied et al 2016a).

Secondly, hydrological models themselves are
also sources of uncertainty. Each model implements
different schemes for land surface processes (e.g.
runoff, evapotranspiration, and infiltration) or river
routing processes and also uses different parameters.
As a result, even simulations of natural flow
(unregulated flow without water withdrawal) differ
considerably among GHMs (Haddeland et al 2011).
Moreover, human interventions in river flow, such
as dam operation and water withdrawal from surface
water bodies (e.g. rivers and lakes) and groundwater,
are additional sources of uncertainty among GHMs.
Although a variety of dam operation strategies exist
to meet local water resource requirements/uses,
weather conditions, social/political demands and so
forth, operational rules and historical records of
operations are not available to the public except for a
limited number of cases. Therefore, present GHMs
incorporate generic schemes of dam operation (e.g.
Hanasaki et al 2006, Haddeland et al 2006).
Hereafter, the term ‘generic schemes’ indicates
schemes that are not specific to a certain dam but
are applicable to a group of dams. Such schemes
fundamentally shift the timing of outflows by
temporarily storing water without changing the
total volume of river flow, insofar as evaporation
from open water surfaces of dam reservoirs is
considered to be secondary. Generic schemes can
successfully reduce errors of simulated river dis-
charge compared with observed discharge. However,
practical application of these schemes to actual
riverine management has room for further improve-
ment due to their simplification of dam functions
(Hanasaki et al 2006).

With the rising use of GHMs, it has become
increasingly important to examine their performance
through intercomparison (Haddeland et al 2011,
Schewe et al 2014, Gosling et al 2016), as well as in
terms of water withdrawal (Wada et al 2013) and
extreme hydrological events (Dankers et al 2014,
Prudhomme et al 2014). However, no intercompari-
son of flow regulation has been performed. Moreover,
since river flow can be regulated by multiple dams in a
river channel, the differences in flow regulation among
GHMs should be systematically investigated. In this
study, the impacts of dam operation on river flow are
2

examined from upstream to downstream. In addition,
it is important to compare simulated and observed
discharges to check the model performance in
hydrological simulations. For global-scale simulations,
comparisons have often been performed at one or a
few representative gauge stations for each basin
(Nijssen et al 2001, Sperna Weiland et al 2010,
Hattermann et al 2017). The station which has a long
history of observation near the furthest main-stem
reach is favorably used because river flow at these
locations is considered to reflect the overall character-
istics of the basin. However, since highly regulated
rivers have variable seasonal behavior, even among
river sectors separated by dams, comparisons and
validations of river flow at the furthest reach is
insufficient to identify sources of intermodel differ-
ences. It is important to perform intercomparisons of
regulated river flow by decomposing river channels
into sectors from the upper to lower reaches, similar to
the longitudinal section analysis of Vörösmarty et al
(1997).

In this paper, we simulated of river discharge
under multiple meteorological forcings for the
historical period of 1971–2000 using multiple models
and examined the characteristics of river discharge
regulated by dams. The objectives of this paper are
twofold. (1)We examine the effects of different models
by comparing the simulated seasonality of river
discharge obtained using five GHMs (section 3.1).
Here, we compare the alteration of river flow by dams
at the seasonal timescale obtained with multiple
models. (2) We also discuss discrepancies among the
models under multiple forcings (section 3.2). To
elucidate the effects of dam regulation, we examine the
Missouri–Mississippi and Green–Colorado river sim-
ulations as case studies. This research was performed
under the framework of Phase 2a of the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP).

The structure of this paper is as follows. We outline
the data sets and analytical methods in section 2. The
results are presented in section 3. We discuss the
performance and potential problems of the regulated
river flow simulations in section 4. In section 5, the
conclusions are presented.
2. Data and Methods
2.1. Historical meteorological data
Four historical meteorological data sets were used in
this study, namely GSWP3 (Kim et al 2014), Princeton
PGMFD ver2 (Sheffield et al 2006), WFDEI.gpcc
(Weedon et al 2014) and WATCH (Weedon et al
2010), hereafter referred to as GSWP3, PGFv2,
WFDEI and WATCH, respectively (table 1). Since
WFDEI.gpcc covers 1979 onward, WFDEI is a
combination of WATCH (before 1979) and
WFDEI.gpcc (after 1979) in ISIMIP2a. Meteorological



Table 1. Historical meteorological data sets used in this study.
The last column shows whether wind-induced precipitation
undercatch is corrected. These data sets were re-gridded and
distributed by the ISIMIP.

Data sets

(Abbreviation)

Reanalysis Precipitation

correction

Undercatch

GSWP3 20th

Centurya
GPCC ver6,

CRU TS3.21

Corrected

Princeton PGMFD

ver.2 (PGFv2)

NCEP-

NCARb

CRU TS3.21 Uncorrected

WFDEI.gpcc

(WFDEI)

ERA-

Interimc

GPCC ver5/6 Corrected

WATCH ERA-40d GPCC ver4 Corrected

a Compo et al (2011)
b Kalnay et al (1996)
c Dee et al (2011)
d Uppala et al (2005)
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variables used in this simulation depend on GHMs
(see table A1 stacks.iop.org/ERL/12/055002/mmedia),
employing different land process schemes. Müller
Schmied et al (2016a) examined these meteorological
data sets and pointed out that differences in
chronological decadal trends of meteorological vari-
ables caused differences in simulated discharge and
evapotranspiration.
2.2. Hydrological simulations
We used the following five GHMs: DBH (Tang et al
2007), H08 (Hanasaki et al 2008a, 2008b), LPJmL
(Rost et al 2008, Biemans et al 2011), PCR-GLOBWB
(Wada et al 2014) and WaterGAP (Müller Schmied
et al 2014, 2016a). All GHMs included dam operation
(in consideration of construction year) in their
simulation. Their results were available on January,
2016, in the ISIMIP2a framework. In the main, the
model settings followed ISIMIP2a protocol (ISIMIP,
2015), although there were some exceptions. All the
models covered the globe at a resolution of 0.5°×0.5°
for the period 1971–2000, which is common simula-
tion periods determined by the ISIMIP protocol for
the four meteorological data sets. The hydrological
state variables of each model at the beginning of 1971
were stabilized (spun-up) using pre-1970 data. River
routing was achieved using DDM30 (Döll and Lehner
2002) (see section 2.4 later). Analysis settings and
model specifications are briefly summarized in table 2
and online supplementary table A1.

To examine anthropogenic effects on river flow,
we used simulations called ‘varsoc’ runs, defined by
ISIMIP2a, which included time-varying human
interventions (standard analysis settings were dams,
water withdrawal, and changes in land use over
basins; see also tables 2 and A1 for details). Historical
land use (e.g. type of crop cultivation) is represented
annually by Dynamic MIRCA-HYDE. This is a
historical extension of MIRCA2000 (Portmann et al
2010), which provides land use data circa 2000 with
3

the extension of time-varying trends given by
HYDE3.1 (Goldewijk et al 2011). Dam specifications
(location, storage capacity, and construction year)
were provided by GRanD ver. 1.1 (Lehner et al 2011a,
2011b). Essentially, the GHMs implemented the dam
location data provided as standard data by ISIMIP,
which was georeferenced to DDM30. We also used
‘nosoc’ runs in naturalized, control simulations, in
which neither human withdrawals nor dam operation
were considered.

Some GHMs used analysis settings that were
different from the standard ones. As shown in table 2,
four of the five models included human withdrawals
other than irrigation. WaterGAP adopts static land use
but varies irrigation areas yearly. Regarding the dam
location data, some GHMs relocated dams in
consideration of different priorities (table A2; see
also comparison maps by Müller Schmied et al
(2016b)).

2.3. Post-simulation analysis
In this paper, we focused mainly on the climatological
seasonality of river discharge for two major global
rivers, and compared simulated data with observa-
tions. We aggregated both simulated and observed
daily river discharge over three-month periods:
December to February (DJF), March to May
(MAM), June to August (JJA), and September to
November (SON), which correspond to winter,
spring, summer, and fall, respectively.

The observed discharge data were obtained from the
archive of the Global Runoff Data Centre (GRDC) and
theUnitedStatesGeological Survey (USGS).Tocompare
simulated and observed discharge, we georeferenced the
river gauge station toDDM30 so that the catchment area
of the stationagreedwith thatofDDM30.Wedivided the
analysis period 1971–2000 into three 10-yr time spans in
our analysis because not all gauge stations had been in
operation over the entire 30-yr analysis period. To utilize
as many gauge stations as possible for comparison with
simulated discharge and to suppress meteorological
year-to-year variability,we considered the10-yr period is
adequate for our purpose.

2.4. Case studies
In this paper, the Missouri–Mississippi and Colorado
River basins were chosen as case studies. We chose
these river basins because (1) historical river discharge
records are available, particularly for gauge stations in
different river sectors separated by large dams, (2)
there is clear seasonality in the river discharge, (3) the
flow is significantly regulated by large reservoirs, and
(4) both river basins have large catchment areas so that
differences in geographical characteristics inside these
river basins can be resolved at a resolution of
0.5°× 0.5°. In fact, the levels of flow regulation are
15.5% and 280% for the Mississippi and Colorado
River Basins, respectively, estimated as the percentage

http://stacks.iop.org/ERL/12/055002/mmedia


Table 2. Hydrological models used in this study. Abbreviations for water use: (Ir) irrigation, (D) domestic, (In) industry, (Mn)
manufacturing, (Lv) livestock, and (C) cooling of thermal power plants. See also table A1 for other specifications of each model.

GHM Water use Calibration River routing Dam operation scheme Evaporation from water

surface of dams

DBH Ir No linear reservoir, DDM30 Hanasaki et al (2006)c No

H08 Ir,D,In No linear reservoir, DDM30 Hanasaki et al (2006)c

(active only for flood

prevention scheme)

No

LPJmL Ir,D,In,Lv No linear reservoir, DDM30 Biemans et al (2011) Considered

PCR-

GLOBWB

Ir,D,In,Lv No travel-time routing Wada et al (2014) Considered

WaterGAP Ir,D,Mn,

Lv,Ca

Calibrated

on long-term mean

annual dischargeb

linear reservoir, DDM30 Hanasaki et al (2006)c Considered

a For WaterGAP, Mn + C = In.
b Calibration covers 54% of global land surface, according to Müller Schmied et al (2016a).
c See also supplement A2.
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Figure 1. Example of major river channels implemented in each global hydrological model (GHM) in the central part of the United
States. Black grid lines separate land cells with the dimensions of 0.5°× 0.5°. To visualize the channels, symbols were added to the land
cells with an annual average discharge (varsoc run) of greater than 100 m3 s−1. Different symbols were marked for each GHM (see the
inserted box). The numbers superimposed on the land cells show the sequence of land cells along the longest stems of the
Missouri–Mississippi (flowing from the top center to the bottom right in the map) and Green–Colorado (from the center to bottom
left) Rivers. Owing to the instability of hydrological simulation over a small catchment area, we omitted the first 10 cells of the river
from the source in the intermodel comparison.
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of total reservoir capacity within a river system relative
to volumetric annual discharge, following Nilsson et al
(2005) (table S1). Moreover, historical reservoir
operation records for major dams on these rivers
are available. In this study, we performed both
multiforcing and multimodel comparisons for the
Missouri–Mississippi River and a multimodel com-
4

parison for the regulated flow of the Green–Colorado
River.

To analyze discharge on a longitudinal section of
these rivers, we allocated the sequential cell number
(SCN) along the main channel from the upper to the
lower reaches (figure 1) of these rivers. Figure 1 also
shows the land cells with simulated annual mean river
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discharge (varsoc run) >100 m3 s−1 for each GHM.
Since these major rivers have high water flux, land cells
with low discharge (those in dark gray in figure 1) were
not considered as part of the main stem in each GHM.

2.4.1. Missouri–Mississippi River Basin
The Mississippi River is (including its tributaries)
the third largest river basin in the world and travels
through a wide range of climates and geography
from snow-packed mountainous areas to temperate
plains. The flow has clear natural seasonality due to
spring snowmelt in the mountainous areas and
heavy rain in the plains during warm months, but is
heavily regulated by large dams on the Missouri
River.

Large dams have been constructed since the mid-
20th century to maintain the riverine environment.
Five large dams (table A3) have significant impacts on
seasonal river flow due to their large storage capacity
(see US Army Corps (2006) for dam management
details). In this study, historical dam operation data
obtained from the US Army Corps of Engineers
(Northwest Division) were also used in the analysis.
To compare simulated and observed discharges, 12
gauge stations (table A4 and fig. A1) along the
Missouri–Mississippi River were used.

2.4.2. Green–Colorado River Basin
The Colorado River starts in the Rocky Mountains,
travels through a dry region, and flows into the Gulf
of California. The river is known to be one of the
most regulated rivers in the world (Glen Canyon and
Hoover Dams; see table A5). We chose this basin
expecting that uncertainty in operation schemes
would be clearly detected in simulated river discharge
because of the high ratio of the dam capacity to the
5

annual discharge. Moreover, the water is also supplied
for irrigation and municipal use in the basin and its
neighborhood. Thus, hydrological simulation using a
generic dam operation scheme in this river basin is
not only challenging, but also useful to examine
intermodel discrepancies due to dam operation.
Historically, the discharge of this river system was
drastically changed by the construction of the Hoover
Dam (storage: 3.670 × 1010 m3) in 1935 and Glen
Canyon Dam (storage: 2.507 × 1010 m3) in 1963. The
peak river flow in the upper basin occurs in spring
due to snowmelt. Note that the Green River is
also regulated by Flaming Gorge Dam (storage:
4.336 × 109 m3).

We focused on a longitudinal section along the
Green and Colorado Rivers, the longest reach of the
river system. Five gauge stations (table A6) were used
for comparison.
3. Results
3.1. Intercomparison of the seasonal fraction of
river discharge among hydrological models
The seasonal fraction of river discharge varied among
the GHMs. To visualize the effects of dam operation
on the seasonal flow at different river sectors
fragmented by dams, we drew a longitudinal section
along each river channel (sections 3.1.1 and 3.1.2) and
interpreted the results with hydrographs (section
3.1.3). In this section, we used the simulation results
forced by GSWP3 for simplicity. Since the seasonality
of main channel flow is altered not only by dams but
also by the confluence of major tributaries under
natural conditions, we also accounted for major
tributaries in the interpretation (see also figure 2).
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3.1.1. Missouri–Mississippi River
Figure 3 shows the results of the seasonal fraction of
discharge for the Missouri–Mississippi River. The
horizontal axis gives the location along the main stem
in terms of the SCN from the upper (leftward) to lower
(rightward) reaches. For each GHM, seasonal fractions
relative to annual discharge are shown, with corre-
sponding heights presented in different colors.
Although only river discharge for the decade 1971–1980
is shown, similar seasonality was observed in other
decades. Figure 4 extracts the seasonal fractions at three
representative sites on the channel from figure 3 for
intermodel comparison.
6

Among the GHMs, a high flow was generally
observed in spring-summer due to mountain snow-
melt in the upper reaches. As the river flows down to
the plains, the climate becomes warmer and precipi-
tation increases, peaking in summer. An evenly
distributed flow throughout the seasons can be
observed in the middle reach of the Mississippi River.
Seasonal behavior also changes downstream from the
confluence of tributaries, such as the Arkansas (#6),
(Upper) Mississippi (#15) and Ohio (#21) Rivers. In
the lower reaches of the Mississippi River, water is
abstracted for irrigation (figure C2 includes only the
results from H08), but withdrawal is sufficiently
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smaller than the river discharge so it did not markedly
alter the river flow seasonality.

The intermodel comparison of river flow season-
ality frequently showed the greatest proportion of river
flow in spring to summer, but the seasonal fraction of
river flow differed among the GHMs (figures 3 and 4).
H08 had higher flow in spring, whereas DBH had
higher flow in summer. Note that high annual
variations can be seen in the upper reaches, whereas
there were lower annual variations among the GHMs
in the lower reaches.
7

Next, we focused on flow regulation by dams.
Judging by the discontinuity in the seasonal fraction
of river flow due to the impact of dams (e.g. Fort
Peck Dam at SCN 22), the magnitude of seasonal
flow regulation differed markedly among the GHMs.
H08, LPJmL, and WaterGAP introduced greater
seasonal flow modulation than DBH and PCR-
GLOBWB. Intermodel differences in seasonality
were weakened as the river flowed downstream,
possibly because of flows merging according to
various seasonal behaviors of tributaries. The
seasonality of the five-GHM ensemble mean repro-
duced the seasonality observed at land cells where
gauge stations were located. However, discontinuity
at dams was unclear as a result of averaging.
Moreover, whether regulated flows began in land
cells where dams were located, or in an adjacent cell,
depended on the GHM.

Based on the observed seasonality at the gauges,
each model has advantages and disadvantages with
respect to reproducing seasonality along the whole
channel (table C1). Even if a GHM performs well for
some river sectors, it does not perfectly reproduce
seasonality for other river sectors. Note that the
seasonality of WaterGAP was not explicitly affected
from calibration because WaterGAP was calibrated
with long-term mean annual discharge, not seasonal
discharge.

3.1.2. Green–Colorado River
Figure 5 shows the results for the Green–Colorado
River for 1971–1980. Since the seasonality of the
observed river discharge changed somewhat over the
decades, we also included the results for 1991–2000
in the Supplement (figure C1). The seasonal
fractions at two representative sites on the channel
are shown in figure 6. As mentioned earlier,
reproducing the seasonal flow of the Colorado River
is challenging for all hydrological models, owing to
multiple human interventions. The simulated dis-
charge of the Green River tended to be higher in
spring than in other seasons, whereas the observed
discharge was higher in both spring and summer. At
Glen Canyon Dam (SCN 17) in the Colorado River,
the seasonal flow variation was markedly reduced. All
the GHMs showed less seasonality toward the river
mouth. In the lower reaches, river water was
abstracted for irrigation (which can also be seen
in figure C3 in the results for H08), but the
withdrawal was sufficiently small compared with the
river discharge. Thus, irrigation was hardly notice-
able in the river flow seasonality.

The magnitude of flow regulation at the dams
differed among the models. H08, LPJmL, and
WaterGAP showed strong flow regulation, whereas
the other models showed weaker regulation. The
five-GHM ensemble mean reproduced the observed
seasonality with reasonable accuracy. We note that
discontinuity in the seasonality simulated with
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WaterGAP at the three cells from the lowermost
reach was generated by strong calibration of the
simulated discharge (reduced to ca. 25%), intended
to match the long-term mean of the observed annual
discharge. This feature was also observed as a
sudden decrease in annual discharge at SCNs 36–38
in figure 1.

3.1.3. Different magnitudes of flow regulation across
GHMs
These results showed that flow regulation differed
considerably across the GHMs. What explains these
differences? We examined their causes by using
simulated hydrographs at sites downstream of large
dams (Fort Peck Dam in the Missouri River and Glen
Canyon Dam in the Colorado River). We focused on
8

how the river flow was modulated by the dams in each
GHM. For this purpose, we analyzed land cells where
the dams are located in each GHM because the
location could differ by one cell upstream or
downstream along the main channel among the
GHMs.

Tables 3 and 4 show mean river discharge at the
dam sites. The ranges of the forcing-ensemble means
among the GHMs were markedly larger than those of
the GHM-ensemble means among the meteorological
forcings. The ranges of the final columns were 725.3
m3 s−1 for Fort Peck Dam and 669.9 m3 s−1 for Glen
Canyon Dam, whereas those of the final rows were
105.6 m3 s−1 and 227.3 m3 s−1, respectively. These
results indicate that the spread of the simulated river
discharge depended more strongly on the GHM than
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on the meteorological forcing, which is consistent with
published intercomparison studies using multiple
general circulation models and multiple GHMs (e.g.
Wada et al 2014, Hattermann et al 2017). These large
intermodel differences in mean discharge were not
attributable to the variations in catchment area that
resulted from differences in the dam locations used by
the GHMs. If we re-evaluate the range of mean river
discharge at the common land cell (SCN 22 for Fort
Peck Dam and SCN 17 for Glen Canyon Dam,
following the standard dam data distributed by
ISIMIP, the intermodel ranges (725.3 m3 s−1 for Fort
Peck Dam and 642.2 m3 s−1 for Glen CanyonDam) are
still larger than the interforcing ranges (112.1 m3 s−1

and 229.0 m3 s−1, respectively).
Figure 7 shows hydrographs and cumulative

discharge at the dam sites (note that a plot of the
cumulative discharge of natural flow with a longer
time is known as a mass curve or Rippl diagram, which
is useful for designing the dam capacity (Rippl 1883,
Adeloye 2012)). By comparing regulated flow with
natural flow, we found that seasonal variability was
suppressed by dam regulation, i.e. decreased discharge
in the high-flow season and increased discharge in the
low-flow season. As a result, the mass curve in the
high-flow season (spring to summer) had a more
9

gradual slope and less curvature for regulated flow
than for natural flow.

DBH gave larger estimates of the mean river
discharge for 1971–1980 than the other GHMs (figure
7; tables 3 and 4). Since the effective magnitude of flow
regulation by dams is given approximately by the ratio
of dam capacity to mean annual discharge, DBH
regulates river flow more weakly than the other
models. This is one reason why the flow regulation was
marginal in DBH. On the other hand, the mean
discharge of LPJmL at Glen Canyon Dam was
comparable to that of DBH (table 4). However, the
hydrographs (figure 7) showed that its seasonal peak
flow was larger and lasted for a shorter duration than
LPJmL. The clear seasonal contrast in the LPJmL
simulation helped the dam to act as a stronger
regulator than it did in the DBH simulation.

The magnitude of flow regulation at the seasonal
scale was not determined principally by the dam
manipulation scheme adopted by each GHM.
Although DBH, H08, and WaterGAP implemented
the flow regulation scheme proposed by Hanasaki et al
(2006), the simulated flow regulation contrasted
clearly between DBH (with weak regulation) and
H08 or WaterGAP (with strong regulation). Dam
outflow is primarily determined as a function of the
mean annual inflow in the scheme of Hanasaki et al
(2006) (see A1 in the Supplement). Therefore,
simulated variables such as dam water storage at the
beginning of the operational year, water demand
(dams for irrigation purposes only), inflow variability,
and the consequent differences in water storage are
considered as the actual causes of the discrepancies in
seasonal-scale dam flow regulation among the GHMs.

3.2. Differences in the seasonal fraction of river
discharge under four meteorological forcings
The discrepancies in flow regulation among the GHMs
also varied with the rivers’ courses. To quantify the
variance in the seasonal fraction of river discharge
among the five GHMs, we calculated the standard
deviation (SD) of the five GHMs from their ensemble
mean for each season under four meteorological
forcings. Figures 8 and 9 show the results for the
Missouri–Mississippi and Green–Colorado Rivers,
respectively. Since the seasonal fraction is a normalized
value by the annual discharge, the fraction is
comparable with ones at different locations.

Three major characteristics were observed in
the results for the multiple GHMs and forcings. First,
the obtained SDs were generally independent of the
meteorological forcing for a large proportion of the
river sectors. This indicates that SDs were explained
primarily by differences among GHMs rather than
meteorological forcings. This finding is consistent with
tables 3 and 4 at the two selected sites. Second, larger
SDs were observed more frequently in upper reaches
than in lower reaches: SDs generally decreased
downstream. This means that even if GHMs generally



Table 3. Mean river discharge at Fort Peck Dam for 1971–1980. The numbers in brackets show the turnover (detention) period
required to fill the nominal dam capacity (2.356 × 1010 m3) at the rate of the mean river discharge.

GHM SCN GSWP3 PGFv2 WFDEI WATCH Ensemble

m3 s−1 (d) m3 s−1 (d) m3 s−1 (d) m3 s−1 (d) m3 s−1 (d)

DBH 22 832.4 (327.6) 914.2 (298.3) 1137.7 (239.7) 1157.1 (235.7) 1010.4 (269.9)

H08 22 275.6 (989.4) 218.9 (1245.7) 322.3 (846.1) 323.9 (841.9) 285.1 (956.5)

LPJmL 21 454.3 (600.2) 495.7 (550.1) 614.0 (444.1) 618.3 (441.0) 545.6 (499.8)

PCR-GLOBWB 22 415.2 (656.8) 402.5 (677.5) 401.0 (680.0) 383.4 (711.2) 400.5 (680.9)

WaterGAP 21 287.5 (948.5) 327.1 (833.6) 295.4 (923.1) 310.4 (878.5) 305.1 (893.8)

Ensemble 453.0 (602.0) 471.7 (578.1) 554.1 (492.1) 558.6 (488.2) 509.3 (535.4)

Table 4. Mean river discharge at Glen Canyon Dam for 1971–1980. The numbers in brackets show the turnover (detention) period
required to fill the nominal dam capacity (2.507 × 1010 m3) at the rate of the mean river discharge.

GHM SCN GSWP3 PGFv2 WFDEI WATCH Ensemble

m3 s−1 (d) m3 s−1 (d) m3 s−1 (d) m3 s−1 (d) m3 s−1 (d)

DBH 17 849.7 (341.5) 1024.2 (283.3) 1349.4 (215.0) 1386.5 (209.3) 1152.5 (251.8)

H08 17 549.4 (528.1) 600.2 (483.4) 772.0 (375.9) 797.8 (363.7) 679.8 (426.8)

LPJmL 19 882.1 (328.9) 1056.8 (274.6) 1151.2 (252.1) 1150.8 (252.1) 1060.2 (273.7)

PCR-GLOBWB 17 590.9 (491.1) 700.3 (414.3) 667.2 (434.9) 632.9 (458.5) 647.8 (447.9)

WaterGAP 18 447.1 (649.0) 487.9 (594.7) 507.8 (571.4) 487.6 (595.1) 482.6 (601.2)

Ensemble 663.8 (437.1) 773.9 (374.9) 889.5 (326.2) 891.1 (325.6) 804.6 (360.6)

Environ. Res. Lett. 12 (2017) 055002
agree in the lower reaches, larger discrepancies may
still exist in the upper reaches. Third, SDs in absolute
terms tended to be larger during high-flow seasons
(spring to summer for both rivers) than during low-
flow seasons (fall to winter).

Next, we examined the differences in the results
between natural and regulated flows. Overall, natural
flow (crosses) tended to have slightly higher SD values
than regulated flow (filled circles) for MAM, JJA, and
SON. This implies that implementing dam regulation
schemes contributes to small discrepancies among the
GHM results. Large intermodel discrepancies in
natural flow were observed more frequently in high-
flow seasons than in low-flow seasons (e.g. figure 7)
because of high variability in precipitation events.
Dams contributed to a flattening of the variability and
redistribution of water among the seasons, which
lowered the SD of regulated flow during high-flow
seasons. By contrast, the regulated flow for DJF had
slightly higher SD values than the natural flow in some
river sectors. Winter had the lowest discharge for both
rivers because of the accumulation of snowpack in
mountainous areas and the weak rainfall over the
catchment area. Thus, a stable and low flow was
observed for all the GHMs, along with a similar
temporal profile. Dam operation in low-flow seasons
increased the discharge, but its amplification was
different among the GHMs (figure 7). This explains
the larger SDs for regulated flow compared to natural
flow for DJF.

Note that these findings did not always hold true.
For example, at Fort Peck Dam (SCN 22) on the
Missouri–Mississippi River (figure 8), the SD of the
10
regulated flow discontinuously increased downstream
forDJF but decreased forMAMand SON. Because flow
seasonality drastically changed into less seasonal
variability by the dam (figure 3), MAM seasonal
fraction of discharge converged among theGHMs, even
though MAM was a high-flow season for natural flow.
4. Discussion
4.1. Interpretation of hydrological simulation of
river discharge regulated by dams
In this study, we examined the uncertainties among
GHMs and the potential errors along river channels
and obtained new insights and caveats through case
studies for the interpretation of simulated river
discharge specific to regulated rivers.

First, differences in the seasonal fraction were
detected among the GHMs. This is likely attributable
to two factors: natural flow and dam regulation. (1)
Regarding natural flow, differences among the GHMs
were expected based on previous studies (e.g.
Haddeland et al 2011). Moreover, difficulties in
reproducing snowmelt may also be a source of
intermodel differences because both river basins used
in this study are covered by a thick snowpack in winter
(e.g. Slater et al 2001, Rutter et al 2009). In fact, over
the catchment areas of Fort Peck Dam and Glen
Canyon Dam, winter precipitation occurs as snow
(figures B1 and B2, respectively). Small differences in
meteorological conditions (especially temperature)
triggering snow melt can result in divergence in the
timing of floods.
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Figure 7. Hydrograph and cumulative discharge (so-called mass curve or Rippl diagram) based on the mean daily discharge for
1971–1980 at a site downstream of Fort Peck and Glen Canyon Dams. Green and black lines show the results of the nosoc (without
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DBH, H08, LPJmL, PCR-GLOBWB, and WaterGAP. The location (shown as SCN) is indicated in each panel.

Environ. Res. Lett. 12 (2017) 055002
(2) Regarding dam regulation, dams fundamen-
tally alter the timing of flow without changing absolute
volumes of water when the dam capacity is large
compared to the mean annual flow, and when
secondary effects (local inflow to the dam, evaporation
loss from the water surface, withdrawal or diversion
for water supply and so forth) are regarded as
sufficiently small compared with river flow. That is, the
long-term average annual volume of discharge is
considered to be independent of the dam operation
scheme. To the best of our knowledge, generic dam
operation schemes are fundamentally based on a
function of inflow to the dam and the water demand
for each purpose of the dam (Hanasaki et al 2006,
Haddeland et al 2006). Recall that the natural inflow
11
was different among the GHMs. Even if the same dam
capacity was adopted for multiple GHMs, differences
in dam inflows can cause simulated river discharge to
diverge downstream among the GHMs due to
different responses to the simulated inflow.

There are intrinsic difficulties in constructing
advanced generic schemes for dam regulation. Dam
operation data are generally not publicly available. The
dams along the Missouri River represent a very rare
case in which the operation strategy is publicly
available (US Army Corps 2006). Although the actual
operation of multiple dams in the same river basin is
more complex because they are mutually linked (e.g.
Nagy et al 2002), this is not taken into account by the
operation schemes implemented in the GHMs.
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In this study, we used the seasonal fractions of river
flow, not the absolute seasonal volumes, because
Haddeland et al (2011) revealed that annual river
discharge values also differ among GHMs with a wide
range of runoff coefficients (runoff divided by
precipitation) at the basin scale. By introducing the
seasonal fraction normalized by the annual volume,
we expect that seasonal dam operation behavior can be
focused on by artificially cancelling the effect of
differences among runoff coefficients.

Secondly, the case studies also showed decreasing
intermodel differences moving toward the lower
reaches. This probably reflects the fact that averaging
over a larger catchment area helps stabilize simulated
river discharges, which are susceptible to local
instabilities. In most hydrological analyses, the
performance of a simulation is evaluated at gauge
stations at the farthest reach of the river, because river
flow there reflects the overall characteristics of the
catchment area, namely, the whole river basin. This is
convenient for obtaining an overall picture of the
basin. However, we should keep in mind that larger
intermodel discrepancies may exist at gauge stations
upstream.
12
In this paper, we only discussed two case-study
river basins. However, notice that we used only
simulated river discharge, one of fundamental
variables in hydrological simulations, to depict dam
functions. Visualizing methods like figures 3 and 5 are
applicable to other river basins in the world, if river
discharge data are available.

GHMs will play an increasingly important role in
evaluating hydrological impacts on societies as global
climates and environments change rapidly, because
they can simulate water availability with human
interventions at the global scale under given meteoro-
logical conditions. Currently, most rivers flowing
through populated areas are regulated by dams. In the
future, GHMs will still strongly rely on generic dam
operation schemes to make them applicable at the
global scale.

Both river discharge and storage in dams have been
attracting interest. For example, hydropower genera-
tion is increasingly seen as a means of reducing the
emission of greenhouse gases while meeting the
increasing demand for electricity. Hydrological simu-
lation can also be used to assess the future potential of
hydropower generation (e.g. Lehner et al 2005, Masaki
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et al 2014, Liu et al 2016). Moreover, large dams create
an anaerobic environment at the bottom and emit
methane to the atmosphere, especially in tropical
regions (Fearnside 1995, Abril et al 2005, Kemenes
et al 2007). From an ecological viewpoint, aquatic
environments and ecosystems are of great concern.
Physical aspects (e.g. surface area, level, and storage) of
the water surface are observed with various techniques,
such as remote sensing imagery, satellite altimetry, and
bathymetry, to study aquatic environments. Accurate
estimation of dam storage using GHMs will be
welcomed not only by hydrological scientists, but also
by those in the related fields of environmental and
social sciences.

4.2. Future improvement of GHMs with regulated
rivers
There is a considerable trade-off, specific to GHMs, in
pursuing global applicability and high-performance
reproductions of observed river discharge at the cost of
ignoring local diversity in the natural and social
environments of each river basin. In practice, GHMs
with a spatial resolution of 0.5°×0.5° can neither
consider all local conditions nor implement dam
13
operation schemes for the over 60 000 dams across the
world. This is in clear contrast to regional hydrological
models (RHMs), which can be tuned to a certain river
basin and its environment, and can potentially imple-
ment an actual dammanipulation scheme.We consider
there to be no essential differences between GHMs and
RHMs in terms of model structure, analytical scheme,
and thephysics ofhydrologicalprocesses, as summarized
in table A3 of Hattermann et al (2017). Moreover, as
discussed in detail in Hattermann et al (2017), the high
performance of RHMs is considered to be partly due to
calibration, which poses the simultaneous risk of over-
calibration. In addition, Gosling et al (2016) found little
difference in the simulations fromanensembleofGHMs
and an ensemble of RHMs, when the individual models
were forced with meteorological projections from
climate models.

Despite such a trade-off relationship, high-accuracy
reproduction of the world’s river discharge using GHMs
shouldbetheultimategoal to improveourunderstanding
of surface waters. Multimodel intercomparison studies
carried out in the last several years have revealed broader
differences among GHMs. It is critical to examine the
reasons for this, identify sources of error, and improve
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models (e.g. Huber et al 2014), as is being attempted
currently. As we showed in this study, dam regulation is a
source of differences among GHMs. Amending these
models would result in high-performance simulations
and greatly benefit hydrological science.

Some of our intercomparison results are degraded
because of inconsistencies in simulation settings and
conditions (i.e. the location of major dams), as we
showed earlier. However, we emphasize that, in any
types of gridded dam location data (table A2), which
stemmed from the GRanD data, dams were not simply
placed on a land cell where the actual geographical
coordinates indicated. The location was adjusted to
harmonize the river channels, catchment area, and so
on. The adjustment to different extents or with
different priorities diverged the dam location. There
are fundamental difficulties for such multimodel
intercomparisons when using completely identical
conditions, because each GHM has a different model
structure and development history. On the other hand,
this study provides a good opportunity to consider
how dam locations should be assigned in the river
network for hydrological simulations.

This paper is the first study that reports intermodel
comparison of dam functions. Uncertainties always
accompany with hydrological simulations. This study
reveals that dam function, as well as natural flow,
affects uncertainties in hydrological simulations. In
particular, since this study used historical meteoro-
logical data, simulated results can be directly
compared with observation. Such validation is crucial
for future projections of climate change impacts
because of substantial difficulties in validating future
simulation results.

Despite such difficulties, this study revealed that
seasonality in simulated river flow is the result of
both simulated natural flow and flow regulation by
dams. There are still arguments about the level of
consistency needed in analysis settings for intercom-
parisons. If dam settings across GHMs are perfectly
consistent, then more meaningful intercomparisons
of dam functions can be realized, from shorter (e.g.
heavy rainfall and flood prevention by dams) to
longer (e.g. seasonal flow regulation at large dams)
time scales.
5. Conclusions

We performed an intercomparison of river discharge
regulated by large dams along the Missouri–
Mississippi and Green–Colorado Rivers in the United
States to examine the impacts of dam operation on
river flow. Seasonality in river discharge was
examined in longitudinal sections of the rivers to
visualize seasonal modulation by dams and its
downstream effects. We confirmed that the magni-
tude of dam regulation differs among GHMs. The
14
differences in flow regulation are attributable not
only to dam operation schemes but also to the
magnitude of the simulated dam inflow and
subsequent dam storage. Each GHM has advantages
and disadvantages in reproducing the seasonality of
river discharge. We observed decreasing intermodel
discrepancies in the seasonal fraction towards the
lower reaches of rivers in this study. Since model
characteristics were more clearly detected in upper
reaches, intermodel comparisons should be made in
both upstream and downstream sections.

This is the first study to examine the performance
of dam regulation in hydrological simulations using
multiple models and forcings. Here, we demonstrated
that model characteristics of the magnitude of flow
regulation are formed not only by the dam operation
itself, but also by the river discharge under natural (i.e.
unregulated) conditions. GHMs incorporating dam
operation are becoming increasingly important for
hydrological simulations because most major global
rivers are regulated by dams. This study implies that
both natural river flow simulations and dam operation
schemes must be improved to increase the perfor-
mance of regulated river flow simulations.

GHMs have a trade-off between high performance
and global applicability. Steady efforts toward im-
proved modeling of both the natural flow and human
impact will expand their applicability and improve the
reliability of global hydrological simulations in an era
characterized by increasing concern about the global
environment.
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