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ABSTRACT: Binding free energy calculations that make use of alchemical pathways are becoming increasingly feasible thanks to
advances in hardware and algorithms. Although relative binding free energy (RBFE) calculations are starting to find widespread use,
absolute binding free energy (ABFE) calculations are still being explored mainly in academic settings due to the high computational
requirements and still uncertain predictive value. However, in some drug design scenarios, RBFE calculations are not applicable and
ABFE calculations could provide an alternative. Computationally cheaper end-point calculations in implicit solvent, such as
molecular mechanics Poisson−Boltzmann surface area (MMPBSA) calculations, could too be used if one is primarily interested in a
relative ranking of affinities. Here, we compare MMPBSA calculations to previously performed absolute alchemical free energy
calculations in their ability to correlate with experimental binding free energies for three sets of bromodomain−inhibitor pairs.
Different MMPBSA approaches have been considered, including a standard single-trajectory protocol, a protocol that includes a
binding entropy estimate, and protocols that take into account the ligand hydration shell. Despite the improvements observed with
the latter two MMPBSA approaches, ABFE calculations were found to be overall superior in obtaining correlation with experimental
affinities for the test cases considered. A difference in weighted average Pearson (rp) and Spearman (rs) correlations of 0.25
and 0.31 was observed when using a standard single-trajectory MMPBSA setup (rp = 0.64 and rs = 0.66 for ABFE; rp = 0.39
and rs = 0.35 for MMPBSA). The best performing MMPBSA protocols returned weighted average Pearson and Spearman
correlations that were about 0.1 inferior to ABFE calculations: rp = 0.55 and rs = 0.56 when including an entropy estimate,
and rp = 0.53 and rs = 0.55 when including explicit water molecules. Overall, the study suggests that ABFE calculations are indeed
the more accurate approach, yet there is also value in MMPBSA calculations considering the lower compute requirements, and if
agreement to experimental affinities in absolute terms is not of interest. Moreover, for the specific protein−ligand systems
considered in this study, we find that including an explicit ligand hydration shell or a binding entropy estimate in the MMPBSA
calculations resulted in significant performance improvements at a negligible computational cost.

■ INTRODUCTION

Binding affinity predictions that make use of molecular dynamics
(MD) simulations are becoming increasingly popular as the
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computational cost of such calculations keeps decreasing thanks
to continuous advances in hardware and algorithms.1,2 Among
these approaches are end-point methods,3,4 such as the molec-
ular mechanics Poisson−Boltzmann surface area (MMPBSA)
method,5,6 which are based on the postprocessing in implicit
solvent of a number of frames extracted from a MD simulation.
With MMPBSA, a binding energy estimate can be obtained from
a single simulation of the protein−ligand complex, or from
separate simulations of the complex as well as the free ligand and
protein in solution.5,7 A binding free energy estimate may also be
obtained by calculating the entropic contribution to the reaction.
Other approaches for the estimate of binding affinity include

pathway methods, in which multiple simulations are used to
calculate the free energy along the path that connects the two
thermodynamic states of interest, the ligand in its bound and
unbound states.8−13 The path can be physical with, for instance,
the intermediate states being the ligand at different distances
from the binding pocket, but it can also be nonphysical, as in
alchemical free energy calculations where in the intermediate
states the ligand is coupled to the rest of the system in various
ways. Figure 1 provides an overview of the thermodynamic cycles
and the terms involved in both MMPBSA and alchemical
absolute binding free energy (ABFE) calculations. Pathway
methods, including alchemical free energy calculations, are

Figure 1.Overview of the thermodynamic cycles used in MMPBSA and ABFE calculations. A white background indicates a system being in a vacuum,
and a light blue background indicates a systems being in aqueous solution. An orange ligand indicates it is fully interacting with the environment, whereas
a white ligand indicates it is not interacting with the environment (decoupled state). In the ABFE cycle, a paper clip indicates the presence of restraints.
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theoretically rigorous and generally perceived as more accurate
than end-point methods; however, they also are computationally
much more expensive.14 Although rigorous free energy
calculations have a smaller number of empirical constants5 to
be adjusted in a system-dependent fashion as compared to
MMPBSA, currently they also tend to have a less automated and
more complex setup, and a number of potential pitfalls.15,16

Choosing which approach to employ for a specific system and
problem at hand can therefore be difficult, as one has to consider
whether the additional human and computational cost will be
rewarded by a more accurate result.
Although many notable studies on the performance of end-

point approaches are present in the literature,17−24 only a few
have compared them to more rigorous pathway approaches and,
to our knowledge, none to ABFE calculations. Genheden et al.25

calculated the relative binding free energy (RBFE) of nine
inhibitors binding to factor Xa with thermodynamic integration
(TI) and molecular mechanics Generalized Born surface area
(MMGBSA), concluding that MMGBSA provided overall
slightly better agreement to experiment than TI, although the
correlation coefficient was poor in both cases (r2 = 0.2−0.3) and
the performance of TI was negatively affected by an alchemical
transformation involving a net-charge change of the system.26

Wang et al.27 have compared the performance of RBFE cal-
culations to MMGBSA for a set of 6 cyclin-dependent kinase 2
(CDK2) ligands, reporting the higher performance of the
alchemical RBFE approach. Homeyer et al.28 evaluated the
performance of MMPBSA, linear interaction energy (LIE) and
TI for three sets of 25, 29, and 29 ligands binding to, respectively,
factor Xa, CDK2, and the mineralcorticoid receptor. The perfor-
mance observed was dependent on the details of the protocol
used and the subsets considered; nevertheless, the authors
concluded that both MMPBSA and TI could provide valuable
predictions when taking into account certain data set-specific
features, contrary to LIE. The Pearson correlation coefficients
ranged from 0.00 to 0.62 for MMPBSA, and from 0.02 to 0.58 for
TI. Recently, Wang et al.29 performed a large retrospective test
of RBFE calculations encompassing 199 ligands and 8 protein
systems, where the resulting weighted average correlation
coefficient for the calculations was 0.75, whereas it was found
to be 0.35 for their MMGBSA protocol. A similar study evaluated
the performance of the same free energy protocol andMMGBSA
calculations on 96 fragments targeting 8 proteins, reporting a
weighted average correlation of 0.65 for the alchemical pathway
and of 0.41 for the end-point approach.30 All these studies eva-
luated the performance of the methods in ranking the affinities of
series of chemically similar ligands. However, there are scenarios
where it would be beneficial to be able to rank any ligand−
protein pair, independently of the similarity of the ligands within
the set. At the lead discovery stage, onemight want to rank sets of
very different ligands; if a crystal structure of the complex is not
available, it would be useful to accurately rescore docking poses
in order to identify the most likely orientation of the ligand;
if selectivity (or promiscuity) is of interest, one might want to
predict the affinity of the ligand for multiple protein targets.
Despite the challenges of such applications, they can in principle
be tackled by end-point methods such as MMPBSA, which can
approximate the binding energy or free energy, and ABFE
calculations (Figure 1). However, to our knowledge, the perfor-
mance of these two methodologies in drug discovery scenarios
has not been directly compared yet. The more rigorous
calculations tend to be perceived as more accurate; however,
this hypothesis, despite reasonable, does not appear to having

been supported by instances in the literature yet. Even though
more rigorous methods should return a better performance in
theory, this is not necessarily the case in practice. In fact, for end-
point methods it has often been observed how theoretically less
rigorous approaches (such as the use of a single rather than
separate trajectories, the neglect of the entropic term, or the use
of the Generalized Born model) returned more precise
calculations that also showed better correlation with experi-
ment.5,19,23,31−33

Recently, we reported on the performance of ABFE calcu-
lations for the prediction of the binding affinity of 11 ligands
binding to the first bromodomain of bromodomain-containing
protein 4 (BRD4(1)) (Figure 2, test set 1), both when using the
structures of the protein−ligand complexes and when docking
the ligands into an apo structure.34 We also investigated the
ability of ABFE calculations to predict the selectivity profile of
two similar compounds binding to the bromodomain and extra-
terminal (BET) family of bromodomains (BRDs) (Figure 2, test
set 2), and that of a broad-spectrum inhibitor binding to 22
different BRDs (Figure 2, test set 3).35 Here, we evaluate the
performance of MMPBSA on the same test sets, thus being able
to directly compare its performance to the alchemical ABFE
approach. The following four test cases, based on the three test
sets in Figure 2, were thus considered: (1a) prediction of the
affinities of 11 diverse (i.e., not a chemical series) ligands binding
to BRD4(1), assuming knowledge of their holo crystal
structures;34 (1b) prediction of the affinities of 11 diverse
ligands binding to BRD4(1), after ranking their poses as returned
by docking into an apo structure of the protein;34 (2) prediction
of the different selectivity profiles of RVX-OH and the closely
related RVX-208 for 7 BET BRDs;35 (3) prediction of the
selectivity profile of bromosporine, a broad-spectrum BRD
inhibitor, for 22 different BRDs.35 This amounts to a total of 47
experimental affinities, primarily measured by isothermal titration
calorimetry (ITC), across all test cases. A summary of these four
test cases is in Table 1, with amore detailed description in Table S1.
Here, we focus on the ability of the calculations to correlate

with experimental affinity values as measured by the Pearson and
Spearman correlation coefficients. The ability of end-point
methods to reproduce absolute affinity values is generally
acknowledged to be poor, and when using these methods one is
usually interested in the relative ranking of the values returned.
We will, however, briefly comment on the performance of the
twomethods in this respect too. TheMD trajectories used for the
MMPBSA calculations were the same that had been used for
the alchemical free energy calculations. Therefore, the same force
field parameters for protein and ligands were employed and both
calculations used the same ensemble, so that potential issues
relating to sampling or the accuracy of the physical model would
affect both calculations in a way that does not impair a fair
comparison of the approaches. In the scenario of a perfectly
accurate physical representation of the chemical systems and
infinite sampling, the better performance of rigorous calculations
as compared to MMPBSA would be the consequence of the
approximations of the end-point method. However, given
limited sampling of protein and ligand conformations, and
inaccuracies in the force fields, it is not to be excluded that the
approximations in MMPBSA might result in the cancellation
or reduction of errors and eventually better correlation with
experimental values.
In the first instance, a standard single-trajectory MMPBSA

protocol was adopted, neglecting the solute entropic contri-
bution. This contribution is typically estimated through
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quasi-harmonic or normal-mode analysis.5,36 However, this term
is often disregarded, as the full sampling of the free energy
landscape required by these approaches is computationally
demanding and the benefits of including the term are con-
troversial.21,31−33,37,38 Nonetheless, Duan et al.39 have recently
proposed a computationally simple and efficient approach for
the estimation of the binding entropy based on the fluctua-
tions of protein−ligand interaction energies. It was therefore

decided to evaluate the effect of including this term on
the performance of the calculations. In addition, a number of
studies have suggested that the inclusion of an explicit hydration
shell during the calculations may lead to improved agreement
with experiment.33,40−43 As BRDs are furthermore known to
contain structural waters in their cavity, bridging the binding of
their inhibitors, we decided to test this approach as well. Thus, in
this study, we compared the predictive ability (in terms of
correlation) of ABFE calculations to that of (a) a standard single-
trajectory MMPBSA protocol, (b) a protocol that includes
an estimate of the entropic term, and (c) protocols that include
an explicit ligand hydration shell of different size. Overall,
as measured by the weighted average Pearson and Spearman
correlation coefficients, and for the systems considered, it was
observed that ABFE calculations provided a better performance
than any of the MMPBSA protocols tested. In particular, ABFE
calculations returned Pearson and Spearman correlations that
were, respectively, 0.25 and 0.31 higher than the standard

Figure 2.Overview of the proteins and ligands considered in this study. Three test sets were considered: test set 1 contains 11 different ligands binding
to one specific protein; test set 3 contains one ligand binding to 22 different proteins; test set 2 sits in the middle, with two ligands binding to seven
proteins. From test set 1, two test cases originate: one that uses the X-ray structures of the protein−ligand complexes (test case 1a) for the simulations,
and one that uses ligand poses docked into an apo X-ray structure of the protein (test case 1b). Table S1 summarizes this information in table
format.

Table 1. Summary of the Four Test Cases Considered in This
Studya

Test Case
No.

No.
Ligands

No.
Proteins

No.
Complexes

Starting
Structures

Simulations
length

1a 11 1 11 X-ray 10 ns
1b 11 1 11 Docking 10 ns
2 2 7 14 Docking 15 ns
3 1 22 22 Docking 15 ns

aTable S1 provides more detailed information on the systems studied.
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MMPBSA protocol, and ∼0.1 higher than the best performing
MMPBSA protocols (Table 2), which involved either an estimate
of the entropic term or the inclusion of an explicit ligand
hydration shell.

■ METHODS
Molecular Dynamics Simulations. The MD trajectories

for the protein−ligand complexes considered here have been
taken from two previous studies that focused on the performance
of absolute binding free energy calculations.34,35 The details of
the systems setup and the free energy calculations are reported in
the respective publications.34,35 Table S1 summarizes all proteins
and ligands considered, the Protein Data Bank (PDB) structures
used, the number of docking poses considered for each ligand
(when applicable), and the references for the experimental
affinity values.
From themultiwindow free energy calculations, the simulation

of the protein−ligand complex at λ = 0, where the ligand is
unrestrained and fully coupled to the system, were taken for the
MMPBSA calculations. Each simulation was either 10 or 15 ns
long, and was performed starting from either a crystal pose or
docking pose as reported in Table 1. All simulations were carried
out using Gromacs 4.6 or 5.0.44−46 The solvated protein−ligand
systems were energy minimized with a steepest descent
algorithm for 10 000 steps. The systems were then simulated
for 0.5 ns in the canonical ensemble with harmonic position
restraints applied to the solute heavy atoms with a force constant
of 1000 kJ mol−1 nm−2. Temperature was coupled using
Langevin dynamics47,48 with 298.15 K as the reference tempera-
ture. A 1 ns position restrained run in the isothermal−isobaric
ensemble was then performed using the Berendsen weak
coupling algorithm.49 10 or 15 ns unrestrained production runs

(as reported in Table 1 and previous publications) were finally
performed using Hamiltonian-exchange50 Langevin dynamics
with a 2 fs time-step in the NPT ensemble with the Parrinello−
Rahman pressure coupling scheme.51 The particle mesh Ewald
(PME) algorithm52 was used for electrostatic interactions with a
real space cutoff of 12 Å, a spline order of 6, a relative tolerance of
10−6 and a Fourier spacing of 1.0 Å. The length of covalent bonds
to hydrogen atoms was constrained using the P-LINCS
algorithm.53 Swaps attempts between any state pair along the
alchemical pathway were allowed every 1000 time steps. The
resulting trajectory at λ = 0, used for the MMPBSA calculations,
is thus different from the trajectory one would normally obtain
from a standard MD simulation. It may be thought as being
composed of many short simulations of variable length and
starting from different structures, rather than being a single linear
trajectory. For all test cases, a single MD simulation was
performed and used for the prediction of each protein−ligand
affinity, except for test case 1a, for which three separate simu-
lations were performed.

MMPBSA Calculations. All MMPBSA calculations were
performed using the set of scripts provided with GMXPBSA
2.1.1.54 Protein−ligand conformations were extracted from the
MD simulation every 20 ps, from 5 to 15 ns, for a total of 501
snapshots, for the calculations with 15 ns windows. For the free
energy calculations that employed 10 ns windows, conformations
were extracted from 2 to 10 ns every 16 ps, for same number of
total snapshots. To evaluate the effect of including explicit waters,
we repeated the calculations on the same frames while retaining
the N closest water molecules to the ligand, where N = [10, 20,
30, 40, 50], similarly to what was done byMaffucci and Contini.42

The MD trajectories were processed with the Python library
MDAnalysis55 in order to extract theNwater molecules closest to

Table 2. Overview of the Results Obtained with ABFE andMMPBSACalculations, in Terms of Pearson and SpearmanCorrelation
to Experimental Binding Free Energiesa

Pearson Correlation

Test Case
No. Weight ABFE W0 W0e W10 W20 W30 W40 W50

1a 5.5 0.87
[0.73, 0.92]

0.71
[0.61, 0.76]

0.73
[0.31, 0.85]

0.77
[0.62, 0.86]

0.82
[0.75, 0.86]

0.83
[0.79, 0.87]

0.83 [0.79, 0.86] 0.83 [0.79, 0.86]

1b 5.5 0.78
[0.67, 0.84]

0.79
[0.75, 0.82]

0.67
[0.56, 0.76]

0.89
[0.85, 0.91]

0.90
[0.86, 0.92]

0.88
[0.85, 0.91]

0.87 [0.83, 0.89] 0.86 [0.83, 0.89]

2 14 0.75
[0.67, 0.80]

0.05
[−0.06, 0.17]

0.63
[0.46, 0.72]

0.44
[0.32, 0.54]

0.50
[0.37, 0.60]

0.10
[−0.05, 0.25]

−0.14
[−0.29, 0.01]

−0.23
[−0.37, −0.08]

3 22 0.48
[0.41, 0.53]

0.42
[0.38, 0.46]

0.43
[0.31, 0.51]

0.36
[0.30, 0.43]

0.38
[0.32, 0.44]

0.39
[0.34, 0.44]

0.35 [0.30, 0.40] 0.34 [0.29, 0.39]

Weighted
Average

0.64
[0.56, 0.69]

0.39
[0.32, 0.45]

0.55
[0.39, 0.64]

0.50
[0.41, 0.57]

0.53
[0.45, 0.59]

0.42
[0.34, 0.49]

0.32 [0.24, 0.39] 0.29 [0.21, 0.36]

Spearman Correlation

Test Case
No. Weight ABFE W0 W0e W10 W20 W30 W40 W50

1a 5.5 0.85
[0.69, 0.94]

0.72 [0.62, 0.83] 0.61
[0.17, 0.82]

0.57
[0.50, 0.82]

0.77
[0.67, 0.85]

0.83
[0.74, 0.86]

0.83
[0.74, 0.85]

0.79 [0.73, 0.85]

1b 5.5 0.78
[0.55, 0.85]

0.79 [0.72, 0.85] 0.75
[0.47, 0.82]

0.79
[0.75, 0.85]

0.85
[0.78, 0.89]

0.85
[0.77, 0.87]

0.83
[0.75, 0.85]

0.83 [0.75, 0.85]

2 14 0.78
[0.64, 0.85]

−0.05
[−0.15, 0.20]

0.57
[0.38, 0.74]

0.31
[0.24, 0.53]

0.46
[0.25, 0.60]

0.11
[−0.06, 0.36]

0.02
[−0.19, 0.23]

−0.05
[−0.28, 0.18]

3 22 0.50
[0.41, 0.62]

0.41 [0.36, 0.52] 0.50
[0.35, 0.61]

0.48
[0.40, 0.59]

0.48
[0.37, 0.56]

0.48
[0.40, 0.57]

0.45
[0.35, 0.53]

0.41 [0.34, 0.51]

Weighted
Average

0.66
[0.53, 0.75]

0.35 [0.28, 0.50] 0.56
[0.35, 0.70]

0.48
[0.40, 0.63]

0.55
[0.42, 0.64]

0.45
[0.35, 0.58]

0.41
[0.28, 0.52]

0.37 [0.25, 0.49]

aIn square brackets are the 95% confidence intervals of the statistics. W0 refers to the single-trajectory MMPBSA protocol that did not include a
binding entropy estimate or explicit water molecules; W0e refers to the protocol that included a binding entropy estimate (but no explicit water
molecules); W10 to W50 refer to the protocols that included an explicit ligand hydration shell composed of 10 to 50 water molecules (but no
binding entropy estimate).
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any atom in the ligand for each of the 501 frames. During the
MMPBSA calculations, the explicit water molecules were
considered as being part of the protein.
Although a more extensive explanation of the terms involved

in MMPBSA calculations can be found elsewhere,5,36,56,57 we
provide a brief summary here:

Δ = ⟨ − − ⟩G G G GMMPBSA complex protein ligand complex (1)

= − ⟨ ⟩ + ΔG E T S Gx MM MM solv (2)

= + +E E E EMM bonded coul LJ (3)

Δ = +G G Gsolv polar nonpolar (4)

where Gx is the free energy of system x, that being the ligand, the
protein, or the complex; EMM is the potential energy in vacuum as
defined by the molecular mechanics (MM) model, which is
composed of the bonded energy terms (Ebonded) and nonbonded
Coulombic (Ecoul) and Lennard-Jones (ELJ) terms; SMM is the
entropy; ΔGsolv is the free energy of solvation, composed by a
polar (Gpolar) and nonpolar (Gnonpolar) term; T is the temperature
and angle brackets represent an ensemble average. Molecular
mechanics energies for ELJwere calculated with Gromacs 5.0,

44,46

whereas the coulomb tool in APBS 1.358 was employed for Ecoul;
note that ΔEbonded = 0 as the single trajectory method was
adopted. Gpolar and Gnonpolar were calculated with APBS 1.3.

58 For
the polar solvation energy contribution, the nonlinear Poisson−
Boltzmann equation was solved using a value of 80 for the
exterior dielectric constant, and a value of 2 for the solute dielec-
tric constant (ε). A value of ε = 2 (rather than ε = 1 as in the
original MMPBSA approach)6 was used as it is default in the
GMXPBSA program,54 but also because it has been suggested
that values of ε = 2−4 tend to provide best results, in particular
when studying several different proteins.5,19,59,60 The temper-
ature was set to 298.15 K and the salt concentration to 0.15 M to
match the setup of the ABFE calculations. The nonpolar term
was considered proportional to the solvent accessible surface area
(SASA), Gnonpolar = γ · SASA, where γ = 0.0227 kJ mol−1 Å −2.
A probe radius of 1.4 Å was used to define the dielectric
boundary, whereas the radii of the solutes were taken by
GMXPBSA from the force field (Amber99SB-ILDN/GAFF)61,62

using the editconf tool in Gromacs44 generating the PQR files.
Entropy Calculations. The entropic contribution was

estimated as recently proposed by Duan et al.,39 based on the
fluctuations of protein−ligand interaction energies:

∫

∫
Δ = −

β

β

−

−
G k T

q q q

q q q
ln

d d d e

d d d e
vacuum

p l w

E E E E E E

p l w

E E E E EB

( )

( )

p l w pl
int

pw
int

lw
int

p l w pw
int

lw
int

(5)

=−
⟨ ⟩
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β

β
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥k T

e
k Tln

1
ln e

E
E

B B
pl
int

pl
int

(6)

= ⟨ ⟩β β⟨ ⟩ −⟨ ⟩k T eln[ e ]E E E
B

( )pl
int

pl
int

pl
int

(7)

=⟨ ⟩ + ⟨ ⟩βΔE k T ln epl
int E

B
pl
int

(8)

where kb is the Boltzmann constant, β = 1/kbT, and angle
brackets represent an ensemble average; Ep, El, and Ew are the
internal energies of the protein, ligand, and solvent, respectively;
Epl
int,Epw

int , and Epw
int are the protein−ligand, protein−solvent, and

ligand-solvent interaction energies. Following eq 2, the vacuum

binding free energy using the single trajectory approach, where
ΔEMM = Epl

int, corresponds to

Δ = ⟨ ⟩ − ΔG E T Svacuum pl
int

(9)

Combining eq 9 and 8, the following result observed by Duan
et al.39 is obtained:

− Δ = ⟨ ⟩βΔT S k T ln e E
B

pl
int

(10)

where

Δ = − ⟨ ⟩E E Epl
int

pl
int

pl
int

The interaction entropy was calculated on the 501 frames
extracted from the simulations. When explicit water molecules
were present, they were considered as being part of the protein,
consistently with what was done for the other MMPBSA terms.
The short-range Lennard-Jones and Coulombic interaction
energies (cutoff of 12 Å) were calculated via the gmx energy
command in Gromacs 5.044,46 for the 501 frames extracted from
the original trajectories. Note that, in principle, Epl

int corresponds
to Ecoul + ELJ used for calculating EMM (eq 3). In practice, there is a
small discrepancy between the two due to the use of cut-offs for
the entropy estimate.

Data Analysis. The ΔGMMPBSA values reported are the mean
of the values obtained for all snapshots analyzed. As described
above, 501 snapshots were extracted from each simulation.
Where repeated calculations were performed (test case 1a), the
uncertainty of the ΔGMMPBSA estimate was taken as the sample
standard deviation of the repeated calculations. In all other
cases the standard error was estimated by bootstrap:63,64 105

bootstrap samples were generated through random resampling
with replacement of the 501 free energy values, and the standard
deviation of the resulting sampling distribution was taken as the
uncertainty of themean. This bootstrap procedure was employed
also to estimate the uncertainty in the entropic term when a
single simulation repeat was used. We note, however, that in this
case this is a crude approximation of the uncertainty given that,
contrary toΔGMMPBSA, the distributions of bootstrap samples for
−TΔS (obtained by resampling the interaction energies) are not
always Gaussian or even unimodal. Nonetheless, it provides a
rough estimate of the uncertainty of the entropy term that would
otherwise be neglected and that can be easily compounded with
the uncertainty ofΔGMMPBSA as the root sum squared to provide a
more realistic picture of the precision of MMPBSA calculations
that included this term.
Correlation to experimental values was evaluated using the

Pearson (rp) and Spearman (rs) correlation coefficients. 95%
confidence intervals (CIs) for the correlations were obtained by
percentile bootstrap:63,64 first, 105 samples were built by random
sampling from the distributions of experimentally measured
affinity values assuming normality; then, 105 samples of the
predicted affinities (by ABFE or MMPBSA) were built in the
same fashion based on the mean and standard error of the
calculations. From the resulting distribution of 105 correlation
coefficients, the α/2 and 1−α/2 percentiles of the bootstrapped
coefficients were taken as the confidence interval, where α = 0.05
for a 95% CI. We will report the correlation coefficient of the
original sample in front of the 95% CI in square brackets.
The distribution of the difference in correlation between

ABFE and MMPBSA calculations was then obtained by sub-
tracting the values of the 105 bootstrapped coefficients for the
two approaches. Note that the bootstrap correlation coefficients
for ABFE and MMPBSA calculations are paired, because each
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Figure 3. continued
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coefficient was calculated with respect to a particular bootstrap
sample of experimental affinities. The probability density
functions (PDFs) resulting from subtracting the bootstrap
distribution of ABFE correlation values from the distribution of
MMPBSA correlation values gives an indication of the signifi-
cance for the difference observed. The fraction of the PDF
above/below zero can be interpreted as a one-tailed p-value, and
a two-tailed p-value if multiplied by two. This approach does not
assume any distribution of the sampling distributions for the
correlations, and shows the estimated range of possible difference
in correlation values between ABFE and MMPBSA. All distri-
butions will be shown as Gaussian kernel density estimates.
Weighted averages of the statistics were obtained by assigning

a weight proportional to the number of protein−ligand systems
present within a test set, and distributing the weight between
multiple sets of calculations if more than one was carried out for a
certain test set. Thus, the same weight of one was assigned to
each protein−ligand pair, which alsomeans that more weight was
then given to larger test sets. If multiple calculations were carried
out on a test set (e.g., starting from X-ray and then docking
structures), the weight of the test set was distributed equally
between the different sets of calculations. In such a way, double

counting of repeated calculations on the same test set (which is
composed of the same protein−ligand systems and affinities) is
avoided, because this can skew the overall performance to the
one obtained for a particular test set. This procedure effectively
corresponds to averaging the performance of multiple sets of
calculations done on a test set (if any), before averaging the
performance across the different test sets with weights pro-
portional to the size of the different test sets. In the work here
presented, two sets of calculations were performed on test set 1:
starting from X-ray and docking structures (test case 1a and 1b,
respectively). As both sets of calculations (i.e., test case 1a
and 1b) refer to the same test set, the weight for this test set (11,
because test set 1 contains 11 protein−ligand systems and
affinities) was split between the two test cases (5.5 each). This
means that each binding free energy prediction in test case 1a and
1b carried a weight of 0.5, rather than 1, effectively averaging their
performance. Accordingly, test case 2 was assigned a weight of
14, and test case 3 a weight of 22, as per the number of protein−
ligand systems and ITC affinities they contain. The analysis was
performed via scripts written in Python 2.7 using the matplotlib
and seaborn libraries for plotting, and pandas, numpy and scipy for
data handling and statistics.

Figure 3. Scatter plots of calculated versus experimental binding free energies. The areas shaded in gray indicate the 1 and 2 kcal/mol error boundaries.
A linear fit to the data is shown as a black line, whereas a dashed line shows the identity line representing a perfect linear fit between experiment and
calculations.
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■ RESULTS

Here we report the performance of the different MMPBSA
protocols tested, with particular attention to comparing the
results to what had previously been attained with ABFE calcu-
lations.34,35 We primarily discuss performance as measured by
the Pearson correlation coefficient (rp), because similar results
were observed for the Spearman correlation (rs). Both cor-
relation coefficients are however reported in Table 2. The quality
of the correlations can also be visually assessed by looking at
Figure 3, where the predicted versus measured binding free
energies are plotted by test case.
StandardMMPBSA Calculations. As a first comparison, we

adopted a widely used protocol in which a single MD trajectory
of the protein−ligand complex is employed to represent both the
bound and unbound ensembles. In addition, the configurational
entropy contribution to the binding free energy was ignored.
These two approximations are commonly used in end-point cal-
culations as they result in computationally cheaper calculations,5

and have often been found to improve the convergence and
in some cases the correlation to experiment of the pre-
dictions.32,33,37,65 Because this MMPBSA protocol also does
not consider any water molecule explicitly, we label it “W0”.
Among the protocols tested, this is the simplest but also the most
widely used.
Table 2 summarizes the performance of this protocol under

the column “W0”, as well as the performance of ABFE
calculations. From a glance at the weighted average correlations
(rp and rs) it is possible to see how ABFE calculations returned

more reliable results (rp = 0.64, rs = 0.66) than the MMPBSA

protocol (rp = 0.39, rs = 0.35).When lookingmore in detail at the

performance for each individual test cases, it becomes evident
that MMPBSA particularly struggled with case 2, effectively
returning no correlation with experimental ITC data (rp = 0.05,
rs = −0.05). This test case is quite challenging, as it involves two
similar ligands binding to seven similar BRDs, yet showing a
different selectivity profile. In fact, RVX-208 displays a slight
selectivity for three of these seven BRDs, whereas RVX-OH does
not, due to the fact the ligand can bind the pockets in two
different orientations. Both orientations were considered in the

ABFE and MMPBSA calculations. There is then also the addi-
tional challenge for the computational method to correctly
predict the binding mode of RVX-OH first, which we will discuss
later in the text. A more detailed explanation of these systems can
be found in Picaud et al.66 and Aldeghi et al.35

Note that the ABFE correlation coefficients shown here for
test cases 1a and 1b slightly differ from the coefficients reported
in Aldeghi et al.4 This is simply due to a different way of handling
the data. Here, we report the correlation obtained for the original
sample whereas we use bootstrap only to estimate the 95% CI.
In our previous publications, we reported the mean correlation
coefficient of the bootstrap samples. However, the distribution of
correlation coefficients obtained via bootstrap might not be
normally distributed; for instance, when the original sample has
rp close to one, the sampling distribution of rp has a longer tail
toward lower values because rp is bound at one. The long tail thus
skews the mean of the bootstrap samples toward lower corre-
lation values than the value of the original sample. We deem the
approach used here to be more appropriate, and we updated the
rp values for test cases 1a and 1b for a consistent analysis.
Figure 4 compares the ABFE and MMPBSA distribution of

Pearson correlation values (as obtained by bootstrap) for all four
test cases, and for the weighted average results (the same plots
but for the Spearman correlation are in Figures S1−3). The violin
plots thus provide a visual estimate of the uncertainty in rp based
on the precision of the ITC measurements and the computa-
tional predictions. Note that the bootstrap data is paired, as each
rp value for the different approaches refer to a single bootstrap
sample of experimental affinities; this means that although the
experimental uncertainty contributes to the spread of rp observed
in the plots, the effects it has on the bootstrapped rp values of the
different approaches are not independent. The 95% confidence
intervals reported in Table 2 were derived from these
distributions. The plots at the bottom of the same figure show
instead the probability density functions (PDFs) resulting from
subtracting the bootstrap distribution of ABFE rp values from the
distribution of MMPBSA rp values (note again that the sub-
traction was done so to preserve the pairing of rp values between
the different approaches). Thus, positive values indicate better
correlation with experiment for MMPBSA calculations, whereas
negative values indicate better correlation with experiment for

Figure 4. Distributions of Pearson correlation values for the protocol W0 and for ABFE calculations, obtained by bootstrap and based on the
uncertainties of the experimental affinity measurements and computational predictions. In the violin plots, the white circle represents the rp value of the
original sample, whereas the dashed horizontal lines the first, second, and third quartiles of the bootstrap distribution. The probability density on the
bottom row show the distribution of rp for ABFE subtracted from the distribution of rp for MMPBSA. The fraction of the area above or below zero is
reported on the plots, the median is shown as a dashed line, and a difference value of zero is marked with a vertical gray dotted line.
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ABFE calculations. In these plots, the fraction of the PDF above
or below zero is also reported; this provides an estimate of the
significance for the difference observed, effectively representing a
one-tailed p-value, and a two-tailed p-value if multiplied by 2.
A small number thus indicate that the difference observed is
unlikely to have been caused by chance. Rather than choosing an
arbitrary cutoff (such as p < 0.05) that defines the significance of
the difference, we show the distribution and its p-value for each
pair of MMPBSA and ABFE calculations, giving the opportunity
to the reader to independently judge the reliability and impor-
tance of the differences observed. This partly because there is
additional and not quantified uncertainty in the error estimates
that is not taken into account; furthermore, considering there are
cases where the p-value is close to the commonly used threshold
of 0.05, categorizing those differences as significant if p = 0.04 but
not if p = 0.06 (a difference that it is itself likely nonsignificant)
seems arbitrary and assigns trustworthiness to the results in a
binary fashion. Overall, however, in most instances the fraction of
the PDF area greater or smaller than zero is below 0.025,
suggesting the difference would be significant at an α = 0.05 level,
and when considering all test cases together in the weighted
averages, it is well below 0.01. In this case, as shown in Figure 4,
ABFE calculations displayed rp distributions considerably shifted
toward higher values for case 1a and 2, slightly shifted toward
higher values for case 3, and almost equivalent to the MMPBSA
distribution for case 1b. Overall, according to the weighted
average difference, ABFE calculations provided a correlation to
experiment that can be confidently considered to be higher than
the W0 protocol.
As anticipated above, in some test cases, and specifically cases

1b and 2, the computational methods also had to score different
docking poses for the protein−ligand pairs (Table S1). ABFE
and MMPBSA calculations were performed on the alternative
poses, and the pose returning the highest affinity (lowest binding
free energy) would be considered the most stable pose. In test
case 1b, docking poses for 10 ligands binding to BRD4(1) were
considered (one of the ligand does not have a resolved X-ray
complex structure); each ligand had between one and five pos-
sible poses suggested by the docking. In test case 2, two alter-
native poses were evaluated for the ligand RVX-OH, which binds
with one pose to BRD2(1), BRD3(1), BRD4(1), and BRDT(1),
and with another pose to BRD2(2), BRD3(2), and BRD4(2);
both poses were tested for all seven BRDs (both with ABFE and
MMPBSA) and the one with lowest predicted binding free
energy was considered to be the most stable one. Details of
docking protocol and poses can be found in the publications
where the results of the ABFE calculations are reported.34,35

Because of the limited number of poses tested for each protein−
ligand pair, it is expected that on average, by chance, half of the
poses would be correctly identified. Figure 5 shows the number
of ligand-protein complexes for which the ABFE and MMPBSA
calculations managed to identify the crystallographic binding
mode as the one predicted to have highest affinity. It is possible to
see that ABFE calculations correctly identified 9/10 poses for case
1b, and 7/7 poses for case 2. The W0 protocol, instead, correctly
identified only 3/10 poses for case 1b, and 3/7 for case 2.
The Supporting Information reports the predicted binding

free energies for all protein−ligand pairs studied in this work.
These data are also summarized visually by Figure 3 as scatter
plots. In these tables and plots, it is possible to notice how
most standard errors in the MMPBSA calculations for test cases
1b, 2, and 3 tend to fall in the range of 0.2−0.3 kcal/mol. These
uncertainties were obtained from a single calculation repeat via

bootstrap. On the other hand, the standard errors for test case 1a
were derived from three repeated calculations, resulting in an
uncertainty estimate that, to a certain extent, takes finite sampling
issues into account. The resulting standard errors in test
case 1a were, on average, two-to-three times larger than those
obtained by bootstrap and a single repeat (mean uncertainty of
0.6 kcal/mol), yet they were still reasonably small in most cases.
In fact, these uncertainties did not impact noticeably the
distribution of rp values obtained by bootstrap for case 1a, which
shows a spread that is similar to the other three test cases. This
suggests that the length of the simulations and number of
snapshots considered were sufficient to obtain reasonably
converged MMPBSA results. The fact that the uncertainty of
MMPBSA results based on a single repeat was two-to-three times
smaller than that for calculations based on three repeats may be
due to the presence of correlated samples, which would result
in the bootstrap approach underestimating the true uncertainty.
However, it is likely that the largest contribution to this

Figure 5. Number of correct X-ray binding modes recovered from sets
of docking poses by the different approaches. In test case 1b, a variable
number of alternative possible poses were evaluated for 10 ligands.
In test case 2, two alternative binding modes were evaluated for
RVX-OH binding to seven different protein; the ligand is known to bind
to four of these proteins with a certain pose, and to the three in a
different with a different orientation. The thick horizontal gray line
represents the number of X-ray poses expected to be correctly identified
on average by chance.
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discrepancy is due to limited sampling, i.e., the repeats explore
slightly different ensembles of conformations, which then return
different distributions of ΔGMMPBSA values.
MMPBSA Calculations with an Entropy Estimate. As an

addition to the previous MMPBSA protocol, we decided to test
the effect of including an estimate of the entropic contribution to
the binding free energy. This is usually done via quasi-harmonic
or normal-mode analysis. However, the benefits of including this
term has been subject of debate, in particular when considering
the additional computational cost.5,32,33,65 Recently, Duan et al.39

proposed an alternative method that is computationally cheap
and easy to apply by simple postprocessing of the simulation
trajectories. The authors also showed how the method returned
an improved mean unsigned error as compared to normal-mode
analysis for a set of 15 protein−ligand systems. Although the
performance of such an approach, also in terms of impact on
correlation, still needs to be further validated, its simplicity is very
attractive. Thus, we decided to use this interaction entropy
method proposed to test whether the MMPBSA calculations of
the W0 protocol could be improved, and how would compare to
ABFE calculations. Because this protocol included zero explicit
water molecules, but an estimate of the entropic term, we refer to
it as the “W0e” MMPBSA protocol.
Overall, the addition of the entropic term resulted in a stark

improvement of the agreement with ITC data with respect to the
W0 protocol. In fact, the weighted average correlation values
raised to 0.55 [0.39, 0.64] and 0.56 [0.35, 0.70], for the Pearson
and Spearman coefficients, respectively (Table 2). A closer look
indicates that this was driven by a recovered positive correlation
for test case 2. The W0e protocol also managed to correctly
identify the pose of RVX-OH in case 2 for all seven complexes
(Figure 5). In case 1b too, the number of correctly identified
poses improved to 6/10, just slightly better than random. Despite
the improvements over W0, the performance of this MMPBSA
protocol was still inferior to that of ABFE calculations, by
0.09 and 0.11 in terms of Pearson and Spearman weighted
average correlation. Indeed, Figure 6 shows how for test cases
1a, 1b, and 2, the distribution of W0e rp values is shifted toward
lower values; for test case 3 there is more overlap between the

two distributions, despite ABFE calculations still being more
likely to return a higher correlation.
The estimate of the uncertainty for the entropic term was

based on three independent samples (i.e., repeats) for test
case 1a, and on bootstrap resampling for the other cases. For
case 1a, a large uncertainty was observed for the entropic
calculations: the average standard error in the−TΔS estimate for
the 11 protein−ligand pairs was 1.9 kcal/mol, driving the average
standard error for the overallΔGMMPBSA forW0e to 2.1 kcal/mol.
Although the uncertainties derived by bootstrap for cases 1b,
2, and 3 are smaller, they still result in considerably less precise
calculations than for protocol W0. In fact, when considering
these other three test cases together, the average standard error
for the overall ΔGMMPBSA was of 1.1 kcal/mol. The impact of the
larger uncertainties on the spread of possible correlation values
for all cases can be seen in Figure 6, and in the 95%CI for the rp in
Table 2: the probability density for the rp values is wider, in
particular for test cases 1a, allowing for both strong and weak
correlations. Therefore, despite the addition of the entropy
estimate had resulted in a better correlation to ITC data for the
tests cases considered here, the precision of this term still appears
to be problematic.
Given these larger uncertainties, one might wonder whether

the improvement observed over the protocolW0 for case 2might
be due to chance. However, the difference in performance
between the two protocols is much larger than their respective
uncertainty, so that even assuming the uncertainties were under-
estimated the improvement would still be significant. For
instance, adding Gaussian random noise to the W0 and W0e
bootstrap samples of rp so to triplicate the spread of their
distributions still results in a difference of rp (using the same
approach as done for the comparison ofMMPBSA to ABFE) that
would be significant at α = 0.05.

MMPBSA Calculations with an Explicit Ligand Hydra-
tion Shell. It has been previously shown by different authors
how the inclusion of an explicit ligand hydration shell can in
some instances lead to an improved correlation between calcu-
lated binding energies and experimental affinities.33,40−43

Furthermore, bromodomains are known to have a conserved
network of water molecules at the bottom of their binding

Figure 6. Distributions of Pearson correlation values for the protocol W0e and for ABFE calculations, obtained by bootstrap and based on the
uncertainties of the experimental affinity measurements and computational predictions. In the violin plots, the white circle represents the rp value of the
original sample, whereas the dashed horizontal lines the first, second, and third quartiles of the bootstrap distribution. The probability density on the
bottom row show the distribution of rp for ABFE subtracted from the distribution of rp for MMPBSA. The fraction of the area above or below zero is
reported on the plots, the median is shown as a dashed line, and a difference value of zero is marked with a vertical gray dotted line.
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pockets that interact with the small molecule binders. For these
reasons, we decided to test this approach too and we repeated the
MMPBSA calculations while including a different number of
explicit water molecules around the ligand, using the same
approach employed by Maffucci and Contini.42 We ran five
different sets of calculations, which included the 10, 20, 30, 40,
and 50 closest water molecules to the ligand in each of the frames
extracted from the MD simulations. We will thus refer to these
protocols as “W10”, “W20”, “W30”, “W40”, and “W50”.
Figure 7 provides an overview of how the correlation between

calculated and measured affinities changed when including a
larger number of explicit water molecules in the MMPBSA
calculations. The numerical data are available also in Table 2.
For test case 1a, rp increased between W0 and W20 (rp = 0.82
[0.75, 0.86]), and reached its peak value at W30 with rp = 0.83
[0.79, 0.87], after which it leveled off. For test case 1b too, rp
increased when including a small number of explicit water
molecules, with the peak correlation being achieved by W20
(rp = 0.90 [0.86, 0.92]), after which rp seemed to deteriorate only
marginally. Case 2 showed the strongest dependence on the
presence of explicit water molecules in the MMPBSA calcu-
lations. In fact, although theW0 protocol returned no correlation
to the ITC data, the inclusion of 10 or 20 water molecules
managed to recover amoderate correlation (rp = 0.44 [0.32, 0.54]
for W10, and rp = 0.50 [0.37, 0.60] for W20). However, the
inclusion of a larger number of explicit water molecules resulted
in no (or negative) correlation with the ITC data. In test case 3
instead, the inclusion of an explicit ligand hydration shell seemed
to result in a minor deterioration of the Pearson correlation.
Overall, because of cases 1a, 1b, but in particular case 2, the
performance of the approach (measured as weighted average
Pearson correlation) improved markedly when including a small
number of explicit water molecules (up to 20), but deteriorated
again at higher numbers.
Figure 8 shows a comparison of the rp distributions observed

for ABFE calculations and for the MMPBSA protocols that
included an explicit ligand hydration shell (W10 to W50).
Focusing on W20, the protocol that achieved highest overall
performance (rp = 0.53 [0.45, 0.59], rs = 0.55 [0.42, 0.64]) among
the ones discussed in this section, it is possible to see that the
difference in correlation to ABFE is still significant. Looking at
each test case more specifically, for test case 1a the distribution of
rpwas similar to that obtained by ABFE calculations. For test case
1b, MMPBSA returned higher correlation to experiment than
ABFE. Surprisingly, MMPBSA calculations behaved oppositely
to ABFE, in that the end-point approach returned better (rather
than worse) correlation to ITC data when starting from docked
poses rather than X-ray structures; this trend was conserved
across all MMPBSA calculations that did not include the inter-
action entropy estimate. Looking more in detail at the individual
results for all ligands in case 1a and 1b, it was noticed that the
largest average difference in binding free energy between the two
test cases was associated with ligand 1 (the dual kinase-BRD
inhibitor BI-2356).67 This ligand is also the one with highest
affinity for BRD4(1) among the ones considered, but in case 1a
its affinity is slightly underestimated (in relative terms with
respect to the other ligands; see Figure 3). In case 1b, however,
there is a docking pose that deviates from the X-ray pose (RMSD
of 8.4 Å) only because the solvent-exposed tail of the ligand
adopts a more extended conformation, whereas the core of the
ligand interacting with the protein maintains a correct binding
orientation. This more extended pose is scored higher (lower
binding free energy) by MMPBSA (protocols W10−W50) than

the pose closest to the X-ray (with RMSD of 3.2 Å), so that the
ligand affinity is ranked more appropriately (despite the “wrong”
pose being identified as the most stable), in turn positively
impacting the correlation to the experimental data. This is the
largest contributing factor to the unexpected improvement in
correlation between test case 1b and 1a that we have identified.
Excluding this ligand, protocol W20 would return a Pearson
correlation of 0.85 [0.82, 0.88] for test case 1a and of 0.88 [0.84,
0.91] for test case 1b (a difference that is not significant

Figure 7. Change in Pearson correlation with the inclusion, in the
MMPBSA calculations, of larger numbers of explicit water molecules
representing the ligand hydration shell. The shaded area represents the
95%CI of the Pearson coefficient. The discrete data points (atW0,W10,
W20, W30, W40, W50) have been interpolated with a cubic spline only
for visualization purposes. Note the different scales on the y-axis.
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Figure 8. continued

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00347
J. Chem. Inf. Model. 2017, 57, 2203−2221

2215

http://dx.doi.org/10.1021/acs.jcim.7b00347


anymore). For case 2, despite the net improvement as compared
to W0, the distribution of rp was still shifted toward lower values
as compared to ABFE. The same was noticed for test case 3,
which was expected, because in this test case the inclusion of an
explicit hydration shell did not improve the correlation to ITC
affinities. Overall, the performance of the W20 protocol was
comparable to that of W0e, with W20 performing better on test
set 1 (case 1a and 1b, where 11 ligands bind to one protein with a
range of affinities), and W0e performing better on test sets 2
and 3 (where single ligands bind to multiple proteins).
The inclusion of explicit water molecules in the MMPBSA

calculations also resulted in a higher ability to identify the correct
ligand binding mode from the set of docking poses (Figure 5).
In test case 1b, protocols W10, W20, and W30 correctly
identified the X-ray binding pose for 6/10 ligands. Despite this
being only slightly better than chance with this set of protein−
ligand complexes and docking poses, it is double the number of
correctly identified poses that of the standardMMPBSA protocol
(W0) adopted here and discussed previously. For the same test
case, however, the recovery of correct binding modes decreased
to 5/10 for protocols W40 and W50. In test case 2, the improve-
ment was more noticeable. Although W0 predicted RVX-OH to
bind in the same orientation to all seven BET BRDs, thus
identifying only 3/7 correct orientations, W10, W20, and W30
allowed for the two possible orientations of RVX-OH to be
predicted as more stable in different BRDs. As a consequence,
these protocols recovered 6/7 correct binding modes for
RVX-OH, with BRDT(1) being the only BRD for which the
pose was not correctly predicted. Also in this instance, the
number of correct binding poses recovered decreased slightly,
to 5/7, for protocols W40 and W50.
Given the performance improvements observed for both the

MMPBSA protocol including an estimate of the binding entropy
and the protocol including an explicit ligand hydration shell,

the two approaches were also combined in order to test whether
further gains in correlation could be achieved. However, this did
not result in higher correlations than those obtained with
protocols W0e and W20 (Supporting Information Table 2). It is
possible that, because the entropy estimate here employed
depends on the interaction energy between the ligand and the
protein (with the solvent, if present, being considered as part of
the protein), the inclusion of explicit water molecules may add
noise to the estimate given that many water molecules included
in the ligand hydration shell are exposed to bulk and are non-
structural. Assuming prior knowledge of the presence and
location of conserved water molecules important for binding, it
would also be possible to selectively choose a specific set of water
molecules to be retained during the MMPBSA calculations, as
opposed to defining a hydration shell around the ligand as done
in this work. Although we have not investigated this approach,
and as such the following is speculative, it is conceivable that such
a strategy might too be able to return improved agreement with
experiment over standard MMPBSA approaches that do not
include any explicit water molecule in the calculations. It is also
plausible that, if only structural water molecules relevant for the
ligand-binding event are included in the MMPBSA calculations,
then adding a binding entropy estimate (similarly to protocols
W10e to W50e) may result in further accuracy gains because
highly localized bridging water molecules would be included as
part of the protein structure, whereas bulk-exposed, mobile,
noise-inducing water molecules would not.

■ DISCUSSION

When the interest is in the relative ranking of affinities of very
diverse ligands or of a ligand for multiple proteins, MMPBSA
calculations are an alternative to computationally more demand-
ing ABFE calculations. Given the lack of direct comparisons
between the two techniques, it is informative to observe the

Figure 8.Distributions of Pearson correlation values for the protocols W10 to W50 and for ABFE calculations, obtained by bootstrap and based on the
uncertainties of the experimental affinity measurements and computational predictions. In the violin plots, the white circle represents the rp value of the
original sample, whereas the dashed horizontal lines the first, second, and third quartiles of the bootstrap distribution. The probability density on the
even rows show the distribution of rp for ABFE subtracted from the distribution of rp for MMPBSA. The fraction of the area above or below zero is
reported on the plots, the median is shown as a dashed line, and a difference value of zero is marked with a vertical gray dotted line.
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performance of these on the same systems, using the same
physical models and MD trajectories. When running end-point
calculations, several different options are available to the user.
Here, one of the most widely employed MMPBSA procedures
was first adopted; that is, the single-trajectory approach with
neglect of the binding entropy. Then, the effect of including a
computationally efficient estimate of the binding entropy was
evaluated. Furthermore, protocols that included an explicit
ligand hydration shell of different size were considered too.
Importantly, the MMPBSA calculations were carried out on
frames extracted from the simulations used for the ABFE
calculations. Hence, a similar ensemble of conformations was
used in both computations, as well as the same physical model, so
that potential sampling or force field issues would affect both sets
of predictions. The affinity predictions were evaluated based on
four test cases, which included a total of 47 experimental affinity
data points (43 of which were obtained with ITC, one with SPR,
and three with AlphaScreen), where either the protein target or
the ligand of interest were kept constant. These scenarios are
amenable to both MMPBSA and ABFE calculations. On the
other hand, because of large differences within the set of either
ligands or proteins considered, RBFE calculations would be
impractical and, at the moment, unfeasible in such cases.
Table 2 reports the Pearson and Spearman correlations for all

ABFE and MMPBSA setups here considered. The performance
of the four test cases (two of which on the same test set) as well as
their weighted averages are shown. Overall, when considering all
test cases, ABFE calculations were more reliable and returned
moderate or strong correlation with experimental affinities in all
four cases. Consequently, the achieved rp and rs were of 0.64
[0.56, 0.69] and 0.66 [0.53, 0.75], respectively. Nonetheless, the
best MMPBSA protocols achieved overall correlations that were
only about 0.1 points worse than ABFE, despite needing about
5% of the compute time. For an ABFE calculation, 42 simulations
(each 10 or 15 ns long) of the protein−ligand complex were
performed; on the other hand, for a MMPBSA calculation, only
one such simulation was used, followed however by a set of three
Poisson−Boltzmann calculations. To provide an idea of the
difference in computational cost, each ABFE calculation with
15 ns long windows took about 2 days on 504 cores (42 CPUs,
Intel Xeon E5-2697 v2 2.7 GHz), whereas the simulation needed
for a MMPBSA calculation took the same time but on 12 cores
(1 CPU) because it corresponded to only one of the 42 windows
simulating the protein−ligand complex. Then, the MMPBSA
postprocessing for each 501-frame trajectory with GMXPBSA
2.154 and APBS 1.368 took about 2 days and 9 h on 8 cores (AMD
Opteron 2378 processor). There can be, however, substantial
differences in the efficiency of different MD and MMPBSA
codes,69,70 and the performance of different hardware.
Furthermore, in our previous ABFE studies we did not optimize
the protocol for computational efficiency, so that the relative cost
of ABFE versus MMPBSA reflects the details of the setup we
employed, but it is by no means general. On one hand, it is likely
possible to optimize the ABFE protocol so to obtain similar
accuracy with lower cost,25,71 and on the other hand the use of
different MMPBSA protocols, like ensemble approaches, would
involve a considerably larger number ofMD simulations and thus
higher cost.18,72 Ultimately, the applicability of ABFE versus
MMPBSA depends on the computer resources one is willing or
able to assign to a specific problem. Thus, in practice, large
computational screens might be more amenable to cheaper
MMPBSA calculations, whereas ABFE calculations could be
employed for a more accurate re-evaluation of some binding free

energies. On the other hand, if only a relatively small number of
protein−ligand complexes are of interest, and accuracy is of
primary importance, ABFE calculations should be the method of
choice.
Here, the best performing MMPBSA protocols overall were

W0e and W20, the former including an estimate of the entropic
term, and the latter including an explicit ligand hydration shell
comprising 20 water molecules. W0e returned rp= 0.55 [0.39,
0.64] and rs = 0.56 [0.35, 0.70], whereas W20 returned rp = 0.53
[0.45, 0.59] and rs = 0.55 [0.42, 0.64]. Interestingly, W20
performed particularly well in test cases 1 and 2, whereas W0e
was superior in test cases 3 and 4. It should be kept in mind that
although it was possible to retrospectively identify the MMPBSA
protocols returning the best correlation to experiment in these
specific test cases, it would not be possible to do this pro-
spectively, unless one has an indication of which protocol is most
likely to perform best based on previous experience and testing
on the specific system. This system-dependence of the most
suitable protocol can be a nuisance for MMPBSA calcula-
tions,65,73,74 whereas such uncertainty is not present to the same
extent in ABFE calculations where the appropriateness of the
protocol adopted tends to be less dependent on the system under
investigation. For instance, the use of more thorough protocols
(e.g., using replica exchange to enhance sampling,50,75 or
restraints to improve convergence,76,77 or correcting for the
use of cut-offs,78 or for artifacts related to the treatment of elec-
trostatics26) may not provide any improvement in some cases,
but also is unlikely to be detrimental. This is not to say that the
performance of ABFE calculations is not system-dependent, but
that there is a smaller number of setup variables that can affect the
results in ways that are hard to predict. Although the perfor-
mance of ABFE is too ultimately system dependent, given the
rigorous nature of the calculations this dependence should only
be due to the underlying physical model used (assuming con-
vergence), and not to other setup choices.
Note that although we tried to test different MMPBSA

protocols, these were not by any means exhaustive. Parameters
such as solute dielectric constant and salt concentration could be
tuned, the GB rather than PB model could be employed, and
other approaches to the estimate of the binding entropy could be
adopted. It is conceivable that a protocol that is overall superior
to the ones considered here exists. However, our principal aim
was a fair comparison between ABFE and MMPBSA, rather than
the identification of the best MMPBSA protocol. This is also in
light of the fact that, as mentioned previously, in a prospective
scenario one would choose a protocol without prior knowledge
of its performance. The protocols here used thus reflect the
choices the authors would have made in such scenario, and
the necessary compromises made in order to achieve a direct
comparison to ABFE calculations (e.g., length and number of
MD simulations, force fields, etc.). Furthermore, given that
ABFE calculations were known to perform well for the test cases
here described (aside test case 3, for which they returned modest
correlations), there might be a bias against MMPBSA calcu-
lations in the sense that they would have had to perform
particularly well in order to be found superior or equivalent to
ABFE. On the other hand, we did not select the literature for
positive ABFE results, but rather reanalyzed all our previous data.
In the future, it would be interesting to consider cases where
MMPBSA has performed well and test whether ABFE could
achieve similar results, or cases where ABFE is known to fail and
test whether MMPBSA could succeed instead. As it may also be
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the case for different protein systems, it cannot be excluded that
opposite results in terms of performance may be found in such
scenarios.
In this paper, we have not focused on the ability of MMPBSA

to reproduce affinities in absolute terms as compared to ABFE
calculations. This because it is generally accepted that obtaining
agreement in absolute terms is problematic for MMPBSA.5,36

However, this is one of the benefits of ABFE calculations. In fact,
the results obtained here confirmed this notion about ABFE
versus MMPBSAmethods (Table 3). For the ABFE calculations,
the weighted average root-mean-square error (RMSE) for the
four test cases was of 1.5 kcal/mol, whereas the best weighted
average RMSE for MMPBSA was of 5.3 kcal/mol, obtained with
the W0e protocol. Without the entropy estimate, the standard
W0 protocol returned an overall RMSE of 15.7 kcal/mol, but this
is not surprising given the neglect of entropy contributions upon
binding. Therefore, in Table 3 only the RMSE for the results
of the protocols including an estimate of the entropic term
(W0e to W50e) are showed. In all cases, in fact, the addition of
the entropy estimate significantly reduces the RMSEwith respect
to the MMPBSA calculations without this term (e.g., W20e
versus W20). Nonetheless, with larger numbers of explicit water
molecules included in the calculations, larger errors are observed.
Therefore, among all MMPBSA protocols, W0e is still the
best performing in terms of absolute errors, with a RMSE
(5.3 kcal/mol) that is however about 3.5 times larger than that of
ABFE.
The present study is in agreement with the previous

observations of improved correlation with experiment when an
explicit ligand hydration shell is included in the MMPBSA
calculations.42,43 However, for the bromodomain systems con-
sidered it was observed that correlation improved after including
a small number of explicit waters (up to 20) and then leveled or
decreased at higher numbers (30 to 50). The same effect was
observed by Maffucci and Contini,42,43 who suggested that the
inclusion of additional and unnecessary solvent molecules
around the ligand introduces noise while not contributing any-
more to capturing discrete solvent effects upon binding. Addition
of the binding entropy estimate too resulted in an improved
overall performance as compared to the standard MMPBSA
protocol here referred to as W0. In addition, the inclusion of the
entropic term largely improved the agreement with experimental
free energies in absolute terms. Nonetheless, the larger uncer-
tainties obtained for this protocol raise concerns with respect to
the precision of calculations making use of this term, in particular
when its uncertainty is not estimated.

Considering the small data set of docking poses in the present
study, it is difficult to confidently determine the best rescoring
approach. Nonetheless, ABFE calculations appeared to provide
the best recovery rate of X-ray poses, followed by the MMPBSA
protocols that included either an entropy estimate (W0e) or a
small explicit hydration shell (W10, W20, and W30), which is
consistent with their improved correlations as compared to the
more standard MMPBSA protocol (W0).
As for all studies focusing on a specific protein family, the

question of whether or to what extent the results and obser-
vations made are transferable to other systems arises. Given the
small number of protein−ligands pairs studied and the focus on
BRDs, the transferability of the results observed for ABFE and
MMPBSA to other systems is not guaranteed. Nonetheless, one
might speculate that at least for protein systems with similar
characteristics, such as a rigid structure and a solvent-exposed
binding pocket, similar observations about the relative perform-
ance of ABFE and MMPBSA will apply. In addition, we would
also expect the observation of improved agreement with experi-
ment for the MMPBSA protocols that included a number of
explicit water molecules to be true for other protein systems with
either solvent-exposed binding pockets or bridging water
molecules. On the other hand, it is conceivable that for protein
targets with enclosed and dry binding pockets the inclusion of
explicit water molecules might have less of a positive effect, which
might mean the advantage of explicit solvent ABFE calculations
may be diminished too.

■ CONCLUSIONS

In summary, and on the basis of the data described in this work,
which are contingent on the test cases considered, the following
observations can be made. (1) Overall, ABFE calculations
appeared to be more robust than MMPBSA ones in the ability to
correlate to experimental affinities. However, this came at high
computational price. (2) Certain MMPBSA protocols, namely
the ones that included either an estimate of the binding entropy
or an explicit ligand hydration shell, still achieved reasonable
correlation with experimental affinities at a much lower
computational cost than ABFE calculations. (3) The inclusion
of a small explicit ligand hydration shell resulted in improved
correlation with experiment. (4) The inclusion of the binding
entropy term, calculated as proposed by Duan et al.,39 was also
beneficial for improving the correlation with experiment. How-
ever, this term appeared to be more sensitive to the simulated
ensemble than the rest of the MMPBSA terms, thus potentially
affecting the precision of the calculations. (5) Perhaps

Table 3. Overview of the Results Obtained with ABFE and MMPBSA Calculations, in Terms of Root Mean Square Error As
Compared to Experimental Binding Free Energiesa

Root Mean Square Error (kcal/mol)

Test Case
No. Weight ABFE W0e W10e W20e W30e W40e W50e

1a 5.5 0.85
[0.64, 1.32]

3.94
[3.61, 5.86]

7.09
[6.38, 9.40]

12.52
[11.50, 13.90]

15.39
[14.33, 16.73]

17.36
[16.02, 19.26]

18.38
[17.02, 20.13]

1b 5.5 1.37
[1.25, 1.64]

6.46
[6.34, 6.60]

7.88
[7.29, 8.70]

14.12
[13.66, 14.64]

17.25
[16.81, 17.73]

18.86
[18.31, 19.48]

19.68
[19.03, 20.43]

2 14 0.95
[0.87, 1.05]

4.68
[4.57, 4.80]

7.02
[6.58, 7.82]

12.74
[12.24, 13.65]

16.18
[15.59, 16.89]

17.93
[17.39, 18.54]

18.54
[17.99, 19.16]

3 22 2.13
[2.03, 2.26]

5.70
[5.60, 5.80]

8.70
[8.24, 9.47]

15.54
[15.08, 16.17]

18.69
[18.23, 19.23]

19.82
[19.32, 20.42]

20.62
[20.13, 21.20]

Weighted
Average

1.54
[1.43, 1.72]

5.28
[4.86, 6.23]

7.92
[7.41, 8.88]

14.18
[13.65, 14.97]

17.39
[16.82, 18.07]

18.86
[18.24, 19.62]

19.63
[19.00, 20.38]

aIn square brackets are the 95% confidence intervals of the statistics.
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unsurprisingly, MMPBSA did not provide quantitative agree-
ment with experimental binding free energies in absolute terms,
contrary to ABFE. The incorporation of the entropic term largely
improved the absolute errors, yet the RMSE achieved with
MMPBSA was still about 3.5 times larger than the one achieved
with ABFE calculations.
Finally, we stress the fact that the present analysis was based on

a limited number of protein−ligands pairs and a single protein
family, such that the transferability of the above observations to
other systems is not guaranteed. Nonetheless, the study provides
a first glance at howMMPBSA and ABFE compare to each other
in their ability to correlate with ligand binding affinities. As ABFE
calculations become more affordable and widespread, it will be
possible to gather a more general picture of their performance
and to compare them to established computational methods like
MMPBSA.
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