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1 Introduction

The expected volatility of financial markets is a key variable in financial investment

decisions. For example, it is common practice to reduce asset allocation decisions to a

two–dimensional decision problem by focusing solely on the expected return and risk

of an asset or portfolio, with risk being related to the volatility of the returns. The

volatility of returns plays also a central role in the valuation of financial derivatives

such as options and futures, and can, in fact, have a greater influence on the value

of derivative securities than price movements in the underlying assets. Options can

be used either as part of a dynamic hedging strategy, to protect a portfolio against

adverse price movements, or as a speculative asset which gains from expected price

changes. To assess the fair value of an option or to hedge market risk, an investor

needs to specify his or her expectations regarding future volatility.

There are basically two approaches to generate volatility forecasts. One is to

extract information about the variance of future returns from their history; the sec-

ond is to elicit market expectations about the future volatility from observed option

prices. Assuming that an option pricing model correctly represents investors’ be-

havior, the implied volatility can be derived from observed option prices and other

observable variables by appropriately “inverting” the option pricing model. In in-

formationally efficient markets the implied volatility should reflect the information

contained in past returns. Hence, forecasts based on past returns should not out-

perform forecasts based on implied volatilities.

A number of empirical investigations support the idea of using implied volatil-

ity as a predictor for future volatility (see, for example, Latane and Rendleman,

1976; Chiras and Manaster, 1978; Gemmill, 1986; Shastri and Tandon, 1986; Scott

and Tucker, 1989). However, the null hypothesis that historic returns add no in-

formation to that already contained in implied volatilities was empirically rejected

by Day and Lewis (1992) in the case of the S&P100 index and by Lamoureux and

Lastrapes (1993), who investigated several individual stocks. Xu and Taylor (1995)

found support for this hypothesis using currency options traded on the Philadelphia

stock exchange. These three studies follow the approach of Day and Lewis (1992)

and consider implied volatility as an exogenous variable in the conditional variance

equation of a GARCH(1,1) model. By doing so, one combines current market ex-

pectations, as reflected in option prices, with past return information captured by a

1



standard GARCH model. The importance of the information contained in these two

different sources is then judged by the statistical significance of the corresponding

parameter estimates.

In this paper we investigate a range of alternative strategies for predicting volatil-

ity in financial markets. We apply these approaches to daily returns on the DAX

index, the major German stock index, and analyze their in– and out–of–sample

performance. As a measure of implied volatility we will use the Volatility DAX

(VDAX). The VDAX is a publically reported volatility measure, which has recently

been introduced by the German options and futures exchange (DTB).2

The paper is organized as follows. Section 2 briefly summarizes the forecasting

strategies considered. In–sample results are discussed in Section 3; out–of–sample

results are presented in Section 4. Section 5 concludes.

2 Volatility Forecasting Models

Before discussing specific volatility forecasting models the question of how to ap-

proximate volatility, which is an unobservable variable, needs to be addressed. Given

daily return data, the sample standard deviation over a time interval spanning the

h trading days T + 1, . . . , T + h, i.e.,

VT+1,T+h =

√√√√ 1

h − 1

h∑
i=1

(rT+i − r̄T+i)2,

is commonly used as the estimate of this period’s average volatility. Here, rt denotes

the asset return for trading day t; and r̄t = 1
h

∑h
i=1 rt+i is the average return over

this period. Assuming 250 trading days per year, VT+1,T+h

√
250 represents the

annualized average volatility. Below, we will use VT+1,T+h as the true future average

volatility over interval [T + 1, T + h].

We investigate eight alternative approaches to forecasting stock market volatility.

Two of them, the moving average and the random walk model, use information about

past returns in a rather naive manner. We also consider a standard GARCH(1,1)

model; a modified GARCH(1,1) model taking weekend and holiday effects into ac-

count; an autoregressive model for squared past returns; implied volatility (IV)

information; a GARCH(1,1) model combined with IV information; and, finally, we

2Details on the construction of the VDAX will be given in the subsequent section.
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consider combined forecasts, following the lines of Granger and Ramanathan (1984).

The remainder of this section briefly summarizes these eight approaches.

2.1 Historical Moving Average Model

A widely used estimator for future volatility is the square root of a moving average

of past squared returns. If we adjust for mean returns, the volatility forecast is given

by the sample standard deviation

V̂T+1,T+h =

√√√√ 1

N − 1

N∑
i=1

(rT−i − r̄T )2 .

Below we choose a window length of one calendar year, i.e., N = 250 trading days.

2.2 Random Walk Model

If we assume a simple random walk model for the average volatility, the forecast for

the next h–day interval is given by the volatility of the past h days, i.e.,

V̂T+1,T+h = VT−h+1,T .

2.3 Standard GARCH(1,1) Model

The autoregressive conditional heteroskedasticity (ARCH) models introduced by En-

gle (1982) and their generalization, the so–called GARCH models (Bollerslev, 1986)

(see also Bollerslev et al., 1992, 1994) have been the most commonly employed class

of time series models in the recent finance literature. These models have been very

successful in describing the behavior of financial return data. Their appeal comes

from the fact that they can capture both volatility clustering and unconditional

return distributions with heavy tails—two stylized facts associated with financial

return data. The estimation of a GARCH model involves the joint estimation of a

mean and a conditional variance equation. For the forecast comparison we found a

GARCH(1,1) model combined with an AR(1) model for the mean to be appropriate,

i.e.,

rt = µ + φ rt−1 + εt,
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with the conditional variance of εt, conditioned on the return information available

up to time t − 1, being given by

σ2
t = ω + α ε2

t−1 + β σ2
t−1. (1)

The returns were modeled by an AR(1) model, since the coefficient φ has been found

significant over several sub–samples of the data. The GARCH(1,1) specification (1)

coincides with what has generally been regarded as an appropriate representation

in the empirical literature (see, for example, Akgiray, 1989; Baillie and DeGennaro,

1990; Lamoureux and Lastrapes, 1990; Schwert and Seguin, 1990; Engle et al., 1991;

West et al., 1993).

Instead of assuming normally distributed innovations we use the generalized

error distribution (GED) (Taylor, 1994) for maximizing the likelihood function,

from which the normal distribution is a special case. The density function of the

GED takes the form

f(εt; ν) =
ν exp(−1

2
|εt/λ|ν)

λ 21+1/ν Γ(1/ν)
, λ =

(
2−2/ν Γ(1/ν)

Γ(3/ν)

)1/2

,

with ν > 0. Here, ν plays the role of a tail–thickness parameter and determines

the shape of the distribution. It is estimated simultaneously with all other model

parameters. For ν = 2 we have εt ∼ N(0, 1), while for ν < 2 the distribution has

thicker tails than the normal. The reason for considering the GED is the fact that,

although the unconditional distribution of εt in a GARCH model with conditional

normal errors has fatter tails than the normal distribution, for many financial time

series the standardized residuals ε̂t/σ̂t still appear to be leptokurtic. Therefore,

assuming a leptokurtic unconditional distribution for εt seems more appropriate.

The daily s–step–ahead variance forecast from a GARCH(1,1) model can be

derived by recursion

σ̂2
t+s =




ω̂ + α̂ ε̂2
t + β̂ σ2

t , s = 1,

ω̂ + (α̂ + β̂) σ̂2
t+s−1, s > 1,

(2)

so that the forecast for the average future volatility for the next h–day period is

given by

V̂T+1,T+h =

√√√√√ 1

NT

NT,h∑
j=1

σ̂2
T+j, (3)

with NT,h denoting the number of trading days in that h–day period.

4



2.4 GARCH(1,1) Model with Weekend and Holiday Effects

The standard GARCH specification (1) ignores the fact that days where there is no

trading, such as weekends and holidays, may have an effect on volatility. A GARCH

model allowing for such effects has been proposed in Engle et al. (1993) and Noh et

al. (1994). They incorporate a variable, dt, which reflects the number of calendar

days elapsed since the most recent trading day, and a parameter, δ ≥ 0, as exponent

of dt, determining the degree with which non–trading days affect volatility.3 For

successive trading days during the week we have dt = 1; for Mondays we have

dt = 3, in general. To illustrate the empirical relevance of this phenomenon we

computed the return variance for trading days for which dt = 1 and for trading days

following weekends or holidays, i.e., dt > 1. In our sample, for trading days with

dt > 1 (216 observations) the return variance exceeded that for trading days with

dt = 1 (767 observations) by 75.7%.

To include this weekend and holiday effect Engle et al. (1993) modify the con-

ditional variance equation of the GARCH(1,1) model so that:

σ2
t = dδ

t [ω + d−δ
t−1 (α ε2

t−1 + β σ2
t−1)] (4)

Dividing α ε2
t−1 + β σ2

t−1, in (4), by dδ
t−1 scales past volatility information so that

it corresponds to that of a one–day non–trading period. The multiplication by dδ
t

inflates the one–day volatility according to the length of the non–trading period

between days t and t − 1 and the average variance rate during this period. The

resulting GARCH(1,1) forecasting recursion is of the form

σ̂2
t+s =




dδ
t+1 [ω̂ + d−δ

t (α̂ ε̂2
t + β̂ σ2

t )], s = 1,

dδ
t+s (ω̂ + d−δ

t+s−1 (α̂ + β̂) σ̂2
t+s−1]), s > 1,

while relationship (3) still applies.

2.5 Autoregressive Model

Bollerslev (1986) showed that a GARCH process for εt can be expressed in terms of

an ARMA model for ε2
t . Using a long autoregression for the squared residuals in (1)

3Engle et al. (1993) interpret parameter δ as average speed of the variance rate since the previous

close. For δ = 1, the variance rate would not decrease on non–trading days. Therefore, we expect

δ to be less than 1.
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as an approximation for the ARMA representation of ε2
t , one may expect that an

OLS estimation of such an autoregression performs more or less like an estimated

GARCH model. An autoregression of order p or, in short, an AR(p) model for ε2
t

implies predictions

ε̂2
T+s = α̂0 + α̂1 ε̂2

T+s−1 + . . . + α̂p ε̂2
T+s−p,

for future ε2
t ’s, with ε̂2

T+j = ε2
T+j for j ≤ 0. Then, the forecast for the average

volatility over the next h days is

V̂T+1,T+h =

√√√√√ 1

Nt

Nt∑
j=1

ε̂2
T+j.

2.6 Implied Volatilities (IVs)

If financial markets use information efficiently, past information should not help to

predict future volatility. Ideally, the volatility implied by observed option prices

reflects the volatility expectation of the market participants and should, under the

assumption of rationality, yield an efficient predictor. A potential problem associated

with IVs is that one assumes an underlying option pricing model. For example, the

widely used Black–Scholes model requires constant volatility. However, it is well

known that the IV derived from the Black–Scholes model for an at–the–money

option yields an approximately unbiased estimator of the average volatility over the

remaining life of the option, if volatility is stochastic and uncorrelated with aggregate

consumption (see Hull and White, 1987; Feinstein, 1989). This is due to the fact

that for at–the–money options the Black–Scholes model is almost linear in average

volatility. Therefore, focusing on at–the–money or near–at–the–money options not

only helps to minimize the bias induced by thinly traded options, but should also

minimize the specification error due to assuming the validity of the Black–Scholes

model.4

The Frankfurt Stock Exchange has published daily an implied volatility index,

called VDAX, since May 12, 1994; it has been reconstructed backward until Jan-

uary 1, 1992. The VDAX combines volatilities implied by call and put DAX–index

4However, any specification error arising from the inappropriateness of the Black–Scholes model

makes it less likely that IVs are the best predictors, even when markets are efficient. Therefore, the

results for the IV predictor in the following forecast comparison can be interpreted as conservative

estimates of the information contained in IVs.
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options for eight different strike prices and two different times to maturity. First, for

each individual time to maturity a subindex of implied volatilities for the different

strike prices is determined by a nonlinear least squares procedure.5 The two times

to maturity are chosen such that they encompass a duration of 45 days. Linear

interpolation between the two time indices gives an implied volatility of a synthetic

DAX index option with a remaining life of exactly 45 days.

Instead of employing the VDAX as a predictor for future volatility, one could use

IVs derived from the shortest maturity index option of each day as an estimate of the

next period’s average volatility.6 We computed daily IVs from transaction options

data recorded at the German options exchange DTB. Only those options that were

less than 10% in– or out–of–the–money as well as options with a remaining lifetime

of more than 10 trading days are used. Thus, the maturities of the remaining options

are varying between 11 and 32 calendar days. Independently of the particular IV

variant used, the resulting volatility forecast is given by

VT+1,T+h = IVT .

2.7 GARCH(1,1)–IV Model

The GARCH(1,1)–IV model combines the information contained in both past re-

turns and option prices by adding an IV variable as an exogenous variable to the

GARCH model (see Day and Lewis, 1992; Lamoureux and Lastrapes, 1993; and Xu

and Taylor, 1995). Here, we adopt the specification

rt = µ + φ rt−1 + εt, εt ∼ GED(0, σ2
t ),

σ2
t = ω + α ε2

t−1 + β σ2
t−1 + γ IV2

t−1/250. (5)

The resulting variance forecast equations correspond to those of the pure GARCH

case, but with γ IV2
t /250 added to forecasting recursion (2).

5The computation of each subindex is based on IVs of options with strike prices lying in a ±100

index point interval around the actual DAX level. For our sample period, this corresponds to an

exclusion of all options which were more than 4% – 7% in– or out–of–the–money.
6Clearly, IVs derived from longer maturity options can also serve as indicators for future volatil-

ity. But since the longest forecast horizon considered in our forecast comparison is one month,

short–term options are expected to be more appropriate for our purposes.
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Model (1) can be interpreted as the special case of model (5) where γ = 0. In

the context of testing the efficient market hypothesis the special case of (5) given by

σ2
t = ω + γ IV2

t−1/250 (6)

is of interest. Here, the conditional variance equation contains no explicit GARCH

terms. If the options market is indeed informationally efficient, the constraints

α = β = 0 implied by (6) should not be rejected.

A problem with this approach is the maturity mismatch of the GARCH and the

IV forecasts. Whereas the GARCH model predicts the conditional variance for the

next period (here, the next day), the IV variable represents market expectations

of the average daily volatility over the option’s remaining lifetime. Xu and Taylor

(1994) proposed a Kalman filtering approach for modeling volatility expectation as

an unobservable factor. In their forecasting comparison for currency options data Xu

and Taylor (1995) found no evidence suggesting that the choice of the IV predictor

(short maturity or next period’s volatility estimate) affects the predictive power of

the mixed GARCH–IV model.

2.8 GARCH(1,1)–IV Model with Weekend and Holiday Ef-

fects

* The GARCH–IV model with weekend and holiday effects simply combines models

(4) and (5), so that the conditional variance equation takes the form

σ2
t = dδ

t [ω + d−δ
t−1 (α ε2

t−1 + β σ2
t−1 + γ IV2

t−1/250)]. (7)

The forecast recursions for the conditional variances are obtained as for model

(4), but now with term IV2
t /250 being included.

2.9 Combined Forecasts

An alternative way of combining forecasts is simply to compute linear combinations

of forecasts generated by alternative models. To do so, a vector of weights, indi-

cating to what extent an individual forecast enters the combined forecast, needs to

be specified. An intuitive way of combining forecasts is to average the individual

forecasts. A more elaborate technique is the regression–based approach proposed by

Granger and Ramanathan (1984). This requires forecasts of volatility realizations
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of each of the individual model. When the series of past realized volatility is then

regressed on these ex–post forecasts, the estimated regression coefficients can be

used as weights for a linear combination. Granger and Ramanathan (1984) showed

that under a mean–squared–error criterion an unrestricted regression including a

constant term should be preferred. The inclusion of a constant term should lead to

an unbiased combined forecast, even if individual forecasts are biased.

3 In–sample Results

Table 1 displays some sample statistics for the 982 daily DAX index returns from

February 3, 1992 through December 29, 1995. Assuming 250 trading days per year

the standard deviation for the daily returns amounts to an annualized standard de-

viation of 14.6%. The high volatility of the daily returns relative to the mean return

causes the deviation of the mean return from zero to be statistically insignificant.

The highly significant excess kurtosis and the marginally significant negative skew-

ness of the daily DAX returns match stylized facts associated with financial return

data and indicate that the normal distribution is an inappropriate assumption for

the DAX returns. This is also supported by the Jarque–Bera test, which tests the

normal hypothesis by means of the sample skewness and kurtosis. Another stylized

fact, shared by many other asset return series, is the conditional heteroskedasticity

of the returns as is reflected by both the Ljung–Box statistics and Engle’s Lagrange

multiplier ARCH tests. The squared returns and, even more so, the absolute re-

turns display highly significant autocorrelations. Though the null of no ARCH

effects cannot be rejected at a significance level of 10% for a lag–length p = 8, it

can, for example, be rejected at any reasonable level for p = 16.

In summary, the DAX index return series seems best described by an uncondi-

tional leptokurtic distribution and possesses significant conditional heteroskedastic-

ity. This makes a (G)ARCH model with GED disturbances a natural candidate for

forecasting DAX index return volatility.

Table 2 compares the in–sample performance of the GARCH models described in

the previous section.7 The GARCH models (1) and (4) indicate a high persistence

7In the following we report only estimates of the conditional variance equation and not the

mean equation, since it is of limited interest here.
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of volatility shocks with the persistence measure, α + β, equal to .9802 and .9795

with standard errors .0282 and .0255, respectively. This suggests that an integrated

GARCH (IGARCH) model could be appropriate. Reestimation of the IGARCH

restriction α + β = 1 leads only to a small decrease of the maximum likelihood

value. A standard likelihood–ratio test against the unrestricted model (1) would

reject the IGARCH hypothesis at the 5% level, but not at the 1% level.

Point estimates of about 1.5 for the tail–thickness parameter, ν, with the stan-

dard errors around 0.1 clearly indicate the rejection of the normal assumption (i.e.,

ν = 2). A likelihood–ratio test of the restriction ν = 2 against the unrestricted

model (1) clearly supports this conclusion with a test value of 26.40, which is sig-

nificant even at the 0.5% level.

Figure 1 compares the kernel–estimated empirical density of the DAX returns

with the estimated normal density and the GED density for ν = 1.5 and illustrates

that the GED represents a more appropriate distributional assumption than the

normal density.

Model (5) includes the VDAX as an exogenous variable in the conditional vari-

ance equation. We observe a sharp drop in the GARCH coefficient–sum, α+β, from

0.9802 to 0.1459 and a relatively high estimate of 0.6545 for the IV coefficient, γ.

However, all parameters in the variance equation turn out to be insignificant, indi-

cating a serious identification problem when combining the two information sources.

A likelihood–ratio test of model (5) against model (1), constraining the IV parame-

ter to zero, gives a χ2–value of 17.46, which is significant even at the 0.5% level. On

the other hand, testing model (5) against model (6), which constrains the GARCH

parameters α and β to zero, yields a clearly insignificant χ2–value of 0.08. This

indicates that the IVs derived from the DAX index options reflect the information

contained in past DAX return and supports the efficient market hypothesis for the

DAX options market.

This finding differs from the results reported by Day and Lewis (1992) for the

conditional volatility of the S&P100 index returns and those of Lamoureux and Las-

trapes (1993) for individual stock returns. These studies suggest that both IVs and

GARCH components have incremental explanatory power for conditional variances.

Using the same methodology, Xu and Taylor (1995) found evidence in support of the

efficient market hypothesis for currency options data from the Philadelphia stock

exchange. For each of the currencies under investigation they could not reject the
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hypothesis that the GARCH component contains no additional information.

Model (4) suggests significant weekend and holiday volatility effects with a t–

value of 4.58 for adjustment parameter δ. This conclusion is supported again by a

likelihood–ratio test of the restricted model (1) against model (4) significant at the

0.5% level. For a typical weekend (i.e., dt = 3) we have dδ
t = 1.695, which means

that the model estimates Monday variances to exceed the return variance of any

other pair of adjacent trading days (i.e., dt = 1) by 69.5%. This is consistent with

the 75.7% increase computed from the raw return data.

4 Out–of–sample Comparison

We now consider the out–of–sample predictive power of the alternative forecasting

models described in Section 2. Of particular interest is the question of whether or

not the sufficiency of the IV information for the return history found in the in–

sample results carries over to out–of–sample comparisons. Below, we evaluate the

forecasting performance for one–, two– and four–week horizons. For each horizon,

we constructed sequences of nonoverlapping forecasting intervals.

Both the GARCH forecasts and those of the autoregressive model for squared

returns are based on rolling–sample estimates given by 250 trading days prior to the

forecasting period, for each new forecasting period. The models are reestimated for

each period; i.e., the forecast anchored in period T , V̂T+1,T+h, is based on models

estimated from sample rt, rt−1, . . . , rT−249. In accordance with this, we chose a length

of 250 trading days for the rolling standard deviation of past returns.

The forecasts for the one–, two– and four–week intervals start on January 4,

1993.8 We recorded the forecasts of each model until December 30, 1993, and then

perform regressions, to derive the first combined forecast. With each new prediction

the weights for combining forecast were updated. By doing so, we were left with

104 one–week, 52 two–week and 26 four–week forecasts for the two–year period from

January 3, 1994 through December 29, 1995.

8Since the sample period starts at February 3, 1992 the first 4 (2, 1) forecasts are based on

samples with less than 250 observations.
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4.1 Some General Results

In the previous section we presented in–sample fits for alternative GARCH(1,1)

model estimated from the entire data set. Looking now at the estimation results for

the 156 weekly one–year rolling samples for the years 1993–1995 allows us to take a

closer look at the appropriateness of the competing specifications over different sub–

periods. Parameters of particular interest, plotted in Figure 2, are the persistence

measure α + β, parameter δ capturing the weekend/holiday volatility effect, and

the tail–thickness parameter, ν. The first plot in Figure 2 shows that shocks to

volatility are highly persistent for a large part of the sample. For a long subperiod

the estimates favor an IGARCH process. This is consistent with the fact that the

IGARCH hypothesis was not clearly rejected for the full sample. The other two

plots in Figure 2 exibit some variation in the behavior of δ̂ and ν̂.

As an alternative way of comparing the different GARCH specifications Figure 3

displays twice the difference between the log–likelihood values of three non–restricted

models and their restricted counterparts. This can be viewed as rolling likelihood–

ratio tests. The horizontal lines in these three plots represent the 95% critical value

when testing the restricted against the unrestricted model. The first plot in Figure

3 shows that the hypothesis of an insignificant weekend/holiday volatility effect can

be rejected for half of the sample (for 78 of 156 subsamples). The fact that the

informational content in IVs outweighs that contained in the GARCH components

σ2
t−1 and ε2

t−1 is reflected by the second and third plots of Figure 3. Whereas the

hypothesis γ = 0 for the GARCH model (5) could be rejected for 101 of the 156

subsamples, the hypothesis of insignificant GARCH components (i.e., α = β = 0)

could not be rejected for a single subsample.

4.2 Out–of–sample Forecasting Results

The out–of–sample forecasting results are summarized in Tables 3, 4 and 5. We

employ three criteria to compare the volatility forecasts of the models: the mean

prediction error (ME); the mean squared prediction error (MSE); and the proportion

of correctly predicted directions, i.e., of the volatility movements, (D).

The main conclusion to be drawn from Tables 3, 4 and 5 is that in terms of

the MSE a combination of GARCH forecasts together with an IV variable seem

to perform best. For all three forecast horizons, GARCH specification (5) with IV
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as exogenous variable has the smallest MSE within the group of individual (i.e.,

uncombined) forecasting models. The GARCH–IV model makes use of IVs of short

maturity options rather than the VDAX, because the former outperformed the latter

for all horizons. Compared to the pure GARCH model the mixed version leads to a

remarkable improvement of the forecasting accuracy.9 This is even more remarkable

in view of the poor performance of the purely IV–based forecasts which tend to

overstate forward volatility. For each forecast horizon the IV variables display an

average absolute bias of about 3%. However, despite this bias, which could be

corrected by embedding the IV variable into the GARCH model, IVs clearly contain

relevant information about future volatility movements.

The dominance of the GARCH–IV forecasting model is mainly due to the inclu-

sion of the IV information. This is indicated by the performance of the GARCH(0,0)–

IV model, which models the conditional variance simply as a linear transformation

of the squared IVs without lagged σ2
t−1 and ε2

t−1. The results show that the omission

of the GARCH components causes only a marginal loss in predictive power, whereas

the exclusion of the IV information in a standard GARCH(1,1) model entails a sig-

nificant drop in forecasting accuracy. This is in accordance with the in–sample

results.

Estimating an AR(1) model for the squared IVs the estimate for the AR coeffi-

cient is 0.9731, indicating a high persistence in volatility expectations. This matches

very closely the estimate of 0.9802 for the persistence measure, α + β, in the esti-

mated GARCH model (1b).

Incorporating weekend and holiday effects into the standard GARCH(1,1) model

reduces, as shown in Tables 3–5, the ME and MSE of the GARCH forecasts. There-

fore, only these GARCH forecasts are considered in the combinations of forecasts.

The results for the other individual forecasting methods can be summarized as

follows. The RW forecasts, though on average with the lowest bias, exhibit by far

the highest MSE. The MA model can substantially improve forecast accuracy, but

shows—apart from the two IV–based forecasts 4 and 5—the highest ME. This, to-

gether with the results for the RW model, indicates that processing information in

9The forecast equations for the mixed GARCH model differ from the forecast equations for the

pure GARCH model by adding γ IV2
t /250 to the recursion (2). We also computed IV forecasts by

an ARIMA approach and substituted IV2
t /250 by ÎV

2

t+s/250 for s > 1, but this did not improve

the volatility forecasts.
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past returns in a naive fashion yields inaccurate volatility forecasts. A 15th–order

autoregression for the squared returns leads to a marginal reduction of both the ME

and MSE.10 Specifying the conditional heteroskedasticity by either an AR(15) model

for squared returns or a standard GARCH(1,1) model does not give rise to a dramat-

ically different forecast performance. Although, the GARCH forecasts consistently

outperform the autoregressive forecasts. Finally, the forecasts of a GARCH(1,1)

model with a conditional normal distribution, which are not reported here, are very

close to those derived from the GED–GARCH model. This suggests that distribu-

tional assumptions are of secondary importance in volatility forecasting, even though

the explanatory power of the GARCH model is strongly affected by this assumption.

Turning now to the results for the combined forecasts (see Tables 3–5) we find

that combining forecasts does not automatically improve accuracy. Combining fore-

casts seems to introduce a substantial amount of noise. A combination, which

includes the MA, RW, AR(15), IV and GARCH(1,1) models (denoted by c, 1, 2, 3,

5, 7, in Tables 3–5), compares reasonable well with GARCH–IV forecasts. However,

a much better performance, in terms of the MSE, can be obtained by simply com-

bining IV and GARCH (c, 5, 7) forecasts. This way of combining the two sources

of information seems to be even more efficient than combining them within the

GARCH framework. For all three horizons, the combination of IV and GARCH

forecasts outperforms the GARCH–IV forecasts in terms of the ME and MSE.

The insignificance of the informational content in the GARCH forecasts, given

the IV information, is again confirmed by excluding the GARCH forecast from the

combined model. Only minor reductions, if any, occur in the forecast accuracy

relative to the linear combination of the GARCH and IV forecast. In fact, small

improvements can be observed when omitting the GARCH model. The results for

the combined approach in Tables 3–5 indicate that an overall reduction of the mean

bias of the forecasts can indeed be achieved by this method. All combined forecasts

yield a smaller ME than each of the individual forecasting techniques. An exception

is the RW method. This is illustrated in Figures 4 and 5, displaying the forecasting

results for the two–week horizon.

10Order 15 was chosen, because the autocorrelation coefficient for the squared returns at that

lag was highly significant (ρ15 = 0.1225 with a t–value of 3.70). We also tried an autoregressive

model for the absolute returns, as in Schwert (1989). We do not report these results, because they

are inferior to those of an autoregressive model for squared returns.
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An obvious fact revealed in Figure 4 is the relative smoothness of all time series

forecasts relative to the IV forecasts. Market expectations, which appear to become

obsolete with the arrival of new information, seem to be better in explaining the fre-

quent changes in volatility than the smoothed GARCH–based forecasts. The two top

plots in Figure 5 show that the IVs’ tendency to overstate the true volatility can be

corrected by either embedding an IV variable within a conditional–variance GARCH

equation, or by combining forecasts in the sense of Granger and Ramanathan (1984).

The differences between the IV forecasts and the bias–corrected IV forecasts, which

are almost all positive, are displayed in Figure 5. The differences between the com-

bined and the IV forecasts are quite stable; whereas the differences between the

GARCH(0,0)–IV and IV forecasts fluctuate considerably. This is caused by the

smoothing effects of the GARCH model. Figure 5 also shows the change in volatil-

ity forecasts, if we rely only on the bias–corrected IV information instead of using a

combination of GARCH and IV information. In all cases, this difference is smaller

than 2%; and in 102 of 104 cases it is smaller than 1%, indicating the insignificant

incremental information content in GARCH forecasts given IV information.

5 Summary

In this paper we have investigated the suitability of several forecasting techniques for

the volatility of the returns of the German DAX index and examined whether or not

the German DAX–index options market is informational efficient. We have focused

on the problem of whether or not implied volatility information, derived either from

observed option prices or from time series models such as GARCH models, are useful

in predicting future return volatility. By combining both sources of information,

our in–sample fitting and out–of–sample forecasting results give strong support for

the hypothesis that historic returns contain no information beyond the market’s

volatility expectation that is reflected in DAX–index option prices.

However, the hypothesis that implied volatility is an unbiased estimate for one–,

two– or four–week ahead realized volatility must be rejected. It tends to overstate

the actual volatility of DAX–index returns. By including the implied volatility in-

formation into the GARCH equation or by combining the implied volatility forecast

with a constant term, following the lines of Granger and Ramanathan (1984), one

15



can correct for this mean bias.

In summary, we conclude that implied volatility is a biased but highly informative

predictor for future volatility. Moreover, implied volatilities are informationally

efficient relative to other historic volatility information sources. Altogether, our

findings support the efficient market hypothesis for the DAX–index options market.
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Table 1: Summary statistics for daily returns on the DAX indexa

standard excess Jarque and Bera
mean deviation skewness kurtosis normality test

.0002951 .009225 -.1115 1.5485 100.15
(.0002944) (0.0782) (0.1563) 1.000

Ljung–Box Test ARCH–Test
h rt r2

t |rt| p TR2

16 26.73 56.15 92.55 8 13.09
.955 1.000 1.000 .891

32 37.16 89.56 151.63 12 28.57
0.757 1.000 1.000 .995

aStandard errors are given in parentheses. Marginal significance levels are given without parentheses.
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Table 2: GARCH(1,1) Estimation Results

Conditional variance equations:

(1) σ2
t = ω + α ε2t−1 + β σ2

t−1

(5) σ2
t = ω + α ε2t−1 + β σ2

t−1 + γ VDAX2
t−1/250

(6) σ2
t = ω + γ VDAX2

t−1/250

(4) σ2
t = dδ

t [ω + d−δ
t−1 (α ε2t−1 + β σ2

t−1)]

(7) σ2
t = dδ

t [ω + d−δ
t−1(αε2

t−1 + βσ2
t−1 + γ VDAX2

t−1/250)]

with εt ∼ GED(ν)

Case
a b c d e f g

Model (1) (1) (1) (5) (6) (4) (7)
Restriction ν = 2 — α + β = 1 — — — —

ω × 104 0.0247 0.0177 0.0055 0.0231 0.0325 0.0158 0.0186
(0.0029) (0.0025) (0.0021) (0.0293) (0.0363) (0.0024) (0.0130)

α 0.0513 0.0493 0.0568 0.0104 0.0493 0.0355
(0.0095) (0.0084) (0.0181) (0.0470) (0.0090) (0.0318)

β 0.9208 0.9309 0.9432 0.1355 0.9302 0.5484
(0.0249) (0.0318) (0.0564) (0.1457) (0.0281) (0.0638)

γ 0.6545 0.7604 0.2948
(0.7515) (0.1347) (0.2010)

δ 0.4805 0.5980
(0.1050) (0.3295)

ν 2 1.4945 1.4480 1.5340 1.5319 1.5674 1.5957
– (0.0971) (0.0841) (0.1070) (0.0895) (0.0924) (0.0959)

log-lik -1291.41 -1278.21 -1280.74 -1269.48 -1269.52 -1267.06 -1259.09
χ2 26.40 17.46; 22.30 5.06 0.08 20.78

b d ; f b d d
aStandard deviations are given in parentheses.
χ2–values correspond to LR–tests against the case given in the subsequent row.
The χ2–statistics are distributed as χ2(1) for models (1) and χ2(2) for model (6).
Critical values: 3.84 (6.63) for χ2(1) and α = .05 (.01) and 5.99 (9.21) for χ2(2)
and α = .05 (.01).
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Table 3: Results for one–week forecasts

01/03/94 – 12/29/95 01/04/94 – 12/30/94 01/02/95 – 12/29/95
ME MSE D (%) ME MSE D (%) ME MSE D (%)

1 MA 1.698 3.538 68.9 0.572 3.980 66.7 2.825 3.095 70.6
2 RW 0.185 5.655 0.9 0.127 7.387 0 0.243 3.923 1.9
3 AR(15) 1.564 3.344 69.9 0.884 3.931 64.7 2.244 2.756 74.5
4 VDAX 3.526 4.062 66.0 4.359 5.206 58.8 2.693 2.918 72.5
5 IV 3.354 3.871 68.0 4.284 4.994 62.7 2.423 2.748 72.5
6 G11 1.804 3.253 72.8 1.693 3.932 70.6 1.915 2.574 74.5
7 G11(δ) 1.330 3.101 71.8 1.210 3.777 68.6 1.450 2.425 74.5
8 G00–IV 1.244 2.932 71.8 1.889 3.656 66.7 0.600 2.208 76.5
9 G11–IV 1.302 2.908 71.8 2.099 3.672 66.7 0.506 2.145 76.5

10 G11(δ)–IV 1.312 2.934 70.9 2.108 3.729 66.7 0.515 2.138 74.5
combined:
c,1,2,3,5,7 -0.205 2.912 74.8 -0.878 3.639 70.6 0.466 2.184 78.4
c,5,7 0.465 2.792 72.8 0.823 3.431 66.7 0.107 2.152 78.4
c,5 0.503 2.776 71.8 0.903 3.425 66.7 0.104 2.126 76.5
c,7 0.348 3.017 68.9 -0.307 3.747 64.7 1.003 2.287 72.5

The ME (MSE) entries must be multiplied by 10−2 (10−3).
The results for the best individual forecasts for a criterion are printed in bold–face.
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Table 4: Results for two–week forecasts

01/03/94 – 12/29/95 01/04/94 – 12/30/94 01/02/95 – 12/29/95
ME MSE D (%) ME MSE D (%) ME MSE D (%)

1 MA 1.076 2.517 62.7 -0.133 2.722 64.0 2.285 2.312 64.0
2 RW 0.092 3.803 0 0.207 4.466 0 -0.024 3.141 0
3 AR(15) 0.975 2.433 58.8 0.166 2.601 64.0 1.785 2.265 56.0
4 VDAX 2.899 2.681 64.7 3.599 3.081 64.0 2.199 2.282 68.0
5 IV 2.731 2.415 66.7 3.622 2.814 64.0 1.839 2.016 72.0
6 G11 1.239 2.323 64.7 1.091 2.601 60.0 1.386 2.044 72.0
7 G11(δ) 0.787 2.210 68.6 0.684 2.489 60.0 0.893 1.931 80.0
8 G00–IV 0.667 1.836 74.5 1.233 1.988 72.0 0.100 1.683 80.0
9 G11–IV 0.712 1.829 78.4 1.443 2.007 76.0 -0.018 1.651 84.0

10 G11(δ)–IV 0.711 1.848 76.5 1.457 2.044 68.0 -0.034 1.652 88.0
combined:
c,1,2,3,5,7 -0.428 1.967 76.5 -1.127 2.272 76.0 0.270 1.653 80.0
c,5,7 0.313 1.744 76.5 0.867 1.821 72.0 -0.240 1.667 84.0
c,5 0.366 1.740 76.5 0.936 1.830 72.0 -0.204 1.650 84.0
c,7 0.451 2.191 72.5 -0.002 2.512 68.0 0.904 1.869 80.0

The ME (MSE) entries must be multiplied by 10−2 (10−3).
The results for the best individual forecasts for a criterion are printed in bold–face.
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Figure 1: Comparison of Estimated and Empirical Kernel Densities
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Table 5: Results for four–week forecasts

01/03/94 – 12/29/95 01/04/94 – 12/30/94 01/02/95 – 12/29/95
ME MSE D (%) ME MSE D (%) ME MSE D (%)

1 MA 1.046 1.770 52.0 -0.148 1.972 66.7 2.241 1.569 41.7
2 RW 0.303 2.427 0 0.314 3.324 0 0.293 1.531 0
3 AR(15) 1.022 1.666 52.0 0.095 1.919 66.7 1.949 1.413 41.7
4 VDAX 3.070 2.161 44.0 3.901 2.456 50.0 2.239 1.866 41.7
5 IV 3.029 2.038 44.0 4.114 2.418 50.0 1.943 1.657 41.7
6 G11 1.137 1.662 56.0 1.057 1.888 66.7 1.217 1.436 50.0
7 G11(δ) 0.712 1.591 56.0 0.687 1.884 66.7 0.738 1.298 50.0
8 G00–IV 0.759 1.251 52.0 1.465 1.294 58.3 0.053 1.208 50.0
9 G11–IV 0.822 1.262 52.0 1.716 1.323 50.0 -0.072 1.202 58.3

10 G11(δ)–IV 0.624 1.554 48.0 1.290 1.889 50.0 -0.041 1.218 50.0
combined:
c,1,2,3,5,7 -0.204 1.589 52.0 -0.978 2.001 50.0 0.570 1.178 50.0
c,5,7 0.605 1.089 64.0 1.166 1.027 66.7 0.045 1.152 66.7
c,5 0.583 1.141 64.0 1.140 1.115 66.7 0.026 1.166 66.7
c,7 0.345 1.560 44.0 -0.360 1.882 50.0 1.050 1.237 41.7

The ME (MSE) entries must be multiplied by 10−2 (10−3).
The results for the best individual forecasts for a criterion are printed in bold–face.
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Figure 2: Rolling Likelihood-ratio Tests
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Figure 3: Comparison of Forecasting Models
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