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Zusammenfassung 

In der Zell– und Entwicklungsbiologie werden Modellsysteme eingesetzt, in denen natürliche 

Gegebenheiten repräsentativ abgebildet werden. Als Modelle eignen sich v.a. Systeme, die 

leicht kultivierbar und genetisch modifizierbar sind. So werden entwicklungsbiologische 

Fragestellungen an Insekten, wie der Fruchtfliege, Drosophila melanogaster, dem roten 

Reismehlkäfer, Tribolium castaneum, oder der Feldgrille, Gryllus bimaculatus, erforscht. Auch 

Pflanzen eignen sich für die Analyse von Entwicklungsprozessen. Beispielsweise dient die 

Entwicklung von Seitenwurzeln in Arabidopsis thaliana (Ackerschmalwand) als Modell für die 

post-embryonale Organogenese. Um die Physiologie und Pathologie von Zellen, Geweben und 

Organen zu analysieren, werden in der Zellbiologie dreidimensionale Zellkulturen (z.B. 

Sphäroide oder Organoide) verwendet. Sphäroide sind im Labor einfach herzustellen und 

erlauben eine reproduzierbare Charakterisierung. In allen Systemen werden Nachbarschaft und 

Interaktionen von Zellen sowie physikochemische Einflüsse repräsentativ für ein echtes Gewebe 

abgebildet. Um diese Zusammenhänge zu analysieren, bedarf es geeigneter bildgebender 

Beobachtungsmethoden. Mit Hilfe der Fluoreszenzmikroskopie können Aufnahmen von 

spezifisch markierten Molekülen generiert werden. 

Die konfokale Fluoreszenzmikroskopie und die Lichtscheiben-Fluoreszenmikroskopie (engl. 

light sheet-based fluorescence microscopy, LSFM) bieten die Möglichkeit, Bildstapel von 

dreidimensionalen Proben unter Wahrung ihrer Integrität zu generieren. Die hohe 

Aufnahmegeschwindigkeit und der geringe Energieeintrag eines LSFM ermöglichen 

Aufnahmen lebender Proben über lange Zeiträume mit hoher räumlicher und zeitlicher 

Auflösung. Eine bedeutende Eigenschaft von LSFM ist die Rotation der Proben zwischen den 

Aufnahmen. So können mehrere Blickrichtungen aufgenommen werden, die 

zusammengenommen ein sehr detailliertes Abbild der Probe liefern. Die Kombination von 

LSFM mit optischen Aufhellverfahren (engl. optical clearing) ermöglicht eine Steigerung der 

Eindringtiefe im Vergleich zu nicht-aufgehellten Proben. Die dreidimensionale Struktur bleibt 

dabei zum Großteil erhalten und kann in ihrer Gesamtheit analysiert werden. 

Allgemein ermöglicht die Qualität der mit Fluoreszenzmikroskopie erstellten Aufnahmen die 

Erhebung quantitativer Daten zu Morphologie, Funktionalität und Dynamik auf verschiedenen 

Detailstufen. Kompartimente wie Zellkerne, aber auch gesamte Zellen können im Kontext des 

Gesamtsystems, bzw. als Funktion der Zeit, analysiert werden. Der Rückschluss auf Struktur 
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und Funktion eines biologischen Systems aus den quantitativen Daten gilt als bildbasierte 

Systembiologie. Diese birgt jedoch einige Herausforderungen. Beispielsweise fallen für eine 

typische Langzeitaufnahme von Tribolium castaneum über einen Zeitraum von 150 Stunden 

bereits Daten im Umfang von ca. 1,5 Terabyte an, die aus mehreren hunderttausend 

Einzelbildern bestehen. Um das Potential der Daten zu nutzen, muss die dreidimensionale 

Fluoreszenzmikroskopie mit einem Bildanalysestrang (engl. image analysis pipeline) verknüpft 

werden. 

Ziel dieser Arbeit war es, Module eines Bildanalysestrangs zu identifizieren, zu entwickeln und 

zu optimieren. Die Module umfassen die Organisation, Reduktion und Visualisierung von 

Bilddaten, die Rekonstruktion von Bilddaten mehrerer Blickrichtungen, die automatische 

Erkennung (Segmentierung) und zeitliche Verfolgung (engl. tracking) von Zellkernen und die 

Extraktion von Objektmerkmalen. Die Module wurden anwendungsorientiert entwickelt um die 

Anwendbarkeit auf Daten aus der dreidimensionalen Fluoreszenzmikroskopie zu gewährleisten. 

Die zu Grunde liegenden Bilddaten stammten aus aktuellen Forschungsprojekten in der 

Entwicklungsbiologie von Insekten und Pflanzen, sowie aus der Zellbiologie. 

Das erste Modul führt eine Strukturierung der Datensätze durch, reduziert die Datenmenge 

durch Zuschneiden und Bildkompression und berechnet Projektionen entlang verschiedener 

Raumrichtungen. Die Einstellungen des Modules werden in einer Benutzeroberfläche 

kontrolliert. Für die Bildkompression wurden die Kompressionsverfahren ZIP und JPEG2000 

auf die Kompressionsleistung und die resultierende Bildqualität evaluiert. Bei gleichbleibender 

Bildqualität komprimierte ZIP die Bilddaten auf etwa 40% des Rohdatenvolumens. Mit 

JPEG2000 konnten die Daten auf unter 1% des Rohdatenvolumens reduziert werden. Um dabei 

die Qualität der Daten bestmöglich zu erhalten, wurde vorab eine Intensitätsanpassung 

durchgeführt. Relevante Strukturen, wie z.B. Zellkerne, blieben erhalten und konnten durch eine 

Segmentierung identifiziert werden. Die Evaluierung zeigte, dass die ZIP Kompression im 

täglichen Umgang mit den Daten als Standard verwendet werden kann. JPEG2000 eignet sich 

aufgrund der notwendigen Anpassung der Intensitätswerte für eine Langzeitspeicherung der 

Daten. 

Das zweite Modul erlaubt die Aufbereitung der im ersten Modul generierten Projektionen und 

korrigiert in diesen Bildern Intensitätsschwankungen, die als Funktion der Zeit auftreten. Zudem 

wird der Bildhintergrund automatisch entfernt. Das Programm kann über eine 

Benutzeroberfläche gesteuert werden und wurde als Teil einer Publikation in Nature Protocols 

veröffentlicht. Für den Austausch und die einheitliche Visualisierung der Datensätze wurde die 

Webapplikation BugCube als drittes Modul des Bildanalysestrangs entwickelt. Die Datensätze 

können dadurch teilweise oder vollständig heruntergeladen, sowie selektiv in einem 
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Webbrowser dargestellt werden. BugCube ermöglicht dadurch eine einheitliche Präsentation 

von Daten und erleichtert beispielsweise den Datenaustausch mit Kooperationspartnern. 

Für die Rekonstruktion von LSFM Aufnahmen aus verschiedenen Blickrichtungen wurde die 

Erweiterung Multiview Reconstruction der Software FIJI evaluiert. Die Erweiterung führt eine 

automatische Registrierung, Fusionierung und Entfaltung der Bilddaten durch. Im Vorfeld 

meiner Arbeit konnten Frederic Strobl und Alexander Ross die gesamte Embryogenese von 

Tribolium castaneum und Gryllus bimaculatus mit dem LSFM aufnehmen. Die Erweiterung 

wurde hinsichtlich Automatisierung und Effizienz optimiert. In den Zeitserien aller Tribolium 

Datensätze lag der Registrierungsfehler zwischen 0.8 und 1.4 µm. Durch Nutzung der 

parallelisierten Implementierung auf Grafikprozessoren konnte die Berechnungszeit der 

Rekonstruktion um den Faktor 15 gesenkt werden. In meiner Arbeit konnte ich zeigen, dass die 

FIJI Erweiterung als Modul für die Rekonstruktion von LSFM Aufnahmen aus verschiedenen 

Blickrichtungen geeignet ist. Somit konnten wir die ersten qualitativ hochwertigen 

Rekonstruktionen während der Embryogenese beider Insekten erstellen. 

Im Weiteren wurde ein Modul für die quantitative Charakterisierung entwickelt. Die Grundlage 

bildet eine saatpunktbasierte Wasserscheidentransformation, mit der eine 

Zellkernsegmentierung erreicht wird. Für die zuverlässige Erkennung von Saatpunkten habe ich 

einen Laplace-Gauß-Filter implementiert, der über mehrere Skalen die Positionen der Zellkerne 

erkennt. Um eine Leistungsbewertung der Zellkernsegmentierung durchzuführen, wurde ein 

Programm entwickelt, mit dem aus Bilddaten Validierungsdatensätze (engl. ground truth) 

erstellt werden konnten. Das Programm wurde in der Zeitschrift BMC Bioinformatics 

veröffentlicht. In dicht gepackten Sphäroiden erreichte die implementierte Segmentierung eine 

Quote von 88% korrekt erkannten Zellkernen. Die Zellkernsegmentierung lieferte die 

Grundlage für Simulationsmodelle, in denen strukturell unterschiedliche Bereiche in Sphäroiden 

mit Korrelationsfunktionen identifiziert wurden. Die Ergebnisse dieser Zusammenarbeit wurden 

in der Zeitschrift Royal Society Interface veröffentlicht. Neben Position, Volumen und Form 

erfasst die quantitative Charakterisierung lokale Strukturparameter, die anhand eines 

Formmodells (engl. alpha shape) und von zwei Zellgraphen ermittelt werden. Das Modul liefert 

somit eine umfassende Charakterisierung auf der Ebene einzelner Zellen, der Zellnachbarschaft 

und des gesamten Zellverbandes. 

In dieser Arbeit wurde das Modul in vier Anwendungen verwendet, um den Einfluss 

verschiedener Stressbedingungen auf die Morphologie und Anordnung von Zellen in 

Endpunktaufnahmen optisch aufgehellter Sphäroide zu analysieren. Mit Hilfe des Formmodells 

konnten Morphologie und Volumen der Sphäroide präzise bestimmt werden. Die Berechnung 

der Oberfläche des Formmodells erlaubte die Bestimmung der relativen Position von Zellen 
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innerhalb der Sphäroide. Die generierten Zellgraphen bestimmten die Nachbarschaftsparameter 

aller Zellen und identifizierten lokale Muster in der Zellanordnung. 

In der ersten Anwendung habe ich in Zusammenarbeit mit Christian Mattheyer und Dr. Sabine 

Fischer den Einfluss der Sphäroidgröße auf die interne Struktur von Tumorsphäroiden 

analysiert. Die Analyse aus der quantitativen Charakterisierung ermöglichte die Erkennung von 

strukturellen Zonen innerhalb großer Sphäroide mit mehr als 30.000 Zellen. Während im 

äußeren Bereich der Sphäroide eine hohe Zelldichte vorherrschte, war diese im zentralen 

Bereich deutlich reduziert. Zudem konnten wir zeigen, dass sich die Dicke des äußeren Bereichs 

nicht proportional zur Sphäroidgröße verhielt. Das Modul zur quantitativen Charakterisierung 

wurde zusammen mit den Ergebnissen dieser Anwendung als Artikel in der Zeitschrift Scientific 

Reports eingereicht und akzeptiert. 

In einer zweiten Anwendung habe ich in Zusammenarbeit mit Dr. Nariman Ansari den Einfluss 

der Apoptose, die vor allem im Bereich der Krebsbehandlung eine Rolle spielt, auf die Zellkern- 

und Sphäroidmorphologie analysiert. Wir konnten zeigen, dass das Sphäroidvolumen nach einer 

72-stündigen Behandlung mit dem Apoptose induzierenden Wirkstoff Staurosporin auf bis zu 

32% des Ausgangsvolumens reduziert wurde. Auch Zellkerne verloren bei 72-stündiger 

Behandlung bis zu 57% ihres Volumens. Anhand der umfangreichen quantitativen 

Charakterisierung konnte aufgezeigt werden, dass sich die Reduktion des Zellkernvolumens im 

gesamten Sphäroid, unabhängig von der Größe gleich verhielt. 

Die Induktion von Autophagie stellt einen vielversprechenden Therapieansatz, v.a. in der 

Krebstherapie dar. In Zusammenarbeit mit Katharina Hötte, Michael Koch und Dr. Sabine 

Fischer habe ich den Einfluss von Langzeitbehandlungen mit Autophagie induzierenden und 

Autophagie inhibierenden Wirkstoffen auf die Zellkern- und Sphäroidmorphologie analysiert. 

Die Induktion der Autophagie führte zu einer signifikanten Reduktion der finalen Zellzahl um 

34% und des Sphäroidvolumens um 48%. Gleichzeitig konnten wir zeigen, dass sich die 

Zelldichte bei Induzierung der Autophagie um 15% erhöhte. 

Auch mechanische Kräfte können erheblichen Einfluss auf die Struktur und Funktion von 

Zellverbänden haben. In Zusammenarbeit mit Isabell Smyrek habe ich den Einfluss von 

mechanischem Stress auf Sphäroide und deren interne Morphologie studiert. Mit Hilfe der 

umfangreichen quantitativen Charakterisierung konnten wir zeigen, dass sich die Behandlung 

deutlich auf das Zellkernvolumen auswirkte. Nach 24-stündiger Behandlung waren die 

Zellkernvolumina um 21% kleiner im Vergleich zu unbehandelten Sphäroiden. 

Ein weiteres Modul des Bildanalysestrangs wurde für die Extraktion von Zellkernpositionen 

und der Abstammungshistorie entwickelt. In Zusammenarbeit mit Dr. Daniel von Wangenheim, 

Dr. Alexis Maizel und Dr. Jens Fangerau wurde das Programm auf Langzeitaufnahmen der 
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Seitenwurzel von Arabidopsis thaliana angewendet. Mit Hilfe des Programms konnten Zellen 

aus fünf Datensätzen bis zu 30 Stunden verfolgt und eine Rekonstruktion von insgesamt 62 

Zellstammbäumen erstellt und umfassend analysiert werden. Unsere Arbeit ermöglichte die 

Erstellung eines vierdimensionalen Atlas der Seitenwurzelentwicklung in Arabidopsis thaliana. 

Anhand der Daten konnten wir eine dominante Rolle der zentral gelegenen Zellen identifizieren. 

Um Muster in der Orientierung von Zellteilungen zu erkennen, wurden diese anhand der 

Ausrichtung ihrer Zellteilungsachse automatisch klassifiziert. Auf Basis dieser Einteilung 

entdeckten wir, ausgenommen vom ersten Teilungszyklus der Zellen, ein alternierendes Muster 

in der Orientierung der Zellteilungen in allen Teilungszyklen. Weiterhin konnten wir feststellen, 

dass sich in der Seitenwurzel neue Zellschichten zu festen Zeitpunkten in der Entwicklung 

bildeten. Das entwickelte Modul und die Ergebnisse der Anwendung wurden in der Zeitschrift 

Current Biology veröffentlicht. 

In der vorliegenden Arbeit konnte ich die Module in interdisziplinären Forschungsprojekten der 

Zell– und Entwicklungsbiologie auf Datensätze aus der dreidimensionalen 

Fluoreszenzmikroskopie anwenden. Die Module ermöglichten die Organisation, Verarbeitung, 

Visualisierung und Analyse der Datensätze. Die entwickelten Module eines automatisierten 

Bildanalysestrangs haben ein hohes Potential für die Anwendung in weiteren 

Forschungsprojekten. 

In zukünftigen Arbeiten können standardisierte Verarbeitungsschritte, wie die Erstellung von 

Projektionen, die Kompression oder die Entfaltung von Datensätzen bereits während der 

Aufnahme abgearbeitet werden. Das Modul für die Rekonstruktion von LSFM Aufnahmen kann 

für die Erzeugung von Datensätzen eingesetzt werden, in denen Analysen zu 

Bewegungsmustern und Stammbäumen von Zellen durchgeführt werden können. Dies setzt die 

Etablierung einer geeigneten, automatischen Methode zur Verfolgung von Zellen als Funktion 

der Zeit auf Basis der bestehenden Lösungen und meiner Arbeit voraus. Das entwickelte Modul 

zur quantitativen Charakterisierung kann hinsichtlich der Interpretation anderer Strukturen (z.B. 

Membranen) oder funktionaler Färbungen (z.B. apoptotische Zellen) erweitert werden. Der 

komplette Ansatz lässt sich ebenso auf Lebendaufnahmen und ähnliche Systeme (z.B. 

Organoide) anwenden. Mit Hilfe einer umfangreichen quantitativen Charakterisierung lässt sich 

der Einfluss von physikalischen und chemischen Faktoren auf die Physiologie von Zellen, bzw. 

Geweben analysieren. 

Die Perspektive eines Bildanalysestrangs liegt in einer gemeinschaftlichen Herangehensweise 

mit regem Austausch von Wissen und spezialisierten Lösungen für die Probleme der 

Bildanalyse. Dieser Ansatz kann nicht nur in der bildbasierten Systembiologie, sondern auch in 

der medizinischen Diagnostik und in industriellen Hochdurchsatzverfahren Anwendung finden. 
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Summary 

Research in cell and developmental biology requires the application of three-dimensional model 

systems that reproduce the natural environment of cells. Processes in developmental biology are 

therefore studied in entire systems like insects or plants. In cell biology, three-dimensional cell 

cultures (e.g. spheroids or organoids) model the physiology and pathology of cells, tissues or 

organs. In all systems, the cellular neighborhood and interactions, but also physicochemical 

influences, are realistically presented. The production and handling of these model systems is 

rather simple and allows for reproducible characterization. 

Confocal and light sheet-based fluorescence microscopy (LSFM) enable the observation of 

these systems while maintaining their three-dimensional integrity. LSFM is applicable to 

imaging live samples at high spatio-temporal resolution over long periods of time. The quality 

of the acquired datasets enables the extraction of quantitative features about morphology, 

functionality and dynamics in the context of the complete system. This approach is referred to 

as image-based systems biology. Exploiting the potential of the generated datasets requires an 

image analysis pipeline for data management, visualization and the retrieval of biologically 

meaningful values. 

The goal of this thesis was to identify, develop and optimize modules of the image analysis 

pipeline. The modules cover data management and reduction, visualization, reconstruction of 

multiview image datasets, the segmentation and tracking of cell nuclei and the extraction of 

quantitative features. The modules were developed in an application-driven manner to test and 

ensure their applicability to real datasets from three-dimensional fluorescence microscopy. The 

underlying datasets were taken from research projects in developmental biology in insects and 

plants, as well as from cell biology. 

The datasets acquired in fluorescence microscopy are typically complex and require common 

image processing steps in order to manage, visualize, and analyze the datasets. The first module 

accomplishes automatic structuring of large image datasets, reduces the data amount by image 

cropping and compression and computes maximum projection images along different spatial 

directions. The second module corrects for intensity variations in the generated maximum 

projection images that occur as a function of time. The program was published as a part of an 

article in Nature Protocols. Another developed module named BugCube provides a web-based 

platform to visualize and share the processed image datasets. 
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In LSFM, samples can be rotated in-between two acquisitions enabling the generation of 

multiview image datasets. Prior to my work, Frederic Strobl and Alexander Ross acquired the 

complete embryogenesis of the red flour beetle, Tribolium castaneum, and the field cricket, 

Gryllus bimaculatus, with LSFM. I evaluated a plugin for the software FIJI as a module for the 

reconstruction of such datasets. The plugin was optimized for automation and efficiency. We 

obtained the first high quality three-dimensional reconstructions of Tribolium and Gryllus 

datasets. 

Optical clearing increases the penetration depth into samples, thus providing endpoint images of 

entire three-dimensional objects with cellular detail. This work contributes a quantitative 

characterization module that was applied to endpoint images of optically cleared spheroids. A 

program for the generation of ground truth datasets was developed in order to evaluate the cell 

nuclei segmentation performance. The program was part of a paper that was published in BMC 

Bioinformatics. Using the program, I could show that the cell nuclei segmentation is robust and 

accurate. Approaches from computational topology and graph theory complete the segmentation 

of cell nuclei. Thus, the developed module provides a comprehensive quantitative 

characterization of spheroids on the level of the individual cell, the cell neighborhood and the 

whole cell aggregate. The module was employed in four applications to analyze the influence of 

different stress conditions on the morphology and cellular arrangement of cells in spheroids. 

The module was accepted for publication in Scientific Reports along with the results for one 

application. The cell nuclei segmentation further provided a data source for simulation models 

that used correlation functions to identify structural zones in spheroids. These results were 

published in Royal Society Interface. 

The final part of this work presents a module for cell tracking and lineage reconstruction. In 

collaboration with Dr. Alexis Maizel, Dr. Jens Fangerau and Dr. Daniel von Wangenheim, I 

developed a module to track the positions of all cells involved in lateral root formation in 

Arabidopsis thaliana and used the extracted positions for extensive data analysis. We 

reconstructed the cell lineages and established the first atlas of all founder cells that contribute 

to the formation. The analysis of the retrieved data allowed us to study conserved and individual 

patterns in lateral root formation. The atlas and parts of the analysis presented in this thesis were 

published in Current Biology. 

In this thesis, I developed modules for an image analysis pipeline in three-dimensional 

fluorescence microscopy and applied them in interdisciplinary research projects. The modules 

enabled the organization, processing, visualization and analysis of the datasets. The perspective 

of the image analysis pipeline is not restricted to image-based systems biology. With ongoing 

development of the image analysis pipeline, it can also be a valuable tool for medical 

diagnostics or industrial high-throughput approaches. 
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1 Introduction 

Systems biology aims to understand a biological system in its entirety, its individual 

components and their relationship. In the last decades, classical systems biology has focused on 

the analysis of regulatory networks and biochemical pathways in cells, organs or organisms 

(Chuang et al., 2010). With advanced light microscopy, the structure and the dynamics of intact 

biological systems can be studied in high spatio-temporal resolution (Antony et al., 2013). 

Image-based systems biology exploits the information content of the acquired images, providing 

quantitative data and thereby establishes the connection between experimental and theoretical 

science (Figge and Murphy, 2015). 

 1.1 Workflow of image-based systems biology 

Typically, image-based systems biology is composed of an experimental and an image analysis 

pipeline (Figure 1). In the experimental pipeline, an experiment is realized in order to address a 

scientific question about the biological system. The object of interest (specimen) is prepared for 

observation with a suitable microscope (Kherlopian et al., 2008). The second part encompasses 

a series of image analysis modules, which extract the relevant information from the acquired 

data. The following sections introduce the image acquisition systems and components of an 

image analysis pipeline. 

 
Figure 1 Workflow of an image-based systems biology approach. The workflow consists of an 

experimental and an image analysis pipeline. Segmentation and feature computation enable the extraction 

of static or dynamic object features made available for subsequent data analysis, visualization and 
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modelling. A reconsideration of the image analysis results is essential to optimize parameters of an 

experiment or plan the experiments for new scientific questions. 

1.1.1 Image acquisition with advanced light microscopy 

High quality images are an essential requirement to perform quantitative image analysis. 

Advanced systems such as confocal and light sheet-based fluorescence microscopy (LSFM) 

enable imaging intact specimen at the cellular level (Ansari et al., 2014; Verveer et al., 2007). 

The acquired images provide the spatio-temporal distribution of structures specifically labeled 

with fluorophores. The fundamental task of a fluorescence microscope is to illuminate a 

specimen at the excitation wavelength and to detect the fluorescence emitted by fluorophores. 

Filters block out the excitation light while passing the emission light to the detection system of 

the microscope. 

Widefield and confocal fluorescence microscopy 

In widefield fluorescence microscopy, the entire field of view (FOV) is illuminated and a 

camera simultaneously detects the emitted fluorescence. In confocal microscopy, the 

fluorescence light passes through a pinhole before it reaches the detector, which allows 

discriminating against out-of-focus light. Confocal laser scanning microscopy (CLSM) provides 

high lateral and axial resolution and have optical sectioning capability (Lichtman and 

Conchello, 2005). Widefield and confocal microscopes suffer from some limitations. First, the 

illumination path and the detection path are identical (epi-fluorescence). The same objective 

lens focuses the excitation light on the sample and the emitted fluorescence to the detection 

system. Illumination of the focal plane in the specimen therefore results in the illumination of 

the entire fluorophore distribution in the specimen above and below the focal plane (Figure 

2a, b). Thus, fluorophores are several hundred times more often excited than actually observed 

by the detection system (Keller et al., 2008; Verveer et al., 2007). The number of detectable 

fluorophores is finite. Unless the observed specimen renews or reproduces the fluorophores, 

their consumption due to degradation results in the disappearance of the fluorescence signal 

(photobleaching). Second, the constant or repeated illumination poses a considerable energy 

load onto the specimen that can have severe consequences on live specimen. For example, the 

excitation light might lead to the degradation of endogenous organic substances (Wagner et al., 

2010). Degraded substances are no longer available for the metabolism of the specimen. 

Moreover, the degradation often leads to the generation of reactive species that can be toxic to 

the specimen (phototoxicity). For example, light irradiation produces oxygen radicals inducing 

oxidative stress and DNA damage which impair cell viability and function (Frigault, Lacoste et 

al. 2009). Biological experiments rely on the observation of the specimen under physiological 

conditions without exerting a severe impact. Therefore, the amount of light energy that the 

specimen is exposed to during an experiment should be minimized (Stelzer, 2015). Third, the 

amount of light scattering and absorption limits the penetration depth into the specimen 
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(Reynaud et al., 2008). Consequently, fluorescence microscopes usually cannot penetrate more 

than several tens to hundreds of microns into the specimen (Ntziachristos, 2010). 

Light sheet-based fluorescence microscopy (LSFM) 

LSFM addresses all above-mentioned problems and has become a valuable technique for cell 

and developmental biology (Pampaloni et al., 2015; Strobl and Stelzer, 2016). In LSFM, the 

illumination and detection light paths are decoupled (Figure 2c). Two objective lenses are used 

in an azimuthal arrangement for illumination of the specimen and the detection of the emitted 

fluorescence (Stelzer and Lindek, 1994). A light sheet that overlaps with the focal plane of the 

detection system illuminates the specimen. Thus, only fluorophores in the focal plane get 

excited and the overlapping provides true optical sectioning (Greger et al., 2007). 

 
Figure 2 Illumination and detection principle in fluorescence microscopes. In widefield (a) and 

confocal (b) microscopes, the fluorophores in the entire specimen are illuminated. The detection of 

emitted fluorescence occurs along the same path as the illumination. In a light sheet-based fluorescence 

microscope (c), a sheet of light illuminates the specimen and overlaps with the focal plane. The emitted 

fluorescence is detected perpendicular to the illumination path. 

The LSFM detects the emitted fluorescence in the FOV in parallel (Pampaloni et al., 2015). 

Modern scientific cameras such as Charge-Coupled Device (CCD) or scientific Complementary 

Metal-Oxide-Semiconductor (sCMOS) cameras allow for high acquisition speed and provide a 

10 to 100-fold higher signal-to-noise ratio (SNR) than confocal microscopes (Keller et al., 

2011). The massive parallelization provides high dynamic ranges of up to 14 bits because more 

photons can be detected simultaneously (Reynaud et al., 2008). An optical section of the 

specimen, i.e. a two-dimensional image with spatial dimension x and y, is obtained. High 

precision stages move the specimen along the optical axis (z axis) through the light sheet 

allowing for the acquisition of multiple optical sections that are combined into a stack of images 

(z stack or image stack). A z stack captures the three-dimensional fluorophore distribution in the 

entire specimen. 

LSFM adopts several advantages of confocal microscopy such as the optical sectioning 

capability, a true axial resolution and combines them with a high SNR, minimal photobleaching 

and phototoxicity (Stelzer, 2015). The advantages of LSFM render it particularly useful for the 
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long-term observation of live specimen (Keller et al., 2008; Strobl et al., 2015). A powerful 

feature of LSFM is that specimen can be recorded along multiple view directions by rotating the 

specimen around the rotation axis (y axis). This feature provides complementary information 

and is particularly useful for imaging large, light scattering or light absorbing specimen 

(Huisken et al., 2004; Swoger et al., 2007). Optical clearing increases object transparency and 

thus the penetration depth into larger specimens (Dodt et al., 2007). In combination with optical 

clearing, LSFM enables imaging of objects even in the range of a millimeter (Keller and Dodt, 

2012) and the systematic retrieval individual cell properties in their native microenvironment 

(Schmitz et al., 2017). 

1.1.2 Components of an image analysis pipeline 

Biological research relies on image datasets as an information source in order to understand 

molecular and cellular mechanisms. The main goal of image analysis is the conversion of image 

datasets into meaningful and interpretable data, ideally to simple numbers. Advanced light 

microscopes capture data about all three spatial dimensions, multiple time points, views, 

wavelengths or even biological specimens. This rapidly generates millions of images and 

Terabytes of data volume. The resulting big data from microscopy cannot be readily visualized 

and analyzed (Meijering et al., 2016). For example, a long-term multiview dataset capturing the 

embryogenesis of the red flour beetle Tribolium castaneum consists of 229 planes (1040×392 

pixels) per image stack, eight view directions, 301 time points and one channel which results in 

2408 image stacks (551432 single images) and a total of 1.5 Terabyte data volume (Strobl et al., 

2015). This motivates the generation of automated image analysis pipelines that perform the 

processing steps in a high throughput manner (Antony et al., 2013). These requirements have 

led to the new field “bioimage informatics” in which researchers focus on the application-driven 

development and optimization of algorithms for processing biological image data (Eliceiri et al., 

2012; Myers, 2012). 

The ultimate goal is to replace human effort by automated pipelines and at the same time 

improving the objectivity of image analysis. An image analysis pipeline is a composition of 

processing steps that typically cover image pre-processing, segmentation, feature computation, 

data analysis, visualization and modeling (Figure 1). Although commonly illustrated as an 

unidirectional sequence, an image analysis pipeline needs to have a flexible and modularized 

architecture (Meijering et al., 2016). Depending on the application, not all modules are required 

and a feedback from one module guides the application of other modules. 

Software packages such as Mathematica (Wolfram Research Inc.) or Matlab (MathWorks Inc.) 

offer powerful platforms for the implementation of image analysis pipelines. The platforms 

integrate algorithms from image analysis, graph theory, statistics and computational topology. 

Moreover, the platforms can be extended by specialized packages for image analysis such as the 
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Insight Segmentation and Registration Toolkit (ITK) (Yoo et al., 2002), the Visualization 

Toolkit (VTK) (Schroeder et al., 1996), FJII (Schindelin et al., 2012) and R (R Development 

Core Team, 2016). 

Automated data management and image pre-processing 

The acquired multidimensional image datasets require automated steps for data management, 

data reduction and image quality improvement. Cropping the image dataset to the region of 

interest (ROI), or image compression are essential steps to reduce the amount of data volume. 

Lossless compression methods such as ZIP compression allow a substantial reduction of the 

data amount. A promising alternative method is lossy image compression with the JPEG2000 

standard (Bernas et al., 2006). In JPEG2000 compression, the image is first transformed into the 

wavelet frequency domain producing as many wavelet coefficients as pixels exist in the image. 

In a subsequent quantization step, the coefficients are compressed. Image pre-processing steps 

improve image quality and enhance features present in the images. Examples include the 

correction of inhomogeneous illumination, the reduction of image background or the recovery 

of decreased signal intensities, e.g. when thick specimens were acquired (Uchida, 2013). Image 

filtering (convolution) reduces image noise, increase image contrast, or prepares images for 

subsequent object detection steps (González and Woods, 2010). Additive noise and the 

influence of the point spread function (PSF) of the microscope degrade the resulting image 

quality. Deconvolution methods model the PSF as a convolution kernel and perform a 

reconstruction of the latent image (Wallace et al., 2001). Deconvolution reduces the amount of 

out-of-focus blur and background noise thereby increasing image contrast and the apparent 

image quality (Shaw, 2006). 

Pre-processing methods for three-dimensional image reconstruction are often required when 

images of large specimen were acquired. For example, large specimens that do not fit in a single 

FOV of the microscope can be acquired with tiled image stacks. The reconstruction of tiled 

image stacks (stitching) involves the registration of the tiles and subsequent image fusion to 

obtain a single image stack capturing the complete specimen. Efficient reconstruction of tiled 

image stacks into a single three-dimensional image is commonly achieved using Fourier 

transform-based approaches (Preibisch et al., 2009). 

In LSFM, large specimen can also be acquired from multiple view directions. Such multiview 

image datasets are reconstructed by image registration and fusion (multiview reconstruction), 

yielding image datasets with almost isotropic resolution (Swoger et al., 2007). Image 

registration and fusion methods include intensity-based (Huisken et al., 2004; Preibisch et al., 

2008; Swoger et al., 2007), segmentation-based (Keller et al., 2008), wavelet-based (Rubio-

Guivernau et al., 2012) or bead-based (Preibisch et al., 2010) approaches. In the bead-based 

approach, the specimen is prepared in conjunction with fluorescent beads. The beads are then 
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detected in the acquired images and serve as landmarks for subsequent image registration. Bead-

based approaches are accurate, fast, independent of the sample and allow for automatic 

evaluation of the registration quality (Preibisch et al., 2010). Recently, the bead-based approach 

has been implemented in conjunction with multiview deconvolution (Preibisch et al., 2014). The 

software implements an iterative Richardson Lucy deconvolution procedure performing a 

maximum-likelihood estimation of the underlying image. 

Segmentation and feature computation exemplified for cell nuclei 

After pre-processing, an image analysis pipeline requires the extraction of objects from the 

image (segmentation) and the extraction of quantitative and biologically relevant features 

(feature computation). Features include intensity-related (e.g. the mean intensity and maximum 

intensity), texture-related (Depeursinge et al., 2014) and shape-related (Pincus and Theriot, 

2007) properties of cells that allow for classification with pattern recognition techniques 

(Shamir et al., 2010; Uchida, 2013). Cell nuclei are the appropriate reference for the spatial 

position of a cell. They further provide valuable information about the health state of a cell, 

which is especially important in diagnostic and drug development approaches (Zink et al., 

2004). Three-dimensional microscopy typically provides image stacks with fluorescently 

labelled cell nuclei. The image stacks thus provide a resource for the quantitative 

characterization of individual cells and their environment (Bilgin et al., 2013). An accurate 

segmentation of cell nuclei is an essential starting point for a quantitative characterization. The 

challenges of cell nuclei segmentation are due to the complexity and variability of nuclear 

appearance across images. Low image quality (i.e. low signal to noise ratio) complicates the 

distinction between cell nuclei and background noise . Imperfect staining or intrinsic cell 

characteristics lead to fluctuations of the signal intensity, which commonly causes over- or 

under-segmentation. Fluctuations in the background increase the number of false positive 

detections of cell nuclei. 

The two main properties used for segmentation of cell nuclei use similarity (region-based 

methods) or discontinuity (boundary-based methods) of pixel intensities. The high variability of 

cell nuclei staining and volume in spheroids impedes accurate cell nuclei segmentation using 

simple methods such as global thresholding. Furthermore, imaging large samples in toto limits 

the achievable lateral and axial resolution. In combination with high cell density, this results in a 

considerable amount of apparently touching cell nuclei in the images that are difficult to 

separate (Mathew et al., 2015). A variety of powerful cell nuclei segmentation methods 

including iterative thresholding (Keller et al., 2008), level sets (Bergeest and Rohr, 2012), graph 

cut (Qi, 2014), gradient flow tracking (Li et al., 2007), lines-of-sight (Mathew et al., 2015) or 

watershed methods (Cheng and Rajapakse, 2009) address this problem. The regions of interest 

that result from the watershed segmentation can be constrained by marker points that guide the 
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watershed segmentation procedure. Exemplary marker point detection algorithms are Euclidean 

distance-maps (Cheng and Rajapakse, 2009), the shrinkage of level sets, partial differential 

equations (Mikula et al., 2011) or Laplacian of Gaussian (LoG) filtering (Lindeberg, 1998; 

Lowe, 2004). 

Towards a multiscale quantitative characterization 

Features of cell nuclei need to be integrated with computed features from other fields including 

computational topology, graph theory and spatial statistics to obtain a multiscale quantitative 

characterization a biological system (Schmitz et al., 2017). In computational topology, efficient 

algorithms exist for the approximation of surface, volume or shape of objects (Edelsbrunner and 

Harer, 2010; Edelsbrunner and Mücke, 1994). Alpha shapes are a generalization of the convex 

hull that can be used to obtain geometrical models of cell networks (Edelsbrunner et al., 1983). 

Cell graphs consist of vertices representing the cell nuclei and edges representing the 

neighborhood relationship between any two cells. They have been used to analyze the two-

dimensional spatial cell network in breast tissue (Bilgin et al., 2007), malignant glioma (Demir 

et al., 2005) or Hodgkin’s lymphoma (Schäfer et al., 2015). This concept can also be translated 

to analyze and describe three-dimensional cell networks. 

Tracking and lineage reconstruction of cells 

The acquisition of biological systems with high spatial and temporal resolution allows studying 

dynamics in a spatio-temporal context. Methods for the identification of objects over time 

(tracking) and relating different objects with each other (lineage reconstruction) are required 

(Meijering et al., 2009). Previous studies employed the advantages of LSFM to study cell 

migration during embryogenesis of zebrafish (Keller et al., 2008), chicken (Rozbicki et al., 

2015), mouse (Ichikawa et al., 2013), or Drosophila melanogaster (Amat et al., 2014). The 

approach enables the construction of digital cell atlases (i.e. virtual embryos) of embryogenesis 

(Khairy and Keller, 2011). Virtual embryos generated for different model organisms allow a 

comparative analysis of developmental processes (Kalinka and Tomancak, 2012). 

Comprehensive data analysis, visualization and mathematical modelling 

A substantial portion of the image analysis pipeline resides in the analysis, visualization and 

mathematical modelling of the retrieved quantitative information. Data analysis includes 

method for data mining, statistical testing, classification of identified objects or machine 

learning in order to identify patterns of the underlying system (Chessel, 2017). Many 

experiments require programs that allow for inspection, correction and annotation of computed 

quantitative results. For example, results from automated segmentation or tracking require tools 

for interactive visualization (Wait et al., 2014; Walter et al., 2010). The ultimate goal of image 

analysis is to provide Mathematical models that describe and generalize the underlying 
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biological system (Buck et al., 2012), predicts the outcome of alterations made to the system 

and therefore helps to develop new scientific questions. 

 1.2 Biological model systems and applications 

In this thesis, I developed several modules for an image analysis pipeline. The development was 

driven by applications with different biological model systems. The following sections provide 

biological and motivational background information on the model systems and the applications 

in which the image analysis modules were used. 

1.2.1 Tribolium castaneum and Gryllus bimaculatus embryos 

Insects represent excellent model organisms for developmental biology. Larger and more 

complex insect model organisms such as the red flour beetle Tribolium castaneum (Strobl and 

Stelzer, 2014), the Mediterranean fruit fly Ceratitis capitata, or the field cricket Gryllus 

bimaculatus (Nakamura et al., 2010) have emerged as valuable model systems to study 

embryonic events of insect development. Tribolium is a holometabolous species that passes 

through the developmental stages of egg, larva, pupa and adult. The embryogenesis of 

Tribolium shows distinct characteristics to that of other insect models such as Drosophila. For 

example, the embryogenesis exhibits short-germ development, embryonic leg development, 

extensive extra-embryonic membrane formation and non-involuted head development 

(summarized in Strobl and Stelzer, 2014). Gryllus is a hemimetabolous organism that passes 

through the developmental stages egg, nymph and adult. 

Tribolium and Gryllus are several times larger than Drosophila or Ceratitis (Figure 3). This 

requires the adaption of sample preparation, image acquisition and subsequent image 

processing. Image acquisition suffers from three main limitations. First, biological tissue 

scatters and absorbs light and thus the penetration depth into the specimen is limited. Second, 

only a fraction of the embryo is observable. Large specimen require the acquisition of image 

stacks along multiple views in order to obtain a full three-dimensional image. Third, in order to 

achieve high spatial resolution, the specimen is acquired with high magnification objectives. In 

toto imaging of Tribolium, Ceratitis and Drosophila embryos within a single camera field of 

view is feasible. However, the Gryllus embryo has approximately 80 times the volume of a 

Drosophila embryo and requires the acquisition of tiled image stacks that in conjunction capture 

the entire embryo. 
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Figure 3 Comparative analysis of developmental processes during insect embryogenesis. Maximum 

projections along z of four different insect embryos shown in dorsal view during dorsal closure. All 

embryos express a nuclear localized or Histone-linked green fluorescent protein (GFP) subtype under 

control of a ubiquitous promoter. The box in the upper right corner provides the phylogenetic 

relationship. Microscope: images of Drosophila, Ceratitis and Tribolium were acquired with the mDSLM, 

illumination objective: 2.5x NA 0.06 Epiplan-Neofluar, detection objective: 10x NA 0.3 N-Achroplan, 

camera: Andor Clara. The Gryllus dataset was acquired with tiled image stacks (overlap 40%) with the 

LightSheet Z.1, illumination objective: 10x NA0.2, detection objective: 20x NA 1.0, camera: Sony ICX 

285. Stitching was performed with the Image Stitching software. Scale bar: 300 µm. Detailed information 

about the datasets and the software for stitching can be found in the Material and Methods sections. 

Figure adapted from Strobl et al., 2017. 

The long-term acquisition of such specimens produces Terabytes of complex image datasets 

that cannot be readily analyzed. Automated processing modules are required to manage, reduce 

and visualize the datasets. Furthermore, the tiled and multiview image datasets need to be fused 

by computational methods to obtain a single and complete image of the specimens at each time 

point. 

1.2.2 Three-dimensional cell cultures as representative in vitro models for tissues 

Experiments in cell biology rely on the assumption that cell cultures reflect the physiology of 

the tissue. Two-dimensional in vitro cell cultures fail to represent many tissue-specific 

architecture aspects such as mechanical strain, cell-cell interactions, or nutrient flow. Three-

dimensional cell cultures reflect the cellular arrangement and interactions of real tissues 

(Pampaloni et al., 2007). Spheroids are model systems of low complexity that allow for 

adequate and reproducible characterization (Sutherland, 1988). The aggregation and 

proliferation of cells leads to a ball of cells. A concentric cell layering consisting of a necrotic 

core surrounded by layers of quiescent and proliferative cells is observed for spheroids with a 

diameter of more than 400-500 µm (Kunz-Schughart et al., 2004). In addition, cells in spheroids 

develop characteristic properties of their ancestral tissue. Examples include aggregates of mouse 

embryonic stem cells (van den Brink et al., 2014) or beating cardiomyocyte spheroids 

(Bartholomä et al., 2005). Spheroids have high potential for fundamental research questions on 

cell differentiation, cancer biology and drug response (Ravi et al., 2015). 
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Studies in cell biology rely on the retrieval of the characteristics of individual cells in spheroids. 

Image-based characterization of spheroids and spheroid growth has high potential for three-

dimensional cell biology research (Jagiella et al., 2016). Most attempts to retrieve these 

properties have relied on spheroid disintegration, histological sectioning, or the use of rather 

small spheroids that for example do not show a concentric layering. A histological section 

provides insight into the internal morphology of a spheroid (Jagiella et al., 2016). A drawback is 

that histological sectioning destroys the integrity of the spheroid. The combination of LSFM 

and optical clearing allows to produce endpoint measurements of entire spheroids and has been 

used to study drug induced cell death in different regions (Wenzel et al., 2014). 

Investigating the impact of different stress conditions on spheroids 

In the context of three-dimensional cell cultures, the focus in this thesis was set on the 

investigation of different stress conditions. These were realized in four applications that analyze 

the morphological impact on spheroids: 

 Application I: nutrient and oxygen deficiency 

 Application II: apoptosis induction 

 Application III: autophagy induction 

 Application IV: acute mechanical constriction 

Application I: nutrient and oxygen deficiency 

Distinct microenvironmental conditions (e.g. nutrient and oxygen supply conditions) in solid 

tumors lead to the formation of different zones comprising proliferating, quiescent and necrotic 

cells (Thoma et al., 2014). Similarly, spheroids have a diffusion limit of about 150-200 µm to 

many molecules including oxygen (Lin and Chang, 2008). Thus, spheroids with diameters of 

more than 400-500 µm display a concentric cell layering, in which a necrotic core is surrounded 

by a layer of quiescent cells and an outer rim of proliferating cells (Kunz-Schughart et al., 

2004). This zonation is critical for anti-cancer therapeutics. For example, the zonation has a 

huge impact on therapeutic response (Andre et al., 2010; Kim et al., 2011; Shekhar, 2011). 

Wenzel et al. showed that the therapy of T47D spheroids with cytostatic drugs (e.g. Paclitaxel, 

Cisplatin) mainly affects outer regions of proliferating cells, whereas the inner core region of 

dormant cells shows no effect (Wenzel et al., 2014). Drug penetration models that incorporate 

the effects of local drug, oxygen and nutrient concentration have confirmed these results. For 

example, it has been shown that a cellular barrier effect alone can lead to poor response to drugs 

(Frieboes et al., 2009). 

Small spheroids of less than 200 µm in diameter lack the prominent concentric layering and 

central necrosis. The information gain from small spheroids, e.g. for evaluating drug effects on 

specific sub-populations of cells within spheroids, is thus limited. This is underpinned by 
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mathematical models of spheroids suggesting that changes in the state of each individual cell 

(Powathil et al., 2014) and the three-dimensional architecture (Kempf et al., 2013) must be 

monitored when studying therapeutic efficacy. Thus, the retrieval of morphometric cell nuclei 

features in intact, differently-sized spheroids is an essential step in understanding tumor 

development (Bredel-Geissler et al., 1992). 

Application II: apoptosis induction 

High content screening (HCS) combines high-throughput imaging and automated quantitative 

characterization (Antony et al., 2013). HCS has become an integral part of drug discovery and 

drug evaluation (Zanella et al., 2010). The main goal of HCS assays is to collect quantitative 

data to evaluate the properties and effectiveness of different drugs (e.g. in cancer therapy) in one 

approach. Modern HCS are performed with three-dimensional cell cultures (Friedrich et al., 

2009). In contrast to biochemical assays, image analysis is not limited to population averages 

and provides information at the single cell level (Antony et al., 2013). 

Traditional HCS approaches have relied on image analysis of individual sectional planes or 

maximum projection images (Reid et al., 2014; Vinci et al., 2012). These approaches only 

provide an average of the biological response of all analyzed cells and do not represent the 

variance of cellular responses (Levsky and Singer, 2003). However, the exposure of cells to 

different microenvironments and stresses leads to heterogeneous cell populations in tissues. 

Proliferation occurs mainly in well-nourished outer regions, while cells in nutrient deprived and 

hypoxic regions remain in a dormant state (Kyle et al., 2012). Consequently, cytostatic therapy 

with compounds strongly affect cells in the outer spheroid regions whereas the effect is lower 

on dormant cells in the quiescent and core regions (Thoma et al., 2014). It is therefore important 

that HCS approaches comprise quantitative methods to consider drug responses on a cellular 

level. 

Caspases are central components that act as intracellular proteases and mediate apoptosis in 

cells. Different signaling pathways control the activation of caspases. However, the molecular 

mechanisms of drug-mediated activation of caspases are not well understood (McIlwain et al., 

2013). Apoptosis-inducing drugs have been evaluated for their efficiency against breast cancer 

in previous studies (Imamura et al., 2015; Liedtke et al., 2010; Reid et al., 2014; Wang et al., 

2013). Staurosporine acts as a competitive inhibitor of protein kinases and prevents ATP from 

binding to the kinase (Tanramluk et al., 2009). Staurosporine has also been shown to induce 

apoptosis in two-dimensional cell cultures of T47D breast cancer cells (Mooney et al., 2002). 

The morphology of cell nuclei has been shown to correlate with cell proliferation activity 

(Smolle et al., 1989) and have shown diagnostic value in oncology (Saito et al., 2016). 

Similarly, cells that undergo apoptosis present features that are readily recognizable using 
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fluorescence microscopy and quantitative analysis. During apoptosis, organelles and membranes 

are conserved for some time, while the nucleus undergoes early degeneration and shrinks due to 

DNA loss (Bacus et al., 1989). Consequently, morphological features of the cell nucleus are 

indicators of apoptosis. For example, Mooney and coworkers have determined the apoptosis 

induction in T47D cells using a DNA fragmentation assay and have confirmed the effect by the 

changes in nuclear morphology using fluorescent microscopy (Mooney et al., 2002). Three-

dimensional datasets with cellular resolution of in toto acquired cell cultures had not been 

available in these studies and thus, the effect of apoptosis induction on the single cell level 

could not have been investigated. 

Application III: autophagy induction 

Autophagy is a catabolic process involved in the maintenance of cellular homeostasis by the 

degradation and recycling of cellular components. Under nutrient-rich conditions, autophagy 

represents a way to recycle damaged organelles, particularly in quiescent and terminally 

differentiated cells (Rabinowitz and White, 2010). During stress conditions (e.g. starvation), the 

autophagy-mediated breakdown of cellular components promotes cell survival. For example, 

the ability of lymphocytes to consume environmental nutrients depends on the availability of 

growth factors. In the absence of growth factors, nutrient supply is maintained by autophagy 

and cells shrink to about 50% of the size (Lum et al., 2005). 

The mammalian target of Rapamycin (mTOR) signaling is a key regulator of autophagy. It 

controls cell growth, proliferation, survival and metabolism in response to extracellular signals 

such as nutrient availability and growth factors (Efeyan and Sabatini, 2010). Under nutrient-rich 

conditions, autophagy is inhibited by the activity of the mTOR signaling pathway (Laplante and 

Sabatini, 2012). Rapamycin is an approved drug that interacts with and inhibits the activity of 

the mTOR signaling pathway, thus inducing autophagy (Ravikumar et al., 2004). 

Defects in autophagy regulation (e.g. deregulation of the mTOR signaling pathway) are 

involved in the development of various diseases, including cancers (Aredia et al., 2012). 

However, the role of autophagy in cancer progression is controversial. On one hand, it acts 

tumor suppressive due to its function as a recycling mechanism of damaged cellular 

components. In contrast, autophagy can be tumor promoting in established tumors, where 

autophagy promotes the survival of tumor cells under metabolic and therapeutic stress 

(Degenhardt et al., 2006; Guo et al., 2013). 

Breast cancer is one of the most common malignancies in women worldwide. Although 

mortality rates are decreasing due to improved medication and early detection, many aspects of 

breast cancer progression are still unknown. Previous studies indicate an upregulation of the 

mTOR signaling pathway in breast cancers (Kerekatte et al., 1995) and thereby decreases levels 
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of autophagy. Therefore, mTOR inhibitors such as Rapamycin are investigated as alternative 

cell death pathways for anti-tumor therapy (Schleicher et al., 2010). The development of 

successful autophagy-modulating therapies (e.g. using Rapamycin) against cancer requires a 

solid understanding of the dual role of autophagy in normal tissues and tumors (Seto, 2012). 

Application IV: acute mechanical constriction 

The behavior of cells in a cellular network such as healthy and tumor tissue are affected by cell 

density (Böttger et al., 2015), contact inhibition or mechanical pressure (Cheng et al., 2009; 

Drasdo and Höhme, 2005; Jagiella et al., 2016; Montel et al., 2011). For example, mechanical 

compression of tumor tissue drives cancer cells towards to develop an invasive phenotype (Tse 

et al., 2012). Spheroids provide a suitable model to study the effects of different stress 

conditions on tissue. Several studies investigated the role of mechanical stress on spheroid 

morphology, cell proliferation and apoptosis in the context of tumor biology. Compressive 

stress during long-term growth of spheroids led to reduced cell proliferation (Montel et al., 

2011) and induction of apoptosis (Cheng et al., 2009). The impact of compressive stress was 

found to be dependent on the duration of the stress (Delarue et al., 2014). Reversible inhibition 

of proliferation was observed on the scale of several hours, whereas several days of applied 

compressive stress induced mitotic arrest of cells (Desmaison et al., 2013). Compressive stress 

applied to spheroids generated from mouse colon carcinoma cells increased the cell density two-

fold, affected the cellular organization and restricted cell proliferation to the outer rim of the 

spheroid. More dead cells were observed in the center of the spheroid (Alessandri et al., 2013). 

These results are supported by mathematical models of compressed tumor growth (Ciarletta et 

al., 2013). 

Mechanical stress also plays a fundamental role healthy tissue. The mammary gland is a highly 

dynamic organ, which undergoes massive modifications during development and postnatal 

phases. For example, the tissue completely remodels in the involution phase. During involution, 

the mammary gland morphology is remodeled into the pre-pregnant state. Mechanical cues are 

expected to play an important role during involution. For example, it is assumed that milk stasis 

induces mechanical stress on alveolar cells thus resulting in stress sensing mechanisms that 

trigger involution (Quaglino et al., 2009). Studying the effects of induced constriction on 

individual cells in spheroids provides valuable knowledge to understand complex processes 

such as involution. However, existing work has focused on confined growth of spheroids in the 

context of tumor biology and little is known on induced constriction of tissue. 

1.2.3 Lateral root development in Arabidopsis thaliana 

Shape and function of organs is controlled by the organization and behavior of cells. Plant cells 

are turgid and surrounded by a cell wall that restricts their mobility. Hence, cell growth and cell 

division predominantly determine shape and function of plant organs. Stereotypic and 
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deterministic processes control the early plant embryogenesis, in which almost invariant 

patterns of cell divisions lead to the specification of the apical-basal axis as well as shoot and 

root meristems (De Smet et al., 2010; Yoshida et al., 2014). 

Plants constantly adapt their root systems to varying environmental conditions such as the 

availability of water, nutrients or light. This ability is commonly referred to as phenotypic 

plasticity (Bradshaw, 2006) and encompasses environmentally induced changes of morphology, 

physiology or behavior. Consequently, the architecture of the plant root and shoot system is 

determined by post-embryonic organ formation. A well-established model system to study post-

embryonic organ formation is the root system of Arabidopsis thaliana. 

Meristematic cells in the apical meristem of the primary root continuously generate new cells 

that are arranged in cell files. These cells elongate and form concentric tissue layers that give 

rise to the root vasculature, pericycle, cortex, endodermis and epidermis (Dolan et al., 1993) 

(Figure 4a). Some cells get primed to form lateral organs. In response to local accumulation of 

auxin and oscillating gene expression, small founder cells situated in the pericycle cell layer 

adjacent to the vasculature in the center of the primary root initiate the formation of a lateral 

root primordium (LRP) (Van Norman et al., 2013). The lateral root founder cells re-enter the 

cell cycle and divide anticlinal (parallel to the shoot-root axis) in an asymmetric fashion and 

later periclinal (normal to the shoot-root axis) (De Smet, 2012). These formative cell divisions 

create a dome-shaped LRP that grows through the overlaying cell layers to emerge from the 

primary root (Figure 4b). The overlaying tissues accommodate the passage (Vermeer et al., 

2014) and have a major influence on the shape of the LRP (Lucas et al., 2013; Vermeer et al., 

2014). 

Traditionally, lateral root development has been subdivided into stages according to the number 

of generated cell layers (Malamy and Benfey, 1997) (Figure 4c). This staging system relied on 

two-dimensional images of fixed and optically cleared primary roots. Expression markers, 

specific for a certain type of tissue, display the type and lineage of each cell. Such attempts at 

cell lineage reconstruction lacked the spatio-temporal resolution to infer cell lineages 

throughout the complete development of LRPs (Kurup et al., 2005; Lucas et al., 2013). 

Moreover, it has been impossible to investigate whether stereotypic and deterministic patterns 

similar to those identified in plant embryogenesis exist in the post-embryonic formation of 

organs. To investigate these patterns, tools for computer-aided cell tracking and lineage 

reconstruction are required. 
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Figure 4 Lateral root development in Arabidopsis thaliana. (a) Longitudinal cut through the primary 

root. Lateral roots originate from cells in the pericycle cell layer. The priming of founder cells occurs in 

the elongation zone, whereas lateral root development and emergence occur in the differentiation zone of 

the primary root. (b) Cross sections of the primary root in the initial state (left) and during emergence 

(right) of a lateral root. (c) Lateral root formation is classically subdivided into eight stages (I-VIII). 

Panels a and b were adapted from Péret, De Rybel, et al., 2009, panel c was adapted from Péret, Larrieu, 

et al., 2009. 

 1.3 Scope of this thesis 

The aim of this thesis was the identification, development and optimization of modules for an 

image analysis pipeline in three-dimensional fluorescence microscopy. The modules cover the 

following aspects: 

 Automated data management as a prerequisite to structure, reduce and visualize 

multidimensional image datasets 

 Normalization of intensity variations in time series maximum projections 

 Web-based visualization and sharing of image datasets 

 Reconstruction of multiview image datasets including bead-based registration, fusion 

and deconvolution 

 Multiscale quantitative characterization including automated cell nuclei segmentation, 

feature computation, computational topology and cell graphs 

 Computer-aided cell tracking and lineage reconstruction 

In order to ensure the applicability to real image datasets from fluorescence microscopy, the 

modules were developed in an application-driven approach. The image datasets were obtained 

from research projects in developmental biology of insects and plants, as well as from cell 

biology. 
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2 Material 

 2.1 Tribolium datasets 

2.1.1 Preparation of Tribolium embryos 

Tribolium embryos were prepared for imaging as described previously (Strobl et al., 2015). 

Here, Tribolium embryos of the EFA-nGFP transgenic line expressing nuclear-localized GFP 

(Sarrazin et al., 2012) were fixed on an agarose hemisphere (1% (wt/vol) low-melt agarose). 

This ensured that the embryo remained in the same location throughout the entire long-term 

acquisition. To allow for bead-based registration of the datasets, fluorescent beads of 1.0 µm 

diameter were embedded into the agarose hemisphere (Figure 5). 

2.1.2 Long-term fluorescence live imaging of Tribolium embryos with LSFM 

Three time-lapse datasets of Tribolium embryos were acquired (dataset 1, 2 and 3) with the 

monolithic digital scanned laser light sheet-based fluorescence microscope (mDSLM), using an 

axial pitch of 2.58 µm were acquired at an interval of 30 minutes for 150 hours from eight view 

directions at each time step. The mDSLM was equipped with a 2.5x NA 0.06 EC Epiplan-

Neofluar illumination objective, a 10x NA 0.3 W N-Achroplan detection objective, a CCD 

camera (Andor Clara, 1394 × 1040 pixels, pixel pitch: 0.645 µm). Each of the acquired datasets 

consisted of 2,408 image stacks with a total raw data volume of up to 1.5 Terabyte. The datasets 

further served as test datasets to evaluate the performance of ZIP and JPEG2000 compression. 

Embryo preparation and imaging were performed by Frederic Strobl. 

 
Figure 5 Mounting principle for Tribolium embryos. (a) Illustration of the Tribolium embryo 

mounting principle in front and top view. A drop of liquid agarose is placed on top of the tip of the 

sample holder. The embryo is then fixed on top of the created agarose half sphere. Not that for illustration 

purposes, the size of the embryo was increased. (b) Transmission light image of a Tribolium embryo 

(dataset 1) fixed on the agarose half sphere (dataset DS0001). (c) Fluorescence light image of the embryo 

shown in panel b. Fluorescent beads in the agarose hemisphere are visible. Microscope: mDSLM, 
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illumination objective: CZ 5x/NA 0.16, detection objective: CZ 10x/NA 0.50, camera: Andor Clara. Scale 

bar: 100 µm. Images in panels b and c were provided by Frederic Strobl. 

 2.2 Gryllus datasets 

2.2.1 Preparation of Gryllus embryos 

Culturing, preparation and imaging of Gryllus embryos was performed by the former Master 

student Alexander Ross. Gryllus embryos of the H2B-eGFP transgenic line were cultured and 

prepared according to the Master thesis of Alexander Ross. Briefly, a metal holder with an 

opening at the top (“Cobweb holder”) was filled with 1% (wt/vol) low-melt agarose and soaked 

up until a thin film of agarose remained in the opening. The Gryllus embryo was mounted onto 

the agarose film and covered with a second film of agarose (Figure 6). This ensured that the 

embryo remained in the same location throughout image acquisition. To allow for bead-based 

registration of the datasets, fluorescent beads of 1.0 µm diameter were embedded into the 

agarose film. 

 
Figure 6 Mounting principle for Gryllus embryos. (a) Schematic of the Gryllus embryo mounting 

principle in front and top view. A drop of liquid agarose is placed on the opening of the sample holder 

generating a thin agarose film. The embryo is placed on the agarose film and fixed with another drop of 

agarose. Note that for illustration purposes, the size of the embryo was increased. (b) Transmission light 

(b) and fluorescence (c) image (GFP filter set) of sample holder with a mounted Gryllus embryo under the 

stereo microscope (Zeiss Discovery.V8). Scale bar: 600 µm. Images in panels b and c were provided by 

Frederic Strobl. 

2.2.2 Long-term fluorescence live imaging of Gryllus embryos with LSFM 

Image stacks were acquired with the Zeiss LightSheet Z.1 fluorescence microscope, using an 

axial pitch of 4 µm were acquired at an interval of 30 minutes for up to 143 hours 30 minutes 

from four view directions (0°, 90°, 180° and 270°) at each time step. The Z.1 was equipped with 

a 10× NA 0.2 objective for excitation and a 20× NA 1.0 detection objective, a Sony ICX 285 

CCD camera (1036×1388 pixels, pixel pitch: 1 µm). To capture the complete embryo at 20x 

magnification, four tiles were acquired along the y axis with an overlap of 40%. The dataset 

used in this thesis consists 4592 image stacks, with 254 single planes per stack. In total, 287 

time points, four view directions and four tiles per time point and view direction were acquired 

resulting in about 3.2 Terabyte data volume. 
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 2.3 Spheroid datasets 

2.3.1 Cell culture and spheroid preparation 

The T47D (human ductal breast epithelial tumor) cell line were purchased from ATCC (ATCC-

HTB-133) cultured in RPMI1640 (Gibco) supplemented with 10% FBS (Gibco, Lot: 10270 and 

Lot: 41Q6640K) and 2 mM L-glutamine (Roth) (Gibco) at 37 °C, with 5% CO2. 

HC11 cells (murine non-tumorigenic mammary epithelial cell line) were a gift from B. Groner 

at the Georg Speyer Haus in Frankfurt am Main. Cells were cultured in RPMI1640 (Gibco) 

supplemented with 10% FBS (Gibco, Lot: 41Q6640K), 2 mM L-glutamine (Roth) (Gibco), 5 

µg/ml human recombinant insulin (Sigma) and 10 ng/ml murine EGF (Peprotech) at 37°C, with 

5% CO2. 

Spheroids were formed by liquid overlay. Cell suspensions containing 500, 1,000, 2,000, 5,000 

or 10,000 were placed in U-well plates coated with a non-adhesive layer (Thermo Scientific, 

Nunc HydroCell 96 Well, 174908) or in agarose-coated 96 well plates. To obtain compact 

spheroids, each plate was centrifuged and cultured for the indicated time at 37°C und 5% CO2 in 

the incubator.  

2.3.2 Drug Treatment of T47D spheroids 

Application II. After spheroid formation, the cells were treated with 6.7 µM Staurosporine 

(Sigma Aldrich) diluted in 0.1% DMSO or 0.1% DMSO for further 3 days. 

Application III. After spheroid formation for 3 days, the spheroids were treated with 

Rapamycin (Sigma Aldrich) or DMSO for further 7 days. The medium containing Rapamycin 

was refreshed every three days. 

2.3.3 Cylindrical constriction of HC11 spheroids 

Mechanical perturbation of HC11 spheroids was achieved by placing spheroids into agarose 

capillaries with a diameter of 200 µm (Figure 7a). In a control experiment, HC11 spheroids 

were placed into agarose capillaries with a diameter of 300 µm. To generate agarose capillaries, 

2% low-melt agarose in PBS was injected to fill a red color-coded capillary (Blaubrand – 

intraMark, Brand). Subsequently, a glass rod (Hilgenberg) with the diameter of either 200 µm or 

300 µm was inserted into the agarose (Figure 7b). After solidifying, the glass rod was removed. 

The agarose column was then placed into a petri dish and cut into approximately 1 cm long 

pieces. Spheroids were pipetted on the opening of the agarose tubes (Figure 7c, panels 1 and 2) 

and were sucked up by capillary forces (Figure 7c, panel 3). The spheroid-containing agarose 

tube (Figure 7d) was placed into fresh growth medium and incubated for either 24 or 96 hours. 
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Figure 7 Overview of cylindrical constriction of HC11 spheroids. (a) Spheroids are placed in agarose 

capillaries with an inner diameter of either 300 µm or 200 µm. (b) Glass material used to generate agarose 

capillaries. (c) The spheroid is released from the pipet on the opening of the agarose capillary and sucked 

up by capillary forces. (d) Front view of spheroid in a 300 µm (upper panel) and a 200 µm (lower panel) 

agarose capillary. Scale bar: 300 µm. Isabell Smyrek acquired and provided the images in panels b, c 

and d. 

2.3.4 Staining and immunofluorescence 

Application I and II. Spheroids were fixed for 1 hour in 4% paraformaldehyde (Sigma 

Aldrich) and afterwards washed twice for 5 minutes in 1xPBS. The nuclei were stained for 24 

hours in 5 µM Draq5 (Biostatus) according to the instruction manual. 

Application III and IV. Spheroids inside the agarose capillaries were fixed with 4% PFA for 

20 minutes at RT. After fixation, spheroids were carefully removed from the agarose tubes. 

After washing with PBS (3x10 minutes), the spheroids were permeabilized with 0.3% Triton X-

100 for 30 minutes. Spheroids were placed in blocking solution for one hour at room 

temperature (RT). Primary cleaved-caspase 3 antibody (Cell Signaling) was diluted in blocking 

solution and spheroids were incubated for 24 hours at 37°C and 600 rpm shaking in a 

thermomixer (Eppendorf). Spheroids were rinsed in PBS (3x5 minutes, 3x20 minutes), before 

incubation with 1 µg/ml DAPI (Merck), Phalloidin-AF546 (Life Technologies) and the 

secondary anti rabbit AF488 antibody diluted in blocking solution for 4 hours at 37°C and 600 

rpm shaking in a thermomixer. Spheroids were rinsed in PBS (3x5 minutes, 3x20 minutes). 

2.3.5 Optical clearing and sample preparation 

Spheroids were dehydrated with increasing concentrations of ethanol in deionized water at room 

temperature. The dehydrated spheroids were transferred into BABB solution (1:2 v/v, benzyl 

alcohol: benzyl benzoate) with a refractive index of 1.56 and incubated until transparency. 

Samples were transferred into rectangular glass capillaries (Hilgenberg), which were previously 

cleaned with 1% Hellmanex (Hellma Analytics) in deionized water for 2 hours shaking on a 

thermomixer at 70°C. The capillary was mounted onto a stainless steel sample holder and then 
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placed inside the microscope incubation chamber, which was filled with thiodiethanol (TDE, 

Sigma). 

2.3.6 Image acquisition with CLSM and LSFM 

Application I, III and IV. Images were acquired with a monolithic Digital Scanned Laser 

Light Sheet-based Fluorescence Microscope (mDSLM), which is a subtype of LSFM (Keller 

and Stelzer, 2008). We define the illumination axis as x, the detection axis as z and the axis 

orthogonal to x and z as y.  

A Carl Zeiss Epiplan-Neofluar 2.5x/NA 0.06 or a Plan-Neofluar 5x/0.16 objective lens for 

excitation, a Carl Zeiss N-Achroplan 20x/NA 0.5 objective lens for emission and a high-

resolution Andor Neo 5.5 sCMOS or Andor Clara CCD camera for image recording were used. 

Image stacks were acquired with an axial pitch of 1.29 µm.  

Application II. Samples were transferred into Cyclo-Olefin Copolymer 96-Well plates 

(Greiner). Images were acquired with the Carl Zeiss LSM 780 laser scanning confocal 

microscope. The microscope was equipped with a LD LCI Plan-Apochromat 25x 0.8 NA 

objective lens (Carl Zeiss). The image stack dimensions were set to 1024 x 1024 pixels per 

image plane with a pixel pitch of 0.55 µm and a z spacing of 2.81 µm. 

 2.4 Arabidopsis datasets 

2.4.1 Plant growth conditions 

Arabidopsis thaliana plants were grown under standard conditions (Lucas et al., 2013), prepared 

for imaging and acquired using light sheet-based fluorescence microscopy (LSFM) by Dr. 

Daniel von Wangenheim. In brief, lateral root formation was recorded in vivo in transgenic 

Arabidopsis thaliana plants expressing a pan-nuclear marker (pUBQ10::H2B-RFP) and a pan-

plasma membrane marker (pUBQ10::YFP-PIP1;4). Further, the plants expressed a nuclear 

reporter (pGATA23::nls-GUS-GFP) that specifically marked pericycle cells primed to become 

lateral root founder cells (De Rybel et al., 2010). This event marks the location of lateral root 

formation in a plant root. The rotation by 90° (gravistimulation) for six hours of seven-day-old 

plants induced the formation of lateral roots. Imaging lateral root formation was performed for 

up to three days at an interval of five minutes with LSFM. Due to the intrinsic properties of 

LSFM, the imaging process did not affect the viability of the plants. All plants survived the 

imaging process without any morphological abnormalities and continued their life cycle. 

2.4.2 Image acquisition with LSFM 

Image stacks consisting of 233 planes with an axial pitch of 0.645 µm were acquired at an 

interval of 5 minutes for up to 30 hours. Details about plant culture, preparation and time-lapse 

imaging can be found in the recent publication (von Wangenheim et al., 2016). 
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 2.5 Hardware and implementation details 

2.5.1 Hardware 

Computations were conducted on a high performance workstation comprising two six-core 

CPUs (X5650, Intel Corporation), 96 Gigabyte DDR3 memory, seven Tesla M2070 (NVIDIA 

Corporation) graphics cards for GPU processing, running Windows Server 2012 R2.  

2.5.2 Implementation 

Modules of the image analysis pipeline were developed and implemented in Mathematica 

(Wolfram Research, Inc., version 9 or higher) and FIJI (version 1.51d). For further 

implementation details of the modules, see section Methods. Three-dimensional visualizations 

were generated in Mathematica or Arivis (http://www.arivis.com). 

 

http://www.arivis.com/
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3 Methods 

 3.1 Automated data management 

The module for automated data management comprises a front end user interface application 

(JobCreator) to create job files. Both programs were developed in Mathematica. The 

JobCreator writes a job description file in XLSX format that it sends to the back end 

(JobProcessor) that performs the bulk of image processing. 

3.1.1 Data structure and file name convention 

The module for automated data management requires the input data in TIF format. The first step 

is the conversion of the multidimensional input dataset into a generalized file structure and file 

names that follow a generalized naming convention. The actual sorting of the input dataset is 

not important (i.e. the program works with input datasets that consist of image stacks in TIF 

format or datasets where single planes are given as individual TIF files). The conversion step 

ensures that after processing, each TIF file contains an image stack and the file name directly 

indicates the file content. The module automatically generates file names that are comprised of a 

set of unique identifiers followed by a variable number of digits. 

The user first specifies a name for the job and the input directory of the dataset. Each dataset is 

expected to belong to a certain experiment for which the user specifies a name in the 

JobCreator user interface. The experiment name will later be the leading string in the file name 

(e.g. “Tribolium2016- … .tif”). For a collection of datasets of an experiment, a unique identifier 

number followed by four digits labels each dataset (e.g. Tribolium2016-DS0001 … .tif”). After 

the dataset, two characters compose the unique identifier of each dimension followed by a 

variable number of digits containing the actual value (Table 1). 

The input structure of the underlying image dataset needs to be specified by entering the 

equivalent for each of the identifiers in the JobCreator user interface. At any time, the user can 

check the input directory for files matching the specified identifier equivalents. The JobCreator 

interface will display the size of each identified dimension (e.g. the number of time points or 

channels). For example, a dataset that comprises three channels, where the file names contain 

the identifier “chn” and the user needs to enter “chn” below the identifier “CH”. Afterwards, the 

user needs to specify the output directory. 
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Table 1 File name convention used by the automated data management module. 

identifier 

short 

identifier 

name 

description 

LC location The location identifier is a unique representation of either a region of 

interest (ROI) in a specimen (e.g. head, thorax, abdomen of a Tribolium 

embryo) or a complete specimen in a multiwell experiment, where each 

well contains one embryo (e.g. “Tribolium2016-DS0001LC1 … .tif”). 

SL sub-location The sub-location identifier is a unique representation for a ROI at a defined 

location (e.g. “Tribolium2016-DS0001LC1SL1 … .tif”). For example, the 

sub-location could indicate head, thorax and abdomen of a Tribolium 

embryo in a multiwell experiment, where each well corresponds to one 

location. 

TP time point The time point identifier represents the time point in a time-lapse recording 

(e.g. “Tribolium2016-DS0001LC1SL1TP001 … .tif”). 

DR direction The direction identifier represents information from which direction (view 

angle) the specimen was recorded. The identifier is followed by a variable 

number of digits (e.g. “Tribolium2016-DS0001LC1SL1TP001DR01 … 

.tif”). 

CH channel The channel identifier represents the information of different signals that 

were recorded in separate image channels followed by a variable number 

of digits, (e.g. “Tribolium2016-DS0001LC1SL1TP001DR01CH1….tif”). 

PL image plane This plane identifier represents the image plane followed by a variable 

number of digits, (e.g. “Tribolium2016_DS0001LC1SL1TP001 

DR01CH1PL001 … .tif”). 

 

Identifiers for which no data is available are per default omitted in the file name. The number of 

digits that follow an identifier is restricted by the size of the dimension (e.g. if 301 time points 

were acquired, the number of digits after the identifier TP is restricted to three digits). 

3.1.2 Data reduction by three-dimensional cropping 

After the basic setup of the job, the user specifies parameter values for three-dimensional 

cropping of the image dataset. A separate user interface allows to interactively specify cropping 

dimensions in x, y and z and additionally perform rotation around the z axis. The specified 

cropping settings apply to all image stacks of the complete dataset. 

3.1.3 Data reduction by ZIP and JPEG2000 compression 

The automated data management module further compresses all generated stacks using the 

built-in, lossless ZIP compression of the TIF format. The result is one compressed TIF file per 

image stack. A copy of the image dataset is generated and compressed with the JPEG2000 

standard (part 1 of the ISO 15444 standard). JPEG2000 compression works only for single 
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planes. Thus, the result is a ZIP archive per image stack containing a JPEG2000 file (JP2) per 

image plane. 

3.1.4 Generation of maximum projections 

The module uses a macro for the open source software FIJI (version 1.51d) to compute 

maximum projections. For efficiency, the generation of z maximum projections is parallelized 

on the level of the image stacks, i.e. multiple projections are computed in parallel. 

 3.2 Intensity normalization of time-lapse maximum projections 

The program allows the removal of background information and the adjustment of intensity 

variations in maximum projections along z as a function of time. A user-friendly interface 

allows the setup of parameter values and running the procedure in batch mode. The program is 

available for download (Strobl et al., 2015). 

3.2.1 Background removal 

Maximum projections are pre-processed using Gaussian filtering with a kernel size of 7×7 

pixels. An intensity threshold is computed for each pre-processed image using Kittler-

Illingworth’s minimum error threshold method (Cho et al., 1989). If necessary, the computed 

threshold values can be adjusted by multiplication with a constant suitable factor. Small 

background regions are filled to obtain a binary image. Optionally, morphological opening is 

performed to smooth object boundaries. The program selects the largest object in the binary 

image and computes the mean background intensity of the remaining image region. The binary 

image is multiplied with the raw maximum projection and the mean background intensity is 

subtracted. 

3.2.2 Intensity normalization 

In a second step, the intensity of the time-lapse is adjusted. The program determines the two 

background-corrected maximum projections with minimum and maximum mean intensity and 

computes the mean intensity of these two values. The program choses a reference maximum 

projection, whose mean intensity is closest to the computed value and multiplies all other 

maximum projection images such that they match the reference mean intensity. 

 3.3 Web-based data visualization and sharing with BugCube 

The BugCube program was developed in Mathematica and is provided as a file in computable 

document format (CDF). The CDF file is available via the web-browser CDF player plugin 

(https://www.wolfram.com/cdf-player/). BugCube provides a web-interface to browse, visualize 

and download multidimensional image datasets. Data access is handled via an FTP server 

(ftp://stelzer-ftp.physbio.uni-frankfurt.de). The program was originally developed for Tribolium 
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image datasets acquired from four view angles consisting of one channel. It can easily be 

extended towards more views or more dimensions (e.g. multiple channels) or for usage with 

other datasets. 

For generation of the required files (e.g. maximum projections along z) the above-described 

data management module is suitable. BugCube further requires downsampled versions of the 

image stacks compressed in a ZIP archive. A custom program that completes the BugCube 

program generates these files. Given a directory containing a multidimensional dataset 

(projections represented in image stacks as TIF files, and raw image stacks as TIF files), the 

program splits the data into six subdirectories (Table 2). The data is additionally compressed by 

adding the files to ZIP archives. 

Table 2 The underlying data structure of BugCube. Each TIF file is compressed into a ZIP archive. 

directory content 

zStacks image stacks (one TIF file per image stack).  

tStacks time series of maximum projections along z (one TIF file per time series). 

zStacksSinglePlanes image planes of the dataset (one TIF file per image plane). 

tStacksSinglePlanes containing all raw projection images (one TIF file per projection image). 

zStacksPreview downsampled image stacks for preview (one TIF file per z stack). 

tStacksPreview containing the down-sampled t-stacks for preview purposes (one TIF file per 

tStack). 

 

 3.4 Multiview reconstruction 

3.4.1 Multiview reconstruction of Tribolium datasets 

Registration and fusion of the Tribolium datasets was performed using the Multiview 

Reconstruction software (Preibisch et al., 2010, 2014) available as a plugin for FIJI 

(http://imagej.net/Multiview-Reconstruction). The plugin comprises four modules (dataset 

specification, bead detection, bead registration and image fusion). After specification of the 

dataset, the plugin first identifies the subpixel location of fluorescent beads in each view with a 

difference of Gaussian (DoG) or difference of mean (DoM) filter. 

Second, the plugin identifies corresponding beads in all views based on a geometric local 

descriptor that represents each bead by its location, the location of the three closest beads and 

their relative orientation towards the bead. The best alignment of two descriptors is identified by 

pairwise rotation invariant matching of descriptors. Locally similar constellations are identified 

and each matching yields a transformation model (correspondence candidates). The largest 

subset of true corresponding beads (i.e. that have a similar descriptor and suggest a similar 
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transformation model) is identified using the random sample consensus (RANSAC) algorithm. 

True corresponding beads are registered by a global minimization of the displacement yielding 

the final affine transformation model. The displacement error summarized the registration 

performance. 

For image fusion, the plugin provides two methods: weighted average fusion (WAF) and 

multiview deconvolution (MVD). The MVD additionally applies iterative Bayesian-based 

derivation of multiview deconvolution (Preibisch et al., 2014).  

We took advantage of the built-in Compute Unified Device Architecture (CUDA) 

implementation to speed up the steps of bead detection and multiview deconvolution in the 

software. To enable GPU usage, CUDA version 6.5 was installed and the precompiled dynamic 

link library (DLL) files for CUDA (SeparableConvolutionCUDA.dll for bead detection and 

FourierConvolutionCUDALib.dll for multiview deconvolution) were placed in the FIJI 

directory. The relevant settings for reconstruction of Tribolium datasets are given in Table 3. 

3.4.2 Multiview reconstruction of a Gryllus dataset 

Stitching of tiled image stacks was performed using the Image Stitching software (Preibisch et 

al., 2009) available as a plugin for FIJI (http://imagej.net/Image_Stitching). In brief, the plugin 

computes all possible translations in x, y and z using the Fourier shift theorem. The translation 

with the highest cross correlation measure yields the best overlap. For more than two tiles, a 

global optimization selects the most appropriate translation of all input tiles. We chose an 

overlap parameter value of 30% for stitching the tiled stacks. All remaining parameters were set 

to default values. 

Registration and fusion of the Gryllus datasets was performed with the Multiview 

Reconstruction software (Preibisch et al., 2010, 2014) available as a plugin for FIJI 

(http://imagej.net/Multiview-Reconstruction). The settings used for multiview reconstruction 

are given in Table 3. 

Table 3 Parameter values for multiview reconstruction of Tribolium and Gryllus datasets. 

Parameter Tribolium datasets Gryllus dataset 

Bead detection 

Bead detection method difference of Gaussian (DoG) difference of Gaussian (DoG) 

sigma (pixels) 3.3405 1.8585 

Threshold 0.0061 0.0034 

Bead registration 

Allowed error for 

RANSAC 

2 5 

Significance required for 10 10 
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a descriptor match 

Regularize model yes no 

Lambda 0.10 0.10 

Transformation model rigid rigid 

Weighted average fusion (WAF) 

Process views in parallel All All 

Blend images smoothly yes yes 

Interpolation Linear Interpolation Linear Interpolation 

Multiview deconvolution (MVD) 

Image dimensions 

cropped (x×y×z) 

600×1000×600  

ImgLib2 container ArrayImg  

ImgLib2 container FFTs ArrayImg  

Save memory no  

Type of iteration Efficient Bayesian – Optimization II  

Image weights Virtual weights /  

Precompute weights for all views 

 

OSEM acceleration 1  

Number of iterations 8  

Adjust blending 

parameters 

no  

Use Tikonov 

regularization 

yes  

Tikonov parameter 0.0060  

Compute  In 256×256×256 blocks  

Compute on GPU  

PSF estimation Extract from beads  

 

 3.5 Multiscale quantitative characterization 

The quantitative characterization pipeline consists of pre-processing, cell nuclei segmentation, 

alpha shape generation, cell graph computation and subsequent feature extraction. The pipeline 

was developed in an application-driven manner using image datasets of cellular spheroids and is 

controlled by several parameters. Please note that parameter settings for each application are 

given in Table 5. 

3.5.1 Pre-processing 

Raw image stacks were cropped to the region of interest in FIJI (version 1.51d). Background 

subtraction was performed using the function “Subtract Background” with a radius of 20 pixels 
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(Application III) or 25 pixels (Application II, III). If image stacks were acquired with 

anisotropic voxel sizes, they were scaled along the Z dimension and missing information was 

interpolated (parameter: ImageZScalingFactor). For Application II, the appropriate value for the 

parameter ImageZScalingFactor was 5.1. However, for a better segmentation performance, the 

parameter was set to 3.5 such that cell nuclei appeared less elongated. After cell nuclei 

segmentation, the obtained results were corrected accordingly. For computational efficiency, the 

resulting three-dimensional image was resized by a suitable factor (parameter: 

ImageScalingFactor). In the remainder of this section, the obtained three-dimensional image is 

termed 𝑓𝑟(𝑥, 𝑦, 𝑧). 

3.5.2 Initial cell nuclei segmentation 

Noise is reduced by Gaussian filtering with a three-dimensional convolution kernel (parameter: 

NucleiFilterRange). The mean background intensity 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 of the convolved image is 

determined by Otsu’s method (Otsu, 1979) or minimum error thresholding (Kittler and 

Illingworth, 1986) (parameter: NucleiThresholdMethod). Local thresholding is applied per 

sectional plane along the dimensions x, y and z. The resulting binary images are multiplied to 

obtain the initial segmentation. For each pixel the local threshold 𝑡𝑙𝑜𝑐𝑎𝑙 is 

𝑡𝑙𝑜𝑐𝑎𝑙 = 𝑚𝑙𝑜𝑐𝑎𝑙 + 𝛾 𝑡𝑔𝑙𝑜𝑏𝑎𝑙, 

where 𝑚𝑙𝑜𝑐𝑎𝑙 corresponds to the mean intensity measured in a specified range (parameter: 

NucleiThresholdRange) given in pixels and 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 is the mean background intensity. The factor 

γ controls the impact of the mean background intensity (parameter: NucleiBackgroundFactor). 

Each pixel with an intensity greater than 𝑡𝑙𝑜𝑐𝑎𝑙 is set to 1, all others are set to 0. Holes, i.e. 

regions that because of minor segmentation errors are falsely detected as background, are 

removed. Therefore, the initial segmentation is inverted to obtain the complement image. Holes 

are identified as small foreground regions and those smaller than a predefined threshold are 

removed (parameter: HoleFillingRange). The image is inverted again to obtain the hole-

corrected initial binary image 𝑓𝑏(𝑥, 𝑦, 𝑧). 

3.5.3 Marker point detection 

For the decomposition of connected components in 𝑓𝑏(𝑥, 𝑦, 𝑧), we use a three-dimensional 

marker-controlled immersion watershed algorithm. The marker positions are obtained by a 

multiscale Laplacian of Gaussian (LoG) filter algorithm. Thereby, a blob refers to a region of a 

three-dimensional image, in which the intensities vary within a sufficiently small range of 

values. First, the pre-processed image 𝑓𝑟(𝑥, 𝑦, 𝑧) is inverted to obtain 𝑓𝑖(𝑥, 𝑦, 𝑧). The LoG 

corresponds to first convolving the image 𝑓𝑖(𝑥, 𝑦, 𝑧) by a Gaussian kernel 𝑔(𝑥, 𝑦, 𝑧; 𝜎). Thus, 

we get 
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𝑓𝑔(𝑥, 𝑦, 𝑧; 𝜎) = 𝑔(𝑥, 𝑦, 𝑧; 𝜎) ∗ 𝑓𝑖(𝑥, 𝑦, 𝑧), 

where 𝜎 is the standard deviation (scale) of the Gaussian kernel. Then the Laplacian operator 𝛻2 

is applied to the convolved image to obtain the LoG response. In our approach, the image 

𝑓𝑖(𝑥, 𝑦, 𝑧) is processed at multiple scales 𝜎𝑖 ∈ {𝜎𝑚𝑖𝑛, … , 𝜎𝑚𝑎𝑥}. The minimal and maximal 

scales 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥  are determined using the relationship 

𝑟 = √2𝜎, 

between radius 𝑟 of a blob-like object and the scale 𝜎 of the LoG. We measured the minimal 

(𝑟𝑚𝑖𝑛) and maximal (𝑟𝑚𝑎𝑥) radius of cell nuclei a priori in the images 

(NucleiSeedDetectionMinRadius and NucleiSeedDetectionMaxRadius) and computed 𝜎𝑚𝑖𝑛 and 

𝜎𝑚𝑎𝑥. To achieve scale-invariance, the LoG response at scale 𝜎 is normalized by multiplication 

with 𝜎3 such that the LoG response at scale 𝜎 is given by 

𝐿𝑜𝐺(𝑥, 𝑦, 𝑧; 𝜎) = 𝜎3𝛻2𝑓𝑔(𝑥, 𝑦, 𝑧; 𝜎). 

For computational efficiency, we iteratively compute the maximum response 

𝐿𝑜𝐺𝑚𝑎𝑥(𝑥, 𝑦, 𝑧; 𝜎𝑚𝑖𝑛,…,𝜎𝑚𝑎𝑥) over scales given by 

𝐿𝑜𝐺𝑚𝑎𝑥(𝑥, 𝑦, 𝑧; 𝜎𝑚𝑖𝑛,…,𝜎𝑚𝑎𝑥) = max
σmin≤𝜎≤𝜎𝑚𝑎𝑥

𝐿𝑜𝐺(𝑥, 𝑦, 𝑧; 𝜎). 

A maximum transform detects extended maxima in the obtained maximum response 

𝐿𝑜𝐺𝑚𝑎𝑥(𝑥, 𝑦, 𝑧; 𝜎𝑚𝑖𝑛,…,𝜎𝑚𝑎𝑥). A voxel is considered an extended maximum if no voxel in its 

direct neighborhood has a higher local intensity. The obtained binary image contains the 

locations of extended maxima (marker points) and is multiplied with the initial segmentation 

𝑓𝑏(𝑥, 𝑦, 𝑧) to discard extended maxima detected in the background. Extended maxima that are in 

close proximity to each other are merged by increasing the size of the marker points using a 

morphological dilation operator with a round structuring element (parameter: 

NucleiSeedDilation). The resulting binary image 𝑓𝑚(𝑥, 𝑦, 𝑧) specifies the marker points that are 

used to initialize the subsequent watershed algorithm. 

3.5.4 Watershed-based decomposition of cell nuclei clusters 

With the initial segmentation 𝑓𝑏(𝑥, 𝑦, 𝑧), the inverted pre-processed image 𝑓𝑖(𝑥, 𝑦, 𝑧) and the 

markers in 𝑓𝑚(𝑥, 𝑦, 𝑧), we use the immersion watershed algorithm (Vincent and Soille, 1991) to 

achieve a decomposition of connected cell nuclei clusters. The immersion watershed algorithm 

is a region-based image segmentation method that relies on the image intensities. The algorithm 

interprets the image as a topographic intensity relief that is gradually immersed resulting in 

catchment basins. The marker points defined in 𝑓𝑚(𝑥, 𝑦, 𝑧) represent the initial set of catchment 

basins and have different labels, (e.g. unique numbers). The algorithm then iteratively increases 
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the intensity threshold from the minimum to the maximum intensity observed in 𝑓𝑖(𝑥, 𝑦, 𝑧). In 

each iteration, all pixels that fall below the current intensity threshold are labelled with the label 

of the closest catchment basin. The closest catchment basin is determined using the geodesic 

distance function. It corresponds to the shortest path length between two pixels among all paths 

between the two pixels. Please note that in this context a path can only use pixels that already 

have a label. The catchment basins are sequentially expanded and watersheds (label 0) are 

formed where different catchment basins meet during the immersion process. The final set of 

uniquely labelled catchment basins and watersheds is a partitioning 𝑓𝑤(𝑥, 𝑦, 𝑧) of the image 

𝑓𝑖(𝑥, 𝑦, 𝑧) where each catchment basin contains one cell nucleus (Figure 8). 

 
Figure 8 Schematic illustration of the immersion watershed transform. Two examples of the 

watershed transform applied to a one-dimensional signal. (a) Three marker points 𝑚1, 𝑚2 and 𝑚3 result 

in a separation into three catchment basins 𝑐1, 𝑐2 and 𝑐3. with boundaries (watershed lines) at the local 

maxima (indicated in black). (b) For two marker point 𝑚1 and 𝑚2, catchment basin 𝑐1 floods over a peak 

during the immersion process until a boundary is formed with catchment basin 𝑐2. 

The immersion process does not necessarily stop the catchment basins at the borders of cell 

nucleus but extends until other catchment basins are met. Thus, we multiply the resulting matrix 

𝑓𝑤(𝑥, 𝑦, 𝑧) with the initial binary image 𝑓𝑏(𝑥, 𝑦, 𝑧) resulting in the final segmentation of cell 

nuclei 𝑓𝑠(𝑥, 𝑦, 𝑧). 

Cell nucleus-like objects in 𝑓𝑠(𝑥, 𝑦, 𝑧) are selected by incorporating lower and upper volume 

thresholds. Based on the measurements of minimal and maximal radii of cell nuclei, the mean 

volume is approximated as a sphere with equivalent radius and we obtain an approximate lower 

and upper threshold in voxels (parameters: NucleiMinCount and NucleiMaxCount). For the 

remaining objects, we extract intensity-related and morphological features of each identified 

component. The morphological features include the volume in number of voxels, centroid, 

intensity-weighted centroid, mean, minimum and maximum distance to the centroid, number of 

voxels on the surface and the bounding box. Based on the voxels of each component, we use 
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principal component analysis to determine the principal directions and the extensions along 

these directions as a measure of shape and orientation of the component. Intensity-related 

features include the mean, minimum and maximum intensity and the intensity standard 

deviation. All intensity-related features are rescaled to the range [0, 1]. Please refer to Table 4 

for a complete list of extracted cell nucleus features. 

3.5.5 Evaluation of segmentation performance 

Ground truth (GT) datasets of cell nuclei centroids were created by manually marking the 

approximate centroids of cell nuclei in dataset L3 of Application I. We generated a total of three 

ground truth (GT) datasets by cropping three sub-regions of 100×100×100 voxels out of the raw 

image. The centroids of all cell nuclei within the sub-regions were manually identified with a 

custom program implemented in Mathematica version 10.2. Based on the generated GT, we 

computed the number of correctly detected cell nuclei (true positives, TP), the number of cell 

nuclei that were falsely detected by the segmentation (false positives, FP) and the number of cell 

nuclei that were not detected by the segmentation (false negatives, FN). To compute these 

numbers, we used the following algorithm: if exactly one centroid of the segmentation is found 

within a spherical neighborhood of twelve voxels of a centroid in the GT, we count it as TP and 

delete it from the list. If multiple centroids are found within this neighborhood range, the closest 

centroid is considered as TP. The FP and FN were obtained using 𝐹𝑃 = 𝑁𝑆𝐶 − 𝑇𝑃 and 

𝐹𝑁 = 𝑁𝐺𝑇 − 𝑇𝑃, where 𝑁𝑆𝐶  is the number of centroids determined by the segmentation and 

𝑁𝐺𝑇 is the number of centroids in the GT. We determined the metrics recall, precision and F 

score with values ranging from zero (worst performance) to one (best performance): 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

𝐹 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
. 

3.5.6 Geometrical modelling with alpha shapes 

Alpha shapes are a generalization of the convex hull, i.e., every convex hull is an alpha shape, 

but not every alpha shape is a convex hull (Edelsbrunner et al., 1983). For a detailed description 

of the underlying concepts, please refer to the book “Computational Topology – An 

Introduction” (Edelsbrunner and Harer, 2010). Given the set of 𝑛 cell nuclei centroids, 

𝑃 = {𝑝0, … , 𝑝𝑛}, we used the alpha shapes approach to obtain a geometrical model of the cell 

aggregate. 
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Requirements for alpha shapes 

Several requirements have to be met for the alpha shapes approach to be applicable as a 

geometrical model of cell aggregates. First, the cell nuclei centroids P are required to be in 

general position. Thus, in three-dimensional space, no more than two centroids lie on a two-

dimensional hyperplane. The detected cell nuclei centroids have subpixel accuracy, thus the 

general position requirement is usually fulfilled. Alpha shapes are known to work well for high 

density point sets. Low density point sets will require large values of alpha in order to connect. 

Thus, alpha shapes are not appropriate for hollow cell aggregates or when the cell deviates from 

a uniform distribution. 

Edelsbrunner algorithm for alpha shapes 

An efficient algorithm to obtain the alpha shape for a given set of points 𝑃 with real number 𝛼 is 

the Edelsbrunner algorithm (Edelsbrunner and Mücke, 1994; Edelsbrunner et al., 1983). The 

alpha shape is constructed as a subgraph of the Delaunay triangulation. Each triangle in the 

Delaunay triangulation is associated with the radius of the smallest circle containing the triangle 

(circumcircle). For a real number 𝛼, all triangles for which the radius of the circumcircle is 

larger than 𝛼 are removed. The alpha shape corresponds to the union of the remaining triangles, 

i.e. the alpha shape is a subset of the Delaunay triangulation. 

Alpha shape of the cell aggregate 

To discriminate against false positive detection of cell nuclei, all points in 𝑃 whose pairwise 

distance is below a certain threshold (parameter: OutlierDistanceThreshold) are connected. The 

largest connected component is regarded as the cell aggregate and remaining components are 

removed. The subset 𝑆 of 𝑃 contains the points that belong to the largest component. 

Subsequently, the alpha shape is approximated for 𝑆 using the above-described Edelsbrunner 

algorithm for alpha shapes (parameter: Alpha). The alpha shape represents a geometrical model 

and is further used to compute volume and compute the surface area of the cell aggregate. The 

relative location of each cell nucleus is determined by computing its distance to the alpha shape 

surface. 

3.5.7 Cell graph construction 

A graph 𝐺 is a pair (𝑉, 𝐸) consisting of a set of vertices 𝑉 and a set of edges 𝐸, each a pair 

(𝑢, 𝑤) of vertices. A graph is simple, if no two edges connect the same two vertices and no edge 

joins a vertex to itself (loop). The graph is undirected, thus, edges have no orientation and the 

edge (𝑢, 𝑤) is identical to the edge (𝑤, 𝑢). In a simple graph, a path between two vertices 𝑢 and 

𝑣 is a sequence of vertices 𝑢 =  𝑢0,  𝑢𝑖, … , 𝑢𝑘  =  𝑤 with an edge between every pair of vertices 

𝑢𝑖 and 𝑢𝑖+1 for each 0 ≤  𝑖 ≤  𝑘 − 1. A simple graph is connected if there is a path between 

every pair of vertices. 
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A cell graph is a simple graph without loops, with vertices being the set of cell nuclei centroids 

and edges being the neighborhood relationship between any two cells. We derive two graph 

representations representing the spatial distribution of cells within cell aggregates. The 

proximity cell graph is given by 𝑃𝐶𝐺(𝑉𝑆, 𝐸𝑃𝐶𝐺) where 𝑉𝑆 is the vertex set and 𝐸𝑃𝐶𝐺 is the edge 

set of the graph. In the PCG, cells are neighbors if they are closer than a certain distance. Thus, 

we obtain an edge (𝑢, 𝑤) between two vertices 𝑢 and 𝑤 if the Euclidean distance between 𝑢 and 

𝑤 is less than a predefined threshold (parameter: EdgeDistanceThreshold). The Delaunay cell 

graph is given by 𝐷𝐶𝐺(𝑉𝑆, 𝐸𝐷𝐶𝐺) where 𝑉𝑆 is the vertex set and 𝐸𝐷𝐶𝐺 is the edge set of the 

graph. The DCG graph is constructed based on a Delaunay triangulation to estimate, which cells 

are neighbors and in physical contact. An edge (𝑢, 𝑤) is created between two vertices 𝑢 and 𝑤 

if the corresponding points are connected in the Delaunay triangulation and the Euclidean 

distance between 𝑢 and 𝑤 is less than a predefined threshold (parameter: 

EdgeDistanceThreshold). Edge weights in both graphs are assigned according to the Euclidean 

distance. 

We extract the degree of each vertex as the number of neighbors. Further, the minimum, 

maximum, mean and standard deviation of the distance to neighbors for each vertex 𝑣 is given 

by the weights of all edges incident to 𝑣. Please refer to Table 4 for a complete list of extracted 

features for the cell aggregate and individual cell nuclei. 

3.5.8 Guidelines for setting up parameter values 

The following paragraphs describe suitable initial values for the most important parameters used 

in cell nuclei segmentation, alpha shape computation and cell graph generation. The effect of 

different values for all parameters can be investigated using the provided user interface. 

The value of the parameter ImageZScalingFactor is a calibration factor that specifies the scaling 

of the z dimension in order to obtain an isotropic voxel size in x, y and z dimension. For 

example, a factor of four is appropriate for an image stack that was recorded with a pixel pitch 

of 0.645 µm in x and y and a z spacing of 2.58 µm. The parameter ImageScalingFactor allows 

resizing the three-dimensional image by a multiple of the original dimensions. For example, a 

value of 0.5 will result in a three-dimensional image with half the number of pixels in x, y, and 

z. The computation time for downsampled images is drastically reduced. 

The parameter NucleiFilterRange specifies the range of the Gaussian filter used to suppress 

background noise before the mean background intensity is determined. The range in which the 

local threshold is computed is given by the parameter NucleiThresholdRange. A suitable 

starting value is the mean diameter of the cell nuclei to be detected in the image. The parameter 

NucleiBackgroundFactor controls the influence of the mean background intensity on the locally 

computed threshold value. For a value of 0 the threshold value is solely based on the locally 
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computed mean intensity. Higher values will increase the influence of the background intensity 

and thus increase the locally computed threshold value. Depending on the quality of the input 

images this value should be slightly increased (e.g. to 0.25) in order to ensure that no cell nuclei 

are detected in the background region. If background subtraction has been performed in the 

images (e.g. the background intensity is effectively 0) the value for NucleiBackgroundFactor 

can be set to 0. 

The parameters NucleiSeedDetectionMinRadius and NucleiSeedDetectionMaxRadius specify 

the minimal and maximal radius of the Laplacian of Gaussian filter algorithm. These two 

parameters allow fine-tuning the cell nuclei segmentation such that it tolerates cell nuclei of 

different diameters to a certain extent. Ideally, the minimal radius is set to the radius of the 

smallest cell nuclei, whereas the maximal radius is set to the radius largest cell nuclei to be 

detected. 

Objects that lie far outside the main aggregate of cells (e.g. single, separated cells) are 

eliminated by setting the value of the parameter OutlierDistanceThreshold. A suitable value is 

the mean distance of cells from each other. All objects that are not within this mean distance 

will be separated from the main aggregate of cells and discarded. The alpha shape 

approximation is solely influenced by the parameter Alpha. A suitable value is the expected 

maximal distance between two neighboring cells in the cell aggregate. For higher values, the 

alpha shape will correspond to the convex hull, whereas for low values the alpha shape will be 

reduced to the cell nuclei centroids. The parameter EdgeDistanceThreshold specifies the 

maximal allowed distance between two cell nuclei in order to be connected by an edge in the 

PCG and DCG. The parameter value drastically affects the number of edges generated in the 

PCG. 
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Table 4 Features extracted by the quantitative characterization module. 

 Feature name Description 
C
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ProximityCellGraph (PCG) Proximity cell graph 𝑃𝐶𝐺(𝑉𝑆, 𝐸𝑃𝐶𝐺) with vertices 𝑉𝑆 and 

edges EPCG, describing the whole cell aggregate. Vertices 𝑉𝑆 

have positions {𝑥, 𝑦, 𝑧} and represent cell nuclei centroids. An 

edge (𝑢, 𝑤) ∈  𝐸𝑃𝐶𝐺  exists if the Euclidean distance between 

the two vertices 𝑢 and 𝑤 is less than a threshold. The edge 

weight is determined by the Euclidean distance between the 

two vertices 𝑢 and 𝑤.  

DelaunayCellGraph (DCG) Delaunay cell graph 𝐷𝐶𝐺(𝑉𝑆, 𝐸𝐷𝐶𝐺) with vertices 𝑉𝑆 

representing and edges EDCG, describing the whole cell 

aggregate. Vertices 𝑉𝑆 have positions {𝑥, 𝑦, 𝑧} and represent 

cell nuclei centroids. An edge (𝑢, 𝑤) ∈  𝐸𝐷𝐶𝐺  exists if it is 

part of the Delaunay triangulation of 𝑉𝑆 and the Euclidean 

distance between the two vertices 𝑢 and 𝑤 is less than a 

threshold. The edge weight is determined by the Euclidean 

distance between the two vertices 𝑢 and 𝑤. 

Surface Surface of the cell aggregate constructed from all cell nuclei 

locations 𝑆 using the alpha shapes approach. 

Centroid Geometric center {𝑥, 𝑦, 𝑧} of the cell aggregate given by the 

arithmetic mean of all cell nuclei locations.  

MinDistanceSurface Euclidean distance of Centroid to its closest point on Surface. 

Volume Total number of voxels of the volume enclosed by and 

including Surface. 

SurfaceArea The number of voxels of Surface. 
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Feature name Description 
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Label Unique integer that identifies a cell nucleus. 

Mask A binary three-dimensional array in which 1s refer to the 

voxel that are part of a cell nucleus. 

BoundingBox Axes-oriented minimal bounding box 

{{𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , 𝑧𝑚𝑎𝑥}, {𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥}} that contains a cell 

nucleus. 

Count Total number of voxels of a cell nucleus. 

PerimeterCount Total number of voxels on the surface of a cell nucleus. 

MinCentroidDistance, 

MaxCentroidDistance, 

MeanCentroidDistance 

Minimum, maximum and mean distance of all voxels to the 

geometric center of a cell nucleus. 

Centroid Geometric center {𝑥, 𝑦, 𝑧} of a cell nucleus. 

MainAxes Main axes of orientation {𝑝1, 𝑝2, 𝑝3} of a cell nucleus 

measured by principal components analysis. In particular, 

𝑝1 is the vector along the first, 𝑝2 along the second and 𝑝3 

along the third principal component, respectively. 

Extension Extension {𝑒1, 𝑒2, 𝑒3} of a cell nucleus along its three main 

axes of orientation {𝑝1, 𝑝2, 𝑝3} in number of voxels, where 

e1 is the extension along 𝑝1, 𝑒2 along 𝑝2 and 𝑒3 along 𝑝3, 

respectively. 

TotalIntensity, MeanIntensity, 

StandardDeviationIntensity, 

MinIntensity, MaxIntensity 

Total, mean, standard deviation, minimum and maximum 

value of the intensity distribution of a cell nucleus 

measured in the raw volume. Intensity features are 

normalized to the range [0, 1]. 

IntensityCentroid Intensity weighted geometric center {𝑥, 𝑦, 𝑧} of a cell 

nucleus. 

SurfaceDistance, SurfaceNearest Minimal distance of the cell nucleus centroid to the 

aggregate surface in number of voxels and the 

corresponding surface point {𝑥, 𝑦, 𝑧}. 

SurfaceOrientation Angle in degree between major axis vector 𝑝1 of the cell 

nucleus and the aggregate surface. An angle of 0° indicates 

that 𝑝1 is parallel to Surface, whereas for an angle of 90°, 

𝑝1 is orthogonal Surface. 

 

Table 5 Parameter values of the quantitative characterization module used for application I, II, III 

and IV. The same parameter values were used for all datasets. 

Cell nuclei segmentation Application number 

Parameter I II III IV 
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ImageZScalingFactor 3.5 3.5 3.5 3.5 

ImageScalingFactor 0.5 0.75 0.5 0.75 

NucleiSeedDetectionMinRadius 3 2 3 4 

NucleiSeedDetectionMaxRadius 6 4 6 6 

NucleiFilterRange 3 0 3 0 

NucleiThresholdMethod Otsu Minimum error 

NucleiThresholdRange 12 8 10 10 

NucleiSeedDilation 2 2 3 3 

NucleiBackgroundFactor 0.25 0.25 0.25 0.5 

Alpha 90 70 90 90 

OutlierDistanceThreshold 20 23 20 30 

EdgeDistanceThreshold 40 30 40 30 

NucleiMinCount 250 100 150 200 

NucleiMaxCount 42,500 50000 10,000 5000 

 

3.5.9 Random cell position model 

For Application I, we compared the generated proximity cell graphs to those of a mathematical 

random cell position (RCP) model. In this model, we performed Monte Carlo simulations with 

the following steps: (1) cells are distributed uniformly within a cell aggregate. (2) Cell nuclei 

are represented as spheres with positions drawn from a uniform random number distribution. 

The radius of the spheres was set to the median cell nucleus radius (~5.9 voxels, ~3.8 µm) from 

all datasets. (3) Cell nuclei are not allowed to overlap. (4) Cell nuclei positions are restricted to 

the volume of the cell aggregate (i.e. the alpha shape) and are not allowed outside this volume. 

(5) The number of randomly generated cell nuclei is the same as the number of cell nuclei 

determined for the real cell aggregate. For each cell dataset, we generated ten RCP models and 

obtained the cell graphs in the same way as for the real datasets. 

 3.6 Computer-aided cell tracking and lineage reconstruction 

3.6.1 TrackGen combines cell tracking and lineage tracing 

The program TrackGen (implemented in Mathematica) allowed for interactive visualization of 

Arabidopsis datasets as a function of time and was used to track the locations (referred to in 

Cartesian coordinates) and trace the lineages of cells. Using TrackGen, the user marked a cell at 

its first occurrence, i.e., right after the cell division in which the cell was born or the very first 

appearance of a cell, and at its last occurrence, i.e., right before the cell divided or the last time 

point analyzed. Daughter cells were assigned to their ancestral cell (precursor). After marking 

cell locations and assigning lineages, TrackGen stored for each cell a unique identifier, the 

spatial position, the time point of occurrence and a list holding the identification numbers of 
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precursors. The resulting dataset was exported to a file in tabular format for subsequent data 

processing and analysis. The spatial location of a cell in-between the two marked time points 

were later added by linear interpolation and the lineage information of the first occurrence was 

adopted. 

3.6.2 Automated lineage reconstruction 

A lineage tree is a directed graph 𝐺 = (𝑉, 𝐸) consisting of a set of vertices 𝑣 ∈ 𝑉, 

corresponding to cell occurrences and a set of directed edges (𝑢, 𝑣) ∈ 𝐸 that represent the 

relationship between two vertices 𝑢 and 𝑣. The root vertex 𝑟 represents the first occurrence of 

the lineage founder cell. Each internal vertex has either one child representing the second 

occurrence of a cell or two children corresponding to the two daughter cells that were born in 

the cell division. Leaf vertices represent the cells that exist at the end of the lineage trace. An 

edge weight 𝑤(𝑢, 𝑣) holds the time span that passed between the cell occurrence 𝑢 and 𝑣. All 

information about a cell occurrence is stored in the corresponding vertex of the lineage tree. The 

development of a cell lineage is represented in top to bottom direction. Thus, the constructed 

lineage tree encodes all information about cells and cell division events as a function of time. 

Lineage trees of all identified cells were reconstructed automatically using this principle. 

3.6.3 Registration of the Arabidopsis datasets 

Spatial registration 

A comparison of the Arabidopsis datasets required spatial and temporal registration. For spatial 

registration, the cell nuclei locations were transformed into a common Cartesian coordinate 

system spanned by the principal component vectors of the cell nuclei locations in the last 

tracked time point of each dataset. The resulting coordinate system provides three orthogonal 

views on the lateral roots: front view (x-y, growth towards the observer), side view (z-y, along 

shoot-root axis), and radial view (x-z, transversal cut perpendicular to shoot/root axis). We 

empirically determined parameter values for a rigid transformation of the cell nuclei locations at 

the last time point and applied the same transformation to the cell nuclei locations at each time 

point. Additionally, the cell nuclei locations were centered at each time point. The standardized 

data was exported to a file in tabular format and used for all successive analysis. 

Temporal registration 

The time between gravistimulation of the plant and the initiation phase of lateral root formation 

differed substantially between the datasets. Thus, a temporal registration of the datasets based 

on the absolute time was inappropriate. Instead, we synchronized the datasets based on the total 

number of cells in the primordium. We therefore obtained the total number of cells at the first 

and last time point of the datasets. The intersection range of all datasets was [18, 143] cells. The 

resulting developmental synchronization allowed comparing the datasets at a given 

developmental stage given in number of cells. 
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3.6.4 Quantitative lateral root properties 

Growth rate 

Cellular growth rate and doubling time of the datasets were estimated by data fitting on the total 

number of cells assuming the exponential growth model  

𝑁(𝑡) = 𝑁0𝑒𝑘𝑡, 

where 𝑁(𝑡) is the number of cells at time point 𝑡, 𝑁0 the number of cells at the first time point 

𝑡0 and the growth rate 𝑘. Least squares fitting was used to fit the exponential growth model to 

the data (Supplementary Figure 11). The square roots of the total cell numbers at time point 𝑡 

were chosen as weights. The doubling time 𝑇 was then computed as 

𝑇 =  𝑙𝑛(2)/𝑘. 

Computation of lateral root volume, height, length and width 

Based on the set of cell nuclei locations at a time point, Edelsbrunner algorithm for alpha shapes 

(Edelsbrunner et al., 1983) with parameter α was used to approximate the shape of the lateral 

root. The alpha shape is a generalization of the convex hull concept and is not necessarily 

convex or fully connected. The value of the parameter α was set to 50 voxels (~ 16 µm) for all 

time points and all datasets. From the alpha shape, the volume of the lateral root at a time point 

could readily be obtained. The height of the lateral root was determined by computing the 

maximal distance between any two cell nuclei in the master cell file at each time point. Length 

and width of the lateral root were determined at 50% of the lateral root height at each time 

point. 

3.6.5 Quantitative cell division properties 

Spatial orientation of cell divisions relative to the primary root 

Based on the relative orientation of a cell division to the primary root, cell divisions were 

classified as either anticlinal, periclinal or radial. Anticlinal cell divisions are parallel to the 

shoot-root axis. Periclinal cell divisions are normal to the surface of the primary root. Radial 

cell divisions are tangential to the surface of the primary root and orthogonal to the root-shoot 

axis. For the i
th
 cell division event, a vector 𝑑𝑖 is constructed from the spatial coordinates of the 

progeny (daughter cells) to represent the cell division axis. Thus, a list of vectors {𝑑1, … , 𝑑𝑘} is 

obtained that represents the spatial orientation of the 𝑘 cell divisions in the dataset. To measure 

the relative spatial orientation of the cell divisions, a reference system was constructed for each 

cell file. Each reference system is defined by two vectors 𝑛⃑⃑ℎ and 𝑛⃑⃑𝑙, where 𝑛⃑⃑ℎ points along the 

principal direction of growth in the cell file (height axis) and 𝑛⃑⃑𝑙 points along the shoot-root axis 

of the primary root (length axis). The vectors 𝑛⃑⃑ℎ and 𝑛⃑⃑𝑙 were determined using principal 

component analysis (PCA) of the cell nuclei locations in each cell file at the last time point. The 
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relative spatial orientation of each cell division event was determined by the angles 𝜑 and 𝜃 

between the vector 𝑑𝑖 and the two vectors 𝑛⃑⃑ℎ and 𝑛⃑⃑𝑙 of the respective cell file reference system. 

The values for 𝜑 and 𝜃 are given in the range [0°, 90°]. Based on the angles 𝜃 and 𝜑, cell 

divisions were classified as either anticlinal, periclinal or radial. The following criteria were 

used for the classification: 

 Cell divisions for which 𝜑 ≥ 45° and 𝜃 < 45° were classified as anticlinal. The spatial 

orientation of an ideal anticlinal cell division is 𝜑 = 90° and 𝜃 = 0°. 

 Cell divisions for which 𝜑 < 45° and 𝜃 ≥ 45° were classified as periclinal. The spatial 

orientation of an ideal anticlinal cell division is 𝜑 = 0° and 𝜃 = 90°. 

 Cell divisions for which 𝜑 ≥ 45° and 𝜃 ≥ 45° were classified as radial. The spatial 

orientation of an ideal anticlinal cell division is 𝜑 = 90° and 𝜃 = 90°. 

The classification of cell division types was validated manually and misclassified cell divisions 

were corrected. 

Spatial orientation of cell divisions relative to the previous cell division 

The spatial orientation of each cell division relative to the previous cell division was determined 

by computing the angle 𝜔 between the vector 𝑑𝑖 of the current cell division and 𝑑𝑗 of the 

previous cell division. The angle is given in the range [0°, 90°]. 
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4 Results 

 4.1 An automated data management module 

Automated data management is of great importance in all applications where large amounts of 

image data are produced. The datasets have to be automatically organized and reduced to the 

relevant information. In collaboration with Frederic Strobl, I developed a data management 

module that automates multiple pre-processing steps for multidimensional image datasets: (1) 

renaming of the input files into a generalized file name format, (2) three-dimensional image 

cropping, (3) lossless image compression using the ZIP standard for TIF files (4) generation of a 

second dataset lossy compressed with the JPEG2000 standard, (5) automatic computation of 

maximum projections, (6) generation of time-lapse videos of maximum projections and (7) 

computation of basic image statistics of the complete dataset. 

4.1.1 Workflow of the automated data management module 

The module comprises a front end and a back end program (Figure 9). In the front end 

(JobCreator), a general user interface (GUI) allows the specification of processing settings. The 

user enters the parameter values for data location, three-dimensional cropping, computation of 

projections and image compression. The JobCreator writes a job description file in XLSX 

format that it sends to the back end (JobProcessor) that performs the bulk of image processing. 

The back end needs to run on a powerful workstation (i.e. a separate machine or server). The 

main workflow consists of the following steps: 

1. Job specification. All settings such as the location of input and output directory, the 

name of the experiment, how to read the input data and further settings for processing 

are set up in the JobCreator (Figure 10a). 

2. Job submission. The JobCreator writes all settings into a XLSX file and exports the 

file to the job input directory of the back end program JobProcessor. 

3. Image processing. The JobProcessor will automatically check for new files in the job 

input directory. Once a new job description file is found, it is imported and data 

processing is performed as specified in the file. All output is written to a local drive in 

the first place. 

4. Termination. Once all processing steps are finished, the JobProcessor moves the 

generated data to the target directory specified by the user and deletes the local files. 
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Figure 9 Framework of the automated data management module. The module comprises front end 

and back end. The front end comprises a user-friendly interface to specify settings of a job file. The 

JobCreator saves all job settings in a file in XLSX format and sends it to the input folder of the back end. 

The JobProcessor does the bulk of processing. All generated results are stored in the specified output 

folder. 

4.1.2 Capabilities of the automated data management module 

Image datasets usually explore many dimensions where the first (x) and second (y) spatial 

directions represent the number of pixels of a sectional plane image. The number of planes 

represents the third spatial dimension (z). For convenience, image planes are saved as a stack of 

images in multi-page tagged image file format (TIFF). All further dimensions (channels, views, 

and time points) are saved as individual files. The file name convention uses unique identifiers 

that have a fixed order in the file name. Each identifier consists of two characters followed by a 

fixed number of digits (Table 1). The file name indicates all subsequent processing and provides 

direct information about the contained data. 

Cropping the raw data to the region of interest (ROI) along the dimensions x, y and z is an 

important pre-processing step for multidimensional image datasets. The developed module 

allows three-dimensional cropping with a user-friendly interface (Figure 10b). Settings for 

cropping can be specified in a user interface and are automatically applied to each stack of the 

dataset. After renaming and cropping the data, maximum projections along x, y and z are 

automatically computed and saved in a separate folder. Furthermore, the maximum projections 

are assembled into time-lapse videos. The generated files are in movie (MOV) or TIF format 

and compatible with other software. 
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Figure 10 JobCreator user interface. (a) Main user interface of the JobCreator. (b) User interface for 

the setup of three-dimensional cropping parameter values. Both the sliders and boxes on the left side or an 

interactive box on the right side allow the specification of three-dimensional cropping. 

4.1.3 Evaluation of ZIP and JPEG2000 image compression 

Efficient image compression is indispensable to manage large amounts of data. Image 

compression should ideally yield high compression rates as well as high write and read speed, 

while maintaining the quality of the input image and ensuring compatibility with existing 

software. The data management module features two image compression standards to reduce the 

amount of data volume: (1) lossless ZIP compression of multipage TIF files and (2) lossy 

compression using the JPEG2000 standard. In collaboration with Frederic Strobl, I evaluated 

the performance of both compression schemes for three Tribolium datasets. 

ZIP compression reduces the data volume without information loss 

For 16-bit TIF files, the ZIP compression outperformed other alternatives for lossless 

compression (e.g. Lempel-Ziv-Welch (LZW) or PackedBits) in terms of compatibility with 

existing software, compression speed and efficiency. The ZIP compression yielded compression 

ratios of at least 2.4. For example, a Tribolium dataset consisting of 301 time points, eight views 

(2408 image stacks in total) with a raw data volume of 1486 Gigabyte was compressed to 629 

Gigabyte with lossless ZIP compression (i.e. 42% of the raw data volume). The compression 

ratios were similar for the other test datasets (Table 6). 

JPEG2000 compression drastically reduces the data amount 

The data management module further generates a copy of the dataset compressed with the 

JPEG2000 standard. We evaluated the efficiency and quality of lossy JPEG2000 compression. 

The Mathematica built-in implementation of JPEG2000 is limited to two-dimensional images. 

Each plane of an image stack was therefore compressed separately and stored as a file in JP2 

format. Thus, for a stack of 233 planes, 233 separate files in JP2 format were obtained. 
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LSFM datasets are typically stored in 16-bit multipage TIFF files. However, only a fraction of 

the dynamic range of the 16-bit images is actually used. For example, the Tribolium test 

datasets typically did not cover higher image intensity values than 2
13

. We found that the 

Mathematica built-in algorithm for JPEG2000 compression was inappropriate for direct 

application to raw 16-bit images generated with LSFM. Applying the JPEG2000 compression 

directly resulted in the occurrence of compression artefacts. Thus, we evaluated a pre-

processing step, which multiplies the image intensity values of the raw images with a constant 

scaling factor. This step effectively increased the dynamic range of the underlying images to 

span the 16-bit range, which resulted in an improved quality of the JPEG2000 compressed 

images (Figure 11). 

Cell nuclei are accurately detected in JPEG2000 compressed images 

To evaluate the quality of JPEG2000 compression with different scaling factors, we performed 

a segmentation of cell nuclei in a maximum projection image of a Tribolium embryo and 

compared it to the segmentation result for the maximum projection of the raw image (Figure 

11a). We ensured that the threshold value used for the segmentation was identical for the 

different images. For low scaling factors, JPEG2000 compression resulted in the occurrence of 

ring and blur artefacts (Figure 11b, first row). Increasing the scaling factor to 32 resulted in an 

image quality that was indistinguishable from the raw image. This result is underpinned by the 

segmentation result obtained for cell nuclei (Figure 11b, second row). Low scaling factors led to 

a high amount of missed cell nuclei and a stronger deviation of the measured cell nucleus area 

from that obtained from the raw image (Figure 11c, d). For a scaling factor of 32, almost the 

same number of cell nuclei was found and the measured cell nucleus area matched the result 

obtained for the raw image. 
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Figure 11 Evaluation of JPEG2000 compression for different scaling factors. (a) Maximum 

projection along z of the stack at the first time point and first view of a Tribolium dataset. Scale bar: 

100 µm. region highlighted by the cyan box is magnified on the right with the corresponding 

segmentation result after applying a constant intensity threshold value. Scale bar: 10 µm. (b) The 

magnified region shown in panel a after JPEG2000 compression with different scaling factor values. The 

corresponding segmentation result is shown in the lower row. Note that the threshold value obtained for 

the raw image was multiplied with the appropriate scaling factor and used for segmentation (c) Plot of the 

identified number of cell nuclei in the complete image shown in panel a for different values of the scaling 

factor. (d) Plot of the mean cell nucleus area with standard error for different values of the scaling factor. 

Microscope: mDSLM, illumination objective: 2.5x NA 0.06 Epiplan-Neofluar, detection objective: 10x 

NA 0.3 N-Achroplan, camera: Andor Clara. 

Based on these results, we evaluated the efficiency of JPEG2000 compression for the test 

datasets. We observed that JPEG2000 compressed datasets were drastically reduced with 

compression ratios of at least 500, i.e. to less than 1% of the raw data volume. For example, 

dataset 1 was compressed to 1.6 Gigabyte using lossy JPEG2000 compression (0.1% of the raw 

data volume) with a scaling factor of eight (Table 6). 

Table 6 Performance of ZIP and JPEG2000 compression. 

Number of Dataset 1 Dataset 2 Dataset 3 

pixels (x × y) 1392 × 1040 1392 × 1040 1392 × 1040 

planes per stack 229 233 210 

time points 301 301 301 

view directions 8 8 8 

Total data volume (Gigabyte) 

raw 1486 1512 1364 
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ZIP 629 593 534 

JPEG2000 1.6 1.7 2.3 

 

JPEG2000 compression is suitable for long-term data storage 

The image intensity levels of the test datasets varied as a function of time (Figure 12a). We 

observed that the JPEG2000 compression ratio adapted to the information content of the image. 

For example, file sizes of image planes that only contained background information were at 

least a factor of two smaller than file sizes for image planes that contained relevant information 

of the Tribolium embryo. For example, we observed that the compression ratio for dataset 1 

varied between 600 and 1200 over time (Figure 12b), indicating that the variability in the 

exploited dynamic range is also reflected by the compression ratio of JPEG2000. A qualitative 

evaluation of the resulting image quality confirmed this result. We compared a time point at 

which the images had high intensity values and therefore more or less exploited the full 16-bit 

dynamic range with a time point that did not. We observed that the image quality was 

drastically worse for the image with lower intensity values (Figure 12c). 

 
Figure 12 Qualitative evaluation of JPEG2000 compression for Tribolium dataset 1. (a) Plot of the 

maximum intensity measured as a function of time in the raw image stacks and multiplied with a scaling 

factor of eight. (b) Plot of the average (black line), minimum and maximum (gray lines) compression 

ratio as a function of time. The compression ratio is computed by the ratio between the file size of the raw 

image stack and the file size of the JPEG2000 compressed image stack. (c) Single planes of the raw and 

JPEG2000 compressed image stacks (first row) at time points 30 and 100 hours of the time-lapse. Scale 

bar: 100 µm. Magnifications of the two highlighted image regions (cyan and orange boxes) are shown in 

the second (cyan box) and third (orange box) row. Microscope: mDSLM, illumination objective: 2.5x NA 

0.06 Epiplan-Neofluar, detection objective: 10x NA 0.3 N-Achroplan, camera: Andor Clara. Scale bar: 10 

µm. 

In summary, the developed data management module automates and facilitates several common 

steps of image pre-processing. The built-in ZIP compression of multipage TIFFs was suitable in 
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order to reduce the data volume. Because no intensity information is lost or altered, ZIP 

compression was considered suitable for data storage during the analysis phase of the data (e.g. 

direct measurements or segmentation). Lossy JPEG2000 compression of single planes led to a 

considerable reduction to less than 1% of the raw data volume. However, it required the 

adjustment of the dynamic range by applying a constant scaling factor to ensure high image 

quality after compression. A scaling factor that stretches the dynamic range of the image to the 

full 16-bit range yielded the highest image quality. Consequently, the relevant image features 

(e.g. cell nuclei) were maintained after JPEG2000 compression. For the investigated datasets, a 

scaling factor of eight was considered a good compromise between compression performance 

and resulting image quality. 

 4.2 Intensity normalization of time-lapse maximum projections 

We developed a program to post-process the maximum projections generated by the data 

management module. The program removes background information and compensates 

fluorescence intensity changes that occur as a function of time. For example, the intensity levels 

of the Tribolium datasets varied as a function of time (Figure 13a, first row). To remove the 

background information a threshold is computed automatically and the resulting binary image is 

multiplied with the raw image to obtain the background corrected (BC) image (Figure 13a, third 

row). A reference image is determined and all images of the time series are scaled to match the 

mean intensity of the reference image yielding the background corrected and mean transformed 

(BC-MT) images (Figure 13a, fourth row). Using the developed program, intensity variations in 

a time-lapse of maximum projections were reduced by normalization (Figure 13b). The program 

was implemented in conjunction with a user-friendly interface (Figure 13c) and parts of it were 

published (Strobl et al., 2015). 



Results 

48 

 
Figure 13 Intensity normalization of time-lapse maximum projections. (a) Background correction and 

mean intensity transformation shown for a time series of six maximum projections in 90° (lateral) views 

of a Tribolium dataset. The maximum projections contain background (raw). The background is 

distinguished from the embryo by automatic thresholding (segmentation). The background is set to zero 

and the mean background intensity is calculated and subtracted from the image (BC). For the time series, 

the images with minimum and maximum mean intensity are determined and their mean value is 

computed. The image for which the mean intensity is closest to that value is defined as the reference 

image. All images of the time series are adjusted to match the mean intensity of the reference image (BC-

MT). Scale bar: 100 µm. (b) Intensity profile plot along the orange line in the raw images and along the 

green line in BC-MT images shown in panel a. The image intensity is either decreased (e.g. 15 h), 

remains almost unchanged (75 h), or is increased (105 h). The background information is removed (see 

orange arrow). MP, maximum projection. (c) Screenshot of the user interface: (1) data menu to import 

and export maximum projection time series, and help menu. (2) Settings menu to configure image data 

processing. Parameter functions are explained in the help menu. (3) Comparison of raw and transformed 

image. (4) Buttons to start processing and run batch mode for several files with the chosen settings. 

Microscope: mDSLM, illumination objective: 2.5x NA 0.06 Epiplan-Neofluar, detection objective: 10x 

NA 0.3 N-Achroplan, camera: Andor Clara. Figure adapted from Strobl et al., 2015. 

 4.3 BugCube enables web-based visualization and data sharing 

The web-based program BugCube provides a platform for viewing and accessing the image data 

generated by the data management module. BugCube can be launched from the webpage 

http://www.physikalischebiologie.de/bugcube. After initialization, a dataset can be selected on 

the left upper panel (Figure 14a). The full dataset can also be downloaded via a button. 

BugCube automatically loads a description of the dataset and downsampled videos of z 

maximum projections as a function of time (Figure 14b). Using the slider above the videos, the 

user can scroll through the time-lapse and get a first glimpse at the dataset. The maximum 

projection videos can be downloaded in high quality via a save button. Downsampled videos of 

the z stack at the currently selected time point are loaded and displayed at the bottom (Figure 

14c). The original z stacks can be downloaded via the save button below. Images can be 

magnified and displayed in one of the panels on the right (Figure 14c). The right panel displays 

single images or two images next to each other (Figure 14d). The contrast and brightness can be 

https://www.physikalischebiologie.de/bugcube
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adjusted for each image individually. A magnification view can be used to browse for details in 

the image. In sync-mode, the magnification views of the left and right image are synchronized. 

 
Figure 14 User interface of the program BugCube. The web-based program is available at 

http://www.physikalischebiologie.de/bugcube. After initialization, the program allows to browse, view 

and download image datasets. (a) Main menu of the program. (b) Display panel for t-stacks. (c) Display 

panel for z stacks. (d) Display panel for full resolution images. Shown here is a Tribolium dataset. 

 4.4 Reconstruction of multiview image datasets 

In LSFM, datasets of large specimen can be acquired from multiple view directions. Image 

registration and fusion is required to combine the information content of all view directions into 

a single image. In the past, several approaches have been proposed to perform multiview 

reconstruction. In this thesis, the potential of an existing bead-based reconstruction approach as 

a module in the image analysis pipeline was evaluated. The multiview reconstruction was 

performed for time-lapse image datasets of developing Tribolium and Gryllus embryos. 

Tribolium embryos were fixed on an agarose half sphere containing fluorescent beads (Figure 

5). Image stacks of Tribolium embryos were acquired along eight view directions for a total of 

150 hours. Three Tribolium datasets were acquired following this procedure. Each of the raw 

datasets resulted in up to 1.5 Terabyte data volume. The Gryllus embryo was mounted in an 

agarose film containing fluorescent beads (Figure 6). Image stacks of Gryllus were acquired 

along four view directions for a total of 143 hours. The raw dataset resulted in three Terabyte 

data volume. Frederic Strobl and Alexander Ross performed sample preparation and imaging of 

Tribolium and Gryllus embryos and provided the resulting datasets. 

4.4.1 Overview of the reconstruction procedure 

Multiview reconstruction of all datasets was achieved using the plugin Multiview 

Reconstruction for the open-source software FIJI (Preibisch et al., 2010, 2014). In brief, the 

https://www.physikalischebiologie.de/bugcube
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plugin identifies the fluorescent beads in each view, computes a transformation based on the 

detected bead locations, registers the views and fuses them resulting in a single, three-

dimensional image volume. For image fusion, either a weighted average fusion (WAF) or a 

fusion that uses multiview deconvolution (MVD) are available. We evaluated both methods 

based on the resulting image quality. For the Gryllus dataset, stitching of the tiled stacks with 

the FIJI plugin Image Stitching was a mandatory pre-processing step. The settings used for 

multiview reconstruction for Tribolium and Gryllus datasets are given in Table 3. 

4.4.2 Multiview reconstruction of Tribolium datasets 

For the detection of fluorescent beads, we used the difference of Gaussian (DoG) method as it 

outperformed the difference of mean (DoM) method in terms of accuracy. However, the DoG 

method needed more than three minutes per image stack on the central processing unit (CPU), 

which would have required several days of processing time for the bead detection step. Scaling 

down images prior to the bead detection resulted in fewer detected beads and lead to higher 

registration errors. Thus, we took advantage of the built-in Compute Unified Device 

Architecture (CUDA) implementation to speed up the multiview reconstruction. This reduced 

the required computation time by a factor of six to less than 30 seconds for an image stack using 

the DoG method. In total, bead detection took 17 hours per dataset. 

Robust reconstruction of Tribolium datasets 

We first qualitatively evaluated the registration performance by computing a maximum 

projection of the fused image along the y direction. We restricted the projected image volume to 

the agarose half sphere region containing the fluorescent beads. In the weighted average fusion, 

the fluorescent beads in the projection image mostly appeared star-shaped. This indicated that 

the point spread functions of the same bead observed in eight different views overlapped. Some 

of the beads were only observed in some of the view directions or even only in one view 

direction (Figure 15c). 

The number of detected beads and the mean bead displacement provided a quantitative measure 

of the reconstruction quality. We determined the number of detected beads per view and pooled 

the numbers per view over all time points (Figure 15d). A different number of beads was 

detected in each view direction. However, this number was approximately constant over time. 

This indicated the robustness of the bead detection method in the plugin. The registration error 

varied by less than 0.3 µm. The best registration performance was achieved for dataset 3 with a 

registration error of about 1 µm (Figure 15e). 
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Figure 15 Multiview reconstruction of three Tribolium image datasets. (a) Maximum projections of 

image stacks along z shown for Tribolium dataset 1. The dataset was acquired along eight different view 

directions (0°-315°). Depicted is a Tribolium embryo after 5h 30 min of recording. It was fixed on an 

agarose half sphere that was supplemented with fluorescent beads. Each view captures only a fraction of 

the embryo. Scale bar: 100 µm. (b) Maximum projections along y of the same time point and the same 

view directions as shown in panel a. Using the software Multiview Reconstruction, the information of all 

eight view directions is combined into a single three-dimensional image. Scale bar: 100 µm. (c) 

Maximum projection along y of the fluorescent beads in the agarose half sphere after weighted average 

fusion (WAF). Fluorescent beads that overlap in all eight view directions appear star shaped in the 

resulting fusion (cyan box, 1). Fluorescent beads that occur in a subset of view directions appear 

elongated or plus shaped (orange box, 2 and 3). (d) Boxplots of the number of beads in each view 

direction detected by the bead detection of the Multiview Reconstruction software at each time point of all 

datasets. (e) Plot of the mean registration error in µm as a function of time for all datasets. Microscope: 

mDSLM, illumination objective: 2.5x NA 0.06 Epiplan-Neofluar, detection objective: 10x NA 0.3 N-

Achroplan, camera: Andor Clara. Boxplot parameters: the box contains 50% of the data points; the 

middle line of the box is the median. Whiskers and outliers represent the upper and lower 25% of the 

data. Outliers are outside the 1.5x interquartile range; far outliers are outside the 3x interquartile range. ●, 

outliers; ○, far outliers. 

The weighted average fusion of a complete time-lapse consisting of 301 time points and eight 

views using took 15 hours using the CPU-based implementation. The weighted average fusion 

provided complete and high quality images of Tribolium embryogenesis (Figure 16). 
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Figure 16 Renderings of a fused Tribolium image dataset. Depicted are three-dimensional renderings 

of selected time points in ventral, dorsal and lateral view on the embryo in Tribolium dataset 1. Images 

result from weighted average fusion (WAF) with parameter values listed in Table 3. Microscope: 

mDSLM, illumination objective: 2.5x NA 0.06 Epiplan-Neofluar, detection objective: 10x NA 0.3 N-

Achroplan, camera: Andor Clara. Scale bar: 100 µm. 

Multiview deconvolution improves the image quality of reconstructed Tribolium datasets 

The WAF procedure treats all views identical and does not discriminate of high quality image 

regions against low quality regions. Consequently, the fusion incorporates background blur that 

corrupts the quality of the resulting fused image. The Multiview Reconstruction software 

supports a multiview deconvolution (MVD) procedure that addresses this problem using a 

Bayesian-based derivation of the Richardson Lucy deconvolution algorithm. We evaluated the 

performance of the MVD procedure for Tribolium image datasets. 

The runtime of the MVD implementation on CPUs was high. For example, processing a single 

time point with eight iterations took more than six hours. Thus, we configured the software to 

use the available CUDA implementation, which reduced the computation time of the 

deconvolution. The parallelized CUDA implementation ran on graphics processing units 

(GPUs) and was about 15 times faster (on eight GPUs) than the standard CPU implementation 

(six hours on CPU compared to 24 minutes on GPU for one time point). 
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In the MVD procedure, a deconvolution process iteratively reduces the influence of the point 

spread function. We first identified the appropriate number of iterations (Figure 17). Eight 

iterations provided a good compromise between image quality and runtime. The application of 

the MVD enhanced the fused image quality (Figure 17a). Compared to the WAF procedure, the 

deconvolved images provided higher image contrast and the amount of background blur was 

lower than in the WAF image. Higher iteration numbers increased the occurrence of visible 

deconvolution artefacts (Figure 17b). Compared to the WAF procedure, the deconvolved 

images provided higher image contrast and the amount of background blur was reduced (Figure 

17c). 

 
Figure 17 Image quality of images after WAF and MVD. (a) Single planes of a Tribolium embryo 

(dataset 1) after 5 h 30 min of imaging along x-y (45 µm depth) and x-z (263 µm depth from top). The 

single planes depict the quality of raw image, WAF and MVD after eight iterations. Scale bar: 100 µm. 

(b) Comparison of raw image quality with the result of WAF and MVD after 2, 4, 8 and 16 iterations for 

the region indicated by the orange box in panel a. Scale bar: 20 µm. (c) Intensity profile plot along the 

cyan, dashed line in panel b for the raw image, WAF and MVD (8×). The intensity values were 

normalized by scaling to the range [0.0, 1.0], where 0.0 corresponds to the minimum and 1.0 corresponds 

to the maximum intensity of the profile. Microscope: mDSLM, illumination objective: 2.5x NA 0.06 

Epiplan-Neofluar, detection objective: 10x NA 0.3 N-Achroplan, camera: Andor Clara. 

We qualitatively compared the image quality of the resulting images after fusion with the raw 

images (Figure 18). Compared to the raw images, both fusion procedures provided a complete, 

high quality three-dimensional image of the embryo by incorporating the information from all 

view directions. Due to the principle of the WAF procedure, higher amounts of background blur 

were observed. In contrast, the MVD achieved superior image quality. 
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Figure 18 Qualitative comparison of raw images, WAF and MVD. Depicted are maximum projections 

along z of the 0° view of Tribolium dataset 1. Scale bar: 100 µm. The rightmost column depicts the 

regions outlined with cyan boxes, magnified by a factor of two. Microscope: mDSLM, illumination 

objective: 2.5x NA 0.06 Epiplan-Neofluar, detection objective: 10x NA 0.3 N-Achroplan, camera: Andor 

Clara. Scale bar: 50 µm. 

4.4.3 Multiview reconstruction of Gryllus datasets 

The Gryllus dataset was acquired along four view directions with tiled stacks. The tiled stacks 

were reconstructed into a single image using the Image Stitching software. The stitched image 

stacks were then registered and fused into a single three-dimensional image using the WAF 

procedure of the Multiview Reconstruction software (Figure 19a). The MVD procedure was not 

applicable due to the dimensions of the image stacks. Bead detection with CUDA speedup took 

16 hours 16 minutes, registration took 7 minutes and WAF of the complete dataset took 99 

hours 46 minutes. Similar to the Tribolium datasets, the number of beads detected per view was 

different and varied between 2700 (90° view) and 10200 (0° view) detected beads (Figure 19b). 

The mean registration error for the complete time-lapse was 1.7 µm with a minimum error of 

1.1 µm for time point 52 hours (Figure 19c). For several time points, the registration quality was 

rather low for several time points and we observed registration errors of up to 8.5 µm (e.g. time 

point 92 hours). Still, the quality of the resulting fused images provides a first three-dimensional 

view on embryogenesis of Gryllus (Figure 20). 
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Figure 19 Multiview reconstruction of a Gryllus image dataset. (a) Maximum projections along z of 

image stacks (x-y, upper row) and along y (x-z, lower row) at the first time point. The dataset was 

acquired along four different view directions (0°, 90°, 180° and 270°). The last column shows the result 

after WAF in the same orientation as the first view (0°). Scale bar: 200 µm. (b) Boxplots of the number of 

beads in each view direction detected by the bead detection of the Multiview Reconstruction software at 

each time point. (c) Plot of the mean registration error in µm. Microscope: LightSheet Z.1, illumination 

objective: 10x NA0.2, detection objective: 20x NA 1.0, camera: Sony ICX 285. Boxplot parameters: the 

box contains 50% of the data points; the middle line of the box is the median. Whiskers and outliers 

represent the upper and lower 25% of the data. Outliers are outside the 1.5x interquartile range; far 

outliers are outside the 3x interquartile range. ●, outliers; ○, far outliers. 
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Figure 20 Three-dimensional renderings of a reconstructed Gryllus embryo. Depicted are three-

dimensional renderings of five time points of a reconstructed Gryllus embryo in ventral view. Renderings 

were produced with the Arivis software. Microscope: LightSheet Z.1, illumination objective: 10x NA0.2, 

detection objective: 20x NA 1.0, camera: Sony ICX 285. Scale bar: 200 µm. 

In summary, three multiview image datasets of Tribolium embryogenesis (EFA-nGFP 

transgenic line) and one dataset of Gryllus embryogenesis (H2B-eGFP transgenic line) were 

successfully reconstructed using the software Image Stitching and Multiview Reconstruction 

available as plugins for FIJI. For the Tribolium datasets, weighted average fusion and multiview 

deconvolution were evaluated. The resulting image quality after multiview deconvolution was 

superior to the raw images and provided a full three-dimensional view on Tribolium 

embryogenesis. For the Gryllus dataset a similar procedure resulted in the first multiview 

reconstruction of Gryllus embryogenesis. In conclusion, the bead-based approach in conjunction 

with the existing FIJI plugin has proven to be an efficient and accurate solution for multiview 

reconstruction and is therefore considered suitable as a module of the image analysis pipeline. 

 4.5 Multiscale quantitative characterization 

In modern cell biology approaches, solutions for extracting quantitative features of individual 

objects and the relationship between objects are needed. In this thesis, a quantitative 

characterization module was developed based on spheroids datasets. A manuscript that 

describes the developed module and its application was accepted for publication (Schmitz et al., 

2017). Please note that written parts (sections 1.1.2, 1.2.2, 3.5, 4.5, 4.6.1, 5.5, 6.1.3), tables and 

figures (indicated appropriately in the captions) of this thesis were adapted and modified from 

the publication. 
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4.5.1 Overview of the multiscale quantitative characterization module 

The developed module accurately identifies cell nuclei in image stacks and extracts a multitude 

of features for the characterization of these spheroids (Figure 21). A pre-processing step ensures 

the conversion of the input image stack to a three-dimensional volume with isotropic voxels 

(Figure 21b). To speed up the processing, an optional downsampling of the image is available in 

this step. For the cell nuclei segmentation, local thresholding provides an initial segmentation of 

candidate regions (Figure 21c). To improve the segmentation result, a marker controlled three-

dimensional watershed algorithm was included. For the marker point detection, a multiscale 

Laplacian of Gaussian (LoG) filter algorithm was developed (Figure 21d). The final 

segmentation of cell nuclei is then used for a subsequent series of post-processing steps (Figure 

21e). The cell nuclei centroids are used to compute the shape of the spheroid using the alpha 

shapes approach (Figure 21f). The resulting alpha shape provides a geometrical model of the 

spheroid. The alpha shape surface facilitates the determination of the relative location of cell 

nuclei within a spheroid. Further, cell graphs were extended to describe the three-dimensional 

spatial cell network (Figure 21g). Features of individual cell nuclei and the spheroid are 

automatically extracted and stored by the quantitative characterization module (Figure 21h). 

 
Figure 21 Illustration of the main steps of the quantitative characterization module. (a) The raw data 

comprises a TIF image stack of two-dimensional optical section images of a spheroid with fluorescently 

labelled cell nuclei. (b) The image stack is interpolated to obtain isotropic voxels. (c) Multiscale 

Laplacian of Gaussian (LoG) filtering of the raw image identifies marker points (indicated as white 

crosses) are identified by. (d) Local thresholding by of the raw image separates regions that contain cell 

nuclei from the image background. (e) Using the identified seeds, the pre-processed raw image and the 

initial segmentation a three-dimensional marker-controlled watershed algorithm separates clusters of 

apparently touching cell nuclei. Different colors indicate individual cell nuclei. (f) An alpha shape is 

constructed from the cell nuclei locations and the boundary region is extracted as the surface (light blue). 

(g) Cell graphs are generated where vertices correspond to the cell nuclei (white spheres) and edges 

indicate the neighborhood relation between two cell nuclei (white lines). (h) Features of each individual 

cell nucleus and the cell aggregate are extracted and stored in tabular format. Figure adapted from 

Schmitz et al., 2017. 

Several parameters control the procedure of the quantitative characterization (please refer to the 

Methods section for a complete description of all available parameters). For ease of use, I 

developed a user interface for setting up the parameter values of the quantitative 
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characterization. The program comprises two major steps: (1) cell nuclei segmentation (Figure 

22) and (2) post-processing which includes alpha shape and cell graph generation (Figure 23). 

The current version of the program supports image stacks in TIF format and allows processing 

single of image stacks as well as batch processing of multiple image stacks. 

4.5.2 Interactive control of cell nuclei segmentation 

In the first part of the program, the user selects an image stack in TIF format from a file 

browser. The image stack can be interpolated to obtain isotropic voxels and downsampled for 

fast processing. The control elements on the left side allow adjusting the values of the cell 

nuclei segmentation parameters. The segmentation parameters are intuitive and mainly 

associated with the size and intensity of the cell nuclei captured in the image stack. During 

adjustment of the parameter values, a corresponding segmentation is computed immediately for 

the selected plane of the image stack and displayed on the right side of the program (Figure 

22a). I implemented different visualization modes for displaying the segmentation result 

including the initial segmentation, the detected marker points and the final segmentation (Figure 

22b). Once all parameter values are set up, the program exports the values to a settings file in 

XLSX format. The user starts the cell nuclei segmentation by selecting a single TIF file or a 

complete directory of TIF files and the exported settings file. After cell nuclei segmentation, the 

program exports several files that provide an overview of the segmentation result. These files 

include visualizations of the segmentation result and files that store the extracted cell nuclei 

features. 

 
Figure 22 User interface for cell nuclei segmentation. (a) Main user interface with control elements to 

adjust values of the segmentation parameters and two panels of the current image plane in x-y and z-Y. 

(b) Different modes of visualization overlaid on the raw image. The initial segmentation, the detected 
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marker points and the final segmentation result after watershed. Note that, the program will display the 

segmentation result for the current image plane and continuously update the displayed image. The chosen 

settings are then used for three-dimensional segmentation. The dataset shown is S9 from application I. 

Scale bar: 25 µm. Figure adapted from Schmitz et al., 2017. 

4.5.3 Post-processing the cell nuclei segmentation results 

In the second step, a sequence of post-processing steps yield the final cell nuclei segmentation 

result (Figure 23). A file containing the extracted cell nuclei features has to be chosen in a file 

browser. After importing the file, the control elements on the left side allow adjusting the values 

of the post-processing parameters. The post-processing includes a selection of cell nuclei based 

on the volume, the surface approximation and the cell graph generation. During adjustment of 

the parameter values, the corresponding result of post-processing is immediately displayed on 

the right side of the program (Figure 23a). Different visualization modes can be selected that 

include a model of the cell nuclei, the surface and a model of the generated cell graphs that is 

displayed for cell nuclei on the surface of the spheroid (Figure 23b). 

 
Figure 23 User interface for cell nuclei post-processing. (a) Main user interface with control elements 

to adjust the values of the post-processing parameters. The program continuously updates the resulting 

selection of cell nuclei as well as the surface of the alpha shape and the cell graph (shown on the right). 

(b) Different modes of visualization. The images depict cell nuclei rendered as spheres and colored 

according to the volume, the alpha shape surface and the cell graph for cell nuclei on the surface. The 

dataset shown is S9 from application I. Figure adapted from Schmitz et al., 2017. 
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 4.6 Quantitative characterization of spheroids under stress 

conditions 

The developed quantitative characterization module was employed in a number of research 

projects to demonstrate its broad applicability. The following sections present the results 

obtained in each application. 

4.6.1 Application I: nutrient and oxygen deficiency 

High quality image datasets of differently sized T47D spheroids 

In this application, we used the quantitative characterization module to profile the morphometric 

organization of cells in differently sized spheroids generated from T47D breast cancer cells. The 

project was a collaboration with Christian Mattheyer (PhD student), responsible for spheroid 

preparation and imaging and Dr. Sabine Fischer (postdoc) who supervised the development of 

the module and the subsequent data analysis. The datasets served as the test data to develop and 

evaluate the developed module. Thus, the following paragraphs contain results for the 

quantitative characterization module and its application to the datasets. 

The dataset comprised sixteen T47D spheroids that were seeded from 500 to 10,000 cells, 

grown for two weeks, optically cleared and, finally, imaged in toto with LSFM (Figure 24). 

Spheroid diameters ranged from 150 µm to more than 500 µm. Small spheroids show a uniform 

internal morphology (Figure 24, upper row), whereas large spheroids exhibit a visible 

concentrically layered structure (Figure 24, lower row). 

 
Figure 24 Image quality of three-dimensional datasets. Three-dimensional volume rendering (first 

column), single planes along x-y (second column), single planes along z-y (third column) and 

magnification (fourth column) of dataset S9 (upper row) and dataset L3 (lower row). Renderings in the 

first column clipped at about the center of the spheroids and single planes taken at the same position. 

Boxes indicate the parts of the images magnified in the fourth column. Scale bars: 50 µm in the second 

and the third column, 25 µm in the fourth column. Microscope: mDSLM, illumination objective: 2.5x NA 

0.06 Epiplan-Neofluar, detection objective: 20x NA 0.5 N-Achroplan, camera: Andor Neo, Draq5: 638 

nm laser and 680/60 bandpass filter. Figure adapted from Schmitz et al., 2017. 
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Local thresholding accurately identifies cell nuclei candidate regions 

Limitations in imaging large spheroids lead to apparently touching cell nuclei in the images that 

are difficult to separate using common segmentation approaches (Figure 24, magnification; 

Figure 25, first row). First, global thresholding algorithms were evaluated for their segmentation 

performance. We found that most of these algorithms were not capable of accurately detecting 

cell nuclei in the underlying images. Global thresholding approaches generally suffered from 

the fact that a single, fixed intensity threshold was computed for the segmentation. Thus, the 

approaches did not consider local image intensity variations or intensity differences between 

different cell nuclei. For example, using Otsu’s method we observed an insufficient accuracy in 

the detection of cell nuclei and reconstruction of cell nuclei borders (Figure 25, second row). 

Besides, the usage of a fixed threshold value resulted in a high proportion of undetected cell 

nuclei that exhibited low signal intensities (results not shown). After connected component 

labelling, cell nuclei appeared in large connected clusters (Figure 25, second row, three-

dimensional rendering). In contrast to global thresholding, local thresholding algorithms 

determine the threshold value at a certain location by considering pixel intensities in a window 

of a fixed range. A threshold algorithm that selects the mean of the local intensity distribution 

accurately detected cell nuclei in the images independent of the fluorescence intensity 

distribution of the cell nucleus (Figure 25, third row). For the range parameter, a value that 

corresponds to the mean radius of a cell nucleus yielded the best segmentation results. Lower 

values led to over-segmentation of cell nuclei whereas higher values increased the number of 

clustered objects. An estimation procedure yielded the mean background intensity. The 

computed value was introduced as an additional factor that increased the locally computed 

threshold eliminating false detections in the background. The computation of a local threshold 

in three dimensions is computationally cost expensive. Thus, the runtime efficiency of the 

algorithm was improved by performing the local thresholding operation per sectional plane 

along the dimensions x, y and z and multiplying the resulting three-dimensional binary images. 

The enhanced thresholding algorithm compensated local intensity variations in the image, was 

capable of detecting cell nuclei at various intensity levels and reconstructed cell nuclei borders 

accurately Connected component labelling of the obtained binary image revealed a better 

separation of cell nuclei clusters compared to global thresholding (Figure 25, third row, three-

dimensional rendering). 
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Figure 25 Efficiency of local thresholding in the initial cell nuclei segmentation step. Single image 

planes along x-y (first column), z-y (second column), magnification and three-dimensional renderings. 

The green outlines represent the obtained segmentation. Orange arrowheads indicate cell nuclei that are 

connected in the segmentation resulting from global thresholding (Otsu’s method), whereas these clusters 

are separated in the segmentation resulting from local thresholding. Three-dimensional renderings show 

the raw image, and colorized components after connected component labelling of the segmentation results 

for global and local thresholding. Scale bar: 25 µm. Microscope: see caption of Figure 24. Figure adapted 

from Schmitz et al., 2017. 

Reliable detection of marker points by multiscale Laplacian of Gaussian filtering 

Many cell nuclei remained connected and appeared in large clusters of multiple cell nuclei. For 

a complete separation of these clusters, we developed a marker-controlled watershed 

segmentation. The marker point detection uses multiscale Laplacian of Gaussian (LoG) 

filtering, followed by the detection of local maxima and subsequent selection of the detected 

maxima (Figure 26). A general property of the LoG filter is that the magnitude of the LoG 

response is maximal at the center of a cell nucleus given that the scale of the LoG matches the 

size of the cell nucleus (Figure 26b). By incorporating multiple scales, the seed detection 

algorithm is more robust towards variations in cell nuclei volume. 

The minimal and maximal radii (𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥) of cell nuclei were measured in the images and 

used to determine the minimal and maximal scales 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥. In the underlying approach, 

LoG filtering with a range of scales {𝜎𝑚𝑖𝑛 , … , 𝜎𝑖, … , 𝜎𝑚𝑎𝑥} was then applied and a LoG scale-

space maximum intensity projection was computed (Figure 26c). A subsequent detection of 

local maxima resulted in a number of candidate marker points (Figure 26d). To remove 
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detections that occurred in the background region of the image, the image containing the 

detected maxima was multiplied with the initial binary image (Figure 26e). The multiscale LoG 

filter algorithm needs careful adjustment of minimal and maximal scales 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥. Filter 

ranges that did not correspond to the size of the cell nuclei lead to under- or over-segmentation. 

 
Figure 26 Marker point detection with the Laplacian of Gaussian filter. (a) Sub-region of a single 

plane of the raw volume along X-Y. (b) Resulting images of the Laplacian of Gaussian (LoG) filter 

algorithm applied to the image in (a) for different values of the LoG filter range r in pixels. (c) The 

response images for different values of 𝑟 are combined to provide a maximum response image. (d) 

Marker points detected by an extended local maxima search displayed as red crosses in the raw image. (e) 

Detections in the background region are discarded by multiplying the detected maxima image with the 

initial segmentation result. (f) Magnification of the indicated region (orange box) in panel e. The marker 

points accurately reflect the locations of cell nuclei. For apparently touching cell nuclei (cyan 

arrowheads), unique marker points are identified that define starting points for the subsequent watershed 

algorithm. Please note that for the purpose of this illustration, the marker points were computed in two 

dimensions. Marker points are computed in three dimensions. Scale bar: 25 µm. Microscope: see caption 

of Figure 24. Figure adapted from Schmitz et al., 2017. 

We found that the multiscale variant of the LoG filter approach is robust towards nuclei volume 

and intensity variations (Figure 27a, second row). The obtained marker points were 

incorporated into a marker controlled watershed immersion algorithm to improve the separation 

of cell nuclei. The marker points guide the watershed segmentation, thereby eliminating the 

problems of over-segmentation commonly associated with watershed algorithms. Due to the 

operation principle of the algorithm, the number of markers determines the number of objects 

that are extracted by the watershed immersion algorithm. The intrinsic formation of watershed 

surfaces during the immersion process results in a subdivision of clusters into individual 

components (Figure 27a, third row). Compared to the cell nuclei clusters obtained after the 

initial segmentation step (Figure 27b), the final segmentation result provides a reliable 

identification of the cell nuclei that can be used to extract features from individual cell nuclei 

(Figure 27c). 
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Figure 27 Marker-controlled watershed segmentation improves the separation of cell nuclei. (a) 

Single planes along x-y (first column), z-y (second column), two-fold magnifications (mag. 2×) of cyan 

and yellow boxes (third column) and three-dimensional renderings (fourth column). The individual steps 

of the cell nuclei segmentation are shown for dataset S9. Shown are single planes along x-y (first 

column), z-y (second column) at about the center of the spheroid, two-fold magnifications (mag. 2×) of 

regions indicated by cyan and orange boxes (third column) and three-dimensional renderings (fourth 

column). The obtained components after the initial segmentation are colored and overlaid on the raw 

image (first row). The range parameter r for the initial segmentation was set to 12 pixels. The initial 

segmentation identifies the foreground region in the image, but fails to separate apparently touching cell 

nuclei (orange arrowheads). Second row: the LoG filter identifies unique marker points (indicated by red 

crosses). Parameter values for 𝒓𝒎𝒊𝒏 and 𝒓𝒎𝒂𝒙 were set to three and six, respectively. In the final 

segmentation (third row), apparently touching cell nuclei are separated (orange arrowheads). Three-

dimensional renderings of clusters of connected cell nuclei after connected component labelling of the 

initial segmentation (b) and after the final segmentation (c). Different colors represent individual 

components. Please note that to generate the images in the third row, the marker points were computed in 

two dimensions. In the quantitative characterization module, the marker detection is three-dimensional. 

Scale bar: 25 µm. Microscope: see caption of Figure 24. Figure adapted from Schmitz et al., 2017. 
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Suitable parameter values for the quantitative characterization module were empirically 

determined and the same set of parameter values was applied for processing all 16 datasets 

(Table 5). All parameters of the cell nuclei segmentation are intuitive and mainly associated 

with the size of the cell nuclei. We found that the range parameters for the initial segmentation 

and marker point detection were the most important parameters that needed careful adjustment. 

The average diameter of the cell nuclei provided a good starting value for these parameters. 

However, we observed high robustness of the segmentation results with respect to changes in 

the parameter values Figure 28). The processing time for cell nuclei segmentation was less than 

one hour per dataset (Supplementary Table 1). 

 
Figure 28 Evaluation of parameter values for initial segmentation and marker point detection. (a) 

Representative single planes along x-y and z-y of dataset S9 at the center of the spheroid. Scale bar: 

25 µm. The results of initial segmentation (outlined in green) for different values of the range parameter 𝑟 

(b) and the results of marker point detection (depicted by red crosses) for different values of the 

parameters 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 (c) are shown in two-fold magnification for the regions indicated by cyan and 

orange boxes in panel a. The parameter values that were used for in our study are indicated by a dashed 

box. Please note that the initial segmentation was applied as described in the Methods section, whereas 

for illustration purposes the marker point detection was applied in two dimensions. In the quantitative 

characterization module, the marker point detection is performed in three dimensions. A starting value for 
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the range parameter of the initial segmentation is the average diameter of cell nuclei (about 12 pixels in 

the underlying datasets). However, the initial segmentation proved to be robust towards small deviations. 

Over-segmentation and under-segmentation occur for large deviations. For the marker point detection, 

reliable values for the parameters for 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 are the minimal and maximal radius of cell nuclei in 

the dataset (three pixels for 𝑟𝑚𝑖𝑛  and six pixels for 𝑟𝑚𝑎𝑥). The marker point detection is more sensitive to 

the choice of the parameter values. For example, lower values (e.g. 𝑟𝑚𝑖𝑛=1.5, 𝑟𝑚𝑎𝑥 = 3) lead to the 

detection of parts of cell nuclei, whereas for higher values (e.g. 𝑟𝑚𝑖𝑛=9, 𝑟𝑚𝑎𝑥 = 12) clusters of cell nuclei 

are detected instead of individual cell nuclei. Microscope: see caption of Figure 24. Figure adapted from 

Schmitz et al., 2017. 

In summary, local thresholding provided an improvement in the segmentation of cell nuclei 

compared to global thresholding. Less clustered cell nuclei were obtained and the borders of cell 

nuclei were accurately reconstructed. The adaptable multiscale Laplacian of Gaussian (LoG) 

filter algorithm detects marker points reliably and reproducibly. The marker-controlled 

watershed is capable of separating the remaining clusters of cell nuclei into individual 

components. 

High segmentation performance in large, densely packed spheroids 

The segmentation performance was evaluated for three different regions outer, interface and 

core (Figure 29a). These regions represent the variability in cell nuclei morphology and density 

of cells. Independent of cell density and morphology, the cell nuclei segmentation accurately 

identified cell nuclei in all regions. 

 
Figure 29 Quality of the cell nuclei segmentation in different regions of a large T47D spheroid. (a) 

Three-dimensional rendering of cell nuclei clipped at about the center of a large spheroid (dataset L3) that 

comprises 38,783 cells. Colored boxes indicate three regions that exhibit visually distinguishable 

properties. Red box: Cell nuclei in the outer region (outer) appear tightly packed. Green box: cell nuclei 

at the transition zone between outer and inner region (interface) exhibit diverse morphologies and the 

intercellular distances differ. Blue box: cell nuclei in the core region of the spheroid (core) are small, 

spherical and appear well separated. (b) Exemplary cell nuclei segmentation results for the three regions 

outer, interface and core. First column: sub-regions of 100×100×100 voxels were copied out of the pre-

processed raw image. Second column: plane 58 of each sub-region in x-y view. Third column: the result 

of the initial segmentation for plane 58. The initial segmentation accurately identifies the foreground in 

the image. Locations marked with orange arrows show cell nuclei clusters that are not separated. Fourth 

column: seeds detected by the multiscale LoG filter are overlaid as yellow crosses. Note that for 

illustration purposes, the seed detection was performed in two dimensions. Fifth column: overlay of the 

final cell nuclei segmentation of plane 58 after three-dimensional marker-controlled watershed. This step 

effectively separates apparently touching cell nuclei (orange arrows). Sixth column: the final 

segmentation result after three-dimensional marker-controlled watershed of the sub-regions shown in the 
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first column. Different colors represent individual cell nuclei. Scale bar: 10 µm. Microscope: see caption 

of Figure 24. Figure adapted from Schmitz et al., 2017. 

Next, we conducted a quantitative evaluation of the segmentation performance (Table 7). We 

used sub-regions (shown in Figure 29b) and generated ground truth datasets (GT) by visually 

extracting the locations of all cell nuclei with a custom program (Mathew et al, 2015). We 

matched the centroids in the GT with those of the segmentation and determined the number of 

correctly detected (true positives), falsely detected (false positives) and undetected cell nuclei 

(false negatives). The metrics recall, precision and F score summarize the segmentation 

performance. The segmentation identified 216 out of 252 cell nuclei and 9 false detections 

occurred in the core region (recall: 0.86, precision: 0.96, F score: 0.91). In the interface region, 

230 out of 269 cell nuclei were correctly identified and the number of false detections was 32 

(recall: 0.86, precision: 0.88, F score: 0.87). In the outer region, 198 out of 233 cell nuclei were 

correctly identified and 24 false detections occurred (recall: 0.85, precision: 0.89, F score: 0.87). 

Overall, the segmentation achieved an average recall of 0.86 an average precision of 0.91 and an 

average F score of 0.88. The segmentation performance exceeds that of established approaches 

that were evaluated for T47D spheroids in previous studies (Mathew et al., 2015). 

Table 7 Evaluation of segmentation performance for different regions within the spheroid. The 

performance was measured against a manually determined ground truth for the regions outer, interface 

and core. The performance measures recall, precision and F score are determined from the number of true 

positives (TP), false negatives (FN) and false positives (FP). Values range from 0 (worst performance) to 

1 (best performance). GT, number of cell nuclei in the ground truth; SC, number of cell nuclei determined 

by the segmentation; TP, true positives; FN, false negatives; FP, false positives. Table adapted from 

Schmitz et al., 2017. 

region GT SC TP FN FP recall precision F score 

outer 233 222 198 35 24 0.85 0.89 0.87 

interface 269 262 230 39 32 0.86 0.88 0.87 

core 252 225 216 36 9 0.86 0.96 0.91 

 

Alpha shapes as a geometrical model for spheroids 

We distinguished low-level features of the cell nuclei directly obtained from the segmentation 

and higher order features of the cell neighborhood and the whole spheroid. The output of our 

quantitative characterization is a comprehensive set of features (Table 4). We used the alpha 

shape approach based on the cell nuclei centroids to compute a geometrical shape model of the 

spheroid. The alpha shape approach is based on a Delaunay triangulation and works well for 

point sets 𝑃 of high density and uniform distribution. For the corresponding parameter alpha → 

0, the alpha shape converges to 𝑃, whereas for alpha → ∞ the alpha shape converges to the 

convex hull of 𝑃. For the underlying datasets, the alpha shape smoothly approximated the 

spheroid surface using an alpha value of 90 voxels (Figure 30, Supplementary Figure 1). 
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Figure 30 Surface approximation using alpha shapes. (a) Surface approximation of dataset M3 for 

different values of alpha. Black points show the cell nuclei locations. (b) Mean volume of all datasets 

normalized to the volume of the convex hull as a function of the alpha parameter value. The shaded 

region indicates the standard error of the mean (SE). (c) Alpha shape approximation with alpha set to 90 

voxels (left) and convex hull (right) for dataset M3. Figure adapted from Schmitz et al., 2017. 

From the alpha shape and its surface, we determined the volume, surface area, centroid and the 

minimal distance of the centroid to the surface. The quantitative characterization module 

identified a spheroid volume that was proportional to the number of cells with a slope of 

1,127 µm³ per cell (Figure 31b). An automated cluster analysis (partitioning around medoids 

with squared Euclidean distance) of spheroid volume and cell number enabled a separation of 

the datasets into groups of small (n=9), medium-sized (n=3) and large (n=4) spheroids. Each 

group member was given a unique identifier, S1-S9 for small, M1-M3 for medium and L1-L4 

for large spheroids. 

For each group we determined the mean and standard deviation of the cell numbers (small: 

4,977±2,766, medium: 25,582±454, large: 34,742±2,941) and the mean and standard deviation 

of the spheroid volume (small: 6.0×10
6
±3.1×10

6
 µm³, medium: 2.7×10

7
±0.04×10

7
 µm³, large: 

4.0×107±0.2×10
7
 µm³, Supplementary Table 2). The cell nuclei volumes of each group did not 

follow a normal distribution (Figure 31c). The distributions were with positive skewness (small: 

1.77, medium: 1.71, large: 1.71) and high kurtosis values (small: 8.48, medium: 7.63, large: 

7.70). The median cell nucleus volume in medium and large spheroids was slightly lower 

compared to small spheroids (small: 267±68 µm³, medium: 234±51 µm³, large: 225±61 µm³). 

All distributions showed a peak around 250 µm³ and a prominent shoulder region at around 

450 µm³. We examined cell nuclei with volumes between 300 and 600 µm³, but could not 

identify a pattern in their spatial localization (Supplementary Figure 2). 
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Figure 31 Surface approximation and characterization of T47D spheroids. (a) Results of cell nuclei 

segmentation (first row) for a small (first column, dataset S7), medium (second column, dataset M2) and 

large (third column, dataset L3) spheroid. Different colors indicate individual cell nuclei found by the 

segmentation. Second row: the obtained surface approximation using the alpha shape approach. Outliers 

that are removed prior to surface approximation are depicted in red, whereas cell nuclei are shown in 

gray. (b) Plot of spheroid volume versus number of cells detected in the spheroid for all datasets. The 

measurements are fitted well by a linear model with slope 1,127 µm³. According to cell number and 

spheroid volume, clustering analysis of the datasets resulted in three groups: small (nine datasets, green 

ellipse), medium (three datasets, dark blue ellipse) and large spheroids (four datasets, light blue ellipse). 

(c) Smoothed histogram of the cell nuclei volume distribution in small, medium and large spheroids. 

Figure modified from Schmitz et al., 2017. 

A comprehensive set of features for the quantitative characterization of spheroids 

For each cell nucleus, we computed the shortest distance between its centroid and the surface of 

the spheroid as a measure for its relative position. The distance was normalized to the maximum 

distance of a cell nucleus yielding the normalized distance to the surface (NDS). Consequently, 

cell nuclei with an NDS of 0 are at the surface and those with an NDS of 1 are in the center of a 

spheroid. 

We computed two cell graphs in order to analyze the spatial arrangement of cells in spheroids. 

In both graphs, the vertices correspond to cell nuclei and edges, i.e. pairs of vertices, represent a 

neighborhood relationship. In the proximity cell graph (PCG), edges are solely created 

according to the Euclidean distance. In the Delaunay cell graph (DCG), edges are further 

restricted to vertices that are connected by a line in the corresponding Delaunay triangulation. 

Both cell graphs share a distance threshold of 40 voxels (~25 µm) for edges. The number of 

neighbors (i.e. the vertex degree) and the distance to the neighbors (i.e. the weights of all 

incident edges) of a vertex are measures of cell density. In the following, the number of 

neighbors for a vertex in the PCG is referred to as the local cell density in cells/unit volume 

(cells/u.v.), where a unit volume corresponds to 65,450 µm³. 
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Cell graph features reveal structural heterogeneity at multiple scales 

Cell nuclei features directly obtained from the segmentation did not show any variation along 

the radial direction of the spheroids. Features derived from the cell graphs by contrast varied 

along the radial direction in medium and large spheroids (Figure 32a, Supplementary Figure 3). 

To assess the randomness of such a pattern, we placed cells randomly into the alpha shape of 

each dataset, computed the cell graphs and compared the derived features with those found for 

the real datasets. The curves of the cell density for medium and large spheroids strongly 

deviated from the random cell position (RCP) model, whereas the curves for small spheroids 

was similar to that of the RCP model (Figure 32b). Thus, the spatial distribution of cells in 

medium and large spheroids deviates from randomness, whereas randomly positioning the cells 

could generate the spatial distribution in small spheroids. We therefore analyzed local cell 

density features in medium and large spheroids. Cells at the surface have only few neighboring 

cells (mean cell density ≈ 45 cells/u.v.). At 0.5 NDS, the cell density decreases from 65 to 40 

cells/u.v. in large spheroids, whereas a similar decrease from 60 to 45 cells/u.v. is observed at 

0.75 NDS in medium spheroids (Figure 32a). 

For a comparison of our results to the concentric cell layering found in large spheroids (Kunz-

Schughart et al., 2004), we subdivided the spheroids into three distinct regions surface, outer 

and core based on the computed NDS. For the separation of surface and outer region, we took 

the transition point between the initial rise and the approximately constant region, resulting in a 

threshold of 0.1 NDS for medium and large spheroids. For the separation of outer and core 

region we took the transition point between the approximately constant region and the 

decreasing part resulting in 0.75 NDS for medium and 0.5 NDS for large spheroids. We could 

identify a difference in the mean cell density for the outer and core region in medium and large 

spheroids (Figure 32c). The mean cell density between outer and core region differs by 9.4% 

(outer: 61 cells/u.v., core: 56 cells/u.v.) in medium spheroids, whereas in large spheroids, the 

difference is 17.7% (outer: 65 cells/u.v., core: 53 cells/u.v.). A coloring of the segmented cell 

nuclei according to the cell density underpins this finding (Supplementary Figure 4). In the 

central and surface regions of the spheroids, the cell density is low, whereas the cell density is 

higher for cells between these two regions (Figure 32d). The cell density within the regions of 

all spheroids was inhomogeneous with patches of higher and lower cell density (Supplementary 

Figure 4). The mean distance to neighbors determined from the DCG was constant (~13 µm) up 

to 0.75 NDS in medium spheroids and increased to 15.5 µm in the core. A similar increase was 

observed in large spheroids at 0.5 NDS (Figure 32e). Based on the quantitative measures, we 

determined the average radius of the spheroids and the average thickness of the outer region in 

micrometers (Figure 32f). Medium spheroids have an average radius of 191.3 µm and large 

spheroids have an average radius of 213.7 µm. The thickness of the outer region is 143.5 µm in 
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medium spheroids and 106.8 µm in large spheroids. We highlighted the detected border 

between outer and core region in the raw data and found that the quantitatively identified 

location of the border fits well with the visually observable boundary (Figure 32g). 

 
Figure 32 Medium and large spheroids show differences in internal structure. Plot of mean cell 

density versus the normalized distance to the surface for small, medium and large spheroids (a) and the 

corresponding random cell position (RCP) models (b). The RCP models represent an exact analogue of 

each spheroid with the only difference being that cell nuclei are randomly positioned. Details about RCP 

model generation can be found in the Materials and Methods section. The shaded regions indicate the 

standard error of the mean (SE). Based on the normalized distance to the surface, cell nuclei in the range 

[0.1, 0.75] for medium spheroids, and [0.1, 0.5] for large spheroids are assigned to the outer region, 

whereas cell nuclei in the range [0.75, 0.1] for medium and [0.5, 0.1] for large spheroids are assigned to 

the core region. (c) Mean cell density in the outer and core region for medium and large spheroids. (d) 

Three-dimensional rendering of segmented cell nuclei colored according to their corresponding cell 

density value for a medium (dataset M3) and a large spheroid (dataset L2), ranging from blue (35 cells) to 

red (70 cells). Renderings were clipped at about the center of the spheroids. (e) Plot of the mean distance 

to neighbors versus the normalized distance to the surface. The shaded regions indicate the standard error 

of the mean (SE). (f) Radius of medium and large spheroids and thickness of the outer region. (g) Raw 

single planes at the center of the spheroids shown in D with cyan dashed lines indicating the thickness of 

the outer region. Scale bar: 50 µm. Figure modified from Schmitz et al., 2017. 

In summary, features capturing local cell packing showed variations along the radial direction 

and can be used to identify structurally different zones within medium and large spheroids. 

4.6.2 Application II: apoptosis induction 

In this application, the quantitative characterization module enabled the evaluation the long-

term phenotypic effects of the apoptosis-inducing drug Staurosporine on spheroids generated 

from T47D breast cancer cells. Differently sized spheroids were generated from cell 
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suspensions containing a seed number of 500, 1,000, 2,000 or 5,000 T47D breast carcinoma 

cells. After twelve days of formation, the spheroids were treated with Staurosporine. Spheroids 

were fixed, stained and optically cleared after 0, 24, 48 and 72 hours post treatment (p.t.). 

Spheroids cultivated for 72 hours in 0.1% DMSO containing medium served as negative control 

(NC) for time point 72 hours. Negative controls for other time points were not available. Image 

stacks were acquired using a Carl Zeiss LSM 780 laser scanning confocal microscope. Nariman 

Ansari (postdoc) performed spheroid preparation, treatment and imaging. The acquired image 

stacks provided an in toto view on the morphology of spheroids and individual cell nuclei 

(Figure 33). For some conditions, an insufficient number of datasets was available.  

 
Figure 33 Examples of a Staurosporine-treated and untreated T47D spheroids. Depicted are single 

planes in x-y of selected spheroids for different numbers of cells seeded and time points after 

Staurosporine treatment. Single planes were taken at about the center of the spheroids. h, hours; p.t., post 

treatment; NC, negative control. Scale bar: 100 µm. Microscope: Carl Zeiss LSM 780, objective lens: 

25x0.8 NA LD LCI Plan-Apochromat. 

We quantitatively analyzed 80 spheroids using the quantitative characterization module 

(Supplementary Table 3). Suitable parameter values were empirically determined and the same 

set of parameter values was applied for processing all datasets (Table 5). The segmentation 

results were empirically evaluated (Figure 34). 
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Figure 34 Cell nuclei segmentation performance in T47D spheroids. Single planes along x-y and z-y 

of raw images, pre-processed images and the corresponding cell nuclei segmentation. Different colors 

indicate individual cell nuclei found by the segmentation. Scale bar 50 μm. Detail images in the right 

column show the regions in panel a, indicated by cyan and orange boxes. Scale bar: 10 µm. Microscope: 

see caption of Figure 33. 

Spheroid volume and cell number decrease upon Staurosporine treatment 

We first evaluated the effects of Staurosporine on the level of the complete spheroid (Figure 

35). The alpha shape generated by the quantitative characterization module provided a 

geometrical model of the spheroids that could be readily used to analyze shape and volume. We 

observed an overall size reduction of spheroids that were treated with Staurosporine compared 

to untreated spheroids (Supplementary Figure 5). We determined the average spheroid volume 

per condition (Figure 35a, Supplementary Table 4). After 72 hours p.t., the spheroid volume for 

2,000 and 5,000 seeded cells was lower compared to spheroids of the negative control (Figure 

35b). Treated spheroids seeded from 2,000 cells had 32% and spheroids seeded from 5,000 cells 

had 57% of the volume of the negative control. For spheroids seeded from 500 cells, not enough 

datasets were available after 72 hours. 

The cell number in spheroids treated with Staurosporine also decreased as a function of time 

post treatment (Figure 35b, Supplementary Table 5). For 1,000 and 2,000 seeded cells, the 

number of cells in each spheroid after 72 hours of  Staurosporine treatment was lower than for 

spheroids in the negative control. For example, the number of cells in treated spheroids seeded 

from 1,000 cells was only about one third of the final cell number in untreated spheroids (2,800 

vs. 9,078 cells). No differences were detected for 500 and 5,000 seeded cells. 
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Spheroid shape is not affected by apoptosis induction 

From a visual inspection of the alpha shapes generated by the quantitative characterization 

module, we hypothesized that Staurosporine treatment could also affect the spheroid shape. 

Thus, we performed a principal component analysis (PCA) of the cell nuclei locations and 

determined the principal directions (𝑝1, 𝑝2 and 𝑝3) and their absolute extension (Figure 35c, 

Supplementary Table 6). For a comparison of differently sized spheroids, we computed the 

relative extension by normalizing the absolute extension of 𝑝2 and 𝑝3 to the absolute extension 

of the first component (Figure 35d). All spheroids had an oblate shape, i.e. the relative extension 

along 𝑝2 was almost identical to 𝑝1, whereas the relative extension along 𝑝3 was reduced to 

about 0.5. However, no shape differences were detected between spheroids treated for 72 hours 

with Staurosporine and the negative control. We concluded that Staurosporine treatment 

induced a reduction of spheroid volume and cell number, but it did not affect the spheroid 

shape. 

 
Figure 35  Comparison of T47D spheroid volume, cell numbers and shape for all conditions. (a) Plot 

of the average spheroid volume as a function of cell seed number and time point compared to the negative 

control. (b) Plot of the average final cell number as a function of cell seed number and time point 

compared to the negative control. Error bars in plots indicate the standard error of the mean. Hypothesis 

testing was performed for condition 72h p.t. against 72h NC. h, hours, p.t., post treatment. NC, negative 

control. (c) Shape analysis methodology. Principal component analysis (PCA) gives the principal 

directions p1, p2 and p3 of the spheroid (1). The absolute extension measures the extension of the 

spheroid in µm (2). Normalization to the absolute extension of the first principal direction gives the 

relative extension (3). (d) Relative extension of principal directions for all conditions averaged over 

spheroids of the same condition. Please note that for some conditions only a few spheroids were available 

for the analysis (Supplementary Table 3). 
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The volume of cell nuclei decreases upon apoptosis induction in the entire spheroid 

We evaluated the effects of Staurosporine treatment on cell nuclei morphology. From the 

quantitative characterization, we obtained the cell nucleus volume. The distributions of cell 

nuclei volumes were asymmetric and deviated from a normal distribution (result not shown). 

Thus, we obtained the median and the median absolute deviation values for each condition 

(Supplementary Table 7). The median cell nucleus volume in spheroids treated with 

Staurosporine decreased as a function of time. Compared to the negative control, the median 

cell nucleus volume was decreased for spheroids treated with Staurosporine after 72 hours 

(Figure 36a). Compared to the negative control, the volume of cell nuclei was reduced by at 

most 43% when treated with Staurosporine (27%, 43%, 41% and 36% for 500, 1,000, 2,000 and 

5,000 cells seeded). 

We evaluated whether the effect of Staurosporine on cell nuclei morphology depends on the 

location of a cell within the spheroid. Thus, we used the distance of the cell nucleus to the 

spheroid surface and normalized it to the range [0.0, 1.0]. Cell nuclei located on the surface of 

the spheroid have a normalized distance (NDS) of zero whereas cell nuclei in the center have a 

normalized distance of one (Figure 36b). We plotted the cell nucleus volume as a function of the 

normalized distance to the surface for all conditions. For spheroids generated from a seed 

number of 500 cells, the curves showed high variability along the radial direction. However, this 

could be due to the low number of datasets available for 500 cells seeded. For spheroids 

generated from cell seed numbers of 1,000 and 2,000, the cell nucleus volume was constant 

along the radial direction in all spheroids. For 5,000 seeded cells, the cell nucleus volume 

slightly decreased towards the center of spheroids for all conditions. We crosschecked these 

findings by plotting the locations of cell nuclei as spheres and colored them according to their 

respective cell nucleus volume (Supplementary Figure 6). Consistent with the quantification, 

cell nuclei volume after 72 hours of Staurosporine treatment was lower than for the negative 

control. However, we could not observe any dependency of the cell nuclei volume on the 

relative location within the spheroids (Figure 36c-f). 
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Figure 36 Cell nucleus volume in T47D spheroids for all conditions. (a) Plot of the median cell 

nucleus volume as a function of cell seed number and time point. Error bars indicate the median absolute 

deviation. Hypothesis testing was performed for condition 72 h p.t. against 72 h NC. (b) Illustration of 

normalization of distance to spheroid surface. The cell nuclei were binned into shells of 0.05 NDS and the 

mean cell nucleus volume was measured in each shell. Plot of mean cell nucleus volume versus the 

normalized distance to the surface for spheroids generated from 500 (c), 1,000 (d), 2,000 (e) and 5,000 (f) 

T47D cells. h, hours, p.t., post treatment. NC, negative control. 

In summary, we investigated the long-term effects of Staurosporine on spheroid and cell nuclei 

morphology. Spheroids treated with Staurosporine showed a decrease in volume and cell 

number over time. Independent of the Staurosporine treatment, the overall shape of all spheroids 

was oblate. Cell nuclei volume was reduced after 72 hours compared to the negative control. 

We did not detect a dependency of the cell nucleus volume on the relative location of a cell 

within the spheroid. 
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4.6.3 Application III: autophagy induction 

The quantitative characterization module was applied to evaluate the effect of long-term 

morphometric effects of autophagy modulation on spheroids generated from T47D breast cancer 

cells. We compared the effect of long-term autophagy induction and long-term autophagy 

inhibition. Spheroids were generated from cell suspensions containing a seed number of 2,000 

T47D breast carcinoma cells. After three days of formation, autophagy was induced for seven 

days by either starvation with EBSS medium (positive control) or treatment with Rapamycin in 

two concentrations. Autophagy was inhibited by treatment with Bafilomycin in two 

concentrations. As a negative control, spheroids were cultivated for the same time in DMSO. 

After seven days of stimulation, spheroids were fixed, stained for nuclei, β-catenin or GM130 

(protein of the cis-Golgi complex), optically cleared and imaged with a light sheet-based 

fluorescence microscope. Katharina Hötte (PhD student) and Michael Koch (master student) 

performed spheroid preparation, treatment and imaging. The acquired datasets allow a detailed 

investigation of morphometric effects of autophagy modulation on cell nuclei and cells in T47D 

spheroids (Figure 37). 

 
Figure 37 Single planes along x-y of an optically cleared and triple-stained T47D spheroid. Scale bar 

50 μm. Detail images in the right column show an acinus during the initiation phase. Scale bar: 10 µm. 

Spheroid were formed from 2,000 seeded human breast cancer cells (T47D) grown for ten days. Cell 

nuclei are stained with DAPI, cell membranes (red) and Golgi apparatus (green) are stained against β-

catenin and GM130, respectively. Close-up of indicated region (cyan box). Microscope: mDSLM, 

illumination objective: 2.5x NA 0.06 Epiplan-Neofluar, detection objective: 20x NA 0.5 N-Achroplan, 

camera: Andor Clara. GM130: 561 nm, bandpass filter 607/70. β-catenin: 488 nm, bandpass filter 525/50. 

Cell nuclei: 405 nm, bandpass filter 447/55. Figure adapted from Strobl et al., 2017. 

We used the module to analyze 95 spheroids with at least ten spheroids available per condition 

(Supplementary Table 8). Parameter values for cell nuclei segmentation, alpha shape and cell 
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graph generation were empirically determined and the same set of parameter values was applied 

for processing all datasets (Table 5). The high quality images allowed the accurate segmentation 

of cell nuclei (Figure 38a, b). The generated alpha shape yielded a geometrical model of the 

spheroids (Figure 38c). We observed that the alpha shape provided an accurate geometrical 

model for spheroids of arbitrary shapes (Supplementary Figure 7). 

 
Figure 38 Cell nuclei segmentation performance in T47D spheroids. (a) Single planes along x-y and 

z-y of raw images and the corresponding segmentation. Scale bar 50 μm. Detail images in the right 

column show the regions in panel a, indicated by cyan and orange boxes. Scale bar: 10 µm. (b) Rendering 

of the corresponding cell nuclei segmentation. Different colors indicate individual cell nuclei found by the 

segmentation. (c) Rendering of cell nuclei locations (black spheres) and the alpha shape surface (light 

blue). Microscope: see caption of Figure 37. 

Autophagy induction leads to a decrease in spheroid volume and cell number 

Spheroid volumes and cell numbers differed between the individual experiments. We therefore 

normalized the results for spheroid volume and the number of cells to the average of the DMSO 

control in each experiment (Supplementary Figure 8). The normalization allowed pooling the 

datasets from different experiments and thus a comparison of the different conditions 

(Supplementary Table 9). 

We observed that starvation with EBSS medium or autophagy induction by Rapamycin 

treatment led to a significant reduction of the spheroid volume (Figure 39a). Spheroids treated 

under these conditions had about 52% of the volume of untreated spheroids (DMSO). Similar 

results were observed for the number of cells (Figure 39b). The number of cells in spheroids 

treated with EBSS was reduced to 57% and in spheroids treated with Rapamycin (0.16 µM) it 
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was reduced to 66%compared to spheroids treated with DMSO. Long-term autophagy inhibition 

by treatment with Bafilomycin (0.016 µM) did neither affect the spheroid volume nor the 

number of cells in a spheroid. Spheroids treated with Bafilomycin (0.016 µM) had about 75% of 

the spheroid volume and 75% of the number of cells compared to untreated spheroids (Figure 

39b). 

Autophagy induction leads to an increase of the cell density in spheroids 

The average volume of cell nuclei in EBSS treated spheroids was reduced by 2% compared to 

the DMSO control (Figure 39c). A volume reduction of 18% was observed for cell nuclei in 

spheroids treated with Rapamycin (0.16 µM). Cell nuclei in Bafilomycin treated spheroids were 

2% smaller compared to the DMSO control. The cell density was increased by 13% in EBSS 

and 15% in Rapamycin treated spheroids compared to untreated spheroids (Figure 39d). 

 
Figure 39 Cellular density and nuclear volume are reduced following prolonged autophagy 

modulation. Boxplots of the normalized spheroid volume (A), the number of cell nuclei (B), the average 

nucleus volume (C) and the average local cell density (D) for T47D spheroids treated with 0.08 µM and 

0.16 µM Rapamycin, DMSO or starved in EBSS medium. Boxplot parameters: the box contains 50% of 

the data points; the middle line of the box is the median. Whiskers and outliers represent the upper and 

lower 25% of the data. Outliers are outside the 1.5x interquartile range; far outliers are outside the 3x 

interquartile range, ●, outliers; ○, far outliers. Asterisks indicate significant differences (p-value < 0.05, 

Wilcoxon-Mann-Whitney-Test followed by Bonferroni correction, n=5). 

In summary, long-term induction of autophagy led to a significant change in spheroid 

morphology. The spheroids treated with Rapamycin were smaller and contained fewer cells. 

Similary, the cell nucleus volume was reduced and at the same time, the cellular density was 

increased upon autophagy induction. These effects were not observed for spheroids in which 

autophagy was inhibited (e.g. by treating the spheroids with Bafilomycin). 
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4.6.4 Application IV: effects of mechanical perturbation 

We applied the quantitative characterization module to evaluate the effect of induced physical 

constriction of spheroids that were generated from 5,000 HC11 (human breast) cells and then 

grown for ten days. The diameters of the final spheroids was about 250 µm. Physical 

constriction was achieved by placing spheroids into agarose capillaries with a diameter of 

200 µm for 1 hour, 24 hours or 96 hours. As a negative control, spheroids were placed into 

agarose capillaries with a diameter of 300 µm for the same time. Spheroids were then fixed, 

removed from the agarose capillaries and stained for f-actin, cleaved-caspase-3 and cell nuclei. 

After staining, spheroids were optically cleared and image stacks were acquired with LSFM. All 

experimental work was performed by Isabell Smyrek (PhD student). The acquired images 

provided a detailed view on the internal spheroid morphology at the cellular level (Figure 40). 

 
Figure 40 Example of a constricted and a non-constricted (control) HC11 spheroid. Depicted are 

single plane images at about the center of a constricted and a control spheroid. Please note that the images 

were transformed, such that views match with the horizontal orientation of the capillary shown in Figure 

7d. The front view thus corresponds to the side view on the capillary, whereas the top view corresponds 

to the view from the top into the capillary. Microscope: mDSLM, illumination objective: 2.5x NA 0.06 

Epiplan-Neofluar, detection objective: 20x NA 0.5 N-Achroplan, camera: Andor Clara. GM130: 561 nm, 

bandpass filter 607/70, β-catenin: 488 nm, bandpass filter 525/50, cell nuclei: 405 nm, bandpass filter 

447/55. Scale bar: 50 µm. 

Robust and accurate cell nuclei segmentation in HC11 spheroids 

We employed the developed module to obtain a quantitative characterization of the spheroids. 

The alpha shape was used to measure the spheroid volume and the deformation of the spheroids 
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induced by the treatment. Moreover, we used the staining against cleaved-caspase-3 to obtain an 

objective measure for the proportion of apoptotic cells within the spheroids. Due to the high 

quality of the acquired images, cell nuclei could be accurately identified in a comprehensive 

dataset of 115 spheroids (Figure 41). 

 
Figure 41 Cell nuclei segmentation performance in HC11 spheroids. Single plane images along x-y 

and z-y and magnified images of the regions indicated by the cyan and orange boxes. Different colors 

indicate individual cell nuclei found by the segmentation. Scale bar for single plane images: 25 µm. Scale 

bar for detail images: 10 µm. Microscope: see caption of Figure 40. 

Due to experimental variations in the number of seeded cells, we observed that some spheroids 

in the group of constricted spheroids were too small. Thus, the transfer into the agarose capillary 

with an inner diameter of 0.2 mm did not induce mechanical constriction of the spheroid. We 

used the spheroid shape as a selection criterion in order to consider only spheroids that were 

actually constricted. A PCA analysis on the cell nuclei positions yielded the principal directions 

𝑝1, 𝑝2 and 𝑝3 and their absolute extension. We then computed the relative extension by 

generating pairwise ratios between 𝑝1, 𝑝2 and 𝑝3 (Figure 42a). Threshold values for the ratios 

were empirically determined and used to select spheroids for the control and constricted groups. 

For the control group, all spheroids that showed an elongation of at most 15% (i.e. the ratio 

between |𝑝1| and |𝑝2| had to be less or equal to 1.15) were selected. For the constricted group, 

we selected all spheroids that showed an elongation of at least 15% (i.e. the ratio between |𝑝1| 

and |𝑝2| had to be greater or equal to 1.15). The spheroids that passed the selection (at least 6 

per condition) were used for a subsequent analysis (Supplementary Table 10). 

Mechanical constriction affects the volume of cell nuclei and the entire spheroid 

We first analyzed the shape of the selected spheroids using the elongation along the principal 

directions (Figure 42b). Constricted spheroids had a prolate shape. We observed that the 

elongation along 𝑝1 increased for constricted spheroids at time points 24 hours and 96 hours 

compared to the control. The spheroids in the control group had a more spherical shape. 
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However, some spheroids of the control group at 24 hours had an oblate shape, indicated by the 

high ratio of 𝑝1 to 𝑝3 and 𝑝2 to 𝑝3. 

Due to variations of the spheroid sizes in each batch, we normalized spheroid volumes and cell 

numbers to the median of the control group at each time point (Supplementary Figure 9). The 

normalized volume of constricted spheroids after one hour was only 1% less than the volume of 

the control group, 3.4% less after 24 hours and 12.6% less after 96 hours (Figure 42c). The 

normalized number of cells varied by 7% (after one hour and 24 hours) between constricted and 

non-constricted spheroids and was almost identical after 96 hours (Figure 42d). The cell density 

was similar between constricted and non-constricted spheroids after 1 hour and 96 hours. After 

24 hours, the cell density was decreased (Figure 42e). 

Mechanical construction does not affect the induction of apoptosis 

The cell nuclei volume after one hour of constriction was similar to the control group. After 24 

and 96 hours, we observed that cell nuclei were slightly smaller in the constricted spheroids 

compared to the control (Figure 42f). We pooled cell nuclei from each condition and plotted the 

distribution of the cell nucleus volume (Figure 42g). The mean cell nucleus volume after 1 hour 

was almost identical (76±35 µm³ in control, 76±36 µm³ in constricted). After 24 hours, the 

mean cell nucleus volume differed significantly by 21% (control: 94±36 µm³, constricted: 

77±35 µm³). A significant difference in cell nucleus volume by 18% was observed after 96 

hours (control: 80±36 µm³, constricted: 68±34 µm³). The amount of apoptotic cells was similar 

in constricted and non-constricted spheroids (Figure 42h). We measured a proportion of 10% 

apoptotic cells after 1 hour and 96 hours and 5% apoptotic cells after 24 hours. 
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Figure 42 Quantitative results obtained for constricted and non-constricted HC11 spheroids. (a) 

Shape analysis methodology. Principal component analysis (PCA) gives the principal directions p1, p2 

and p3 of the spheroid (1). The absolute extension measures the extension of the spheroid in µm (2). 

Normalization to the absolute extension of the first principal direction gives the relative extension (3). (b) 

Boxplots of the pairwise ratios between p1, p2 and p3 for all conditions. Boxplots of the normalized 

spheroid volume (c) the normalized number of cells (d) the cell density in cells per unit volume (u.v.) (e) 

and the cell nucleus volume (f) for all conditions. (g) Histograms showing the distributions of the cell 

nucleus volume of nuclei pooled for each condition. Asterisks indicate significant differences (p-value < 

0.05, Mann-Whitney test). (h). Boxplots of the proportion of apoptotic cells in spheroids for all 

conditions. Boxplot parameters: the box contains 50% of the data points; the middle line of the box is the 

median. Whiskers and outliers represent the upper and lower 25% of the data. Outliers are outside the 

1.5x interquartile range; far outliers are outside the 3x interquartile range. ●, outliers; ○, far outliers. h, 

hours. 

After analyzing these general quantitative properties, we also investigated the cell nucleus 

volume and cell density relative to the distance to the surface (Figure 43). We first plotted both 

features according to the normalized distance to the surface (NDS). Since we were interested in 

the overall trend, we normalized each curve to the first value and compared the curve 

progression for each time point. Thus, we focused on analyzing the trend of the curve. 

The impact of mechanical constriction is similar in the entire spheroid 

After one hour, the cell nucleus volume linearly decreased along the radial direction of non-

constricted spheroids. Cell nuclei in the center are about 20% smaller than in the outer regions. 

For constricted spheroids, the cell nucleus volume decreased slower than for non-constricted 
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spheroids. Thus, cell nuclei in the center of constricted spheroids were about 10% smaller than 

in the outer regions. After 24 hours, the curves were almost constant, indicating a consistent cell 

nucleus volume throughout the entire spheroid. For 96 hours, the cell nucleus volume in both 

conditions decreased towards the center (Figure 43a). For the cell density, we observed a lower 

density close to the surface of the spheroids as expected (Figure 43b). 

 
Figure 43 Cell nucleus volume and cell density as a function of depth in HC11 spheroids. Plots of 

normalized mean cell nucleus volume (a) and the normalized mean cell density (b) versus the normalized 

distance to the surface for constricted and control spheroids after 1 hour, 24 hours and 96 hours. h, hours. 

In summary, we observed an elongation and hence a prolate shape of HC11 spheroids after 

transferring them into agarose capillaries of 200 µm diameter. In contrast, control spheroids 

retained a spherical shape. The volume of spheroids decreased after 96 hours of constant 

constriction. The constriction did not affect the number of cells and cell density. A strong 

deviation between constricted spheroids and the control was measured for the cell nucleus 

volume after 24 hour and 96 hours. We did not detect any differences in the proportion of 

apoptotic cells. 

 4.7 Computer-aided cell tracking and lineage reconstruction 

Time-resolved datasets allow the analysis of cell dynamics and lineages. Computer-aided 

solutions simplify the task of tracking cells and perform lineage reconstruction. This section 

presents the module TrackGen that was developed for this task and applied to datasets capturing 

lateral root development in Arabidopsis thaliana. Please note that parts of this section have been 

published (von Wangenheim et al., 2016). 

4.7.1 Five datasets capturing lateral root development 

The plasticity of post-embryonic organogenesis in plants requires the sampling of the variance 

in cell behavior. Therefore, five datasets of lateral root development in five different plants were 
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acquired under identical conditions by Daniel von Wangenheim. Each recording consists of 

image stacks acquired at an interval of five minutes for up to three days. The resulting datasets 

were named according to the date of acquisition as #120830, #121204, #121211, #130508 and 

#130607. The recordings capture the complete lateral root formation from the first cell division 

up to the emergence of the lateral root primordium (LRP) (Figure 44). Three canonical views 

were defined to observe lateral root formation (Figure 44a). In the front view (x-y), the 

primordium grows towards the observer. In the side view (z-y), the primordium grows to the 

right, away from the axis of the primary root. The third view perspective is the radial view (x-z) 

that represents a transversal cut through the primary root, perpendicular to the shoot-root axis. 

In this work, the acquired datasets were used for tracking cells, perform lineage reconstruction 

and subsequent data analysis. 

 
Figure 44 Live recording of lateral root development from initiation to emergence. Schematics in the 

first column describe the different perspective views on the lateral root. The primary axis of the root is 

oriented vertically such that the plant shoot is located at the top and the root tip is located at the bottom. 

Three view directions are obtained: front, side and radial view. First row: three-dimensional 

reconstruction of the lateral root growing out of the primary root is shown. Second row: single slices 

along x-y (front view), 10 μm inside the epidermis cell layer. Third row: single slices along z-y (side 

view), 80 μm inside the primary root. Fourth row: single slices along x-z (radial view) through the center 

of the primordium. Time points indicated at the top are relative to gravistimulation. The plant stably 

expressed a pan-plasma membrane marker (pUBQ10::YFP-PIP1;4, green), a pan-nuclear marker 

(pUBQ10::H2B-RFP, red) and a nuclear reporter (pGATA23::GUS-GFP, green). Time points are given 

relative to the time point of gravistimulation. Microscope: mDSLM; illumination objective: 5×/0.16 

detection objective: 40×/0.75; camera: Andor Clara (binning 2×2). Scale bar: 20 μm. Images were taken 

from dataset #121204. Figure adapted from von Wangenheim et al., 2016. 
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4.7.2 TrackGen enables cell tracking and lineage tracing 

Growth and division of cells predominantly define the shape of the lateral root primordium. The 

high spatio-temporal resolution of the recordings enabled tracking the spatial location and 

tracing the lineage of lateral root founder cells and their progeny through up to six rounds of cell 

division. We focused our analysis on the localization of cell nuclei as representation of the 

location of cells. We avoided automatic segmentation of cell nuclei due to three main reasons: 

first, the signal to noise ratio of the fluorescence signal of cells located deep inside the primary 

root was rather low. Second, the fluorescence intensity of the proliferating cells in the lateral 

root was weak compared to surrounding cells. Third, the fluorescence intensity varied with the 

expression level and strongly depended on various factors such as the stage or growth 

conditions of the plant. Additionally, the number of cells to track was moderate and therefore 

manual tracking of individual cells feasible. To facilitate the tracking process, I developed a 

user-friendly program for simplified manual identification of cell nuclei locations and tracing 

the cell lineage as a function of time. Since we were mostly interested in the cell division 

behavior during lateral root development, we used TrackGen and only marked the location of 

each cell at the first and last occurrence. In this context, the first occurrence was either right 

after the cell division (birth of the cell) or the very first appearance of a cell (i.e. a founder cell). 

The last occurrence corresponded to the time point before a cell divided or the last time point 

analyzed (Table 8). Thus, the manual effort to extract the relevant lineage information of each 

cell and the amount of data for each dataset was kept minimal. For each marked cell nucleus, 

the program stored a unique identifier, the spatial position, the time point and a list holding the 

identification numbers of its precursors.  

Table 8 Excerpt of the file for dataset #120830 generated by the program TrackGen. A unique 

identification number (id), the location of the cell nucleus in x, y and z, the time point of occurrence and a 

list representing the lineage trace (lineage) given by the cell ids are stored for each cell. 

cell id x position y position z position time point lineage 

1 320 72 112 1 {} 

1 299 70 111 19 {} 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

146 307 69 111 20 {1} 

147 294 71 111 20 {1} 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

178 291 46 95 293 {1, 146, 155, 158, 176} 

180 295 76 93 283 {1, 146, 155, 158, 175} 
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4.7.3 Complete reconstruction of cell lineages 

Cell nuclei locations and cell division events could be tracked for up to 30 hours until 

emergence of the lateral roots (Figure 45a). Thereby, we captured lateral root formation from 

the first divisions of founder cells in the pericycle cell layer up to the emergence of the lateral 

root through the overlaying cortex and epidermis cell layers of the primary root. We obtained 

the locations of all cells and cell divisions as a function of time for five datasets (Figure 45b). 

We then programmatically reconstructed the cell lineages of founder cells using a lineage tree 

data structure (Figure 45c). The lineage tree encodes all information about the cells and cell 

division events as a function of time. 

 
Figure 45 Tracking and lineage tracing of cells in lateral root development. (a) Time scales of the 

five analyzed lateral root datasets. The total recording time of each dataset is indicated in gray, the time 

span of cell nuclei tracking in black. The time point of gravistimulation is indicated with an asterisk. (b) 

Cell nuclei locations of the five analyzed datasets at the first (left) and last (right) time point in front, side 

and radial view. (c) Exemplary lineage tree of founder cell #8 in dataset #120830. Note that each vertex 

in the lineage tree stores all information about the cell (see magenta and green boxes for examples). Panel 

a adapted from von Wangenheim et al., 2016. 

 

Table 9 Summary of all analyzed lateral root datasets. 

 number of 

founder cells 

final number of 

cells 

tracking  

time (h) 

number of cell 

files 

number of cell 

divisions 

#120830 10 176 25 6 166 

#121204 15 171 25 8 156 

#121211 18
*
 260 25 6 242 

#130508 9 143 30 5 134 
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#130607 15 267 25 6 252 

*
The first cell divisions in dataset #121211 had already occurred when the recording started. The true 

number of founder cells could not be reconstructed and the number of cells at the first time point of the 

recording was used as default value. 

4.7.4 Assignment of cell files 

Lateral root founder cells are arranged in a field of parallel pericycle cell files that face the 

xylem pole of the primary root. We identified founder cells and assigned identification numbers 

(cell id). Visual inspection of the datasets revealed that in datasets #121204, #130607 and 

#121211 the first cell divisions of founder cells had already occurred before the image 

acquisition started. Thus, virtual cells were introduced to reconstruct the cell lineage. The 

reconstruction of the first cell divisions was based on the time point at which the next cell 

division occurred and considering the shape of the cell wall between neighboring cells. Virtual 

cells were introduced for datasets #121204 and #130607, whereas the reconstruction of the first 

cell divisions was not possible for #121211. 

Cell lineages were assigned to cell files and alternating colors were given to the lineages of each 

cell file (Figure 46). A recent publication reported the increase in volume of cells before the first 

division of a founder cell (Vermeer et al., 2014). This event represents the onset of lateral root 

formation and we marked the corresponding cell file with index #0. We termed this cell file the 

master cell file, as it adopts a leading role during the development of the lateral root. Cell files 

to the left of the master cell file were given negative indices (#-1, #-2, #-3, #-4), whereas cell 

files to the right were given positive indices (#+1, #+2, #+3, #+4). Thus, the indices express the 

position of a cell file relative to the master cell file. The master cell file (#0) and its two flanking 

cell files (#-1 and #+1) were defined as the core region and the remaining cell files were defined 

as the periphery of the lateral root. 

 
Figure 46 Schematic illustration of the cellular disposition in lateral roots and assignment of cell 

files. Lateral root founder cells originate from the pericycle cell layer located several cell layers within 
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the primary root. These founder cells face the xylem pole of the vasculature in the primary root. Cell 

lineages were assigned to cell files ranging from #-4 to #+4, where cell file #0 corresponds to the master 

cell file. The cell files with indices #-1, #0 and #+1 represent the core region and the remaining cell files 

the periphery of the lateral root. Cell lineages are represented with alternating colors. co: cortex, en: 

endodermis, ep: epidermis, pe: pericycle, xp: xylem pole, ph: phloem. Figure adapted and modified from 

von Wangenheim et al., 2016. 

4.7.5 Classification of cell division types 

To study patterns of cell divisions in lateral root development, we analyzed the relative 

orientation of cell divisions to the primary root (Figure 47). Anticlinal cell divisions are parallel 

to the shoot-root axis and increase the number of cells in a cell file. Periclinal cell divisions are 

normal to the surface of the primary root. A periclinal division results in the generation of a new 

cell layer. By visual inspection of the cell division orientations, we observed that next to 

anticlinal and periclinal cell divisions a third type of cell division was involved in the formation 

of the lateral root. The number of cell files and thus the thickness of the LRPs was increased by 

cell divisions that were tangential to the surface of the primary root and orthogonal to the root-

shoot axis. Consequently, we termed these cell divisions radial (Figure 47a). 

Based on the relative orientation of cell divisions, we automatically classified a cell division 

either as an anticlinal, periclinal or a radial cell division. In brief, a cell file based reference 

system was defined by the principal directions of growth in each cell file. We introduced two 

vectors that point along the height axis of the cell file and the length axis of the primary root and 

measured the spatial orientation of each cell division to these vectors (please refer to the 

Material and Methods section for more details). Misclassified cell divisions were corrected 

manually. We used the classified cell divisions to analyze spatio-temporal patterns in the 

occurrence of the three cell division types. 

To evaluate the accuracy of the classification method, we compared the classified cell division 

type with the true cell division type after manual correction. The accuracy was determined as 

the proportion of correctly classified cell divisions. 

 
 

Figure 47 Classification of cell division types in lateral root development. (a) Schematic illustration of 

cell division types. The orientation of the cell division axis is shown as arrows and a gray plane represents 

the created cell wall. Anticlinal cell divisions (red) are parallel to the shoot-root axis of the root. Periclinal 
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cell divisions (green) are normal to the surface of the primary root. Radial cell divisions are tangential to 

the surface and normal to the shoot-root axis of the primary root. (b) Front view of the spatial 

arrangement of the classified cell divisions types anticlinal (red), periclinal (green) and radial (blue) for 

dataset #121204 up to the last time point tracked. Sticks colored according to the classified cell division 

type visualize the orientations of cell divisions. Cell divisions were classified based on their relative 

orientation in a cell file based reference system (see Methods section). (c) Radial view of all cell divisions 

that occurred in dataset #121204 up to the last time point tracked. 

Overall, the classification method identified 84.8% of the cell divisions correctly (806 out of 

950 cell divisions). The accuracy of the cell division type was different for the cell division 

types. The classification method correctly identified anticlinal cell divisions in 84.8% (328 out 

of 387 cell divisions) and periclinal cell divisions in 87.8% (353 out of 402 cell divisions) of the 

cases. The accuracy for radial cell divisions was considerably lower with 77.6% (125 out of 161 

cell divisions). 

Furthermore, we found that the accuracy of the classification was high for early cell division 

rounds and decreases for later cell division rounds. The classification accuracy for cell divisions 

of the first cell division round was 98.5% (66 out of 67), whereas the accuracy dropped to 

76.9% (60 out of 78) for the sixth round (Table 10). This was also reflected by the relative 

deviation in percent from the ideal orientation of anticlinal, periclinal and radial cell divisions, 

which increased by a factor of 3.5 between the first and the sixth cell division round. 

Table 10 Accuracy of the cell division classification for all cell division rounds. The relative deviation 

was computed as the percentage deviation of the determined orientation angles of a cell division from the 

orientation angles of an ideal cell division of the same type. 

cell division round number of cell divisions accuracy (%) relative deviation (%) 

1 67 98.5 7.9 

2 109 88.1 22.5 

3 171 88.8 19.9 

4 258 85.7 20.6 

5 267 79.0 23.6 

6 78 76.9 28.4 

 

4.7.6 Complete atlas of cell lineages for five lateral root datasets 

The module TrackGen enabled computer-aided cell tracking and lineage tracing in time-lapse 

image datasets. Using the module, we were able to reconstruct cell lineages over several days in 

lateral root development. By integrating all retrieved information into the reconstructed lineage 

trees, a comprehensive atlas of all cells that contribute to lateral root formation was obtained 

(Supplementary Figure 10). The atlas captures location, time and type of all cell divisions 

throughout lateral root formation in five datasets. 
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4.7.7 Growth dynamics of lateral root development 

Lateral root growth profiles and developmental synchronization 

We first analyzed the lateral root datasets for similarities in their general growth behavior. The 

first founder cell division occurred in a range of 7 to 14 hours after gravistimulation of the plant 

(10:41 ± 3:10; hh:mm; mean ± SD) when cell nuclei in the pericycle cell layer had already 

migrated towards each other. Although there was a high variability in the onset of lateral root 

formation, the growth curves of the different lateral root datasets all followed an exponential 

growth profile (Figure 48a). We fitted an exponential growth model to the curves and 

determined growth parameters of the lateral root datasets (Figure 48, Supplementary Figure 11). 

The doubling time is the period required for a lateral root to double its total number of cells. The 

average doubling time for the lateral root datasets was 7 hours 23 minutes (07:23 ± 00:27; 

hh:mm; mean ± SD). 

Although the general growth behavior of lateral root development was similar, we observed a 

high variation in the onset of proliferation. For example, 24 hours after gravistimulation, dataset 

#121204 comprised 33 cells whereas #130607 already consisted of 134 cells. Due to this large 

deviation in the onset of cell proliferation after stimulation of the plants, a comparison of the 

datasets based on the absolute time is error-prone. Attempts of temporal registration of the 

datasets were regarded as inappropriate and we instead used a developmental synchronization 

based on the total number of cells. The developmentally synchronized datasets were used to 

compare the datasets at a fixed developmental stage given in total number of cells in the LRP. 

Shape analysis of the lateral roots using alpha shapes 

We obtained a shape approximation based on the locations of cell nuclei at each developmental 

stage, using the alpha shapes approach with alpha set to 50 voxels (~16 µm). This approach 

gave an accurate representation of the shape of the developing lateral root (Figure 48b). From 

the alpha shape approximation, the volume of each dataset could be readily obtained (Figure 

48c). The height of the primordium at each stage was determined as the maximal distance 

between two cell nuclei in the master cell file. The length and width of the primordium was 

computed at 50% of the primordium height at each time point (Figure 48d). 

We observed an overall linear increase of the lateral root volume and height as a function of the 

total number of cells (Figure 48c, e). We measured an average increase in lateral root volume of 

563 ± 94 µm³ per cell, whereas the lateral root height increased by 0.21 ± 0.02 µm per cell 

(Figure 48, Supplementary Figure 12). We plotted the ratio of the measured lateral root length 

to the width as a function of the number of cells (Figure 48f). We found that the ratio decreases 

roughly by a factor of three (from a maximum of 4.5 to about 1.5) during lateral root 

development. 
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Figure 48 Growth and shape dynamics in lateral root development. (a) Plot of the number of cells as 

a function of time. (b) Alpha shape approximation of the lateral root based the cell nuclei locations for all 

datasets at a developmental stage of 43, 93 and 143 cells. (c) Plot of the volume of the lateral root datasets 

as a function of the number of cells. (d) Illustration of the height, length and width measurement 

principle. The length and width are measured at 50% of the height at each developmental stage. (e) Plots 

of the height (e) and the ratio between length to width (f) of the lateral root datasets as a function of the 

number of cells. 

Table 11 Growth rates, doubling times, height growth and volume growth for all lateral root 

datasets. 

 growth rate (%)
 

doubling time 

(hh:mm) 

height growth 

(µm/cell) 

volume growth 

(µm³/cell) 

#120830 0.78 07:23 0.19 449 

#121204 0.80 07:14 0.25 635 

#121211 0.84 06:52 0.20 607 

#130508 0.71 08:06 0.21 476 

#130607 0.79 07:19 0.22 650 

mean 0.78 07:23 0.21 563 
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SD 0.05 00:27 0.02 94 

 

In summary, the analyzed lateral root datasets followed a similar growth profile. Since we 

observed a large variance in the onset of proliferation, a developmental synchronization based 

on the number of cells in the LRP allowed for a direct comparison of the datasets at a 

developmental stage given in the number of cells in the primordium. The similar profiles for 

volume and height growth indicate that the overall shape of the LRPs was conserved. The 

decrease in the ratio of length to width suggests the occurrence of a dome-shaped primordium. 

4.7.8 Cellular composition of the lateral root 

The core region of cell files dominates the cellular contribution to the lateral root 

Next, we analyzed the cellular composition of the lateral roots by investigating the contribution 

of cell files and founder cells. As a point of reference, we compared the contribution of cells at 

the latest common developmental stage of all datasets, which was 143 cells. Lateral root founder 

cells were located in 6 ± 1 (mean ± SD) pericycle cell files with a minimum number of five 

(dataset #130508) and a maximum number of eight (dataset #121204) pericycle cell files 

(Figure 49a, Supplementary Table 12). The number of cell files to the left (negative indices) and 

to the right (positive indices) of the master cell file and their cellular contribution varied 

between the different datasets. 

We measured the duration of the interphase in each cell file (Figure 49b). Cells in the core 

region (cell files -1, 0, +1) divided faster than cells in the periphery (core region: 5.68 ± 1.85 hr; 

mean ± SD, periphery: 6.77 ± 2.73 hr; p = 2.014×10
-12

; Mann-Whitney test). This in turn led to 

a dominant contribution of the master cell file to the total cell mass of the primordium (31 ± 3%; 

44 ± 6 cells for a primordium at the 143 cells stage). In total, the core region of the primordium 

contributed 75% (107 ± 9 cells) and the periphery contributed 25% (36 ± 9 cells) of the total cell 

mass at the 143 cells stage (Figure 49c, Supplementary Table 12). 

Cellular contribution of lateral root founder cells is not conserved 

By tracing back the lineage of each cell, we quantified the contribution of founder cells to the 

lateral root at the stage of 143 cells (Figure 49d). The number of founder cells that initiated 

lateral root formation was between 9 to 15 (12 ± 3, mean ± SD, Table 9). The number of 

founder cells and their contribution to the cell mass was highly variable. In dataset #130508, 

60% of the lateral root was comprised of the progeny of only two founder cells at the stage of 

143 cells, whereas in dataset #130607 it required five founder cells to reach 60% of the cell 

mass (Figure 49e). 
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Figure 49 Contribution of cell files and cell lineages to the lateral root. (a) Cell nuclei locations of the 

five analyzed datasets at the 143 cells stage in front view (first row) and radial view (second row). Cell 

nuclei are colored according to the corresponding cell file (alternating between cyan and yellow, green for 

the master cell file). (b) Boxplots of the interphase duration (time span between two consecutive 

divisions) in each cell file. (c) Contribution of cell files to the lateral root in percent at the 143 cells stage. 

(d) Cell nuclei locations of the five analyzed datasets at the 143 cells stage in front (first row) and radial 

(second row) view. Clonally related cell nuclei (i.e. cells of the same founder cell lineage) are depicted in 

the same color. The first cell divisions of dataset #121211 could not be reconstructed and the dataset was 

thus omitted from the analysis. (e) Plots of the number of cells that derived from the same founder cell 

lineage for each dataset. Note that bar colors correspond to the founder cells of the same color as in panel 

d. Boxplot parameters: the box contains 50% of the data points; the middle line of the box is the median. 

Whiskers and outliers represent the upper and lower 25% of the data. Outliers are outside the 1.5x 

interquartile range; far outliers are outside the 3x interquartile range. ●, outliers; ○, far outliers. 

In summary, the number of cell files that contribute to the LRP is not conserved. The master cell 

file and its two flanking cell files contribute the bulk of the cell mass of the LRP up to the 

developmental stage of 143 cells. We could not detect any patterns in the contribution of 

individual founder cells to the LRP. 

4.7.9 Spatio-temporal patterns of cell divisions 

The development of lateral roots is based on a series of cell divisions that leads to a defined 

structure. Thus, the spatio-temporal distribution of cell divisions is an important feature to 

study. We employed the classified cell division types to search for underlying regularities in the 
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cell division behavior. Particularly, we were interested in the generation of new cell layers 

(periclinal cell divisions) and the increase in thickness by new cell files (radial cell divisions). 

Thus, we analyzed the spatio-temporal distribution of anticlinal, periclinal and radial cell 

divisions (Figure 50). 

Analysis of the occurrence of cell division types 

We first compared the number of occurrences of each cell division type up to a developmental 

stage of 143 cells between the datasets (Supplementary Table 13). Up to this stage, an average 

number of 55 anticlinal (55 ± 5, mean ± SD), 59 periclinal (59 ± 3, mean ± SD) and 16 radial 

(16 ± 7, mean ± SD) cell divisions occurred. Thus, the occurrence of anticlinal and periclinal 

cell divisions was balanced up to this stage. The number of radial cell divisions varied between 

the analyzed datasets by a factor of up to three, i.e., nine radial divisions occurred in dataset 

#130607, whereas already 27 radial cell divisions occurred in dataset #130508. 

Consistent with previous studies, we confirmed that the first formative cell division is always 

anticlinal (Figure 50a). All founder cells underwent an anticlinal, asymmetric cell division that 

generated two smaller cells flanked by two larger cells. Additionally, we could observe that this 

first cell division always occurred in the core region (cell files indexed #-1, #0, #+1) of the LRP 

(Figure 50b, Supplementary Table 14). Similarly, the first periclinal division in all datasets 

occurred in the core region of the LRP (Figure 50b, Supplementary Table 14). Radial cell 

divisions increase the thickness of the LRP by creating new cell files. The first radial cell 

division was observed in the third cell division round in dataset #120830, whereas in the other 

datasets, it occurred in the fourth cell division round. The first radial cell division was always 

observed in the master cell file. 

The first occurrence of anticlinal and periclinal cell divisions correlated with the developmental 

stage, i.e. the number of cells in the primordium. The first anticlinal cell division occurred at 

13 ± 4 cells, the first periclinal cell division at 24 ± 6 cells. In contrast, the developmental stage 

at which the first radial cell division occurred varied substantially between the datasets (60 ± 27 

cells). 

We further analyzed the spatial distribution of the different cell division types (Figure 50c). To 

summarize the spatial distribution of cell division types, we computed heatmaps for each cell 

division type in the front view (Figure 50d). We observed a predominant occurrence of 

periclinal and radial cell divisions close to the center of the LRPs, whereas anticlinal cell 

divisions are more dispersed. 
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Figure 50 Spatio-temporal occurrence of the three cell division types anticlinal, periclinal and 

radial. (a) Plot of anticlinal (red bar), periclinal (green bar) and radial (blue bar) cell divisions in each 

dataset as a function of the developmental stage (i.e. the number of cells). Black points represent 

individual cell divisions. (b) Plot of all anticlinal (red bar), periclinal (green bar) and radial (blue bar) cell 

divisions in each cell file as a function of the developmental stage. (c) Stick representations of anticlinal 

(red), periclinal (green) and radial (blue) cell divisions in each dataset in front and radial view. (d) 

Heatmaps summarizing the spatial occurrence of all anticlinal, periclinal and radial cell divisions in front 

view. Cell divisions of the same type were grouped into bins. The color saturation indicates the number of 

cell divisions in each bin. The black line represents the average outline of the LRP in front view. 

Random sequences of cell divisions 

Our analysis of the occurrence of anticlinal, periclinal and radial cell divisions suggests that 

lateral root development is conserved on multiple levels. The cell division round at which a 

certain cell division type occurs is almost invariant. The first cell division of each cell division 

type always occurred in the core region of the LRP. We observed a tendency of periclinal and 

radial cell divisions to occur close to the center of the LRP in the front view. 

We hypothesized that the occurrence of the cell division types might be influenced by the type 

of the previous cell division. As mentioned above, all cells divided anticlinal in the first cell 

division round. Two possible scenarios were observed for the second cell division round: either 

cells underwent another anticlinal cell division (AA sequence) or the number of cell layers was 

increased by undergoing a periclinal cell division (AP sequence). However, we could not 

identify a pattern that explained whether cells follow the AA sequence or the AP sequence. For 

example, in the master cell file, all possible cell division scenarios for the daughter cells could 

be observed (see Supplementary Figure 10): in dataset #120830, all daughters of cell #2 and #3 

divided periclinal. In dataset #121204, one daughter cell of cell #4 divided periclinal, the other 

one anticlinal, and for cell #5566 both daughter cells divided anticlinal. In dataset #130508, 
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both daughter cells of cell #6 divided anticlinal, whereas cell #5 did not divide again. In dataset 

#130607, we could also observe a mixed pattern of periclinal and anticlinal cell divisions of the 

daughter cells. Thus, the second cell division round seems to arbitrarily follow one of the two 

sequences AA or AP. 

We checked whether in subsequent cell division rounds the cell division type was also randomly 

selected. Interestingly, we found that an alternating cell division behavior was predominant in 

all datasets. For example, the pattern APAP was the dominant cell division sequence before the 

first radial cell division (Supplementary Figure 10). Out of 161 analyzed sequences, 43 (25%) 

followed the APAP division sequence before the first radial cell division. Other observed 

sequences were AP (four occurrences, e.g. in cell file #0, dataset #120830), AAP (eight 

occurrences, e.g. in cell file #0, dataset #121204) and APP (19 occurrences, e.g. cell file #0, 

dataset #130607). 

Alternating pattern of cell division orientation 

We analyzed whether the alternation of cell division orientation is a general feature of lateral 

root development. Therefore, we neglected the classified type of the cell divisions and focused 

computed the relative orientation of two consecutive cell division axes. We therefore measured 

the spatial orientation of two consecutive cell divisions 𝑛 − 1 and 𝑛 by computing the planar 

angle 𝜔 between the underlying cell division axes (Figure 51a). A cell division is termed 

alternated, when the angle 𝜔 to the previous division is greater than 45 degrees. Using this 

method, we could identify that most cells (77.8%) rotate their cell division plane by 90 degrees 

between two consecutive divisions (Figure 51b). We analyzed whether this pattern could be 

observed in all cell division rounds. Interestingly, between the first and second cell division 

round, only 46% of the cell divisions were found to rotate their division plane by 90° (e.g. 

anticlinal to periclinal), whereas 54% divided along the previous orientation (Figure 51c). In all 

subsequent cell division rounds, the alternating pattern was dominant with more than 75% 

alternated cell divisions. This observation could also explain the dominant alternating cell 

division sequence (e.g., the APAP sequence). Consequently, for a cell that divided anticlinal, 

their daughter cells had a high probability to divide either periclinal or radial in the next division 

round. 
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Figure 51 Alternation of cell division orientation 

in lateral root development. (a) Schematic 

illustrating the principle of measuring the angle 𝜔 

between two consecutive divisions. In cell division 

round 𝑛 − 1 the division of cell 𝐶𝑛−1 generated the 

daughter cells 𝐶𝑛
1 and 𝐶𝑛

2. In the next cell division 

round, the division of cell 𝐶𝑛
2 generated the daughter 

cells 𝐶𝑛+1
1  and 𝐶𝑛+1

2 . The angle 𝜔 is computed 

between the cell division axes {𝐶𝑛
1, 𝐶𝑛

2} and 

{𝐶𝑛+1
1 , 𝐶𝑛+1

2 }. (b) Histogram showing the distribution 

of the angle 𝜔 for all cell divisions in all datasets. 

The piechart shows the proportion of alternated cell 

divisions (𝜔 > 45°) (c) Chart of the proportion of 

alternated cell divisions in each cell division round. 

 

 

 

 

 

 

 

 

The generation of a layered lateral root primordium is conserved 

The primary root in Arabidopsis is organized in concentric tissue layers. This layered 

organization also has to be established in the LRP. The formation of cell layers is the direct 

consequence of periclinal cell divisions. Based on the classified cell divisions, we assigned the 

cells to cell layers (Figure 52). The assignment started by initializing all cells in the first time 

point to be members of pericycle cell layer “P”. After a periclinal division occurred, the progeny 

was assigned to new cell layers. Upon division of a founder cell located in cell layer “P”, the 

daughter cell that was closer to the lateral root base was assigned to the inner layer “I”, whereas 

the daughter cell closer to the lateral root tip was assigned to the outer layer “O”. Following this 

principle, the daughter cells of a cell division in layer “I” were assigned to the cell layers “II” 

(closer to the lateral root base) and “IO” (closer to the lateral root tip) (Figure 52a). We applied 

the assignment algorithm to all datasets and reconstructed up to eight cell layers (Figure 52b, c). 

We could identify a spatio-temporal pattern in the sequence of periclinal cell divisions in all 

analyzed datasets (Figure 52d). The timing of development and occurrence of periclinal cell 

divisions in the lateral root was consistent across all datasets and linked to the developmental 

stage given in cell numbers (Supplementary Table 15). The first periclinal cell division creates 
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an inner (“I”) and an outer layer (“O”) at a stage of 26 ± 6 cells. Except for dataset #130607, the 

outer layer always divided prior to the inner layer at 57 ± 6 cells. For dataset #130607, the 

developmental stage at which the divisions occurred, differed only by one cell. On average, the 

inner layer divided at a stage of 68 ± 14 cells. 

 
Figure 52 Occurrence of cell layers in lateral root development. (a) Scheme illustrating the layer 

assignment algorithm. The stage of the lateral root is linked to the number of cell layers (compare 

Supplementary Figure 10). (b) The sequence of periclinal cell divisions in all datasets in side and radial 

view. Cell nuclei that emerge through the same number of periclinal cell divisions are shown in the same 

color. (c) The sequence of periclinal cell divisions in dataset #130607 shown for each cell file. (d) 

Average occurrence of the different cell layers in number of cells. 

In summary, the developed module for computer-aided cell tracking and lineage reconstruction 

allowed the generation of the first four-dimensional atlas of lateral root development. We 

observed a correlation of the occurrence of formative cell divisions with the developmental 

stage of the primordium and the cell division round of the founder cells. An alternating behavior 

in the orientation of cell division orientation was a prominent feature in lateral root 

development. After the second cell division round most cells switched the orientation of their 

division plane by 90 degrees to the previous cell division. The emergence of cell layers is a 

consequence of a stereotypic sequence of periclinal cell divisions. 
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5 Discussion 

Image-based systems biology approaches rely on the application of advanced light microscopy. 

Huge amounts of complex multidimensional image datasets are produced. In order to extract the 

relevant information from the acquired data, efficient modules for an image analysis pipeline are 

required. The aim of this work was to develop such modules and to evaluate existing tools for 

an image analysis pipeline. The development was guided by the underlying interdisciplinary 

research projects. The benefit of this application-driven approach was two-fold: first, the 

developed solutions could be directly applied and validated on real datasets. Second, the 

modules were successfully used in these applications to address scientific questions. 

 5.1 Multidimensional image datasets require automated data 

management 

Automated data management has gained an important role in science. The developed module for 

automated data management simplifies (1) structuring and naming of multidimensional image 

datasets, (2) three-dimensional cropping, (3) image compression and (4) the computation of 

maximum projections. The generalized nomenclature facilities the usage of a common data 

importer interface that is applicable to various processing modules. The developed file name 

organization generalizes the file nomenclature, which is independent of the experimental or 

microscopy setup. The file names further describe the underlying data structure (e.g. if multiple 

views were acquired) and indicate already applied processing steps. This allows for a clear 

identification and communication of the data by different users but also supports the 

interoperability of modules in the image analysis pipeline. 

Efficient processing of image datasets is only possible when data has been reduced to an amount 

that is manageable by current computers and workstations. A reduction to the relevant 

information content of the images further improves runtime and accuracy of subsequent image 

analysis steps. For example, a segmentation algorithm will detect less outliers in the background 

region if the dataset is cropped to the region of interest beforehand. The developed module 

simplifies the cropping of the data to the region of interest with a user-friendly interface and 

automatically applies the settings to image stacks of an entire time series. 

The performance of lossless ZIP and lossy JPEG2000 image compression was evaluated for 

large multidimensional image datasets produced with LSFM. The built-in ZIP compression of 
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the TIF format yielded compression ratios of at least 2.4. No information was lost and intensity 

values remain unchanged with ZIP compression. It is therefore considered a suitable default 

compression method for large image datasets and should be used through the entire lifetime of 

the datasets. JPEG2000 compression yielded even higher compression ratios and reduced the 

amount of data to less than 1% of the raw data volume. However, because the JPEG2000 

algorithms are optimized to preserve visual quality, the integrity of the underlying data might 

get destroyed (Bernas et al., 2006). To preserve image quality, we introduced a constant scaling 

of the image intensities, which made artifacts of JPEG2000 compression become almost 

imperceptible and undetectable. However, varying intensity levels (e.g. as a function of time) 

are problematic for constant scaling factors. For example, high scaling factors could lead to 

information loss whereas too low scaling factors could result in the introduction of compression 

artefacts. A solution could be the application of a dynamic scaling factor that adapts to the 

intensity level of the underlying images. However, this would also imply that the intensity 

information is not directly available (e.g. in a subsequent analysis step). Furthermore, the 

applied JPEG2000 compression per single plane resulted in a large amount of single files. 

Although a description for three-dimensional compression exists for the JPEG2000 standard, 

only few (mostly commercial) implementations actually exist (e.g. from the companies 

Comprimato and Pictools). Moreover, state-of-the-art image processing and rendering software 

(e.g. FIJI, Arivis or Mathematica) mostly do not support the three-dimensional JPEG2000 

codec. In its present form, JPEG2000 is therefore considered useful for long-term storage of 

datasets, when intensities can be changed and the data can be stored as single images. Keeping 

track of the scaling factors (i.e. storing them in separate files) would allow the complete 

reconstruction of the original data whenever required. Besides, one should keep alternative 

solutions in mind. For example, Amat et al. presented an alternative approach by combining a 

lossless compression similar to JPEG2000 with the HDF5 container format. They reported 

compression ratios and timings superior to existing three-dimensional compression algorithms 

(Amat et al., 2015). Other approaches useed anisotropic diffusion algorithms for compression 

and report high performance in terms of quality and speed (Peter and Weickert, 2014; Schmaltz 

et al., 2009). 

 5.2 BugCube enables web-based visualization and sharing 

Efficient solutions for visualization and sharing large image datasets are required. In this 

context, platforms where multi-dimensional image datasets can be uploaded and shared have 

become an important topic (Burel et al., 2015; Hill, 2008; Kvilekval et al., 2010). The 

developed web-based application BugCube provides a platform for viewing and accessing 

images. The image dataset can be quickly browsed for features of interest. This is facilitated by 

displaying images that were downsampled to 1% of the original data volume. High quality 
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images (raw data) can be viewed upon request. Such a repository supports the exchange of 

knowledge between collaborating scientists and further increases the potential of acquired 

datasets. 

 5.3 Reconstruction of multiview image datasets 

5.3.1 The first multiview reconstruction of Tribolium and Gryllus embryogenesis 

Any quantitative analysis (e.g. segmentation or cell tracking) benefits from the availability of 

full three-dimensional information. We configured and applied the software Image Stitching and 

Multi Reconstruction for the reconstruction of Tribolium and Gryllus datasets that were 

acquired together with fluorescent beads. In contrast to the single views, the reconstructed 

images provided the complete three-dimensional information of an embryo in a single image. 

Moreover, the reconstruction in conjunction with image deconvolution (MVD) improved the 

image quality and the resolution of cell nuclei in Tribolium datasets (Preibisch et al., 2010). Due 

to light scattering, the reconstructed datasets did not provide high image quality in the center of 

the embryos. Structured illumination allows to discriminate against background and blur using 

striped illumination patterns (Keller et al., 2010). With structured illumination, the image 

contrast is improved, which is beneficial for the raw image quality, the bead detection step (i.e. 

beads are detected more accurately) and thus the resulting quality of the fused image could be 

improved. 

For the Gryllus dataset, we observed high registration errors for later time points. By visual 

inspection of the images, we found that muscular movement began early in the embryogenesis 

of Gryllus. This led to a noticeable motion blur in the acquired images. The Gryllus embryo was 

placed on a thin film of agarose. Motion of the embryo could have caused a displacement of the 

fluorescent beads in the sample. The displacement could have impaired the bead detection 

accuracy of the software. Whether similar effects occur in other datasets of Gryllus needs to be 

clarified in future applications of the module. An alternative sample preparation similar to that 

of Tribolium could be considered prevent this issue. 

5.3.2 A general workflow for reconstruction of multiview image datasets 

The bead-based approach in conjunction with the existing FIJI plugin provides and efficient and 

accurate way to obtain a reconstruction of multiview image datasets. Under the premise that a 

sufficient number of detectable fluorescent beads is available, the approach is completely 

independent of the underlying specimen (Preibisch et al., 2014). The reconstructed datasets 

provide an improved resolution (Wu et al., 2016) and allow a drastic reduction of the data 

amount. The approach is therefore considered suitable as a module for multiview reconstruction 

in the image analysis pipeline. 



Discussion 

103 

The three-dimensional acquisition of image datasets with LSFM followed by multiview 

reconstruction provides new opportunities for developmental biology. Instead of generating a 

tailored dataset for a specific scientific question, the systematic acquisition and reconstruction 

of image datasets allow the generation of a comprehensive collection of datasets. The collection 

can be used by the scientific community and provides a resource to answer various scientific 

questions (Strobl et al., 2017). For example, the high quality of the datasets allows a systematic 

quantitative characterization of Tribolium development similar to Drosophila (Amat et al., 

2014). The combination of the module with subsequent segmentation and cell tracking will 

provide the complete reconstruction of cell lineages and cellular dynamics (Chhetri et al., 2015). 

This opens up a broad range of possibilities for high-content analysis of cellular and organismal 

dynamics in entire developing organisms. This enables the analysis of wild type or mutated 

embryogenesis in its entirety (Strobl and Stelzer, 2016). The complete workflow is not limited 

to Tribolium or Gryllus embryos but readily applicable to other specimen (e.g. three-

dimensional cell cultures) as well. 

 5.4 Multiscale quantitative characterization 

The developed module for quantitative characterization complements cell nuclei segmentation 

by powerful methods from graph theory and computational topology. The module outputs cell 

nuclei features obtained from the segmentation extended by features obtained from graph and 

topological analysis. Thus, complex image datasets are reduced to simple lists that can be used 

in subsequent data analysis. The number of extracted features goes well beyond most existing 

programs (Bilgin et al., 2013; Friebel et al., 2015; Lin et al., 2007; Morales-Navarrete et al., 

2015; Stegmaier et al., 2014). The quantitative characterization enables the assessment of 

cellular heterogeneity and synchrony at the single cell level. Such a level of detail is important 

to understand mechanisms like cellular differentiation or local control mechanisms exerted by 

neighboring cells. 

5.4.1 Densely packed cell nuclei in diverse spheroid datasets are accurately 

identified 

The cell nuclei segmentation is objective, robust, insensitive towards intensity variations and 

capable of separating apparently touching cell nuclei. The initial local segmentation is less 

sensitive towards heterogeneous intensity distributions than global thresholding (Uchida, 2013). 

The multiscale LoG filter algorithm is capable of detecting marker points for irregular nuclear 

shapes, varying intensity distributions and in regions of high cell density. In accordance with 

findings from other studies (Chittajallu et al., 2015; Morales-Navarrete et al., 2015), the 

identified combination of methods is a promising candidate for a universally applicable cell 

nuclei segmentation approach. This is also elucidated by the cell nuclei segmentation results 

that were obtained for diverse spheroid datasets in the four applications. Independent of cell 
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nuclei size, nuclei labelling, microscope setup and cell line accurate cell nuclei segmentation 

was achieved. 

5.4.2 Alpha shapes provide a geometrical model for arbitrarily shaped cell 

aggregates 

Based on the positions of cells and a suitable parameter value for alpha, the computed alpha 

shapes provide a geometrical model of arbitrarily shaped cell aggregates. Compared to spherical 

harmonics (Khairy et al., 2008a, 2008b), the alpha shape excels with low computational costs, 

applicability to arbitrarily shaped cell clusters and provide an accurate geometrical model of 

solid three-dimensional objects. 

5.4.3 Cell graphs investigate the spatial topology of cell aggregates 

Graphs give a formal description of complex, multidimensional networks. Cell graphs 

inherently contain the information to compute global and local features that define the cell 

aggregate topology and relationships between individual cells (Schäfer et al., 2015). To 

investigate local cell structures in a spheroid, two implementations extend cell graphs to three-

dimensional spatial networks: a purely distance-based variant (proximity cell graph, PCG) and a 

variant that is based on Delaunay triangulation (Delaunay cell graph, DCG). In conjunction with 

the alpha shape surface, these graphs capture structural patterns as a function of depth. PCG and 

DCG model different modes of cell neighborhood. The PCG provides a measure of local cell 

density and connects all cells that interact across long ranges. Neighborhood in the DCG is an 

approximation of which cells are in direct contact with each other. For the PCG, the number of 

edges and hence the computation time increases with the distance threshold. The DCG is less 

sensitive to the chosen distance threshold, since the number of edges is restricted by the 

Delaunay triangulation. Since the Delaunay triangulation is the dual form of the Voronoi 

tessellation, an approximation of cellular shape can be readily obtained from the DCG (Friebel 

et al., 2015; Schaller and Meyer-Hermann, 2005). Features extracted from the segmentation can 

be incorporated into the cell graphs to analyze the spatial correlation of cell morphology, cell 

type or expression profiles. 

 5.5 Quantitative characterization of spheroids under stress 

conditions 

Spheroids are important model systems to investigate questions in cell and translational biology. 

Experiments rely on chemical (Friedrich et al., 2009) or mechanical (Delarue et al., 2014) 

perturbations of spheroids. Thus, stress conditions such as the influence of mechanical 

constriction on spheroid morphology or the impact of chemical compounds on cell proliferation, 

differentiation and viability can be studied in a three-dimensional context. Apart from technical 

advances of three-dimensional cell culturing and microscopy, automated image analysis is still 
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limited. In this work, a combination of three-dimensional cell culture, optical clearing, LSFM 

imaging and three-dimensional image analysis was employed. The combination of optical 

clearing and LSFM resulted in full penetration depth, homogeneous intensity distribution and 

good axial resolution. Thus, we obtained the first comprehensive dataset of high quality images 

for subsequent quantitative characterization of spheroids at the single cell level. Such data is 

required to progress from population averages. The developed approach was employed to 

investigate the impact of different stress conditions on spheroids in four applications. 

5.5.1 Application I: nutrient and oxygen deficiency 

Structural heterogeneity in differently sized T47D spheroids 

The complete approach was applied to differently sized spheroids generated from T47D breast 

carcinoma cells. The extension of global spheroid properties such as volume, cell number or the 

distribution of cell nuclei volumes by objective features derived cell graphs and alpha shapes 

allowed the quantitative investigation of structural features in spheroids. The derived cell 

locations serve as quantitative data for the development of advanced statistical analysis (Dini et 

al., 2016). The boundary between outer and core regions could be identified and we could show 

that an extensive core region in breast carcinoma spheroids arises when the spheroid features at 

least 30,000 cells. The extent of the core region is not proportional to the diameter of the 

spheroid. Larger spheroids exhibit a thinner outer region (50% of the spheroid radius) compared 

to medium-sized spheroids (75% of the spheroid radius). Earlier studies have shown, that the 

thickness of the outer region strongly depends on nutrient and oxygen supply (Sutherland, 1988) 

that vary with spheroid size (Mueller-Klieser, 1984). Our results suggest a conservation of the 

outer region cell mass. 

Furthermore, we found structural inhomogeneity in the different concentric cell layers. All 

spheroids exhibited cell densities between 35 and 70 cells/u.v. with patches of higher and lower 

cell density in the outer region. Recent work with two-dimensional cell cultures revealed the 

importance of the cell density on cellular behavior and function (Mo et al., 2014) including cell 

differentiation (Gorman et al., 2014), cell proliferation and the response to compounds (Greene 

et al., 2016). Similar findings were obtained for real tissues (Mateus et al., 2015). We suppose 

that the observed differences in cell density affect individual cells and thus, such heterogeneity 

needs to be incorporated into existing models. Furthermore, cell nuclei volume, cell number and 

the spheroid diameter allow validation and refinement of mathematical models for spheroid 

growth dynamics (Drasdo and Höhme, 2005). 

5.5.2 Application II: apoptosis induction 

Drug screening applications require objective, three-dimensional characterization 

Many publications provide new methods and protocols for cell culturing, spheroid preparation 

and imaging in the context of drug screening. However, there is currently only a limited amount 
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of work focusing on reliable quantitative characterization. Many analysis concepts for two-

dimensional image datasets have not yet been implemented on a broad scale and not adapted for 

three-dimensional applications. Consequently, previous studies mostly employed low resolution 

imaging of spheroids and single two-dimensional images to analyze the overall spheroid size or 

intensities. 

Apoptosis induction is associated with morphological changes in spheroids 

The quantitative characterization enabled the association of apoptosis induction with changes in 

spheroid and nuclear morphology in three-dimensional images. Spheroid and cell nuclei 

morphology could be objectively quantified in differently sized spheroids, generated from T47D 

cells. Previous analysis of two-dimensional images showed that apoptosis induction led to a 

decrease in cell nuclei size in immortalized retinal pigment epithelial cells (Eidet et al., 2014), 

primary neuronal cells (Daniel and DeCoster, 2004) or Hep2 squamous carcinoma cells (Helmy 

and Azim, 2012). In accordance with these results, we observed that in three-dimensional 

images the cell nuclei volume of T47D cells was reduced to about 57% after 72 hours of 

apoptosis induction. In future experiments, it needs to be clarified to what extend the reduction 

of spheroid and cell nuclei volume is due to the dehydration and optical clearing procedure. 

We could investigate for the first time whether cell nuclei morphology differs as a function of 

depth into differently sized T47D spheroids. We did not detect a dependency of the cell nucleus 

volume on the relative location of the cell within the spheroid. This suggests that there is no 

regional difference in the response of cells to apoptosis induction. However, the evaluation of a 

temporal difference in the response of cells to apoptosis induction requires suitable controls at 

each time point, which were not available for this work. 

The quantitative characterization was efficient in the detection of bright blob-like cell nuclei. 

However, cell nuclei exhibit different phases of structural change during apoptosis (Toné et al., 

2007). The chromatin first condenses into a ring-like structure at the interior surface of the 

nuclear envelope. Then, the ring structure develops discontinuities and the nucleus begins to 

shrink. Finally, the nucleus forms apoptotic bodies and collapses. Mooney and coworkers also 

identified diverse cell nuclei morphologies of T47D cells treated with 1 µM Staurosporine and 

stained with DAPI in two dimensional images (Mooney et al., 2002). In accordance, we 

observed that T47D cell nuclei morphologies upon apoptosis induction strongly deviated from 

bright, blob-like objects in three-dimensional images. Thus, the segmentation procedure 

requires optimization in order to cover these different cell nuclei morphologies. 

Towards quantitative drug screening with three-dimensional model systems 

Confocal microscopy delivers high quality images of spheroids. The combination of optical 

clearing, confocal microscopy and the quantitative characterization module enabled the 
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extraction of valuable quantitative data from spheroids that exceeds existing approaches. 

However, the image quality (e.g. the resolution along the z dimension) was rarely good enough 

to obtain high quality cell nuclei segmentation results directly. Several pre-processing (i.e. 

filtering, background subtraction) and post-processing steps (selection of cell nuclei) were 

required to obtain reliable segmentation results. Higher image quality with an improved 

resolution along the z dimension could be obtained with LSFM. Recently, the high throughput 

LSFM (HT-LSFM) has been described that would allow the combination of LSFM with 

multiwell plates and thus high throughput and high image quality could be obtained (Pampaloni 

et al., 2015). Such experiments also provide the temporal resolution in order to study the 

cellular dynamics upon apoptosis induction. 

In this project, we have focused on the combination of three-dimensional imaging with confocal 

microscopy and quantitative analysis at cellular detail in entire spheroids. The quantitative 

characterization delivered a number of informative phenotypic features of spheroid and cell 

nuclei that enable assessing the effectiveness of apoptosis inducing drugs based on cytometric 

measurements. For solid results, the number of spheroids per condition needs to be increased in 

future experiments and control experiments need to be performed for each time point. Due to 

the generality of the approach, it is then is readily applicable to other compounds and cell lines. 

5.5.3 Application III: autophagy induction 

Targeting alternative cell death pathways is an attractive strategy for improving anti-tumor 

therapy (Schleicher et al., 2010).  Autophagy is essential for cellular homeostasis and plays 

important roles in developmental and pathogenic processes. Deregulation of autophagy 

signaling is associated with cancer progression. The mTOR pathway is key regulatory factor of 

autophagy signaling and therefore affects cell cycle progression, proliferation and survival. The 

mTOR pathway is upregulated in many breast cancers (Kerekatte et al., 1995) leading to 

inhibition of autophagy. Thus, mTOR inhibition is tested as a novel target for breast cancer 

therapy. Rapamycin and its derivatives induce autophagy by inhibition of mTOR activity and 

are commonly used as immunosuppressive drugs (e.g. after organ transplantation). However, 

long-term effects of autophagy induction on breast cancer tissues have not been studied. 

In this project, we investigated the effects of long-term treatment with Rapamycin on T47D 

spheroids. For quantitative characterization of the spheroids, we took advantage of the 

developed module for quantitative characterization and compared the effects of autophagy 

induction, autophagy inhibition with suitable controls on multiple scales including properties of 

the complete spheroid, the local cell neighborhood and individual cells. 
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Autophagy induction reduces spheroid volume and cell number 

Consistent with previous studies we found that Rapamycin inhibits cell growth and proliferation 

through induction of autophagy in breast cancer spheroids (Shapira et al., 2006). Consequently, 

we observed a significantly reduced spheroid volume and decreased number of cells in breast 

cancer spheroids treated with Rapamycin. The effects were identical for the positive control 

EBSS. On the other side, Bafilomycin treatment (autophagy inhibition) did not affect cell 

number or spheroid volume. 

We observed that the cell nuclei volume significantly decreased, whereas the cell density in 

spheroids increased upon autophagy induction. Under nutrient-deprived conditions, cells 

compensate the lack of nutrients by autophagy induction. We hypothesize that the reduced cell 

nuclei volume also indicates an overall reduced volume of the cells, which induces a higher cell 

density. In a recent study, similar observations were made for growth factor-deprived 

lymphocytes (Hecht et al., 2016). Hecht and coworkers conclude that from a biophysical point 

of view, the cell maximizes its metabolic efficiency by decreasing the diffusion time of 

molecules and on the other hand increasing the probability of interaction between certain 

molecules. 

5.5.4 Application IV: acute mechanical constriction 

Cell nuclei act as a mechanosensor for applied mechanical forces 

Mechanical forces play a fundamental role in normal tissue and malignant tissue. Many studies 

have focused on the analysis of compressive stress in the context of tumor biology. In this 

project, we investigated the impact of acute mechanical constriction on mammary epithelial 

spheroids. 

At short term, we did not measure an impact of acute mechanical constriction of spheroids on 

the internal morphology. Instead, we observed a delayed reduction of cell nuclei volume after 

24 hours. Cell nuclei increased again after 96 hours. In a tissue context, physical forces arise 

from forces generated by the extracellular matrix, neighboring cells or intracellular processes. 

These forces are transmitted through the cytoskeleton to which the cell nucleus is attached to 

and therewith directly exposed to mechanical forces from the outside. Thus, it acts as a direct 

mechanosensor and extracellular forces can be measured by nuclear deformation and volume 

reduction (Guilak et al., 2000). Nuclear shape changes can directly influence transcription 

independent of other signals from the cytoplasm (Dahl et al., 2008). Our observations imply that 

the cells actively adapt to the mechanical stress situation with a certain delay. The observed 

increase of the cell nucleus volume after 96 hours might indicate that the applied force was 

compensated by reorganization of the cells. Similar minimization of the acting mechanical force 

on the nucleus has been observed for example in vascular endothelial cells (Hazel and Pedley, 

2000). 
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Recent studies showed that continuous compressive pressure only weakly affected the apoptosis 

rate in spheroids (Delarue et al., 2014). Continuous compressive pressure increased the 

proliferation rate of the cells that depended on the duration of the treatment but impaired the 

mitotic progression of the cells (Desmaison et al., 2013). Our results indirectly suggest that 

acute mechanical constriction does not affect the proliferation rate (i.e. the cell numbers 

between constricted and control spheroids are similar). The apoptosis rate in constricted and 

control spheroids was similar and no dependency on the duration of the constriction was 

detectable. An analysis of the proliferation rate in HC11 spheroids could be performed to 

confirm these results. 

Cell density is homogeneous in spheroids under acute mechanical constriction 

The cell nucleus volume was observed to be homogeneous throughout the entire spheroid at the 

investigated time points. Cells on the periphery of the spheroid did not show a different 

response to the mechanical force than those cells in the core of the spheroid. We also did not 

detect differences in the cell density as a function of depth. In contrast to T47D spheroids, no 

necrotic core was detectable. Compressive stress has been shown to have different impact on 

cells in the core and periphery of spheroids (Montel et al., 2012). We cannot exclude the 

possibility of having missed differences in the distribution of cell nucleus volume or cell 

density. However, this would require analyzing the cellular dynamics during or fixing the 

spheroids directly after the application of the mechanical constriction. A fixation in the minute 

range after constriction is experimentally possible. 

Acute mechanical constriction is relevant in other tissue contexts 

We showed an example of measuring the deformation in the context of breast tissue (mammary 

gland) in a three-dimensional cell culture model system. This phenomenon is found in vivo 

during the weaning process when milk accumulates in the mammary gland due to decreased 

suckling of pups. This becomes more prominent when suckling is ceased and involution of the 

mammary gland is forced. Acute mechanical stress is also relevant in other tissue contexts. For 

example, traumatic brain injuries induce an elevated intracranial pressure that can be fatal to the 

patient. Our system can be applied in these contexts, if a suitable three-dimensional spheroid 

model is available. 

 5.6 Computer-aided cell tracking and lineage reconstruction 

5.6.1 Simplified cell tracking and lineage reconstruction 

Tracking cells and analyzing their lineage is required in many applications in developmental 

biology. A variety of approaches exist to fulfill this task in an automated manner (Amat et al., 

2014; Fernandez et al., 2010). However, the quality of image datasets often restricts the 

applicability of automated solutions (Meijering et al., 2009). Interactive programs are required 
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to correct automated tracking results or to perform the tracking manually. The developed 

module TrackGen provides an interactive user interface that simplifies the task of cell tracking 

and lineage reconstruction in time-lapse image datasets. 

5.6.2 The first four-dimensional atlas of lateral root development 

We applied the module for cell tracking in image datasets of lateral root development in 

Arabidopsis thaliana. This enabled the reconstruction of the first curated and complete four-

dimensional atlas of cell lineages in lateral root development. Our atlas captures spatial 

locations and divisions of all contributing cells in five lateral root primordia (LRP) for up to 30 

hours of development. The data analysis includes the necessary pre-processing steps of spatial 

and temporal synchronization necessary to compare the datasets. We analyzed the synchronized 

datasets for patterns that govern lateral root development on the level of the complete organ 

(e.g., the number of cells and lateral root volume), local structures (e.g. the contribution of cell 

files and the occurrence of cell layers) and individual cells (e.g. the cell divisions). 

5.6.3 Lateral root development is conserved on the organ level 

Previous studies reported that initiated primordia did not develop at uniform rates, the 

development of some LRPs was arrested (Dubrovsky et al., 2006) or delayed (Moreno-Risueno 

et al., 2010). We observed that the onset of proliferation in lateral root development differs, but 

once proliferation started, the profiles for cell number, volume and height growth of the LRPs 

follow a similar trend. We did not detect any correlation between the proliferation rates and the 

day/night cycle as observed for emerged lateral roots (Voß et al., 2015). The decrease in the 

length-to-width-ratio in all LRPs indicates the occurrence of a dome-shaped primordium and 

coincides with previous observations (Lucas et al., 2013). 

5.6.4 Cellular contribution of cell lineages and cell files is variable 

Previous studies lacked the spatio-temporal information to investigate the contribution of cell 

lineages and cell files to the LRP. For the first time, we showed that LRPs are formed from 5 to 

8 cell files. The contribution of cell files was dominant in the core region and declined to the left 

and right of the master cell file. Lateral roots were formed from a variable number of 9 to 15 

founder cells of which some emerged stochastically and showed a dominant contribution to the 

LRP, whereas the contribution of others was negligible. 

In conclusion, the contribution behavior of founder cells depends on several factors. First, 

founder cells are located arbitrarily in the cell files along the primary root and thus, the extent to 

which a founder cell contributes to the LRP depends on its distance to the lateral root center 

(Kurup et al., 2005). Second, the formation of lateral roots was induced by gravistimulation (i.e. 

rotation by 90°). This stimulation results in a bending of the primary root inducing. Both factors 

result in a different microenvironment for cells in the pericycle cell layer, which promotes or 
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impedes cellular behavior such as proliferation or differentiation. For example, plant growth is 

fundamentally regulated by phytohormones such as auxin (Friml, 2003). Local gradients of 

auxin are altered (Ditengou et al., 2008) and lead to a different behavior of the cells that respond 

to these gradients (De Smet et al., 2007; Vieten et al., 2007). 

5.6.5 Organ-level coupling in the occurrence of formative cell divisions 

Cell divisions at early stages of lateral root development were clearly distinguishable as 

anticlinal, periclinal or radial. We observed a correlation of the occurrence of formative cell 

divisions with the developmental stage of the primordium and the cell division round of the 

founder cells. In later stages, the orientation of cell divisions was more variable. During 

development, the lateral root transforms from a bilateral symmetric system with a reference 

system defined by the primary root into a structure with radial symmetry. This radialization 

process of the lateral root (Lucas et al., 2013) explains the higher variability in the orientation of 

cell divisions. Except for the first anticlinal cell division, occurrence and orientation of 

individual cell divisions was not conserved. However, a dominant feature observed in all LRPs 

was the tendency of cell divisions orientation to be perpendicular to the orientation of the 

previous cell division. 

The Arabidopsis root consists of a defined number of tissue cell layers (Dolan et al., 1993). Our 

results demonstrate that the emergence of cell layers is a consequence of a stereotypic sequence 

of periclinal cell divisions. These results are consistent the previous model for the generation of 

tissue layers (Malamy and Benfey, 1997). 

5.6.6 Developmental instability and self-organization in lateral root development 

The formation of lateral roots is an interplay of various factors. Environmental factors such as 

the availability of nutrients, water and light or the properties of surrounding tissues. The identity 

and behavior of a cell is strongly affected by its surrounding neighboring cells (Scheres et al., 

1994). Several studies reported the important role of cell-to-cell commination in the 

coordination of lateral root development (Yue and Beeckman, 2014). Finally, the mechanical 

properties of the surrounding tissues guide the morphogenesis of lateral roots (Vermeer et al., 

2014). Moreover, ‘developmental instability’ (Forde, 2009) was introduced as an additional 

parameter suggesting that intrinsic stochastic processes perturb the development and interplay 

with genetic and environmental factors resulting in phenotypic variation (Polak, 2003). In 

accordance, studies based on microscopic images and mathematical modelling propose that 

lateral root growth is manifested by local symmetry breaking events including local variations 

in growth rates, oblique cell divisions, auxin-related mutations or atypically shaped cells 

(Szymanowska-Pulka, 2013; Szymanowska-Pułka et al., 2012, 2014). Such perturbing effects 

are compensated and do not impair the final, stereotyped morphology of the lateral root. Our 

results suggest that an organ-level coupling of LRP growth and cell divisions could account for 
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the controlled emergence of the dome-shaped primordium. Such self-organization and non-

determinism are widespread phenomena and typical for developing systems. 

Atlases of reconstructed cell lineages and their analysis represent a tool for developmental 

biology and have been generated to study flower development in Arabidopsis thaliana 

(Fernandez et al., 2010) or even whole animal embryogenesis (Amat et al., 2014; Keller et al., 

2008; Long et al., 2009). We generated and published the first, comprehensive atlas of cell 

lineages in lateral root formation (von Wangenheim et al., 2016). The atlas will be a valuable 

resource in order to understand the role and interplay of the different factors involved in LRP 

formation and to study how self-organization and non-deterministic behavior compares between 

different, organs, or even organisms. 
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6 Outlook and Conclusion 

 6.1 Future directions of the image analysis pipeline 

In this thesis, several modules of an image analysis pipeline for three-dimensional fluorescence 

microscopy were developed or existing solutions were evaluated and optimized. The results of 

this thesis can be extrapolated towards the following topics: 

 Multiview reconstruction as a basis for cell tracking and lineage tracing 

 Generalized usage of the multiview reconstruction procedure 

 Extension and application of the multiscale quantitative characterization 

 Extension of the pipeline towards automated high-throughput processing 

6.1.1 Multiview reconstruction as a basis for cell tracking and lineage tracing 

In this thesis, the reconstruction of multiview image datasets with cell nuclei labelling was 

successfully achieved. In conjunction with cell tracking, this allows in-depth analysis of cellular 

dynamics (e.g. movement patterns), cell lineages and thus the generation of complete virtual 

embryos. In this context, the reconstructed datasets of Tribolium and Gryllus provide a basic 

resource. 

First preliminary results towards automated tracking could already be obtained for cell nuclei in 

maximum projections along z of a H2B-GFP labeled Tribolium embryo (Figure 53). For the 

identification of the cells, the quantitative characterization module was suitable. Tracking was 

then performed by a greedy tracking algorithm that solely identified the continuation of the 

tracks by the distance to the closest objects in the next frame. The tracking worked well for the 

first hours of the recording until cells of the uniform blastoderm began to migrate during the 

gastrulation phase. Complete cell lineaging would require higher temporal resolution such that 

the daughter cells of a cell division can be accurately identified. Moreover, the embryo would 

have to be acquired from multiple views with subsequent multiview reconstruction to obtain the 

information of all cells in the embryo. Matching both requirements (high temporal resolution 

and multiview imaging) at the same time is difficult to fulfill. In specialized systems such as 

SimView (Tomer et al., 2012) or MuVi-SPIM (Krzic et al., 2012), the embryo is simultaneously 

acquired from multiple views. These systems were successfully applied in the reconstruction of 

cell lineages in Drosophila melanogaster. The applicability of such systems for Tribolium and 

the impact on the viability of the specimen need to be clarified. 
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With additional labels (i.e. for cell membranes), the combined approach of multiview 

reconstruction, tracking and lineaging provides comprehensive data about cell shape or 

expression patterns in the embryo as a function of time. Investigations at the cellular level and at 

the level of the entire embryo become feasible and system-related scientific questions can be 

addressed. Morever, the morphogenetic variability in development could be compared 

systematically between different species. 

 
Figure 53 Cell nuclei tracking in Tribolium castaneum. (a) Maximum projections along z with cell 

nuclei tracks overlaid of a Tribolium dataset at six time points. Colored dots indicate the current location 

of a cell, whereas colored lines indicate the path from the previous three time points. The Tribolium 

transgenic line expresses H2B-GFP. The total duration of the time-lapse was 153 h at a time interval of 6 

minutes. Scale bar: 100 µm. (b) Close-ups of the region indicated by a cyan box in panel a at different 

time points in steps of 12 minutes arranged in a montage. Scale bar: 10 µm. Microscope: mDSLM, 

illumination objective: 2.5x NA 0.06 Epiplan-Neofluar, detection objective: 10x NA 0.3 N-Achroplan, 

camera: Andor Clara, axial pitch: 2.58 µm, number of planes: 229, exposure time: 50 ms, laser power: 

135 µW. Frederic Strobl provided the dataset. 

6.1.2 Generalized usage of the multiview reconstruction procedure 

The procedures for preparation of Tribolium and Gryllus embryos together with fluorescent 

beads and the subsequent multiview reconstruction can be extended to other samples such as 

three-dimensional cell cultures. In the Bachelor project of Elena Gosau, the sample preparation 

principle used for Gryllus embryos was optimized for T47D spheroids. Elena acquired 

spheroids from four views and the images were reconstructed with the Multiview 
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Reconstruction software. Interestingly, only few parameters (e.g. the concentration of 

fluorescent beads and some settings of the Multiview Reconstruction software) needed to be 

adjusted in order to obtain a reconstruction of the datasets. Due to the built-in image 

deconvolution procedure, the resulting images provided an image quality that was superior to 

the raw image quality. In conclusion, multiview reconstruction could be a valuable pre-

processing step in order to obtain high quality images of entire spheroids. 

6.1.3 Extension and application of the multiscale quantitative characterization 

The multiscale quantitative characterization was developed based on cell nuclei in three-

dimensional cell cultures. Cell nuclei represent a simple, yet powerful sensor for the state of the 

cell. For example, nuclear shape or texture characteristics are altered in cancer cells (Zink et al., 

2004). Classical pathology relies on visual examination of these characteristics by experienced 

persons. The developed module bridges the gap between classical examination and an 

automated characterization using image analysis. It allows the extraction of quantitative data at 

multiple scales including individual cell nuclei, the cell neighborhood and the complete cell 

aggregate. The module proved its potential in analyzing the impact of four different stress 

conditions on spheroids. In the future, this approach could be extended towards the investigation 

of cell differentiation, the comparison between different cell lines, the arrangement of cells in 

heterotypic spheroids, spheroids under confined growth as well as mechanical or chemical 

perturbation (Figure 54). 

 
Figure 54 Future application scenarios of the quantitative characterization module. The developed 

module could provide valuable data in the analysis of (a) cell differentiation (b) different cell lines (c) 

heterotypic spheroids (d) confined spheroid growth (e) mechanical perturbation of spheroids (f) chemical 

perturbation of spheroids. 

These applications would benefit from information about the cell shape. To obtain 

morphological information about cells, suitable cell membrane markers and an extension of the 

module towards cell segmentation are required (Meijering, 2012). An adaption of the module 

using the same principle of a marker-controlled watershed algorithm for cell segmentation 

already yielded promising results (result not shown). 
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In summary, future studies in three-dimensional cell and developmental biology require an 

image-based systems biology approach with measurements at the level of the single cell, the cell 

neighborhood and the whole system (Figure 55). The developed quantitative characterization 

module is not restricted to spheroids. For any set of high-quality images with nuclear staining, 

the module provides a multiscale characterization ranging from the single cell level to the cell 

microenvironment and the whole system. 

 
Figure 55 A multiscale approach for image-based systems biology. The established methods for 

advanced three-dimensional microscopy and image segmentation need to be extended by concepts from 

other fields including graph theory and computational topology. This will provide a system-level 

understanding of the architecture and function of tissues, organs and organisms. Figure adapted from 

Schmitz et al., 2017. 

6.1.4 Extension of the pipeline towards automated high-throughput processing 

Future, high-throughput image analysis assays will require an all-in-one pipeline that is fast, 

efficient, adaptable yet easy to use and outputs the results in suitable formats, such as reports. 

Such a pipeline includes a setup platform in which specialized processing modules can be 

chosen from a predefined palette and parameters adjusted according to individual needs. After 

the setup, the user ideally launches the pipeline and picks up the results after processing. From a 

computer scientist’s point of view, this idea of an all-in-one pipeline poses several tough 

requirements that need to be addressed: (1) The input data have to follow a standard, which 

encompasses the data quality, the file, name nomenclature and data structure. (2) The processing 

steps of the pipeline need to be modularized with a high level of parameterization. (3) These 

modules need to be executable independent from each other and interfaces between the modules 

need to be clearly defined. (4) The setup platform has to be user-friendly allowing people with 

varying levels of expertise to use the pipeline successfully. 

In this thesis, I addressed several of these requirements of an all-in-one solution and developed 

or optimized modules for data management and visualization, multiview reconstruction, 

multiscale quantitative characterization, computer-aided cell tracking and lineage 
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reconstruction. The transition between modules still requires transformation steps such that the 

output from one module fits the input of the other module. This might require refinement and 

optimization of the present modules. 

In the future, a module for automated data analysis and reporting should extend the pipeline. 

Such a module should be at the end of the pipeline and allow the generation of standard reports. 

For example, a report of a spheroid datasets includes metadata about the experimental setup, the 

acquisition, the applied pipeline modules (including parameter settings), global quantitative 

measurements (e.g. cell number, volume or cell density), detailed plots (e.g. cell density as a 

function of depth) and visualizations (e.g. maximum projections or cross sections). 

With the increasing amount of data generated per experiment, the execution of the pipeline 

should furthermore be directly connected to the image acquisition phase. For example, during 

long-term experiments, image compression, deconvolution or other processing steps could be 

performed during the idle time of the microscope workstation in-between two subsequent 

acquisition processes. In this context, the efficiency of the pipeline modules would largely 

benefit from implementations on GPUs (Narayanaswamy et al., 2010) or the usage of high 

performance computing clusters (Schmied et al., 2016). 

 6.2 Concluding remarks 

The quality of the underlying image data determines success or failure of any image analysis 

process. Besides, the datasets produced are typically much larger and complex than actually 

needed to address a specific research question. These points highlight the importance of 

interdisciplinary collaborations with active dialogues and synergy between computer scientists 

and experimental biologists throughout all steps of the pipeline. Thereby, the generation of 

datasets with suitable data volume and image quality for subsequent image analysis is ensured. 

In the last years, advanced light microscopy has rapidly developed. Especially, with time-

resolved imaging of large specimen, the amount and complexity of the generated data has 

increased dramatically. In conjunction, the fields of developmental and cell biology undergo a 

transition from purely qualitative to demanding quantitative analysis (Pantazis and Supatto, 

2014). This development raises the need for efficient management, processing and analysis of 

the data. In practice, it turns out to be very tough to come up with one image analysis pipeline 

that works across multiple applications. The higher the diversity of datasets in the applications 

the more parameters will have to be included and fine-tuned in order to obtain reasonable output 

from the pipeline. 

As outlined in a recent article in Nature Biotechnology, the main goal of automated image 

analysis pipelines is to increase our knowledge of biological systems and to develop new 
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hypotheses from the resulting data (Meijering et al., 2016). Depending on the application, not 

all modules of a pipeline are required for each application and a feedback from individual 

modules will guide the application of other modules. Thus, an image analysis pipeline cannot be 

seen as an unidirectional flow of modules, in which one follows the other. Instead, it is 

important to have a strong modular architecture with clearly defined interfaces at the input and 

output sites. 

This work provided and discussed efficient, user-friendly solutions to these requirements. The 

modules were successfully applied in interdisciplinary research projects in cell and 

developmental biology. In future work, the individual modules should be extended to 

incorporate them into a holistic platform. Such a platform could comprise an open source 

framework that joins the knowledge and effort of the scientific community. Under the premise 

of a controlled process (Cardona and Tomancak, 2012; Ince et al., 2012), scientists with 

expertise in bioimage informatics contribute to this platform, by developing, using and 

optimizing modules for image processing and analysis. This approach is not restricted to image-

based systems biology, but can also be applied in medical diagnostics or industrial high-

throughput applications. 
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8 Supplementary Material 

Multiscale quantitiatve characterization 

 
Supplementary Figure 1 Renderings of the surface approximation. Depicted are the approximated 

surfaces and cell nuclei locations of all T47D spheroid datasets in application I. Scale bar: approximately 

50 µm. Figure adapted from Schmitz et al., 2017. 

 
Supplementary Figure 2 Spatial localization of cell nuclei with a volume between 300 and 600 µm³. 

(a) Smoothed histogram of the cell nuclei volume distribution of small, medium and large spheroids. Cell 

nuclei with volumes in the region highlighted in orange (300 to 600 µm³) were colored in the 

segmentation images to analyze their spatial localization. (b) Single planes of datasets S9, M2 and L3 at 

the center of the spheroid. All cell nuclei with a volume of less than 300 µm³ or greater than 600 µm³ are 

depicted in gray. The cell nuclei with a volume between 300 µm³ and 600 µm³ are colored in orange. 

Figure adapted from Schmitz et al., 2017. 
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Supplementary Figure 3 Plots of the mean cell density versus the normalized distance to the surface 
for small (a), medium (b) and large (c) spheroids. Figure adapted from Schmitz et al., 2017. 
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Supplementary Figure 4 Local cell density in all datasets. Three-dimensional rendering of segmented 

cell nuclei colored according to their corresponding cell density value for all small, medium and large 

spheroids, ranging from blue (35 cells) to red (70 cells). Renderings were clipped at about the center of 

the spheroids. Scale bar: 50 µm. Figure adapted from Schmitz et al., 2017. 

Supplementary Table 1 Runtime of the quantitative characterization module. Runtimes are shown 

for cell nuclei segmentation and post-processing of T47D spheroid datasets in application I. 

 File size 

(MB) 

initial 

segmentation 

(s) 

marker point 

detection (s) 

marker-

controlled 

watershed (s) 

alpha 

shape/cell 

graphs (s) 

total (min) 

S1 258 10 258 80 25 6 

S2 237 9 237 72 17 6 

S3 189 7 189 58 21 5 

S4 565 22 565 179 58 14 

S5 512 21 512 182 72 13 

S6 229 9 229 75 21 6 

S7 271 10 270 89 27 7 

S8 148 5 148 45 11 3 

S9 168 6 168 52 18 4 

M1 1376 57 1376 454 355 37 

M2 1299 50 1299 436 357 36 

M3 1444 55 1444 468 324 38 

L1 1451 57 1451 539 582 44 
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L2 2009 78 2009 740 630 58 

L3 1829 71 1830 667 750 55 

L4 1552 61 1552 519 563 45 

* Note that the raw image stacks were processed according to the settings given in Table 5. Computations 

were conducted on a workstation that comprises two quad-core CPUs (Xeon E5630 at 2.53 GHz, Intel 

Corporation), 96 Gigabyte DDR3 memory, running 64 bit Windows 7 Professional. 

Supplementary Table 2 Quantitative measures for all datasets. Shown are the quantitative measures 

for T47D spheroid datasets in application I. Table adapted from Schmitz et al., 2017. 

Dataset Group Volume (µm³) # of cells Median cell nucleus 

volume (µm³) 

Median absolute 

deviation of cell 

nucleus volume (µm³) 

S1 Small 5.81×10
6
 4,155 333 77 

S2 Small 4.15×10
6
 2,883 341 78 

S3 Small 4.68×10
6
 3,981 263 57 

S4 Small 1.06×10
7
 8,975 245 57 

S5 Small 1.18×10
7
 10,311 249 55 

S6 Small 4.58×10
6
 3,938 268 71 

S7 Small 5.96×10
6
 4,866 260 66 

S8 Small 2.71×10
6
 2,326 261 77 

S9 Small 3.98×10
6
 3,359 280 66 

M1 Medium 2.91×10
7
 25,775 234 51 

M2 Medium 2.88×10
7
 25,908 235 48 

M3 Medium 2.82×10
7
 25,064 232 53 

L1 Large 3.81×10
7
 32,898 211 50 

L2 Large 4.10×10
7
 35,097 211 53 

L3 Large 4.21×10
7
 38,752 209 54 

L4 Large 3.87×10
7
 32,222 279 62 
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Supplementary Figure 5 Rendering of cell nuclei locations and approximated surface of a selection 

of spheroids, one per cell seed number and time point after treatment. Scale bar: 100 µm. 

 
Supplementary Figure 6 Comparison of cell nucleus volume in T47D spheroids for all conditions. 

The images depict three-dimensional renderings of the segmented cell nuclei represented as spheres and 

color coded according to their corresponding cell nucleus volume. Please note that the cell nucleus 

volume was normalized to the minimum (min) and maximum (max) cell nucleus volume determined in 

all datasets. To discriminate against outliers, the 1/10-quantile and the 9/10-quantile were chosen for min 

and max. Renderings were clipped at about the center of the spheroids. Scale bar: 100 µm. h, hours, p.t., 

post treatment. NC, negative control. 
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Supplementary Table 3 Number of T47D spheroids per condition and time point. Spheroids were 

generated from 500, 1,000, 2,000 and 5,000 cells seeded. Spheroids grown in 0.1% DMSO were used as 

negative control. h, hours; NC, negative control; p.t., post treatment. 

 0h p.t. 24h p.t. 48h p.t. 72h p.t. 72h NC 

500 3 3 1 1 2 

1,000 2 4 5 4 2 

2,000 4 10 6 5 3 

5,000 3 9 6 3 4 

 

Supplementary Table 4 Volume of T47D spheroids per condition and time point given as 

mean±standard error × 10
7
 µm³. Spheroids were generated from 500, 1,000, 2,000 and 5,000 cells seeded. 

For 500 cells seeded, only one spheroid was available for time points 48h and 72h. h, hours; NC, negative 

control; p.t., post treatment. 

 0h p.t. 24h p.t. 48h p.t. 72h p.t. 72h NC 

500 0.28±0.10
 

0.24±0.10
 

0.18 0.17 0.38±0.04 

1,000 1.48±0.07
 

1.11±0.31
 

0.85±0.12 0.32±0.04 1.82±0.46 

2,000 3.82±0.09
 

3.54±0.29
 

2.86 ±0.11 1.43±0.05 4.45±0.13 

5,000 4.55±0.59
 

5.04±0.51 5.08±0.29 3.25±0.58 5.73±0.26 

 

Supplementary Table 5 Number of cells in T47D spheroids (mean±standard error) per condition and 

time point. For 500 cells seeded, only one spheroid was available for time points 48h and 72h. h, hours; 

NC, negative control; p.t., post treatment. 

 0h p.t. 24h p.t. 48h p.t. 72h p.t. 72h NC 

500 1,414±461 1237±404 1,138 1,149 1,991±55 

1,000 8,350±232 6020±607 5,997±414 2,800±237 9,078±1,120 

2,000 17,221±96 16,764±654 15,441±621 8,365±240 19,425±949 

5,000 25,584±1,918 27,547±1176 26,979±1742 19,091±5251 29,873±750 

 

Supplementary Table 6 Average diameter of T47D spheroids (in µm) along the principal component 

directions 𝑝1, 𝑝2 and 𝑝3 determined by PCA analysis. 

 0h p.t. 24h p.t. NC 48h p.t. 72h p.t. 72h NC 

p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3 

500 170 153 99 200 144 83 169 161 69 136 115 101 189 175 108 

1,000 282 255 190 281 242 138 259 228 125 189 164 98 304 278 199 

2,000 392 363 232 407 376 204 373 334 192 296 268 153 426 378 248 

5,000 425 393 229 463 428 218 474 445 203 430 395 155 460 421 252 
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Supplementary Table 7 Average cell nucleus volume in T47D spheroids (median±median absolute 

deviation) per condition and time point. h, hours; p.t., post treatment. 

number of 

cells seeded 

0h p.t. 24h p.t. 48h p.t. 72h p.t. 72h NC 

500 206±79 193±59 189±67 129±48 176±69 

1,000 167±62 160±62 116±45 99±41 175±69 

2,000 173±58 160±51 129±42 109±39 184±72 

5,000 145±51 142±49 127±41 98±32 153±53 

 

 
Supplementary Figure 7 Alpha shape surface for selected T47D spheroids. Rap., Rapamycin, Baf., 

Bafilomycin. Scale bar: approximately 50 µm. 
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Supplementary Figure 8 Quantitative results for all four experiments. Boxplots of the spheroid 

volume for each experiment (a) and pooled after normalization (b), the number of cell nuclei for each 

experiment (c) and pooled after normalization (d), the average nucleus volume for each experiment (e) 

and pooled (f), the average cell density for each experiment (g) and pooled (h). T47D spheroids were 

treated with 0.08 µM and 0.16 µM Bafilomycin for autophagy inhibition, 0.08 µM and 0.16 µM 

Rapamycin for autophagy induction, cell culture medium (control), DMSO, or starved in EBSS medium. 

Boxplot parameters: the box contains 50% of the data points; the middle line (black) of the box is the 

median. Whiskers and outliers represent the upper and lower 25% of the data. Outliers are outside the 

1.5x interquartile range; far outliers are outside the 3x interquartile range. ●, outliers; ○, far outliers. 

Supplementary Table 8 Number of T47D spheroids per condition. 

 batch 

14042015 

batch 

24042015 

batch 

27042015 

batch 

01052016 

total 

Bafilomycin 0.008 µM 3 4 0 3 10 

Bafilomycin 0.016 µM 6 4 0 3 13 
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control 4 4 4 3 15 

DMSO 4 4 4 4 16 

EBSS 4 4 0 4 12 

Rapamycin 0.08 µM 4 4 0 5 13 

Rapamycin 0.16 µM 5 4 4 3 16 

 

Supplementary Table 9 Quantitative results for pooled datasets. Results are given as the median and 

the median absolute deviation. 

 spheroid volume 

(normalized) 

number of cells 

(normalized) 

cell nucleus 

volume (µm³) 

cell density 

(cells/u.v.) 

Bafilomycin 0.008 µM 0.97±0.22 0.97±0.25 230±24 59±6 

Bafilomycin 0.016 µM 0.77±0.24 0.77±0.13 257±19 55±3 

control 0.88±0.22 0.86±0.16 255±27 52±3 

DMSO 0.99±0.05 1.02±0.05 267±35 54±4 

EBSS 0.52±0.09 0.58±0.14 249±24 56±4 

Rapamycin 0.08 µM 0.47±0.06 0.64±0.10 214±23 61±7 

Rapamycin 0.16 µM 0.53±0.11 0.67±0.13 212±24 64±3 

 

 
Supplementary Figure 9 Quantitative results for all experiments. Boxplots of the spheroid volume (a) 

and the number of cells (b) for each experiment. The data was obtained from four different experiments 

(batch 3D82, 3D83, 3D84 and 3D85). Boxplot parameters: the box contains 50% of the data points; the 

middle line (black) of the box is the median. Whiskers and outliers represent the upper and lower 25% of 

the data. 

Supplementary Table 10 Number of HC11 spheroids per condition. Spheroids were generated from 

5,000 cells seeded and transferred into agarose capillaries with a diameter of 0.3 mm (control) or 0.2 mm 

(constricted). 

 1h p.t. 24h p.t. 72h p.t. 

control 7 19 9 

constricted 6 17 13 
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Supplementary Table 11 Quantitative results for pooled datasets. Results are given as the median and 

the median absolute deviation. 

 spheroid volume 

(normalized) 

number of cells 

(normalized) 

mean cell nucleus 

volume (µm³) 

cell density 

(cells/u.v.) 

control, 1h p.t. 1.00±0.04 1.00±0.05 73±18 17±3 

constricted, 1h p.t. 1.00±0.04 1.07±0.01 71±19 17±4 

control, 24h p.t. 1.00±0.12 1.00±0.11 93±21 13±3 

constricted, 24h p.t. 0.90±0.14 1.07±0.11 73±21 15±4 

control, 96h p.t. 1.00±0.10 1.00±0.10 76±20 15±4 

constricted, 96h p.t. 0.72±0.17 0.99±0.08 62±20 17±5 
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Computer-aided cell tracking and lineage reconstruction 
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Supplementary Figure 

10 Lineage trees of lateral 

root founder cells in all 

datasets. The cell file and cell 

id are indicated above each 

lineage tree. All lineage trees 

are given in top to bottom 

orientation. Each pair of 

vertices represents the first 

and last occurrence of a cell. 

Thus, the root vertex of each 

tree corresponds to the first 

occurrence of a founder cell, 

whereas the leaves represent 

the progenitor cells present at 

the last time point tracked. 

The cell division types 

anticlinal, periclinal, radial are 

indicated for each cell 

division. 
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Supplementary Figure 11 Plot of the exponential growth profiles and fitting parameters. Left 

column: plots of the number of cells as a function of time since gravistimulation of the plant (red curve). 

The black dashed line represents the fitted exponential growth curve. Right column: parameters table of 

the exponential growth model fit, where 𝑁0 the number of cells at the first time point 𝑡0 and 𝑘 is the 

growth rate.  
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Supplementary Figure 12 Plot of the volume as a function of cell number and fitting parameters. 
Left column: plots of the number of cells as a function of time since gravistimulation of the plant (red 

curve). The black dashed line represents the fitted exponential growth curve. Right column: parameters 

table of the exponential growth model fit, where 𝑁0 the number of cells at the first time point 𝑡0 and 𝑘 is 

the growth rate. 
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Supplementary Table 12 Contribution of cell files to the lateral root. The contribution is given in 

number of cells in each cell file at the 143 cells stage for each dataset. 

 cell file 

 #-4 #-3 #-2 #-1 #0 #+1 #+2 #+3 #+4 

#120830 - - 8 19 50 42 20 4 - 

#121204 5 8 18 35 38 22 11 5 - 

#121211 - - 7 24 43 39 26 4 - 

#130508 - 6 18 53 46 20 - - - 

#130607 - - 13 32 44 26 18 11 - 

 

Supplementary Table 13 Number of anticlinal, periclinal and radial cell divisions. The numbers 

comprise all cell divisions up to the developmental stage of 143 cells. 

 number of anticlinal 

divisions 

number of periclinal 

divisions 

number of radial 

divisions 

#120830 59 60 15 

#121204 55 64 10 

#121211 50 57 19 

#130508 51 56 27 

#130607 60 60 9 

mean 55 59 16 

SD 5 3 7 

 

Supplementary Table 14 First occurrence of anticlinal, periclinal and radial cell divisions. Note that 

the first cell division round for dataset #121211 could not be properly reconstructed. The dataset was 

therefore omitted from the analysis. 

 anticlinal periclinal radial 

 cell 

division 

round 

number 

of cells 

cell 

file 

cell 

division 

round 

number 

of cells 

cell 

file 

cell 

division 

round 

number 

of cells 

cell 

file 

#120830 1 10 0 2 21 0 3 34 0 

#121204 1 16 -1 2 29 +1 4 65 0 

#130508 1 9 -1 2 16 -1 4 43 0 

#130607 1 15 -1 2 28 0 4 95 0 

mean  13   24   60  

SD  4   6   27  
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Supplementary Table 15 Occurrence of cell layers. The occurrence of each layer is given in number of 

cells. 

 cell layer 

dataset P O I OO OI IO II 

#120830 22 58 66 146 - 119 152 

#121204 30 60 73 - - 147 154 

#121211 30 64 89 157 172 145 165 

#130508 17 48 56 - - - - 

#130607 29 56 55 158 174 102 172 

mean 26 57 68 154 173 128 161 

SD 6 6 14 7 1 22 9 
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