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1 Introduction

One of the major findings of the experimental heavy ion programme [1–4] is that QCD

matter at high temperatures and low densities behaves as a nearly ideal fluid with very

low viscosity. This conclusion is based on the fact that experimental data are excellently

described by relativistic hydrodynamics, with transport coefficients fitted to the data [5–10].

Unfortunately, theoretical predictions of transport coefficients from the fundamental theory

QCD remain very difficult [11]. Up to a few times the transition temperature to the quark

gluon plasma, the QCD coupling is not weak enough for perturbative methods to apply,

which predict a less ideal fluid [12, 13]. On the other hand, results in the opposite strong

coupling limit can be obtained by AdS/CFT duality methods in certain supersymmetric

models [14, 15], but these do not correspond to QCD directly.
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Unfortunately, lattice simulations of real time quantities are in general severely limited

by the need for analytic continuation. Calculations of spectral functions on the lattice based

on maximum entropy methods [16, 17] or a model ansatz [18–20] require both functional

input and high accuracy data to sufficiently constrain the results. An exception to this

conceptual difficulty are the three second-order hydrodynamic coefficients κ, λ3, λ4 [21–25],

which can be related to Euclidean correlation functions through Kubo formulae. They have

recently been computed to leading order in a weak coupling expansion in [26], where also

possibilities for a lattice determination were discussed. The coefficients λ3, λ4 are related

to three-point functions, which are still too costly to numerically evaluate.

Here we present a first attempt to determine κ from the momentum expansion of a

suitable two-point function in a lattice simulation. In order to approach the zero momentum

limit, very large lattices are required, demanding an enormous numerical effort already in

pure gauge theory. While the errors on our result are thus still too large to be satisfactory,

our work demonstrates that the determination of the second order coefficients is possible

without conceptual difficulties and should be improved in the future with appropriate noise

reduction methods. Interestingly and in contrast to the first order transport coefficients,

the lattice result for κ is within error bars compatible with the perturbative weak coupling

result. It is also compatible with a suitably rescaled AdS/CFT result.

In section 2 we briefly summarise the relation between the transport coefficient κ and

a Euclidean correlator of the energy-momentum tensor, in section 3 this is carried over to

the lattice formulation, including a leading order perturbative evaluation and a discussion

of renormalisation. Section 4 contains the numerical results of our simulations.

2 The transport coefficient κ

The definition of transport coefficients is based on a gradient expansion of the energy-

momentum tensor in relativistic hydrodynamics, but their respective values have to be

determined from experiment or an underlying theory. In the case of the quark-gluon

plasma this underlying theory is QCD. In this section we review the connection between

the transport coefficient κ and a Euclidean correlator in QCD, which allows for a direct

computation of κ without resort to maximum entropy methods or functional input for the

spectral function.

2.1 Relativistic hydrodynamics

The basic quantity in relativistic hydrodynamics is the energy momentum tensor (for a

review, see [27]), which can be decomposed into an ideal part Tµν0 and a dissipative part Πµν

Tµν = Tµν(0) + Πµν . (2.1)

The ideal part is determined by the hydrodynamic degrees of freedom, wich are the energy

density ε, pressure p, the fluid’s four velocity uµ and the metric tensor gµν . Lorentz

symmetry and the identifications T 00
(0) = ε, T 0i

(0) = 0 and T ij(0) = p δij in the local rest frame

restrict its form to

Tµν(0) = εuµuν + p (gµν + uµuν) . (2.2)

– 2 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
3

The dissipative contribution consists of a traceless part πµν and a part with non-vanishing

trace Π

Πµν = πµν + (gµν + uµuν) Π. (2.3)

The former has been specified for a non-conformal fluid in a second order gradient expansion

within N = 4 Super-Yang-Mills theory [25]

πµν = −ησµν + ητπ

(
〈Dσµν〉+

∇ · u
3

σµν
)

+ κ
(
R〈µν〉 − 2uαuβR

α〈µν〉β
)

+ . . . . (2.4)

Besides the shear viscosity η and the relaxation time τπ, to second order the transport

coefficient κ enters the expansion and couples to the symmetrized Riemann curvature

tensor R, its contractions and the fluid’s four velocity uµ. For explanations of ∇, σµν , D

and further terms in the expansion we refer to [25]. Note that even in flat spacetime the

transport coefficient κ has a non-vanishing value [26, 28].

2.2 Thermal field theory

For the computation of the transport coefficient κ from QCD a relation between its def-

inition in relativistic hydrodynamics and thermal field theory is necessary. This can be

achieved by considering the fluid’s linear response to a metric perturbation [24] and estab-

lishes a connection between the transport coefficient κ and the retarded thermal correlator

of the energy momentum tensor Tij in momentum space,

GR(x, y) = 〈[T12(x), T12(y)] θ(x0 − y0)〉 , (2.5)

GR(ω, ~q) =

∫ ∞

−∞
dtdx3 e−i(ωt−qixi)GR(x, 0). (2.6)

The transport coefficient κ is identified as the leading low momentum coefficient at zero

frequency with momentum aligned in z-direction, ~q = (0, 0, q3) [24, 28],

GR(ω = 0, ~q) = G(0) +
κ

2
|~q |2 +O(|~q |4). (2.7)

While the retarded correlator is a real time quantity, it is related by analytic continuation

to the Euclidean correlator

GE(x, y) = 〈T12(x)T12(y)〉 , (2.8)

GE(iωn, ~q) =

∫ 1/T

0
dτ

∫ ∞

−∞
dx3 e−i(ωnτ+qixi)GE(x, 0), (2.9)

with the discrete Matsubara frequencies ωn = n2πT , n ∈ Z. This can be seen by writing

both correlators in their spectral representation

GR(ω, ~q) = i

∫ ∞

−∞

dω′

2π

ρ(ω′, ~q)

ω − ω′ + iη
, (2.10)

GE(iωn, ~q) =

∫ ∞

−∞

dω

2π

ρ(ω, ~q)

ω − iωn
. (2.11)
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Appropriate boundary conditions render the analytic continuation unique [29],

GR(ω, ~q) = GE(ω + iη, ~q). (2.12)

For vanishing frequency ω = 0 this can be written [11]

GR(ω = 0, ~q) = GE(ω = 0, ~q) +B. (2.13)

The contact term B arises from the missing commutator in the definition of the Euclidean

correlator (2.8) compared to its retarded analogue (2.5) and corresponds to the correlator

evaluated at equal spacetime points, ∼ T12(0)T12(0). An investigation of this contact term

B by an operator product expansions shows that it is momentum independent [30]. Hence

equation (2.7) can be rewritten

GE(ω = 0, ~q) = G′(0) +
κ

2
|~q |2 +O(|~q |4), (2.14)

where we have absorbed the constant G(0) and the contact term B into a new constant

G′(0) ≡ G(0)−B.

The transport coefficient κ can now be obtained as the slope of the low momentum

correlatorGE(q2), which provides a possibility for a direct determination using lattice QCD.

This is in contrast to computations of the shear viscosity [19] or heat conductivity [17,

20]. These are true dynamical quantities which cannot be related to Euclidean correlators

without non-trivial analytic continuation. Their determination by lattice calculations thus

requires additional input, e.g. an ansatz for the spectral function or the maximum entropy

method.

So far the discussion was completely general. We now specify to Yang-Mills theory

and its energy momentum tensor [11]

Tµν = θµν +
1

4
δµνθ, (2.15a)

θµν =
1

4
δµνF

a
αβF

a
αβ − F aµαF aνα (2.15b)

where F aµν corresponds to the field strength tensor. The term θ = β(g)/(2g)F aαβF
a
αβ includes

the renormalisation group function β(g) and corresponds to the trace anomaly, which is

caused by breaking of scale invariance. Since the transport coefficient κ is defined in the

shear channel, 〈T12T12〉, it does not enter the computation.

Equation (2.14) has been evaluated perturbatively in pure gluodynamics in the ideal

gas limit, i.e. at vanishing coupling, with the result [26, 28]

κ =
(
N2

c − 1
) T 2

18
. (2.16)

3 Computation of κ in lattice QCD

In this section we describe the discretisation of the action and the energy-momentum

tensor and explain the need for renormalisation. Furthermore, we calculate κ in lattice

perturbation theory and compare with the continuum result (2.16).
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3.1 Lattice framework

We employ Wilson’s Yang-Mills action on an anisotropic lattice with different lattice spac-

ings in temporal and spatial direction, aσ and aτ , respectively,

S[U ] =
β

Nc
Re Tr


 1

ξ0

∑

x,i<j

(1− Uij(x)) + ξ0

∑

x,i

(1− Ui0(x))


 (3.1)

with lattice coupling β = 2Nc/g
2 and plaquette variables Uµν . The bare anisotropy ξ0 gets

renormalised to the actual anisotropy ξ = aσ/aτ ,

η(β, ξ) =
ξ

ξ0(β, ξ)
. (3.2)

We take the numerical evaluation of the renormalisation factor from [31]. The scale is

set for a specific value of the anisotropy, ξ = 2, by comparison of the string tension from

the lattice
√
σL [32] to its experimental value

√
σexp = 440 MeV [33]. The spatial lattice

spacing follows from

a−1
σ =

√
σexp√
σL

. (3.3)

As will be discussed in section 3.4, the discretised energy-momentum tensor requires

multiplicative renormalisation due to the reduced translational invariance on the lattice.

For this purpose it is favourable to express the correlator (2.8) in terms of diagonal elements

instead of nondiagonal ones. This is achieved by rotating the lattice by π/4 in the plane of

the corresponding channel, i.e. the (1, 2)-plane for ~q = (0, 0, q3). As shown in appendix A

the trace anomaly θ does not enter the transformed correlator, although it includes diagonal

elementes of the energy-momentum tensor [34],

〈T12(x)T12(y)〉 =
1

2

[
〈θ11(x)θ11(y)〉 − 〈θ11(x)θ22(y)〉

]
. (3.4)

Additionally, temporal and spatial elements of the energy-momentum tensor require sep-

arate renormalisation factors Zτ and Zσ on an anisotropic lattice. The diagonal energy-

momentum tensor elements in the clover discretisation read

a3
σaτθii(x) =

β

128Nc
Re Tr [Zτ (β, ξ)θτii(x) + Zσ(β, ξ)θσii] , (3.5)

where the bare elements are given by

θτii(x) = ξ0F̂
2
0i(x)− ξ0

∑

k 6=i
F̂ 2
k0(x), (3.6a)

θσii(x) = − 1

ξ0

∑

k,j 6=i
k<j

F̂ 2
kj(x) +

1

ξ0

∑

k

F̂ 2
ki(x). (3.6b)

– 5 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
3

aσ = ξaτ

aτ Qµν(x)

Figure 1. Illustration of the clover plaquette on an anisotropic lattice.
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Figure 2. Computation of θ11 on an isotropic 6× 163 lattice for β = 7.1. We compare the clover

and plaquette discretisations.

The clover plaquette [35] consists of four ordinary plaquettes (see figure 1) and is given by

F̂µν(x) = Qµν(x)−Qνµ(x), (3.7)

Qµν(x) ≡ 1

4
[Uµν(x) + Uν−µ(x) + U−µ−ν(x) + U−νµ(x)] . (3.8)

In contrast to an implementation with simple plaquette terms [34] the clover version has

reduced discretisation errors and an improved signal-to-noise ratio [36], cf. figure 2.

3.2 Relation of κ to the lattice correlator

In order to extract κ numerically from equation (2.14), we compute the Euclidean corre-

lator of the energy-momentum tensor within the lattice framework and perform a Fourier

transform to momentum space with vanishing frequency. The determination requires the

momenta to be aligned orthogonally to the studied channel of the energy-momentum ten-

sor, i.e. ~q = (0, 0, q3) for T12. This is also the case for the corresponding Kubo formula [11].

Thus the correlator in momentum space is given by

a3
σaτG

E(q3) =
1

V

∑

x,y

e−iq3(x3−y3) 〈T12(x)T12(y)〉 . (3.9)

Additionally, we include the channels T13 and T23 with corresponding momenta in our

analysis, since rotational invariance allows to average over all three channels.
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We need small momenta compared to temperature, which sets the relevant scale,

i.e. qi/T < 1. With the discretised versions of temperature and momenta

T =
1

aτNτ
, qi =

2π

aσNσ
ni, ni = 0, 1, . . . , Nσ − 1 (3.10)

we have for the ratio on the lattice

qi
T

=
2πNτ

ξNσ
ni < 1. (3.11)

The temporal lattice extent Nτ is fixed by the temperature and lattice spacing. In order to

fit the transport coefficient κ to equation (2.14), we need at least three different momenta

satisfying this constraint (3.11). Thus the simulation requires large spatial lattice extents

Nσ, which makes the calculation costly. This can be partly moderated by working with

anisotropic lattices ξ > 1.

3.3 Lattice perturbation theory

In order to estimate lattice artefacts and check our numerics, we first compute the transport

coefficient κ in lattice perturbation theory on a lattice with anisotropy ξ in the case of

vanishing coupling (g = 0). Definitions of relevant quantities and intermediate results can

be found in appendix B, for an overview see e.g. [37].

In the case of vanishing coupling the field strength tensor simplifies to

F aµν = ∂c
µA

a
ν − ∂c

νA
a
µ, (3.12)

where we replace the differential operator by the central difference

∂c
µA

a
ν(x) =

1

aµ

[
Aaν

(
x+

aµµ̂

2

)
−Aaν

(
x− aµµ̂

2

)]
(3.13)

and define a lattice spacing aµ, which is excluded from Einstein’s sum convention

aµ =




aτ for µ = 0

aσ for µ = 1, 2, 3 .
(3.14)

In lattice perturbation theory the dynamical variables are the gauge fields Aµ and we can

plug the energy-momentum tensor from equation (2.15b) together with the field strength

tensor (3.12) into the correlator (2.8). Then sixteen terms of the generalised form

Ci1i2j1j2l1l2m1m2(x, y) =
〈
∂c
i1A

a
i2(x)∂c

j1A
a
j2(x)∂c

l1A
b
l2(y)∂c

m1
Abm2

(y)
〉

(3.15)

have to be transformed to momentum space. After transforming the individual gauge fields

Aµ(x) to momentum space by (B.1b), we apply Wick’s theorem using the free gauge field

propagator (B.3). Because of translational invariance it is sufficient to consider y = 0 or

Ci1i2j1j2l1l2m1m2(x, 0), and we obtain

Ci1i2j1j2l1l2m1m2(ω, ~q) = (N2
c − 1)

∑∫

k

k̃l1(k̃ + q)m1

k̃2(k̃ + q)2

×
[
δi2l2δj2m2 k̃i1(k̃ + q)j1 + δi2m2δj2l2 k̃j1(k̃ + q)i1

]
(3.16)
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with the lattice momenta q̃, k̃ as defined in appendix B. Evaluating the correlator (2.8)

and aligning the outer momentum to q = (0, 0, 0, q3) we find for its Fourier transform

GE(q) =
(
N2

c − 1
)∑∫

k

1

k̃2(q̃ + k)2

{
4k̃2

xk̃
2
y − 2k̃(q̃ + k)(k̃2

x + k̃2
y) + k̃2k̃2

x

+ (q̃ + k)2k̃2
y +

[
k̃(q̃ + k)

]2 }
. (3.17)

We perform the finite Matsubara sums by the residue theorem using the formula [38]

1

Nτ

Nτ∑

n=1

g(z) = −
∑

i

Resz̄i
(

1
zg(z)

)

z̄Nτi − 1
(3.18)

and list the results for the individual terms in appendix C. As will be described in sec-

tion 3.4 we subtract the temperature independent vacuum part to avoid ultraviolet diver-

gences. The three-momentum integration can be performed after expanding the integrals

around the continuum limit. This step extends the integration measure to infinite volume

[−π/a, π/a]3 → R3 and produces correction terms in small lattice spacings aσ. Together

with the expansion in small momenta q3 the remaining integrals can be solved analytically

and one finds for the different terms

∑∫

k

4k̃2
xk̃

2
y

k̃2(q̃ + k)2
=

π2

45(aτNτ )4
+

π4a2
σ

(aτNτ )6

(
1

135
+

5

189ξ2

)

− q2

72(aτNτ )4
+

π2a2
σq

2

(aτNτ )4

(
− 1

1440
− 13

4320ξ2

)
, (3.19a)

−
∑∫

k

2k̃(q̃ + k)(k̃2
x + k̃2

y)

k̃2(q̃ + k)2
= − 2π2

45(aτNτ )4
− π4a2

σ

(aτNτ )6

(
2

189
+

2

189ξ2

)

+
q2

12(aτNτ )2
− π2a2

σq
2

(aτNτ )4

(
− 1

2160
− 13

720ξ2

)
, (3.19b)

∑∫

k

k̃2
x

(q̃ + k)2
=
∑∫

k

k̃2
y

k̃2
=

π2

90(aτNτ )4
+

π4a2
σ

(aτNτ )6

(
1

378
+

1

378ξ2

)
, (3.19c)

∑∫

k

[
k̃(q̃ + k)

]2

k̃2(q̃ + k)2
= − q2

24(aτNτ )2
+

π2a2
σq

2

(aτNτ )4

(
− 17

4320
+

11

1440ξ2

)
. (3.19d)

For fixed temperature T = (aτNτ )−1 we can rewrite the dependence on lattice spacings aτ
and aσ as a dependence on the temporal lattice extent Nτ and the anisotropy ξ = aσ/aτ .

Combining the results of (3.19) we obtain the following expression for the dimensionless

energy-momentum tensor correlator in momentum space

GE(q)

T 4
= (N2

c − 1)

{
π4

N2
τ

(
2ξ2

945
+

4

189

)

+
q2

T 2

[
1

36
+
π2

N2
τ

(
− ξ2

240
+

49

2160

)]}
+O

(
q4, N−4

τ

)
, (3.20)
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from which we identify the dimensionless transport coefficient κ/T 2 as

κ

T 2
= (N2

c − 1)

[
1

18
+
π2

N2
τ

(
− ξ2

120
+

49

1080

)]
+O

(
q4, N−4

τ

)
. (3.21)

At fixed temperature the continuum limit aµ → 0 is performed by taking Nτ →∞, where

we reproduce the result of equation (2.16).

Although the computation has been performed in the ideal gas limit and thus lacks

corrections in the coupling g, it may serve as a check of our numerics at high temperatures

and helps to estimate the size of cut-off effects. The computed correction in the inverse

temporal lattice extent suggests an anisotropy of ξ ≈ 2.33 in order to eliminate leading

order lattice artefacts. In the case of other values for the anisotropy we can determine

the required temporal lattice extent to decrease the leading discretisation error below a

desired treshold. As stated in section 4 we use ξ = 2 in order to use previous results for the

scale setting. Thus a temporal lattice extent of Nτ ≥ 6 is required in order to reduce the

leading lattice artefacts below 10% in the ideal gas limit. Note that an anisotropy larger

than ξ > 2.33 causes a quadratic increase of the lattice artefacts, though it would milden

the constraint (3.11).

3.4 Renormalisation

The correlator defined in (2.8) suffers from ultraviolet divergences. Although they become

finite on the lattice, we have to correct the correlator by additive renormalisation. Therefore

we subtract the vacuum part, which is defined as the correlator computed at vanishing

temperature, from the measured correlator. We define a new vacuum corrected expectation

value by

〈O〉 = 〈O〉T − 〈O〉Tvac , (3.22)

where 〈O〉T is an observable evaluated at a given temperature T and 〈O〉Tvac its vacuum

contribution, i.e. evaluated at vanishing temperature Tvac = 0.

The energy-momentum tensor is the Noether current corresponding to translational

invariance. In the continuum it is protected from renormalisation by Ward-identities [39].

However, on the lattice translations only form a discrete symmetry group and thus mul-

tiplicative renormalisation becomes necessary. (The lattice perturbation theory computa-

tion in section 3.3 does not require multiplicative renormalisation because it is the non-

interacting case).

For an isotropic lattice the finite renormalisation factor only depends on the lattice cou-

pling β whereas on an anisotropic lattice it also depends on the anisotropy ξ. Additionally,

temporal and spatial direction (3.6) require separate renormalisation factors Zσ(β, ξ) and

Zτ (β, ξ). Then the renormalised energy-momentum tensor in the diagonal channel reads

θii = Zτ (β, ξ)

[
θτii +

Zσ(β, ξ)

Zτ (β, ξ)
θσii

]
. (3.23)
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Applying the cubic symmetry (3.4) we rewrite the correlator (3.9) using the above notation

and find

a3
σaτG

E(q3) =
1

2V

∑

x,y

e−iq3(x3−y3)
[
Z2
τG

τ
0(x, y) + ZτZσG

τσ
0 (x, y) + Z2

σG
σ
0 (x, y)

]
(3.24)

with the newly defined bare correlators

Gτ0,T (x, y) ≡ 〈θτ11(x)θτ11(y)− θτ11(x)θτ22(y)〉T (3.25a)

Gτσ0,T (x, y) ≡ 〈θτ11(x)θσ11(y) + θσ11(x)θτ11(y)− θτ11(x)θσ22(y)− θσ11(x)θτ22(y)〉T (3.25b)

Gσ0,T (x, y) ≡ 〈θσ11(x)θσ11(y)− θσ11(x)θσ22(y)〉T , (3.25c)

and their vacuum subtracted versions

Gi0(x, y) = Gi0,T (x, y)−Gi0,Tvac(x, y), i ∈ {τ, τσ, σ} . (3.26)

Performing the renormalisation procedure we need the ratio Zσ(β, ξ0)/Zτ (β, ξ0) and

the absolute scale Zτ (β, ξ0). The former can be obtained from renormalisation group

invariant quantities [40]. To this end one introduces three differently sized lattices

〈O〉1 =̂ 2L× L× L× L, 〈O〉2 =̂ L× 2L× L× L,
〈O〉3 =̂ L× L× 2L× L, 〈O〉4 =̂ L× L× L× 2L, (3.27)

and the renormalisation group invariant quantities

F1 = L4 〈T00〉1 , F2 = L4 〈T11〉2 , F3 = L4 〈T22〉3 , F4 = L4 〈T33〉4 . (3.28)

Since the renormalisation factors do not depend on the temperature, all directions are

symmetric and it follows

F1 = F2, F1 = F3, F1 = F4. (3.29)

Applying equation (3.23) one can solve for the ratio of renormalisation factors. For instance

the equation F1 = F2 translates to

Zσ(β, ξ)

Zτ (β, ξ)
=
〈θτ00〉1 − 〈θτ11〉2
〈θσ11〉2 − 〈θτ00〉1

, (3.30)

where the expectation values are computed by lattice simulations of (3.28). We compute

the ratio Zσ(β, ξ0)/Zτ (β, ξ0) from all three equations in (3.29) and average the results. The

simulations have to be performed for every lattice coupling β and anisotropy ξ.

We obtain the absolute renormalisation factor by utilising the physical interpreta-

tion of the energy-momentum tensor, whose diagonal spatial elements are equivalent to

the pressure

〈θii〉 = p. (3.31)

The absolute renormalisation factor enters the energy-momentum tensor correlator quadrat-

ically. Therefore the renormalisation procedure is very sensitive to the exact value of the
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Figure 3. Comparison of the not multiplicatively renormalised energy-momentum tensor〈
θbareii

〉
/T 4 for Nτ = 6 and ξ = 2 to the continuum extrapolated pressure p/T 4 from the lat-

tice [41], where the line is obtained by a cubic spline interpolation. The difference between them

at a given temperature corresponds to the absolute renormalisation factor.

pressure and encourages us to use a highly precise value for it. For this reason we use the

continuum extrapolated lattice data from [41]. Figure 3 illustrates the difference between

the continuum value of the pressure and the not multiplicatively renormalised energy-

momentum tensor. The difference between them at a given temperature corresponds to

the absolute renormalisation factor.

4 Numerical results

4.1 Numerical setup

We create the gauge field configurations using the standard heatbath algorithm [42–44]

adapted to an anisotropic lattice. Our implementation is based on the library QDP++ [45].

In order to compute the vacuum part necessary for additive renormalisation, we run

extra simulations with increased temporal lattice extent Nτ . For our fine and spatially large

lattices this is very costly. We therefore choose Tvac ≈ 0.8Tc, with the critical temperature

Tc ≈ 260 MeV for Yang-Mills theory [46]. For our purposes this temperature is low enough

since firstly the vacuum divergence is temperature independent, and secondly it is well

known that the pressure or the deviation of screening masses from their vacuum values are

exponentially small in the confined phase (see [41, 46–48] for numerical evidence and [49]

for an analytic explanation).

The set of momenta has to fulfil the constraint (3.11), which basically dictates the

simulation parameters. An anisotropy ξ > 1 benefits this constraint. As discussed in

section 3.3 a value for the anisotropy of ξ ≈ 2.33 minimizes the first order lattice corrections.

However, we choose an anisotropy of ξ = 2, which allows to set the scale by taking the

lattice spacing as a function of the lattice coupling a = a(β) from [32]. Adjusting the
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Run i ii iii iv

β 7.1 7.1 6.68 6.14

Nτ 6 8 6 6

Nσ 120 120 120 120

Nvac
τ 72 72 42 24

ξ 2 2 2 2

aσ [fm] 0.026 0.026 0.044 0.094
T/Tc 9.4 7.1 5.6 2.6
Tvac/Tc 0.8 0.8 0.8 0.7

# configurations T 500800 434480 403500 542000

# configurations Tvac 455000 455000 429000 421250

Table 1. Simulation parameters for four evaluations of κ. The lower temperature Tvac is required

for renormalisation.

temporal lattice extent to Nτ ≥ 6 reduces the computed lattice errors in (3.21) below 10%.

A numerical analysis of the relevant correlators in lattice QCD [36] even suggests values

for the temporal lattice extent of Nτ ≥ 8.

Extracting the transport coefficient κ from (2.14) by performing a linear fit in q2
3

requires at least three different momenta q3, where the highest momentum still has to

fulfil the constraint (3.11). More momenta would be favourable improving the fit’s quality.

Thus we choose for the temporal lattice extent Nτ = 6 and for the spatial lattice extent

Nσ = 120 at a given anisotropy ξ = 2. All simulation parameters are listed in table 1.

In the deconfined phase topological fluctuations are suppressed [50] and we expect no

difficulties in using very fine lattices. Due to the large computational effort creating gauge

fields on 1203 ×Nτ lattices, we do not exclude any configurations but account for existing

correlations by jackknife error sampling, see e.g. [51].

The multiplicative renormalisation procedure requires knowledge of the renormalisa-

tion factor ratio Zσ(β, ξ0)/Zτ (β, ξ0). As described in section 3.4 we determine it from

computing the quantities (3.28) on lattices (3.27) with L = 48. The simulations must be

performed for every lattice coupling β of table 1. Intermediate results for the computation

of the renormalisation factors are shown in table 6 and table 7 in appendix D with reference

to run (i) of table 1.

4.2 Comparison to lattice perturbation theory

Our first simulation aims at making contact to lattice peturbation theory, section 3.3. The

weak coupling regime is reached by increasing the temperature. Adopting the parameters

from the previous section 4.1 we choose for the lattice coupling β = 7.1, corresponding to

a temperature of T = 9.4Tc, and a spatial lattice spacing of aσ = 0.026 fm (see column (i)

in table 1).

Figure 4 shows the correlator GE(q)/T 4 for five momenta compared to the result from

lattice perturbation theory and table 2 the corresponding data points. The large errors of

the correlator are almost entirely due to the additive renormalisation procedure. Table 4
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bation theory (LPT). The slope of the linear fit gives κ/2.

q2/T 2 G(q)/T 4

0.02 0.68(6)

0.10 0.72(6)

0.22 0.77(6)

0.39 0.75(6)

0.62 0.82(6)

Table 2. Intermediate numerical results for run (i) of table 1.

lists the data of the bare correlators (3.25) regarding this simulation, whereas table 5 lists

the data of the additively renormalised correlators (3.26). The vacuum subtraction causes

a significant loss of accuracy. Computing the pressure by means of the interaction mea-

sure [46] suffers from the same phenomenon. Thus, we create a large amount of statistics

(see table 1) to provide a significant signal for the correlators. In terms of error reduction it

is highly favourable to perform the additive renormalisation before the multiplicative one.

Otherwise, the propagated errors entering from the multiplicative renormalisation add to

the described loss of precision.

Fitting the datapoints of the correlator to a line

GE
(
q2

T 2

)

T 4
=
G′(0)

T 4
+

κ

T 2

q2

2T 2
(4.1)

yields for the y-intercept G′(0)/T 4 = 0.69(4) and for the transport coefficient κ/T 2 =

0.40(26), which is consistent with the leading order lattice perturbation theory result

κLPT/T
2 = 0.47. Note that full agreement is not yet expected since at T = 9.4Tc there are

still significant corrections due to interactions, i.e. we are still far from the ideal gas limit.
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4.3 Temperature dependence

In principle, the temperature can be varied at fixed β and lattice spacing by changing

Nτ , where lower temperature implies larger Nτ . However, due to the constraint on the

momenta from equation (3.11) this would require a similar increase of the spatial volume

and thus a drastical growth of the numerical effort. Hence the fixed scale approach is not

practical for temperatures approaching the phase transition.

We therefore investigate the temperature dependence of κ at fixed Nτ/Nσ by repeating

the simulations at various lattice couplings β. In this case the different temperatures are

evaluated at different lattice spacings, and consequently also different spatial volumes in

physical units. However, since our lattice spacings are all aσ < 0.1 fm, we expect the lattice

artefacts on the temperature dependence of the transport coefficient κ/T 2 to be negligible.

As a consistency check for this, we also perform simulations at different temperatures but

the same lattice spacings (simulations (i) and (ii) in table 1).

The results are shown in figure 5. The datapoint at T = 7.1Tc suffers from large

errorbars since the spatial lattice extents have been kept fixed while increasing the temporal

lattice extent Nτ . This corresponds to less momenta fulfilling the constraint (3.11) and

generates a loss of accuracy in the fit (4.1). Within the errorbars, the values of κ/T 2 at

T = 9.4Tc and T = 7.1Tc agree (cf. table 3) and thus justify the comparison at different

lattice spacings and temperatures.

The numerical values for the transport coefficient κ are also summarised in table 3.

Within errorbars, the temperature dependence of the transport coefficient is consistent

with that of the ideal gas, κ ∼ T 2, which is also the prediction of AdS/CFT [24] for the

opposite strong coupling limit. Assuming this functional dependence, we may increase the

accuracy by averaging the data points with Nτ = 6 to give our final result,

κavr = 0.36(15)T 2. (4.2)

The prediction from AdS/CFT correspondence for this coefficient is [27]

κ

T 2
=
η

s
× s

πT 3
, (4.3)

where η is the shear viscosity and s the entropy density. The latter is proportional to the

number of degrees of freedom of the theory, which is higher in the SUSY Yang-Mills used

for the correspondence.1 In order to compare with the QCD calculations, we thus use the

AdS/CFT results η/s = 1/4π and eq. (4.3), but take the QCD entropy density from a

lattice calculation [41]. The result is about a third of the perturbative prediction and also

consistent with the simulation results.

5 Conclusions

We have calculated the second order hydrodynamic transport coefficient κ for the Yang-

Mills plasma using lattice perturbation theory and Monte Carlo simulations. This is pos-

sible because the retarded correlator of the energy momentum tensor at zero frequency

1We missed this point in the first version of the manuscript and thank the referee and editor for their

suggestions.
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Figure 5. Temperature dependence of the transport coefficient κ/T 2. The lines mark the result

from ADS/CFT correspondence [24] and lattice perturbation theory (3.21), respectively.

T/Tc 9.4 7.1 5.6 2.6

aσ [fm] 0.026 0.026 0.044 0.094

κ/T 2 0.40(26) 0.41(84) 0.39(30) 0.28(20)

Table 3. Lattice results for the transport coefficient κ/T 2 at different spatial lattice spacings aσ
and temperatures T/Tc.

has a trivial analytic continuation to a corresponding Euclidean correlator. The transport

coefficient parametrises the low momentum behaviour of this correlator, whose realisation

requires large spatial lattice directions, making a numerical calculation very challenging

and thus leaving large statistical errors. Their main source are the vacuum subtractions

leading to similar problems in calculations of the equation of state at low temperatures.

One might hope that alternative methods avoiding this step [52] may improve this situation.

In the investigated temperature range 2Tc < T < 10Tc our data are consistent with

κ ∝ T 2, as predicted both by weak and strong coupling methods. Because of still large

errorbars, our result also quantitatively covers both the leading order perturbative as well

as the AdS/CFT prediction rescaled by the QCD entropy. This would suggest that, besides

improved simulation methods, next-to-leading order analytic calculations should be able

to give a result with improved accuracy.
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A Cubic symmetry of the energy momentum tensor

The correlator 〈T12(x)T12(y)〉 can be expressed in terms of diagonal energy-momentum

tensor elements by exploiting rotation invariance

〈T ′12(x)T ′12(y)〉 = 〈T12(x)T12(y)〉 , (A.1)

on a spatially isotropic lattice (and medium) under rotations by α = π/4 about the z-

direction. The transformation of a second rank tensor reads

T ′µν(x) =
(
M−1
z

)
µα

(
M−1
z

)
νβ
Tαβ(x), (A.2)

and the corresponding transformation matrix is given by

M−1
z =




1 0 0 0

0 cosα sinα 0

0 − sinα cosα 0

0 0 0 1


 =

1√
2




√
2 0 0 0

0 1 1 0

0 −1 1 0

0 0 0
√

2


 . (A.3)

For the energy-mometum tensor components of interest, this means

T ′12(x) =
1

2
[T22 − T11] , (A.4)

where we used T12 = T21. With the definition of the energy-momentum tensor (2.15a) we

find for the correlator

T ′12(x)T ′12(y) =
1

4
[T22(x)T22(y)− T22(x)T11(y)− T11(x)T22(y) + T11(x)T11(y)]

=
1

4
[θ22(x)θ22(y) + θ11(x)θ11(y)− θ22(x)θ11(y)− θ11(x)θ22(y)] . (A.5)

Note that the trace anomaly θ cancels completely. From rotational invariance follows

〈θ22(x)θ11(y)〉 = 〈θ11(x)θ22(y)〉 , 〈θ11(x)θ11(y)〉 = 〈θ22(x)θ22(y)〉 , (A.6)

and the correlator expressed in diagonal elements reads

〈T12(x)T12(y)〉 =
1

2
[〈θ11(x)θ11(y)〉 − 〈θ11(x)θ22(y)〉] . (A.7)

B Definitions in lattice perturbation theory

The Fourier transforms of the gauge field Aµ to momentum space and back are defined by

Aµ(q) = a3
σaτ

Nτ∑

n=1

∑

~x

e
−i

(
x+

aµµ̂

2

)
q
Aµ(x), (B.1a)

Aµ(x) =
∑∫

q
e

i
(
x+

aµµ̂

2

)
q
Aµ(q), (B.1b)
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where we introduce

∑∫

q
≡ 1

aτNτ

Nτ∑

n=1

∫ π
aσ

− π
aσ

d3q

(2π)3
. (B.2)

The shift to the center of the link variables x + aµµ̂/2 in the Fourier transform simplifies

the computation. The free gauge field propagator is given by

∆AB
µν (q) =

1

q̃2

(
δµν − (1− ξ) q̃µq̃ν

q̃2

)
δAB, (B.3)

where we use Feynman-’t Hooft gauge with ξ = 1. The momenta in lattice perturbation

theory are given by

q̃µ =
2

aµ
sin
(aµqµ

2

)
, (B.4)

(
k̃µ + qµ

)
=

2

aµ
sin

(
aµ(kµ + qµ)

2

)
, (B.5)

∑

µ

q̃ 2
µ =

4

a2
µ

∑

µ

sin2
(aµqµ

2

)
(B.6)

with a0 ≡ aτ and ai ≡ aσ. We do not imply a sum over the index µ.

C Results for finite Matsubara sums

The evaluation of the finite Matsubara sums gives with the definitions

E(ki) ≡ ξ−1|ki | −
a2
σ

24|ki |

[
ξ−1

∑

i

k4
i + ξ−3|ki |4

]
+O(a4

σ) (C.1a)

E1 ≡ E(ki) (C.1b)

E2 ≡ E(ki + qi) (C.1c)

and

A ≡ 1

cosh(aσE1)− cosh(aσE2)
(C.2a)

B ≡ 1

tanh(aσE2)

1

eaσNτE2 − 1
− 1

tanh(aσE1)

1

eaσNτE1 − 1
(C.2b)

C1 ≡
1

sinh(aσE1)
(C.2c)

C2 ≡
1

sinh(aσE2)
(C.2d)

the following results

1

Nτ

Nτ∑

n=1

1

(k̃ + q)2
=
a2
τ

2

[
1 +

2

eaσNτE2 − 1

]
C2 (C.3a)

1

Nτ

Nτ∑

n=1

1

k̃2(k̃ + q)2
=
a4
τ

4

[
C2eaσE2 − C1eaσE1

]
A+

a4
τ

2
AB (C.3b)
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1

Nτ

Nτ∑

n=1

k̃(k̃ + q)

k̃2(k̃ + q)2
=

a2
τ

eaσNτE2 − 1
C2 +

a4
τ

2

[
k̃i(k̃i + qi)− k̃2

i

]
AB (C.3c)

1

Nτ

Nτ∑

n=1

[
k̃(k̃ + q)

]2

k̃2(k̃ + q)2
= − a2

τ

eaσNτE2 − 1

[
(k̃i + qi)− k̃i

]2
C2 +

a4
τ

2

[
k̃i(k̃i + qi)− k̃2

i

]2
AB

(C.3d)

1

Nτ

Nτ∑

n=1

1

k̃2
=
a2
τ

2

[
1 +

2

eaσNτE1 − 1

]
C1. (C.3e)

D Numerical intermediate results

In this section we present numerical intermediate results for run (i) of table 1.

n Gτ0,T (q) Gτ0,Tvac(q) Gσ0,T (q) Gσ0,Tvac(q) Gτσ0,T (q) Gτσ0,Tvac
(q)

0 −0.3(6) 2.(2) 0.1(1) −0.5(4) 0.03(39) 0.4(1.3)

1 0.1982(2) 0.2009(2) 0.04092(4) 0.03768(4) 0.0283(1) 0.0320(1)

2 0.1985(2) 0.2005(2) 0.04092(4) 0.03766(4) 0.0280(1) 0.0319(1)

3 0.1984(2) 0.2003(2) 0.04076(4) 0.03759(4) 0.0278(1) 0.0314(1)

4 0.1983(2) 0.2002(2) 0.04071(4) 0.03743(4) 0.0273(1) 0.0312(1)

5 0.1981(2) 0.2000(2) 0.04059(4) 0.03730(4) 0.0271(1) 0.0308(1)

Table 4. Simulation results for the bare correlators Gτ0,T , Gσ0,T and Gτσ0,T and their vacuum

parts Gτ0,Tvac
, Gσ0,Tvac

, Gτσ0,Tvac
in momentum space for six momentum modes n fulfilling the con-

straint (3.11).

n Gτ0(q) Gσ0 (q) Gτσ0 (q)

0 −3.(3) 0.7(5) −0.4(1.4)

1 −0.0027(3) 0.00324(5) −0.0037(2)

2 −0.0019(3) 0.00327(5) −0.0040(2)

3 −0.0020(3) 0.00317(5) −0.0035(2)

4 −0.0019(3) 0.00329(5) −0.0039(2)

5 −0.0019(3) 0.00329(5) −0.0036(2)

Table 5. According to (3.26) vacuum subtracted correlators of table 4.

i < θi00 >1 < θi11 >2 < θi22 >3 < θi33 >4

τ −1.447172(1) 0.4823904(9) 0.4823868(9) 0.4823887(8)

σ 0.6218880(7) −0.2072959(4) −0.2072969(5) −0.2072961(1)

Table 6. Diagonal energy-momentum tensor elements evaluated on lattices (3.27) in order to

compute the renormalisation ratio Zσ(β, ξ)/Zτ (β, ξ).
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T Tvac

〈θτ11〉 −0.4768093(3) −0.48239182(8)

〈θτ22〉 −0.4768096(3) −0.48239191(8)

〈θτ33〉 −0.4768099(3) −0.48239181(8)

T Tvac

〈θσ11〉 0.2100439(1) 0.20729721(4)

〈θσ22〉 0.2100440(1) 0.20729719(4)

〈θσ33〉 0.2100438(1) 0.20729725(4)

Table 7. Energy-momentum tensor elements required to compute the absolute renormalisation

factor Zτ (β, ξ) from equivalence to the pressure.

Open Access. This article is distributed under the terms of the Creative Commons
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