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A B S T R A C T

Measuring NADPH oxidase (Nox)-derived reactive oxygen species (ROS) in living tissues and cells is a constant
challenge. All probes available display limitations regarding sensitivity, specificity or demand highly specialized
detection techniques. In search for a presumably easy, versatile, sensitive and specific technique, numerous
studies have used NADPH-stimulated assays in membrane fractions which have been suggested to reflect Nox
activity. However, we previously found an unaltered activity with these assays in triple Nox knockout mouse
(Nox1-Nox2-Nox4-/-) tissue and cells compared to wild type. Moreover, the high ROS production of intact cells
overexpressing Nox enzymes could not be recapitulated in NADPH-stimulated membrane assays. Thus, the
signal obtained in these assays has to derive from a source other than NADPH oxidases. Using a combination of
native protein electrophoresis, NADPH-stimulated assays and mass spectrometry, mitochondrial proteins and
cytochrome P450 were identified as possible source of the assay signal. Cells lacking functional mitochondrial
complexes, however, displayed a normal activity in NADPH-stimulated membrane assays suggesting that
mitochondrial oxidoreductases are unlikely sources of the signal. Microsomes overexpressing P450 reductase,
cytochromes b5 and P450 generated a NADPH-dependent signal in assays utilizing lucigenin, L-012 and
dihydroethidium (DHE). Knockout of the cytochrome P450 reductase by CRISPR/Cas9 technology (POR-/-) in
HEK293 cells overexpressing Nox4 or Nox5 did not interfere with ROS production in intact cells. However,
POR-/- abolished the signal in NADPH-stimulated assays using membrane fractions from the very same cells.
Moreover, membranes of rat smooth muscle cells treated with angiotensin II showed an increased NADPH-
dependent signal with lucigenin which was abolished by the knockout of POR but not by knockout of p22phox.
In conclusion: the cytochrome P450 system accounts for the majority of the signal of Nox activity
chemiluminescence based assays.

1. Introduction

NADPH oxidases of the Nox family are important sources of
reactive oxygen species (ROS). This assumption is based on several
lines of evidence. The genetic deletion of Nox homologues in mice
results in defined functional deficits which are accompanied by a
decrease in ROS formation in the target tissue. Moreover, an increase
in ROS production is detectable in cells or organs after overexpression
of Nox enzymes [1–4].

The concept of Nox enzymes as sources of ROS emerged in part
from inhibitor studies: It was initially observed that ROS formation of
intact tissue and cells was highly sensitive to the potent Nox inhibitors
diphenylene iodonium (DPI) and apocynin [5]. Later studies, however,
revealed that DPI inhibits many flavoenzymes [6] whereas apocynin
was found to interfere with redox-mechanisms in general. It depletes
glutathione, acts as antioxidant and changes the expression of ROS
generation enzymes such as cyclooxygenases [7,8].

Another “traditional” line of evidence for an important role of Nox
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enzymes for ROS production came from chemiluminescence assays
that made use of the enhancer lucigenin. In addition to ROS measure-
ments in intact cells, chemiluminescence probes are frequently used to
obtain an NADPH-dependent signal in cellular homogenates or
membrane preparations. As these assays depend on NADPH and as
Nox family NADPH oxidases utilize NADPH to generate ROS, the
resulting signal is considered a reflection of the enzymatic activity of
Nox enzymes [9]. Initially, measurements were performed with a high
concentration (250 µmol/L) of the enhancer, which resulted in redox-
cycling. To overcome this problem, the concentration of lucigenin was
reduced to 5–10 µmol/L. However, with the new low concentration
some of the previous observations could no longer be confirmed and
the signal basically became undetectable [10]. In addition to redox-
cycling, a direct reduction of lucigenin by flavoenzymes like eNOS
(nitric oxide synthase) [11] and cytochrome P450 (CYP) monooxy-
genases has already been proposed [12]. In a previous study we
reported the formation of lucigenin chemiluminescence by eNOS, via
its diaphoresis activity [10]. However, a potential role of P450
monooxygenases has not yet been studied sufficiently. This enzyme
class is part of a system, where P450 reductase transfers one electron
from NADPH either to Cytochrome b5 and then to CYP or directly to
CYP to hydroxylate substrates during drug detoxification and hormone
synthesis. In fact, it is well known that superoxide production occurs
when CYP enzymes are in a one electron reduced state [13,14]. Thus,
biochemically, it is conceivable that other enzymes than those of the
Nox family generate a chemiluminescence signal in the presence of
enhancers and NADPH. Importantly, the “NADPH oxidase assays”
have never been truly validated until recently.

In our previous work we found little evidences to support the idea
that chemiluminescence-dependent “NADPH oxidase assays” detect in
vitro Nox activity. The assay activity remained unchanged after the
triple knockout of the main enzymatically active Nox homologues
(Nox1, Nox2 and Nox4). Moreover, overexpression of Nox enzymes
dramatically increased the ROS formation of intact cells but did not
alter the activity in the “NADPH oxidase assay” performed using
isolated membrane fractions [10]. On such basis we hypothesized that
“NADPH oxidase assays” in isolated membranes detect the activity of
proteins other than Nox and set out to identify those. To do so, we used
a combination of native gel electrophoresis, nitroblue tetrazolium
reduction, mass spectrometry as well as gain and loss of function
systems to identify the enzymatic source of the signal.

2. Material and methods

2.1. Membrane fraction preparation from tissue and cells

Tissue and cells were homogenized by pottering in Hepes Tyrode
buffer (HT, containing in mmol/L: 137 NaCl, 2.7 KCl, 0.5 MgCl2, 1.8
CaCl2, 5 glucose, 0.36 NaH2PO4, 10 HEPES) supplemented with a
protease inhibitor mix (antipain, aprotinin, chymostatin, leupeptin,
pepstatin, trypsin-inhibitor; AppliChem), okaidaic acid, calyculin A and
EGTA. Homogenates were cleared by centrifugation (3000g, 10 min,
4 °C) and membrane fractions were obtained by centrifugation at
100,000g (1 h, 4 °C). The membrane pellet was resuspended in HT
buffer and the protein concentration was estimated by Bradford assay.
Twenty micrograms were used for measurements.

2.2. Chemiluminescence assays

Chemiluminescence in response to lucigenin (5 µmol/L), L-012
(200 µmol/L) or luminol (100 µmol/L)/horseradish peroxidase (HRP
at 1 U/mL) was measured in a Berthold TriStar2 microplate reader
(LB942, Berthold, Wildbad, Germany). For the structure of these
compounds see Fig. 1. Measurements with membrane fractions were
initiated by addition of NADPH (100 µmol/L for lucigenin; 10 µmol/L
for L-012). PEGylated superoxide dismutase (PEG-SOD, 50 U/mL) and

DPI (10 µmol/L) were used as indicated. Chemiluminescence was
expressed as arbitrary units.

2.3. Dihydroethidium (DHE) assays

The oxidation products of dihydroethidium (DHE, 20 µmol/L), 2-
dihydroxyethidium (2EOH) and ethidium (E), were separated by HPLC
and analyzed either by absorbance (350–400 nm for DHE) and
fluorescence (510 nm/595 nm exitation/emission for 2EOH and E) in
intact cells and supersomes or by LC-MS/MS in membranes of
HEK293 cells overexpressing Nox4 or Nox5 and knockout for cyto-
chrome P450 reductase (POR-/-).

Briefly, intact and adherent HEK293 cells overexpressing Nox4,
Nox5 and Nox5+PMA (phorbol myristate acetate, 100 nmol/L, 15 min)
as well as supersomes (with or without NAPDH 100 µmol/L) (micro-
somes overexpressing different combinations of components of the
human cytochrome P450 system) were incubated with DHE for 15 min
at 37 °C in Hanks buffer containing 100 µmol/L DTPA
(Diethylenetriamine-pentaacetic acid pentasodium salt).

Cellular and supersome membranes were solubilized with 1% triton

Fig. 1. Structures of compounds used (top) and NADPH reduction by membrane
proteins in an in gel assay (middle and botton). WT and 3N-/- mice where treated with
or without AngII. Membrane proteins from kidneys were separated by clear native
electrophoresis. After separation of protein complexes under native condition, reduction
of NADPH was visualized by the deposition of formazan crystals in presence of NBT
(0.02%) (lower panel). A second identical set of samples was sliced and tested for
lucigenin (5 µmol/L; 100 µmol/L NADPH). BHM (bovine heart mitochondria) was used
as positive control in presence of NADH (100 µmol/L) as well as native molecular ladder.
hr-CNE indicates high resolution clear native electrophoresis, in a range of 205–60 kDa
as estimated by the molecular weight of BHM complexes. n≥3.
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and deproteinated by precipitation with perchloric acid (0.2 mol/L)
prior to HPLC injection.

For fluorescence detection, DHE and its oxidation products were
separated by HPLC (Hitachi, Elite Lachrom system L3130 pump) using
a C18 column (EC, Nucleosil, 100-5, 250/4.6 Macherey Nagel) and a
mobile phase A of H2O: acetonitrile: TFA (9:1:0.1) and phase B of
acetonitrile +0.1% TFA. A gradient from 0% to 40% of B was achieved
within 10 min and to 100% B in 20 min with a 0.5 mL/min flow.

To estimate 2EOH concentration, potassium superoxide (14 mmol/
L) was incubated with DHE (20 µmol/L) and separated using the above
chromatographic condition. Concentration of 2EOH was estimated as
described [15].

The LC-MS/MS analysis was performed on a 1290 Infinity UHPLC
system (Agilent, Waldbronn, Germany) coupled to an 5500 QTrap
triple quadrupole mass spectrometer with an TurboV electro spray
ionisation source (AB Sciex Deutschland GmbH, Germany). DHE and
its oxidation products were separated on a C18 Phenomenex Kinetex
column (150×2.1 mm), protected by a Phenomenex C18 guard car-
tridge, using an acetonitrile/water gradient with 0.1% formic acid. The
ion source parameters were set as follows: x-axis and y-axis of the
source were set to 5.0 mm, TEM=300 °C, IS=3500 V, GS1=50 p.s.i.,
GS2=40 p.s.i., CUR=30 p.s.i., CAD=medium. Detection of DHE oxida-
tion products was achieved by multiple reaction monitoring (MRM) in
positive ion mode. System control and analytical data analysis were
processed by Analyst software 1.6.2.

2.4. Electrophoretic separation of membrane proteins followed by
NADPH activity assay and mass spectrometry analysis

Heart and kidney membranes were prepared from wild type (WT)
and triple Nox (Nox1-Nox2-Nox4, 3N-/-) knockout animals treated or
not with AngII (0.7 mg/kg/day) as described previously [10]. Two
hundred micrograms of membrane pellets were resuspended in 20 µl
buffer A (50 mmol/L Imidazole pH 7, 50 mmol/L NaCl, 2 mmol/L
aminocaproic acid, 1 mmol/L EDTA), solubilized by addition of 6 µl
20% (w/v) digitonin. Samples were loaded in duplicates to native
gradient gels (3–16%) and proteins/ protein complexes were resolved
by high resolution clear-native electrophoresis (hrCNE) as described
[16]. One set of samples was used for NADPH-dependent (100 µmol/
L) reduction by in gel deposition of formazan crystals from nitro blue
tetrazolium (NBT, 0.02%) [17,18]. The second set was used for
lucigenin measurements in homogenized gel slices in the presence of
NADPH. Isolated bovine heart mitochondria (BHM, 200 µg) were used
as positive control in presence of NADH (100 µmol/L) and as
molecular weight indicator [16].

2.5. Mass spectrometry analysis

Gel slices yielding an NADPH-dependent chemiluminescent signal
were excised from a corresponding sample set stained with Coomassie
blue. For mass spectrometry analysis, cysteines were reduced and
alkylated with DTT (10 mmol/L) and iodoacetamide (30 mmol/L), and
digested with trypsin (sequencing grade, Promega). Liquid chromato-
graphy/mass spectrometry (LC/MS) was performed on Thermo
Scientific™ Q Exactive coupled to an ultra-high performance liquid
chromatography unit (Thermo Scientific Dionex Ultimate 3000) via a
Nanospray Flex Ion-Source (Thermo Scientific). Peptides were loaded
on a C18 reversed-phase precolumn (Zorbax 300SB-C18, Agilent
Technologies) followed by separation on in-house packed 2.4 µm
Reprosil C18 resin (Dr. Maisch GmbH) picotip emitter tip (diameter
100 µm, 15 cm long, New Objectives) using a gradient from mobile
phase A (4% acetonitrile, 0.1% formic acid) to 50% mobile phase B
(80% acetonitrile, 0.1% formic acid) for 30 min with a flow rate of
400 nl/min. Mass spectrometry (MS) data were recorded by data
dependent Top10 acquisition (selecting the ten most abundant pre-
cursor ions in positive mode for high energy collision dissociation

fragmentation (HCD)). The Full MS scan range was 300–2000 m/z
with resolution of 70,000 at m/z 200, and an automatic gain control
(AGC) value of 3*106 total ion counts with a maximal ion injection time
of 160 ms. Only higher charged ions (2+) were selected for MS/MS
scans with a resolution of 17,500, an isolation window of 2 m/z and an
automatic gain control value set to 5*104 ions with a maximal ion
injection time of 150 ms. Following fragmentation event all selected
ions were excluded in a time frame of 30 s. Xcalibur raw files were
analyzed by MaxQuant 1.5.3.30 [19]. The enzyme specificity was set to
Trypsin and missed cleavages were limited to 2. Oxidation of methio-
nine and acetylation of N-terminus were selected as variable modifica-
tions and Carbaminomethylation as fixed modification. The mouse
reviewed reference proteome set (download from uniprot, April 2016,
16,764 entries) was used to identify peptides and proteins. False
discovery rate (FDR) was set to 1%. Identified proteins were filtered
by keyword NAD and NADPH. The sum of Intensity-based absolute
quantification (IBAQ) values for each tissue was used for ranking.

2.6. Respiratory chain deficient (ρ⁰) cells

The osteosarcoma cell line 143B, TK- (ρ+) and its correspondent ρ⁰
which completely lacks mitochondrial DNA and thereby is deficient of
functional mitochondrial complexes I, III, IV and V was used as
reported previously [20].

2.7. Recombinant cytochrome P450 overexpression system

Microsomes (Supersomes™) produced in insect cells overexpres-
sing different combinations of components of the human cytochrome
P450 system were purchased from BD Biosciences. The following
combinations were used: I. control with empty baculovirus (CTR); II.
P450 reductase+Cytochrome b5 (POR+Cytb5); III. P450 reductase
+Cytochrome P450 (POR+CYP); IV. P450 reductase+Cytochrome
b5+Cytochrome P450 (POR+Cytb5+CYP). Measurements were per-
formed as described above using 20 µg microsomes in presence of
NADPH.

2.8. Overexpression system in HEK293 cells

HEK293 cells were either transiently transfected with 1 µg plasmid
coding for NQO1 (NAD(P)H dehydrogenase (quinone 1); Origene
#sc119599) or stably transfected with plasmids coding for human
Nox4 or Nox5. To activate superoxide O2

•- production by Nox5, cells
were treated with 100 nmol/L phorbol myristate acetate (PMA) for
15 min.

2.9. CRISPR/Cas9 for Cytochrome P450 reductase (POR) and
p22phox

Guide RNA (gRNA) targeting human or rat POR and rat p22phox
were designed with a CRISPR design web-interface (https://benchling.
com). The human POR knock out vector was obtained by cloning the
annealed target-specific ligonucleotides CRISPR POR sense
(CACCGgtgttctacggctcccaga) and CRISPR POR antisense
(AACtctgggagccgtagaacacC) [Hv1] into the BsmBI site of the
pLentiCRISPRv2 plasmid (Addgene, Cat No. 52961) using the
Golden Gate protocol [Hv1] By Frank Schnütgen and later Frank
Wempe [21].

After cloning, plasmids were purified and verified by sequencing.
HEK293T cells were used to produce viruses [22] which were also
applied to control cells. Empty vector without gRNA was used as
control. Positive clones were selected with puromycin (1 µg/mL) for 7
days.

Knockout efficiency for POR was accessed by western blot (Santa
Cruz, F-10) and for p22phox sequencing of genomic DNA (Seqlab
(Göttingen) using the following primer:
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AGAGAGGACTTGCGGAGTGG) and qPCR were -
employed (sense: CCATGTGGGCCAACGAAC and antisense:
CAGAACTAGCCCATCCTGCT).

2.10. Statistics

Unless otherwise indicated, data are given as means ± standard
error of mean (SEM). Calculations were performed with Prism 5.0. In
case of multiple testing, Bonferroni correction was applied. For multi-
ple group comparisons ANOVA followed by post hoc testing was
performed. Individual statistics of unpaired samples was performed
by t-test and if not normal distributed by Mann-Whitney test. p-values
of <0.05 were considered as significant. Unless otherwise indicated, n
indicates the number of individual experiments.

3. Results

3.1. Mitochondrial proteins and cytochrome P450 generate an
NADH/NADPH-dependent signal

Most of the previous studies utilizing cell-free assays employed
crude membrane preparations. To visualize enzymatically active com-
ponents and to identify proteins which could possibly contribute to
NADPH-dependent assay signal, kidney and heart membrane proteins
complexes were separated by native electrophoresis. After protein
separation, reduction capacity in the presence of NADPH was visua-
lized by in gel conversion of yellow nitro blue tetrazolium salt (NBT) to
the insoluble blue formazan (Fig. 1, lower panel). In keeping with our
previous observations in chemiluminescence assay, this technique
failed to reveal qualitative difference between the signal obtained from
samples of control WT and 3N-/- as well as between angiotensin II-
treated animals. Bovine heart mitochondria (with NADH) were used as
positive control which produced a strong staining from respiratory
super-complexes and complex I. In a second set of identical samples,
the gel was cut into slices, which were subsequently homogenized and
assayed for NADPH-dependent lucigenin chemiluminescence activity.
In kidney samples this approach revealed that slices harboring NBT
reduction activity also elicit an NADPH-dependent lucigenin chemilu-
minescent signal (Fig. 1, middle panel). The lucigenin signal in cardiac
membranes in total was very low but the NBT staining pattern was
similar to that of kidney samples (data not shown). To identify
NADPH-binding proteins in such complexes, proteomics analyses were
performed from gel slices. Among the proteins with NADPH-binding
sites, P450 reductase ranked first in kidney and third in cardiac
samples (Table 1). When filtered for NADH binding, mitochondrial
dehydrogenases and reductases were identified. Interestingly, no Nox-
family NADPH oxidases were identified using this approach.

3.2. Mitochondria do not generate the NADPH oxidase assays signal

To study a potential contribution of mitochondrial proteins to the
NADPH-dependent assay signal, ρ⁰ cells were used which lack mitochon-
drial DNA and thus a functional respiratory chain. As demonstrated by
blue native electrophoresis (BNE) (Fig. 2A, left panel) only the mitochon-
drial intact control ρ+ cells but not the ρ⁰ cells exhibited NADH/NBT
activity in the molecular weight region of the completely assembled
complex I and supercomplexes S1 that contain complex I, III and IV. ρ⁰
cells, without functional respiratory chain, did not show NBT reduction
signals at typical positions of supercomplexes (Fig. 2A, right panel).
Irrespectively of the presence or absence of functional mitochondria, both
cell lineages yielded an NADPH-dependent staining in the lower part of
the NBT-gel, which was similar to that observed in renal and cardiac
extracts (Fig. 2A; arrow, central panel). Similarly, presence or absence of
an intact respiratory chain had no impact on the NADPH-dependent
lucigenin signal of the cells membrane fractions (Fig. 2B). Thus,
mitochondria are unlikely to be the source of the NADPH-dependent

chemiluminescence signal.
Another protein which uses NADPH for reduction and which has

been linked to ROS production is NQO1 (NAD(P)H ubiquinone
oxidoreductase) [23]. By LC-MS/MS the mitochondrial form of the
enzyme was identified in the present study but an isoform of NQO1,
which is tethered to the plasma membrane, is also expressed in the
cytosol (Fig. 2C). Overexpressing of NQO1 in HEK293 cells, however,
did not increase the NADPH-dependent lucigenin signal in cell
homogenates (Fig. 2D). Thus, although NQO1 accepts electrons from
NADPH at its ubiquinone group, this protein does not contribute to the
signal in the chemiluminescence assays.

3.3. Cytochrome P450 is a source of the lucigenin NADPH oxidase
assays signal

We previously reported that overexpression of CYP2C8
(Cytochrome P450 2C8) results in an increase in the NADPH oxidase
assay signal [10]. The CYP enzymes consist of a cytochrome P450
reductase (POR), which accepts electrons from NADPH and a cyto-
chrome P450 oxidase (CYP oxidase). To further characterize the nature
of the lucigenin signal generated by these enzymes, Supersomes™
overexpressing combinations of POR, CYP oxidase and cytochrome b5
(Cytb5) were studied. Supersomes are enzymatic preparations from
baculovirus-transduced insect cells. The negative control, i.e. super-
somes without transduction produced only a negligible lucigenin assay
signal in the presence of NADPH. Supersomes expressing either CYP
oxidase or POR or Cytb5 or all of them, readily produce a NADPH
oxidase assay signal albeit with distinct kinetics (Fig. 3). Whereas POR
+Cytb5 displayed a short lasting peak, the combination of POR and CYP
oxidase resulted in a sustained, but low activity signal. When all three
enzymes were present, an intermediate kinetic was observed.
Importantly, whereas PEG-SOD only inhibited these signals by 20–
30% and PEG-catalase only inhibits POR+Cytb5+CYP by 20%, DPI
almost abolished those of the triple combination and of the combina-
tion POR+CYP450 oxidase (Table 2). Interestingly, the DPI effect was
lost in the assay when POR+Cytb5 in the absence of the CYP oxidase
was studied. This effect is most likely consequence of the fact that DPI
has to be reduced by the CYP oxidase to elicit its inhibitory effect on
FMN [24,25].

Table 1
Identification of NADPH interacting proteins by mass spectrometry. Protein complexes
from heart and kidney positive for in gel lucigenin signal were identified by mass
spectrometry. Proteins were filtered by keyword NADPH (Perseus software). The sum of
Intensity-Based Absolute Quantification (IBAQ, x108) values for each tissue was used for
ranking. Bold numbers indicate the three most abundant proteins identified in each
tissue.

Protein names IBAQ heart IBAQ kidney

Aldose reductase 0.10 0.04
Dimethylaniline monooxygenase [N-oxide-

forming] 1
0.01 3.31

Dimethylaniline monooxygenase [N-oxide-
forming] 2

0.01 0.72

Ecto-ADP-ribosyltransferase 4 0.02 0.02
Epimerase family protein SDR39U1 1.24 0.16
Estradiol 17-beta-dehydrogenase 11 0.06 6.92
Glutamate dehydrogenase 1, mitochondrial 0.06 0.19
Isocitrate dehydrogenase [NADP], mitochondrial 0.66 0.15
NADPH–cytochrome P450 reductase 0.22 9.76
Oxidoreductase HTATIP2 0.02 0.14
Retinol dehydrogenase 12 0.02 0.02
Retinol dehydrogenase 13 0.01 0.03
Retinol dehydrogenase 14 0.05 0.08
Sepiapterin reductase 0.04 0.19
Sterol 26-hydroxylase, mitochondrial 0.00 0.01
Sulfide: quinone oxidoreductase, mitochondrial 0.04 0.32
Very-long-chain enoyl-CoA reductase 0.03 0.26
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3.4. Cytochrome P450 also generates signals in the presence of L-012
or dihydroethium

In order to study whether the CYP effect in the Nox assay was
specific for the enhancer lucigenin, L-012 and dihydroethium were
utilized as detector systems. The luminol/HRP system was omitted, as
the interaction of NADPH with HRP is known to generate a massive
unspecific signal in this assay [26]. L-012 or DHE both failed to
generate a signal if incubated with NADPH and control supersomes or
supersomes containing only POR and Cytb5. Once CYP oxidase was
contained in the supersomes, a strong signal was observed (Fig. 4).
Importantly, different to the signal in the lucigenin assay, this signal
was abolished by PEG-SOD and thus reflects the well-known O2

•-

generation of the CYP P450 oxidase-reductase system [13,14]. Thus,
the NADPH-dependent assay signal is not exclusive for lucigenin, but
in other assays it is mediated by the enzymatic production of O2

•-,

whereas the lucigenin signal in large part is O2
•- independent.

3.5. Knockout of POR block the NADPH oxidase assay signal

The first step in the reaction cycle of the CYP oxidoreductase system
is the reduction of POR by NADPH. As this is well known [14] and
supersomes lacking POR are not being produced commercially it was
mandatory to genetically knockout POR in mammalian cells. If the
NADPH oxidase assay signal in these cells was mediated by CYP
oxidoreductases, POR-/- cells should not generate an assay signal.
Thus, CRISPR/Cas9 technology was employed to generate POR-/-

HEK293 cells. To study the interaction of POR with Nox enzymes in
the lucigenin assay, this approach was carried out in normal HEK293
cells and cells stably transduced with either Nox4 or Nox5. Knockout
efficiency of POR as determined by Western blot was >80% in all three
cell lines (Fig. 5A). Knockout of POR did not affect the Nox-dependent

Fig. 2. Mitochondrial proteins and NAD(P)H oxidoreducase as candidates for the NADPH-dependent chemilumincescent signal with lucigenin. A: Characterization of ρ+ and ρ⁰ cells by
BNE (blue native electrophoresis; left panel) and hrCNE (high resolutuion clear native electrophoresis) with NADPH and NADH reduction in presence of NBT (right panel). An NADPH-
dependent signal is visualized in both cell lines (middle panel). ρ⁰ cells completely lack mitochondrial supercomplexes (S) and complex I (I), therefore no reduction of NADH is observed
at their high molecular position (box, right panel). B: Lucigenin assay with membrane fraction (20 µg) of Rho and ρ⁰ cells. C: Characterization of HEK293 cells overexpressing NQO1 by
western blot. NQO1 is present in cytosol and membrane fraction. D: Lucigenin assay with total cell lysate (20 µg) of HEK293 cells overexpressing NQO1. n≥3. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article).
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ROS production in intact cells as assayed by luminol/HRP, L-012 or
lucigenin (Fig. 5B–D). In contrast, when the classic lucigenin assay
with NADPH-incubated membranes was performed, POR-/- cells

basically generated no signal, whereas the presence or absence of
Nox enzymes did not impact on the assay (Fig. 5). Thus, the NADPH
oxidase lucigenin assay signal in HEK293 cells should be attributed to
the CYP system.

3.6. Deletion of POR does not influence NADPH-stimulation 2EOH
production in membranes

As the experiment with supersomes suggested that CYP-derived
ROS are detected by the DHE assay, we investigated whether genetic
deletion of POR in HEK293 cells may reduce 2EOH formation. In
intact HEK293 cells, overexpression of Nox5 but not of Nox4 increased
2EOH formation. As expected Nox5-dependent 2EOH was further
increased by PMA (100 nmol/L, 15 min) (Fig. 6A). Genetic deletion of
POR had no effect on 2EOH formation. In membranes supplemented
with NADPH harvested from control cells or cells overexpressing Nox4
and Nox5 2EOH formation was similar. Genetic deletion of POR also
did not affect 2EOH formation (Fig. 6B).

3.7. The AngII-stimulated NADPH-dependent signal is mediated by
POR but not by Nox

Smooth muscle cells are among the best characterized sources of
Nox-dependent ROS formation in particular when the NADPH oxi-
dases are induced with angiotensin II. We therefore determined
whether the NADPH-dependent lucigenin signal in this “physiological”
model is also mediated by POR. Cells of the A7r5 rat smooth muscle
cell line were subjected to CRISPR/Cas9-mediated deletion of either
the essential NADPH oxidase-subunit p22phox or of POR (Fig. 7A and
B). Cells were subsequently treated with or without AngII (100 nmol/L,
4 h) and NADPH-dependent chemiluminescence in membrane frac-
tions was determined.

In keeping with previous observations [2] intact SMCs do not
generate a signal in the presence of lucigenin (5 µmol/L or 250 µmol/L,
900.000 cells/condition) but in the absence of NADPH, even if
pretreated with angiotensin. Nevertheless, when the intact cells are
exposed to NADPH a massive increase in the signal occurs (data not
shown). Similarly, membranes prepared from the A7r5 cell line,
generated a strong lucigenin signal upon exposure to NADPH
(Fig. 7C). Similar as the observations in membranes of HEK293 cells
(Fig. 5), deletion of POR basically ablated the lucigenin signal.
Knockout of p22phox, in contrast, had no effect. Thus, the basal
NADPH-driven lucigenin signal in the A7r5 smooth muscle cells line is
POR but not Nox-mediated.

As reported numerous times previously by others [9,27,28] AngII
pretreatment results in an increase in the NADPH-induced lucigenin
signalin membrane preparations, which was also observed in the
present study (Fig. 7C). Unexpectedly, genetic deletion of the essential
NADPH oxidase subunit p22phox did, however, not prevent this
increase and rather further enhanced the lucigenin signal. In contrast,
deletion of POR also blocked the lucigenin signal after AngII. Thus, the
AngII-induced NADPH-dependent lucigenin signal in the A7r5 smooth
muscle cell line is mediated by POR but not by NADPH oxidases.

4. Discussion

In this study we set out to identify the enzymatic source of the
NADPH-dependent signal in the lucigenin membrane assay. By a
proteomics approach we demonstrate that the CYP system contributes
for the majority of the signal in mammalian tissue extracts. Moreover,
insect cell microsomes overexpressing the CYP system also generated
the assay signal. Importantly, knockout of the first enzyme of the CYP
cascade, the cytochrome P450 reductase, blocked the assay signal in
mammalian cells without interfering with the Nox-dependent ROS
production of intact cells. In membranes of SMCs, AngII lead to an
increase in NADPH-dependent signal which was abolished by knockout

Fig. 3. Microsomes overexpressing combinations of cytochrome P450 components show
an NADPH-dependent signal with lucigenin (5 µmol/L). n=4.

Table 2
Relative signal intensity of the NADPH-dependent lucigenin signal in microsomes under
control conditions or in the present of DPI and PEG-SOD ( ± SD).

CTR POR+Cytb5 POR+CYP POR+Cytb5+CYP

CTR 1 ± 0.16 1 ± 0.06 1 ± 0.13 1 ± 0.05
+DPI 0.26* ± 0.02 1.02 ± 0.04 0.08* ± 0.009 0.15* ± 0.02
+PEG-SOD 0.68* ± 0.05 0.72* ± 0.08 0.79* ± 0.06 0.72* ± 0.03
+PEG-CAT 0.97 ± 0.02 0.95 ± 0.02 0.96 ± 0.17 0.80* ± 0.05

* p <0.05 for every individual combination of CYP components compared to its
control.

Fig. 4. NADPH-dependent signal is also detectable in microsomes overexpressing
combinations of cytochrome P450 components using L-012 and DHE. A: L012
(200 µmol/L) assay with microsomes. Samples are supplemented with NADPH
(10 µmol/L) and PEG-SOD (as indicated). n=3. B: 2EOH oxidation product of DHE
separated by HPLC and detected by fluorescence. *p <0.05 compared to CTR. n≥4.
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of POR but not of the essential NADPH oxidase subunit p22phox. We
therefore conclude that the majority of the signal in the Nox NADPH
chemiluminescence assays is generated by the CYP system.

The CYP enzyme family comprises numerous oxidase isoforms
which are involved in xenobiotic metabolism, bioconversion and
hormone synthesis [29]. The system, however, is driven by a single
P450 reductase (POR), which transfers reduction equivalents from
NADPH to the heme iron of the CYP oxidase. Thus, without POR the
CYP reaction cycle no longer occurs and the enzyme system is inactive.
The CYP system is well known as a source of O2

•- [13,14] and gives rise

to O2
•- production even outside of the liver or the kidney, as shown for

endothelial cells [30]. Thus, it is not surprising and also obvious from
the reaction cycle that the CYP system generates a signal in the
lucigenin assay. Interestingly, this signal is not only consequence of
O2

•- formation but also of direct electron transfer. This latter aspect,
which is demonstrated by the failure of SOD to inhibit the signal, might
be specific for lucigenin, as it was not observed with DHE or L-012. In
fact, it is well known but also well ignored that the signal in the
lucigenin Nox assay is largely SOD insensitive.

Quantitatively, the CYP system in most cells is expressed to a much

Fig. 5. Knockout of P450 reductase in HEK293 cells overexpressing Nox4 and Nox5 by CRISPR/Cas9 technology. A: Knockout efficiency evaluated by western blot. A knockout of 93%,
83% and 76% was obtained for WT, Nox4 and Nox5 HEK293 overexpressing cells, respectively. B–D: POR knockout does not affect ROS production in intact cells as measured by
luminol/HRP (100 µmol/L/1 U/mL), LO12 (200 µmol/L) and lucigenin (5 µmol/L). E: NADPH-dependent signal with lucigenin is abolished by POR knockout in membrane fraction.
*p <0.05WT vs. Nox, #p <0.05 with vs. without POR knockout. *p <0.05 POR-/- vs. CTR n≥4.
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higher level than the Nox system. Although the liver and the kidney
certainly exhibit a particularly high expression, also endothelial cells
[31] and smooth muscle cells [32,33] contain physiologically important
amounts of CYP. In the present study, we easily detected POR
expression in HEK293 and SMC cells, whereas on the protein level
Nox enzymes are undetectable with the exception of p22phox in
HEK293 cells (Rezende et al., [10], unpublished observation). The
results with SMCs knockout for POR and p22phox treated with AngII,
clearly show that our findings are not restricted to overexpression
systems, but can be applied to native cells as well.

This obviously does not mean that in general it is impossible to
assay Nox activity by enzymatic assays. The best and first example is
the membrane preparation of polymorphonuclear monocytes (PMNs)
[34]. The assay, however, is considerably different. PMNs basically
express no CYP enzymes but the p22phox-Nox2 complex at such a high
level that even spectroscopy of the heme is possible [35]. In contrast,
outside of the PMN system, heme spectra for the Nox system have
basically not been reported. In our hands, the CYP heme signal
overrides the spectroscopic cytochrome b signal of the Nox complexes
in HEK293 cells, smooth muscle cells and endothelial cells (Brandes,
unpublished observation). Other aspects that differ in the leukocyte
Nox assay are that the enzyme system is usually activated by
arachidonic acid and/or sodium dodecyl sulfate [36], that FAD and
even the cytosolic phox subunits are added [34,37] and the membranes
are produced by cavitation or sonification. Finally, in leukocyte
membranes, usually oxygen consumption or cytochrome c reduction
was measured, which better reflects the conversion of oxygen to O2

•-

but also requires excessive production of the radical. Thus, the
peculiarities of the leukocyte system and the extensive assay develop-
ment invested in measuring Nox activity in these cells by highly
specialized labs resulted in the development of a functional, validated
assay.

In the present study, we did not employ all peculiarities of the
leukocyte assay system to set out assays. We did not test the effect of
detergents nor did we substitute cytosolic co-factors of the Nox
enzymes. Nevertheless, we know from unpublished work, that
NADPH-dependent lucigenin chemiluminescence between crude cel-
lular homogenates and membrane fractions is similar and thus that
conditions which retain cytosolic subunits yield a similar outcome
(unpublished observation).

For the non-PMN system, the situation is totally different as the
“Nox assays” were accepted bona fide to reflect Nox activity. This

aberration is potentially a reflection of the fact that assay development
was not a focus on the Nox field but rather linking Nox enzymes to
physiological and pathophysiological functions. Moreover, appropriate
tools to validate the assays were not available for a long time. Finally,
many publications reported an association of Nox expression with Nox
activity in the membrane assay. The obvious question is why is that so?
The studies in biological systems are complex and subject to interac-
tions and coincidental changes in protein expression. Inflammatory
cytokines, hormones and important stimuli of the Nox system like
angiotensin II, also co-induce the CYP system [38]. Moreover, Nox
enzymes are involved in signal transduction and redox-mediated gene
expression. Knockdown for Nox4, for example, attenuates eNOS
expression [4], which is another important source of the assay signal
in the lucigenin system [10,39,40]. Interestingly, also the induction of
CYP enzymes is redox-dependent for some of them [41]. These aspects,
however, still do not explain observations reporting acute changes in
the activity of the Nox assay. We can only speculate about the
mechanistic basis of these observations but they may very well reflect
changes in the cytoskeletal organization and the membrane topology of
the cell. For example, translocation of enzymes into lipid rafts will
change their accessibility to substrate and their activity [42] and Nox
stimuli like angiotensin II are well known to change the cytoskeletal
organization and membrane topology.

Probably due to the fairly low signal to noise ration of the assay and
the numerous pitfalls associated with the use of lucigenin, the
compound has been less frequently been used in recent years.
Nevertheless, several screens for Nox inhibitors are still based on this
probe and a large body of literature attributing Nox enzymes as a
source of ROS in various disease conditions is based on the assay. Thus,
understanding the enzymatic basis of the NADPH-stimulated lucigenin
signal is not only interesting from the biochemical point of view. In the
light of the present work it has to be considered an almost lucky
coincident that the Nox-dependent NADPH oxidases have emerged as
such important mediators of redox-biology.

In conclusion, in the present study we demonstrate that the CYP
system is the major source of the signal of the chemiluminescence
based Nox assay in membrane preparations of HEK293 cells. Even
high Nox-dependent ROS production does not result in a specific signal
in those Nox assays. Due to the capacity of the CYP system to generate
O2

•- if stimulated with NADPH, a Nox-specific assay might be possible
in cells devoid of the CYP system.

Fig. 6. Effect of POR knockout on the formation of DHE oxidation products. A: 2EOH product detected by fluorescence in supernatant of intact HEK293 cells overexpressing N4 or N5
(treated or not with PMA at 100 nmol/L) and knockout for POR. B: Detection of the oxidation product of DHE 2EOH by LC-MS/MS in membrane fractions (20 µg protein)
supplemented with NADPH (100 µmol/L). #p <0.05 with vs. without PMA.
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