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Abstract
The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce
complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental
models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy
subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and
assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research
Network on Neuropathic Pain). This study provided a 2463 10-sized data matrix (82 subjects assessed at baseline, following UV-B
application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning
techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters.
Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as
the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity
to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups
responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which
could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major
component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of
redundancy between these models.

Keywords:Quantitative sensory testing, Human experimental pain models, Heat pain, Cold pain, Pressure pain, Sex differences,
Subgroup identification, Machine-learning, Data science, Neuronal networks

1. Introduction

Biomedical research using cell experiments, laboratory animals,
or human volunteers often produces complex multidimensional
data. The complex trait of pain, which is known to rely on
a complex network of molecular nociceptive pathways,34 results
in a similarly complex phenotypic representation.55 Therefore, the
assessment of pain-related human phenotypes requires detailed
diagnostic approaches.4,7,28 Consequently, combinations of

several experimental nociceptive stimuli are used to address
particular sensory attributes or different neuronal and molecular
mechanisms of nociception or analgesia.77 Standardized quan-
titative sensory testing (QST) protocols71 use combinations of
thermal and variousmechanical stimuli to explore the spectrum of
sensory abnormalities that often accompany neuropathic pain.95

Human pain research, based on the exploration of pain
phenotypes with batteries of diagnostic tests, routinely produces
complex biomedical data. The influence of different factors on the
pain phenotypemay result in a highly complexdistributionof thedata,
and as a consequence, complex data analysismethods are required.
Recent developments in computational and data science offer
a multidisciplinary collaborative approach for extracting pertinent
information from biomedical data and generating knowledge from
that information.67 These developments include machine-learning
methods that structure the biomedical data into clusters.

In this study, we acquired complex data by experimentally
inducing pain in healthy subjects26 by using 2 different
hypersensitization procedures established in human experimen-
tal pain research, consisting of application of ultraviolet-B (UV-B)
or topical capsaicin to a small area of skin. We analyzed the
effects of these treatments on the parameters of a QST battery
using machine-learning58 and feature selection24 techniques,
which provide a set of methods that can automatically detect
patterns in data or perform other kinds of decision making under
conditions of uncertainty.58 The main classical types of machine
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learning, supervised and unsupervised learning (Box 1), were
primarily used to explore data and to identify the QST parameters
that are most affected by the hypersensitization procedures.

2. Methods

2.1. Subjects and study design

The study protocol complied with the Declaration of Helsinki on
Biomedical Research Involving Human Subjects and was ap-
proved by the Ethics Committee of the Medical Faculty of the
Goethe University, Frankfurt am Main, Germany (protocol number
28/11). Healthy volunteers who considered themselves to be of
Anglo-American ethnicity (n5 100, 46 men), aged 19 to 42 years
(mean 6 standard deviation 25 6 3.5 years), were enrolled after
providing informed written consent. Exclusion criteria were drug
intake during the previous week (except for oral contraceptives,
vitamins, or hormone substitutes such as L-thyroxin), a current
clinical condition involving pain, and current diseases, according to
questioning and medical examination. Prior to the experimental
tests, all subjects completed training sessions with pain tests
applied to an area different from the planned test and control areas.

2.2. Application of experimental
hypersensitization (treatments)

Experimental local hypersensitization of the skin was induced by
either applying UV-B80 or capsaicin cream65 topically on the inner
part of the subject’s forearm. The application sides (left or right) of
either model were randomized among subjects, with equal
proportions of men and women in each treatment subgroup.

The UV-B pain model uses UV light to induce a small area of
inflammation, allowing the assessment of mechanical and thermal
thresholds.23,27,30 Irradiation of the skin was performed inside the
forearm on an area without any superficial veins or birth marks, in
a different area than was used in the experiments to assess
hyperalgesia. First, to determine the minimal erythema dosage
(MED), 6 areasof 1 cm2were irradiated at a cumulativeUV-Bdosage
between 200 and 600 mW/cm2 (UV-B lamp UV 109; Waldmann
Medizintechnik, Villingen-Schwenningen, Germany). The lamp was
placed at a distance of 2.5 cm from the skin. UV-B dosage was
increased by extending the irradiation time. Minimal erythema
dosage was determined as the smallest dosage that led to a visual
reddening of the irradiated area of skin after 24 hours. Subsequently,
for the actual experiments, a different area of skin on the inner
forearmwas chosen according to the same criteria as used forMED
determination. This area was irradiated with double the MED, and
the experiments were performed 24 hours after UV-B irradiation.

In the capsaicin experimental painmodel, chemical methods of
nociceptor stimulation were used to produce stable and long-

lasting hyperalgesia with a low potential for skin injury, in the
original publication supplemented by heat stimulation65 and in
this study with additional cold and mechanical stimuli. In this
study, 150 mg of capsaicin cream (0.2%, manufactured by the
local hospital pharmacy) was topically applied to a 3 3 3-cm2

area of skin. Subsequently, the area was covered with a plaster
for 30 minutes before the QST parameters were acquired.

2.3. Quantitative sensory testing and raw data processing

Quantitative sensory testing was performed twice in each
subject, once at baseline and again following application of
experimental hypersensitization. A clinically established QST test
battery was used as proposed by the German Research Network
on Neuropathic Pain.71,72 This battery includes thermal and
mechanical stimuli grouped into 7 tests of sensory perception and
pain (Table 1) administered in the following order: thermal testing,
mechanical detection threshold, mechanical pain threshold,
mechanical pain sensitivity, temporal pain summation, vibration
detection threshold (VDT), and pressure pain threshold (PPT). The
room temperature was kept at 20 to 25˚C during testing.
Measurements were taken by trained investigators fully adhering
to previously published instructions,66,71,72 which are briefly
recapitulated in Table 1.

The 7 tests provided a total of 13 different QST parameters, which
were processed according to the published instructions,66,71,72

including log-transformation of some parameters as specified in
Table 1, in the column headed “Basic data processing.” Sub-
sequently, each QST parameter value was mapped onto the
distribution of a reference group consisting of a total of 180 healthy
subjects, in whomadata set of 1080 valueswas obtained. Thismap
serves as the reference for all QST-based diagnoses.48 Therefore,
according to the standard QST procedure, the individual QST
parameter values were z-transformed as

zQST;individual ¼ QSTindividual 2QSTreference
Standard deviationreference

;

where the QST reference values and standard deviations were
values published in a methodological article48 with regard to the
subject’s sex, age, and body site tested. The signs of the z-scores
were adjusted to denote that a score.0 indicates high sensitivity
and a score ,0 indicates low sensitivity, according to the
standard instructions.

2.4. Data analysis

Complete data were obtained from 82 subjects. Following the
exclusion of differences between left-hand and right-hand sides in
the baselinemeasurements, whichwas supported by nonsignificant

Text box 1. Overview on the main classical types of machine learning comprising supervised or unsupervised learning.

For supervised machine learning, the data space D5 fðxi; yiÞjxi2 X; yi2Y; i51…n g with a predefined division into an input space X and an output space Y. The input

space comprises vectors Xi ,   ; Xi; 1;…Xi; d.   ⊂  ℝd .0 different parameters acquired during a study for n.0 cases. The output space Y comprises yi2 C5 {1,…, c}, where

c denotes the possible classes such as treatment groups or diagnoses. During learning, the data space is searched with the aim of identifying an intelligent algorithm that maps the

input features to the output classes. By contrast, for unsupervised machine learning, the data space Du 5 fxi jxi2 X; i51…ng lacks class information, and the task is to

find interesting structures in the d-dimensional feature space Du ⊂ Rd, which subsequently can be topically interpreted. In this study, both classes of machine-learned analysis

were applied (1) to identify the most relevant effects of UV-B and topical capsaicin on quantitative sensory testing (QST) parameters and (2) to identify possible subgroups of

subjects who share similar QST responses to the selected hypersensitization treatments.

The unsupervised machine-learning method used was the ESOM/U-matrix, which is a topology-preserving artificial neuronal network (Kohonen SOM38,39) used to project high-

dimensional data points xi e R
D onto a 2-dimensional self-organizing network consisting of a large grid of neurons.88 Training for this unsupervised model means adapting to the

structures of the high-dimensional input data. On top of the trained ESOM, the distance structure in the high-dimensional feature space was visualized in the form of a U-matrix. This

visualization displays the distances between the points in the high-dimensional space in a color-coded manner using a geographical map analogy where large “heights” represent large

distances in the feature space while low “valleys” represent data subsets that are similar. “Mountain ranges” with “snow-covered” heights visually separate the clusters in the data.82,88
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paired t tests79 performed for each QST parameter, transformed
baseline data (z-values) were averaged between the 2 test sides. As
observed previously,18,45 the QST parameters dynamic mechanical
allodynia and paradoxical heat sensations did not vary among the
subjects, and the QST parameter vibration detection threshold

displayed only 2 different values in the whole cohort (0 or 1) that did
not change following application of the hypersensitization proce-
dures. Therefore, these parameters were omitted from the analyses.

The analyzed data set consisted of 10 QST parameters
acquired in 82 healthy subjects in the 3 study conditions

Table 1

Components of the quantitative sensory testing battery of the German research network on neuropathic pain.71,72

Test Quantitative sensory testing parameter Sensory dimension assessed Basic data processing

Thermal testing CDT Cold detection threshold Application of cold stimuli on a 3 3 3-cm2

skin area, baseline t˚ 5 32˚C, decreasing

temperature ramp of 1˚C/s, TSA 2001-II

(MEDOC, Ramat Yishai, Israel)

Difference from baseline 32˚C of the mean of 3

measurement repetitions; log-transformation

WDT Warmth detection threshold Application of warm stimuli to a 3 3 3 cm2

skin area, baseline t˚ 5 32˚C, increasing

temperature ramp of 1˚C/s, TSA 2001-II

(MEDOC, Israel)

Difference from baseline 32˚C of the mean of 3

measurement repetitions; log-transformation

TSL Thermal sensory limen Application of alternating cold and warm

stimuli to a 3 3 3-cm2 skin area, baseline

t˚ 5 32˚C, temperature ramp of 1˚C/s, TSA

2001-II (MEDOC, Israel)

Difference in the means of the 3 warmth and

the 3 cold detection thresholds; log-

transformation

CPT Cold pain threshold Application of cold stimuli to a 3 3 3 cm2

skin area, baseline t˚ 5 32˚C; decreasing

temperature ramp 1˚C/s, TSA 2001-II

(MEDOC, Israel)

Mean of the 3 measurement repetitions

HPT Heat pain threshold Application of warm stimuli to a 3 3 3-cm2

skin area, baseline t˚ 5 32˚C, increasing

temperature ramp of 1˚C/s, TSA 2001-II

(MEDOC, Israel)

Mean of the 3 measurement repetitions

Pressure pain threshold PPT Pressure pain threshold Application of blunt pressure stimuli to

musculus thenar for the hand area and

musculus abductor hallucis for the foot

area, Commander Algometer, JTECH

Medical, Midvale, Utah (1 cm2 probe area)

Mean of the 3 measurement repetitions; log-

transformation

Mechanical pain threshold MPT Mechanical pain threshold Application of pinprick stimuli (forces 8-512

mN; contact area 0.2 mm) following staircase

paradigm, starting force of 8 mN, the Pin-

Prick, MRC Systems GmbH, Heidelberg,

Germany

Geometric mean of the 5 ascending and 5

descending stimuli; log-transformation

Stimulus-response function MPS Mechanical pain sensitivity for pinprick

stimuli

Application of pinprick stimuli and tactile

stimuli in a balanced order, pain rating of each

pinprick stimulus on a 0 to 100 numerical

rating scale (“0” 5 “no pain,” “100” 5
“strongest pain imaginable”), the Pin-Prick,

MRC Systems GmbH, Heidelberg, Germany

Geometric mean of the pain ratings of the 35

pinprick stimuli; log-transformation

Wind-up WUR Wind-up ratio Temporal summation of pinprick stimuli,

application of single pinprick stimulus (force

256 mN) followed by train of 10 pinprick

stimuli (force 256 mN, 1/s repetition rate) over

skin area of 1 3 1 cm2, pain rating of the

train on a 0 to 100 numerical rating scale

(“0” 5 “no pain,” “100” 5 “strongest pain

imaginable”), the Pin-Prick, MRC Systems

GmbH, Heidelberg, Germany

Ratio of the mean pain ratings of the 5 series

of stimuli and the mean pain ratings of the 5

single stimuli; log-transformation

Mechanical detection

threshold

MDT Mechanical detection threshold Application of von Frey hairs (forces 0.25-512

mN, diameter 0.5 mm) following stare-case

paradigm, starting force of 16 mN, Optihair2-

Set, MARSTOCK nervtest, Schriesheim,

Germany

Geometric mean of the 5 ascending and 5

descending stimuli; log-transformation

Vibration detection

threshold

VDT Vibration detection threshold Application of descending vibration stimuli

(Rydel-Seiffer tuning fork, 64 Hz, 8/8 scale) to

the processus styloideus radii for the hand

area and malleolus medialis for the foot area

Mean of the 3 measurement repetitions
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(treatments): (1) baseline, (2) following application of UV-B, and (3)
following topical application of capsaicin. The z-transformed QST
parameter values obtained according to the standard procedure
of the QST battery48 provided the data space
D5 fðxi; yiÞjxi2 X; yi2Y; i5 1…82g. The cases xi 2 X were the
QST parameters acquired from the volunteers in our study, and
the output space Y comprising yi2C5 {1,2,3} was given by the 3
different study conditions. This data space was analyzed using
machine-learning58 and feature selection techniques24 to (1)
identify the QST parameters most affected by the hypersensiti-
zation treatments and (2) explore the data space for high-
dimensional structures associated with the hypersensitization
conditions or with subject subgroups sharing similar responses to
the hypersensitization treatments. Finally, (3) the key results of the
machine-learned analysis were verified by comparing them with
the results of a standard variance analytical approach.

All analyses were performed using the R software package
(version 3.3.3 for Linux; http://CRAN.R-project.org/, Ref. 68) on
an Intel Xeon computer running on Ubuntu Linux 16.04.2 64-bit.
The steps of the machine-learned analysis are described in detail
as follows.

2.4.1. Machine-learned analysis to identify the quantitative
sensory testing parameters most affected by
hypersensitization

To identify the QST parameters that were most affected by UV-B
or topical capsaicin application, we started with the hypothesis
that these parameters can provide the basis for the correct
association of a measurement with the hypersensitization treat-
ments under which the data had been acquired. We approached
this task using supervised machine learning. Our analysis
included (1) a feature selection step, which aimed at identifying
the most relevant QST parameters (features) for correct
assignment to different classes or treatments, which was
followed by (2) creation of a classifier that allowed us to explore
differences in the effects of the hypersensitization treatments.

2.4.1.1. Feature selection

The QST parameters differing most relevantly among the
3 experimental conditions, and thus qualifying as basis by
which to distinguish the study conditions, were identified
using techniques of unsupervised machine learning58 and
feature selection.24 Specifically, the input-output pairs
D5 fðxi; yiÞjxi2 X; yi2Y; i5 1…82g were submitted to random
forest machine learning. A random forest consists of a set of
different, uncorrelated, and often very simple decision trees.9

Each decision tree uses a tree data structure with conditions on
variables (parameters) as vertices and classes as leaves. Each
tree in the random forest votes for a class. The final classification
assigned to a data point follows the majority of these class votes.

In our analysis, in 1000 repeated experiments the original data
set was split into 2/3 training and 1/3 test data subsets, by means
of class-proportional bootstrap resampling from the training data
set20 using the R library “sampling” (https://cran.r-project.org/
package5sampling, Ref. 83), to increase the robustness of the
analysis. For each of the 1000 experiments, 500 random decision
trees were created, each tree containing d 2 {1,…,10} features
randomly drawn from the d5 10QST parameters. The number of
trees was based on visual analysis of the relationship between the
number of decision trees and the accuracy of the classification.
This analysis indicated no improvement beyond approximately
300 trees; therefore, building 500 trees was considered to

provide robust results. Within this analysis, bootstrap resampling
was used again to split the training data subset into further
training and test subsamples, and trees were created on these
training subsamples and applied to test subsamples. Thus, the
whole analysis accommodated the concept of a nested cross-
validation analysis,93 with the inner loop consisting of the decision
tree analysis on data resampled from the training data subset and
the outer loop consisting of the 1000 splits of the whole data set
into training and test data. The trees were analyzed with respect
to the features included and the accuracy of classification into the
3 treatment groups. For each feature, we computed the
mean decrease in Gini impurity (https://en.wikipedia.org/wiki/
Decision_tree_learning#Gini_impurity) while excluding the re-
spective parameter from a random forest building. We
thus provided a rating criterion for the importance of each
QST parameter to serve as a basis to conclude the
experimental condition, under which its value had been
acquired, ie, the amount of this decrease indicated the
importance of the particular feature. We performed these
calculations using the “randomForest” library (https://cran.
r-project.org/package5randomForest, Ref. 44).

Following each of the 1000 random forest analyses on
resampled data, we submitted the values of the mean decreases
in Gini impurity to computed ABC analysis while excluding the
parameter from random forest analysis.87 ABC analysis is
a categorization technique for selection of the most important
subset among a larger set of items, and we chose it because it fit
the basic requirements of feature selection using filtering
techniques,75 ie, it easily scales to very high-dimensional data
sets, is computationally simple and fast, and is independent of the
classification algorithm. ABC analysis aims at dividing a set of
data into 3 distinct subsets called “A,” “B,” and “C.” Set A should
contain the “important few,” ie, those elements that allow us to
obtain a maximal yield with a minimal effort.35,62 Set B comprises
those elements where an increase in effort is proportional to the
increase in yield. By contrast, set C contains the “trivial many,” ie,
those elements with which the yield can only be achieved with
a disproportionally great additional effort.35,62 The target QST
parameters for further exploration of the hypersensitization
effects were sought in ABC set “A.” The final size of the feature
set was equal to themost frequent size of set “A” in the 1000 runs.
The final members of the feature set were chosen in decreasing
order of their appearances in ABC set “A” among the 1000 runs.
These calculationswere done using our software package (http://
cran.r-project.org/package5ABCanalysis, Ref. 87).

2.4.1.2. Explorative analysis to identify the quantitative
sensory testing parameters most affected by
hypersensitization

The QST parameters most frequently assigned to set “A” in the
1000 random forests and ABC analysis of resampled data, at the
number corresponding to the most frequent size of set “A,” were
used to create a decision tree associating ranges of QST
parameter values with the 3 study conditions. This tree was
obtained by means of decision tree learning using the classifica-
tion and regression tree algorithm.10 As in random forests, a tree
data structure is created with conditions on variables (parameters)
as vertices and classes as leaves. In random forests, tree structure
is randomly created, making it impossible to interpret single trees,
but in classical decision trees, local decisions follow statistical
criteria and aim at providing a simple and easily understandable
set of classification rules suitable for topical interpretation, which is
why we chose to use them in the present exploratory analysis.
We used the concept of Gini impurity to find optimal (local)
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mutually exclusive decisions. The calculations used the “ctree”
function of the “party” software package (https://cran.r-project.
org/package5party, Ref. 32). We assessed the significance of the
splits at each decision node by applying permutation tests as
implemented in the “ctree” function. Nodes were only split if the
null hypothesis of independence between the response variable,
ie, the treatment class, and the predictors, ie, the QST parameter
values, could not be rejected at the given level of significance.
Finally, we assessed the performance of the identified decision
tree to correctly assign the treatment during which data had been
acquired by calculating the overall classification accuracy of
treatment assignment using standard equations.2 We repeated
these steps in 1000 runs of randomly resampled data subsets
class—proportionally drawn from the complete data sets. The
accuracy was themedian of the values obtained in the 1000 runs,
and the 95% confidence interval spanned between the 2.5th and
97.5th percentiles of the range of the 1000 associated accuracy
values.

2.4.2. Machine-learned analysis of quantitative sensory
testing parameter–based data structures

To identify response patterns of QST parameters to the hypersen-
sitization treatments, we analyzed the baseline values together with
parameters acquired after application of UV-B or capsaicin. We
performed this analysis in 4 main steps, comprising (1) data
preprocessing based on Bayesian statistics; (2) detection of
distance- and density-based data structures based on emergent
self-organizing maps followed by subgroup detection; (3) decision
tree–based exploration of the QST parameter pattern of the data
cluster structurewe had obtained; and (4) topical characterization of
the data structures, including sex differences.

2.4.2.1. Data preprocessing

The 10 3 246 matrix, we obtained (10 z-transformed QST
parameters acquired in 82 subjects under 3 different treat-
ments comprising baseline, UV-B, and capsaicin), provided
the data space D5 fxi; i5 1;…; 82g⊂ℝ10. We analyzed the
parameters (features) with respect to their probability density
function. We did so by applying the Pareto density estimation
(PDE), which is a kernel density estimator particularly suitable
for the discovery of groups.86 For each of the 10 QST
parameters, the magnitudes were described as either low,
average, or high, reflecting the previous phenotypes of “low pain
sensitivity,” “average pain sensitivity,” and “high pain sensitivity”
proposed by Diatchenko et al.17 The association of each value to
1 of the 3 classes was obtained by means of Gaussian
mixture modeling. That is, the PDE was described as

pðxÞ5 +M
i5 1wiNðxjmi; siÞ5+M

i51wi× 1
ffiffiffiffiffiffiffi

2psi
p ×e

2
ðx2miÞ2

2s2
i , where N (x|

mi, si) denotes Gaussian probability densities (component, mode)
with means, mi, and standard deviations, si, while wi denotes the
mixture weights controlling the relative contribution of each
Gaussian component to the overall distribution, which add up to
a value of 1, and M5 3 denotes the number of components in the
mixture corresponding to the 3 proposed classes described above
(low pain sensitivity, average pain sensitivity, and high pain
sensitivity). We fitted this model to the PDE of the data using
our “AdaptGauss” software package (https://cran.r-project.org/
package5AdaptGauss, Refs. 43,90) and using the expectation
maximization algorithm.15 Subsequently, we calculated the
probabilities for each data value to belong to each of the 3
Gaussian components as the Bayesian posteriors.50 Finally, we
subtracted the probabilities of belonging to the small data value

range from those of belonging to the high data value range,
providing 10 vectors scaled in the interval [21,…,1].

2.4.2.2. Detection of distance- and density-based data
structures

The 10 3 246 matrix of Bayesian posteriors belonging to low,
average, or high QST values within each parameter range across
the whole study provided the unsupervised data space Du ⊂ [2
1,1]10 that we explored for distance- and density-based
structures. We performed this exploration by means of un-
supervised machine learning.58 The task was to identify data
structures that reflected the treatments applied in the experi-
ments and to suggest possible subgroups of responders to the
treatments. Machine learning was implemented as emergent
self-organizing feature maps (ESOMs)38 that were combined with
the U-matrix.85 This method has been shown to provide an
unbiased way to identify structures in biomedical data.88

Specifically, ESOMs are based on a topology-preserving pro-
jection of high-dimensional data points xi e RD onto a 2-
dimensional self-organizing network consisting of a grid of
neurons. This approach represents a topology-preserving
mapping of high-dimensional data points onto a 2-dimensional
grid of neurons that therefore favored more common clustering
algorithms such as k-means, Ward, complete, and average
linkage,47 which in contrast to the ESOM/U-matrix method are
prone to detect false structures in the data.88 The neural network
consisted of a 2-dimensional toroid grid85 of so-called neurons
with 50 rows and 80 columns (n 5 4000 units; for SOM size
determination, see Ref. 88). Each neuron holds, in addition to
a position vector on the 2-dimensional grid, a further vector
carrying “weights” of the same dimensions as the input
dimensions. The weights were initially randomly drawn from the
range of the data variables andwere subsequently adapted to the
data during the learning phase that used 30 training cycles.

After training of the neural network, we obtained an ESOM that
represented the subjects on a 2-dimensional toroid map as the
localizations of their respective “best matching units” (BMU),
which are neurons on the grid that after ESOM learning carried the
vector that was most similar to a subjects’ data vector. On top of
this grid, the distances between data points are calculated
with the U-matrix.47,89 Every value (height) in the U-matrix
depicts the average high-dimensional distance of a prototype
to all immediate neighboring prototypes regarding a grid
position. The U-matrix can be enhanced by calculating
a P-matrix85 displaying the point density for a neuron mj as
pðmjÞ5 jfdata points xi2Djdðxi;wðmiÞÞ, r. 0; r2ℝgj, esti-
mated as the number of data points belonging to the data space
D in a sphere with radius r belonging to the real numbersℝ around
the weight wðjÞ of each neuron mj on the ESOM’s output grid.
The U*-matrix combines distance structures (U-matrix) and
density structures (P-matrix) into a single matrix.85 The corre-
sponding visualization technique is a topographical map with
hypsometric colors,81 facilitating the recognition of distance- and
density-based structures. Large “heights” in brown and white
colors represent large distances between data points (subjects)
separating “valleys” in green and blue colors that represent data
points that are similar.

2.4.2.3. Assessment of cluster structures and
hypersensitization response subgroups

The ESOM/U*-matrix analysis provided a distance- and density-
based cluster structure of the data of the complete study. That is,
each treatment had been regarded as a separate data subset
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leading to the representation of each subject 3 times on the
ESOM with data points for each treatment. Therefore, cluster
structures provided a basis to identify both (1) the effects of the
hypersensitization treatments and (2) subgroups of subjects
sharing response patterns to the treatments.

To explore the cluster structure, we submitted the z-values of
theQST parameters to decision tree learning as described above,
ie, using the classification and regression tree algorithm10with the
Gini impurity as basis of a dichotomous split criterion to find an
optimum as implemented in the “ctree” function of the “party”
package (https://cran.r-project.org/package5party, Ref. 32). An
a-level of P 5 0.001 was chosen for split significance and was
corrected for multiple testing according to the procedure
proposed by Bonferroni.8 The performance of the identified
decision tree to correctly assign a data point to its U*-matrix–
based cluster was assessed by calculating the overall classifica-
tion accuracy of treatment assignment as accuracy [%] 5
number of correct treatment associations/total number of
treatment associations.51

We approached the interpretation of the cluster-specific QST
pattern by associating the original hypersensitization treatments
to the U*-matrix–based clusters. Therefore, we analyzed the
treatment vs cluster contingency table with respect to over-
representation or underrepresentation of treatments in clusters.
Specifically, we obtained the permutation distribution of this 2-
way table and calculated the sum of squares of the Pearson
residuals as the test statistic of independence.97 We assessed
test significance using Pearson x2 test.64 This step allowed us to
associate particular study conditions (baseline, UV-B, and
capsaicin) with U*-matrix clusters. These calculations were done
using the “vcd” library (https://cran.r-project.org/package5vcd,
Ref. 54).

In addition to exploring the U*-matrix–derived clusters for
treatments effects, we also looked at cluster membership with
respect to sex differences. Therefore, we submitted cluster
membership vs sex cross-tables, obtained for study treatments,
decision-tree analysis, and ESOM/U*-matrix analysis, to Fisher
exact tests.21

2.4.3. Reassessment of key results using analysis of variance

To reassess key results of machine-learned analyses using
classical statistical methods, we analyzed the effects of UV-B or
topical capsaicin on QST parameters by submitting the QST
parameter z-values to conventional analysis of variance for
repeated measures (rm-ANOVA) with “hypersensitization”
(UV-B or capsaicin) as a within-subjects factor and “sex” as
a between-subjects factor. The analyses were performed
separately for each QST parameter. Each rm-ANOVA was
followed by the analysis pairwise treatment differences by means
of paired t tests.79 The a-level was set at 0.05 and corrected for
multiple testing,8 separately for each rm-ANOVA (ie, 3 t tests).

3. Results

The QST parameter values obtained during the baseline measure-
ments did not significantly differ between the test sides (t tests: P
always.0.05) and were therefore averaged to obtain the baseline
condition data subset. For technical reasons, data from 18
subjects were incomplete. Moreover, the QST parameters
dynamic mechanical allodynia and paradoxical heat sensations
lacked intersubject variation, and VDT displayed only 2 different
values (0 or 1), which suggested exclusion of these values from the
analyses. With baseline QST parameters having been averaged

between the 2 test sides, the data we analyzed were based on
3280 QST parameter values obtained in 82 subjects when
counting the data in a similar manner as in the report of the
reference values of the QST test battery that mentioned 1080 QST
parameter values obtained in 180 subjects.48 The distribution of
the z-transformed data is shown in Figure 1.

3.1. Quantitative sensory testing parameters most affected
by ultraviolet-B– or topical capsaicin-
induced hypersensitization

Supervised machine learning using 1000 random forest analyses
(Fig. 2) of bootstrap resampled data indicated different contribu-
tions to correct treatment association for particular QST
parameters. Specifically, only 4 different QST parameters (heat
pain threshold, cold pain threshold, cold detection threshold, and
thermal sensory limen) had been included in successful decision
trees. In the ABC analyses (Fig. 2) that had followed each random
forest analysis, set “A” comprising items that contribute most to
the associationwith the study treatments took sizes of 0, 1, 2, or 3
QST parameters in 7, 517, 387, and 89 of the runs, respectively.
Therefore, a set size of 1 QST parameter was chosen for further
analysis, and the QST parameter most frequently assigned to set
“A,” ie, in 993 runs, was HPT (Fig. 2).

Decision tree analysis using the selected QST parameter
(Fig. 3) provided an overall classification accuracy of 67.9%
(cross-validated nonparametric 95% confidence interval
obtained in 1000 resampling runs: 60.5%-75.3%), which was
substantially above 33%chance of assigning ameasurement to 1
of the 3 study conditions. However, it also provided 100 to 67.95
32.1% falsely classified data points. Exploration of the decision
tree (Fig. 3) indicated that data acquired following topical
application of capsaicin were almost always associated with
high heat pain sensitivity, whereas data acquired during the
baseline condition were almost always associated with low heat
pain sensitivity. However, data acquired followingUV-B treatment
were partly found to be associated with medium heat pain, while
a fraction of the data shared a decision node with baseline data
indicating nonresponse to hypersensitization. The decision tree
allowed only for statistically significant splits comprised 6 final
nodes (Fig. 3). The distribution of study conditions was
statistically highly significantly different across the terminal tree
nodes (x2 statistics: P , 2·10216).

3.2. Quantitative sensory testing parameter–based
data structures

Unsupervised machine learning identified structures in the data
space D5 fxi; i5 1;…; 82g⊂ℝ10 comprising the variables d 5
10 QST parameters, x, acquired from 82 subjects. Following
projection of the vector space onto a toroid grid of 50 3 80 5
4000 neurons and training of a self-organizing map, a U*-matrix
visualization was displayed on top of this SOM (Fig. 4) that
visualized distance- and density-based data structures. The
resulting ESOM visualized large gaps in the data space by large
U-heights, whereas data located in close vicinity in the high-
dimensional space were placed in regions with low U-heights on
the U*-matrix. The valleys and ridges allowed the identification of
4 major clusters in the QST data space acquired during the
present study (Fig. 4A, B). The study conditions (baseline, UV-B,
and capsaicin) were unevenly represented in the clusters, as
indicated by highly significant x2 statistics (P , 2·10216).

Specifically, data acquired during the baseline condition were
overrepresented in the first cluster and underrepresented in the 3
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other clusters (Fig. 4D). Indeed, cluster 1 comprised 74 of the 82
measurements acquired during the baseline condition. The first
cluster was, however, larger than a third of the data points as it
also contained 45 measurements acquired following application
of UV-B hypersensitization. Given that further subclusters did not
emerge in this cluster, this fraction of data acquired during the
UV-B condition points at nonresponders to this treatment.
Consistently, the second cluster that contained measurements
acquired following UV-B treatment was comparatively small (n5
28 data points) and contained 19measurements acquired during
the UV-B condition. Finally, data acquired following topical
application of capsaicin were overrepresented in 2 different

clusters in which all other study conditions were underrepre-
sented (Fig. 4D). Indeed, 78 of the 82 measurements acquired
following capsaicin application were located in clusters 3 or 4.
The distribution on 2 different clusters indicated clear subgroups
in the response to capsaicin hypersensitization.

Decision tree analysis of the U*-matrix–derived clusters
(Fig. 4C), based on statistically significant data splits and
providing an overall cluster association accuracy of 87.8%
(95% CI: 83.05%-91.6%), indicated that again, heat pain
sensitivity (QST parameter HPT) was themajor distinctive criterion
among the clusters as it had resulted in the supervised machine-
learned analysis. However, additional QST parameters played

Figure 1. Distribution of the z-values of the quantitative sensory testing (QST) parameters at baseline (blue) and following hypersensitization induced by topical
application of ultraviolet-B (violet), or capsaicin (orange-red). The density distribution is presented as probability density function (PDF), estimated by means of the
Pareto density estimation (86black line). Higher z-scores indicate higher sensitivity to the respective stimuli. The figure was created using the R software package
(version 3.3.3 for Linux; http://CRAN.R-project.org/, Ref. 68). CDT, cold detection threshold; CPT, cold pain threshold; HPT, heat pain threshold; MDT,
mechanical detection threshold; MPS, mechanical pain sensitivity to pinprick stimuli; MPT, mechanical pain threshold; PPT, pressure pain threshold; TSL, thermal
sensory limen; VDT, vibration detection threshold; WDT, warmth detection threshold; WUR, wind-up ratio.
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a role in correct cluster assignment. Specifically, high sensitivity to
cold stimulation was important for assignment to the cluster
containing the most data acquired following application of UV-B
induced hypersensitization. By contrast, the 2 clusters to which
most of the data acquired following application of capsaicin-
induced hypersensitization were assigned could be distinguished
by sensitivity to pressure pain (QST parameter PPT; Fig. 4C).

Thus, the difference in the response to capsaicin among
subjects was mainly due to a different sensitivity to pressure pain.
An analysis of the cluster membership vs sex cross-table (Fig. 5)
indicated a different distribution of sexes among the U*-matrix–
based clusters (Fisher exact test: P 5 0.009881), in contrast to
the original treatment vs sex distribution (P 5 1) and to the sex
distribution across the HPT-dependent decision tree nodes
obtained in the supervised machine-learning analysis (P 5
0.2125). This sex distribution prevailed between the 2 clusters
associated with capsaicin treatment (P 5 0.03894). Cluster 4,
characterized by a higher sensitivity to pressure pain, contained
more women than men, while the opposite was observed for
cluster 3, characterized by a comparatively lower sensitivity to
pressure pain. Thus, unsupervised machine-learned analysis
followed by knowledge discovery using decision tree analysis
pointed at a higher sensitivity to pressure pain in women as
compared to men, which was reflected in the projection of the
high-dimensional data space onto a toroid SOM.

3.3. Reassessment of key results using analysis of variance

Standard statistical analysis of the data indicated that the
treatments exerted significant effects on all QST parameters
except for warmth detection threshold, as indicated by the
significance pattern of the results of the rm-ANOVA (Table 2). The
significance pattern also indicated that the 2 treatments (UV-B or

capsaicin) had influenced different QST parameters (Table 2).
Moreover, the ANOVA supported a sex difference, particularly in
pressure pain, as identified by means of unsupervised machine
learning. Indeed, the highest statistical significance level among
several significant sex differences in QST parameters (Table 2)
was observed for PPT (F 5 34.43, P 5 9.57·1028).

4. Discussion

This study assessed established models of heat hyperalgesia
with a variety of noxious stimuli, extending the original heat
stimulation by the application of cold and mechanical stimuli.
Considering the potential use of human experimental painmodels
for analgesic drug research, we applied a clinically established
QST battery that was originally developed to phenotype
neuropathic pain in patients, which was also successfully used
in a human experimental context on healthy subjects.18,45,46 To
extract meaningful information from the resulting high-
dimensional data, we applied machine-learning techniques with
the aims of (1) identifying the most relevant effects of UV-B and
topical capsaicin on QST parameters and (2) identifying possible
subgroups of subjects who share similar QST responses to
selected hypersensitization treatments. The results of these
analyses indicated that (1) both UV-B– and capsaicin-induced
experimental hypersensitization primarily increased subjects’
sensitivity to heat; (2) UV-B additionally modulated sensitivity to
cold; (3) subgroups of responders to topical application of
capsaicin differedwith respect to their sensitivity to pressure pain,
and this could be attributed to sex differences; and (4) the
response to the UV-B hypersensitization treatment was hetero-
geneous and included a group of nonresponders, which in the
high-dimensional space of the QST pattern was indistinguishable
from the absence of any hypersensitization treatment.

Figure 2.Machine-learned analysis to identify quantitative sensory testing (QST) parameters most affected by hypersensitization, implemented as random forest
analysis followed by ABCanalysis of the contribution of QSTparameters to overall association of themeasurements to the study treatments (baseline, ultraviolet-B,
or capsaicin). (A) Dot chart33 of the mean decrease in Gini impurity when the respective feature (QST parameter) is excluded from random forest decision tree
building. The plot displays 1 typical example out of the analyses of 1000 bootstrap resampled data subsets. (B) Subsequent to random forest-based feature
selection, themean decrease in Gini impurity associated with each QST parameter was submitted to ABC analysis, which is an item selection procedure aiming at
identification of the most profitable items from a larger list of items. The ABC plot (blue line) shows the cumulative distribution function of the mean decreases in
accuracy, alongwith the uniform distribution (green line) inwhich each featurewould have the same chance to contribute to the study condition assignment (for further
details about computed ABCanalysis, see Ref. 87). The red lines indicate the borders between ABC sets “A,” “B,” and “C.” Only set “A,” containing themost profitable
item, was selected as the1relevant QST item subset. (C) Count of occurrences of QST parameters in ABC set “A” during the 1000 runs on bootstrap resampled data.
The 4 parameters are those that ever appeared in set “A.” Most frequently, the set size was |{A}|5 1 parameter and most often the QST parameter “HPT.” Therefore,
this parameter (blue) was selected as a sufficient basis for study treatment assignment during random forest–based feature selection for unsupervised machine-
learnedanalysis. The figurewas createdusing theR softwarepackage (version 3.3.3 for Linux; http://CRAN.R-project.org/, Ref. 68). Inparticular, theABCanalysiswas
performed and plotted using our “ABCanalysis” software package (http://cran.r-project.org/package5ABCanalysis, Ref. 87). CDT, cold detection threshold; CPT,
cold pain threshold; HPT, heat pain threshold; MDT, mechanical detection threshold; MPS, mechanical pain sensitivity to pinprick stimuli; MPT, mechanical pain
threshold; PPT, pressure pain threshold; TSL, thermal sensory limen; WDT, warmth detection threshold; WUR, wind-up ratio.
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The present results are compatible with prior pathophysiolog-
ical knowledge. Specifically, our results emphasize that both
experimental pain models involve hypersensitization to heat
stimuli as a major physiological mechanism. It has been
recognized for decades that capsaicin excites TRPV1 ion
channels,84 and we have long known that TRPV1 is a heat
sensor.12 Similarly, UV irradiation has been shown to increase
mRNAs level of TRPV1 by 2.4-fold in healthy subjects,41 and
more recent studies have shown that TRPV4 is involved in thermal
sensation.96 For both models, reports indicate the reversal of
these hypersensitization effects by TRPV1 antagonists as novel
analgesics under drug development.3,11,73,76 However, UV-B
radiation has been additionally shown to generate sunburn pain
by activating epidermal TRPV4 ion channels, at least in mice,57

which supports our observations that the 2 models share many
similarities but are not identical in their effects on QST
parameters.

In particular for UV-B, an effect on cold sensationwas identified
as a feature contributing to the correct association of a measure-
ment with the treatment during which it had been acquired. This
finding agrees with evidence from animal experiments that have
shown an effect of cold stress on cultured keratinocytes fromUV-
B–injured skin.61 Cooler temperatures increase sensitivity to UV-
B radiation in embryos and larvae of the frog Limnodynastes
peronii.92 This finding is compatible with reported differences in
UV-B– and capsaicin-induced hypersensitization that are
claimed to affect the clinical translation of these models from

experimental human studies on the effects of analgesics, in
particular those targeting neuropathic pain.91 The involvement of
cold sensitization might be an advantage with regard to
understanding neuropathic pain, considering that cold
sensitization–based models such as topical menthol application
have been successfully used to show the effects of drugs
established in the treatment of neuropathic pain, such as
pregabalin.1 From a human genetics perspective, a close relation
between heat and cold sensitivity has been reported previously.
First, the ion channels mentioned so far are temperature
sensors,63 but in another study, local capsaicin application was
reported to affect cold sensation,60 a finding that was interpreted
as indicating interactions among TRP channels.13 For example,
TRPA1 channels are often co-expressed with heat-gated TRPV1
channels49,78, and the transient receptor potential channels may
act in concert,22 including heterodimerization or oligomerization
of TRPV1 with TRPV3 and TRPA1.29 Thus, the effects on cold
pain observed following hypersensitization procedures that
apparently address heat pain are biologically plausible.

The results of our study indicate that machine learning both in
a supervised and unsupervised manner, and in particular the
latter implemented as ESOM/U*-matrix–based clustering, are
suitable methods to analyze human experimental pain data. This
indication is supported by the compatibility of key results with
a classical ANOVA. Moreover, by including techniques of feature
selection involving hierarchical components, we designed this
analysis to identify the most relevant effects of the

Figure 3. Decision tree associating ranges of the quantitative sensory testing (QST) parameter most affected by hypersensitization according to feature selection
analysis (Fig. 2) with the 3 study conditions: baseline (1), ultraviolet-B (UV-B) (2), or capsaicin (3). The split criterion was the Gini impurity, and only statistically
significant splits, based on permutation tests, were accepted. The tree ended in 6 terminal nodes (4, 5, 7, 8, 10, 11) at which the number of measurements
assigned to the respective node is shown as bar plots, with separate bars for each study treatment (blue 5 baseline, violet 5 UV-B, red5 capsaicin). Higher z-
scores indicate higher sensitivity to the respective stimuli. At the upper left corner, an association plot is shown to visualize the residuals of an independencemodel for
the contingency table.14 Each cell of the contingency table is represented by a rectangle that has a height proportional to the contribution to Pearson x for the cell and
width proportional to the square root of expected counts corresponding to the cell. Hence, the area of each box is proportional to the difference in observed and
expected frequencies. The rectangles in each row are positioned relative to a baseline indicating independence, ie, if the observed frequency of a cell is greater than the
expected frequency, the box rises above the baseline, but otherwise it falls below it. Each study treatment (lines) is plotted vs the decision tree terminal nodes (columns)
as a result of a contingency table analysis, indicating the relative representations of each treatment across the tree nodes. The Pearson residuals are colored according
to a perceptually uniform hue-chroma-luminance (HCL) given at the right margin of the association plot.52 The figure has been created using the R software package
(version 3.3.3 for Linux; http://CRAN.R-project.org/, Ref. 68). Specifically, for drawing the tree and association plots, the “vcd” package (https://cran.r-project.org/
package5vcd) was used54 including the “strucplot” framework53 and residual-based shadings.97 HPT, heat pain threshold.
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hypersensitization procedures on QST parameters, rather than to
establish merely statistical significances of differences from
baseline or between the 2 treatments. Specifically, the results of
supervised learning emphasize that both sensitization proce-
dures primarily modulate sensitivity to heat pain, which corre-
sponds to the major involvement of TRPV1 and TRPV4 ion
channels known as heat or thermal sensors.12,96 This finding
explains the degree of overlap observed in node 7 in Figure 3.
Here, a possible dose effect might shift this overlap depending on

the relative doses of capsaicin and UV-B. In this study, capsaicin
was standardized among subjects with respect to the dose
applied, whereas UV-B was standardized with respect to the
erythema effect obtained. Application of the same UV-B
irradiation dose to all subjects could shift the hypersensitizing
effect toward less overlap if a low dose was selected or toward
more overlap if a high dose was selected, which must be taken
into account when interpreting Figure 3. However, more
pronounced effects of capsaicin on HPT as compared to those

Figure 4.Machine-learned analysis aimed at detecting data structures of quantitative sensory testing (QST) parameter pattern acquired during the different study
conditions (treatments). (A) U*-matrix visualization of distance- and density-based structures of the QST parameter pattern observed in 82 subjects under baseline
conditions and following application of ultraviolet-B- or capsaicin-induced hypersensitization. The figure was created by projecting the data points onto a toroid
grid of 4000 neurons where opposite edges are connected. The dots indicate the “best matching units” (BMUs) of the self-organizing map (SOM), which are those
neurons whose weight vector is most similar to the input. A single neuron can be the BMU for more than 1 data point or subject; hence, the number of BMUsmay
not be equal to the number of acquired measurements. The U*-Matrix was colored as a geographical map with brown (up to snow-covered) heights and green
valleys with blue lakes. Valleys indicate clusters and watersheds indicate borderlines between different clusters. The BMUs are colored according to the 4 clusters
identified on the basis of this U*-matrix. (B) 3-D view of the same U*-star matrix, indicating cluster separation by “mountain ridges.” (C) Decision tree associating
emergent self-organizing feature map (ESOM)/U*-matrix–derived clusters with ranges of QST parameters. Higher z-scores indicate higher sensitivity to the
respective stimuli. The split criterion was the Gini impurity, and only statistically significant splits, based on permutation tests, were accepted. The tree ended in 6
terminal nodes (4, 5, 7, 8, 10, 11) at which the number of measurements assigned to the respective node is shown as bar plots, with separate bars for each U*-
matrix–based cluster. (D) Association plot visualizing the residuals of an independence model for the treatment vs clusters contingency table.14 Each cell of the
contingency table is represented by a rectangle that has height proportional to the contribution to Pearson x for the cell andwidth proportional to the square root of
expected counts corresponding to the cell. Hence, the area of each box is proportional to the difference in observed and expected frequencies. The rectangles in
each row are positioned relative to a baseline indicating independence, ie, if the observed frequency of a cell is greater than the expected one, the box rises above
the baseline, and falls below otherwise. Each study treatment (lines) is plotted vs the U*-matrix–derived clusters (columns) as a result of a contingency table
analysis, indicating the relative representations of each cluster in across the tree nodes. The Pearson residuals are colored according to a perceptually uniform
hue-chroma-luminance (HCL) given at the right margin of the association plot.52 The figure was created using the R software package (version 3.3.3 for Linux;
http://CRAN.R-project.org/, Ref. 68). Specifically, for drawing the tree and association plots, the “vcd” software package (https://cran.r-project.org/
package5vcd) was used,54 including the “strucplot” framework53 and residual-based shadings.97 HPT, heat pain threshold; PPT, pressure pain; CPT, cold pain
threshold; CDT, cold detection threshold.
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of UV-B would indicate the greater importance of TRPV1 than
TRPV4 for heat sensation12,96 at the molecular level.

Unsupervised machine learning followed a different approach,
first identifying structures in the data of the whole study without
reference to the study treatments. By contrast, the treatments
emerged during data interpretation, aided by a further decision tree
analysis. There, an additional importance of cold pain sensitivity
came into play; however, this result is compatible with the findings
of unsupervised learning. Indeed, in unsupervised learning theQST
parameters cold detection threshold and cold pain threshold
emerged in ABC set “B” (Fig. 2A) as important components of the
decision tree exploring the clustering results of the ESOM (Fig. 4)

and were only neglected because of the predefined focus of that
analysis to pay attention to only the most important parameters.
Hence, the results of the different implementations of machine
learning were compatible with each other.

The main focus of this analysis was data exploration for
relevant effects of treatments or demographic parameters
modulating the individual perception of pain to make them
accessible to expert interpretation of the study results. The
analysis was not aimed at creating a general-purpose classifier for
capsaicin or UV-B effects because its application would be
limited to a particular human experimental setting. Therefore,
methods of further sophistication of the classifier methods were

Figure 5. Analysis of the distribution of the subjects’ sex across study treatments or clusters. The mosaic plots represent contingency tables of the sexes vs the
study treatments (left) or the machine-learned clusters (right). The size of the cells as proportional to the number of subjects included. While sexes did not differ
across treatments, the sex distribution across the emergent self-organizing feature map/U*-matrix–derived clusters (Fig. 4) was uneven at a statistical significance
level of P, 0.05 (Fisher exact test). The figure has been created using the R software package (version 3.3.3 for Linux; http://CRAN.R-project.org/, Ref. 68). In
particular, in U*-matrix–based clusters 3 vs 4 there were significantly more men or women, respectively (P , 0.05).

Table 2

Results of analyses of variance for repeatedmeasures (rm-ANOVA) with post hoc t tests vs baseline of the values acquired after

ultraviolet-B (UV-B) or capsaicin treatments, performed for 10 quantitative sensory testing (QST) parameters; dynamic

mechanical allodynia andparadoxical heat sensationswere omitted owing to the absenceof intersubject variation, and vibration

detection threshold was omitted as it displayed only values (0 or 1) that did not change after application of the sensitization

procedures.

QST parameter ANOVA factor
“treatment”*

ANOVA factor
“sex”*

ANOVA interaction
“treatment” by “sex”

t test† UV-B vs
baseline

t test† capsaicin vs
baseline

t test† UV-B vs
capsaicin

F P F P F P T P T P T P

CDT 110.35 <2 3 10216 4.807 0.0313 1.062 0.348 0.085 1.00 210.722 <2 3 10216 10.807 <2 3 10216

WDT 0.670 0.513 7.569 0.00734 0.059 0.943 0.228 1.00 0.984 0.98 20.756 1.00

TSL 57.83 <2 3 10216 7.468 0.00773 0.486 0.616 20.085 1.00 27.39 7.1 3 10212 7.505 1.2 3 10211

CPT 145.23 <2 3 10216 0.024 0.877 5.177 0.00663 20.641 1.00 29.494 <2 3 10216 8.853 5.4 3 10216

HPT 463.87 <2 3 10216 12.21 0.000777 10.11 7.33 3 1025 8.485 6.4 3 10215 20.269 <2 3 10216 211.784 <2 3 10216

PPT 15.35 7.96 3 1027 34.43 9.57 3 1028 1.376 0.255 2.174 0.092 1.543 0.372 0.631 1.00

MPT 18.54 5.73 3 1028 24.51 4.03 3 1026 2.586 0.0785 3.299 0.0033 2.362 0.0568 0.936 1.00

MPS 22.48 2.48 3 1029 1.858 0.177 3.358 0.0373 1.793 0.22 1.583 0.34 0.21 1.00

WUR 13.31 4.49 3 1026 2.064 0.155 1.081 0.342 2.589 0.031 2.034 0.129 0.555 1.00

MDT 8.07 0.000458 0.735 0.394 6.98 0.001240 2.463 0.043 20.161 1.00 2.623 0.028

F and P values are shown for main effects and their interaction, with significant results marked in bold letters.

For the direction of the effects, see Figure 1.

* Degrees of freedom (df) 5 2162.

† The a-correction was done within each analysis of variance separately, ie, for 3 post hoc tests.

CDT, cold detection threshold; CPT, cold pain threshold; HPT, heat pain threshold; MDT, mechanical detection threshold; MPS, mechanical pain sensitivity to pinprick stimuli; MPT, mechanical pain threshold; PPT, pressure

pain threshold; TSL, thermal sensory limen; WDT, warm detection threshold; WUR, wind-up ratio.
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not used, given the satisfactory results with respect to data
interpretation. Such methods, however, may become important
when classifiers of patients subgroups are addressed to provide
a clinical diagnostic tool. In such projects, further cluster
verification might become necessary. For example, it is known
that different cluster algorithms may produce different results.40

The present method seems to be comparatively robust in
avoiding identification of false cluster structures in data.88 A 20-
fold repeated 80% resampling experiment delivered an average
Rand Index69 of 87.3% 6 3% for the coincidence of the
subsampled clusters. More complex evaluations were not
imperative, such as the addition of multiobjective clustering25,40

or ensemble methods.31

The present analysis identified data structures that pointed
at subgroups of subjects. One of the structural findings
consisted of the identification of 2 separate clusters populated
with measurements taken after topical capsaicin application.
This distribution of the measurements taken under capsaicin-
induced hypersensitization could be explained by a different
sex distribution. In the cluster containing more women, higher
pressure pain sensitivity was an important criterion of
distinction from the other cluster, as indicated by the PPT-
dependent node in the decision tree (Fig. 4C). This finding
agrees with repeated reports of women’s higher sensitivity to
pressure pain.19,36,37,42,59 It also agrees with most reports of
the generally higher sensitivity to pain in women as compared
to men (for reviews, see Refs. 5,6,16,70), which is also
reflected in an overrepresentation of women among patients
suffering from persistent pain.56,74,94 The second subgroup
was indirectly extrapolated from the fraction of measurements
acquired following UV-B hypersensitization that nevertheless
were dissolved in a cluster together with measurements taken
during the baseline condition. This finding points at non-
responders, for which the present data do not provide an
explanation. Some obvious candidates are differences in the
genes expressing TRPV1 or TRPV4, considering the involve-
ment of these ion channels in the hypersensitization to UV-B
discussed above; however, further TRP ion channels might be
added.

5. Conclusions

In this study, we used machine-learning techniques for data
exploration. Unsupervised machine learning, implemented as an
ESOM/U*-matrix,89 was able to depict the complete study on
a single Kohonen map,38 where the most relevant study results
emerged. Combined with supervised machine learning imple-
mented as random forest analysis,9 the present analysis pro-
duced results that are biologically plausible, agree with previous
knowledge, and are compatible with classical ANOVA results.
Specifically, the present study indicates that both UV-B and
capsaicin induce experimental hyperalgesia mainly toward
noxious heat stimuli. In addition, UV-B seems to also modulate
experimental hyperalgesia toward cold stimuli. Moreover, exper-
imental hyperalgesia, in particular when induced by topical
application of capsaicin, toward noxious blunt pressure stimuli
displays a clear sex dependency, with women being more
sensitive than men. Hence, while UV-B and capsaicin share
a major component of heat pain sensitization, they clearly differ in
their effects on the QST parameter patterns in healthy subjects,
suggesting nonredundancy between these models, which
should be kept in mind when using them concomitantly, rather
than alternatively, in experimental human studies such as studies
of analgesic drug effects.
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