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Abstract. Two distinct new species of the ant genus Crematogaster, C. khmerensis sp. nov. and 
C.  pfeifferi sp. nov., are described from Cambodia and Malaysia, respectively. The two species are 
unique among Asian Crematogaster in that they have vertically directed propodeal spines, but their 
systematic positions have not been determined based on morphological characters alone. Molecular 
phylogenetic analysis of 89 Crematogaster taxon matrices previously published plus C. khmerensis 
sp. nov., using nuclear genes, reveals that C. khmerensis sp. nov. is nested within the Australo-Asian 
Crematogaster clade. Morphological assignment of the developed pronotal shoulders implies a close 
relationship between C. khmerensis sp. nov. and the C. tetracantha-group. Based on molecular and 
morphological evidence, we erect a new species group, C. khmerensis-group, to contain C. khmerensis 
sp. nov. and C. pfeifferi sp. nov. Divergence time estimates using MCMCTree shows that the root node 
of the C. khmerensis sp. nov. terminal is estimated to be of middle Miocene age at 15 million years 
old. The position of the C. khmerensis-group well supports the Oriental- to Australian-region dispersal 
history that has been proposed for the Australo-Asian Crematogaster clade. 

Keywords. Biogeography, divergence time estimation, morphological assignment, nuclear genes, 
phylogenetic position.
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Introduction
Ants (Formicidae) are one of the most familiar insect groups and they play important ecological roles 
in the ecosystems they inhabit (Hölldobler & Wilson 1990). They are abundant in terms of biomass, are 
distributed worldwide and form a diverse family, particularly in the tropics. Approximately 13 000 ant 
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species have been described to date (Bolton 2014), and it is estimated that this number will increase to 
approximately 20 000 species in future (Hölldobler & Wilson 1990).

Ant taxonomy has been extensively investigated in recent years, with most taxonomic treatments 
typically presented as regional or systematic revisions. However, species with unique morphological 
characters are occasionally described separately from those comprehensive revisions. For example 
the Carebara phragmotica species clade and Tetraponera phragmotica have plug-shaped heads in the 
major worker caste (Ward 2006; Fischer et al. 2015); Crematogaster masukoi and C. myops have small 
compound eyes consisting of 5–6 ommatidia in the worker caste (Hosoishi et al. 2010). The possession 
of a phragmotic head suggests that the head is used to plug the nest entrance, and reduced compound eyes 
suggest a subterranean mode of life. Such derived states, as inferred by comparison with congenerics, 
are probably adaptations for particular life histories (e.g., predatory behavior, nesting habitat selection). 
Consequently, studies of distinct morphological characteristics are important contributions to ant 
taxonomy. While these distinct morphological forms (autapomorphies) can easily be distinguished from 
other more typical forms, and can therefore be described as new taxa, it can be difficult to determine 
their phylogenetic position. Thus, while uniqueness makes it easy to distinguish one taxon from others, 
elucidating the systematics of such taxa can be difficult.

Recent molecular analyses have revealed that some traditional taxa are not monophyletic e.g., 
(Cerapachyinae in Moreau et al. 2006, subgenera Paracrema and Physocrema in Blaimer 2012c,  
Aphaenogaster and Tetramorium by Ward et al. 2015). Indeed, since molecular data can resolve 
uncertainties in classification based on morphological data, an integrated approach that uses 
morphological data in conjunction with molecular phylogenetic analysis should be undertaken if fresh 
material is available.

The genus Crematogaster (Myrmicinae: Crematogastrini) is one of the hyperdiverse groups of ants, 
containing more than 400 species (Blaimer 2012b). The taxonomy has typically been examined as part 
of regional or systematic revisions (Longino 2003; Hosoishi & Ogata 2009; Blaimer & Fisher 2013), but 
some Crematogaster taxa with unique features have been recognized; for example, the C. borneensis-
group has reduced 10-segmented antennae and has mutualistic relationships with the ant-plant genus 
Macaranga (Feldhaar et al. 2016), several species in the subgenus Orthocrema have reduced compound 
eyes (Hosoishi et al. 2010), C. paradoxa and related species have distinctly elongated propodeal spines 
(Creighton 1945), C. reticulata has a strongly reticulated body surface (Hosoishi 2009), and the queen of 
C. cylindriceps has a phragmotic head (Wheeler 1927; Yamane et al. 2011). The systematic positions of 
these taxa are usually proposed based on molecular or morphological data (Blaimer 2012b; Hosoishi & 
Ogata 2016), but the taxonomic affiliations are not always clear in some species.

In the course of a recent examination of Crematogaster specimens collected from Southeast Asia, we 
found two distinct species that appear to be new to science. None of the authors have ever seen any 
morphologically related species in a museum collection before. While the new species clearly belong 
to the subgenus Crematogaster sensu stricto (Blaimer 2012b), assignment to any of the species groups 
was not possible. The two species are considered to be distinct in that they both have vertically directed 
propodeal spines, which clearly distinguishes them from other Asian species of Crematogaster; however, 
their systematic positions are unknown.

The aims of this study were therefore to (1) clarify the phylogenetic position of these distinct 
Crematogaster ants using molecular phylogenetic analysis; (2) describe the two taxa as new species; 
(3) present the systematics of the two new species using morphological characters and molecular 
phylogenetic analysis. Morphological data in conjunction with molecular phylogenetic analysis will 
provide more comprehensive systematics of the two ‘unique’ species.
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Material and methods
Sources of material
Type and non-type specimens were examined and/or deposited in the collections listed below. The 
species of Crematogaster from the Australian region are reviewed based on type and non-type specimen 
images available on AntWeb (https://www.antweb.org). Codes for public institutions generally follow 
those in Brandão (2000). 

BMNH 		 = 		 Natural History Museum, London, UK 
CASC 		 = 		 California Academy of Sciences, San Francisco, USA 
ITBC 		 = 		 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota  
				   Kinabalu, Malaysia 
KUEC 		 = 		 Institute of Tropical Agriculture, Kyushu University, Fukuoka, Japan 
MHNG 		 = 		 Musée d’Histoire naturelle, Geneva, Switzerland 
SMNK 		 = 		 Staatliches Museum für Naturkunde Karlsruhe, Germany
THNHM 		 = 		 Thailand Natural History Museum, Technopolis, Khlong Luang, Pathum Thani,  
				   Thailand

Observation
Most observations were made on a Leica M205C stereo microscope. Images were taken using a Canon 
EOS 50D with a Canon MP-E 65 mm 1-5 × Macro lens, then processed using Combine ZM.

Measurements and indices
Measurements were made under a Leica M205C stereo microscope using ocular micrometers. All 
measurements are expressed in millimeters, recorded to the second decimal place. The measurements 
for petiole and postpetiole follow Longino (2003).

HW 		  = 		 Head Width; maximum width of head in full-face view.
HL 		  = 		 Head Length; perpendicular distance from vertex margin to line tangent anteriormost  
				   projections of clypeus in full-face view. 
CI 		  =		 Cephalic Index; HW/HL × 100. 
SL 		  = 		 Scape Length; length of the first antennal segment, excluding the neck and basal condyle. 
SI 		  = 		 Scape Index; SL/HW × 100. 
EL 		  = 		 Eye Length; maximum length of the compound eye. 
PW		  =		 Pronotal Width; maximum width of the pronotum in dorsal view.
WL 		  = 		 Weber’s Length of the mesosoma; diagonal length, measured in lateral view from the  
				   anterior margin of the pronotum (excluding the collar) to the posterior extremity of the  
				   propodeal lobe. 
PSL 		  = 		 Propodeal Spine Length; measured from tip of propodeal spine to closest point on outer  
				   rim of propodeal spiracle.
PtL 		  = 		 Petiole Length; length of the petiole in lateral view. 
PtW 		  = 		 Petiole Width; maximum width of petiole in dorsal view. 
PtH 		  = 		 Petiole Height; height of the petiole in lateral view.
PpL 		  = 		 Postpetiole Length; length of the postpetiole in lateral view (Longino 2003, fig. 2).
PpW 		  = 		 Postpetiole Width; maximum width of postpetiole in dorsal view, excluding the helcium. 
PtHI 		  = 		 Petiole Height Index; PtH/PtL × 100. 
PtWI 		  = 		 Petiole Width Index; PtW/PtL × 100. 
PpWI 		  = 		 Postpetiole Width Index; PpW/PpL × 100. 
WI 		  = 		 Waist Index; PpW/PtW × 100.
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Molecular data collection
Genomic DNA was extracted using a DNeasy Blood & Tissue kit (Qiagen, Maryland, USA). We 
sequenced fragments of five nuclear genes for one species, Crematogaster khmerensis sp. nov.: arginine 
kinase (ArgK, 402 bp), carbamoylphosphate synthase (CAD, 312 bp), long wavelength rhodopsin (LW 
Rh, 507 bp), DNA topoisomerase 1 (Top1, 795 bp) and wingless (Wg, 285 bp). The total number of base 
pairs for all genes was 2,301. Five new sequences were generated for this study, and the remainders were 
taken from Blaimer (2012c). Ninety taxa of Crematogaster (89 taxa of the subgenus Crematogaster 
analyzed in Blaimer (2012c) and C. khmerensis sp. nov.) were selected for molecular phylogenetic 
analysis. Primers, amplification and sequencing procedures followed Ward & Downie (2005) and 
Blaimer (2012a). The sequence data for Crematogaster khmerensis sp. nov. were deposited at DNA 
Data Base of Japan (DDBJ) with accession numbers: LC171383 (ArgK); LC171382 (CAD); LC171384 
(LWRh); LC171381 (Top1); LC171380 (Wg).

Reactions were carried out at 10 µl volumes in a PCR Thermal Cycler MP (TaKaRa Bio Inc.) under 
the following conditions: first 40 cycles of 95℃ for 30 s, annealing at 50–58℃ for 30 s, and 72℃ for 
90 s, then 1 cycle of 95℃ for 1 min, and finally 72℃ for 3 min. PCR products were visualized on a 1% 
agarose E-Gel 96-well system (Invitrogen), and then purified with 1.0 ul of ExoSAP-IT (GE Healthcare 
Life Sciences). All products were sequenced in both directions using BigDye Terminator v3.1 (Applied 
Biosystems) on an ABI 3100 Avant DNA Sequencer (Applied Biosystems) at the Faculty of Science, 
Kyushu University, Fukuoka. Contigs were made using Vector NTI Advance TM ver. 11 (Invitrogen 
Corp.) and subsequently aligned by eye. Sequence data were assembled and edited in the program 
Vector NTI Advance Tm ver. 11 (Invitrogen Corp.) and MEGA 5 (Tamura et al. 2011).

Phylogenetic inference
The dataset was analyzed using maximum parsimony (MP), maximum likelihood (ML), and Bayesian 
inference (BI) to explore the strength of the phylogenetic signal under different optimality criteria.

The MP analysis was performed using TNT 1.1 program (Goloboff et al. 2008) with outgroup rooting, 
default consensus options, Tree Bisection and Reconstruction (TBR) branch swapping, and the default 
‘traditional search’ mode. The tree search employed a parsimony ratchet with 10 000 interactions per 
run. Parsimony analyses were completed under conditions of equal weighting. Tree analyses were 
performed with WinClada version 1.00.08 software (Nixon 2002), and consensus cladograms generated 
from equally parsimonious trees were generated using the same program. Trees were rooted by the 
outgroup taxon Crematogaster osakensis belonging to the subgenus Orthocrema.

For ML and BI analyses, we first used PartitionFinder v.1.1.1 (Lanfear et al. 2012) to determine the best-
fitting partition and substitution models for the phylogenetic analysis. For ML, under ‘models = all’, 
‘model selection = bic’, and ‘search = greedy’, PartitionFinder identified five partitions (Table 1), which 
were employed in the ML analysis. Tree searches were conducted in GARLI v.2.0 (Zwickl 2006), 
with the following modification from default setting: genthreshfortopoterm = 100 000, after Ward & 
Fisher (2016). Bootstrap values were calculated in PAUP*4.0b10 (Swofford 2002) using 100 bootstrap 
replicates from trees built in GARLI.

The BI analysis was performed using MrBayes v.3.1.2 (Ronquist & Huelsenbeck 2003). For the BI, 
model selection was limited to those that could be implemented in MrBayes, using the function ‘model 
= mrbayes’ in PartitionFinder. The best-fitting partition and substitution models chosen for BI analysis 
were shown in Table 1. We ran two independent runs with four chains each for 10 million generations, 
sampling every 1000 generations. All runs reached stationarity, as judged by the average standard 
deviation of split frequencies (ASDSF) approaching 0.01. The program Tracer v.1.6 (Rambaut et al. 
2014) was used to evaluate convergence to the stationary distribution and effective sample size (ESS). 
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The likelihood values converged to relative stationarity after ~1 million generations. ESS values for all 
parameters were well above 2000, providing evidence that convergence had been reached. Approximately 
25 % of samples were discarded as burn-in before parameters and trees were summarized. Posterior 
probabilities are given as statistical branch support.

Divergence time estimation
The concatenated five gene sequences from 24 myrmicine taxa (17 taxa of the Australo-Asian 
Crematogaster clade, C. longispina, C. torosa, Aphaenogaster occidentalis, Leptothorax cf. muscorum, 
Stenamma dyscheres and Temnothorax rugatulus analyzed in Blaimer (2012c), and Crematogaster 
khmerensis sp. nov.) and the monophyly-constrained topology which Blaimer (2012c) inferred were 
used for molecular dating analyses. Four fossil calibrations were incorporated following Blaimer 
(2012c). Divergence times were estimated using the Bayesian method implemented in MCMCTree 
of PAML4.7 (Yang 2007). Using the approximate likelihood calculation method, the gradient g and 
Hessian H with BASEML using the GTR + G substitution model were calculated (dos Reis & Yang 
2011). The independent rate model for the molecular clock and the GTR + G model for nucleotide 
substitutions were set in the mcmctree.ctl control file, with the following modification from default 
setting: substitution rate per time unit = 0.106023; rgene_gamma = 1 10; sigma2_gamma = 1 4.5.

Results
Class Hexapoda Blainville, 1816

Order Hymenoptera Linnaeus, 1758
Suborder Apocrita Latreille, 1810
Infraorder Aculeata Latreille, 1802

Superfamily Vespoidea Latreille, 1802
Family Formicidae Latreille, 1809

Subfamily Myrmicinae Lepeletier de Saint-Fargeau, 1835

Genus Crematogaster Lund, 1831

Phylogenetic position and divergence time estimation
The five nuclear gene sequences consisted of 2301 bp and contained 652 variable characters (VC) and 
420 parsimony informative characters (PIC) (Table 2). The MP and ML analyses resulted in similar 

Blocks Partition Model
ML

ArgK_pos1, CAD_pos1, LWRh_pos2 p1 K80 + I
ArgK_pos2, CAD_pos2, LWRh_pos1, Top1_pos1, Top1_pos2 p2 HKY + I + G
ArgK_pos3, LWRh_pos3, Wg_pos3 p3 K80 + G
CAD_pos3, Top1_pos3 p4 TrNef + G
Wg_pos1, Wg_pos2 p5 K80 + I

BI
ArgK_pos1, CAD_pos1, LWRh_pos2, Wg_pos1 p1 K80 + I +G
ArgK_pos2, CAD_pos2, LWRh_pos1, Top1_pos1, Top1_pos2, Wg_pos2 p2 HKY + I + G
ArgK_pos3, CAD_pos3, LWRh_pos3, Top1_pos3, Wg_pos3 p3 K80 + G

Table 1. Partitions and models identified by PartitionFinder and used in the maximum likelihood (ML) 
and Bayesian (BI) analyses.
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topologies for the position of C. khmerensis sp. nov., but the BI analysis differed in topology from the 
MP and ML analyses. As our results from the BI analysis had similar results to the tree inferred by 
Blaimer (2012c), we use the BI tree to illustrate all our results (Fig. 1).

In MP analysis, the concatenated five-gene dataset yielded 1800 equally parsimonious trees 
(length = 1407, consistency index = 0.48, retention index = 0.77), of which the strict consensus tree is 
well resolved. The MP analysis recovered that C. khmerensis sp. nov. was nested within node A with 
high bootstrap support (100%) (Fig. 2). Further splitting of the node resulted in a trichotomy having 
branches with C. khmerensis sp. nov., C. borneensis-group and node C.

The ML analysis recovered that C. khmerensis sp. nov. was nested within node A with high bootstrap 
support (100%) (Fig. 2). Similarly the node displayed a trichotomy among C. khmerensis sp. nov., 
C. borneensis-group and node C.

The BI recovered that C. khmerensis sp. nov. was nested within node A (Fig. 2). Despite the relatively 
low level of support (0.88 posterior probability), C. khmerensis sp. nov. at node B was a sister to node C 
(Fig. 2). 

Estimations of divergence time showed that the common ancestor of C. khmerensis sp. nov. and clade C 
began to diverge approximately 15 million years ago (Fig. 3). 

Diagnosis of the Crematogaster khmerensis-group
the Crematogaster khmerensis-group is easily distinguished from other Asian species of Crematogaster 
by the vertically directed propodeal spines and large propodeal spiracles.

Species included in the Crematogaster khmerensis-group:

C. khmerensis Hosoishi & Ogata sp. nov.
C. pfeifferi Hosoishi & Ogata sp. nov.

Key to species based on the worker caste
1. Propodeal spiracles large and touching metapleural gland bulla. Petiole scoop shaped, broader 

anteriorly. Subpetiolar process undeveloped (Cambodia) ..………………….C. khmerensis sp. nov.
– Propodeal spiracles large and apart from metapleural gland bulla. Petiole elliptical with convex 

sides. Subpetiolar process developed acutely (Borneo) ..……………………….C. pfeifferi sp. nov.

Gene No. bases No. VC No. PIC
ArgK 402 125 74
CAD 312 100 67
LWRh 507 140 93
Top1 795 215 142
Wg 285 72 44
Total 2301 652 420

Table 2. Data on number of bases, number of variable characters (VC) and number of parsimony 
informative characters (PIC).
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Fig. 1. Bayesian majority rule consensus tree reconstructed for 90 taxa using five genes (ArgK, CAD, 
LWRh, Top1, Wg) in a MrBayes analysis. Above node numbers indicate posterior probability. Data 
were partitioned by PartitionFinder v.1.1.1 and analyzed using a best fit model for each gene and codon 
position, with 10 million generations and a burn-in of 25 %. Area enclosed by dashed lines is enlarged 
on Fig. 2.
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Fig. 2. Bayesian majority rule consensus tree reconstructed for 90 taxa using five genes (ArgK, CAD, 
LWRh, Top1, Wg) in a MrBayes analysis. Most of the outgroups are not shown. Above node numbers 
indicate posterior probability, bootstrap value for MP, and bootstrap value for ML. Data were partitioned 
by PartitionFinder v.1.1.1 and analyzed using a best fit model for each gene and codon position, with 10 
million generations and a burn-in of 25 %.

Fig. 3. Posterior estimates of divergence time of 24 taxa on the phylogenetic tree. Blue bars depict 
the 95% highest posterior density (HPD). Estimations were performed with MCMCTree using the 
independent rate model.
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Crematogaster khmerensis sp. nov.
urn:lsid:zoobank.org:act:D2CC1731-9989-4708-9513-36E1458CE012

Figs 4A–D
Diagnosis

Crematogaster khmerensis sp. nov. belongs to the subgenus Crematogaster sensu stricto (Blaimer 
2012b). This small-sized species of Crematogaster ants (HW 0.6–0.66; WL 0.63–0.69) is similar to 
C. pfeifferi sp. nov., but can be distinguished by the propodeal spiracles touching metapleural gland bulla, 
short propodeal spines (PSL 0.08–0.09), petiole broader anteriorly than posteriorly and undeveloped 
subpetiolar process.

Etymology

The specific name refers to the former kingdom name of Cambodia, the Khmer Empire.

Type specimens

Holotype 
CAMBODIA: worker, Kampong Thom Province, 24 Nov. 2010, S. Hosoishi leg., (TUS arboreal SF3-1) 
(KUMANT040: deposited at THNHM).

Paratypes
CAMBODIA: 3 workers, same locality data as for holotype (TUS arboreal SF3-3, TUS arboreal SF3-6)
(KUMANT041: deposited at BMNH; KUMANT042: deposited at CASC; KUMANT043: deposited at 
KUEC).

Measurements and indices

HW 0.60–0.66; HL 0.60–0.67; CI 97–102; SL 0.43–0.50; SI 69–76; EL 0.14–0.15; PW 0.35–0.40; 
WL 0.63–0.69; PSL 0.08–0.09; PtL 0.22–0.23; PtW 0.20–0.25; PtH 0.12–0.14; PpL 0.12–0.14; PpW 
0.20–0.23; PtHI 52–64; PtWI 87–114; PpWI 154–167; WI 92–100 (holotype and three paratype workers 
measured).

Description

Worker
Workers presumably monomorphic.

Head subquadrate in full-face view, with rounded posterior corners and subparallel sides. Occipital 
carinae developed. Mandible with four teeth, apical tooth large. Anterior margin of clypeus convex; 
anterolateral margins of clypeus protruded anteriorly; posterior margin of clypeus rounded between 
frontal lobes. Frontal carinae almost parallel. Antennae 11-segmented; antennal club 3-segmented. 
Scape reaching posterior corner of head. Basal flagellar segment (antennal segment III) as broad as long. 
Compound eyes slightly projecting beyond lateral margins of head in full face view.

Pronotal shoulders angulate, but without distinct rugulae laterally. Mesonotal dorsum convex in lateral 
view. Pronotum and mesonotum not forming same dorsal outline in lateral view. Mesothoracic spiracle 
forms large pit concealed by posterior pronotal lobe. Metapleural gland opening slit-shaped. Propodeal 
spiracle large and circular, situated at posterolateral corners, touching metapleural gland bulla. Metanotal 
groove straight in dorsal view, deep and forming concave region between mesonotum and propodeum. In 
dorsal view, feeble longitudinal rugulae connecting between mesonotum and propodeum; the boundary 
distinct. Propodeal spines developed and directed vertically in lateral view.
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Fig. 4. A–D. Crematogaster khmerensis sp. nov., worker. A. Body in lateral view. B. Full-face view of 
head. C. Dorsal view of mesosoma. D. Petiole and postpetiole in dorsal view. — E–H. — Crematogaster 
pfeifferi sp. nov., worker. E. Body in lateral view. F. Full-face view of head. G. Dorsal view of mesosoma. 
H. Petiole and postpetiole in dorsal view.
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Petiole scoop shaped, but flattened broader anteriorly, longer than broad; spiracle situated anteriorly 
midway between dorsal and ventral margin of petiole in lateral view, directed laterally. Subpetiolar 
process developed as a short lamellate denticle. Postpetiole without longitudinal median sulcus, but 
bilobed behind; spiracle situated anteriorly on lateral surface.

Dorsal surface of head mostly smooth or weakly shagreened. Clypeus mostly smooth and shining. 
Pronotal collar areolately sculptured. Promesonotum weakly punctate. Lateral surface of pronotum 
smooth and shining. Mesopleuron mostly smooth and shining, but sculptured on surrounding area. 
Anterodorsal surface of propodeum weakly punctate; posteior half smooth and shining. Lateral surface 
of propodeum smooth and shining. Dorsal and lateral surfaces of petiole smooth and shining. Dorsal and 
lateral surfaces of postpetiole smooth and shining.

Standing pilosity sparse. Dorsal face of head with appressed setae; one pair of erect setae on frontal 
lobes. Clypeus with one pair of erect setae. Anterior clypeal margin with two pairs of long setae mixed 
with short setae laterally. Scape with decumbent setae. Mesontum with appressed setae sparsely. Petiole 
with one pair of suberect setae posteriorly. Postpetiole with one pair of suberect setae posteriorly. Fourth 
abdominal tergite with short appressed setae sparsely.

Body color brown.

Queen and male
Queens and males of this species are unknown.

Distribution

This species is known only from the type locality in Cambodia (Fig. 5).

Crematogaster pfeifferi Hosoishi & Ogata sp. nov.
urn:lsid:zoobank.org:act:BE4FEAC9-A8EE-4C65-B00D-B62263746F70

Figs 4E–H
Diagnosis

Crematogaster pfeifferi sp. nov. belongs to the subgenus Crematogaster sensu stricto (Blaimer 2012b). 
This species is small-sized Crematogaster ants (HW 0.65–0.68; WL 0.69–0.7). This species is similar 
to C. khmerensis sp. nov., but can be distinguished by the propodeal spiracles apart from metapleural 
gland bulla, long propodeal spines (PSL 0.11–0.12), elliptical petiole and acutely developed subpetiolar 
process.

Etymology

The specific name is dedicated to Dr. Martin Pfeiffer, who collected the type material.

Type specimens

Holotype
MALAYSIA: worker, Borneo, Golden Hope Table, 4°23 N, 117°51 E, xa178 611, 8 Oct. 2004, M. Pfeiffer 
leg.,  (KUMANT044: deposited at ITBC).

Paratypes
MALAYSIA: 3 workers, same data as for holotype, xa160 610 (KUMANT045: deposited at BMNH; 
KUMANT046: deposited at KUEC; KUMANT047: deposited at SMNK).
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Measurements and indices
HW 0.65–0.68; HL 0.62–0.64; CI 105–106; SL 0.49–0.51; SI 75–76; EL 0.13–0.14; PW 0.37–0.39; 
WL 0.69–0.70; PSL 0.11–0.12; PtL 0.24–0.25; PtW 0.22–0.24; PtH 0.13–0.15; PpL 0.14–0.15; PpW 
0.22–0.24; PtHI 52–63; PtWI 92–96; PpWI 157–164; WI 92–100 (holotype and three paratype workers 
measured).

Description
Worker

Workers presumably monomorphic.

Head subquadrate in full-face view, with rounded posterior corners and subparallel sides. Occipital 
carinae developed. Mandible with four teeth, apical tooth large. Anterior margin of clypeus convex; 
anterolateral margins of clypeus protruded anteriorly; posterior margin of clypeus rounded between 
frontal lobes. Frontal carinae almost parallel. Antennae 11-segmented; antennal club 3-segmented. 

Fig. 5. Phylogeny and distribution of the Crematogaster borneensis-group, C. khmerensisi sp.  nov., 
C.  fruhstorferi, C. ssAUS5, C. mjobergi and the C. tetracantha-group. Closed circle indicates 
C. khmerensis sp. nov., closed square indicates C. pfeifferi sp. nov. It is noted that C. pfeifferi sp. nov. is 
not represented in the phylogeny.
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Scape reaching posterior corner of head. Basal flagellar segment (antennal segment III) slightly longer 
than broad. Compound eyes slightly projecting beyond lateral margins of head in full-face view.

Pronotal shoulders angulate, but without distinct rugulae laterally. Mesonotal dorsum convex in lateral 
view. Pronotum and mesonotum not forming same dorsal outline in lateral view. Mesothoracic spiracle 
forms large pit concealed by posterior pronotal lobe. Metapleural gland opening slit-shaped. Propodeal 
spiracle large and circular, situated at posterolateral corners, apart from metapleural gland bulla. 
Metanotal groove straight in dorsal view, deep and forming concave region between mesonotum and 
propodeum. In dorsal view, feeble longitudinal rugulae connecting between mesonotum and propodeum; 
the boundary distinct. Propodeal spines developed and directed vertically in lateral view.

Petiole elliptical with convex sides, longer than broad; spiracle situated anteriorly midway between 
dorsal and ventral margin of petiole in lateral view, directed laterally. Subpetiolar process developed 
acutely. Postpetiole without longitudinal median sulcus, but bilobed behind; spiracle situated anteriorly 
on lateral surface.

Dorsal surface of head mostly smooth or weakly shagreened. Clypeus mostly smooth and shining. 
Pronotal collar areolately sculptured. Promesonotum weakly punctate. Lateral surface of pronotum 
smooth and shining. Mesopleuron mostly smooth and shining, but sculptured on surrounding area. 
Anterodorsal surface of propodeum weakly punctate; posterior half smooth and shining. Lateral surface 
of propodeum smooth and shining. Dorsal and lateral surfaces of petiole smooth and shining. Dorsal and 
lateral surfaces of postpetiole smooth and shining.

Standing pilosity sparse. Dorsal face of head with decumbent setae; one pair of erect setae on frontal 
lobes. Clypeus with one pair of erect setae. Anterior clypeal margin with two to three pairs of long setae 
mixed with short setae laterally. Scape with appressed setae. Mesonotum with appressed setae sparsely. 
Petiole with one pair of suberect setae posteriorly. Postpetiole with one pair of suberect setae posteriorly. 
Fourth abdominal tergite with short appressed setae sparsely.

Body color brown.

Queen and male
Queens and males of this species are unknown.

Distribution
This species is known only from the type locality in Malaysia (Borneo) (Fig. 5).

Discussion
Phylogenetic position of C. khmerensis sp. nov.
The MP and ML analyses consistently placed C. khmerensis sp. nov. nested within node A, and forming 
an unresolved trichotomy with C. borneensis-group and node C (Fig. 2). The reason for this is not clear, 
but might be due to the large amount of missing data. The BI analysis recovered C. khmerensis sp. nov. 
nested within node A, and sister to node C, albeit with a low support value. The node A corresponds to 
node 231 (Blaimer 2012c, fig. 3) of the Australo-Asian Crematogaster clade (Blaimer 2012c, fig. 2, III), 
the node C corresponds to node 230 (Blaimer 2012c, fig. 3).

In this study, the consensus tree obtained by the BI analysis was used to infer the phylogenetic 
relationships as our results (Fig. 1) from the BI analysis had similar results to the tree inferred by 
Blaimer (2012c). The position of C. khmerensis sp. nov. is recovered as a sister to clade C, which 
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comprises of C. fruhstorferi + C. ss_AUS5 + C. mjobergi + the C. tetracantha-group, with the basal 
C. borneensis-group (Fig. 2).

Morphological assignment of species
While we did not find conclusive evidence of synapomorphies uniting C. khmerensis sp. nov. and 
clade C in this study, several potential characters are suggested below. Crematogaster fruhstorferi has 
short, stout propodeal spines and large propodeal spiracles. The propodeal spines of C. fruhstorferi 
are diverged posteriorly, but not directed vertically as in C. khmerensis sp. nov. The propodeal 
spiracles of C. fruhstorferi are as large as the base of the propodeal spines, but not 2–3 times as large 
as in C.  khmerensis sp. nov. These morphological data suggest affinity, but are inconclusive. The 
C. tetracantha-group has laterally-developed pronotal shoulders (Blaimer 2012b), especially C. dahlii 
and C. tetracantha, which have pronotal shoulders distinctly developed as spines. The presence of 
laterally-developed pronotal shoulders suggests a close affiliation between C. khmerensis sp. nov. and 
the members of the C. tetracantha-group, even though C. fruhstorferi, C. mjobergi and C. ssAUS5 do 
not have developed pronotal shoulders. The phylogenetic relationship inferred by molecular analysis 
indicates that laterally-developed pronotal shoulders evolved independently and in two steps, i.e., once 
in C. khmerensis sp. nov. and also at base of the C. tetracantha-group, or it is also parsimonious that the 
shoulders were gained in the ancestor of the clade B then lost in the C. mjobergi and C. ssAUS5 clade.

Based on molecular and morphological evidence, we treat C. khmerensis sp. nov. as its own species 
group, the Crematogaster khmerensis-group. In this study, no obvious synapomorphies were identified 
among C. khmerensis sp. nov. and clade C. Since the existence of undescribed and/or unanalyzed species 
may decrease the resolution of higher taxonomic levels, the inclusion of more species and morphological 
characters in both the queen and male castes is considered necessary to corroborate its validity. Further 
studies should therefore be conducted on closely related taxa to more accurately clarify the position of 
the C. khmerensis-group.

Although we do not have fresh material of C. pfeifferi sp. nov. for molecular phylogenetic analysis, the 
species is considered to be most closely related to C. khmerensis sp. nov. and is therefore assigned as a 
sister species.

Dispersal history of the Australo-Asian Crematogaster clade
Blaimer (2012c, fig. 3c) proposed that the Australo-Asian Crematogaster clade evolved in Southeast 
Asia before colonizing the adjacent Australasian region. Clade C, comprising C. fruhstorferi + C. ss_
AUS5  + C. mjobergi + the C. tetracantha-group, is mostly distributed eastward of Wallace’s line, 
although C.  fruhstorferi is also known from Borneo (Blaimer 2012c, CASENT0193728 specimen). 
The position of C. khmerensis sp. nov., as sister to C. fruhstorferi and the Australasian clade, supports 
Blaimer’s hypothesis of dispersal from the Oriental to the Australian regions (Figs 2, 5), suggesting that 
sequential dispersal events occurred in different lineages and that they were widespread.

The divergence time estimation and phylogenetic analysis suggest that the most recent common ancestor 
of C. khmerensis sp. nov. and clade C was inferred to be 15 million years old (Middle Miocene), when 
the Sundaic region was connected to the extended Indochinese Peninsula (Lohman et al. 2011, fig. 2d). 
The common ancestor of the C. khmerensis-group was likely distributed over parts of the Sundaic region 
during periods of low sea level, which would have allowed it to disperse into Indochina and Sundaland 
before diverging into different taxa as a result of vicariance. The remaining taxa may have dispersed to 
Sulawesi and Australasian regions east of Wallace’s line and diverged. Our divergence time estimations 
were approximately 5 million years younger than those attained by Blaimer (2012c). While her analysis 
estimated the node 245 (Blaimer 2012c, fig. 3) at ca 27 Mya, our analysis estimated the same node at ca 
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21 Mya (Fig. 3). This incongruence might be due to the analysis with a subset of her taxon matrix and 
different method.

Despite extensive field surveys by myrmecologists on the Indochinese Peninsula and Borneo, only two 
series of the C. khmerensis-group have ever been recorded from Cambodia and Borneo. The members 
of the C. khmerensis-group are therefore considered to be rare and relatively old taxa with restricted 
distribution ranges.
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