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Population Modeling Integrating Pharmacokinetics,
Pharmacodynamics, Pharmacogenetics, and Clinical
Outcome in Patients With Sunitinib-Treated Cancer

MH Diekstra1†, A Fritsch2†, F Kanefendt2†, JJ Swen1, DJAR Moes1, F S€orgel3, M Kinzig3, C Stelzer3, D Schindele4, T Gauler5,
S Hauser6, D Houtsma7, M Roessler8, B Moritz8, K Mross9, L Bergmann10, E Oosterwijk11, LA Kiemeney12, HJ Guchelaar1 and
U Jaehde2*

The tyrosine kinase inhibitor sunitinib is used as first-line therapy in patients with metastasized renal cell carcinoma (mRCC),
given in fixed-dose regimens despite its high variability in pharmacokinetics (PKs). Interindividual variability of drug exposure
may be responsible for differences in response. Therefore, dosing strategies based on pharmacokinetic/pharmacodynamic
(PK/PD) models may be useful to optimize treatment. Plasma concentrations of sunitinib, its active metabolite SU12662, and
the soluble vascular endothelial growth factor receptors sVEGFR-2 and sVEGFR-3, were measured in 26 patients with mRCC
within the EuroTARGET project and 21 patients with metastasized colorectal cancer (mCRC) from the C-II-005 study. Based on
these observations, PK/PD models with potential influence of genetic predictors were developed and linked to time-to-event
(TTE) models. Baseline sVEGFR-2 levels were associated with clinical outcome in patients with mRCC, whereas active drug
PKs seemed to be more predictive in patients with mCRC. The models provide the basis of PK/PD-guided strategies for the
individualization of anti-angiogenic therapies.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 604–613; doi:10.1002/psp4.12210; published online 1 June 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� There is a high interindividual variability (IIV) in

response to sunitinib. Hence, predictive biomarkers are

needed in order to maximize efficacy and minimize toxicity.
WHAT QUESTION DID THIS STUDY ADDRESS?
� The objective of this study was the development of

PK models, linking sunitinib plasma concentrations to

PD response and clinical outcome, including the identi-

fication of potential genetic predictors for patients with

mRCC and patients with mCRC.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� The developed PK/PD models adequately describe

plasma concentration-time profiles of sunitinib, SU12662,

sVEGFR-2, sVEGFR-3, and clinical outcome showing the
strength of an integrated modeling approach. Clinical
response in patients with mRCC is best predicted by
baseline sVEGFR-2 levels, whereas in patients with
mCRC, active drug PKs is more predictive.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The PK/PD models presented in this study provide a
better understanding of the relationship between suniti-
nib exposure, pharmacological response, and clinical
outcome, and, hence, are an important step toward
finding predictive biomarkers for the clinical outcome of
sunitinib.

Sunitinib is a multitarget tyrosine kinase inhibitor, which is
successfully used in the treatment of metastasized renal
cell carcinomas (mRCCs), gastrointestinal stromal tumors
(GISTs), and other solid tumor types. Sunitinib inhibits the
vascular endothelial growth factor receptors (VEGFR-1, 2,
and 3), the platelet-derived growth factor receptors a and b,
among other tyrosine kinases.1,2 CYP3A4 converts sunitinib
into its active N-desethyl metabolite (SU12662) and

subsequently into inactive metabolites. The elimination half-

life of sunitinib is 40–60 hours and 80–110 hours for

SU12662. An increased exposure to sunitinib is associated

with improved survival but also with an increased risk for

adverse events.3,4

The individual response to sunitinib is highly variable: some

patients experience severe toxicity and need dose reductions

or even cessation of therapy, whereas others show no
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response at all when using the same dose. Biomarker testing

prior to the start or during therapy may help provide the indi-

vidual patient with the most effective treatment and the lowest

possible risk of adverse effects. Whereas several potential bio-

markers have been identified, they are not applied in clinical

routine yet. However, sunitinib meets the requirements for

therapeutic drug monitoring enabling dose adjustment based

on measured plasma drug concentrations.3–5

Soluble VEGFR-3 (sVEGFR-3) was observed to be a

potential predictive biomarker for overall survival (OS) on

sunitinib treatment in a study of 303 patients diagnosed

with GIST.6 Furthermore, vascular endothelial growth factor

(VEGF)-A and VEGFR-3 protein expression were associ-

ated with OS and progression-free survival (PFS), respec-

tively, in 67 sunitinib-treated patients with mRCC.7 Likewise,

levels of VEGF, sVEGFR-2, and sVEGFR-3 were associ-

ated with objective responses in 63 patients with mRCC.8

With regard to genetic predictors, previous studies associ-

ated single nucleotide polymorphisms (SNPs) in genes

encoding metabolizing enzymes or transporters related to

pharmacokinetics (PKs) and pharmacodynamics (PDs) of

sunitinib with efficacy and toxicity.9–22

In order to find predictive biomarkers for the clinical out-

come of sunitinib, a better understanding of the relation-

ships between sunitinib exposure, the pharmacological

response, and the clinical outcomes is vital. This is part of

the objectives of the European collaborative project Euro-

TARGET.23 Several PK models for sunitinib have previously

been published. Here, we used a nonlinear mixed-effects

PK model for analyzing data of both patients with mRCC

and patients with metastasized colorectal cancer (mCRC)

in a pooled dataset.23–26 This model was linked to PD mod-

els for sVEGFR-2 and sVEGFR-3, which were previously

developed by our group.27 The purpose of our study was

the development of PK models, linking sunitinib plasma

concentrations to PD response, and clinical outcome in a

model-based time-to-event (TTE) analysis, including the

identification of potential genetic predictors.

METHODS
Patient population
For the underlying PK/PD analysis, data were used from

two PK studies, which focused on sunitinib treatment in

patients with mRCC and patients with mCRC.23,25 Both

studies were designed as prospective, open label, single

arm, multicenter, nonrandomized studies and performed in

accordance with the Declaration of Helsinki. Patients gave

written informed consent to give venous blood for PK/PD

analysis and genotyping taken in the course of routine

blood draw, and allowed the study sites to document clinical

data.
The C-IV-001 study (EudraCT-No: 2012-001415-23) was

a phase IV PK/PD substudy of the noninterventional Euro-

TARGET project.23 Patients with mRCC were recruited in 9

medical centers in Germany and The Netherlands. Sunitinib

doses ranged from 37.5–50 mg daily in the 4-week on/2-

week off scheme. A patient was eligible for this study with

a minimum age of 18 years, a diagnosis of mRCC, and a

first-line treatment with sunitinib. Within the EuroTARGET

project, PFS was evaluated as the primary endpoint.23

The C-II-005 study (EudraCT-No: 2008-00151537) was

performed to investigate the beneficial effect of sunitinib as

add-on to biweekly folinate, fluorouracil, and irinotecan in

patients with mCRC and liver metastases.25 Patients received

a daily dose of 37.5-mg sunitinib on a 4-week on/2-week off

treatment schedule. Primary endpoints were the reduction of

tumor vessel permeability and blood flow determined by

imaging techniques. Time to progression (TTP) was defined

as a secondary endpoint. In case of toxicity, sunitinib therapy

was interrupted or continued after dose reduction to 25 mg

per day until the symptoms disappeared.25

Data collection and sampling
Clinical information was collected, especially demographic

characteristics, concomitant medication, clinical response to

the treatment, and toxicity. Serial blood samples were

drawn, immediately centrifuged (1000 g, 48C, 15 minutes)

and stored at –808C. In the C-IV-001 study, up to 12

plasma samples were collected within 3 cycles during routine

checkups. Except for a mandatory baseline sample before

treatment start, each center was free to develop a schedule

according to their specific clinical routine. In the C-II-005

study, plasma samples were collected within 2 cycles at

baseline, day 2 of each cycle, and afterward approximately

every 2 weeks, always before sunitinib intake.
Plasma concentrations of sunitinib and SU12662 were

determined using high-performance liquid chromatography

tandem mass spectrometry (MDS SCIEX API 5000 triple

quadrupole mass spectrometer; Applied Biosystems/MDS

SCIEX, Thornhill, Ontario, Canada). Between-run precision

and accuracy ranged from 1.6–6.1% and 0.2–9.1% for suni-

tinib and from 1.1–5.3% and 20.1 to 6.2% for SU12662,

respectively.28 The sVEGFR-2 concentrations were deter-

mined by commercially available enzyme-linked immunosor-

bent assay kits (R&D Systems, Minneapolis, MN). The

sVEGFR-3 was measured using a validated immunoas-

say.26 Within-laboratory precision and accuracy of all

assays were within the acceptance criteria of the European

Medicines Agency29 with 2.2–4.3% and 6.2–14.3% for

sVEGFR-2, and 0.4–14.7% and 23.8 to 116.2% for

sVEGFR-3, respectively. Quality control samples were ana-

lyzed in all assays and runs to determine run acceptance.

SNP selection and genotyping
The selection of SNPs was based on previously reported

SNP associations (P< 0.05) with sunitinib treatment out-

come with regard to efficacy and toxicity. Herein, we have

focused on SNPs that were very likely to have an effect on

VEGF or VEGFRs, or SNPs that have a high biomarker

potential because of confirmatory findings in large cohorts.

Thirteen SNPs were selected located in CYP3A5, ABCB1,

VEGF-A, VEGFR-2, VEGFR-3, and interleukin-89–22

(details are provided in Supplementary Material S1).
Germline DNA was isolated from whole blood samples

taken at baseline (before treatment initiation), using the

Chemagic blood kit (PerkinElmer), and genotyping was per-

formed using the LightCycler 480 Real-Time polymerase
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chain reaction Instrument (Roche Applied Science, Almere,

The Netherlands).

Pharmacokinetic/pharmacodynamic modeling
Data from all patients were analyzed together using the

first-order conditional estimation method with interaction

implemented in NONMEM, version 7.3.30 The PK/PD mod-

els were built in a sequential manner. The structure of the

models is shown in Figure 1.

Pharmacokinetic model
The PK model was partially based on a semiphysiological

model published by Yu et al.24 This model features a one-

compartment model for sunitinib and a biphasic distribution

for SU12662. Presystemic formation of SU12662 is handled

via a hypothetical enzyme compartment incorporated into

the central compartment of sunitinib. The central compart-

ment and the enzyme compartment are connected by an

intercompartmental clearance, which was fixed to the liver

blood flow. The addition of a peripheral compartment for

sunitinib was tested because other published models fea-

tured this structure and the underlying data indicated a sim-

ilar distribution as the active metabolite.3,4,27 Interindividual

variability (IIV) was initially included for all parameters and

removed if their exclusion did not significantly worsen the

model fit (P< 0.05). A proportional, additive, and a com-

bined (additive 1 proportional) error model were tested for

the parent drug and metabolite separately to describe the

residual unexplained variability.

Pharmacodynamic models
The concentration-time profiles of sVEGFR-2 and sVEGFR-

3 were described using models developed previously by our

group for healthy volunteers.27 The concentration-effect

relationship was described by a simple hyperbolic function

(fractional tyrosine kinase inhibition (INH); Eq. 1) using the

unbound concentration of the total active drug including

SU12662 (ACu) with a dissociation constant (kd) fixed to 4

ng/mL obtained in vitro in a tyrosine kinase phosphorylation

assay.27,31 Unbound concentrations were computed by

assuming a protein binding of 95% for sunitinib and 90% for

SU12662.32 Decreasing concentrations of the soluble recep-

tors were described by an indirect response model with

zero-order production (kin) and first-order elimination (kout).

The inhibitory drug effect on kin was included using an

inverse-linear model with a as the intrinsic activity:

INH5
ACu

kd1AC
(1)

dsVEGFR
dt

5kin �
1

11a � INH

� �
2kout � sVEGFR (2)

As for the PK model, IIV was initially included for all model

parameters and removed in case the model did not signifi-

cantly worsen after exclusion.

Covariate analysis
Covariates were tested on the final models using the auto-

mated covariate search provided in PsN (Pearl speaks

NONMEM, version 4.4.0).33 In the forward inclusion step, a

potential covariate was significant when the objective func-

tion value (OFV) decreased by at least 3.84 (1 degree of

freedom (DF), P 5 0.05) and was kept in the model if it

showed in the backward exclusion step an OFV increase of

at least 5.99 (1 degree of freedom, P 5 0.01). Covariates

were tested in the included demographic parameters, tumor

type, and the preselected SNPs (see Supplementary

Material S1).

Model qualification
Nested models were compared using the likelihood ratio

test. Goodness-of-fit plots showing population predicted

concentrations (PREDs) and individual predicted concentra-

tions (IPREDs) vs. observed concentrations and conditional

weighted residuals vs. IPREDs or time were used to evalu-

ate the models visually. For the final models, precision of

all model parameters was given as 90% confidence interval

(CI) calculated by the nonparametric bootstrap approach

(n 5 1,000). Prediction-corrected visual predictive checks

(VPCs) were generated for the patients using 1,000 simula-

tions.34 Both procedures, bootstrap and prediction-

corrected VPCs, were performed using the PsN software.33

Figure 1 Model structure. ACU, unbound active concentration
(sunitinib 1 SU12662); b, regression coefficient; CLm, clearance
of the metabolite SU12262; fm, fraction metabolized to SU12662;
ka, absorption rate constant; kin, zero-order release rate con-
stant; kout, first-order elimination rate constant; k0, baseline haz-
ard; Q, inter-compartmental clearance of sunitinib; QH, liver
blood flow; Qm, intercompartmental clearance of the metabolite
SU12662; V1, volume of the central compartment of sunitinib;
V1,m, volume of the central compartment of the metabolite
SU12662; V2, volume of the peripheral compartment of sunitinib;
V2,m volume of the peripheral compartment of the metabolite
SU12662.
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Sensitivity analysis
The effect of fixed parameters on the model predictions
was tested by varying the respective parameters between
150 and 250% in 10% steps of the base value derived

from literature. As time of drug intake or sampling time was
missing in some patients, administration time was set to
8:00 AM, assuming that an intake in the morning is the most

likely scenario. A similar approach was used for missing
sampling times. Here, 12:00 PM was chosen, because most

checkups across study centers were scheduled around
mid-day. Moreover, the influence of dosing time on parame-
ter estimates was tested randomly varying the time of drug

intake between 23 and 13 hours of the documented or
imputed value.

The deviation from the original estimate was quantified
by calculating the relative prediction error (RPE) and the

root squared mean prediction error (RSME, %), which are
defined as:

RPEð%Þ5 hnew 2hbase

hnew

� �
(3)

RSMEð%Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRPEÞ2

q
(4)

where hbase denotes the parameter estimate of the original

model and hnew the new estimate under changed
conditions.

Outcome modeling
Outcome analysis was performed separately for patients
with mRCC and patients with mCRC using TTE models

based on a proportional hazard model allowing the analysis
of continuous and time-dependent covariates. Different TTE
distributions were tested using NONMEM.35 Although a

constant hazard is usually a viable assumption in patients
with cancer due to the short survival and progression times,

models with time-dependent hazards were also tested for
comparison:

Constant hazard hðtÞ5k0 � eb (5)

Time-dependent hazard Gompertzð Þ hðtÞ5k0 � eb�t (6)

Time-dependent hazard Weibullð Þ hðtÞ5k0 � eb�ln ðtÞ (7)

Dichotomous covariates were divided by their characteristic
values, whereas continuous covariates were grouped. Sta-

tistical significance of the difference between groups was
determined using the log-rank test.

In addition, the Kaplan-Meier analysis as the classical

nonparametric method was used to determine the median

PFS in patients with mRCC and the TTP in patients with

mCRC.36,37 Kaplan-Meier analysis and Cox regression

were performed using the survival package in R.36

RESULTS
Patients
Clinical characteristics of the included patients are pre-

sented in Table 1. Twenty-seven patients with mRCC

treated with sunitinib were recruited of which one patient

was excluded from the analysis due to lack of PK data.

Twenty-eight patients with mCRC were recruited of which

seven patients were excluded because of missing drug

administration (n 5 5), missing data (n 5 1), or uncertainty

in the documentation of sunitinib intake (n 5 1). Thus, 26

patients with mRCC and 21 patients with mCRC treated

with sunitinib were included into the combined PK/PD

analysis.
Outcome analysis was performed for each tumor entity

separately with regard to the different end points of each

study using data of 24 patients with mRCC and 21 patients

with mCRC. Two of the 26 patients with mRCC were

excluded from the outcome analysis as both received suni-

tinib as second-line therapy.
Moreover, 25 patients with mRCC and 14 patients with

mCRC could be genotyped on the 13 selected SNPs. Here,

we observed SNP call rates of 94–100% and 10 of 13

SNPs were in the Hardy-Weinberg equilibrium with P val-

ues> 0.05. Only the SNPs ABCB1 rs1045642, and VEGFA

rs699947 and rs2010963 were not in the Hardy-Weinberg

equilibrium with P 5 0.009, P 5 0.002, and P 5 0.030,

respectively.

Pharmacokinetic model
A PK model previously published by Yu et al.24 was

adapted as the basis for the structural model. To allow

comparison of the estimated parameters, volume and clear-

ance parameters were, as in the reference model, allometri-

cally scaled to a standard weight of 70 kg. Values for liver

blood flow (QH) and the fraction metabolized (fm) were fixed

to their respective literature values as in the original

model.24 In contrast to the original model, a peripheral

compartment for sunitinib was introduced, which improved

the model significantly (objective function value difference

(dOFV) 5 2123.98, P<0.0001). However, the volume of

the peripheral compartment (V2) could not be estimated

with enough precision, hence, the value was fixed to 588 L,

which was previously reported by Houk et al.3,4 Compared

to the base model, this still improved the model fit signifi-

cantly (dOFV 5 2112.37; P< 0.0001). The model fit signifi-

cantly worsened without IIV for sunitinib CL (dOFV 5 90.58;

P< 0.0001), V1 of sunitinib (dOFV 5 41.97; P<0.0001), fm
(dOFV 5 134.67; P<0.0001), as well as V1 of SU12662

(dOFV 5 18.47; P< 0.0001). Therefore, the IIV was kept in

the final model for these parameters. The estimation of

covariances improved the model further (dOFV 5 220.34;

P< 0.005).

Table 1 Patient characteristics (median and range)

Patients with mRCC

(n 5 26)

Patients with mCRC

(n 5 21)

Age, years (range) 64 (43–75) 61 (33–85)

Gender, M/F 25/1 12/9

Weight, kg (range) 83 (65–106) 73 (57–106)

Height, cm (range) 180 (155–186) 172 (149–184)

BMI, kg/m2 (range) 25.7 (22.5–34.5) 26.0 (13.3–39.3)

BMI, body mass index; mCRC, metastasized colorectal cancer; mRCC,

metastasized renal cell carcinoma.
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The sensitivity analysis did not reveal major effects on
parameter estimates when the fixed parameters QH and V2

(sunitinib) were varied between 150% and 250%. How-
ever, variation of fm resulted in a high variation (RSME of
up to 50%) for clearance, intercompartmental clearance, as
well as the central and peripheral volume of distribution of
SU12662, which could be expected by their definition. Ran-
domly varying dosing time between 13 and 23 hours rela-
tive to the reported or imputed value had primarily an effect
on the absorption rate constant (ka). The RSME was rela-
tively high with 36.9% for this parameter. As expected, the
residual error for sunitinib was also highly affected with an
RSME of 25.2%.

Forward inclusion and backward elimination of potential
covariates did not reveal any significant effects on the
tested model parameters. In addition, no statistically signifi-
cant differences of PK parameters between both tumor
entities were found, confirming that the underlying model
can be used across different tumor types. A complete list of
covariates tested is provided in Supplementary
Material S1. Final parameter estimates are shown in Table
2. VPCs indicated that central tendency and variability of

both active compounds could be described adequately with

the underlying model (Figures 2a and 2b).

Pharmacokinetic/pharmacodynamic models
The inverse-linear model previously developed for healthy

volunteers was also applicable to describe the concentration-

time profile of both sVEGFRs in patients with mRCC and

patients with mCRC after sunitinib therapy.27 The shape of

the concentration-time curves of both soluble receptors was

comparable and their response was highly correlated in

patients with mRCC (r2 5 0.594; P< 0.0001) and also

patients with mCRC (r2 5 0.635; P< 0.0001). However, the

covariate analysis performed on both models revealed PD

differences between the tumor entities. Addition of a propor-

tional covariate effect of “tumor type” on the intrinsic activity

(a) of sunitinib on sVEGFR-2 levels improved the model sig-

nificantly (dOFV 5 27.45; P 5 0.006). It was shown that

intrinsic activity (a) was 32.8% lower in patients with mCRC

compared to patients with mRCC.
Intrinsic activity on sVEGFR-2 levels was also influenced

by VEGF-R3 rs6877011 genotype (1 5 CG/GG; 0 5 CC).
Presence of the G-allele (CG and GG genotypes) showed
a decreased a compared to the wildtype CC (2.31 vs. 1.00

Table 2 Population parameter estimates of the final PK model in comparison to the model of Yu et al.24

Our study Yu et al.24

Parameter Unit

Estimate

(RSE, %) IIV% (RSE, %)

Bootstrap

mean

Bootstrap

90% CI

Estimate

(RSE, %)

IIV%

(RSE, %)

Sunitinib (parent drug)

ka 1/h 0.133 (34.6) - 0.149 0.01–0.25 0.34 (10.8) -

CL L/h 33.9 (6.0) 30.3 (29.0) 33.92 30.76–37.53 35.7 (5.7) 33.9 (12.0)

V1 L 1820 (6.6) 25.3 (30.3) 1812.1 1607.8–1812.2 1360 (6.0) 32.4 (10.6)

V2 L 588a - 588a - - -

Q L/h 0.371 (18.9) - 0.373 0.263–0.494 - -

QH L/h 80a - 80a - 80a -

Residual error (proportional) - 20.367 (14.1) - 20.361 20.450 to 20.283 0.06 (13.5)

SU12662 (metabolite)

CLm L/h 16.5 (5.4) - 16.5 15.0–17.9 17.1 (7.4) 42.1 (7.0)

V1,m L 730 (14.1) 42.9 (54.8) 713.6 545.9–872.9 635 (13.1) 57.9 (8.8)

V2,m L 592 (13.2) - 604.9 481.0–737.4 388 (14.9) -

Qm L/h 2.75 (24.6) - 2.90 1.96–4.27 20.1 (32.6) -

fm - 0.21a 34.6 (20.5) 0.21a - 0.21a -

Residual error (proportional) - 20.281 (10.8) - 20.276 20.326 to 20.229 0.03 (14.1) -

Correlations

q (CL,V1) - - - - - - -

q (CL, CLm) - - - - - 0.53 -

q (CL, V1,m) - 20.0607 (48.3) - 20.0685 20.127 to 20.019 - -

q (V1, V1,m) - 0.0481 (51.8) - 0.0534 0.0091 to 20.0996 0.48 -

q (CLm, V1,m) - - - - 0.45 -

q (CL, fm) - 20.0425 (40.8) - 20.0392 20.0671 to 20.0130 - -

q (V1, fm) - - - - - - -

q (fm, V1,m) - - - - - - -

CI, confidence interval; CL, clearance of sunitinib; CLm, clearance of the metabolite SU12262; fm, fraction metabolized to SU12662; IIV, interindividual variabil-

ity; ka, absorption rate constant; prop, proportional error model; PK, pharmacokinetic; Q, intercompartmental clearance of sunitinib; QH, liver blood flow; Qm,

intercompartmental clearance of the metabolite SU12662; q, correlation coefficient; RSE, relative standard error; V1, volume of the central compartment of

sunitinib; V1,m, volume of the central compartment of the metabolite SU12662; V2, volume of the peripheral compartment of sunitinib; V2,m, volume of the

peripheral compartment of the metabolite SU12662.
aParameter fixed to literature value.
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in case of patients with mRCC and 1.55 vs. 0.65 for
patients with mCRC). A decreased intrinsic activity was
also observed for patients with presence of a T-allele in
ABCB1 rs2032582 (2.31 vs. 1.59 in case of patients with
mRCC and 1.55 vs. 1.07 for patients with mCRC).

Final parameter estimates of both models are shown in

Table 3. Visual predictive checks indicated that central ten-

dency and variability of both proteins could be described

adequately with the underlying models (Figure 2c and 2d).

Outcome model for patients with mRCC
Median PFS for patients with mRCC was calculated with 6.9

months (n 5 24). The PFS could be described by a paramet-

ric TTE model assuming exponentially distributed data with a

baseline hazard function k0 of 0.0252 weeks-1 (90%

CI 5 0.0168–0.0336). The inclusion of the measured and esti-

mated sVEGFR-2 baseline value led to a decrease of the

OFV by 4.14 or 4.67 (P< 0.05), respectively. However, the

dichotomized covariate, dividing patients into two groups with

baseline values above and below the population median of

8.8 mg/L, had a stronger effect with a decrease of the OFV

by 26.40 (P< 0.025). The b was estimated with 1.45 corre-

sponding to a hazard ratio (HR) of 4.26 (with b defined as

the natural logarithm of the HR). Inclusion of the active,

unbound sunitinib/SU12662 concentrations resulted in an

estimated b of 20.14 mL/ng indicating that a higher plasma

level reduces the hazard and, hence, the probability of pro-

gression during treatment. However, the effect was not statis-

tically significant (dOFV 5 21.1; P 5 0.29). Likewise, plasma

concentrations of sVEGFR-2 and sVEGFR-3 over time were

not statistically significant predictors of PFS either

(dOFV 5 23.7 and 20.99, respectively). Besides absolute

plasma levels of both proteins, also the relative decrease

with respect to individual baseline values predicted by the

PK/PD models was tested as a potential covariate. However,

no significant improvement of the model fit could be observed

either (dOFV 5 20.31 and 20.98).
Best prediction of PFS in patients with mRCC was

achieved by a hazard function h(t), including the dichoto-

mized baseline value of sVEGFR-2, which was independent

of the developed PK/PD models:

hðtÞ5k0 � eb�sVEGFR-2;baselineðdichotom:Þ (8)

The observed Kaplan-Meier curve describing the PFS func-

tion of the patients with mRCC was within the predicted

Figure 2 Prediction-corrected visual predictive checks of (a) the final pharmacokinetic (PK) model of sunitinib, (b) the final PK model
of SU12662, (c) the soluble vascular endothelial growth factor receptor (sVEGFR)-2 model, and (d) the sVEGFR-3 model for one treat-
ment cycle. Solid lines indicate the estimated mean as well as the 90% prediction interval. Dashed lines show the respective observed
mean and interval. Shaded gray areas represent the 90% confidence band of the predictions. The dark gray rectangle indicates the
time of treatment.
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90% prediction interval of 1,000 simulations and could suffi-

ciently be described by the TTE model except for later time

points as a result of censored data (Figure 3a). Final

parameter estimates are shown in Table 4.
These findings were confirmed in a multivariate Cox

regression analysis. The only covariates exhibiting a signifi-

cant influence were the dichotomized baseline values of

both soluble proteins (data not shown).

Outcome model for patients with mCRC
Median TTP for patients with mCRC was 8.4 months

(n 5 21). Analogous to the patients with mRCC, the TTP

could be described by a parametric TTE model assuming

exponentially distributed data. The baseline hazard function

k0 was estimated with 0.0234 weeks-1 (90% CI 5 0.012–

0.042 weeks-1). The inclusion of the current concentration

of the unbound, active drug (ACu) reduced the OFV by

6.07 (P <0.05). The b was estimated to be 20.758 mL/ng

corresponding to an HR of 0.47. None of the other varia-

bles describing the individual PK or biomarker response

were identified to be predictive for TTP. Therefore, TTP in

patients with mCRC was best predicted by the PKs of suni-

tinib and SU12262 with an appropriate hazard function h(t)

dependent on the current ACu(t):

Table 3 Population parameter estimates of the final PD models (sVEGFR-2 and sVEGFR-3)

Parameter Unit Estimate (RSE, %) IIV (RSE, %) Bootstrap mean Bootstrap 90% CI

sVEGFR-2

Baseline mg/L 9.0 (2.9) 19.9 (21.4) 9.0 8.6–9.5

a - 2.31 (8.8) - 2.31 1.98–2.64

kout 1/h 0.0043 (7.6) - 0.0043 0.0038 to 20.0049

Kd mg/mL 4a - 4a -

Residual error - 0.124 (6.8) - 0.122 0.108–0.136

Tumor type on a (proportional) - 20.328 (24.6) - 20.322 20.440 to 20.186

VEGFR-3 rs6877011 on a (proportional) - 20.565 (25.4) - 20.557 20.787 to 20.319

ABCB1 rs2032582 on a (proportional) - 20.311 (37.9) - 20.307 20.497 to 20.117

sVEGFR-3

Baseline value mg/L 63.5 (5.9) 42.6 (24.4) 63.7 57.3–69.8

a - 1.74 (9.8) 54.3 (43.5) 1.76 1.49–2.05

kout 1/h 0.0053 (7.2) - 0.0054 0.0047 to 20.0060

Kd mg/mL 4a - 4a -

Residual error - 0.15 (6.9) - 0.15 0.13–0.17

Tumor type on baseline value (proportional) - 20.642 (6.5) - 20.640 20.703 to 20.569

Correlations

q (baseline value, a) - 0.124 - 0.123 0.045–0.209

a, intrinsic activity; CI, confidence interval; IIV, interindividual variability; kd, dissociation constant; kout, elimination rate constant; q, correlation coefficient; PD,

pharmacodynamic; RSE, relative standard error; sVEGFR, soluble vascular endothelial growth factor receptor; VEGFR, vascular endothelial growth factor

receptor.
aParameter fixed to literature value.

Figure 3 Prediction-corrected visual predictive checks of (a) the final survival model for patients with metastasized renal cell carci-
noma, and (b) the final survival model for patients with metastasized colorectal cancer. Shaded gray areas represent the 90% predic-
tion interval.
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hðtÞ5k0 � eb�ACuðtÞ: (9)

The observed Kaplan-Meier curve describing the PFS func-
tion of the patients with mCRC was within the predicted
90% prediction interval of 1,000 simulations and could suffi-
ciently be described by the TTE model. However, TTP was
difficult to predict for the time from 1 year onward due to
censored data (Figure 3b). Final parameter estimates are
shown in Table 4.

A multivariate Cox regression analysis confirmed these
results exhibiting the area under the curve (AUC) at
steady-state of the unbound, active drug in combination
with age as positive predictive covariates (data not shown).

DISCUSSION

In this study, we successfully integrated distinct models for
sunitinib in a modeling framework, including PK, PD, phar-
macogenetic, and outcome data. The developed models
adequately describe plasma concentration-time profiles of
sunitinib, its active metabolite SU12662, sVEGFR-2, and s-
VEGFR-3, as well as clinical outcome in both tumor types.
Similar models (but without pharmacogenetics) were pub-
lished in patients with GIST6 and recently hepatocellular
carcinoma,38 but there is no model with integrated outcome
data yet published for the tumor entities investigated here.

Covariate analysis on the PK parameters did not reveal
any significant findings. The significant increase of sunitinib
clearance in patients with ABCB1 rs2032582 TT (18%)
found in previous studies could not be confirmed.17 Pre-
sumably, this is due to the small and, with two tumor enti-
ties, relatively heterogeneous cohort. Biomarker response
of sVEGFR-2 and sVEGFR-3 was highly associated in
each tumor entity, which suggested a comparable predictive
value of both soluble receptors. As previously reported,
decreasing plasma concentrations were observed for both
receptors after sunitinib administration with a subsequent
increase after stop of treatment.8,27,39 Independent of tumor
entity and dosing scheme, baseline levels are not fully
recovered after a 2-week off phase.

A difference in sVEGFR-2 response to sunitinib between
patients with mRCC and patients with mCRC could be iden-
tified. However, decrease of sVEGFR-2 plasma levels rela-
tive to the individual baseline did not have a significant

impact on PFS or TTP in both studies, hence, the clinical
relevance of this effect might be negligible. Observed base-
line values of sVEGFR-3 were in the same magnitude pre-
viously reported by Motzer et al.40 ranging between 22.3
and 129.2 mg/L for patients with mRCC. However, they
were significantly higher compared with patients with
mCRC. This finding might indicate a higher expression of
this protein in patients with mRCC. However, data regarding
the baseline values of sVEGFR-3 in patients with mCRC is
sparse, because the first-line and second-line treatment
usually does not involve tyrosine kinase inhibitors targeting
sVEGFR.41

In this study, we found that the presence of the variant
G-allele in SNP rs6877011 in VEGFR-3 was associated
with a 56.5% decrease in intrinsic activity on sVEGFR-2
compared to the wild-type CC. The same VEGFR-3 SNP
was associated with a decreased PFS in an earlier study.12

Maitland et al.42 associated variant G-allele carriers of
VEGFR-2 (KDR) rs34231037 with sVEGFR2 baseline lev-
els and a decline in sVEGFR-2 in response to treatment
with pazopanib. We have recently found that rs34231037
variant G-allele carriers have a tendency toward a better
response to sunitinib.43 VEGFR-1, 2, and 3 have similar
binding domains.44 A SNP in any of the genes encoding
these VEGFRs could result in a conformation change and
prevent or stimulate binding of the drug ligand to VEGFRs,
and change the ability of sunitinib to decrease sVEGFR-2
and sVEGFR-3. It is remarkable that the SNP effect of G-
allele carriers of rs6877011 in VEGFR-3 was not found on
the intrinsic activity of sunitinib on sVEGFR-3 but on
sVEGFR-2. Possibly, a lower activity of sunitinib on
sVEGFR-3 could also affect sVEGFR-2. The conformation
change may have more impact on VEGFR-2 binding affinity
than VEGFR-3.

In both patient groups, we succeeded in linking clinical
outcome data to either PDs (mRCC) or PKs (mCRC). In
patients with mRCC, baseline levels of sVEGFR-3 and
sVEGFR-2 as well as the decrease in sVEGFR-2 plasma
levels over the treatment duration were previously reported
to be related to clinical outcome.7,45 These findings could
be further confirmed by this study. Although the effect of
sVEGFR-2 decrease over time was not significant in the
TTE analysis, patients with a substantially higher baseline
value of sVEGFR-2 showed a significantly worse PFS with

Table 4 Population parameter estimates of the final time-to-event models

Parameter Covariate Unit Estimate (RSE, %) Bootstrap mean Bootstrap median Bootstrap 90% CI

Patients with mRCC

k0 Weeks-1 0.0118 (46.3) 0.0121 0.0117 0.0038–0.0220

ß sVEGFR-2 baseline valuea - 1.45 (43.3) 1.57 1.49 0.71–2.68

HR - 4.26 4.81 4.44 2.03–14.59

Patients with mCRC

k0 Weeks-1 0.0234 0.0256 0.0241 0.0120–0.0447

ß ACu mL/ng 20.758 20.919 20.836 20.366 to 21.736

HR - 0.47 0.40 0.43 0.18–0.69

ACU, unbound active concentration (sunitinib 1 SU12662); ß, regression coefficient; CI, confidence interval; HR, hazard ratio; k0, baseline hazard; mCRC,

metastasized colorectal cancer; mRCC, metastasized renal cell carcinoma; RSE, relative standard error; sVEGFR, soluble vascular endothelial growth factor

receptor.
aDichotomized above (1) and below (0) population median.
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an estimated HR of 4.26. The baseline value of sVEGFR-3

had a lower influence on PFS: for patients with an

sVEGFR-3 baseline above the population median, the HR

was 2.38 without statistical significance (P 5 0.2). An effect

of similar magnitude (HR 5 2.4; 95% CI 5 1.13–5.11) was

reported by Harmon et al.46 for the same covariate. In con-

trast, in patients with mCRC, the TTE model showed an

effect of the PKs on TTP with precise parameter estimates.

Higher exposure to sunitinib and SU12662 included as

active drug concentration over time was associated with a

longer TTP. Similarly, a meta-analysis with 443 patients

with cancer, including advanced GIST, mRCC, and other

solid tumors, suggested that an increased AUC at steady-

state is associated with a longer TTP and a longer OS.4

It is not surprising that plasma concentrations of proteins

related to the VEGF pathway seem to be more predictive

for clinical outcome in patients with mRCC, as most RCC

cells overexpress VEGF due to mutations in the von-Hippel

Lindau gene.47 Furthermore, sunitinib showed no additional

effects in patients with colorectal cancer,25 which is consis-

tent with our findings that sVEGFR-2 and sVEGFR-3 levels

were not correlated to outcome. The lower intrinsic activity

of sunitinib on sVEGFR-2 baseline levels and the overall

lower plasma concentrations of sVEGFR-3 may also under-

line the lower dependency of colorectal carcinomas on

angiogenesis, especially via VEGF signaling.
In conclusion, a semimechanistic PK model for sunitinib

could be successfully linked to PD models for sVEGFR-2

and sVEGFR-3, including various genotypes. Although we

could show that sunitinib PK does not differ between the

two tumor entities, we found differences in PD response

with respect to the decrease of sVEGFR-2 and sVEGFR-3

plasma concentrations during therapy. Furthermore,

sVEGFR-2 baseline levels seemed to be more predictive

for clinical outcome in patients with mRCC in contrast to

patients with mCRC where active drug PKs showed the

highest impact. Nevertheless, our study provides the basis

of PK/PD-guided individualization strategies for the optimi-

zation of anti-angiogenic therapies and underlines that it is

quite unlikely to identify a general, tumor entity-independent

biomarker for sunitinib therapy response.
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