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A B S T R A C T

Powerful environment perception systems are a fundamental prerequi-
site for the successful deployment of intelligent vehicles, from advanced
driver assistance systems to self-driving cars. Arguably the most es-
sential task of such systems is the reliable detection and localization
of obstacles in order to avoid collisions. Two particularly challenging
scenarios in this context are represented by small, unexpected obstacles
on the road ahead, and by potentially dynamic objects observed from
a large distance. Both scenarios become exceedingly critical when the
ego-vehicle is traveling at high speed. As a consequence, two major
requirements placed on environment perception systems are the capabil-
ity of (a) high-sensitivity generic object detection and (b) high-accuracy
obstacle distance estimation. The present thesis addresses both require-
ments by proposing novel approaches based on stereo vision for spatial
perception.

First, this work presents a novel method for the detection of small,
generic obstacles and objects at long range directly from stereo imagery.
The detection is based on sound statistical tests using local geometric
criteria which are applicable to both static and moving objects. The ap-
proach is not limited to predefined sets of semantic object classes and
does not rely on restrictive assumptions on the environment, such as
oversimplified global ground surface models. Free-space and obstacle
hypotheses are evaluated based on a statistical model of the input image
data in order to avoid a loss of sensitivity through intermediate process-
ing steps. In addition to the detection result, the algorithm simultane-
ously yields refined estimates of object distances, originating from an
implicit optimization of the geometric obstacle hypothesis models.

The proposed detection system provides multiple flexible output repre-
sentations, ranging from 3D obstacle point clouds to compact mid-level
obstacle segments to bounding box representations of object instances
suitable for model-based tracking. The core algorithm concept lends it-
self to massive parallelization and can be implemented efficiently on ded-
icated hardware. Real-time execution is demonstrated on a test vehicle
in real-world traffic.

For a thorough quantitative evaluation of the detection perfor-
mance, two dedicated datasets are employed, covering small and
hard-to-detect obstacles in urban environments as well as distant
dynamic objects in highway driving scenarios. The proposed system
is shown to significantly outperform current general purpose obstacle
detection approaches in both setups, providing a considerable increase
in detection range while reducing the false positive rate at the same time.
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Second, this work considers the high-accuracy estimation of object dis-
tances from stereo vision, particularly at long range. Several new meth-
ods for optimizing the stereo-based distance estimates of detected objects
are proposed and compared to state-of-the-art concepts. A comprehen-
sive statistical evaluation is performed on an extensive dedicated dataset,
establishing reference values for the accuracy limits actually achievable
in practice. Notably, the refined distance estimates implicitly provided by
the proposed obstacle detection system are shown to yield highly accu-
rate results, on par with the top-performing dedicated stereo matching
algorithms considered in the analysis.
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Z U S A M M E N FA S S U N G

einleitung

Leistungsfähige Umgebungserfassungssysteme sind eine wesentliche
Voraussetzung für den sicheren und störungsfreien Einsatz von in-
telligenten Fahrzeugen, von modernen Fahrerassistenzsystemen bis
hin zu selbstfahrenden Autos. Die wohl wichtigste Aufgabe eines
solchen Systems ist die zuverlässige Erkennung und Lokalisierung von
Hindernissen, um rechtzeitig zu reagieren und somit Kollisionen zu
vermeiden. Zwei besonders anspruchsvolle Szenarien in diesem Zusam-
menhang stellen kleine, unerwartete Hindernisse auf der Fahrbahn
sowie potenziell bewegte Objekte in großen Entfernungen dar. Beide
Szenarien sind umso kritischer, je schneller sich das Eigenfahrzeug
bewegt. Daraus ergeben sich zwei wesentliche Anforderungen an
Umgebungserfassungssysteme für intelligente Fahrzeuge: (a) die
hochsensitive Detektion von generische Objekten bzw. Hindernissen
und (b) die hochgenaue Schätzung von Hindernisdistanzen. Die vor-
liegende Arbeit adressiert beide Anforderungen und präsentiert dazu
neue Ansätze basierend auf Stereo-Bildverarbeitung zur räumlichen
Wahrnehmung.

objektdetektion

Im ersten Teil der Arbeit wird eine neuartige Methode namens Direct
Planar Hypothesis Testing (PHT) zur Detektion von kleinen, gener-
ischen Hindernissen und Objekten in großer Distanz durch die direkte
Verarbeitung von Stereo-Bilddaten vorgestellt. Der Detektionsansatz
beruht auf einer sorgfältigen Analyse der Anforderungen an intelligente
Fahrzeuge, welche auf Hindernisse beliebigen Typs auf einer Vielzahl
möglicher Straßengeometrien adäquat reagieren müssen. Insbesondere
beinhaltet dies die Detektion von sowohl kleinen als auch weit entfernten
Objekten. Demnach lassen sich Sensitivität, Flexibilität und Effizienz als
wesentliche Kriterien für den Entwurf des Detektionssystems ableiten.

Der vorgestellte Detektionsalgorithmus führt pixelweise binäre Hy-
pothesentests auf kleinen, voneinander unabhängig betrachteten Bildfen-
stern durch. Freiraum- und Hindernishypothesen werden dabei direkt
auf Stereo-Bilddaten bewertet, um einen Sensitivitätsverlust durch zusät-
zliche Verarbeitungsschritte und Zwischenrepräsentationen zu vermei-
den. Das Testergebnis wird jeweils dem zentralen Pixel des untersuchten
Bildfensters zugewiesen. Aufgrund der lokalen Betrachtung kann eine
zuverlässige Aussage allerdings nur dann getroffen werden, wenn die
zugrundeliegenden Bilddaten ein bestimmtes Mindestmaß an Evidenz
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ermöglichen. Dies bedingt das Vorhandensein von entsprechender Bild-
textur.

Die statistischen Tests beruhen auf geometrischen, lokal planaren
Hypothesenmodellen, welche in ihrer Orientierung jeweils um einen
vorgegebenen Referenzwert variieren können. Diese Formulierung
liefert die notwendige Flexibilität, um auch global schwer modellierbare
Bodenoberflächen sowie unterschiedlich geformte Hindernisse abzu-
bilden. Da der Detektionsalgorithmus im Zuge des Hypothesentests
implizit eine Optimierung aller geometrischer Hypothesenmodelle
direkt auf den Bilddaten durchführt, werden gleichzeitig auch deut-
lich verbesserte Distanzschätzungen für alle detektierten Objekte erlangt.

Die Formulierung der in PHT verwendeten geometrischen Hypothe-
senmodelle erfolgt über Ebenen im 3D Raum, was eine sehr flexible
Konfiguration erlaubt. Zudem ist die Erweiterung für den Einsatz in
kalibrierten Multi-Kamerasystemen problemlos möglich und bietet
Potential für eine weitere Erhöhung der Detektionsleistung. Mit Blick
auf maximale Effizienz wird jedoch für die vorliegende Anwendung
und die eingesetzten Kamerakonfigurationen gezeigt, dass die Anzahl
der freien Parameter in der Formulierung des Detektionsproblems ohne
Leistungseinbußen weiter reduziert werden kann. So wird eine minimale
Parametrisierung des impliziten nichtlinearen Optimierungsproblems
im Disparitätsraum erreicht. Diese deutlich effizientere Variante des De-
tektionssystems wird als Fast Direct Planar Hypothesis Testing (FPHT)
bezeichnet.

Durch die unabhängige Analyse lokaler Bildfenster eignen sich sowohl
PHT als auch FPHT hervorragend für eine hochgradig parallele Aus-
führung, was anhand einer entsprechenden Implementierung auf einer
GPU demonstriert wird. Darüber hinaus ist der Detektionsalgorithmus
sehr gut für eine Portierung auf energieeffiziente dedizierte Hardware
wie FPGAs geeignet. Der Echtzeitbetrieb wird in einem Testfahrzeug im
realen Straßenverkehr gezeigt und getestet.

Das pixelweise Detektionsergebnis der präsentierten Methoden und
die anhand der Dispariätsinformation entstehenden 3D Objektpunk-
twolken stellen in einem mehrstufigen Umgebungserfassungssystem
oftmals keine optimale Eingangsrepräsentation für nachfolgende Ver-
arbeitungsschritte dar. Aus diesem Grund wird in dieser Arbeit eine
kompakte und gleichzeitig flexible Segmentrepräsentation namens
Cluster-Stixels (CStix) vorgestellt, die von der etablierten Stixel-Welt
[Badino et al., 2009, Pfeiffer and Franke, 2011, Schneider et al., 2016]
inspiriert ist. In der experimentellen Auswertung zeigen sich die
Cluster-Stixels als äußerst geeignete Beschreibung für komplexe städtis-
che Verkehrsszenen. Durch die flexible Darstellung können Objekte
beliebiger Form ausreichend genau und doch kompakt beschrieben
werden. Zudem werden die Detektionsergebnisse oft sogar durch die
Interpolation korrekter Einzeldetektionen verbessert.
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Als Ergänzung zu Objektpunktwolken und Cluster-Stixels wird
außerdem eine klassische Bounding Box (BB) Repräsentation des Detek-
tionsergebnisses präsentiert, die eine passende Eingangsdarstellung für
modellbasierte Trackingverfahren liefert. Durch die zeitliche Filterung
kann die Detektionskonfidenz erhöht und vereinzelt auftretende Fehlde-
tektionen effektiv unterdrückt werden. Der wirkungsvolle Einsatz in
einem Objekttrackingsystem wird anhand von exemplarischen Auto-
bahnszenarien demonstriert.

In einer umfangreichen Analyse wird das vorgestellte Detektions-
system ausführlich getestet und mit aktuellen und in der Praxis
etablierten Referenzverfahren verglichen. Der Fokus der Auswertung
wird dabei auf zwei kritische Szenarien gelegt: Die Detektion von
kleinen, generischen Hindernissen im komplexen urbanen Umfeld,
sowie die Detektion von generischen, weit entfernten Objekten in Auto-
bahnszenarien. Um alle untersuchten Ansätze und die entsprechenden
Ausgangsrepräsentationen quantitativ zu bewerten, werden dedizierte,
manuell annotierte Datensätze erstellt. Dies ist vor allem für die Be-
trachtung von kleinen, unerwarteten Hindernissen essenziell, da diese
in der Praxis vergleichsweise selten zu beobachten und damit nur
mit erheblichem Aufwand in signifikanten Mengen zu erfassen sind.
Die Detektionsergebnisse werden auf Pixelebene, Instanzebene und
auf Objektebene untersucht, wobei eine allgemeine Auswertung sowie
eine Analyse in Abhängigkeit der Objektdistanz erfolgt. In sämtlichen
Testkategorien und über alle Ausgangsrepräsentationen hinweg übertr-
effen dabei sowohl PHT als auch FPHT die Referenzverfahren deutlich.
Insbesondere wird durch die vorgestellten Methoden eine wesentlich
höhere Detektionsreichweite bei zugleich deutlich niedrigerer Falschpos-
itivrate erzielt.

In der Praxis sollten visuelle Umgebungserfassungssysteme von intelli-
genten Fahrzeugen die vorgestellten Objektdetektionsmethoden nutzen,
um damit existierende, allgemeine 3D Szenenmodelle wie beispielsweise
die semantische Stixel Welt von Schneider et al. [2016] zu erweitern. Auf
diese Art und Weise wird eine ganzheitliche räumliche und semantische
Szenenbeschreibung erlangt, welche dem Fahrzeug ein umfassendes
Verständnis seiner Umgebung ermöglicht und gleichzeitig die in dieser
Arbeit behandelten anspruchsvollen Szenarien berücksichtigt. Großes
Potential für zukünftige Leistungsverbesserung birgt dabei die direkte
Kombination der hier präsentierten geometrischen Detektionsverfahren
mit semantischen Ansätzen, basierend auf modernen Methoden des
maschinellen Lernens.
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distanzschätzung

Im zweiten Teil der Arbeit wird die hochgenaue Distanzschätzung
von detektierten Objekten auf Basis von Stereo-Bilddaten im Detail
behandelt. Da Hindernisse im Fahrkorridor des Eigenfahrzeugs beson-
ders relevant für die Kollisionsvermeidung sind, muss ihre Position
und Geschwindigkeit mit größtmöglicher Genauigkeit bestimmt wer-
den. Gleichzeitig wirken sich jedoch Fehler im Disparitätsraum der
Stereokamera besonders stark auf die Genauigkeit der resultierenden
Distanzschätzungen aus. Aus diesem Grund ist eine optimale sub-pixel
genaue Disparitätschätzung in ausgewählten Bildbereichen essenziell.
Diese konkrete Anforderung steht im Kontrast zu gängigen Stereo-
Matching Benchmarks, in welchen in der Regel die durchschnittliche
Disparitätsgenauigkeit über ganze Bilder evaluiert wird.

In der vorliegenden Arbeit werden mehrere neuartige Ansätze zur
Optimierung der Disparitätsgenauigkeit für Objektinstanzen vorgestellt
und mit aktuellen Verfahren verglichen. Die Menge der untersuchten
Algorithmen beinhaltet dabei rein lokale Ansätze wie Local Differential
Matching (LDM) und Joint Matching and Segmentation (MSEG), jedoch
auch Methoden, die eine globale Optimierung von pixelweisen Kosten
im diskreten und kontinuierlichen Raum durchführen. Darüber hinaus
wird die robuste Kombination von mehreren unabhängigen, lokalen
Beobachtungen in eine einzige Objektdistanzschätzung analysiert.
Neben den verschiedenen grundlegenden Algorithmenkonzepten
werden auch jeweils wesentliche Basiskomponenten untersucht. Dies
beinhaltet unter anderem die Wahl von optimalen Filteroperatoren zur
Bestimmung von Bildgradienten sowie unterschiedliche Methoden zur
Intensitätsinterpolation.

Um eine aussagekräftige statistische Auswertung und eine system-
atische Bewertung der Disparitätsgenauigkeit zu ermöglichen, wird
der Einsatz von robusten, lageparameterfreien Streuungsmaßen zusät-
zlich zum klassischen mittleren Disparitätsfehler vorgeschlagen. Dies
ermöglicht eine faire Bewertung der statistischen Variabilität der Dispar-
itätsschätzungen, unabhängig von einzelnen Ausreißern und etwaigen
systematischen Fehlern. Des Weiteren wird ein neuartiges, objekt-
basiertes Maß der zeitlichen Variation des Disparitätsfehlers eingeführt.
Eine geringe zeitliche Fehlervariation ist unter anderem wesentlich für
die zuverlässige Bestimmung von Objektgeschwindigkeiten.

Die Studie wird auf einem umfangreichen, dedizierten Datensatz
durchgeführt, wobei Objekte in einem Entfernungsbereich von 50 m bis
160 m berücksichtigt werden. Ein Langstrecken-RADAR dient hierbei
als Referenzsensor. Sämtliche Leistungsmaße werden sowohl über den
gesamten Datensatz als auch in Abhängigkeit der Objektentfernung
ausgewertet.
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Es zeigt sich, dass die insgesamt höchste Disparitätsgenauigkeit durch
die robuste Kombination von mehreren unabhängigen Beobachtungen
in eine einzelne Objektdistanzschätzung erzielt wird. Insbesondere die
Kombination von lokalen differenziellen Disparitätsschätzern liefert
auf diese Art und Weise die besten Ergebnisse aller in der Studie
untersuchten Algorithmen. Allerdings können zu diesem Zweck auch
direkt die punktweisen Distanzschätzungen genutzt werden, welche
vom vorgestellten PHT/FPHT Detektionssystem generiert werden. Die
somit erreichte Fehlerstreuung liegt unterhalb von 1/10 Pixel, mit einer
zeitlichen Fehlervariation von weniger als 1/20 Pixel. Diese äußerst
hohe Disparitätsgenauigkeit ist vergleichbar mit den Ergebnissen der
besten dedizierten Matching-Algorithmen.

Über alle untersuchten Algorithmen hinweg werden die größten
Fehler durch im Bild ungenau geschätzte Objektgrenzen sowie durch
sogenannte Pixel-locking Effekte von diskreten Matching-Methoden
verursacht. Es wird jedoch gezeigt, dass diese Artefakte durch geeignete
Gegenmaßnahmen weitestgehend kompensiert werden können.

Die durchgeführten Experimente dienen nicht nur der systematis-
chen Bewertung und dem Vergleich von Algorithmenkonzepten und
Komponenten, sondern liefern auch wichtige Referenzwerte für die in
der Praxis erzielbare Disparitätsgenauigkeit. Darüber hinaus werden
in einer separaten Auswertung die erheblichen Auswirkungen von
fehlerbehafteten Kalibrierparametern verdeutlicht. Während Fehler
im Schielwinkel der Stereokamera in allen Algorithmen eine erwartet
systematische, additive Disparitätsabweichung verursachen, führen
Fehler im relativen Nickwinkel zu einem teils signifikanten Anstieg der
Fehlerstreuung. Hier sind insbesondere Methoden betroffen, welche
das Stereo-Matching direkt auf Intensitätsdaten und mithilfe von sehr
kleinen Bildfenstern durchführen. Die gleichzeitige Schätzung der
Disparität und des durch die Fehlkalibrierung verursachten vertikalen
Bildversatzes kann jedoch Abhilfe schaffen. Nichtsdestotrotz zeigen die
Ergebnisse einmal mehr die Notwendigkeit von zuverlässigen Methoden
zur Selbstkalibrierung auf.

Im Hinblick auf zukünftige Studien ähnlicher Art bietet sich eine
naheliegende Erweiterung durch die Hinzunahme von zusätzlichen
Stereoalgorithmen an. Außerdem empfiehlt sich die Nutzung von
modernen Hochleistungs-LIDARen als Referenzsensorik. Die Qualität
der Referenzdaten kann dadurch sowohl bezüglich Dichte als auch
Genauigkeit weiter verbessert werden, was eine noch detaillierte Bewer-
tung und Optimierung der untersuchten Stereoalgorithmik erlaubt.
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A C R O N Y M S

ADAS Advanced Driver Assistance System

BB Bounding Box

CNN Convolutional Neural Network

CPU Central Processing Unit

CRF Conditional Random Field

CStix Cluster-Stixels

DARPA Defense Advanced Research Projects Agency

DBSCAN Density-Based Spatial Clustering of Applications with
Noise

DEM Digital Elevation Map

DR Detection Rate

EM Expectation-Maximization

FCN Fully Convolutional Network

FNi
p Instance-Level False Negative

FP False Positive

FPGA Field-Programmable Gate Array

FPHT Fast Direct Planar Hypothesis Testing

FPp Pixel-Level False Positive

FPR False Positive Rate

FPRp Pixel-Level False Positive Rate

GLRT Generalized Likelihood Ratio Test

GPU Graphics Processing Unit

iInt Instance-Level Intersection

iIoU Instance-Level Intersection over Union

LDM Local Differential Matching

LIDAR Light Detection and Ranging

MAP Maximum a Posteriori
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MLE Maximum Likelihood Estimate

M-LDM Multi-Local Differential Matching

MSEG Joint Matching and Segmentation

PC Point Compatibility

PDF Probability Density Function

PHT Direct Planar Hypothesis Testing

PLC Pixel Locking Compensation

RADAR Radio Detection and Ranging

ROC Receiver-Operator-Characteristic

SGM Semi-Global Matching

TPi
p Instance-Level True Positive

TPp Pixel-Level True Positive

TPR True Positive Rate

TPRp Pixel-Level True Positive Rate

TV Total Variation
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M AT H E M AT I C A L N O TAT I O N

Matrices, Vectors and Functions

M Matrix of arbitrary size
M(n×m) Matrix with n rows and m columns

Mi,: ith row of matrix M
M:,j jth column of matrix M

Mi,j i, jth element of matrix M

I Identity matrix
0 Zero matrix
~v Column vector of arbitrary size
~v(n) = (v1, ... , vn)T Column vector of length n
~0 Zero vector
f (~x), F(~x) Scalar-valued function of ~x
~f (~x), ~F(~x) Vector-valued function of ~x

Probability Theory and Statistics

X ∼ N (µ, σ2) Real-valued random variable X, normally
distributed with mean µ and variance σ2

~X ∼ N (~µ, Σ) Real-valued random vector ~X, normally dis-
tributed with mean vector ~µ and covariance
matrix Σ

x Realization of random variable X
~x Realization of random vector ~X
p(~x) Probability Density Function (PDF) of ~X
p(~x;~θ) PDF of ~X parameterized by ~θ

p(~x1|~x2) Conditional PDF of ~X1, conditioned on ~X2 =
~x2

Pr(A) Probability of event A
Pr(A|B) Conditional probability of event A, condi-

tioned on event B
θ̂(~X) Estimator for a parameter θ, depending on

~X
θ̂(~x), θ̂ Estimate of θ for an observed realization ~x
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Hypothesis Testing

~x Set of observed data samples, i. e. realiza-
tions of a random variable X or a random
vector ~X

H0 Null hypothesis
H1 Alternative hypothesis
p(~x;Hi) PDF of ~X when hypothesis Hi is true
p(~x;~θ,Hi) PDF of ~X parameterized by ~θ when hypoth-

esis Hi is true
Pr(Hj;Hi) Probability of deciding Hj when Hi is true

PrD = Pr(H1;H1) Probability of detection
PrFA = Pr(H1;H0) Probability of false alarm
L Likelihood ratio
LG Generalized likelihood ratio
γ Decision threshold

Point Coordinates

~X = (X, Y, Z)T 3D point specified in the general world coor-
dinate system

~̃X Homogeneous vector representation of ~X
~XC = (XC, YC, ZC)

T 3D point specified in the camera coordinate
system

~̃XC Homogeneous vector representation of ~XC

~x = (x, y)T Image point location given in pixels
~̃x Homogeneous vector representation of ~x
~̃xs = (xl , yl , d, 1)T Extended homogeneous stereo image coor-

dinate vector, including the pixel coordi-
nates (xl , yl) in the reference image (left) and
the stereo disparity d

Image Data

~I Set of images
I, It Image taken at the current time step t
It−1 Image taken at the previous time step t− 1
Il , Ir Left and right image of a stereo pair
I(~x) Image intensity value
f (~x) True intensity value, observed as I(~x)
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α(~x) Image intensity offset
η(~x) Image intensity noise sample, drawn from a

zero-mean distribution with variance σ2

~∇I (~x) =

(
∇Ix(~x)
∇Iy(~x)

)
Image intensity gradient

W, H Image dimensions (width, height)
~xc = (xc, yc)T Image patch center location
w, h Image patch dimensions (width, height)
Ω Image patch support
D Stereo disparity map
d = D(~x) Stereo disparity

Camera Parameters

f Focal length given in meters
fx Focal length given in units of pixel width
fy Focal length given in units of pixel height
s Pixel skew
~x0 = (x0, y0)

T Principal point in pixels
~C Camera center, origin of the camera coordi-

nate system
R,~t Position and orientation of the camera coor-

dinate system (rotation matrix and transla-
tion vector)

K Camera calibration matrix
P Camera projection matrix
B Baseline length of a stereo camera
P̀ Extended stereo projection matrix

Numerical Optimization

F(~θ) Cost function, parameterized by ~θ

Θ Feasible parameter set
~θ Parameter vector
∆~θ Parameter update vector
~θ L Parameter vector, local parameterization
∆~θ L Parameter update vector, local parameteriza-

tion
~θ∗ Local minimizer of F
~̂θ Estimate of ~θ∗
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~⊕(~θ, ∆~θ) Parameter update operator
r Residual, element of the cost function F
ρ(r) Loss function scaling the residual r
ρ′, ρ′′ First and second derivatives of ρ

~gF Cost gradient with respect to ~θ

~g Cost gradient with respect to ∆~θ
JF Jacobian matrix of F with respect to ~θ

J~⊕ Jacobian matrix of ~⊕ with respect to ∆~θ
JF◦~⊕ Jacobian matrix of F with respect to ∆~θ
AF Hessian matrix of F with respect to ~θ

A Hessian matrix of F with respect to ∆~θ
AGN Gauss-Newton approximation of A
ALM Levenberg-Marquardt approximation of A

Object Detection

H f Free-space hypothesis, H f ≡ H0

Ho Obstacle hypothesis, Ho ≡ H1
~θ f , ~θo Model parameters for free-space and obsta-

cle hypotheses
~n = (nX, nY, nZ)

T Orientation of plane normal
D Plane normal distance to the coordinate sys-

tem origin
ϕ̌ f , ϕ̌o Plane normal angle constraints for free-
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I N T R O D U C T I O N
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1.1.1 From Driver Assistance Systems to Au-
tonomous Driving . . . . . . . . . . . . . . 1

1.1.2 Visual Perception for Intelligent Vehicles . 2

1.1.3 High-Sensitivity Object Detection and
High-Accuracy Distance Estimation . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the Thesis . . . . . . . . . . . . . . 5

1.1 motivation and problem statement

1.1.1 From Driver Assistance Systems to Autonomous Driving

Over the last decades the annual amount of kilometers traveled by mo-
torized vehicles in Germany has continued to increase steadily, whereas
the number of traffic accidents, and most importantly the number of
accidents resulting in serious injury or loss of life, has decreased signifi-
cantly [ADAC, 2016, Statistisches Bundesamt, 2016]. Aside from refined
traffic regulations, improved infrastructure and driver training, this pos-
itive trend is in large part due to technological advances in driver safety
and assistance systems [Lie et al., 2006, Fach and Ockel, 2009]. While pas-
sive safety systems such as seat belts and airbags considerably reduce the
risk of serious passenger injury in case of an accident, active driver assis-
tance systems aim to prevent accidents from happening in the first place.
Various active systems have been established as a de facto standard in
modern vehicles, two prime examples being the anti-lock braking sys-
tem and the electronic stability control system. These standard systems
are nowadays being supplemented by more and more Advanced Driver
Assistance Systems (ADASs), which are making their way from expen-
sive top-of-the-line models to the bulk of the manufacturers’ product
ranges. Modern ADASs provide important safety features such as blind
spot monitoring, pedestrian recognition and pre-crash braking, but also
include convenience functions such as adaptive light control, traffic sign
recognition and adaptive cruise control with lane keeping. State-of-the-
art cruise control systems may be considered as partially autonomous
driving features, being able to accelerate, brake and steer while reacting
to the environment within certain constraints. However, these systems

1



2 introduction

still strictly rely on a human supervisor inside the loop, in order to hand
over control in case of unexpected events. Thus, they are still a long way
from fully autonomous driving capabilities [SAE, 2016].

Fully autonomous driving technology, with no requirement for human
supervision, may be considered as a key enabler for revolutionizing pri-
vate transport and bringing about several potential benefits, among them
the further drastic reduction in traffic accidents, improved traffic flow, re-
duced parking congestion, better fuel efficiency as well as more efficient
use of travel time. Even new mobility solutions and transportation busi-
ness models such as autonomous car-sharing are conceivable [Lutin et al.,
2013, Litman, 2015].

Research towards fully autonomous driving began as early as 1986
with the EUREKA Prometheus project, where substantial commitment
by universities as well as industrial research partners resulted in sig-
nificant advances in this area [Dickmanns et al., 1994, Braess and Re-
ichart, 1995a,b]. In the early 2000s, progress was driven in particular by
the Defense Advanced Research Projects Agency (DARPA) autonomous
driving challenges, including the 2004 and 2005 Grand Challenge [Iag-
nemma et al., 2006a,b, Thrun, 2006] as well as the 2007 Urban Challenge
[Urmson, 2008, Montemerlo et al., 2008, Kammel et al., 2008, Miller and
Campbell, 2008]. Since then, interest in autonomous driving research and
technology has increased dramatically, pushing the state-of-the-art for-
ward as reported in [Guizzo, 2011, Levinson et al., 2011, Bertozzi et al.,
2011, Franke et al., 2013, Ziegler et al., 2014] amongst others. However,
due to the vast complexity of the problem, combined with the strict legal
regulations and safety standards, development is still ongoing and the
unconstrained deployment of autonomous vehicles in everyday traffic
still seems to be several years away.

1.1.2 Visual Perception for Intelligent Vehicles

In order for an autonomous vehicle to navigate through traffic safely and
efficiently, it first and foremost needs to be able to perceive and under-
stand its surroundings. Consequently, powerful environment perception
systems combining multiple sensor modalities are a critical part of any
fully or partially autonomous road vehicle. Besides active sensors such as
RADAR and LIDAR, cameras represent a central building block of such
systems. While active range sensors offer supreme accuracy in terms of
point-wise distance and velocity measurement, they usually suffer from
low resolution and high cost. Cameras, on the other hand, are readily
available at relatively low cost and can leverage very high image resolu-
tion for visual object detection as well as appearance-based semantic rea-
soning. The use of stereo or multi-camera setups even allows for spatial
perception and image-based distance estimation, making such configu-
rations increasingly popular for application in mobile robots in general
and autonomous cars in particular.
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Figure 1.1: The detection and accurate localization of distant and/or small
generic obstacles represents a major challenge for perception sys-
tems of intelligent vehicles.

1.1.3 High-Sensitivity Object Detection and High-Accuracy Distance Estima-
tion

Arguably the most fundamental and crucial task of environment per-
ception systems for autonomous vehicles is the reliable detection and
localization of obstacles in order to avoid collisions. Fig. 1.1 illustrates
two of the most demanding tasks for visual perception systems within
this context:

• The detection of small, yet critical, unexpected obstacles on the road
ahead, such as lost cargo or debris.

• The detection and accurate localization of objects at long range, for
example the tail end of a traffic jam on a highway.

Note that both tasks are particularly relevant when the ego-vehicle is
moving at significant speed. Consequently, the following requirements
on visual perception systems arise, which pose a significant challenge
to both the sensor hardware as well as the sensor data processing algo-
rithms:

1. High-sensitivity generic object detection1

In order to be able to reliably detect generic obstacles even in chal-
lenging cases, i. e. objects at long range as well as particularly small
and unexpected objects, the perception system has to be sufficiently
sensitive. However, at the same time it has to remain robust to real-
world conditions, keeping false positive detections at a minimum.
The detection system has to be able to handle all types of poten-
tial obstacles and must not be limited to a predefined set of object
classes.

2. High-accuracy distance estimation2

For an autonomous vehicle to react appropriately to detected ob-
jects, the location of the potential obstacles has to be determined

1 The terms object detection and obstacle detection will be used interchangeably throughout
this work.

2 Unless otherwise noted, we use the term accuracy to describe the combination of both
statistical bias (systematic error) as well as statistical variability (random error). High-
accuracy distance estimation thus implies good trueness (low bias) as well as high preci-
sion (low variability) of the distance estimates provided by the system.
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as accurately as possible. In particular, the longitudinal distance be-
tween the obstacle and the ego-vehicle often represents the most
critical parameter for planning emergency braking or other evasive
maneuvers. Note that for the estimation of relative object velocities,
errors in distance measurements do have a dramatic impact. Unfor-
tunately, compared to active range sensors, camera-based distance
estimation is particularly error-prone, requiring highly optimized
algorithms to achieve adequate performance.

1.2 contributions

The present work directly addresses the requirements and challenges
described in the preceding section.

First, a novel method for the visual detection of small, generic obstacles
even at long range using stereo cameras is presented. The approach does
not make overly restrictive assumptions on the environment and is not
limited to predefined sets of semantic object classes. Object detection is
based on sound statistical tests using local geometric criteria, which are
applicable to both static and moving obstacles and implicitly consider
non-flat ground surfaces. The core concept lends itself to massive par-
allelization and can be implemented efficiently on dedicated hardware.
Furthermore, the proposed system supports multiple flexible output rep-
resentations, ranging from raw 3D obstacle point measurements to com-
pact and generic mid-level obstacle elements to bounding box represen-
tations of individual object instances suitable for model-based tracking
algorithms.

To allow for a comprehensive evaluation of the detection performance,
a dedicated dataset focusing on small and hard-to-detect objects is
presented. The dataset is made available to the public to foster further
research on this important topic. To the best of the author’s knowledge,
the proposed system is the first to successfully tackle this specific prob-
lem using a standard stereo camera setup and is shown to significantly
outperform current general-purpose obstacle detection approaches.
Moreover, the presented detection appraches are easily extensible to
multi-view camera configurations, providing a promising source of
additional performance improvement.

Given that a relevant object has successfully been detected, this work
investigates methods for optimizing the stereo-based distance estima-
tion accuracy, particularly at long range. The analysis considers several
state-of-the-art stereo algorithm concepts and proposes new approaches
for optimizing performance, also taking the trade-off between accuracy
and computational complexity into account. A comprehensive statistical
evaluation is performed on an extensive dedicated dataset, establishing
reference values for the accuracy limits actually achievable in practice.
The proposed obstacle detection algorithms are shown to simultaneously
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yield highly accurate estimates of object distances, on par with the top-
performing dedicated stereo matching algorithms.

1.3 organization of the thesis

This thesis is organized as follows. Chapter 2 provides an introduction
to the relevant technical background, including numerical optimization
techniques, model selection methods and the fundamentals of stereo
vision and multi-view geometry. Additionally, the mathematical terms
and notation used in the subsequent chapters are clarified. Chapter 3 de-
scribes the proposed high-sensitivity generic object detection system in
detail, including the derivation of different algorithmic variants tuned for
either flexibility or efficiency. Also, suitable methods for generating dif-
ferent output obstacle representations are presented. The performance of
the proposed detection system is evaluated on two challenging datasets,
which cover small obstacle occurrences as well as long range detection
scenarios. Chapter 4 then provides an analysis of the state-of-the-art in
stereo-based distance estimation and proposes various methods for im-
proving long range accuracy. This is followed by an extensive evaluation
and comparative study of the presented approaches. Finally, Chapter 5

concludes this work by summarizing the main findings and providing
an outlook on future research in this area.
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2.1 non-linear optimization

This section gives a brief overview of selected methods for solving
unconstrained as well as constrained non-linear optimization problems
which are relevant for the present work. For a more detailed discussion
of non-linear optimization in general, the reader is referred to dedicated
literature such as [Nocedal and Wright, 1999, Frandsen et al., 2004,
Madsen et al., 2004] and references therein.

We consider a scalar-valued cost function F consisting of a sum of
residuals rj scaled by a loss function ρ. The cost function is parameterized
by the vector ~θ = (θ1, ... , θn)T:

F(~θ) = ∑
j

ρ
(

rj(~θ)
)

. (2.1)

We aim to find a local minimizer ~θ∗ of F within a region of size ε > 0
such that

F(~θ∗) ≤ F(~θ) for ||~θ∗ −~θ|| < ε. (2.2)

7



8 technical background

A necessary condition for being a local minimizer is for~θ∗ to be a station-
ary point, i.e. ~gF(~θ

∗) = ~0, where ~gF is the gradient of the cost function
with respect to the parameter vector ~θ:

~gF(~θ) =
(

∂F
∂θ1

(~θ), ... , ∂F
∂θn

(~θ)
)T

. (2.3)

Further, a sufficient condition for ~θ∗ to be a local minimizer is for the
Hessian at ~θ∗ to be positive definite, where the elements of the Hessian
AF represent the second-order derivatives of F, i. e.

AFk,l (
~θ) =

∂2F
∂θk∂θl

(~θ). (2.4)

Consequently, if ~θ∗ is a stationary point and the corresponding
Hessian is positive definite, ~θ∗ is a local minimizer of F [Madsen et al.,
2004].

In practice, iterative approaches are typically used to obtain an esti-

mate ~̂θ of ~θ∗. Starting from a suitable initial parameter vector ~θ0, in each
iteration an update is applied to the current parameter estimate accord-
ing to

~θ ← ~⊕(~θ, ∆~θ) s.t. F
(
~⊕(~θ, ∆~θ)

)
< F(~θ), (2.5)

where ∆~θ = (∆θ1, ... , ∆θm)T is the update vector and ~⊕ denotes the up-
date operator. Usually, ~⊕ corresponds to a simple additive update with
m = n, i.e. ~⊕(~θ, ∆~θ) = ~θ + ∆~θ. More involved updates sometimes be-
come necessary due to a local reparameterization of the cost function, as
is utilized in Sect. 3.2.4.1. Note that in such a case the domains of F and
~⊕, and hence the dimensions of ~θ and ∆~θ, do not necessarily have to be
identical. However, the codomain of ~⊕ has to correspond to the domain
of F, and ~⊕ has to fulfill the identity relationship ~⊕(~θ,~0) = ~θ.

The goal of the optimization procedure is for the sequence of steps
to converge to ~θ∗. Stopping criteria to assess convergence can be based
on the length of the update step or the change in the value of the cost
function.

There exist various methods for computing the direction and length
of the update vector ∆~θ in each step, resulting in different convergence
properties and computational requirements. The following subsections
briefly describe the update vector computation strategies relevant for this
work.

2.1.1 Newton’s Method

Newton’s method for computing parameter updates can be derived from
the condition that~θ∗ be a stationary point. Denoting the gradient and the
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Hessian of the cost function with respect to the parameter update as ~g
and A respectively, we use a Taylor series to describe the expected value
of the gradient at ~⊕(~θ, ∆~θ) as

~g T
(
~⊕(~θ, ∆~θ)

)
= ~g T

(
~⊕(~θ, ∆~θ)

)∣∣∣
∆~θ=~0

+ A
(
~⊕(~θ, ∆~θ)

)∣∣∣
∆~θ=~0

· ∆~θ

+ O
(
||∆~θ||2

)
.

(2.6)

By truncating the series after the first-order term and evaluating the
terms of the right-hand side at ∆~θ =~0, this expression reduces to

~g T
(
~⊕(~θ, ∆~θ)

)
≈ ~g T(~θ) + A(~θ)∆~θ. (2.7)

Setting the gradient to zero yields the system

−~g T(~θ) = A(~θ)∆~θ, (2.8)

which can then be solved for ∆~θ. The result is a descent direction if A
is positive definite. If the initial parameter vector ~θ0 is sufficiently close
to the correct solution and A is positive definite, Newton’s method con-
verges quadratically to ~θ∗. However, if starting farther away from ~θ∗, the
algorithm can easily diverge [Frandsen et al., 2004]. Furthermore, A may
not be positive definite or may even be singular so that the system in
(2.8) cannot be solved.

Finally, Newton’s method always requires calculating the second-order
derivatives in A, which is usually analytically cumbersome. Evaluating
and inverting A in each iteration is also computationally expensive for
high-dimensional parameter spaces.

2.1.2 Gauss-Newton Algorithm

The Gauss-Newton algorithm is a popular and efficient method for solv-
ing non-linear least squares systems, but it can also be applied to func-
tions of the form (2.1). The algorithm can be derived from Newton’s
method by analyzing the components of the gradient ~g and the Hessian
A in (2.6). For the gradient and hence the Jacobian JF◦~⊕ of the cost func-
tion with respect to the parameter update we obtain

~g T
(
~⊕(~θ, ∆~θ)

)
= JF◦~⊕(

~θ, ∆~θ) = JF(~⊕(~θ, ∆~θ)) J~⊕(∆~θ), (2.9)

where JF denotes the Jacobian of the cost function with respect to the full
parameter vector and J~⊕ represents the Jacobian of the update operator
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with respect to the parameter update vector1. Here, JF can be expressed
analytically as follows:

JF(~⊕(~θ, ∆~θ)) =
∂F(~⊕(~θ, ∆~θ))

∂(⊕1(~θ, ∆~θ), ... ,⊕n(~θ, ∆~θ))

=
∂F(~⊕(~θ, ∆~θ))

∂(⊕1(.), ... ,⊕n(.))

=

∂ ∑
j

ρ
(

rj(~⊕(~θ, ∆~θ))
)

∂(⊕1(.), ... ,⊕n(.))

= ∑
j

ρ′
(

rj(~⊕(~θ, ∆~θ))
) ∂rj(~⊕(~θ, ∆~θ))

∂(⊕1(.), ... ,⊕n(.))
,

(2.10)

where ρ′ denotes the derivative of the loss function, computed as de-
scribed in Sect. 2.1.5. The Jacobian of the update operator J~⊕ is expressed
as

J~⊕(∆~θ) =
∂(⊕1(~θ, ∆~θ), ... ,⊕n(~θ, ∆~θ))

∂(∆θ1, ... , ∆θm)

=
∂(⊕1(.), ... ,⊕n(.))

∂(∆θ1, ... , ∆θm)
.

(2.11)

The Hessian is obtained by taking the partial derivatives of the cost
function gradient with respect to the components of ∆~θ. Using the com-
ponents of JF and J~⊕ from (2.10) and (2.11) to define the auxiliary variable

J∗(j,~θ, ∆~θ) =
∂rj(~⊕(~θ, ∆~θ))

∂(⊕1(.), ... ,⊕n(.))
∂(⊕1(.), ... ,⊕n(.))

∂(∆θ1, ... , ∆θm)
, (2.12)

we can write the Hessian as

A(~⊕(~θ, ∆~θ))

= ∑
j

ρ′′
(

rj(~⊕(~θ, ∆~θ))
)
· J∗ T(j,~θ, ∆~θ)J∗(j,~θ, ∆~θ)

+ ∑
j

ρ′
(

rj(~⊕(~θ, ∆~θ))
)
·

∂
(

J∗1(j,~θ, ∆~θ), ... , J∗m(j,~θ, ∆~θ)
)

∂(∆θ1, ... , ∆θm)
.

(2.13)

The Gauss-Newton algorithm utilizes an approximation of A by mak-
ing the assumption that the second-order derivative terms in A are far
smaller than the first-order terms and can therefore be neglected. This
assumption holds if the residuals are small or have only little curvature.

1 J~⊕ = I(n×n) for the case of simple additive parameters updates.
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Dropping all second-order terms then yields the approximate Gauss-
Newton Hessian

AGN

(
~⊕(~θ, ∆~θ)

)
= ∑

j
ρ′′
(

rj(~⊕(~θ, ∆~θ))
)
· J∗ T(j,~θ, ∆~θ)J∗(j,~θ, ∆~θ),

(2.14)

which is significantly simpler to compute than the full Hessian A. Evalu-
ating AGN at ∆~θ =~0 yields

AGN

(
~⊕(~θ, ∆~θ)

)∣∣∣
∆~θ=~0

= AGN(~θ)

= ∑
j

ρ′′
(

rj(~θ)
)
· J∗ T(j,~θ,~0)J∗(j,~θ,~0).

(2.15)

The parameter update vector ∆~θ is obtained from (2.8) using AGN . Before
performing the actual update step, the length of ∆~θ may additionally
be rescaled using line search methods to improve convergence behav-
ior [Nocedal and Wright, 1999]. The Gauss-Newton algorithm generally
achieves linear convergence, sometimes increasing to quadratic conver-
gence close to the solution [Madsen et al., 2004].

2.1.3 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithms extends the Gauss-Newton algo-
rithm by introducing a damping term to the approximate Hessian:

ALM(~θ) = AGN(~θ) + γD, (2.16)

where D is a symmetric, positive definite matrix and the magnitude of
the damping factor γ is adjusted in each iteration. The damping term
influences both the direction and the length of the resulting parameter
update vector, making the algorithm behave either closer to the origi-
nal Gauss-Newton algorithm or to a direct gradient descent approach
[Madsen et al., 2004]. Various strategies for formulating and updating
the damping term have been proposed, resulting in slight differences re-
garding update behavior and convergence properties. A common choice
is D = diag

{
AGN(~θ)

}
in order to avoid slow convergence behavior in

flat regions of the cost function. Generally, the Levenberg-Marquardt al-
gorithm is more robust than the Gauss-Newton algorithm, as it is able to
find a solution even when starting far away from the final minimum.

The approach can also be interpreted as a Gauss-Newton algorithm
using a trust-region scheme [Nocedal and Wright, 1999].
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2.1.4 Levenberg-Marquardt Algorithm with Convex Constraints

All algorithms described so far are designed to deal with unconstrained
non-linear optimization problems. However, in the present work we
also consider tasks that require the solution of non-linear optimization
problems with bound constraints. While various methods to tackle con-
strained optimization problems exist (see [Nocedal and Wright, 1999] for
a detailed analysis), here we employ a projected Levenberg-Marquardt
approach with convex constraints as presented by Kanzow et al. [2004].
We choose this method due to its efficiency as well as its seamless
integration into the general unconstrained optimization framework
introduced in the previous sections.

The goal is to find the local minimizer ~θ∗ of the cost function F such
that ~θ∗ ∈ Θ, where Θ represents the feasible set as defined by the given
bound constraints. The essential difference to the original Levenberg-
Marquardt algorithm is an additional projection step after each parame-
ter update. The projection step ensures valid parameter estimates ~θ at all
times by forcing the updated parameter vector onto the closest point of
the feasible set Θ.

While Kanzow et al. [2004] show that this approach can achieve rapid
convergence within a local region around the correct solution, the au-
thors propose two extensions to further improve convergence behavior.
In case the projected Levenberg-Marquardt step does not result in a
sufficient decrease in F, alternatively a line search step in the direction of
the obtained projected parameter vector may be applied. If the decrease
is still insufficient, a projected line search step in the direction of steepest
descent may be taken instead. We refer to [Kanzow et al., 2004] for a
detailed derivation and analysis of the complete algorithm.

To solve the constrained non-linear optimization problems considered
in this work, we make use of the core projected Levenberg-Marquardt
strategy but replace the line search extensions of Kanzow et al. [2004] by
a damping factor update scheme as proposed by Madsen et al. [2004]. To
assess the quality of each step, the gain ratio as described in the same
report is used. The gain ratio evaluates how the actual cost decrease com-
pares to the decrease expected from an unconstrained step based on the
predicted cost model. In practical experiments, our modified projected
Levenberg-Marquardt algorithm performed on par with the original ex-
tended version of Kanzow et al. [2004] while being less complex and
more efficient computationally. The full algorithm is detailed in Alg. 2.1.

2.1.5 Robust Loss Functions

Considering again the original formulation of the cost function in (2.1),
an important factor is the suitable choice of the loss function ρ. Com-
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Algorithm 2.1 Constrained Levenberg-Marquardt parameter optimiza-
tion
Input

- Image data ~I
- Initial parameter vector ~θ0
- Constraints of feasible set Θ

Output

- Estimate of ~θ∗, i. e. the optimized parameter vector ~̂θ ∈ Θ
- Convergence information

Algorithm
1: function optimizeParameters(~I , ~θ0, Θ)
2: converged = false
3: ~θ = ~θ0
4: γ = γ0
5: ν = 2
6: while not converged AND iterations<max do
7: compute error gradient ~g
8: compute approximate Hessian ALM
9: solve −~g T = ALM∆~θ for update vector ∆~θ

10: project ~⊕(~θ, ∆~θ) onto feasible set: ~θprj = Prj
(
~⊕(~θ, ∆~θ)

)
11: compute gain ratio ξ

12: if ξ > 0 then
13: compute step length ||~θprj −~θ||
14: compute relative cost change ||

(
F(~θprj)− F(~θ)

)
/F(~θ)||

15: update parameter vector: ~θ ← ~θprj
16: if step length < εstep OR rel. cost change < εcost then
17: converged = true
18: end if
19: reduce damping factor
20: γ = γ ·max

(
1
3 , 1− (2ξ − 1)3

)
21: ν = 2
22: else
23: increase damping factor
24: γ = γ · ν
25: ν = 2 · ν
26: end if
27: end while

28: return ~θ, converged
29: end function
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monly, a squared error loss is used, which results in the non-linear least
squares problem formulation:

F(~θ) = ∑
j

ρ
(

rj(~θ)
)
= ∑

j

(
rj(~θ)

)2
. (2.17)

The squared error loss features several desirable properties such as high
sensitivity, convexity and continuous derivatives of all orders. The first
and second derivatives required for the iterative optimization procedure
are simply computed as

ρ′ (r) =
dρ (r)

dr
= 2r, ρ′′ (r) =

d2ρ (r)
dr2 = 2, (2.18)

where the index j and the parameter vector argument ~θ have been omit-
ted for brevity.

A major drawback of the squared loss is its susceptibility to outliers
in the input data. Even a single outlier in the residuals rj can cause the

resulting parameter estimate ~̂θ to deviate significantly from the correct
solution.

Hence, in the following we shortly describe exemplary alternative loss
functions which are robust to outliers and can directly be applied within
the optimization framework introduced in the previous sections. For
more details on robust loss functions and robust statistics we refer to the
respective literature, see for example [Huber and Ronchetti, 2009, Huber,
1964, Hartley and Zisserman, 2004].

2.1.5.1 Absolute Loss

The absolute loss, or L1 loss, penalizes residuals by their absolute value

ρ (r) = |r|, (2.19)

making it much more robust to outliers than the squared loss. While
also being continuous and convex, the absolute loss is not continuously
differentiable.

To apply the loss in the presented iterative optimization framework, it
has to be rewritten as a weighted squared loss:

ρ (r) = w2r2, (2.20)

where the weight factors w = 1√
|r|

effectively dampen the influence of

large residuals. These damping weights are recomputed in each iteration,
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resulting in an iteratively reweighted least squares optimization proce-
dure. The derivatives of the loss function are then computed as

ρ′ (r) = 2w2r,

ρ′′ (r) = 2w2.
(2.21)

Note that the discontinuity at point r = 0 has to be handled with partic-
ular care.

2.1.5.2 Huber Loss

The Huber loss [Huber, 1964] combines the sensitivity of the squared
loss and the robustness of the absolute loss. This is achieved by defining
a piecewise function which is convex and continuous with a continuous
first derivative. The switch between the two underlying loss models oc-
curs at a given residual threshold value th. For small residuals in the
range |r| ≤ th the squared loss is applied, whereas for |r| > th the robust
absolute loss is used, where

w =

√
2|r|th − t2

h

|r| . (2.22)

A smooth approximation can be obtained by the so-called Pseudo-Huber
loss [Hartley and Zisserman, 2004]

ρ (r) = 2t2
h

(√
1 +

r2

t2
h
− 1

)
, (2.23)

which features continuous derivatives of all orders.
Fig. 2.1 illustrates the considered loss functions and corresponding

residual damping weights, highlighting the beneficial properties of the
robust Huber and Pseudo-Huber loss functions.
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Figure 2.1: Loss functions (a) and respective residual damping weights (b).
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2.2 statistical hypothesis testing for model selection

This section introduces the fundamentals of binary statistical hypothesis
testing as used for model selection in this work. Further details on
statistical decision theory can be found in [Kay, 1998] and references
therein.

We consider a set of observed data ~x, representing realizations of a
random variable or random vector, characterized by one of two possi-
ble Probability Density Functions (PDFs). The first PDF p(~x;~θ0,H0) is
parametrized by the vector ~θ0 and corresponds to the so-called null hy-
pothesis H0. The second PDF is parametrized by the vector ~θ1 and corre-
sponds to the alternative hypothesis H1. The aim of the hypothesis test
is to decide whether the observations ~x originate from H0 or from H1.

If the hypotheses H0 and H1 are interpreted to indicate the absence
or presence of a signal or an object, then finding an optimal deci-
sion criterion can be reformulated as the task of finding an optimal
detector. The goal is then to obtain the highest probability of detec-
tion PrD = Pr(H1;H1) under a certain probability of false alarms
PrFA = Pr(H1;H0).

2.2.1 Simple Hypothesis Testing

In the case of so-called simple hypotheses, the PDFs under both H0 and
H1 are fully specified and all parameters are known. The hypotheses are
then defined by the respective fixed values of their parameter vectors ~θ0
and ~θ1. In such a case, a provably optimal detector can be found by for-
mulating a likelihood ratio test according to the Neyman-Pearson theo-
rem [Neyman and Pearson, 1933]. To maximize PrD for a given PrFA = α,
the decision for H1 is taken if

L(~x) =
p(~x;~θ1,H1)

p(~x;~θ0,H0)
> γ, (2.24)

i. e. if the likelihood ratio L(~x) exceeds the threshold γ. The optimal
threshold value is computed from

PrFA =
∫
~x:L(~x)>γ

p(~x;~θ0,H0)d~x = α, (2.25)

yielding the most powerful among all tests with significance level α.

2.2.2 Composite Hypothesis Testing

In practice, the PDFs associated with the competing hypotheses are gen-
erally not completely known. The dimensionalities and values of the
parameter vectors, even the form of the PDFs, may differ between hy-
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potheses. The resulting class of hypothesis testing problems is known as
composite hypothesis tests.

2.2.2.1 Generalized Likelihood Ratio Test

In the Generalized Likelihood Ratio Test (GLRT) the unknown parame-
ters for each composite hypothesis are replaced by their Maximum Like-
lihood Estimates (MLEs). Without any further constraints, the GLRT de-
cides for H1 if

LG(~x) =
p(~x;~̂θ1,H1)

p(~x;~̂θ0,H0)
> γ, (2.26)

with the MLEs of the parameter vectors computed as

~̂θ0 = arg max
~θ0

(
p(~x;~θ0,H0)

)
, (2.27)

~̂θ1 = arg max
~θ1

(
p(~x;~θ1,H1)

)
. (2.28)

Given a desired probability of false alarms PrFA, the threshold param-
eter γ has to be determined empirically. While this approach provides
no general optimality guarantees, it has been shown to perform well in
practice [Kay, 1998].

A special case arises if the PDFs under H0 and H1 are of the same
form p(~x;~θ) and the hypothesis test can be formulated as a parameter
test of the PDF. Assuming ~θ =

(
~θr, ~θs

)
to consist of the parameters to be

tested ~θr and a set of nuisance parameters ~θs, the test can be written as

H0 : ~θ =
(
~θr0 , ~θs

)
(2.29)

H1 : ~θ 6=
(
~θr0 , ~θs

)
. (2.30)

The GLRT then decides for H1 if

LG(~x) =
p(~x;~̂θr1 ,~̂θs1)

p(~x;~θr0 ,~̂θs0)
> γ. (2.31)

Note that the restricted MLE ~̂θs0 under H0 is computed as

~̂θs0 = arg max
~θs

(
p(~x;~θr0 ,~θs)

)
, (2.32)
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whereas the unrestricted MLE
(
~̂θr1 , ~̂θs1

)
under H1 is computed as(

~̂θr1 ,~̂θs1

)
= arg max

~θr ,~θs

(
p(~x;~θr,~θs)

)
. (2.33)

In such a special case, the asymptotic detection performance of the GLRT
can be determined [Kay, 1998]. For large datasets, it can be shown that
the modified test statistic 2 ln LG(~x) is asymptotically distributed as

2 ln LG(~x) ∼

χ2
r under H0

χ
′2
r (λ) under H1,

(2.34)

where χ2
r represents a chi-squared distribution with r degrees of freedom

and χ
′2
r (λ) denotes a noncentral chi-squared distribution with noncen-

trality parameter λ. The parameter r is given by the dimensionality of
the tested parameter vector ~θr. The distribution under H0 does not de-
pend on any unknown parameters, which allows for the computation of
a suitable decision threshold γ in order to maintain a certain probability
of false alarms PrFA.
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2.3 stereo vision

This section introduces the basic concepts of computational stereo vi-
sion, starting with the essential pinhole camera model, the fundamen-
tals of two-view epipolar geometry, image rectification and the so-called
standard stereo configuration. Subsequently, the central task of stereo vi-
sion, the correspondence problem, is introduced, the solution of which
represents the critical prerequisite for successful 3D reconstruction of
observed points. Finally, an overview of possible error sources in the var-
ious stages of the stereo vision process is given and the respective impact
on the present work is discussed.

For a detailed introduction to camera models, projective geometry and
multi-view geometry, the reader is referred to the respective literature, in
particular [Faugeras and Luong, 2001, Forsyth and Ponce, 2002, Hartley
and Zisserman, 2004].

2.3.1 The Pinhole Camera Model

The camera model used throughout this work is based on the ideal pin-
hole camera, which provides a mapping of points from Euclidean 3-space
R3 to Euclidean 2-space R2 by central projection. The geometric model
of the pinhole camera is illustrated in Fig. 2.2. The camera center ~C
represents the center of projection and sits at the origin of the camera
coordinate system, which we define as a left-handed three-dimensional
Cartesian coordinate system. The line perpendicular to the image plane
passing through the camera center is called the principal axis, intersect-
ing the image plane at the principal point ~x0. The image coordinate sys-
tem is defined as a two-dimensional Cartesian coordinate system in the
image plane, with its origin located at the principal point. The principal
point can also be expressed in camera coordinates as (0, 0, f )T, where f
denotes the focal length of the camera. A 3D point ~XC = (XC, YC, ZC)

T

given in the camera coordinate system is mapped onto the image where
the ray connecting ~XC and ~C intersects the image plane ZC = f . This
central projection mapping can be compactly written as

~̃xP = P~̃XC, (2.35)

where the 3D point is represented by the homogeneous 4-vector ~̃XC =
(XC, YC, ZC, 1)T and the corresponding image point is represented by the
homogeneous 3-vector ~̃xP = (xP, yP, 1)T. The matrix P is the 3× 4 camera
projection matrix of the ideal pinhole camera

P = diag ( f , f , 1)
(

I(3×3) |~0(3)
)

. (2.36)
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Figure 2.2: The basic pinhole camera model with camera center ~C, principal
point ~x0 and focal length f .

A more general model extending the ideal pinhole camera is provided
by the finite projective camera [Hartley and Zisserman, 2004] with the
camera projection matrix

P = K
(

R |~t
)

, (2.37)

which includes the extrinsic parameters R and~t and the intrinsic param-
eters in the form of the camera calibration matrix K.

2.3.1.1 Extrinsic Parameters

Commonly, an observed 3D point ~X is given in the world coordinate
system, which is different from the camera coordinate system in general.
The two coordinate systems are related by a rotation and a translation,
defined by the 3 × 3 rotation matrix R and the translation 3-vector ~t.
Points are transformed from the world coordinate system to the cam-
era coordinate system by first applying the rotation R, followed by the
translation~t:

~XC = R~X +~t. (2.38)

2.3.1.2 Intrinsic Parameters

The intrinsic parameters of a practical finite projective camera are repre-
sented by the camera calibration matrix K, which is a 3× 3 matrix with
five degrees of freedom:

K =

 fx s x0

0 fy y0

0 0 1

 . (2.39)

The parameters fx = f mx and fy = f my specify the focal length in terms
of pixel dimensions, with mx and my representing the reciprocal pixel
width and height, respectively. The pixel coordinates of the principal
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point are defined by ~x0 = (x0, y0)
T. Finally, the parameter s represents a

potential pixel skew, caused by a non-perpendicular angle between the
x- and y-axes of the camera’s pixel array. In most practical applications
the skew can be considered to be zero.

2.3.1.3 Lens Correction

The ideal pinhole camera offers a simple mathematical formulation for
the projection of object points to images. However, this ideal model can
only provide an approximation of real camera projection, as the lenses
employed in practice always introduce some form of distortion or aber-
ration. A widely used formula for modeling lens distortion effects is

~xD = ~xP + ∆~xR + ∆~xT, (2.40)

where the image coordinates of the ideal pinhole projection are denoted
as ~xP = (xP, yP)

T and the distorted coordinates as ~xD = (xD, yD)
T. The

radial lens distortion component ∆~xR represents a symmetric radial dis-
placement of points in the image plane [McGlone et al., 2004] and can be
approximated by

∆~xR =

(
∆xR

∆yR

)
=
(

k1r2 + k2r4 + ...
)(xP

yP

)
, (2.41)

where k1 and k2 denote the radial distortion coefficients and
r =

√
x2

P + y2
P is the radial distance from the principal axis.

The decentering distortion component ∆~xT is caused by the fact
that the centers of curvature of compound lenses may not be perfectly
collinear [Brown, 1966, 1971]. This results in both radial and tangential
distortion components, commonly expressed as

∆~xT =

(
∆xT

∆yT

)
=

(
2k3xPyP + k4(r2 + 2x2

P)

k3(r2 + 2y2
P) + k4(r2 + 2k4xPyP)

)
, (2.42)

with coefficients k3 and k4. Combining the intrinsic parameters of the
finite projective camera (2.39) with the described lens distortion coeffi-
cients yields the projection model

~xd =

(
xd

yd

)
=

(
mxxD + syD

myyD

)
+

(
x0

y0

)
, (2.43)

which yields the final pixel coordinates ~xd for an observed point ~XC. This
formulation provides a direct mapping between the ideal central projec-
tion and the distorted image captured by a real camera. If the distortion
coefficients are known, it is possible to perform so-called lens correc-
tion, hence removing distortion artifacts and reconstructing a virtually
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Figure 2.3: Epipolar geometry of a stereo camera setup, with the left and right
camera centers ~CL and ~CR, the epipoles ~el and ~er and the epipolar
lines ll and lr.

undistorted image. This allows for the application of the finite projective
camera model in subsequent processing steps.

In practice, the distortion coefficients in (2.41) and (2.42) as well as the
intrinsic parameters of the calibration matrix (2.39) are estimated in an
offline calibration procedure using known calibration targets [Heikkilä
and Silven, 1997, Zhang, 2000, Bouguet, 2017].

2.3.2 Epipolar Geometry

Stereo vision for 3D perception is based on the use of two vertically
aligned2 cameras with largely overlapping fields of view. This camera
configuration is characterized by the so-called epipolar geometry, illus-
trated in Fig. 2.3 [Faugeras and Luong, 2001, Hartley and Zisserman,
2004]. Assuming two lens-corrected finite projective cameras, a world
point ~X is projected into the left and right camera images at pixel coor-
dinates ~xl and ~xr, respectively. The plane defined by the camera centers
~CL and ~CR and the world point ~X is called the epipolar plane. Projecting
the epipolar plane into each image yields the epipolar lines ll and lr. The
baseline connects the two camera centers and intersects the image planes
at the epipoles~el and~er. Since the projection ~xl of any point ~X in the left
image lies on the epipolar plane, its corresponding point ~xr in the right
image must lie on the epipolar line lr, and vice versa. This property is
known as the epipolar constraint.

In order to reconstruct 3D points from stereo imagery via triangula-
tion, it is essential to first determine point correspondences across the
two images. Due to the epipolar constraint, the complexity of the corre-

2 Some applications also use custom setups such as vertically stacked cameras or multi-
view rigs.
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Figure 2.4: Standard stereo configuration.

spondence search is reduced significantly, as the search space is reduced
from full images to epipolar lines only.

2.3.2.1 The Standard Stereo Configuration

To further reduce the complexity of the correspondence search as well as
the triangulation procedure, the camera setup is commonly transformed
into the so-called standard stereo configuration as shown in Fig. 2.4. In
this configuration, the image coordinate systems of both cameras are
perfectly aligned, sharing a single image plane. The baseline separating
the camera centers is oriented parallel to the image coordinate x-axis,
with the baseline length denoted as B. All intrinsic parameters are shared
between both cameras. Epipolar lines are then equivalent to image rows,
reducing the correspondence search to a 1D search along corresponding
rows. The left camera is defined as the reference camera, with its camera
center specifying the origin of the joint stereo camera coordinate system.

rectification For the stereo setup to be transformed into its stan-
dard configuration, the intrinsic parameters as well as the relative extrin-
sic parameters of both cameras have to be known. All required param-
eters can be obtained from offline calibration procedures with known
calibration targets [Tsai, 1987, Heikkilä and Silven, 1997, Zhang, 2000,
Bouguet, 2017]. In an online rectification process, the original camera
images are then warped onto the new image planes satisfying the prop-
erties of the standard configuration [Fusiello et al., 2000].

stereo disparity Given a pair of rectified stereo images and a point
~XC = (XC, YC, ZC) in the stereo camera coordinate system, the corre-
sponding projections in the left and right images are denoted as ~xl =
(xl , yl)

T and ~xr = (xr, yr)T, with yl = yr due to the epipolar constraint.
The horizontal displacement, i.e. the difference in x-coordinates, is called
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stereo disparity d. It is related to the point distance or depth ZC via sim-
ilar triangles:

d = xl − xr =
fxB
ZC

. (2.44)

Using an extended stereo projection matrix P̀ as in [Rabe, 2011]

P̀ =


fx 0 x0 0
0 fy y0 0
0 0 0 fxB
0 0 1 0


(

R ~t
~0(3)

T 1

)
, (2.45)

the projection of a world point ~̃X = (X, Y, Z, 1) into the stereo camera
images can simply be written as the mapping

~̃xs = P̀~̃X, (2.46)

where ~̃xs denotes the extended homogeneous image coordinate vector
~̃xs = (xl , yl , d, 1)T.

2.3.3 3D Reconstruction

In general stereo configurations, the reconstruction of a 3D point from
two corresponding image points is performed by calculating the inter-
section of the back-projected rays passing through the respective camera
centers and image points. However, in practice image coordinates as well
as camera parameters are only known approximately, and the triangula-
tion task effectively turns into an optimization problem [Hartley and
Sturm, 1997, Trucco and Verri, 1998]. In case of the standard stereo con-
figuration, a 3D point can be obtained directly by inverting the projection
formula (2.46):

~̃X = P̀−1~̃xs. (2.47)

2.3.4 The Correspondence Problem

The central task of stereo vision is the solution of the correspondence
problem or stereo matching problem, i.e. finding corresponding points
in stereo imagery. Here we focus on the standard stereo configuration,
where the disparity values resulting from correspondences in rectified
images allow for the direct reconstruction of 3D scene points via (2.47). A
massive amount of research has been published on this topic in the past
decades, constantly advancing the state-of-the-art. In particular, progress
has been driven by public performance evaluation benchmarks such as
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Figure 2.5: Example of a dense disparity map computed via the Semi-Global
Matching (SGM) algorithm [Hirschmüller, 2008, Gehrig et al., 2015].
The pixel-wise disparity results are visualized as a color-coded over-
lay, where green represents small disparity (large distance) and red
represents large disparity (small distance).

the Middlebury [Scharstein and Szeliski, 2002, Scharstein et al., 2014] and
KITTI [Geiger et al., 2012, Menze and Geiger, 2015] benchmarks.

Depending on the application scenario, the correspondence search is
performed either for a selected sparse set of image points only, or for
all image pixels yielding a dense or at least semi-dense correspondence
map, the disparity map (Fig. 2.5). The majority of traditional dense stereo
matching algorithms can be cast into the general taxonomy proposed
by Scharstein and Szeliski [2002], including either all or a subset of the
processing steps

• matching cost computation,

• cost aggregation,

• disparity computation,

• disparity refinement.

In the first step, pixel-wise matching costs between all potentially cor-
responding points in the left and right images are computed based on
a given similarity measure. While some similarity measures are derived
from statistical models of the image content, others are simply designed
with the goal of finding maximally discriminative and robust descrip-
tors of image points. Common measures include squared or absolute in-
tensity differences, cross-correlation-based measures, ordinal measures
or differences of intensity derivative signatures. Recently, even the ap-
plicability of similarity measures obtained from a supervised learning
approach based on Convolutional Neural Networks (CNNs) was demon-
strated [Žbontar and LeCun, 2016].

Next, pixel-wise matching costs are aggregated over small local image
regions, as similarity measures computed on single pixels are in general
too ambiguous for reliable matching. In fact, most similarity measures
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implicitly perform a type of local aggregation, as they already make use
of a local neighborhood for cost computation.

In the third step, optimal correspondences are selected based on the
determined matching costs and a given optimality criterion. Here a dis-
tinction is made between so-called local and global algorithms. Local
algorithms follow the simple notion that, out of a certain set of corre-
spondence candidates, the one with the highest similarity score should
be selected. Consequently, this approach is very susceptible to ambigu-
ities and outliers in the matching costs. In contrast, global algorithms
formulate the correspondence selection as an optimization problem, tak-
ing the global image context into account. In this way, additional con-
straints such as scene priors favoring smooth or piece-wise smooth dis-
parity maps can be exploited.

While some algorithms directly treat stereo disparity as a continuous
variable, many are set in a discrete framework, which considers disparity
on a pixel-discrete grid. For such discrete settings, a final refinement step
can be employed to obtain sub-pixel accurate results. Commonly, this is
achieved by fractional sampling of the disparity space and/or a curve fit
to the computed matching cost volume.

Not all modern stereo matching algorithms strictly conform to the tax-
onomy described above. For example, a number of current methods com-
bine image segmentation and segment-wise model parameter estimation
to achieve state-of-the-art performance [Vogel et al., 2015, Yamaguchi
et al., 2014]. Recently, machine learning approaches have successfully
been applied to adaptively tune the parameters of disparity optimiza-
tion algorithms [Seki and Pollefeys, 2017] or even for direct inference of
disparity maps via CNNs trained end-to-end [Mayer et al., 2016, Kendall
et al., 2017].

Further details on the stereo correspondence problem and an exten-
sive overview of dense matching algorithms can be found in [Szeliski,
2010] and references therein, as well as in the benchmark rankings of
[Scharstein et al., 2014, Geiger et al., 2012, Menze and Geiger, 2015].
Chapter 4 of the present work focuses on the specific problem of de-
signing algorithms which yield highly accurate correspondence results
in the sub-pixel range, including further discussion of related research.

2.3.5 Sources of Error

In all stages of the stereo processing pipeline, several sources for intro-
ducing errors and inaccuracies exist, with some errors having a more
severe impact on the final 3D reconstruction of points than others. This
section is intended to provide an overview of the most common sources
of error, along with their respective relevance for the accuracy of recon-
struction results.
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2.3.5.1 Calibration

Accurate camera calibration arguably represents the most critical prereq-
uisite for all further processing steps, as errors in the estimated intrinsic
and extrinsic parameters have a direct and severe impact on both the
correspondence search as well as 3D reconstruction results.

Regarding intrinsic and lens distortion parameters, in some cases the
applied camera model might simply not be able to fully capture the ac-
tual camera characteristics, a problem which may be overcome by select-
ing a more suitable model. However, even for suitable camera models,
errors can arise if the set of selected calibration images is not sufficient
to constrain the parameter estimation problem, such that the applied op-
timization procedure is not able to find a high-quality solution. This can
also result in the parameters correctly capturing the camera properties
only in certain image areas, but not in the full image.

Considering extrinsic camera calibration, a major challenge is the fact
that the actual parameters of the camera setup can easily deteriorate
during operation due to adverse environmental conditions such as
vibrations or temperature variations. These effects require frequent
re-calibration or the use of online self-calibration algorithms, see e. g.
[Dang et al., 2009].

Inaccurate camera parameter estimates can lead to image rows not
exactly fulfilling the epipolar constraint after rectification, either in the
full images or in image parts. In practice, this is most often caused by
changes in the relative pitch or roll angles of the two cameras over time.
If the assumption of image rows coinciding with epipolar lines is vio-
lated, matching errors become inevitable. However, such errors may be
mitigated by the use of appropriate matching algorithms, e. g. by jointly
estimating disparity and vertical offsets as described in Sect. 4.3.3 or
by using dedicated image filters and similarity measures as shown in
[Hirschmüller and Gehrig, 2009].

Even if correct image correspondences can be found, inaccurate cam-
era parameter estimates directly lead to errors in the 3D reconstruction.
In [Zhao and Nandhakumar, 1996], the effects of errors in various cam-
era parameters on point distances computed via (2.47) is analyzed analyt-
ically. Not considering potential errors in the baseline, the relative yaw
angle between cameras is found to be most critical, followed by pitch
and roll angles. A corresponding experimental analysis is provided in
[Nedevschi et al., 2003]. Here a general stereo setup is assumed, where
triangulation is performed by computing the point closest to the back-
projected rays from both cameras [Trucco and Verri, 1998]. The results
confirm the intuitive notion that the parameters most critical for accu-
rate distance computation are the horizontal coordinates of the principal
points, the baseline length, as well as the relative yaw and pitch angles.
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2.3.5.2 Correspondence

Despite its perceived conceptual simplicity, the search for stereo corre-
spondences represents a hard problem which holds a vast amount of
potential error sources. While the state-of-the-art in stereo matching algo-
rithms has made significant advances in recent years, challenging scenes
including large texture-less image areas, occlusions, repetitive patterns,
small objects or transparent/semi-transparent materials still present se-
rious difficulties [Scharstein and Szeliski, 2002, Scharstein et al., 2014,
Geiger et al., 2012, Menze and Geiger, 2015].

Moreover, inaccuracies or errors are often due to inappropriate model
assumptions applied by matching algorithms. For example, the use of
inadequate, non-robust similarity measures can result in serious errors
if the imaging characteristics of the cameras do not fulfill the underlying
assumptions. In global methods, thin structures and small objects tend
to get over-smoothed due to the applied scene priors and global smooth-
ness constraints. In local methods on the other hand, image patches used
for cost aggregation are sometimes not able to correctly represent the lo-
cal image context. Matching algorithms based on image segmentation
and segment-wise estimation of parametric disparity models yield erro-
neous disparity maps if the segmentation or the estimated model param-
eters are inaccurate.

A different type of error arises if disparity values are considered as
discrete integer-valued displacements only, corresponding to the pixel
resolution of the camera sensor. The resulting quantization errors di-
rectly lead to erroneous or at least ambiguous 3D coordinates, as any
reconstructed point is essentially represented by a whole region in 3D
space. The characteristics of reconstruction errors resulting from dispar-
ity quantization have been analyzed in detail by several authors includ-
ing Blostein and Huang [1987], Matthies and Shafer [1987], Rodriguez
and Aggarwal [1990], Chang et al. [1994], Fooladgar et al. [2013] and
Freundlich et al. [2015].

To avoid the implications of disparity quantization errors, it is essential
to obtain sub-pixel accurate matching results. Even if disparity computa-
tion is implicitly restricted to discrete disparity space due to details of the
underlying matching algorithm, sub-pixel values can be obtained by ap-
propriate pre- or post-processing steps, such as fractional disparity sam-
pling or matching cost interpolation. However, interpolated sub-pixel
disparities can still contain artifacts such as the so-called pixel-locking
effect, where the disparity distribution is biased towards integer values
[Shimizu and Okutomi, 2001, Nehab et al., 2005, Haller and Nedevschi,
2012].

Last but not least, adverse environmental conditions such as heavy
rain, snowfall, fog or low light as well as wet or dirty lenses significantly
reduce the quality of the matching results and the computed disparity
maps in practice.
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2.3.5.3 Reconstruction

Leaving aside gross errors caused by imperfect calibration, quantization
artifacts or incorrect correspondences, general models for reconstruction
uncertainty are usually based on the assumption of normally distributed
noise on the image coordinates of corresponding points in the stereo im-
ages. While the properties of the reconstruction error distribution can
then be specified in all spatial dimensions [Zhang and Boult, 2011], er-
rors in distance far outweigh errors in the other directions [Blostein and
Huang, 1987]. The Cramer-Rao lower bound on the distance uncertainty
can be derived as shown in [Yang et al., 2010], assuming noisy image co-
ordinates but otherwise perfect camera parameters. Notably, the bound
is lowest for points at the image center and increases towards the image
borders.

Considering a standard stereo configuration, the assumed noise model
on the image coordinates reduces to the horizontal direction only. In
terms of disparity measurements this can be written as

d̂ = d∗ + εd, (2.48)

where d∗ denotes the true disparity, d̂ denotes the measured value, and
the error term εd represents samples from a symmetric distribution with
zero mean and variance σ2

d . Following (2.44), the corresponding distance
value is computed as

ẐC =
fxB
d̂

=
fxB

d∗ + εd
. (2.49)

For any given εd, the resulting distance error εZ is then

εZ = Z∗C − ẐC =
fxB
d∗
− fxB

d∗ + εd
=

fxB
d∗

εd
d∗ + εd

=
Z∗C

2εd

fxB + Z∗Cεd
.

(2.50)

It becomes apparent from (2.50) that the distance error εZ resulting from
a constant disparity error εd increases non-linearly with increasing abso-
lute distance. Fig. 2.6 illustrates this relationship on a set of exemplary
disparity error values.

Under the assumption of normally distributed disparity errors, the
PDF of the resulting distance estimates ẐC is given as derived in [Sibley
et al., 2007]:

p(ẑC) =
fxB√

2πσdẐ2
C

exp

−
(

fxB
ẐC
− d∗

)2

2σ2
d

 . (2.51)

Fig. 2.7 depicts the distance PDFs resulting from an exemplary set
of disparity error magnitudes σd, for a given true disparity d∗ and
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corresponding Z∗C. As pointed out previously by Sibley et al. [2007] and
Rabe [2011], the PDF is clearly asymmetric and biased towards larger
distances, with the magnitude of the bias increasing with the disparity
error and with absolute distance.

Considering the results obtained in (2.50) and (2.51), the implications
of which are illustrated in Fig. 2.6 and Fig. 2.7, it is evident that
the accuracy of disparity results in the sub-pixel range is a most crit-
ical prerequisite for long range distance estimation using stereo cameras.
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Figure 2.6: Absolute distance errors increase non-linearly for a given set of
stereo disparity errors, shown for camera parameters fx = 1200 px
and B = 0.38 m.
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Parts of this chapter have appeared previously in [Pinggera et al., 2015] and
[Pinggera et al., 2016].

3.1 related work

3.1.1 Overview

Many generic obstacle and object detection approaches for intelligent
ground vehicles are based on geometric criteria and employ a so-called
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flat-world-assumption, modeling free-space or ground as a single planar
surface and characterizing objects by their height-over-ground [Zhang
et al., 1997, Lourakis and Orphanoudakis, 1998, Nedevschi et al., 2004b,
Bichsel and Borges, 2016]. Geometric deviations from the reference plane
can be estimated either from a precomputed point cloud [Nedevschi
et al., 2004b, Bichsel and Borges, 2016], directly from image data [Sawh-
ney, 1994], or via mode extraction from a v-disparity histogram [Kramm
and Bensrhair, 2012]. However, the resulting detection performance
strongly depends on the accuracy of the ground plane parameters as
well as the validity of such a simple model. Consequently, more sophis-
ticated ground profile models have been introduced, from piece-wise
planar longitudinal profiles [Labayrade et al., 2002] to clothoids [Nede-
vschi et al., 2004a] and splines [Wedel et al., 2009a]. Also, parameter-free
ground profile models have been investigated using multiple filter steps
and adaptive thresholding in the v-disparity domain [Harakeh et al.,
2015].

The survey in [Bernini et al., 2014] presents an overview of several
stereo-based obstacle detection approaches that have proven to perform
very well in practice. The considered methods span a range of different
ground profile models and object representation categories, including
the so-called Stixel World [Badino et al., 2009, Pfeiffer and Franke, 2011],
Digital Elevation Maps (DEMs) [Oniga and Nedevschi, 2010] and geo-
metric point clusters [Manduchi et al., 2005, Broggi et al., 2011]. The
approach of Oniga and Nedevschi [2010] produces a dense scene repre-
sentation distinguishing free-space and various types of objects by using
a DEM in combination with a quadratic ground model. The point cluster
method of Manduchi et al. [2005] and the Stixel algorithm of Pfeiffer and
Franke [2011] will be described in more detail in Sect. 3.1.2 and Sect. 3.1.3.
Notably, all of these methods rely on precomputed stereo disparity maps.

The above methods are designed for robust generic object detection
based on different types of stereo-based geometric criteria and work best
in close range to medium range applications. Detection performance and
object localization accuracy drop quickly with increasing distance. By us-
ing custom sensor configurations, such as the trinocular large-baseline
tele-stereo setup shown in [Williamson and Thorpe, 1999], impressive
performance boosts can be achieved. However, such dedicated hardware
setups are often bulky, expensive and reduce the versatility of a given
sensor hardware configuration for use in multiple application scenarios.
In contrast, the present work focuses on approaches which are applica-
ble to general-purpose stereo cameras and do not strictly require custom
sensor hardware. Nevertheless, in Sect. 3.2.6 a straightforward extension
of the proposed methods to multi-camera setups is described. A cor-
responding increase in performance can be expected when utilizing a
trinocular setup as in [Williamson and Thorpe, 1999].

A different line of work on generic object detection utilizes appearance
cues in addition to geometric criteria to improve detection performance.
In [Hadsell et al., 2008], a deep belief network is employed to distinguish



3.1 related work 33

objects from traversable regions for off-road driving. Here, a stereo-
based detection algorithm acts as a supervisor for collecting training
samples in the short range, while the trained appearance-based classifier
yields predictions for the long range. A similar idea is pursued in [Lu
et al., 2015], however, instead of actually training a classifier, spectral
clustering of superpixels is applied to perform the long range prediction.
The reported results appear promising but rather coarse for reliable long
range object reasoning. In [Creusot and Munawar, 2015] the detection
of obstacles on the road is mapped to the task of appearance-based
anomaly detection and tackled via a Restricted Boltzmann Machine
neural network. Patches which deviate from the learned road appear-
ance model are considered a potential hazard. However, due to the lack
of geometric information, the method tends to trigger on patches of
harmless flat road surface.

There exists a vast amount of work on dedicated appearance-based
detectors for object instances of specific known classes, such as vehi-
cles or pedestrians. Traditionally, these detectors are based on bound-
ing box representations, see for example [Sun et al., 2006, Enzweiler and
Gavrila, 2009, Enzweiler et al., 2012, Sivaraman and Trivedi, 2013, Red-
mon et al., 2015, Liu et al., 2016] and others. If the box-shape assumption
approximately holds, impressive performance even at long ranges can
be obtained. In [Cordts et al., 2014] the generic Stixel representation is
combined with such box-based dedicated object detectors, significantly
increasing the detection performance for known object classes compared
to the traditional Stixel algorithm.

Moving beyond box-based object detection, recent advances in the
pixel-wise semantic classification of full images allow for the use of much
richer semantic information in object detection algorithms. In [Schar-
wächter and Franke, 2015], the pixel-wise classification results are in-
corporated into the established Stixel framework, effectively combining
stereo-based geometry data with color and texture cues exploited via
Randomized Decision Forests. Schneider et al. [2016] extend this idea
and apply state-of-the-art Fully Convolutional Networks (FCNs) [Long
et al., 2015, Cordts et al., 2016] to infer the pixel-wise semantic informa-
tion used to enhance the Stixel computation.

However, by definition, dedicated classifiers and object detectors are
restricted to a limited set of known object classes and are therefore not
yet suitable for the task of detecting truly generic and previously un-
seen object types. Nevertheless, Chapter 5 includes an outlook on how
future generic object detection systems may successfully combine geo-
metric modeling approaches with appearance information exploited via
modern machine learning techniques.
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Figure 3.1: Point Compatibility (PC) [Manduchi et al., 2005, Broggi et al., 2011]:
Any point P2 lying within the given truncated cone based at point
P1 is labeled as obstacle and the points are said to be compatible, i.e.
are part of an obstacle cluster.

3.1.2 Point Compatibility

The so-called Point Compatibility (PC) approach for generic obstacle
detection was originally proposed by Manduchi et al. [2005] for au-
tonomous robot navigation, and was later applied by Broggi et al. [2011]
in autonomous driving experiments with great success. This geometric
obstacle detection method is based on the relative positions of pairs of
points in 3D space. Placing a truncated cone on a point P1 as shown in
Fig. 3.1, any point P2 lying within that cone is labeled as obstacle and
said to be compatible with P1. The cone is defined by the maximum
slope angle ϕ̌, the minimum relevant obstacle height Hmin and the
maximum connection height threshold Hmax.

Using a precomputed stereo disparity map as input, all points are
tested in this way by traversing the pixels from bottom left to top right.
The truncated cones are projected back onto the image plane and the
points within the resulting trapezium are labeled accordingly. In this
way the algorithm not only provides a pixel-wise obstacle labeling but
at the same time performs a meaningful clustering of compatible object
points [Broggi et al., 2011].

The PC approach does not depend on any global surface or road model
due to its relative geometric decision criterion. However, it does depend
directly on the quality of the underlying point cloud.

Due to its flexibility, its convincing performance in previous practical
experiments and its generic point-based obstacle representation, the PC
approach serves as the first baseline when evaluating the methods pre-
sented in this work.

3.1.3 The Stixel World

The Stixel algorithm of Badino et al. [2009] and Pfeiffer and Franke [2011]
is designed to provide a compact, robust and yet flexible description of
3D scenes, especially in man-made environments with predominantly
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(a) Stixel model (ground g, objects o).
Image coordinates are denoted by
(u,v), with d representing disparity

(b) Stixel output, color-coded by distance

Figure 3.2: Illustration of the column-wise geometric Stixel model formulation
of Pfeiffer and Franke [2011], corresponding to a set of 1D segmen-
tation problems in disparity space (a) and example output of non-
ground Stixels (b).

horizontal and vertical structures. The algorithm distinguishes between
an estimated global ground surface model, in the present case a B-spline
model as in [Wedel et al., 2009a], and a set of vertical object segments of
variable height (see Fig. 3.2). The corresponding column-wise segmenta-
tion task is based directly on a precomputed stereo disparity map and is
solved optimally via dynamic programming. By incorporating additional
cues such as ordering and gravitational constraints and solving each seg-
mentation task in a globally optimal way, a robust result is obtained. In
practice, several image columns are combined in the optimization proce-
dure, yielding Stixels of a certain fixed pixel width (see Fig. 3.2b). As any
object can be represented by a variable number of Stixels, the represen-
tation can accommodate a large variety of differently shaped and sized
objects with adequate accuracy. However, due to the formulation of the
algorithm, the quality of the Stixel output directly depends both on the
quality of the disparity map as well as the estimated road model.

Since it was first proposed, the Stixel representation has been utilized
successfully in a wide range of practical applications within the field
of intelligent vehicles and autonomous driving, see for example [Franke
et al., 2013]. Therefore, it represents the second main baseline in our
evaluation.
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3.2 detection by direct planar hypothesis testing

Considering previous approaches for generic object detection as de-
scribed in the preceding section, the following critical shortcomings
can be identified: Existing algorithms either depend on the validity of
simplifying assumptions, such as basic global road surface models, the
accuracy of necessary precomputation steps, like dense stereo disparity
computation and 3D point cloud reconstruction, or some form of prior
knowledge on the visual appearance of expected object classes. Also,
due to competing requirements such as robustness and efficiency, the
sensitivity of current detection systems is bound to suffer in practice.

Consequently, in the following we present a detection approach which
is based on three main design criteria:

1. Sensitivity
In order to be able to reliably detect objects even in challenging
cases, e.g. at very long range or particularly small objects at
medium ranges, the algorithm has to be sufficiently sensitive.
However, at the same time it has to remain robust to real-world
conditions, keeping false positive detections at a minimum.

Precomputation steps such as dense stereo matching algorithms of-
ten introduce inaccuracies and reduce sensitivity, for example by
neglecting local data-driven evidence in favor of global smoothness
constraints. Therefore, the desired approach should minimize in-
termediate processing steps and extract as much information as
possible directly from the input data, i.e. directly from measurable
image quantities.

2. Flexibility
Many simplifying model assumptions, such as globally valid basic
road models, hold only for a limited set of real-world scenarios.
Also, limiting detection capabilities to a set of known object classes
is unsuitable for the desired generic detection system. Thus, the
detection criteria should be defined to be as flexible as possible
and restricting assumptions should be avoided.

3. Efficiency
To allow for the actual application in vehicles with real-time
constraints, the computational complexity of any detection system
must be kept within the respective bounds. Where possible, the
beneficial properties of modern multi-core CPUs and GPUs should
be taken into account, favoring easily parallelizable algorithms.

Taking these criteria into account, we propose a novel approach for
generic object and obstacle detection called Direct Planar Hypothesis
Testing (PHT). We formulate the detection task as a local statistical
hypothesis testing problem, yielding pixel-wise results based on a
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simple but flexible geometric criterion. The approach is designed to
utilize the image data of either stereo or multi-view camera setups and
operates on a single-frame basis, i.e. without temporal dependencies. In
order to avoid a loss in sensitivity by intermediate processing steps, we
define generalized likelihood ratio tests with a test statistic based directly
on a statistical model of the input image data. The null hypothesis
H f represents observed free-space, while objects correspond to the
alternative hypothesis Ho. The tests are performed independently on
small local patches distributed across the input images, allowing for
straightforward parallelization. Test results are assigned to the pixel
at the patch center only if a certain confidence is obtained, hence the
output of the algorithm is a semi-dense labeling of pixels which have
been classified as obstacles.

In the following, the PHT method is derived and described in de-
tail. Subsequently, Sect. 3.3 demonstrates how the specific properties of
standard stereo camera configurations can be exploited to optimize the
algorithm for efficiency, yielding a significant speed-up while keeping
detection performance at the highest level. Finally, in Sect. 3.4 a post-
processing stage is introduced which builds upon the point-wise detec-
tion results to generate compact object representations suitable for use in
further processing steps of practical applications.

3.2.1 Geometric Model

The hypotheses competing in the statistical test are characterized by con-
straints on the orientations of local 3D plane models. In contrast to com-
mon global ground or obstacle models, these geometric constraints are
designed in a flexible way, allowing for the correct handling of uneven
and irregular road profiles. The parameters of each individual local plane
are free to vary within certain ranges around a hypothesis reference
model. Accordingly, the parameter spaces of H f and Ho are constrained
by the angles ϕ̌ f and ϕ̌o, which define the maximum allowed deviation
of the respective plane normal vectors from their reference orientations.
Without loss of generality, we define the world coordinate system to co-
incide with the camera coordinate system and set the reference values of
the plane normals as parallel to the Y and Z axes of the camera coordi-
nate system, respectively. Given that the stereo camera is roughly aligned
with the vehicle frame, this setup approximates a simple flat-ground ref-
erence model for the free-space hypothesis and a fronto-parallel object
reference model for the obstacle hypothesis. See Fig. 3.3 for an exemplary
illustration of the hypothesis models at a hypothetical point located at
the origin. Note that in order to handle arbitrarily placed and oriented
cameras, the model reference values and constraint angles ϕ̌ f and ϕ̌o
have to be adapted accordingly. The precise values can be tuned based
on the expected shape of traversable surfaces and obstacles, respectively.
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Figure 3.3: The cones defined by ϕ̌ f and ϕ̌o constrain the permitted plane nor-
mal orientations of the free-space and obstacle hypothesis models.
The Z axis represents the optical axis of the left camera.

3.2.1.1 Plane Parameterization and Bound Constraints

A plane in 3D space has three degrees of freedom and can thus be
described by three parameters. To avoid singularities inherent in three-
parameter variants [Triggs et al., 2000], each plane is defined by a param-
eter vector ~θ = (nX, nY, nZ, D)T, such that any point ~̃X lying on the plane
satisfies ~θ T ~̃X =~0.

Normalizing the normal vector~n = (nX, nY, nZ)
T by enforcing ‖~n‖ = 1

yields a stable and intuitive representation where ~n represents the orien-
tation of the plane normal and D the normal distance to the origin of the
coordinate system. To prevent further ambiguities regarding normal vec-
tor orientations, we require that the normal of the free-space hypothesis
model always points upward and the normal of the obstacle hypothesis
model towards the camera.

By defining the parameterization of the hypothesis models in this way,
the constraints on the plane normal angles ϕ̌ f and ϕ̌o can be directly con-
verted into equivalent simple bound constraints on the respective normal
vector components nX, nY and nZ as follows:

− sin(ϕ̌ f ) ≤ nX ≤ sin(ϕ̌ f ) (3.1)

cos(ϕ̌ f ) ≤ nY ≤ 1 (3.2)

− sin(ϕ̌ f ) ≤ nZ ≤ sin(ϕ̌ f ) (3.3)

− sin(ϕ̌o) ≤ nX ≤ sin(ϕ̌o) (3.4)
− sin(ϕ̌o) ≤ nY ≤ sin(ϕ̌o) (3.5)

−1 ≤ nZ ≤ − cos(ϕ̌o) (3.6)

We further add weak bounds on the normal distance parameter D to
avoid singularities and ensure reasonable results:

0 < D < Dmax. (3.7)
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3.2.2 Hypothesis Test

As described in Sect. 2.2.1, the design of a likelihood ratio test yielding a
provably optimal detector would require full knowledge of the PDFs and
all parameters of the data model under H f and Ho. As this information
is not available, we make use of the GLRT as defined in (2.26) instead. For
each hypothesis Hi = H{ f ,o} the unknown parameters ~θi are replaced by

their MLEs ~̂θi, assuming the respective hypothesis to be true. We then
decide for the alternative hypothesis Ho only if

LG(~I) =
p(~I ;~̂θo,Ho)

p(~I ;~̂θ f ,H f )
> γ, (3.8)

or equivalently if

ln
(

p(~I ;~̂θo,Ho)
)
− ln

(
p(~I ;~̂θ f ,H f )

)
> ln (γ) , (3.9)

where the generalized likelihood ratio LG(~I) represents the test statistic
and ~I is the intensity data vector of the stereo image pair.

Note that for patches classified as obstacle, the MLE ~̂θo implicitly pro-
vides an optimized estimate of the obstacle position in 3D space.

Since the formulated hypothesis models do not allow to employ a sim-
ple parameter test as described in Sect. 2.2.2.1, the requirements to ana-
lytically determine the optimal decision threshold are not fulfilled. There-
fore, we determine the optimal value of γ from an empirical analysis of
the detection performance on relevant data, see Sect. 3.5.4.

3.2.3 Data Model

We formulate a statistical image formation model to define the likelihood
terms in (3.9). The discretized intensity values Il(~xl) and Ir(~xr) within
the patch area Ω in the left and right image are considered as noisy
samples of the observed continuous image intensity signal f at position ~x,
where ~x = ~xl . The terms αl(~x) and αr(~x) model a potential local intensity
offset, while ηl(~x) and ηr(~x) represent samples from a noise distribution
with zero mean and an assumed variance σ2. As the left camera of the
stereo setup is specified as the reference camera defining the origin of
the coordinate system, we get:

Il(~x) = f (~x) + αl(~x) + ηl(~x) (3.10)

Ir

(
~W(~x,~θ)

)
= f (~x) + αr(~x) + ηr(~x). (3.11)

The warp ~W(~x,~θ) =
(

Wx(~x,~θ), Wy(~x,~θ)
)T

transforms the image coor-
dinates ~x from the left to the right image via the camera parameters
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Pr = Kr
(

Rr |~tr
)
. It is parameterized by the vector ~θ, which represents

the geometric model of the true hypothesis. For the used locally planar
models the warp corresponds to a multiplication by the homography
[Hartley and Zisserman, 2004]

H = Kr

(
Rr −

1
D
~tr~nT

)
K−1

l . (3.12)

First, to compensate for a potential local offset α, the mean intensity of
the considered patch is removed from all pixels in the patch area Ω in
each image. Then, treating the intensity values of all pixels in Ω as obser-
vations of f with additive i.i.d. noise, we get from (3.11):

ln
(

p(~I ;~θ,H)
)
= ∑

~x∈Ω
C1 − C2 · ρ

(
Ir

(
~W(~x,~θ)

)
− f (~x)

)
, (3.13)

where C1 and C2 are constants and ρ represents the characteristic loss
function of the assumed noise model, e.g. a quadratic loss for a normal
distribution or a L1 loss for a Laplacian distribution.

The relevant contribution of each hypothesis to (3.9) then reduces to a
sum of pixel-wise residuals r over the local patch area Ω, which we call
the cost function F:

Fi(~θi) = ∑
~x∈Ω

ρ
(

r(~x,~θi)
)
= ∑

~x∈Ω
ρ
(

Ir

(
~W(~x,~θi)

)
− f (~x)

)
. (3.14)

Finding the MLE of the parameter values then corresponds to minimiz-
ing the negative log-likelihood of each hypothesis, i.e. the respective cost
function. This task is represented by the non-linear optimization problem
with simple bound constraints

~̂θi = arg min
~θi

(
− ln

(
p(~I ;~θi,Hi)

))
= arg min

~θi

∑
~x∈Ω

ρ
(

Ir

(
~W(~x,~θi)

)
− f (~x)

)
= arg min

~θi

∑
~x∈Ω

ρ
(

r(~x,~θi)
)

= arg min
~θi

(
Fi(~θi)

)
s.t. |ϕi| ≤ ϕ̌i.

(3.15)

The angular bound constraints are substituted by the corresponding
bounds on the actual parameter vector as given in (3.1)-(3.7).



3.2 detection by direct planar hypothesis testing 41

3.2.4 Optimization

The optimization procedure is performed using the constrained
Levenberg-Marquardt algorithm described in Sect. 2.1.4 (Alg. 2.1). Since
the procedure is identical for free-space and obstacle hypotheses except
for the values used to specify constraints and initial parameters, in the
following the class index i = { f , o} is omitted for brevity.

As described in Sect. 2.1, in order to reduce the value of the cost func-
tion F, in each iteration a parameter update ∆~θ is applied to ~θ using the
update step operator

~θ ← ~⊕(~θ, ∆~θ). (3.16)

The update vector is computed by solving

−~g T(~θ) = ALM(~θ)∆~θ, (3.17)

where ~g is the gradient of the cost function with respect to the param-
eter update and ALM is the approximate Levenberg-Marquardt Hessian
as defined in (2.16). At each iteration the optimization procedure there-
fore requires the evaluation of the gradient as well as the approximate
Hessian of the cost function defined in (3.14).

3.2.4.1 Local Parameterization

While Sect. 3.2.1.1 motivates the choice of a stable global parameteriza-
tion of the hypothesis plane models, the inherent overparameterization
adds a redundant dimension to the domain of the cost function and
hence to the search space of the optimization problem. Therefore, we in-
troduce a minimal local parameterization to obtain a more efficient and
stable optimization procedure [Triggs et al., 2000]. While singularities
might occur with this minimal parameterization when applied globally,
it provides very robust and accurate results locally, as shown by Baker
et al. [2006]. For each step, an update vector ∆~θ L of lower dimension
than ~θ is used, corresponding to the unnormalized normal vector update

∆~θ L = ∆~n = (∆nX, ∆nY, ∆nZ)
T. (3.18)

Since the global plane parameterization enforces ‖~n‖ = 1, the valid pa-
rameter space of ~n is restricted to the unit sphere. During optimization,
all parameter steps are automatically projected back onto the unit sphere
surface via ~⊕. In this way, an indirect update of the remaining parameter
D is obtained:

~n← ~n + ∆~n
‖~n + ∆~n‖ , D ← D

‖~n + ∆~n‖ (3.19)

Note that the update operator fulfills the identity relationship
~⊕(~θ,~0) = ~θ.
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3.2.4.2 Gradient

Analogous to (2.9), the gradient and hence the Jacobian JF◦~⊕ of the cost
function with respect to the local parameter update ∆~θ L is

~g T
(
~⊕(~θ, ∆~θ L)

)
= JF◦~⊕(

~θ, ∆~θ L) = JF(~⊕(~θ, ∆~θ L)) J~⊕(∆~θ
L), (3.20)

where JF denotes the Jacobian of the cost function with respect to the
global parameter vector and J~⊕ represents the Jacobian of the parameter
update step with respect to the local parameterization. Here, JF can be
expressed analytically as follows:

JF(~⊕(~θ, ∆~θ L))

=
∂F(~⊕(~θ, ∆~θ L))

∂(⊕nX (
~θ, ∆~θ L),⊕nY(

~θ, ∆~θ L),⊕nZ(
~θ, ∆~θ L),⊕D(~θ, ∆~θ L))

=
∂F(~⊕(.))

∂(⊕nX (.), ... ,⊕D(.))

=

∂ ∑
~x∈Ω

ρ
(
r(~x, ~⊕(.))

)
∂(⊕nX (.), ... ,⊕D(.))

= ∑
~x∈Ω

ρ′
(
r(~x, ~⊕(.))

) ∂r(~x, ~⊕(.))
∂(⊕nX (.), ... ,⊕D(.))

,

(3.21)

where ρ′ denotes the derivative of the loss function, computed as de-
scribed in Sect. 2.1.5. The partial derivatives of the residuals with respect
to the components of ~⊕ for each pixel within the patch are

∂r(~x, ~⊕(.))
∂ (⊕nX (.), ... ,⊕D(.))

=
∂
(

Ir

(
~W(~x, ~⊕(.))

)
− f (~x)

)
∂ (⊕nX (.), ... ,⊕D(.))

=
∂Ir

(
~W(~x, ~⊕(.))

)
∂
(
Wx(~x, ~⊕(.)), Wy(~x, ~⊕(.))

) ∂
(
Wx(~x, ~⊕(.)), Wy(~x, ~⊕(.))

)
∂(⊕nX (.), ... ,⊕D(.))

.

(3.22)

Here the first term represents the image gradient of Ir, i.e. the partial
derivatives of the image intensities in horizontal and vertical direction,
evaluated at ~W(~x, ~⊕(~θ, ∆~θ L)):

∂Ir

(
~W(~x, ~⊕(.))

)
∂
(
Wx(~x, ~⊕(.)), Wy(~x, ~⊕(.))

) =

 ∂Ir(~W(~x,~⊕(.)))
∂Wx(~x,~⊕(.))

∂Ir(~W(~x,~⊕(.)))
∂Wy(~x,~⊕(.))


T

= ~∇IT
r

(
~W(~x, ~⊕(~θ, ∆~θ L))

)
.

(3.23)
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The Jacobian of the image warp ~W itself is

∂
(
Wx(~x, ~⊕(.)), Wy(~x, ~⊕(.))

)
∂(⊕nX (.), ... ,⊕D(.))

=
1

(H3,:~x)
2

 ∂(H1,:~x)
∂(⊕nX (.), ... ,⊕D(.))H3,:~x−

∂(H3,:~x)
∂(⊕nX (.), ... ,⊕D(.))H1,:~x

∂(H2,:~x)
∂(⊕nX (.), ... ,⊕D(.))H3,:~x−

∂(H3,:~x)
∂(⊕nX (.), ... ,⊕D(.))H2,:~x

 ,

(3.24)

where Hi,: represents the ith row of the plane-induced homography H.
The partial derivatives of the homography matrix are in turn1

∂H
∂nX

= Kr

(
− 1

D
~tr (1 0 0)

)
K−1

l (3.25)

∂H
∂nY

= Kr

(
− 1

D
~tr (0 1 0)

)
K−1

l (3.26)

∂H
∂nY

= Kr

(
− 1

D
~tr (0 0 1)

)
K−1

l (3.27)

∂H
∂D

= Kr

(
1

D2
~tr~nT

)
K−1

l . (3.28)

The Jacobian J~⊕ of the parameter update step with respect to ∆~θ L takes
the form

J~⊕(∆~θ
L) =

∂(⊕nX (.), ... ,⊕D(.))
∂(∆nX, ∆nY, ∆nZ)

(3.29)

=



∂⊕nX (~θ,∆~θ L)

∂∆nX

∂⊕nX (~θ,∆~θ L)

∂∆nY

∂⊕nX (~θ,∆~θ L)

∂∆nZ
∂⊕nY (

~θ,∆~θ L)

∂∆nX

∂⊕nY (
~θ,∆~θ L)

∂∆nY

∂⊕nY (
~θ,∆~θ L)

∂∆nZ
∂⊕nZ (

~θ,∆~θ L)

∂∆nX

∂⊕nZ (
~θ,∆~θ L)

∂∆nY

∂⊕nZ (
~θ,∆~θ L)

∂∆nZ
∂⊕D(~θ,∆~θ L)

∂∆nX

∂⊕D(~θ,∆~θ L)
∂∆nY

∂⊕D(~θ,∆~θ L)
∂∆nZ

 , (3.30)

where

J~⊕(∆~θ
L)
∣∣∣
∆~θ L=~0

=


1− n2

X −nXnY −nXnZ

−nYnX 1− n2
Y −nYnZ

−nZnX −nZnY 1− n2
Z

−DnX −DnY −DnZ

 . (3.31)

Using these analytic results, the gradient of the cost function can readily
be evaluated.

1 Similar results have been reported by Kähler and Denzler [2012] for the related problem
of direct piecewise-planar structure-from-motion estimation.
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3.2.4.3 Approximate Hessian

The Hessian is obtained by computing the partial derivatives of the
cost function gradient with respect to the components of ~θ L. Following
Sect. 2.1.2 we combine (3.21) and (3.29) to create the auxiliary variable

J∗(~x,~θ, ∆~θ L) =
∂r(~x, ~⊕(~θ, ∆~θ L))

∂(⊕nX (.), ... ,⊕D(.))
∂(⊕nX (.), ... ,⊕D(.))

∂(∆nX, ∆nY, ∆nZ)
. (3.32)

The Hessian can then be written as

A(~⊕(~θ, ∆~θ L))

= ∑
~x∈Ω

ρ′′
(

r(~x, ~⊕(~θ, ∆~θ L))
)
· J∗ T(~x,~θ, ∆~θ L)J∗(~x,~θ, ∆~θ L)

+ ∑
~x∈Ω

ρ′
(

r(~x, ~⊕(~θ, ∆~θ L))
)
·

∂(J∗∆nX
(.), ... , J∗∆nZ

(.))

∂(∆nX, ∆nY, ∆nZ)
.

(3.33)

Dropping all second-order derivatives and evaluating at ∆~θ L = ~0, we
obtain the approximate Gauss-Newton Hessian

AGN(~θ) = ∑
~x∈Ω

ρ′′
(

r(~x,~θ)
)
· J∗ T(~x,~θ,~0)J∗(~x,~θ,~0) (3.34)

and consequently the approximate Levenberg-Marquardt Hessian

ALM(~θ) = AGN(~θ) + γdiag
{

AGN(~θ)
}

. (3.35)

3.2.4.4 Symmetric Residuals

Considering the image formation model defined in Sect. 3.2.3 and the
resulting formulation of the optimization procedure, one problem still
remains open: the residuals depend on the unknown image signal f .
Commonly, in direct differential matching approaches based on the sem-
inal work of Lucas and Kanade [1981], this problem is circumvented by
a slight reformulation of the data model: Equation (3.10) is solved for the
unknown image signal f and the result is plugged into (3.11). This yields
the correspondence relation

Ir

(
~W(~x,~θ)

)
= Il(~x) + α(~x) + η(~x) (3.36)

and resulting residual terms of the form

r(~x,~θ) = Ir

(
~W(~x,~θ)

)
− Il(~x). (3.37)

As an alternative, inspired by Mester [2014] we propose a pragmatic ap-
proach to simultaneously estimate the unknown image signal f in con-
junction with the optimal warp parameters. Given that the warp param-
eters are sufficiently close to the correct solution, in the simplest form
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this is done by taking the pixel-wise mean of the concurrently realigned
input image patches in each iteration:

f̂ (~x) =
Il(~x) + Ir

(
~W(~x,~θ)

)
2

. (3.38)

Plugging the estimate f̂ into (3.11) we arrive at the desired residual terms,
now independent of the unknown f . Note that this approach gains rel-
evance when considering multi-view applications, since using (3.36) re-
sults in asymmetric residuals with a bias towards the reference image.
Here the benefit of using the estimate f̂ becomes apparent as the bias to-
wards the reference image is mitigated. See Sect. 3.2.6 for further details.

3.2.4.5 Conditioning

The described optimization procedure can only provide suitable results
if the solution to (3.17) yields accurate update vectors which are descent
directions for (3.14). In order to ensure the required positive definite ap-
proximate Hessian and a well-conditioned system, we specify a lower
threshold on the minimum eigenvalue of AGN . In practice, this means
that the optimization is only carried out for patches in sufficiently tex-
tured image areas and thus only reliable decisions are reported as out-
put of the likelihood ratio test. A similar filtering approach was already
applied in the seminal work of Tomasi and Kanade [1991].

3.2.4.6 Initialization

Since finding the global optimum of the parameter values cannot be
guaranteed in general, a suitable initialization of ~θ is necessary. We ini-
tialize the free-space models from a coarse global ground plane estimate
and obstacles from fronto-parallel plane models at a certain initial dis-
tance. The required initial distance values are extracted from a coarse,
pre-computed disparity map. The efficacy of this simple initialization
scheme is confirmed in the practical experiments of Sect. 3.5.

3.2.5 Model Consistency

After a decision has been obtained from the hypothesis test, the winning
hypothesis is rechecked for consistency with the assumed underlying
image formation model of Sect. 3.2.3.

First, we require that the number of outlier residuals generated by
the winning hypothesis model does not exceed a given threshold, e. g.
50% of the pixels of the patch area Ω. Outliers are defined by a residual
magnitude of |r| > 3σ, where σ2 is the variance of the assumed image
noise distribution.

Second, the residual sample mean r̄ is considered. Here we expect r̄ =
0 with variance σ2

|Ωi|
, with |Ωi| denoting the number of pixels classified as
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inliers in the first step. If the absolute value of the inlier residual sample

mean is larger than 3
√

σ2

|Ωi|
, the patch is discarded.

Finally, we analyze the sample variance of the patch residuals, which

is computed as σ2
r = 1

|Ωi|−1 ∑
~x∈Ωi

(r(~x)− r̄)2. Here we require σr < 3σ for

the result to be accepted.

Of course, the acceptance criteria used in the consistency checks can
be adapted to the application scenario and respective requirements. For
example, the threshold values might be relaxed in order to maximize
detection rate and retain even more point detections at object borders.
However, this may come at the cost of an increased number of false
positives just outside object borders, resulting in so-called foreground
fattening artifacts.

Fig. 3.4 illustrates the output of the presented PHT algorithm in two
exemplary scenes. In Fig. 3.4b, the result of the hypothesis test is shown
as a color-coded overlay of the center pixel of each considered patch.
Patches retaining the free-space hypothesis are shown in green, whereas
obstacle decisions are depicted in red. Note that retaining the free-space
hypothesis does not guarantee the existence of free-space at a given point,
it simply indicates that the evidence provided by the data in favor of the
alternative obstacle hypothesis is not sufficient to reject the null hypoth-
esis. Patches which result in an ill-conditioned system or fail the model
consistency checks are shown in gray.

In Fig. 3.4c, the optimized distance estimates of the detected obstacle
points are illustrated, where close points are shown in red and distant
ones in green.

3.2.6 Generalization to Multi-View Configurations

Due to the generic geometric formulation of the PHT detection approach,
a generalization from the two-view stereo setup described above to cali-
brated multi-view setups is straightforward and, in fact, a quite natural
conceptual step. Several benefits of utilizing suitable multi-view setups
for obstacle detection have previously been demonstrated by Williamson
and Thorpe [1999].

Considering a camera setup of one reference view and M additional
views with known intrinsic and extrinsic parameters, the data of all
views can be exploited jointly in both the parameter optimization pro-
cedure and the subsequent likelihood ratio test2.

2 The stereo setup, which is the focus of this work, is a special case with M = 1.
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(a) Left stereo input image

(b) Hypothesis test result

(c) Color-coded distance estimates of the detected obstacle points

Figure 3.4: Exemplary output of the PHT detection algorithm in a highway (left)
and urban (right) setting. As shown in (b), the hypothesis test either
retains the free-space hypothesis (green) or rejects it in favor of the
obstacle hypothesis (red). No decision is made at locations with un-
reliable data (gray).

A cost function analogous to (3.14) can be formulated as follows:

F(~θ) = ∑
m=1..M

∑
~x∈Ω

ρ
(

rm(~x,~θ)
)

(3.39)

= ∑
m=1..M

∑
~x∈Ω

ρ
(

Im

(
~Wm(~x,~θ)

)
− f (~x)

)
. (3.40)

The residuals rm and the corresponding derivatives are computed by
directly aggregating over the patch area in each respective input image.
Each warp ~Wm and the corresponding derivatives are defined by the 3D
plane model parameters ~θ of the considered hypothesis and the intrinsic
and extrinsic parameters Pm = Km [Rm |~tm ] of view m. The optimal
parameter values are then obtained as described in Sect. 3.2.4.

Following Sect. 3.2.4.4, the unknown f can be approximated by

f̂ (~x) =
1

M + 1

(
I0(~x) + ∑

m=1..M
Im

(
~Wm(~x,~θ)

))
, (3.41)
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where I0 denotes the reference image. Note that the estimate f̂ can be ex-
pected to become more accurate in the multi-view case as more samples
are available to average out noise and suppress outliers.

However, from a practical point of view, especially in large-scale au-
tomotive applications the additional requirements of multi-view setups
regarding hardware expenses, computational complexity as well as cali-
bration effort might prove to be prohibitive for the time being.
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3.3 fast direct planar hypothesis testing

The PHT method presented in the previous section provides high flex-
ibility in terms of both model parameters and camera configurations,
including multi-view setups. However, for calibrated stereo cameras a
simplified parametrization can be utilized, reducing the number of free
parameters and the complexity of the optimization problem as well as
avoiding the need for all intermediate point projection operations.

Therefore we propose Fast Direct Planar Hypothesis Testing (FPHT),
a method that exploits such a reparametrization, resulting in a signifi-
cant computational speed-up without sacrificing detection performance
in practice.

3.3.1 Reparametrization in Disparity Space

The proposed reparametrization is based on considering only

• rectified stereo image pairs and

• plane models without yaw or roll angles, i.e. nX = 0.

Under these assumptions, computation of the warp ~W can be simplified
significantly, since a plane with nX = 0 can be represented by a line in
stereo disparity space [Labayrade et al., 2002]. The new parameter vector
~θ = (a, b)T consists only of the disparity slope a and the offset b:

~W(~x,~θ) =

(
x− d

y

)
=

(
x− (aȳ + b)

y

)
. (3.42)

Disparity is denoted by d, while ȳ = yc−y
h/2 represents normalized vertical

image coordinates, with the patch center position yc and patch height h.
Disparity slope and offset directly relate to the 3D plane parameters as

a = −nY
fx

fy

B
D

(3.43)

b = − B
D

(
nY(yc − y0)

fx

fy
+ nZ fx

)
, (3.44)

where the stereo camera’s focal lengths, vertical principal point and base-
line length are denoted as fx, fy, y0 and B, respectively.

This minimal parameterization directly represents the remaining two
degrees of freedom of the planar model, eliminating the need for a local
parameterization as in Sect. 3.2.4.1.

3.3.2 Bound Constraints

In contrast to the PHT method, where all 3D plane parameters are
bounded by globally valid box constraints (see (3.1)-(3.7)), we have to
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(a) Free-space hypothesis (b) Obstacle hypothesis

Figure 3.5: Illustration of the planar model representation and exemplary
bound constraints in disparity space for a given image patch of
height h centered at (xc, yc). Feasible regions are shown in green.

consider the fact that two planes with the same slope angle ϕi in 3D space,
but with different normal distances D to the camera, will in general have
different disparity offsets b as well as different slopes a in disparity space.
It is therefore not possible to derive independent global bounds on a
and b from the original bounds on the 3D plane parameters. Instead,
we formulate a joint constraint on the plane orientation by plugging the
original bounds on the normal vector ~n into the linear relation

a =
b

(y0 − yc) + fy
nZ
nY

= b · const. (3.45)

If an optimization step violates the bound and results in an invalid con-
figuration of a and b, both values are warped back onto the bounding line
via vector projection as described in Sect. 2.1.4. This constraint is supple-
mented by upper and lower bounds on the disparity offset b, similar to
the normal distance checks in (3.7).

Fig. 3.5 illustrates the planar model representation in disparity space
employed by FPHT, including exemplary feasible regions for varying
slope a, assuming a constant offset b.

3.3.3 Inverse Compositional Optimization

While the proposed simplified parameterization already results in a
speed-up by eliminating free parameters and reducing the complexity of
warping operations, the formulation of the core optimization procedure
itself can be further improved as well.

Considering the optimization procedure as described in Sect. 3.2.4, it
becomes apparent that the approximation of the Hessian ALM directly
depends on the current estimate of ~θ and thus has to be recomputed in
every iteration. Furthermore, the image gradients have to be recomputed
and warped to sub-pixel positions in every iteration as well. This does
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not only reduce the algorithm’s computational efficiency, but can also
introduce errors due to imperfect gradient filters and interpolation func-
tions [Sutton et al., 2009]. Baker and Matthews [2004] offer a detailed
analysis of such efficiency issues and propose a reformulation of the op-
timization procedure to eliminate these drawbacks, the so-called inverse
compositional algorithm.

In the following, the concept of warp composition is introduced by ap-
plying the forward compositional formulation to the optimization prob-
lem at hand. Subsequently, the inverse compositional formulation of the
FPHT algorithm is derived.

3.3.3.1 Forward Warp Composition

First, the update operator ~⊕ is replaced by the composition operator ~�,
which is applied to the warp ~W instead of to the parameter vector ~θ.
Consequently, in each iteration we now apply incremental warp updates
~W(~x, ∆~θ) to the current warp ~W(~x,~θ) via

~W(~x,~θ)← ~�
(
~W(~x,~θ), ~W(~x, ∆~θ)

)
, (3.46)

with

~�
(
~W(~x,~θ), ~W(~x, ∆~θ)

)
≡ ~W

(
~W(~x, ∆~θ),~θ

)
(3.47)

=

(
x− (∆aȳ + ∆b)− (aȳ + b)

y

)
(3.48)

and the identity warp ~W(~x,~0) = ~x. For a more concise notation, in the
following the current warp ~W(~x,~θ) will be simply denoted as ~W:

~W(~x,~θ) ≡ ~W. (3.49)

Rewriting the cost function of (3.14) as a function of the warp ~W yields

F(~W) = ∑
~x∈Ω

ρ
(

r(~x, ~W
)
) = ∑

~x∈Ω
ρ
(

Ir(~W)− f (~x)
)

. (3.50)

The gradient of the cost function with respect to the parameter update
∆~θ = (∆a, ∆b)T, which is equivalent to the Jacobian JF◦~�◦~W , is then

~g T
(
~�
(
~W, ~W(~x, ∆~θ)

))
= JF◦~�◦~W

(
~�
(
~W, ~W(~x, ∆~θ)

))
= JF

(
~�
(
~W, ~W(~x, ∆~θ)

))
J~�
(
~W(~x, ∆~θ)

)
J~W(∆~θ),

(3.51)

where JF is the Jacobian of the cost function with respect to the composed
warp, J~� is the Jacobian of the composition operator with respect to the
incremental warp update, and J~W is the Jacobian of the image warp with
respect to the parameter update ∆~θ.
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The Jacobian JF can be expressed as

JF
(
~�(.)

)
= ∑

~x∈Ω
ρ′
(
r
(
~x, ~�(.)

))
·

∂r
(
~x, ~�(.)

)
∂
(
�x(.),�y(.)

) , (3.52)

with

∂r
(
~x, ~�(.)

)
∂
(
�x(.),�y(.)

) =
∂
(

Ir
(
~�(.)

)
− f (~x)

)
∂
(
�x(.),�y(.)

) =

 ∂Ir(~�(.))
∂�x(.)

∂Ir(~�(.))
∂�y(.)

T

= ~∇IT
r

(
~�
(
~W, ~W(~x, ∆~θ)

))
,

(3.53)

which is the image gradient of Ir evaluated at ~�
(
~W, ~W(~x, ∆~θ)

)
.

Further we obtain

J~�
(
~W(~x, ∆~θ)

)
=

∂
(
�x(.),�y(.)

)
∂
(

Wx(~x, ∆~θ), Wy(~x, ∆~θ)
)

=

 ∂�x(~W,~W(~x,∆~θ))
∂Wx(~x,∆~θ)

∂�x(~W,~W(~x,∆~θ))
∂Wy(~x,∆~θ)

∂�y(~W,~W(~x,∆~θ))
∂Wx(~x,∆~θ)

∂�y(~W,~W(~x,∆~θ))
∂Wy(~x,∆~θ)


(3.54)

and

J~W(∆~θ) =
∂
(

Wx(~x, ∆~θ), Wy(~x, ∆~θ)
)

∂ (∆a, ∆b)

=

 ∂Wx(~x,∆~θ)
∂∆a

∂Wx(~x,∆~θ)
∂∆b

∂Wy(~x,∆~θ)
∂∆a

∂Wy(~x,∆~θ)
∂∆b

 .

(3.55)

Due to the compact parameterization, this simplifies to

J~�
(
~W(~x, ∆~θ)

)
J~W(∆~θ) =

(
−1 0
0 0

)(
−ȳ −1
0 0

)
=

(
ȳ 1
0 0

)
. (3.56)

Based on these results we can assemble the auxiliary variable

J∗(~x, ~W, ∆~θ) =
∂r
(
~x, ~�(.)

)
∂
(
�x(.),�y(.)

) J~�
(
~W(~x, ∆~θ)

)
J~W(∆~θ) (3.57)
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to compactly write the Hessian as

A
(
~�
(
~W, ~W(~x, ∆~θ)

))
= ∑

~x∈Ω
ρ′′
(
r(~x, ~�(.))

)
· J∗ T(~x, ~W, ∆~θ)J∗(~x, ~W, ∆~θ)

+ ∑
~x∈Ω

ρ′
(
r(~x, ~�(.))

)
·

∂
(

J∗∆a(~x, ~W, ∆~θ), J∗∆b(~x, ~W, ∆~θ)
)

∂(∆a, ∆b)
.

(3.58)

3.3.3.2 Inverse Warp Composition

The key ingredient leading to the efficiency of the inverse compositional
approach is the combination of warp compositions with a switch of the
roles of the reference image f and the target image Ir. Consequently, the
goal in each iteration is to take a step that minimizes

F
(
~W, ~W(~x, ∆~θ)

)
= ∑

~x∈Ω
ρ
(

r
(
~W, ~W(~x, ∆~θ)

))
= ∑

~x∈Ω
ρ
(

Ir

(
~W
)
− f

(
~W(~x, ∆~θ)

))
.

(3.59)

and perform an inverse warp update according to

~W ← ~�
(
~W, ~W(~x, ∆~θ)−1

)
, (3.60)

where

~�
(
~W, ~W(~x, ∆~θ)−1

)
=

(
x + (∆aȳ + ∆b)− (aȳ + b)

y

)
. (3.61)

Note that to perform a derivation following Sect. 2.1, the Taylor expan-
sion with respect to ∆~θ has to be applied before the composition of the
current warp with the inverse of the incremental update.

The cost function gradient and hence the Jacobian JF◦~W with respect
to the parameter update is then

~g T
(
~W, ~W(~x, ∆~θ)

)
= JF◦~W

(
~W, ~W(~x, ∆~θ)

)
= JF

(
~W, ~W(~x, ∆~θ)

)
J~W(∆~θ),

(3.62)

where JF is the Jacobian of the cost function with respect to the incremen-
tal warp update and J~W is the Jacobian of the image warp with respect
to the parameter update ∆~θ.
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Here, the Jacobian JF can be expressed as

JF

(
~W, ~W(~x, ∆~θ)

)
= ∑

~x∈Ω
ρ′
(

r
(
~W, ~W(~x, ∆~θ)

))

·
∂r
(
~W, ~W(~x, ∆~θ)

)
∂
(

Wx(~x, ∆~θ), Wy(~x, ∆~θ)
) ,

(3.63)

with

∂r
(
~W, ~W(~x, ∆~θ)

)
∂
(

Wx(~x, ∆~θ), Wy(~x, ∆~θ)
) =

∂
(

Ir

(
~W
)
− f (~W(~x, ∆~θ))

)
∂
(

Wx(~x, ∆~θ), Wy(~x, ∆~θ)
)

= −

 ∂ f (~W(~x,∆~θ))
∂Wx(~x,∆~θ)

∂ f (~W(~x,∆~θ))
∂Wy(~x,∆~θ)


T

= −~∇ f T
(
~W(~x, ∆~θ)

)
.

(3.64)

Note that at ∆~θ = ~0, only the gradient of the reference image at the
original pixel position ~x has to be evaluated. The Jacobian of the warp is
expressed as in (3.55).

Finally, the full Hessian is

A
(
~W, ~W(~x, ∆~θ)

)
= ∑

~x∈Ω
ρ′′
(

r
(
~W, ~W(~x, ∆~θ)

))
· J∗ T(~x, ~W, ∆~θ)J∗(~x, ~W, ∆~θ)

+ ∑
~x∈Ω

ρ′
(

r
(
~W, ~W(~x, ∆~θ)

))
·

∂
(
J∗∆a(.), J∗∆b(.)

)
∂(∆a, ∆b)

,

(3.65)

using the auxiliary variable

J∗(~x, ~W, ∆~θ) =
∂r
(
~W, ~W(~x, ∆~θ)

)
∂
(

Wx(~x, ∆~θ), Wy(~x, ∆~θ)
) J~W(∆~θ). (3.66)

Dropping all second-order derivatives, we obtain the approximate Gauss-
Newton Hessian at ∆~θ =~0:

AGN(~W) = ∑
~x∈Ω

ρ′′
(

r
(
~W,~x

))
· J∗ T(~x, ~W,~0)J∗(~x, ~W,~0)

= ∑
~x∈Ω

ρ′′
(

r
(
~W,~x

))
·

ȳ2
(

∂ f (~x)
∂x

)2
ȳ
(

∂ f (~x)
∂x

)2

ȳ
(

∂ f (~x)
∂x

)2 (
∂ f (~x)

∂x

)2

 (3.67)



3.3 fast direct planar hypothesis testing 55

and consequently the approximate Levenberg-Marquardt Hessian

ALM(~W) = AGN(~W) + γdiag
{

AGN(~W)
}

. (3.68)

Under the assumption that the warp parameters are close to the cor-
rect solution, the equivalence to first order in ∆~θ of the inverse composi-
tional, forwards compositional, and the original optimization algorithm
of Sect. 3.2.4 can be shown. For details we refer to [Baker and Matthews,
2004].

3.3.4 Remarks and Implementation Details

3.3.4.1 Precomputation

Taking a closer look at the components of the approximate Hessian in
(3.67), it can be seen that as a result of the inverse compositional formu-
lation almost all terms are now in fact independent of the current pa-
rameter vector estimate. However, two details have to still be considered:
The estimation of the true image signal f as proposed in Sect. 3.2.4.4 for
the PHT method has to be omitted, directly using the left image sample
as the reference estimate. Further, for the function ρ a simple loss, such
as the squared loss, has to be used. Robust loss functions which perform
a residual-dependent scaling, such as the Huber loss, would require the
Hessian to still be recomputed in every iteration due to the term ρ′′(.).

Finally, with (3.67) we obtain a formulation of the FPHT optimization
procedure where the approximate Hessian needs to be precomputed
only once and remains constant over all subsequent iterations. Further-
more, all necessary image gradients are evaluated only once on the left
reference image and do not have to be warped during optimization.

Note that the inverse compositional approach cannot be readily ap-
plied to the PHT method since the required identity warp can only be
achieved by a fronto-parallel plane at infinity with the used 3D plane rep-
resentation . An alternative is the inverse additive algorithm as proposed
by Hager and Belhumeur [1998], switching the image roles by a similar
change in variables. However the naive version of the inverse additive
algorithm does not result in a notable gain in efficiency, and the PHT
3D plane parameterization is not applicable to the efficient special cases
described in [Hager and Belhumeur, 1998].

3.3.4.2 Parallelization

Since both PHT and FPHT operate on isolated, independent image
patches, hypothesis testing across all patches can be done in parallel.
Even the hypothesis models of the obstacle and free-space hypotheses
of a single patch can be optimized independently from each other.
Therefore, the core of the proposed detection algorithms benefits
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from massive parallelization, using either multi-core CPUs, GPUs, or
dedicated hardware such as FPGAs.

3.3.4.3 Subsampling

In order to further increase efficiency by reducing redundant computa-
tions, we place the patches to be tested on subsampled image positions.
By default we employ subsampling of stride sx = sy = 2, which means
that only every other image point in both horizontal and vertical direc-
tion is actively being tested. Note that each patch still makes use of the
full underlying image data to perform the hypothesis test. Our experi-
ments show that a stride of two provides a significant boost in efficiency,
while virtually no detection performance is being sacrificed.
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3.4 object representation and tracking

3.4.1 Mid-Level Representation

Inspired by the compactness and flexibility of the Stixel representation
described in Sect. 3.1.3, we propose a corresponding extension for point-
wise object detection approaches such as PHT, FPHT and also the PC
method of [Manduchi et al., 2005, Broggi et al., 2011]. The aim is to cre-
ate a mid-level representation similar to the Stixel algorithm, reducing
the amount of output data and at the same time increasing robustness.
Furthermore, the flexibility of this representation is particularly benefi-
cial for handling arbitrarily shaped objects in complex and unstructured
scenes, such as regularly encountered in inner-city traffic.

The proposed Cluster-Stixels (CStix) approach does not perform opti-
mization along image columns like the actual Stixel algorithm, but con-
sists of a 3D clustering and a splitting step instead (see Alg. 3.1 and
[Pinggera et al., 2016]). The resulting representation exhibits character-
istics very similar to the traditional Stixel World of Pfeiffer and Franke
[2011], with the only difference that here Stixels are not guaranteed to be
vertically aligned and may overlap in the image plane. Fig. 3.6 illustrates
the generation of the Cluster-Stixels representation from the obstacle de-
tection output shown in Fig. 3.4. A different example of the CStix output
based on FPHT point detections is depicted in Fig. 3.7. The individual
processing steps are described in the following.

3.4.1.1 Clustering

In the first step, density-based geometric point clustering in 3D space is
performed via a modified DBSCAN algorithm [Ester et al., 1996]. The
DBSCAN algorithm considers the spatial neighborhoods of all data sam-
ples and groups together points which are closely packed, while treating
sparse points in low-density regions as outliers. It handles arbitrarily
shaped clusters and does not require an initial estimate of the total num-
ber of clusters.

We approximate the spherical point neighborhood regions of the orig-
inal algorithm by cuboids for efficient data access using bulk-loaded R-
trees [Guttman, 1984, Leutenegger et al., 1997]. Furthermore, we intro-
duce several suitable modifications to take the characteristics of point
clouds resulting from stereo algorithms in general - and from the detec-
tion algorithms presented above in particular - into account.

First, the dimensions of neighborhood regions are scaled with the
points’ absolute distances from the camera. This is done according to



58 object detection

(a) Density-based clustering of obstacle points (random colored)

(b) Cluster splitting (random colored)

(c) CStix result, color-coded by distance

Figure 3.6: Generation of the Cluster-Stixels (CStix) representation from point-
wise obstacle detections.

the estimated disparity noise σd and a potential stride sx, sy between
points resulting from pixel subsampling:

LR =

(
fxB · ZC

fxB− ZC · σd
+ εL

)
−
(

fxB · ZC
fxB + ZC · σd

− εL

)
, (3.69)

WR = 2 ·
(

εW +
ZC
fx
· sx

)
, (3.70)

HR = 2 ·
(

εH +
ZC
fy
· sy

)
. (3.71)

Here, εL, εW , εH represent the original parameters defining half the re-
gion size, LR, WR, HR represent the adapted full dimensions, ZC denotes
the point position along the principal axis and fx, fy and B the focal
length and the baseline length of the camera.

Also, the parameter defining the minimum number of cluster points is
scaled with the distance from the camera, where the scaling formula is
very similar to the coordinate scaling used in [Nedevschi et al., 2004a]:

minPts = minPts0 + k · fx

ZC
, (3.72)
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(a) Left stereo input image

(b) FPHT obstacle point detections

(c) Output of the FPHT-CStix method

(d) 3D view of the CStix representation

Figure 3.7: Exemplary output of the FPHT method in an urban scenario with
challenging obstacles, illustrating the raw obstacle point represen-
tation as well as the corresponding mid-level Stixel representation
CStix in the image plane and in 3D. The FPHT results are color-
coded by distance, the dense underlying point cloud in the 3D view
represents the SGM output used for initialization.
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with a free parameter k allowing for manual control of the scaling mag-
nitude.

Finally, the horizontal orientation of the rectangular neighborhood re-
gions is aligned to the viewing rays of the camera.

The adaptive DBSCAN algorithm allows for the use of meaningful
clustering parameters, combining real-world dimensions and disparity
uncertainty, and avoids discretization artifacts typical of e.g. scaled grid
maps.

Note that for the PC approach the clustering step can be omitted, since
the detection algorithm itself already provides a set of meaningful clus-
ters (see Sect. 3.1.2).

3.4.1.2 Splitting

After the clustering phase, each cluster is split vertically in the image
domain, yielding a set of Stixel-like vertical boxes. The vertical splitting
step strictly enforces a fixed box width to ensure the characteristic Stixel
layout seen in Fig. 3.2.

Optionally, an additional horizontal splitting step may be performed
to counter occasional cases of under-segmentation. This step performs
recursive splits only as long as the disparity variance within a Stixel
box exceeds a certain threshold. To analyze the disparity variance, we
employ a precomputed disparity map which is also used to initialize the
PHT and FPHT approaches.

3.4.2 Object Representation

As an alternative to the mid-level Stixel output representation, we also
consider the classical Bounding Box (BB) object description. It provides
an intuitive and well established way of representing compact objects
in structured environments. Based on this representation, individual ob-
jects may be tracked over time for improved consistency and robustness
(see Sect. 3.4.3).

To generate the bounding box representation from the raw object
points, the same clustering step as for the Stixel output is applied.
Subsequently, a robust box fit is computed for each cluster either in 3D
space or after projection into the 2D image domain. For representing
objects at medium or long ranges, it is adequate to fit a 2D box in the
image domain. The full 3D box is used only if at least two sides of the
object are actually observable, i.e. if each side projects to a minimum
number of image pixels. This is usually the case only for very large
objects or close range detections.

To compute the robust fit, a certain fraction of all points in the cluster
are considered as potential outliers along each dimension. The box size
and position are then determined by the inlier points. Optimal estimation
of the object position, in particular the object distance, is analyzed in
detail in Chapter 4.
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Algorithm 3.1 Mid-level representation: Cluster-Stixels (CStix)
Input

- list of 3D obstacle points ~P =
(
~X1 ... ~Xn

)
, e. g. from PHT, FPHT, PC

- dense or sparse disparity map D
Output

- list of obstacle Cluster-Stixels ~CStix
Algorithm

1: function MidLevelRep( D )
2: ~Cl ← AdaptiveDBSCAN( ~P ) . Compute list of obstacle clusters

~Cl with associated points
3: ~CStix ← SplitAndFit( ~Cl, D ) . Split clusters ~Cl and fit

Bounding Boxes (BB)
4: return { ~CStix}
5: end function
1: function SplitAndFit( ~Cl, D )
2: for all Cl ∈ ~Cl do
3: ~CStix +←− SplitVertically( Cl, width ) . split vertically and

fit BB with fixed Stixel width
4: ~CStix +←− SplitHorizontally( ~CStix, Cl, D ) . split

horizontally until disparity variance in BB is below threshold
5: end for
6: return { ~CStix}
7: end function

Again, as an additional measure to prevent under-segmentation er-
rors, cluster splitting steps may be introduced based on an analysis of
the disparity distribution within each box. An example of the obtained
bounding box output based on FPHT point detections is illustrated in
Fig. 3.8.

3.4.3 Object Tracking

To illustrate the potential of embedding the proposed detection methods
within a temporal filtering framework, we implement a multi-object
tracking system as follows. The system is based on the output of
the bounding box object representation described above and utilizes
a straightforward nearest-neighbor extended Kalman filter approach
[Pulford, 2005]. It is best suited for scenarios involving relatively
compact objects with regular motion patterns, such as vehicles moving
in highway traffic. More elaborate approaches out of the vast field of
multi-object tracking research could be applied (see e.g. [Pulford, 2005,
Granström et al., 2017]), but this lies outside the scope of the present
work. For a more detailed derivation and analysis of the system and
measurement models described in the following we refer to [Rabe, 2011].
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(a) Left stereo input image

(b) FPHT obstacle point detections

(c) Output of the FPHT-BB (2D) representation

(d) Output of the FPHT-BB (3D) representation

Figure 3.8: Exemplary output of the FPHT method in a highway scenario, il-
lustrating the raw obstacle point representation as well as the corre-
sponding tracked bounding box object representations. The shown
results are color-coded by distance, white arrows indicate the veloc-
ity estimated by the tracking algorithm. Note that here the region of
interest is restricted to the road area ahead.



3.4 object representation and tracking 63

3.4.3.1 System model

For simplicity, tracked objects are reduced to point targets located at the
center of the bounding box representation. The state of each object is then
described by the vector ~X = (X, Y, Z, X′, Y′, Z′)T, holding the position in
3D space and the respective velocity components. The discrete-time sys-
tem model describing the linear motion of an object in the coordinate
system of the moving observer, i.e. the ego-vehicle, at time step k is writ-
ten as

~Xk =

(
Rk 0(3×3)

0(3×3) Rk

)
Ak|w ~Xk−1 +

(
~tk
~0(3)

)
+ ~ωk, (3.73)

where Ak|w =

(
I(3×3) ∆tI(3×3)

0(3×3) I(3×3)

)
is the state transition matrix of the

model in the world coordinate system. Rk and~tk describe the motion of
the ego-vehicle, which in this case is obtained from vehicle odometry. Qk
is the covariance matrix of the system model, with ~ωk ∼ N (0, Qk).

Additionally, a separate exponential smoothing filter is used to process
the estimates of the object bounding box dimensions.

3.4.3.2 Measurement model

The position ~X = (X, Y, Z)T of an object in 3D space is projected to ~x =
(x, y)T in the reference image, with the corresponding stereo disparity d.
Using the extended stereo projection matrix P̀ as defined in (2.45), this
can be written as

x
y
d

 =
(

I(3×3) ~0(3)
) 1

w
P̀


X
Y
Z
1

 = h( ~X ), (3.74)

where w denotes the homogeneous normalization factor. Considering
the additive measurement noise vector ~νk we arrive at the non-linear
measurement model

~zk = h
(
~Xk,~νk

)
. (3.75)

The measurement vector (x, y, d)T is obtained directly from the output
of the object detection algorithm. Here it is crucial to compute a high-
accuracy estimate of the disparity d, as it has a major impact on the es-
timated distance and velocity of observed objects in 3D space. The prob-
lem of finding optimal object disparity estimates is discussed in detail in
Chapter 4.
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3.4.3.3 Data association

To associate object detections and thus measurements with existing
tracks, a straightforward nearest-neighbor scheme with gating windows
is applied. Only a single detection may be associated with any given
track, and only if all of the following conditions are true:

• The detection lies within a given gating window around the pre-
dicted track position, specified in 3D space.

• The detection lies within a given gating window around the pro-
jected track position, specified in the 2D image domain. Projection
from the last time step k − 1 is performed via sparse optical flow
[Tomasi and Kanade, 1991].

• The detection is the nearest neighbor of the track when considering
all detections lying within the specified gating windows.

New tracks are created from all unassociated detections, however, a
minimum existence duration or age is required before a track is added
to the system output.

3.5 evaluation

In the following sections we present a thorough performance analysis
and evaluation of the proposed approaches in several challenging real-
world application scenarios. We consider the primary detection algo-
rithms PHT and FPHT as well as the described mid-level and object-level
extensions. The evaluation methodology is mainly based on the work
presented in [Pinggera et al., 2016], but also includes some extensions of
[Ramos et al., 2017].

First, the various performance metrics and the dedicated datasets used
in the evaluation are introduced. Second, the baselines and the evalu-
ation methodology are described. Finally, the in-depth qualitative and
quantitative analysis of the results is presented.

3.5.1 Evaluation Metrics

To quantitatively analyze the detection performance of the different ap-
proaches, we define pixel-level, instance-level and object-level metrics
derived from related computer vision problems, always keeping the ap-
plication focus in mind.

3.5.1.1 Pixel-Level Metrics

As a first metric we define a Receiver-Operator-Characteristic (ROC)
curve that compares the Pixel-Level True Positive Rate (TPRp) over the
Pixel-Level False Positive Rate (FPRp). This ROC curve is generated by
performing a parameter sweep and computing the convex hull over the
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results of all evaluated parameter configurations. TPRp and FPRp are
computed as

TPRp =
TPp · k2

1 · k2
2

GTo
, (3.76)

FPRp =
FPp · k2

1 · k2
2

GTf
. (3.77)

Here TPp and FPp refer to the number of true and false pixel-wise pre-
dictions that a given method produces, which are evaluate with respect
to the annotated image areas. k1 and k2 are scaling factors that com-
pensate for the downsampling and subsampling settings of some of the
evaluated methods. Finally, GTo and GTf represent the total number of
ground truth pixels labeled as obstacle or free-space, respectively.

3.5.1.2 Instance-Level Metrics

The main drawback of the above described ROC curve is its bias towards
object instances that cover large image areas. Therefore, we apply a sec-
ond metric on the pixel level which overcomes this disadvantage. It ana-
lyzes the average Instance-Level Intersection (iInt) between the algorithm
output predictions and the pixel-wise ground truth annotations. This is
inspired by an instance-level variation of the Jaccard Index, known as
Instance-Level Intersection over Union (iIoU) (see [Cordts et al., 2014,
2016]. The Instance-Level Intersection (iInt) result is computed as

iInt =
∑

i

TPi
p

TPi
p + FNi

p

|O|GT
, (3.78)

where TPi
p and FNi

p represent pixel-wise true positives and false nega-
tives for a particular object instance and |O|GT represents the total num-
ber of ground truth objects. In this way, the imbalance caused by absolute
object sizes is effectively eliminated.

3.5.1.3 Object-Level Metrics

The pixel- and instance-level metrics yield important insights regarding
algorithm behavior, which can be utilized to determine suitable work-
ing points for the most important system parameters as in [Pinggera
et al., 2015, 2016]. However, from an application perspective, more valu-
able performance figures are obtained by considering object-level metrics.
Therefore, we additionally analyze the overall object-level true positive
rate, also referred to as Detection Rate (DR). It represents the fraction of
ground-truth objects which are detected successfully by the system (see
[Ramos et al., 2017]).
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Depending on the considered output representation of the algorithm, in
the following evaluation a ground-truth object is regarded as being de-
tected correctly if it is represented by at least one true positive Stixel or
bounding box. Here, a true positive is defined by an overlap of at least
50% of its image area with the ground-truth object. By requiring only a
single corresponding true positive per object, the resulting detection rate
represents an optimistic estimate with regard to the overall application
performance.

3.5.1.4 False Positives

In order to thoroughly analyze algorithm behavior and detection perfor-
mance, a suitable definition of False Positives (FPs) is required. For the
raw object point output under the pixel-level metric of Sect. 3.5.1.1, false
positives simply correspond to the incorrectly detected pixels.

With regard to the instance-level and object-level metrics, we define
false positives as follows: A Stixel or bounding box is defined as a false
positive if the overlap with the labeled free-space region is larger than
50% of its area. For the object-level evaluation, we additionally define
a tolerance region of 0.25◦ (approx. 10 px) around ground-truth object
borders, since errors caused by border artifacts such as foreground fat-
tening are considered acceptable for this task and should not influence
the metric.

In the following, either the total number of false positives or the num-
ber of false positives per frame is considered.

3.5.2 Datasets

3.5.2.1 Lost and Found Dataset

The first dataset used for evaluation is the Lost and Found dataset pre-
sented in [Pinggera et al., 2016]. It consists of recordings from 13 different
challenging urban street scenarios, featuring 37 different obstacle types.
The selected scenarios contain particular challenges including irregular
road profiles, long object distances, different road surface appearance as
well as illumination changes. The objects to be detected are selected as a
representative set of generic, small obstacles that may actually appear on
the road in practice (see Fig. 3.9). These objects vary in size and material,
which are factors that define how hazardous an object may be for a self-
driving vehicle in case the obstacle is placed within the driving corridor.
Very flat objects (i.e. lower than 5 cm) are treated as non-hazardous and
thus are not taken into account in the results reported in Sect. 3.5.5.1.

The Lost and Found dataset consist of a total of 112 video stereo se-
quences with coarse annotations of free-space areas and fine-grained an-
notations of the obstacles on the road. Annotations are provided for ev-
ery tenth frame, giving a total of 2104 annotated images. Each object is
labeled with a unique ID, allowing for an instance-level analysis. An ex-



3.5 evaluation 67

Figure 3.9: Overview of objects included in the Lost and Found dataset.

Table 3.1: Details on the Lost and Found dataset subsets. Num-
bers in parentheses represent unseen test items not
included in the training set.

Subset Sequences Frames Locations Objects

Train/Val 51 1036 8 28
Test 61 1068 5 (5) 35 (9)

ample image and the corresponding ground truth annotation is shown
in Fig. 3.10.

The dataset is split into a Train/Validation subset and a Test subset.
Each of these subsets consists of recordings taken in completely different
surroundings, covering a similar number of video sequences, frames and
objects (see Table 3.1). The Test subset contains nine previously unseen
objects that are not present in the Training/Validation subset. Further,
the test scenarios can be considered to be more difficult than the training
scenarios, amongst others due to more complex road profile geometries.

The stereo camera setup features a baseline of 21 cm and a focal length
of 2300 pixels, with spatial and radiometric resolutions of 2048× 1024
pixels and 12 bits. While the dataset consists of full color images, the
methods developed in this work are applied only to grayscale data.

3.5.2.2 Highway Detection Dataset

The second dataset, initially presented in [Cordts et al., 2014], was uti-
lized in [Pinggera et al., 2015] for evaluating the PHT method within the
context of long range object detection in highway scenarios. It consists of
2000 frames of manually labeled stereo images, taken by a test vehicle in
highway traffic. Relevant obstacles are represented by other traffic partic-
ipants. Non-occluded vehicles up to distances of 300 m are labeled with
pixel-accuracy in every frame, every tenth frame also includes a pixel-
wise free-space labeling. The used stereo camera features a baseline of
39 cm, a focal length of 1260 pixels and provides grayscale images with
spatial and radiometric resolutions of 1024× 440 pixels and 12 bits.
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(a) Left stereo input image

(b) Pixel-wise ground truth annotation

Figure 3.10: Example image from the Lost and Found dataset and corresponding
ground truth annotation. Free-space is shown in purple, objects are
marked in blue. This scene features three challenging obstacles of
different heights positioned in a suburban area. Also note the slight
lateral curvature in the road surface.

Compared to the Lost and Found dataset, the data of this collection is
characterized by a more structured environment and a smoother road
profile. However, it features moving objects at extremely long distances
which have to be detected successfully in this application scenario.

3.5.3 Baselines

To assess the performance of the proposed detection approaches with
respect to established reference algorithms, the following methods as
introduced in Sect. 3.1 serve as baselines for evaluation:

• Stixels [Pfeiffer and Franke, 2011] (see Sect. 3.1.3).

• Point Compatibility (PC) [Manduchi et al., 2005, Broggi et al., 2011]
(see Sect. 3.1.2).

This selected set of algorithms has been proven to perform very well in a
large range of practical experiments, particularly in real-world, real-time,
in-vehicle operation. Further, these methods are based on varying under-
lying detection concepts and provide different output representations,
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(a) Left stereo input image

(b) Pixel-wise ground truth annotation

Figure 3.11: Example image from the Highway Detection dataset and correspond-
ing ground truth annotation. Free-space is shown in purple, objects
are marked in blue. This scene includes relevant objects at distances
of up to 200 m.

allowing for a direct comparison using the various evaluation metrics
defined above.

3.5.4 Methodology

All proposed and baseline methods as described above are included in
our experiments for evaluation. For all point-based methods PHT, FPHT
and PC, by default we employ subsampling of stride sx = sy = 2, which
means that only every other image point in both horizontal and vertical
direction is actively being tested. To further investigate the trade-off of ef-
ficiency and detection performance, we optionally scale down the input
images by an additional factor of two for even faster execution. In the fol-
lowing, results including this input data reduction step will be denoted
as downsampled.

To choose a suitable working point with regard to the principal pa-
rameters of each method, we perform a parameter sweep on the Lost and
Found training set. The considered parameters are:

• PHT/FPHT: Patch size h×w, minimum eigenvalue of the approxi-
mate Hessian λmin, GLRT decision threshold γ.
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• PC: Maximum angle ϕ̌, minimum height Hmin, maximum connec-
tion height Hmax.

• Stixels: Vertical cut costs used in dynamic programming.

The PHT and FPHT approaches are relatively robust to the exact choice
of the plane normal bounds. Here we set ϕ̌ f = 25◦ and ϕ̌o = 45◦. For
PHT we reduce the number of free parameters in our evaluation by
locking the plane normal component nX at 0, which preserves sufficient
flexibility for the considered scenarios. The plane parameter vectors are
initialized using a dense disparity map, precomputed via Semi-Global
Matching (SGM) as described in [Gehrig et al., 2015]. The same disparity
map provides the input to the PC and Stixel algorithms. For both PHT
and FPHT we use a quadratic loss function ρ. Interestingly, in our experi-
ments we did not observe a noticeable performance penalty compared to
using a robust function such as the Huber loss. In either case most gross
errors are filtered out by the model consistency checks of Sect. 3.2.5.

For the computation of the mid-level Cluster-Stixels and object-level
bounding box representation we use a fixed, manually optimized set of
parameters. In fact, these exact parameter values were found to have a
much lower impact on the final results than the parameters optimized in
the sweep described above.

3.5.5 Results

3.5.5.1 Lost and Found Dataset

quantitative results : pixel-level First, the primary methods
(PHT, FPHT, PC and Stixels) are benchmarked using the Lost and Found
training subset and the described pixel-level ROC curve. For the pur-
pose of this first evaluation, we perform a parameter sweep as described
above. The best performing parameter configurations are then deter-
mined by computing the convex hull over the True Positive Rate (TPR)
and False Positive Rate (FPR) results (see Fig. 3.12). Note that the main
purpose of this curve is method-specific parameter optimization. Direct
comparison of the different curves has to be approached with care, as
effects such as the large-object-size bias mentioned in Sect. 3.5.1.2 have
to be considered.

Once the best performing parameter sets have been determined, a sec-
ond pixel-level ROC curve is computed on the test subset, including the
primary approaches along with their corresponding Cluster-Stixels ex-
tensions (Fig. 3.13).

The results show that the performance of all methods except Stixels is
rather consistent across training and test subsets. Stixels perform notably
worse on the test subset, even taking the FPR beyond the range shown in
Fig. 3.13. The main reason for this effect are the challenging road profiles
of the test set, where errors in the Stixels’ road estimation module have
fatal consequences with regard to the FPR.
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Figure 3.12: Pixel-level TPR over FPR (Lost and Found training subset). Solid
curves represent the convex hulls of the respective parameter sweep
results.

Fig. 3.13 further illustrates the gain that the proposed mid-level
Cluster-Stixels representation provides over the raw obstacle point out-
put of PHT, FPHT and PC. The Cluster-Stixels facilitate the propagation
of detection results into object areas with low texture, while being com-
pact and flexible enough to approximate the target object shapes without
introducing a significant amount of false positive pixels. Additionally,
sporadic false positive pixels are removed by the underlying clustering
algorithm.

quantitative results : instance-level Next, we compare the
Cluster-Stixels output of the proposed and baseline approaches using
the defined instance-level iInt metric in Fig. 3.14. The results clearly show
that the PHT/FPHT approaches significantly outperform both baselines,
yielding a relative improvement of 30% to 80% over PC at any given
working point. Here also the negative impact of downsampling becomes
visible, as it mainly affects the smallest object instances at long distances,
which are now weighted equally by this metric. Notably, it can be seen
that the FPHT method performs equal to or even slightly better than the
PHT variant. This is most likely due to the more direct parameterization
of FPHT and hence the simpler formulation of the underlying optimiza-
tion problem.
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Figure 3.13: Pixel-level TPR over FPR (Lost and Found test subset).
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Figure 3.14: Instance-level iInt over FP per frame (Lost and Found test subset).
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Figure 3.15: Object detection rates over object distance (Lost and Found test sub-
set). Solid curves illustrate the detection rate at each single range
bin while dashed curves represent the integrated detection rate up
to a given distance.

quantitative results : object-level Finally, we evaluate the
object-level performance of FPHT-CStix and the baseline methods by
considering the overall detection rates and false positives on the Lost
and Found test set (see Table 3.2). Additionally, we analyze the detection
rates as a function of object distance from the camera in Fig. 3.15. In
order to arrive at overall detection and false positive scores for each
approach, we select appropriate working points in the parameter space
from the instance-level results of Fig. 3.14. An exception is made for the
Stixel algorithm, where we select a suitable working point based on the
training subset (Fig. 3.12). The respective points are marked accordingly
in each plot.

Overall, Stixels achieve a detection rate of less than 18%, with massive
false positive rates due to the variable ground profiles included in this
challenging dataset. As illustrated in Fig. 3.15, objects beyond a distance
of 60 m are not detected at all.

The PC-CStix approach yields approximately twice the detection rate
of Stixels, with a much lower false positive rate due to its flexible detec-
tion criterion. Here, some objects are detected up to a distance of approx-
imately 80 m.

The FPHT-CStix variants obtain by far the highest detection rates of
just below 60%, with detections ranging up to a distance of 110 m. At
the same time, false positive rates are significantly reduced compared
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Table 3.2: Quantitative object-level results on the Lost and Found test
subset.

Detection

Rate [%]

FP per

frame

% frames

with FP

Stixels [Pfeiffer and Franke, 2011] 17.7 41.62 60.0

PC-CStix [Manduchi et al., 2005] 35.2 1.50 45.6

FPHT-CStix (downsampled) 55.4 0.57 28.0

FPHT-CStix 58.4 0.29 15.1

to Stixels as well as PC-CStix. Owing to the chosen working points, the
full-resolution version of FPHT-CStix produces only about half the false
positives as the downsampled version, while still providing a larger de-
tection range.

Nevertheless, from an application perspective even the lowest false
positive numbers listed in Table 3.2 still appear rather high. However,
it is worth noting that the dataset is specifically designed to highlight
rare challenges, including different vertically curved road profiles and
unusual road surface textures and drawings. Furthermore, in our exper-
iments FPHT-CStix false positives appear approximately four times less
frequently within the actual driving corridor than false positives in the
outer, less relevant image parts.

qualitative results To complement the quantitative evaluation,
Fig. 3.16 depicts qualitative results of the evaluated methods on three
example scenarios from the Lost and Found test subset. The left column
shows a typical example of a small road hazard, a bobby car, in a res-
idential area. In this case, due to the flat road profile and the medium
object size, all methods are able to successfully detect the object.

In the middle column, an example with objects at large distances on
a bumpy surface is shown. At such distances, the signal-to-noise ratio
of the disparity measurements drops significantly, leading to a very low
quality of the constructed 3D point cloud. Thus, neither the Stixel nor
the PC approaches are able to detect the relevant objects in the scene. In
contrast, the FPHT methods, which operate on the image data directly,
still perform reasonably well at such large distances.

The scene in the rightmost column illustrates a rather challenging case
for geometry-based obstacle detection approaches. A noticeable double
kink in the longitudinal road profile would require an extremely accu-
rate road model estimation for the Stixel method to be able to detect
such small objects. While the PC and FPHT methods are invariant to
such conditions, only FPHT succeeds in actually detecting the tire on
the left side of the image. The tire simply appears to be not prominent
enough for a PC-based detection. Considering the FPHT-CStix results, it
can be seen that the detections cover larger portions of the obstacle than



3.5 evaluation 75

Bobby car Bumper & cardboard box
(a) Input

Tire and square timber

(b) Ground truth annotation

(c) PC

(d) FPHT (downsampled)

(e) FPHT

(f) Stixels

(g) PC-CStix

(h) FPHT-CStix (downsampled)

(i) FPHT-CStix

Figure 3.16: Qualitative results of the evaluated methods on the Lost and Found
test subset. The top two rows show the left input image and the
ground truth annotation, lower rows show pixel-wise and mid-level
detections as overlay, color-coded by distance.
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Table 3.3: Quantitative object-level results on the Highway Detection
dataset.

Detection

Rate [%]

FP per

frame

% frames

with FP

Stixels [Pfeiffer and Franke, 2011] 61.4 0.79 11.5

PC-CStix [Manduchi et al., 2005] 74.5 0.56 23.0

FPHT-CStix 92.4 0.11 7.5

FPHT-BB (2D) 90.0 0.30 17.0

FPHT-BB (2D, with tracking) 87.0 0.02 2.0

the FPHT results, which illustrates the benefits of this compact represen-
tation. The second obstacle in the scene, a square timber, is not detected
by any of the methods due to its low profile.

Overall, the observed qualitative results confirm that FPHT and FPHT-
CStix show the best performance for various obstacles and scenarios.
The PC approach suffers from increased false positives rates, since noisy
disparity measurements directly influence the results. This effect could
possibly be reduced by applying sophisticated spatial and temporal dis-
parity filtering methods. The qualitative results also confirm the Stixel
method’s strong dependency on a correctly estimated road profile.

3.5.5.2 Highway Detection Dataset

In the second part of the evaluation, we analyze the object-level perfor-
mance of the proposed and baseline methods on the Highway Detection
dataset, which features a very different set of characteristics compared
to the Lost and Found dataset. In addition to the mid-level CStix represen-
tation, we also consider a 2D Bounding Box (BB) object representation
to complement FPHT. Further, given the structured traffic and regular
motion models in highway scenarios, we also include a FPHT-BB variant
with object tracking as described in Sect. 3.4.3.

Except for parameters depending on the dataset-specific camera char-
acteristics, such as spatial resolution and focal length, we leave the algo-
rithm parameters of Stixels and FPHT unchanged and reuse the working
points selected in the previous section. In contrast, for PC-CStix we man-
ually adjust the parameters to improve performance on this new dataset.

quantitative results : object-level Again we consider the
overall detection rates and false positives, as well as detection perfor-
mance as a function of object distance (see Fig. 3.17).

As can be seen in Table 3.3, Stixels now produce a much more reason-
able amount of false positives due to the more regular road surface. The
overall detection rate lies just above 60% and is mainly limited by the
long detection ranges required in this scenario. The PC-CStix approach
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Figure 3.17: Detection rates over object distance (Highway Detection dataset).
Solid curves illustrate the detection rates at individual range bins,
dashed curves represent the integrated rate up to a given distance.

achieves a detection rate of approximately 75%, due to objects being de-
tected at farther distances than with the Stixel algorithm. FPHT-CStix
obtains the highest overall detection rate of 92.4%, with detection rates
above 90% up to a distance of 180 m. The FPHT-BB variant obtains a per-
formance slightly below FPHT-CStix, with a small decrease in detection
rate and a small rise in false positives caused by sporadic errors in the
bounding box fit. Here the CStix representation benefits from its flexibil-
ity, as it is not required to perform a high-quality fit of a single box to
each object instance.

Integrating the FPHT-BB approach into a tracking framework allows to
significantly reduce the number of false positives, since only stable object
detections are passed on to the output and sporadic false detections are
suppressed. As a consequence, the detection rate is also reduced slightly.

qualitative results Fig. 3.18 shows some qualitative results from
the Highway Detection dataset. It can be seen that objects are success-
fully detected by FPHT at a very long range, and the results are well
represented by both the CStix and the BB outputs. The bird’s eye views
illustrate the significant amount of noise that is present in the stereo-
based long range distance estimates, even in the optimized point output
of FPHT. However, the aggregation performed by CStix and BB results
in a much more robust and compact estimate of object locations. This
will be analyzed in more detail in Chapter 4.
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(a) FPHT

(b) FPHT-CStix

(c) FPHT-BB (2D)

(d) FPHT (e) FPHT-CStix (f) FPHT-BB (2D)

Figure 3.18: Example of objects detected by the FPHT method at distances be-
tween 50 and 200 m. (d-f) show the corresponding bird’s eye views,
illustrating the robust aggregation of FPHT distance estimates per-
formed by the CStix and BB representations. Note that for the BB
case only the road area ahead was considered.
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3.5.5.3 Limitations and Failure Cases

Despite the convincing performance demonstrated in all conducted ex-
periments, the presented PHT/FPHT detection methods naturally do
have certain limitations.

First, no detections are provided in homogeneous image areas. Since
the hypothesis tests are based on isolated local patches and are com-
puted on stereo image data directly, reliable decisions are limited to tex-
tured image areas. More specifically, the approach requires sufficiently
strong gradient components along the epipolar lines, i. e. horizontal in-
tensity gradients for the used stereo camera setup. Hence, false negatives
are mostly due to missing texture or insufficient object height, see e. g.
Fig. 3.20. False positives sometimes occur in areas of insufficient horizon-
tal intensity gradient, where patches barely pass the conditioning filter
of Sect. 3.2.4.5. An example is shown in Fig. 3.19a. Such effects occur
predominantly in areas of mixed vertical and horizontal intensity gradi-
ents along the outer image parts, probably also due to a decline in image
quality and sharpness.

Furthermore, due to a minimum required patch size, a certain amount
of foreground fattening artifacts cannot be avoided, especially in areas of
homogeneous background. Here, not even the consistency checks as de-
scribed in Sect. 3.2.5 can eliminate such effects. A typical example of fore-
ground fattening artifacts can be seen on the leading vehicles in Fig. 3.18a.
However, for the considered application scenarios, the critical task is the
detection of an obstacle per se, whereas the estimation of the exact object
dimensions is a subsequent, secondary task.

Sometimes, objects which are actually harmless to the vehicle, such as
leaves or tufts of grass, might be classified as obstacles as well, see e. g.
Fig. 3.19b.

3.5.5.4 Runtime Analysis

Finally, we consider the runtime requirements of the PHT and FPHT al-
gorithms. As stated previously, the design of the PHT/FPHT approaches
directly allows for a significant processing speedup by straightforward
parallelization. We illustrate this fact by analyzing execution times using
a single CPU core, multiple CPU cores, and a GPU. Parallelization on
the CPU is performed by means of OpenMP, while the full algorithm is
reimplemented within the CUDA framework for execution on the GPU.
The used hardware is an Intel Core i7-5960X and a Nvidia GeForce GTX
Titan X, respectively.

Table 3.4 illustrates the average algorithm runtimes observed on the
Highway Detection dataset. First of all, it can be seen that FPHT provides
a speedup of four to five over PHT, independent of any applied paral-
lelization. While the naive execution of the algorithms on a single CPU
core takes several seconds per image, adding additional CPU cores yields
an almost ideal speedup. Transferring the algorithms to a GPU provides
a further speedup of one order of magnitude, resulting in an average
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(a)

(b)

Figure 3.19: Examples of false positives generated by FPHT-CStix.

(a)

(b)

Figure 3.20: Examples of false negatives generated by FPHT-CStix.
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Table 3.4: Average processing times (algorithm
core) given in seconds.

CPU (1 core) CPU (8 cores) GPU

PHT 12 1.5 0.12

FPHT 2.5 0.4 0.03

runtime of approximately 30 ms for the FPHT algorithm on a 1024× 440
pixel image.

Note that a further speedup by code optimization or even implementa-
tion on dedicated low-power hardware such as an FPGA is conceivable.

3.6 summary

This chapter presented novel methods for stereo-based high-sensitivity
generic object detection for intelligent vehicles. In particular, this
includes the detection of distant or very small obstacles, without over-
simplified assumptions on globally valid road geometry models. The
proposed PHT and FPHT detection algorithms are based on statistical
hypothesis tests using constrained, locally planar geometric hypothesis
models. To achieve maximum performance, the hypothesis tests and
the implicit model optimization are performed directly on image data
instead of precomputed disparity maps. The algorithm core lends itself
to massive parallelization, enabling real-time execution on dedicated
hardware. Moreover, the concept provides a straightforward extension
to multi-view camera configurations, offering the potential for a further
boost in detection performance.

The PHT and FPHT approaches were tested and compared to a set of
established baselines, with a focus on two critical scenarios:

• The detection of small, generic obstacles in complex urban environ-
ments.

• The detection of generic objects at long range, e. g. on highways.

In all tests on the considered challenging datasets, both PHT and FPHT
significantly outperformed the selected baselines, providing a consider-
able increase in detection range while reducing the false positive rate
at the same time. Furthermore, the proposed mid-level Cluster-Stixels
(CStix) and Bounding Box (BB) object representations were proven to be
very suitable for cluttered urban driving scenarios as well as more struc-
tured highway traffic.

In practice, the presented obstacle detection approaches should be ap-
plied in combination with established general-purpose 3D scene repre-
sentation approaches such as the Stixel World. Thus, a holistic scene rep-
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resentation is obtained, providing the vehicle with a comprehensive un-
derstanding of its environment while being able to handle the considered
challenging cases.

To mitigate potential limitations and improve detection performance
even further, a promising direction of future work is the combination
of the presented high-performance geometric detection approaches with
appearance-based state-of-the-art machine learning methods as recently
shown in [Ramos et al., 2017].
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Parts of this chapter have appeared previously in [Pinggera et al., 2013] and
[Pinggera et al., 2014].

4.1 introduction

Part of the practicability and performance of modern stereo vision al-
gorithms can arguably be attributed to the seminal Middlebury bench-
mark study of Scharstein and Szeliski [2002], which first provided a com-
prehensive framework for evaluation and enabled systematic algorithm
analysis and comparison. Several years later, the KITTI project [Geiger
et al., 2012, Menze and Geiger, 2015] presented a new realistic and more
challenging benchmark with stereo imagery of urban traffic scenes, trig-
gering a new wave of improved stereo vision algorithms. These major
benchmark studies focus on dense stereo correspondence and are natu-
rally required to provide both dense and accurate ground truth data. Al-
gorithm performance is mainly judged by the percentage of pixels whose
disparity estimates fall within a given accuracy threshold. The threshold
is commonly set to several pixels (KITTI), or half pixels at best (Middle-
bury).

However, for safety-critical applications such as environment percep-
tion in autonomous driving, sub-pixel disparity accuracy is essential. Fur-
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thermore, not all parts of the considered images may require the same
level of attention. Obstacles in the path of motion are most relevant to
the driving task, and their location and velocity have to be determined
with maximum precision. Fig. 2.6 and Fig. 2.7 illustrate the significant
impact of sub-pixel disparity errors on the respective distance estimates.
Note that for a subsequent estimation of relative object velocities, these
errors can have an even more serious influence. Unfortunately, this im-
portant aspect lies outside the scope of existing major stereo benchmarks,
leaving open the question of the actually achievable disparity estimation
accuracy where it matters most.

This chapter intends to fill this gap by providing an extensive statis-
tical evaluation of object stereo matching algorithms and establishing
a reference for the achievable sub-pixel accuracy limits in practice. We
employ a large real-world dataset and consider various state-of-the-art
stereo matching algorithms, including local differential matching and
segmentation-based approaches as well as global optimization in both
discrete and continuous settings. Moreover, we investigate the impact of
fundamental algorithm components such as derivative filter kernels and
intensity interpolation methods. Finally, we provide practical guidelines
on which algorithmic aspects are essential to achieving the accuracy lim-
its and which are not, also taking into account the trade-off between
precision and computational complexity.

4.2 related work

In major dense stereo correspondence benchmarks such as the Mid-
dlebury [Scharstein and Szeliski, 2002], Middlebury 2014 [Scharstein
et al., 2014], KITTI 2012 [Geiger et al., 2012] and KITTI 2015 [Menze
and Geiger, 2015] benchmarks, the number of images is kept relatively
small for practical reasons, and algorithm performance is derived
from pixel-wise match evaluation, weighting each pixel equally. To
determine the percentage of erroneous matches, the KITTI 2012 and
2015 benchmarks employ a minimum threshold of two and three pixels,
respectively. Alternatively, the average disparity error on the complete
dataset can be considered, where the top-ranking algorithms at the time
of writing achieve a value of 0.6 pixels [Kendall et al., 2017]. This value
however provides no information on the matching accuracy for isolated
salient objects.

Many top-performing dense methods make use of generic smoothness
constraints on the disparity solution, either by global optimization in
discrete or continuous disparity space or by integrated image segmenta-
tion and parametric model refinement. Taking a closer look at sub-pixel
matching precision, it becomes clear that techniques in a discrete set-
ting entail inherent difficulties. Sub-pixel results are obtained by frac-
tional sampling of the disparity space and/or a curve fit to the com-
puted matching cost volume [Szeliski and Scharstein, 2004]. Depending
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on the used matching cost measure, these methods usually suffer from
the so-called pixel-locking effect, i.e. an uneven sub-pixel disparity dis-
tribution. Various approaches have been proposed to alleviate this ef-
fect, including two-stage shifted matching [Shimizu and Okutomi, 2001],
symmetic refinement [Nehab et al., 2005], design of optimal cost interpo-
lation functions [Haller and Nedevschi, 2012] and disparity smoothing
filters [Gehrig and Franke, 2007]. In contrast, methods set in a continu-
ous framework [Ranftl et al., 2012] or based on segment model fitting
[Vogel et al., 2015] do not suffer from pixel-locking and have been shown
to outperform discrete techniques with regard to sub-pixel accuracy.

When shifting the focus from dense disparity maps to isolated objects,
the properties of local area-based matching techniques have to be inves-
tigated. Within the context of image registration, Robinson and Milanfar
[2004] presented a comprehensive analysis of the fundamental accuracy
limits under simple translatory motion. In low noise conditions, itera-
tive differential matching methods based on [Lucas and Kanade, 1981]
were shown to reach errors of below 1/100 pixels. The corresponding
Cramer-Rao Lower Bound (CRLB) for registration errors turns out to be
a combination of noise and bias terms, with bias being caused by subop-
timal methods for image derivative estimation and image interpolation
as well as mathematical approximations. Similar results were reported in
[Sutton et al., 2009] for stereoscopic high-precision strain analysis appli-
cations. The optimal design of derivative filters and interpolation kernels
was also identified as an essential issue in optical flow [Scharr, 2007],
super-resolution [Elad et al., 2005], and medical imaging [Farid and Si-
moncelli, 2004, Thévenaz et al., 2000] literature.

Perhaps most relevant to the present work is a recent study on local
stereo block matching accuracy by Sabater et al. [2011]. In contrast to the
work mentioned above, realistic noise conditions were investigated and
a theoretical formulation for the expected disparity error was derived.
Results from a phase correlation local matching algorithm were shown
to agree with the presented theory, demonstrating an accuracy of down
to 1/20 pixel on pre-selected pixel locations. However, experiments were
performed only on a set of three synthetic stereo pairs and the four clas-
sic Middlebury images.

An important aspect, but outside the scope of the present object-based
statistical evaluation, is the data-driven pre-selection of reliable match-
ing points. For local differential methods, matching accuracy can be pre-
dicted based on the local image structure [Förstner, 1993]. Point selection
methods based on various confidence measures have been explored for
local [Sabater et al., 2012] as well as global methods [Pfeiffer et al., 2013].

4.3 methods

All algorithms considered here assume a calibrated stereo camera setup
and rectified image pairs. For each relevant object in the scene, a single
representative disparity value is determined. This makes sense in the



86 distance estimation

considered scenario, where it is sufficient to model the visible relevant
objects as fronto-parallel planes. Note that at large distances, where ac-
curate disparity estimation is actually most important, this model is also
valid for more general scenarios.

For the purpose of this study, the object detections, i.e. approximate im-
age location and size, are given in advance. Corresponding rectangular
patches in the left stereo images are provided as input to the matching
algorithms (see Fig. 4.6). Details on the generation of these object patches
are described in Sect. 4.4.3.

4.3.1 Local Differential Matching (LDM)

Iterative local differential matching methods, originally proposed by Lu-
cas and Kanade [1981] and Tomasi and Kanade [1991], have proven to
perform exceptionally well at high-accuracy displacement estimation of
image patches [Robinson and Milanfar, 2004, Sutton et al., 2009, Pinggera
et al., 2013]. Notably, the PHT and FPHT object detection approaches pre-
sented in Sect. 3 share the same underlying direct differential matching
concept. However, for the present task the warp ~W is reduced to a sim-
ple shift of the horizontal image coordinates, representing the constant
stereo disparity d of all pixels ~x inside an image patch Ω:

~W = ~W(~x, d) =

(
x− d

y

)
. (4.1)

As in Sect. 3.2.3 we formulate a statistical image formation model, con-
sidering the discrete left and right image patch values Il(~x) and Ir(~x)
as noisy samples of the observed continuous image intensity signal f at
position ~x. The terms αl(~x) and αr(~x) model a potential local intensity
offset, while ηl(~x) and ηr(~x) represent noise samples from a zero-mean
normal distribution with an assumed variance σ2:

Il(x, y) = f (x, y) + αl(x, y) + ηl(x, y) (4.2)
Ir(x− d, y) = f (x, y) + αr(x, y) + ηr(x, y). (4.3)

First, to compensate for a potential local offset, the mean intensity for
each considered patch is removed. Treating the intensity values of all
pixels in the patch area Ω as observations of f with additive i.i.d. noise,
from (4.3) we obtain an expression for the negative log-likelihood of a
certain disparity d:

ln
(

p(~I ; d)
)
= ∑

~x∈Ω
C1 − C2 · (Ir(x− d, y)− f (x, y))2 , (4.4)
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where C1 and C2 are constants. To obtain the optimal disparity estimate
d̂ for the patch, we aim to find the Maximum Likelihood Estimate (MLE),
which corresponds to minimizing the cost function F:

F(d) = ∑
~x∈Ω

r2(~x, d) = ∑
~x∈Ω

(Ir(x− d, y)− f (x, y))2 , (4.5)

d̂ = arg min
d

(F(d)) . (4.6)

As described in Sect. 3.2.4.4, in practice (4.2) is first solved for f and
plugged into (4.3), effectively replacing the unknown image signal f in
the cost function by the reference image samples Il . The non-linear opti-
mization problem (4.6) is then solved via appropriate iterative algorithms
such as Gauss-Newton (see Sect. 2.1).

4.3.1.1 Inverse Compositional Formulation

Similar to the derivation in Sect. 3.3.3, the LDM approach can be refor-
mulated to exploit the inverse compositional algorithm proposed by
Baker and Matthews [2004]. By reversing the roles of the input images
and introducing compositional parameter updates, the computational
load of solving (4.6) is reduced. Even more importantly, as shown by
Sutton et al. [2009], matching bias which occurs with the original LDM
formulation is reduced by the inverse compositional approach. The
required signal derivatives are estimated only once at integer pixel
positions and do not have to be warped in each iteration. In this way,
errors resulting from interpolating derivative kernel responses are
avoided. Consequently, we use the inverse compositional formulation as
the default LDM implementation.

The matching problem (4.6) is cast into the compositional for-
mulation, where the warp of (4.1) is updated incrementally by
~W ← ~�

(
~W, ~W(~x, ∆d)

)
, with

~�
(
~W, ~W(~x, ∆d)

)
≡ ~W

(
~W(~x, ∆d), d

)
=

(
x− ∆d− d

y

)
. (4.7)

Using the inverse compositional approach to switch the roles of the input
images, we can rewrite the cost to be minimized at each step as

F
(
~W, ~W(~x, ∆d)

)
= ∑

~x∈Ω

(
Ir(~W)− f (~W(~x, ∆d))

)2
. (4.8)
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The inverse warp update is then performed according to
~W ← ~�

(
~W, ~W(~x, ∆d)−1

)
, where

~�
(
~W, ~W(~x, ∆d)−1

)
=

(
x + ∆d− d

y

)
. (4.9)

The gradient and hence the Jacobian of the cost function with respect to
the disparity update is then

~g T
(
~W, ~W(~x, ∆d)

)
= JF◦~W

(
~W, ~W(~x, ∆d)

)
= ∑

~x∈Ω
2
(

Ir(~W)− f (~W(~x, ∆d))
)

·
∂
(

Ir(~W)− f (~W(~x, ∆d))
)

∂
(
Wx(~x, ∆d), Wy(~x, ∆d)

)
·

d
(
Wx(~x, ∆d), Wy(~x, ∆d)

)
d∆d

(4.10)

with

∂
(

Ir(~W)− f (~W(~x, ∆d))
)

∂
(
Wx(~x, ∆d), Wy(~x, ∆d)

) = −

 ∂ f (~W(~x,∆d))
∂Wx(~x,∆d)

∂ f (~W(~x,∆d))
∂Wy(~x,∆d)


T

= −~∇ f T
(
~W(~x, ∆d)

) (4.11)

and

d
(
Wx(~x, ∆d), Wy(~x, ∆d)

)
d∆d

=

(
dWx(~x,∆d)

d∆d
dWy(~x,∆d)

d∆d

)
=

(
−1
0

)
. (4.12)

The cost function gradient at ∆d = 0 is thus

~g T
(
~W
)
= ~g T

(
~W, ~W(~x, ∆d)

)∣∣∣
∆d=0

= ∑
~x∈Ω

2
(

Ir(~W)− f (~x)
)
· ∇ fx(~x)

= 2 ∑
~x∈Ω

r
(
~W,~x

)
· ∇ fx(~x).

(4.13)

Note that the gradient of f has to be evaluated at the original pixel po-
sition ~x only. Finally, the approximate Gauss-Newton Hessian at ∆d = 0
is

AGN

(
~W
)
= 2 ∑

~x∈Ω
(∇ fx(~x))

2 , (4.14)
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Table 4.1: Separable pre-smoothing and derivative filter kernels. Comple-
ment symmetric and antisymmetric values respectively.

Pre-smoothing filter Derivative filter

Scharr 3× 3 [. . . , 0.5450, 0.2275] [. . . , 0, 0.5]

Scharr 5× 5 [. . . , 0.4260, 0.2493, 0.0377] [. . . , 0, 0.2767, 0.1117]

Central Diff. 5× 5 [. . . , 0.40260.2442, 0.0545] 1
12 [1,−8, 0, 8,−1]

which is independent of the current disparity estimate and hence can
be precomputed and reused in each iteration. The incremental disparity
update ∆d is obtain by solving

−~g T
(
~W
)
= AGN

(
~W
)

∆d. (4.15)

With this we have the inverse compositional formulation of the classical
local differential matching algorithm of Kanade, Lucas and Tomasi.

4.3.1.2 Image Derivative Estimation

In practice, the exact signal derivatives required for solving (4.15) are
not known and have to be approximated from the image data using
discrete derivative filters. However, inexact derivatives lead to matching
bias as shown by Robinson and Milanfar [2004] and Elad et al. [2005].
To minimize such errors, the use of optimal filter kernels is necessary.
Jähne [1995] derived an optimized second order central differences
kernel which requires a separate smoothing step for signal bandwidth
limitation. Farid and Simoncelli [2004] and Scharr [2007] on the other
hand proposed the joint optimization of pairs of signal pre-smoothing
and derivative filters. We investigate both methods, using 3× 3 and
5× 5 Scharr kernels as well as a 5× 5 central difference kernel with a
5× 5/σ = 1 Gaussian pre-smoother, see Table 4.1.

4.3.1.3 Image Interpolation

Even when using the inverse compositional formulation, the iterative na-
ture of the LDM approach still requires warping the right image patch Ir
in each iteration. Naturally, this step involves the evaluation of intensity
values at sub-pixel positions and therefore makes a suitable image inter-
polation method necessary. In previous studies on image interpolation,
for example by Thévenaz et al. [2000], approaches based on B-Spline rep-
resentations clearly outperformed simpler methods such as cubic convo-
lution [Keys, 1981] and bilinear interpolation. We investigate the impact
of interpolation on disparity accuracy, with cubic B-Splines following
[Unser et al., 1993] as the reference method.
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4.3.1.4 Symmetric Matching (LDM+)

Following the considerations of Sect. 3.2.4.4, it can be seen that in the
above formulation of LDM the observations Il and Ir of the image signal
f are not treated symmetrically. Consequently, we introduce a symmetric
LDM+ algorithm to evaluate its impact on the accuracy of the resulting
disparity estimate. To this end, an estimate f̂ of the unknown image sig-
nal is computed in conjunction with the optimal disparity d̂. The dispar-
ity is computed according to Sect. 4.3.1.1, while f̂ is re-estimated in each
iteration as the mean of the respectively aligned input image pixels. Note
that in contrast to Sect. 3.2.4.4, now due to the inverse compositional for-
mulation the required signal derivatives are effectively computed from
both input images by applying the derivative filters of Sect. 4.3.1.2 di-
rectly to the current estimate of f .

In the case of LDM+, the computational advantages gained from the
inverse compositional formulation cannot be exploited since here the
respective terms again have to be recomputed in each iteration.

4.3.2 Joint Matching and Segmentation (MSEG)

Common local matching techniques, such as the LDM algorithm, inher-
ently make the assumption that all pixels in the input image patches con-
form to a single simple displacement model. Outliers corresponding to a
different model can significantly distort estimation results. To overcome
this problem we propose a Joint Matching and Segmentation (MSEG) al-
gorithm, previously presented in [Pinggera et al., 2013]. The approach
reduces errors due to outliers by jointly optimizing both the patch shape
and the corresponding parametric displacement model. A probabilistic
multi-cue formulation integrating disparity, optical flow and pixel inten-
sity distributions is proposed to reliably segment the relevant object from
its surroundings. At the same time the iterative approach refines dispar-
ity and optical flow parameters in a LDM manner.

4.3.2.1 Probabilistic Multi-Cue Segmentation

Our goal is to find a precise binary segmentation of a given image patch,
separating the relevant object from the background, and at the same time
to perform an accurate estimation of the disparity of the object. However,
in the considered scenarios the background can in general not be de-
scribed accurately by a single disparity, optical flow or intensity model.
Instead, a representation using several separate segments is required. An
example can be seen in Fig. 4.1, where road plane, background vegeta-
tion and road infrastructure have to be distinguished for a correct repre-
sentation of the scene.

Each segment k ∈ K is described by its pixel support Ωk, parametric

models for disparity dk and optical flow ~vk =
(

vkx, vky

)T
, as well as a

non-parametric intensity model ik.
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(a) Input (b) MSEG
segments

(c) SGM
disparity

(d) MSEG
disparity

(e) TV-L1
flow

(f) MSEG
flow

Figure 4.1: Example of the MSEG algorithm applied to a car observed at approx.
150 m distance (a). The proposed multi-cue approach yields a correct
segmentation of object and background (b) as well as an accurate
local disparity map (d) and optical flow field (f) compared to sub-
pixel smoothed SGM of Gehrig et al. [2012] (c) and TV-L1 flow of
Wedel et al. [2009b] (e).

We consider the different segmentation cues as realizations of condi-
tionally independent random fields with the respective probability den-
sities p(~v|~I , `), p(d|~I , `) and p(i|~I , `), dependent on the segmentation
or labeling ` and the input image data ~I1. While the assumption of in-
dependence between disparity and optical flow might not hold in gen-
eral scenes, we assume it to be approximately fulfilled in our case of
very small disparity ranges, where flow magnitudes are dominated by
rotational camera motion and independent object motion. The posterior
probability distribution of all possible labelings can then be described in
a Bayesian manner:

p(`|~I ,~v, d, i) =
p(~I ,~v, d, i|`) · p(`)

p(~I ,~v, d, i)

=
p(~v, d, i|~I , `) · p(`|~I) · p(~I)

p(~v, d, i|~I) · p(~I)

≈ p(~v|~I , `) · p(d|~I , `) · p(i|~I , `) · p(`|~I)
p(~v, d, i|~I)

.

(4.16)

The sought-for segmentation corresponds to the Maximum a Posteri-
ori (MAP) estimate of `. We employ an Expectation-Maximization (EM)
scheme to iteratively refine both the segmentation and the respective seg-
ment parameters.

disparity and optical flow as random fields To formulate
optical flow ~v and disparity d directly as random fields with paramet-
ric probability distributions, we draw on the approach of Cremers and
Yuille [2003] and Schoenemann and Cremers [2006], originally designed
for motion segmentation only. The deviations of the apparent flow ~̃vk(~x)
and disparity d̃k(~x) at pixel ~x from the corresponding model-based val-
ues ~vk(~x) and dk(~x) of segment k are considered as realizations η of in-

1 Note that ~I includes the stereo image pair at the current time step t as well as the image
pair of the previous time step t− 1.
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dependent and normally distributed random variables with zero mean
and variance~σ2

~vk
= (σ~vk

2
x, σ~vk

2
y)

T and σ2
dk

, respectively:

~̃vk(~x)−~vk(~x) = ~η~v(~x) =
(

η~vx(~x), η~vy(~x)
)T

(4.17)

d̃k(~x)− dk(~x) = ηd(~x), (4.18)

For simplicity we assume σ~vk
2
x = σ~vk

2
y = σ2

~vk
.2

We assume that by applying the apparent displacement values ~̃vk(~x)
and d̃k(~x), the corresponding image residuals r vanish:

r~v(~x, ~̃vk) = Il(~x)− It−1
l (~x + ~̃vk(~x))

!
= 0 (4.19)

rd(~x, d̃k) = Il(~x)− Ir(x− d̃k(~x), y) !
= 0, (4.20)

where It−1
l denotes the left stereo image of the previous time step.

Given the availability of reasonable initial estimates ~v−k and d−k , flow
and disparity can be written as compositions of these initial estimates
and corresponding differential updates:

~vk(~x) = ~v−k (~x) + ∆~vk(~x), ~̃vk(~x) = ~v−k (~x) + ∆~̃vk(~x) (4.21)

dk(~x) = d−k (~x) + ∆dk(~x), d̃k(~x) = d−k (~x) + ∆d̃k(~x). (4.22)

The formulation of (4.17) and (4.18) can then be rewritten as

∆~̃vk(~x)− ∆~vk(~x) = ~η~v(~x) (4.23)

∆d̃k(~x)− ∆dk(~x) = ηd(~x). (4.24)

Approximating the image residuals by a first-order Taylor series yields

r~v(~x, ~̃vk) ≈ Il(~x)− It−1
l (~x +~v−k )− ~∇It−1

l (~x +~v−k ) · ∆~̃vk(~x)

= r~v(~x,~v−k )− ~∇It−1
l (~x +~v−k ) · (∆~vk(~x) +~η~v(~x))

!
= 0

(4.25)

and

rd(~x, d̃k) ≈ Il(~x)− Ir(~x− d−k ) +∇Irx(~x− d−k ) · ∆d̃k(~x)
= rd(~x, d−k ) +∇Irx(~x− d−k ) · (∆dk(~x) + ηd(~x))
!
= 0.

(4.26)

2 An alternative is to apply the noise model to the length of the flow vector only and
hence use the image gradient in the direction of the flow vector in the subsequent
approximation of the residuals.
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Finally, through (4.25) and (4.26) we can derive expressions for comput-
ing the likelihoods of ~vk and dk at pixel ~x, given the input data and the
image segmentation `:

p(~vk(~x)|~I , `)

=
1√

2πσ2
~vk

· exp

−
(
~∇It−1

l
T(~x +~v−k )∆~vk(~x)− r~v(~x,~v−k )

)2

2 · |~∇It−1
l (~x +~v−k )|2 · σ

2
~vk


(4.27)

p(dk(~x)|~I , `)

=
1√

2πσ2
dk

· exp

(
−
(
∇Irx(~x− d−k )∆dk(~x) + rd(~x, d−k )

)2

2 · |∇Irx(~x− d−k )|2 · σ
2
dk

)
.

(4.28)

The corresponding variances σ2
~vk

and σ2
dk

are computed as

σ2
~vk

=
1
|Ωk|

· ∑
~x∈Ωk

(
~∇It−1

l
T(~x +~v−k )∆~vk(~x)− r~v(~x,~v−k )

)2

|~∇It−1
l (~x +~v−k )|2

(4.29)

σ2
dk

=
1
|Ωk|

· ∑
~x∈Ωk

(
∇Irx(~x− d−k )∆dk(~x) + rd(~x, d−k )

)2

|∇Irx(~x− d−k )|2
. (4.30)

intensity distribution The intensity model of each segment is
described by a non-parametric probability distribution p(ik|~I , `), which
allows to represent general cases with multiple modes. A kernel density
estimation is used to approximate the intensity distributions from the
pixel values within the segment support regions Ωk.

segmentation Computing the MAP estimate labeling by solving
ˆ̀ = arg max`

(
p(`|~I ,~v, d, i)

)
is equivalent to minimizing the respective

negative log-likelihood, i.e. the negative logarithm of the posterior
p(`|~I ,~v, d, i) as defined in (4.16):

ˆ̀ = arg min
`

(
− log

(
p(`|~I ,~v, d, i)

))
. (4.31)

In order to employ a useful model for the prior term p(`|~I) and at the
same time keep the problem tractable, we assume a pixel-wise first-order
Markov property and represent p(`|~I ,~v, d, i) in the form of an undirected
factor graph, more precisely a Conditional Random Field (CRF). The
set of sites in the graph corresponds to the pixels of the image patch
Ω, with the set of neighbors of a pixel p denoted as Np and the set of
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cliques of size n as Cn. We define Np to describe a common spatial eight-
neighborhood with a maximal clique size of n = 2. The assigned scene
element label at p is denoted as lp, where lp ∈ K.

According to the Hammersley-Clifford theorem [Hammersley and Clif-
ford, 1971, Besag, 1974], in order for the joint posterior p(`|~I ,~v, d, i) to
satisfy the assumed Markov properties, it has to take the form of a Gibbs
distribution

p(`|~I ,~v, d, i) =
1
Z

exp
(
−E(`|~I ,~v, d, i)

)
, (4.32)

where Z represents the partition function, a normalizing constant, and E
denotes the energy function defined by the clique potentials of the graph.
Taking the negative logarithm of (4.32) yields

− log
(

p(`|~I ,~v, d, i)
)
= E(`|~I ,~v, d, i) + log (Z) , (4.33)

which shows that solving (4.31) to determine ˆ̀ is equivalent to minimiz-
ing the energy E. Note that Z and the denominator in p(`|~I ,~v, d, i) have
no influence on the location of the minimum and can be ignored in the
MAP estimation task.

The energy to be minimized can be expressed as a sum of clique po-
tentials V over all possible cliques [Li, 2010]:

E(`|~I ,~v, d, i) = ∑
c∈C

Vc(`|~I ,~v, d, i)

= ∑
p∈C1

V1(lp|~I ,~v, d, i) + ∑
p,q∈C2

V2(lp, lq|~I)

= ∑
p∈Ω

V1(lp|~I ,~v, d, i) + ∑
p∈Ω

∑
q∈Np

V2(lp, lq|~I)

= Edata(`|~I ,~v, d, i) + Eprior(`|~I).

(4.34)

The data term Edata consists of unary potentials only and is fully defined
by the pixel-wise observation likelihoods derived previously:

V1(lp|~I ,~v, d, i) =− log
(

p(~vlp(~xp))|~I , `)
)

− log
(

p(dlp(~xp)|~I , `)
)

− log
(

p(ilp(~xp)|~I , `)
)

.

(4.35)
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The term Eprior corresponding to the label prior p(`|~I) comprises the
binary potentials, which are formulated as

V2(lp, lq|~I)

=

γ ·
(

β + (1− β) exp
( |I(~xp)−I(~xq)|

σ

))
· 1
|~xp−~xq| lp 6= lq

0 lp = lq
.

(4.36)

We apply a common contrast-sensitive cost function as in [Boykov and
Funka-Lea, 2006] to encourage smoothness in homogeneous regions and
label discontinuities at high image gradients. The parameter γ is used to
balance data and prior terms.

Within the data term Edata, the variances of the disparity and flow
model of each segment serve as implicit inverse weighting factors. Con-
sidering (4.29) and (4.30), the displacement estimates of homogeneous
image segments will in general tend to have higher variances and there-
fore less influence on the location of the energy minimum. Conversely,
such segments will show more discriminative peaks in their intensity
distributions, and vice versa.

To efficiently compute a high quality approximate solution to the en-
ergy minimization problem, we use the alpha-expansion graph cut ap-
proach of [Boykov and Kolmogorov, 2004, Boykov et al., 2001].

parameter update Given the result of the segmentation step, the
parameters of each segment are updated. To parametrize flow and dis-
parity, either a translational or an affine parameter model is assigned to
each segment. We use affine parameter models to approximate slanted
surfaces in the world which cannot be reduced to fronto-parallel planes
even at large distances.

The optical flow vector at each pixel is hence defined as ~vk(~x) =
C~v(~x)~ϑk and the disparity as dk(~x) = Cd(~x)~δk, with

C~v,transl =

(
1 0
0 1

)
, C~v,a f f ine(~x) =

(
x y 1 0 0 0
0 0 0 x y 1

)
, (4.37)

Cd,transl = 1, Cd,a f f ine(~x) =
(

x, y, 1
)

(4.38)

and

~ϑk,transl =
(

vkx, vky

)T
, ~ϑk,a f f ine =

(
~ϑ
(1)
k , ... , ~ϑ

(6)
k

)T
, (4.39)

~δk,transl = d, ~δk,a f f ine =
(
~δ
(1)
k , ... , ~δ

(3)
k

)T
. (4.40)
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The parameter update is then computed by setting the respective partial
derivatives of the energy formulation (4.34) to zero and solving the re-
sulting normal equations A~v∆~ϑk = ~b~v and Ad∆~δk = ~bd for ∆~ϑk and ∆~δk,
respectively, where

A~v = ∑
Ωk

CT
~v
~∇It−1

l
~∇It−1

l
TC~v

|~∇It−1
l |2

, (4.41)

~b~v = −∑
Ωk

CT
~v
~∇It−1

l · r~v(~v−k )
|~∇It−1

l |2
, (4.42)

and

Ad = ∑
Ωk

CT
d Cd, (4.43)

~bd = −∑
Ωk

CT
d∇Irx · rd(d−k )
|∇Irx|2

. (4.44)

Here the location arguments for evaluating the image gradient and the
residuals have been omitted for brevity.

The update step is repeated as long as the energy decreases and the
length of the update vector lies above a given threshold. The respective
images are iteratively warped with the current parameter estimates and
the additive updates ~ϑ−k ← ~ϑ−k + ∆~ϑk and ~δ−k ← ~δ−k + ∆~δk are computed
as described above.

Finally, the variances of the parameter models of each segment are
estimated according to (4.29) and (4.30).

The updates of the non-parametric intensity models p(ik|~I , `) are sim-
ply computed from the intensity values of the pixel support of each seg-
ment.

global priors Computing local displacement parameter estimates
can yield erroneous results in homogeneous image areas. Fig. 4.2 shows
an example where the segment parameter solution diverges in the fea-
tureless regions of the road plane. Here global correspondence algo-
rithms benefit from strong regularization, propagating values from more
reliable image areas outside the local image patch. Hence, we describe
how prior flow and disparity results, provided by dense global algo-
rithms such as TV-L1 [Wedel et al., 2009b] or SGM [Gehrig et al., 2015],
can be included into our approach to constrain the local parameter solu-
tion. All results derived in the following for optical flow can be simply
transferred to the case of one-dimensional displacement for the disparity
parameters.
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(a) Input (b) No
prior

(c) SGM
prior

(d) No
prior

(e) TV
prior

Figure 4.2: Integrating priors from global algorithms prevents diverging local
disparity and flow estimates in featureless regions such as the road
plane.

To integrate the prior flow results ~vp into our probabilistic model,
p(~v|~I , `) in (4.16) is replaced by p(~v|~vp,~I , `):

p(~v|~vp,~I , `) =
p(~vp|~v,~I , `) · p(~v|~I , `)

p(~vp|~I , `)
. (4.45)

The term p(~vp|~v,~I , `) represents the likelihood of the prior flow ~vp being
in accordance with the locally computed values ~v. Since the prior flow
is independent of the segmentation, the constant factor p(~vp|~I , `) can
be dropped in the optimization. Formulating p(~vp|~v,~I , `) as a normal
distribution with mean ~v independently for each pixel allows to use its

variance ~σ2
~vp
(~x) =

(
σ~vp

2
x
(~x) σ~vp

2
y
(~x)
)T

to locally define the desired in-

fluence of the prior, depending on the image gradient magnitude |~∇Il |
at each pixel, normalized by its local mean:

σ~vp
2
x
(~x) = αprior ·

(
|∇Il x|

mean (|∇Il x|)
+ 1
)2

, (4.46)

σ~vp
2
y
(~x) = αprior ·

 |∇Ily|

mean
(
|∇Ily|

) + 1

2

. (4.47)

This rather heuristic choice is motivated by the desire that in homoge-
neous regions with low image gradients the confidence in the global
prior should be higher than in the locally computed parameters while
at object edges and in structured regions the local solution should be
allowed to deviate from the prior.

Solving for the flow parameters as before yields

A~v = ∑
Ωk

CT
~v
~∇It−1

l
~∇It−1

l
TC~v

|~∇It−1
l |2 · σ2

~vk

+
CT
~v
~fx~fx

TC~v

σ~vp
2
x

+
CT
~v
~fy~fy

TC~v

σ~vp
2
y

 ,

(4.48)
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~b~v = −∑
Ωk

CT
~v
~∇It−1

l · r~v(~v−k )
|~∇It−1

l |2 · σ2
~vk

+
CT
~v
~fx · (vpx − vk

−
x )

σ~vp
2
x

+
CT
~v
~fy · (vpy − vk

−
y )

σ~vp
2
y

 ,

(4.49)

with ~fx =
( −1

0

)
, ~fy =

( 0
−1
)
, and flow results ~v−k of the previous iteration.

This represents a least squares parameter solution with priors similar to
the one in [Baker et al., 2004] but with additional adaptive weighting
factors depending on both σ2

~vk
and the selected~σ2

~vp
(~x).

parameter refinement After the segmentation algorithm has con-
verged, the LDM+ approach as described above is applied in an addi-
tional parameter refinement step to obtain the final disparity estimate d̂.
The result thus combines the accuracy of the LDM+ approach with the
optimized support regions and initial values obtained from the MSEG
algorithm.

4.3.2.2 Scene Flow Segmentation (MSEG+)

In order to investigate the impact of exploiting the full data from two con-
secutive stereo pairs, we extend the MSEG approach by introducing an
additional scene flow segmentation constraint and using all four images
for disparity refinement as presented in [Pinggera et al., 2014].

In the original MSEG algorithm derived above, a Gaussian noise model
is applied directly to the disparity dk(~x) and optical flow vectors ~vk(~x)
at each pixel, which allows for the formulation of probabilistic segmen-
tation criteria by regarding the apparent values d̃k(~x) and ~̃vk(~x) as real-
izations of conditionally independent random variables given ~I , `.

Now a scene flow constraint is added to couple the disparity displace-
ments d between left and right stereo images at the current time step t
with the optical flow vectors ~v between consecutive left images [Rabe,
2011], while the respective degradations due to noise are still considered
to be conditionally independent. The constraint complementing (4.19)
and (4.20) is expressed as

r~s(~x, ~̃vk, d̃k) = It−1
l (~x + ~̃vk(~x))− Ir(x− d̃k(~x), y) !

= 0. (4.50)
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Approximation by a first-order Taylor series yields

r~s(~x, ~̃vk, d̃k)

≈ It−1
l (~x +~v−k ) + ~∇It−1

l (~x +~v−k ) · ∆~̃vk(~x)

− Ir(~x− d−k ) +∇Irx(~x− d−k ) · ∆d̃k(~x)
= r~s(~x,~v−k , d−k )

+ ~∇It−1
l (~x +~v−k ) · (∆~vk(~x) +~η~v(~x))

+∇Irx(~x− d−k ) · (∆dk(~x) + ηd(~x))
= r~s(~x,~v−k , d−k )

+ ~∇It−1
l (~x +~v−k )∆~vk(~x)

+∇Irx(~x− d−k )∆dk(~x) + η~s(~x)
!
= 0,

(4.51)

where the noise term η~s(~x) with variance σ2
~sk

= |∇Irx(~x − d−k )|
2 · σ2

dk
+

~∇It−1
l (~x +~v−k )

2 · σ2
~vk

stems from the assumed degradation models of ~̃vk

and d̃k. Based on (4.51) the likelihood of the scene flow~s given ~vk and dk
at each pixel can be computed as

p(~sk(~x)|~vk, dk,~I , `) =
1√

2πσ2
~sk

·

exp

−
(
~∇It−1

l
T∆~vk(~x) +∇Irx∆dk(~x) + r~s(~x,~v−k , d−k )

)2

2 · σ2
~sk

,

(4.52)

where ~∇It−1
l and ∇Irx are evaluated at ~x +~v−k and ~x− d−k , respectively.

The optimized patch shape is then determined by assigning optimal seg-
ment models for pixel intensity i, disparity d and optical flow ~v under
the scene flow constraint, thus maximizing the segmentation likelihood

p(`|~I ,~s,~v, d, i)

≈ p(~s|~v, d,~I , `) · p(~v|~I , `) · p(d|~I , `) · p(i|~I , `) · p(`|~I)
p(~s,~v, d, i|~I)

.
(4.53)

For the joint update, the parameter vectors ~ϑk and ~δk used in MSEG
are now combined into ~θk such thatvkx(~x)

vky(~x)

dk(~x)

 = C(~x)~θk, (4.54)



100 distance estimation

with

Ctransl =

1 0 0
0 1 0
0 0 1

 , (4.55)

Ca f f ine(~x) =

x y 1 0 0 0 0 0 0
0 0 0 x y 1 0 0 0
0 0 0 0 0 0 x y 1

 , (4.56)

and

~θk,transl =
(

vkx, vky, dk

)T
, (4.57)

~θk,a f f ine =
(

ϑk1, ... , ϑk6, δk1, ... , δk3

)T
. (4.58)

The parameter update is then again obtained by setting the respective
partial derivatives of the overall energy to zero and solving the resulting
normal equations A∆~θk =~b for ∆~θk, where

A = ∑
Ωk

CTMC, (4.59)

~b = −∑
Ωk

CT~h, (4.60)

with

M(~x) =
1

σ2
dk

+ ∇Ir x
2

σ2
~sk

∇Ir x∇Il
t−1
x

σ2
~sk

∇Ir x∇Il
t−1
y

σ2
~sk

∇Ir x∇Il
t−1
x

σ2
~sk

∇Il
t−1
x

2

|~∇It−1
l |2σ2

~vk

+
∇Il

t−1
x

2

σ2
~sk

∇Il
t−1
x ∇Il

t−1
y

|~∇It−1
l |2σ2

~vk

+
∇Il

t−1
x ∇Il

t−1
y

σ2
~sk

∇Ir x∇Il
t−1
y

σ2
~sk

∇Il
t−1
x ∇Il

t−1
y

|~∇It−1
l |2σ2

~vk

+
∇Il

t−1
x ∇Il

t−1
y

σ2
~sk

∇Il
t−1
y

2

|~∇It−1
l |2σ2

~vk

+
∇Il

t−1
y

2

σ2
~sk


(4.61)

and

~h(~x) =



∇Ir x ·rd(d
−
k )

|∇Ir x |2σ2
dk

+
∇Ir x ·r~s(~v−k ,d−k )

σ2
~sk

∇Il
t−1
x ·r~v(~v−k )

|~∇It−1
l |2σ2

~vk

+
∇Il

t−1
x ·r~s(~v−k ,d−k )

σ2
~sk

∇Il
t−1
y ·r~v(~v−k )

|~∇It−1
l |2σ2

~vk

+
∇Il

t−1
y ·r~s(~v−k ,d−k )

σ2
~sk

 . (4.62)
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Having obtained an optimized patch shape, for the final disparity re-
finement step we again resort to the LDM+ algorithm, now aligning all
four input images to estimate the unknown signal f and its gradient.

4.3.3 Multi-LDM (M-LDM)

In the LDM and MSEG approaches described above, each relevant object
is represented by exactly one image patch, and the corresponding dis-
parity estimate is computed by solving (4.6) using all pixels of the patch.
To ensure that only true object pixels are considered during optimiza-
tion and no outliers distort the result, MSEG performs a dedicated seg-
mentation task. As a relatively simple and efficient alternative, we also
consider a so-called Multi-LDM or M-LDM approach, where the dispar-
ity of a single object is estimated from solving multiple LDM problems.
Several mini-patches of size 7× 7 pixels are distributed across the actual
object patch and the disparity of each one is computed independently
via LDM. The final object disparity is then computed by combining all
patch results. We use the interquartile mean to obtain a robust estimate
of the object disparity.

Additionally, we consider a variant called M-LDM 2D, which extends
M-LDM by estimating vertical displacement in addition to the stereo
disparity. This essentially corresponds to computing a two-dimensional
optical flow vector between the two stereo images for each mini-patch.
The aim of the M-LDM 2D approach is to improve invariance with regard
to calibration inaccuracies resulting in vertical displacement.

4.3.4 Fast Direct Planar Hypothesis Testing (FPHT)

Continuing along the lines of the M-LDM approach, we go one step
further and directly use the FPHT method as proposed in Sect. 3.3 to not
only detect but simultaneously compute an accurate disparity estimate
of all relevant objects. Since the FPHT algorithm inherently optimizes all
object hypothesis positions, the final disparity of a detected object can
directly be obtained as in the M-LDM approach, by taking the robust
mean of all object points provided by FPHT. Considering an object-level
bounding box presentation as described in Sect. 3.4.2, the disparity is
computed from the inliers of the bounding box representation.

4.3.5 Total Variation Stereo (TV)

As a representative for global stereo matching approaches in a continu-
ous setting, we investigate a differential matching algorithm with vari-
ational optimization. Total Variation (TV)-based algorithms, originally
designed for optical flow estimation [Werlberger et al., 2009, Wedel et al.,
2009b], have been shown to perform very well in stereo applications [Ran-
ftl et al., 2012]. Specifically, we use a Total Variation Huber-L1 stereo im-
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plementation of Rabe [2011] adapted from [Werlberger et al., 2009]. The
algorithm uses an iterative pyramidal approach to globally optimize an
energy of the form

E =
∫ ∫

λ|Ir(x− d, y)− Il(x, y)|+
2

∑
k=1

ρ (|∇dk|) dy dx, (4.63)

where the regularization term ρ (|∇dk|) penalizes the spatial variation
of disparity values, using the robust Huber loss with threshold th. For
algorithm details we refer to [Werlberger et al., 2009]. We set th = 0.01,
λ = 25 and use five image pyramid levels. For robustness with regard to
changes in illumination, the structure-texture decomposition of Wedel
et al. [2009b] is applied.

While the resulting dense disparity map provided by the global algo-
rithm is useful for many applications, an additional processing step is
needed to arrive at representative disparity values for isolated objects.
We compute the interquartile mean of the pixel disparities within the
input image patch to obtain a robust object disparity estimate for evalu-
ation.

4.3.5.1 Symmetric Matching (TV+)

Since the variational approach makes use of the same differential
matching principle as the local LDM method on a pixel-wise basis, the
symmetry-considerations of the LDM+ modification can also be applied.
We include a TV+ variant which performs the joint estimation of both
displacement and unknown image signal at each iteration. To estimate
the required image derivatives, a 3× 3 Scharr kernel is used.

4.3.6 Semi-Global Matching (SGM)

Finally, we evaluate the discrete Semi-Global Matching (SGM) algorithm
of Hirschmüller [2008]. The method approximates a two-dimensional op-
timization with truly global constraints by first computing pixel-wise
matching costs and then applying one-dimensional regularization along
paths from eight directions at each pixel. The nature of the approach al-
lows for efficient computation, and we make use of a fast implementation
on specialized hardware as presented in [Gehrig et al., 2009].

While all algorithms described above perform matching using image
intensities directly, here we employ the census transform and correspond-
ing Hamming distances as a matching cost. This provides a very robust
algorithm suitable for challenging real-world scenarios [Gehrig et al.,
2009, 2015]. Sub-pixel results are computed by a symmetric V-fit to three
adjacent values in the regularized matching cost volume [Haller and
Nedevschi, 2012]. Again, we compute the interquartile mean to obtain
object disparities.
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Figure 4.3: Distribution of ground truth disparities d∗ over values d̂ estimated
via SGM in the sub-pixel interval [0, 1]. The pixel-locking effect re-
sults in a skewed measurement distribution, which we represent by
a low-order polynomial (red curve). The model is used to generate a
look-up table for online compensation.

4.3.6.1 Pixel-Locking Compensation (SGM+PLC)

As mentioned previously, matching methods in a discrete setting suf-
fer from the so-called pixel-locking effect, i.e. a biased distribution of
sub-pixel disparity values. The severity of this effect depends on the
used cost metric. While the census transform provides robust match-
ing results, the associated pixel-locking effect is particularly prominent.
For general stereo applications, different methods to alleviate the effect
have been presented [Shimizu and Okutomi, 2001, Haller and Nedevschi,
2012]. However, for the scenario at hand we propose a straightforward
and efficient post-processing step, which largely neutralizes object-based
pixel-locking errors. With ground truth data for the desired object dis-
parities available, the systematic sub-pixel bias can be estimated from a
set of raw measurements directly. To this end we project both expected
and measured disparity values into the sub-pixel interval [0, 1] and fit a
low-order polynomial to the resulting two-dimensional point cloud. This
curve is stored and directly provides the necessary offsets for an efficient
online correction of the object disparities (see Fig. 4.3).

4.4 evaluation

This section presents an in-depth evaluation of the matching accuracy
achievable by the various algorithms introduced above. First, the
required performance metrics are defined, followed by a description
of the dedicated dataset created for this study. Then the evaluation
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methodology is described, and finally a thorough analysis of the results
is presented.

4.4.1 Evaluation Metrics

4.4.1.1 Disparity Error

The disparity error εd represents the deviation of the estimated stereo
disparity d̂ from the ground truth value d∗ at each frame:

εd = d̂− d∗. (4.64)

4.4.1.2 Temporal Disparity Error Variation

The disparity error εd as described above provides an absolute accuracy
measure for all object observations, combining the measurements of mul-
tiple unique objects. However, it alone does not provide sufficient infor-
mation on the relative accuracy for a single tracked object over time. This
is essential if the velocities of individual objects are to be determined. In
this case, the relative accuracy between consecutive measurements of the
object of interest is just as important as e.g. a potential constant disparity
bias.

To describe the object-based relative measurement accuracy over time,
independent of a potential disparity bias, we define ∇εd as the disparity
error variation using finite differences:

∇εd = εd,t − εd,t−1. (4.65)

4.4.1.3 Robust Statistics

The distributions of εd and ∇εd are examined both over the complete
dataset and as a function of absolute distance. To obtain robust estimates
εd and ∇εd of the respective mean values, we make use of the interquar-
tile mean. Moreover, we compute robust estimates of scale to assess the
statistical variability of the measurements, corresponding to the respec-
tive standard deviations. To this end, we employ the location-free scale
estimator Sn of Rousseeuw and Croux [1993], which has a breakdown
point of 50% and a Gaussian efficiency of 58%. Sn is computed by consid-
ering the pair-wise differences between all measured samples, indicated
in the following by i and j:

Sn(εd) = 1.1926 ·mediani

(
medianj

(
|εdi
− εdj

|
))

, (4.66)

Sn(∇εd) = 1.1926 ·mediani

(
medianj

(
|∇εdi

−∇εdj
|
))

. (4.67)
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4.4.2 Dataset

A central aspect of the present evaluation is the use of an extensive
dataset to allow for a meaningful statistical analysis. Furthermore, we
exclusively use real-world data to be able to draw conclusions most rele-
vant for practical applications.

The dataset previously presented in [Pinggera et al., 2014] consists of
70, 000 grayscale image pairs recorded from a vehicle-mounted stereo
camera system in highway scenarios during mostly sunny weather con-
ditions. The setup exhibits a baseline length of 38 centimeters and a
focal length of 1240 pixels, with spatial and radiometric resolutions of
1024 × 440 pixels and 12 bits, respectively. Ground truth is provided
by a long range RADAR sensor. Owing to its underlying measurement
principle, RADAR is able to determine longitudinal distances of isolated
moving objects with high precision. The used reference sensor yields a
measurement uncertainty of 3σ ∼= 0.5 m over the full considered distance
range.

In the present work, we introduce some slight modifications to the
dataset used in [Pinggera et al., 2014]. Since the measurement cycles
of the reference RADAR sensor and the stereo camera system are not
identical, not all corresponding measurements are perfectly aligned in
time. Hence, in [Pinggera et al., 2014] the reference data was interpolated
to still obtain valid reference measurements for each stereo image pair.
Here, we use a more stringent concept by considering only the subset
of the data with a guaranteed consistent temporal offset and minimizing
this offset across the whole dataset. While this method reduces the num-
ber of individual measurements available for evaluation, it guarantees
the quality of the remaining synchronized data. Fig. 4.4 illustrates the
implications of deviating from the optimized temporal offset value, i. e.
the impact on the apparent matching accuracy.

The updated dataset features approximately 200 unique vehicles rep-
resenting relevant objects, yielding a total of more than 12, 000 dispar-
ity measurements for evaluation. The distribution of object observations
over absolute distance in the dataset is visualized in Fig. 4.5.

4.4.3 Methodology

To detect relevant objects in the images and provide them as fair input
to the stereo algorithm evaluation, we apply a combined vehicle detec-
tion and tracking method as described in [Franke et al., 2013]. A strong
mixture-of-experts classifier inspired by [Enzweiler and Gavrila, 2011]
is used to detect vehicles at the required large distances. The vehicles
are then tracked over time, accumulating confidence in the process. For
evaluation we consider objects which have been tracked for more than
15 frames. The objects are represented by a rectangular patch in the left
stereo image, two examples can be seen in Fig. 4.6.
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Figure 4.4: Optimized synchronization (offset = 0) between ground truth
(RADAR) and stereo measurements. Temporal offsets are given in
units of image acquisition cycles.
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Figure 4.5: Distribution of total measurements (a) and unique observed objects
(b) in the dataset.

We consider disparities between 9 and 3 pixels in the evaluation, corre-
sponding to a distance range of approximately 50 to 160 meters. To also
analyze matching accuracy as a function of absolute distance, we divide
the overall range into disparity intervals of 1/20 pixel and evaluate each
interval separately.

Note that, before passing the object patches to the stereo algorithms,
we optimize the patch fit around objects in order to minimize the amount
of outlier pixels. We exploit a precomputed dense disparity result to esti-
mate the mean disparity for each patch and decrease the patch size until
the number of outliers falls below a given threshold. Subsequently, we
shrink the patches by another 25%, except for the segmentation-based
approaches, where we actually increase the size again by 25%. To de-
termine the benefit of this adapted patch fit, we also apply the LDM+
algorithm to the patches without the disparity-based patch fit optimiza-
tion, denoting this variant as LDM-.
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Figure 4.6: Highway driving scene with relevant objects at distances of 80 and
140 m.

4.4.3.1 Calibration Inaccuracies

We further include an analysis of the influence of calibration inaccuracies
on the matching performance of the considered algorithms. In particular,
we examine offsets in relative yaw and pitch angles, i. e. the correspond-
ing vertical and horizontal pixel displacements, as these tend to have the
most significant impact on matching performance (see Sect. 2.3.5).

4.4.4 Results

Table 4.2 gives an overview of the main quantitative results across the
complete dataset. Fig. 4.7 shows the corresponding distributions of dis-
parity error εd and error variation ∇εd.

Examining the overall mean εd of the disparity error, it can be seen
that the absolute values for all algorithms lie close to the ideal value of
zero, within an interval of less than 1/30 pixel. Fig. 4.8 illustrates the
consistency of these results across the full distance range. While there
are some variations in the mean values of the various algorithms, in
practice such a small systematic disparity bias can be corrected by an
online adjustment of the calibration parameters, e. g. as done in [Franke
et al., 2013]. Note that the mean of ∇εd is exactly zero for all algorithms,
other values would in fact imply a temporal drift of the matching results.

Consequently, in the following we focus on the statistical variability of
the measurements and mainly consider the scale estimates Sn(εd) and
Sn(∇εd), which provide more meaningful information with regard to
algorithmic matching performance.

Overall, we observe that after optimization of the selected algorithms,
the differences in the results become very small. Nevertheless, it can be
seen clearly that the methods which robustly combine multiple differ-
ential measurements outperform all other approaches in both disparity
error and temporal error variation scales. M-LDM and M-LDM 2D obtain
values as low as Sn(εd) = 1/13 pixel and Sn(∇εd) = 1/20 pixel. Notably,
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Table 4.2: Overview of quantitative results, sorted by
decreasing Sn(εd). See text for details.

Sn(εd) [px] Sn(∇εd) [px] εd [px]

SGM 0.130 0.071 −0.012

LDM- 0.120 0.065 −0.017

SGM+PLC 0.108 0.069 0.003

LDM 0.103 0.064 0.007

LDM+ 0.103 0.060 0.008

MSEG 0.103 0.060 −0.010

MSEG+ 0.102 0.060 −0.017

TV 0.085 0.068 0.021

TV+ 0.085 0.066 −0.0091

FPHT 0.082 0.048 −0.027

M-LDM 0.076 0.048 −0.003

M-LDM 2D 0.075 0.046 −0.001

these are closely followed by FPHT, demonstrating the accuracy of the
intrinsically optimized obstacle hypothesis models.

The TV and TV+ approaches also do very well in terms of Sn(εd), but
perform noticeably worse with regard to temporal error variation.

The patch-based differential matching methods LDM, LDM+, MSEG
and MSEG+ all perform very similarly, yielding values of approximately
1/10 and 1/16 pixel for Sn(εd) and Sn(∇εd), respectively.

The SGM algorithm does worst of all considered methods, which is
mostly due to severe pixel-locking artifacts.

The order of the algorithms in terms of the specified performance mea-
sures is largely consistent over the whole distance range, as shown in
Fig. 4.9 and Fig. 4.10. Given the properties of the used image data, the ob-
served errors roughly agree with the results presented in [Sabater et al.,
2011] on synthetic data.

4.4.4.1 Optimized Patch Fit

Optimizing the object patch fit has noticeable impact on the disparity
error, as LDM- clearly performs worse than all other patch-based differ-
ential algorithms at Sn(εd). The error variation scale Sn(∇εd) without
optimized patch fit is also slightly higher than in the otherwise equiva-
lent LDM+ implementation. The efficient adaptation of the rectangular
patch fit leads to a similar level of accuracy as the much more complex
pixel-wise segmentation approaches MSEG and MSEG+.
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Figure 4.7: Overall distributions of disparity error (a) and disparity error varia-
tion (b).

4.4.4.2 Image Derivative Estimation and Interpolation

Interestingly, when comparing different derivative kernels and interpo-
lation methods, we see only very small variations in the accuracy results
of the differential matching algorithms. Here, the LDM+ entry of Ta-
ble 4.2 represents the default variant, with a 3 × 3 Scharr kernel and
cubic B-Spline interpolation, whereas Table 4.3 displays the additional
configurations.

Considering the derivative kernels, it appears that the 3 × 3 Scharr
kernel performs marginally better than the alternative 5× 5 variants.

With regard to the various interpolation methods, the small differences
only become visible when looking at the actual sub-pixel disparity distri-
butions in Fig. 4.11. Cubic B-Spline interpolation produces a nearly uni-
form distribution, while cubic convolution and bilinear interpolation re-
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Table 4.3: Impact of derivative kernels and interpolation
methods on LDM+ results.

Sn(εd) [px] Sn(∇εd) [px]

Scharr 3× 3, B-Spline 0.103 0.060

Scharr 5× 5 0.110 0.065

Central Differences 5× 5 0.109 0.064

Bilinear 0.106 0.062

Cubic Convolution 0.103 0.061

sult in a very slight bias towards half pixels. These small variations are in
agreement with theoretical predictions presented in [Sutton et al., 2009],
but are not distinguishable by our practical disparity accuracy measures
at this scale.

4.4.4.3 Pixel-Locking Compensation

In contrast, the systematic pixel-locking effect of the census-based SGM
algorithm is clearly visible in both the disparity sub-pixel distribution
of Fig. 4.11a and in the error measures analyzed over absolute distance
(Fig. 4.8, Fig. 4.9, Fig. 4.10). As a consequence of the pixel-locking effect,
SGM fares worst of all algorithms in overall Sn(εd) and Sn(∇εd) error
scores. However, applying the proposed compensation method consider-
ably reduces the effect, bringing SGM+PLC closer to the performance of
the differential matching algorithms. More sophisticated compensation
approaches can be expected to reduce this gap even further.

Looking at the sub-pixel distribution of the FPHT disparity estimates
in Fig. 4.11g, we can see a tiny peak at integer disparities. This is likely
due to the initialization of the FPHT obstacle models via SGM, as the
subsequent optimization procedure sometimes only results in a rotation
of the local plane models.

4.4.4.4 Symmetric Residuals

Now we examine the impact of utilizing symmetric residuals in LDM+
and TV+. As can be seen from Table 4.2, Fig. 4.7a and Fig. 4.9, LDM+
yields the same results as LDM for Sn(εd), but performs slightly better
in terms of error variation. TV and TV+ achieve virtually identical results,
the global regularization effectively neutralizing the small differences in
data terms.

4.4.4.5 Scene Flow

Finally, our evaluation shows that utilizing the data of two consecutive
stereo pairs for scene flow segmentation and disparity refinement as in
MSEG+ does not necessarily yield a measurable improvement in terms
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(a) SGM: V-fit (b) SGM+PLC: V-fit

(c) LDM+: B-Spline (d) LDM+: Cubic Conv.

(e) LDM+: Bilinear (f) TV+: Bilinear

(g) FPHT (h) M-LDM

Figure 4.11: Sub-pixel disparity distributions resulting from different matching
and interpolation methods. Plots show the interval [−0.5, 0.5] cen-
tered on full pixel disparities.
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of matching accuracy. This might be due to the fact that, in order to
align all images, two additional sets of two-dimensional displacements
have to be estimated, introducing errors not present in the standard two-
image computation. Also, applying a more sophisticated imaging model
for estimating the unknown signal could further improve results.

4.4.4.6 Calibration Inaccuracies

After analyzing the stereo matching performance under optimized cali-
bration parameters, we now examine the algorithms’ robustness to cal-
ibration errors. We separately consider inaccuracies in the relative yaw
and pitch angles of the two cameras, resulting in horizontal and verti-
cal displacements of the rectified images, respectively. The left column
of Fig. 4.12 illustrates the impact of horizontal offsets on εd, Sn(εd) and
Sn(∇εd), whereas the right column shows the impact of vertical offsets.

As expected, the mean disparity error of all algorithms increases pro-
portionally to the magnitude of the horizontal offset (Fig. 4.12a), whereas
Sn(εd) (Fig. 4.12c) and Sn(∇εd) (Fig. 4.12e) remain virtually unaffected.

In contrast, a vertical offset between the stereo images leaves εd al-
most unchanged (Fig. 4.12b), but has considerable impact on both Sn(εd)
(Fig. 4.12d) and Sn(∇εd) (Fig. 4.12f). The SGM algorithm proves to be
quite robust to the vertical sub-pixel offsets, owing to the used census
transform and the relatively large matching windows. This is in good
agreement with results reported by Hirschmüller and Gehrig [2009]. The
patch-based differential matching methods (LDM, LDM+, MSEG) do
slightly worse than SGM here, but also benefit from their relatively large
matching windows. The approaches combining multiple independent
measurements (M-LDM, FPHT), along with TV, show the strongest in-
crease in error scales, once the offsets go beyond 0.2 pixels. However,
by explicitly estimating the vertical offset in conjunction with the dispar-
ity, these drawbacks can largely be eliminated. This concept makes the
M-LDM 2D approach effectively invariant to sub-pixel errors caused by
relative pitch angle inaccuracies.

Overall, the above observations once more highlight the importance of
accurate estimation and maintenance of calibration parameters in prac-
tice.

4.4.4.7 Runtimes

Without prior knowledge of object locations, in a first step the top-
performing methods M-LDM 2D, M-LDM and FPHT are applied to
compute independent measurements over the full input images. For
FPHT, the corresponding runtimes are analyzed in Sect. 3.5.5.4. Similar
to FPHT, the M-LDM measurements are computed in parallel on a
GPU, taking less than 20 ms per image. Of course, these values can
be reduced significantly by restricting computation to object-based
regions of interest only. Once the point-wise measurements are available,
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Figure 4.12: Stereo matching errors due to calibration inaccuracies.
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the time taken for the combination into a single object observation is
negligible.

For the global algorithms SGM and TV we make use of custom im-
plementations on a FPGA [Gehrig et al., 2009] and a GPU [Rabe, 2011].
Here we obtain runtimes of approximately 40 ms and 65 ms, respectively.
Again, the time to compute object disparities fom the dense disparity
maps is negligible.

The LDM versions are initialized with the SGM output and take less
than one millisecond per object, varying only insignificantly for the con-
sidered patch sizes. The more complex approaches MSEG and MSEG+
take up to 40 ms and 80 ms, respectively, as they include an additional
outer iteration loop for segmentation and require a significant amount of
time for graph-cut based pixel labeling, even when using the speed-up
methods of Alahari et al. [2010].

4.5 summary

In this chapter we depart from the common setting of major dense stereo
benchmarks and examine the sub-pixel matching accuracy for isolated
salient objects. This is motivated by modern safety-relevant applications
of stereo vision, where highest sub-pixel accuracy is required in selected
image areas. The presented analysis is based on an extensive real-world
dataset, enabling meaningful statistical evaluation and providing valu-
able insights regarding the matching accuracy achievable in practice. We
propose the use of robust statistical measures of scale to evaluate match-
ing performance, and additionally introduce an object-based temporal
disparity error variation measure which is invariant to systematic dispar-
ity offsets.

Careful optimization of each considered stereo algorithm minimizes
the observable differences in matching accuracy and yields consistent dis-
parity error scale estimates of less than 1/10 pixel. Approaches which ro-
bustly combine multiple differential measurements outperform all other
methods in both disparity error and temporal error variation scales. No-
tably, the obstacle point distance estimates provided by the FPHT detec-
tion approach proposed in Chapter 3 can directly be utilized for this pur-
pose, resulting in highly accurate results on par with the top-performing
dedicated matching algorithms. However, these types of methods prove
to be vulnerable to calibration inaccuracies, which can be alleviated by
reliable online self-calibration algorithms or the simultaneous estimation
of offsets resulting from calibration errors.

The choice of derivative filter and interpolation method does not have
a significant impact on the disparity accuracy of patch-based differential
matching methods, while optimized patch shapes are crucial. Utilizing
the full data of two consecutive stereo pairs does not necessarily yield the
expected benefits, but shows potential for use with more sophisticated
imaging and estimation models.
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The pixel-locking effects of discrete matching methods such as SGM
cause significant errors in sub-pixel disparity, but can efficiently be alle-
viated by dedicated correction approaches. This brings discrete methods
close to differential matching algorithms in terms of accuracy.
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In this thesis, two major challenges of environment perception sys-
tems for intelligent vehicles were addressed by means of a stereo camera
system: The high-sensitivity detection of generic obstacles and the high-
accuracy estimation of corresponding object distances.

5.1 object detection

In Chapter 3, a novel method for high-sensitivity generic obstacle detec-
tion called Direct Planar Hypothesis Testing (PHT) was presented and
analyzed in detail. The detection approach is based on a careful analysis
of real-world requirements, derived from the need of intelligent vehicles
to cope with all types of obstacles on all types of paved road surface ge-
ometries. In particular, this includes the detection of previously unseen
as well as distant or very small obstacles.

The proposed algorithm performs pixel-wise binary hypothesis tests
directly on stereo image data, assessing free-space and obstacle hypothe-
ses on independent local patches. The tests are based on constrained, lo-
cally planar geometric hypothesis models, which provide the necessary
flexibility to handle globally non-flat ground surfaces. Since the detection
algorithm implicitly performs an optimization of the underlying geomet-
ric hypothesis models, the refined distance estimates for detected objects
are provided as an additional output.

Extending upon the idea of PHT, in Sect. 3.3 a reparametrization of the
underlying optimization problem was proposed, yielding a slightly less
flexible but computationally more efficient variant called Fast Direct Pla-
nar Hypothesis Testing (FPHT). Both PHT and FPHT benefit significantly
from massive parallelization, which was demonstrated by real-time exe-
cution on a GPU. An implementation using low-power dedicated hard-
ware such as FPGAs is conceivable.

The proposed approaches yield a pixel-wise obstacle detection result,
however, the corresponding raw 3D obstacle point clouds might not be
an optimal input representation for subsequent processing steps. There-
fore, a compact yet flexible mid-level representation called Cluster-Stixels
(CStix) was presented, which was inspired by the established Stixel World

117
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of Badino et al. [2009], Pfeiffer and Franke [2011] and Schneider et al.
[2016]. In practical experiments, the CStix representation was shown to
provide a very suitable compact description of cluttered urban traffic
scenes and arbitrarily shaped obstacle types. Furthermore, an alternative
Bounding Box (BB) representation of the detection output was presented
and shown to serve as an appropriate input for model-based object track-
ing algorithms.

The proposed detection system was thoroughly evaluated and com-
pared to a set of established baselines with a focus on two critical
scenarios: The detection of small, generic obstacles in complex urban
environments, and the detection of generic objects at long range, e. g.
on highways. In all tests PHT/FPHT and the corresponding CStix and
bounding box representations significantly outperformed the selected
baselines, providing a considerable increase in detection range while
reducing the false positive rate at the same time.

Despite the convincing performance of the methods presented in this
work, there is still urgent need to improve upon both detection per-
formance as well as false positive rates in order to close the gap be-
tween semi-autonomous and fully-autonomous driving functionalities.
A promising extension of the present work is the application of the multi-
view formulation described in Sect. 3.2.6. For example, the use of an L-
shaped trinocular stereo setup as sketched in Fig. 5.1 can be expected to
result in a considerable performance improvement. Such a setup facili-
tates the use of image texture in both vertical and horizontal directions
to support obstacle decisions, and to help resolve ambiguities during the
optimization of hypothesis models. By using an additional data source
the influence of noise and outliers can be reduced more effectively. The
orthogonal configuration would even allow for a minimal parameteriza-
tion of the detection problem as used in FPHT.

Figure 5.1: A trinocular stereo configuration with cameras located at ~C0, ~C1 and
~C2 can be expected to yield a considerable performance improve-
ment over the standard stereo cameras used in this work. The setup
allows to exploit the vertical displacement BV in addition to the hor-
izontal displacement BH .
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A different, very promising direction of future work is the combination
of geometric detection approaches with appearance-based state-of-the-
art machine learning methods as recently shown in [Ramos et al., 2017].
A principled fusion concept holds the potential to boost detection rates
even further while significantly reducing false positives at the same time.

In practice, visual perception systems of autonomous vehicles would
utilize the proposed specialized object detection methods to augment ex-
isting general-purpose 3D scene representation approaches such as the
semantic Stixel World of Schneider et al. [2016]. In this way, a holistic
scene representation is obtained, providing the vehicle with a compre-
hensive understanding of its environment while being able to handle the
challenging cases considered in this thesis.

5.2 distance estimation

In Chapter 4, the task of object distance estimation from stereo vision
was analyzed in detail. As obstacles along the path of motion are espe-
cially relevant for collision avoidance, their location and velocity have to
be determined with maximum accuracy. Hence, highest sub-pixel stereo
matching performance in selected image areas is required. This stands
in contrast to the common setting of major stereo benchmarks, where
average matching performance across full images is evaluated.

In this work, several new approaches for optimizing the stereo match-
ing accuracy for isolated salient objects were proposed and compared
to state-of-the-art concepts. The set of algorithms includes Local Differ-
ential Matching (LDM) methods as well as Joint Matching and Segmen-
tation (MSEG), but also approaches performing global optimization of
pixel-wise costs in both discrete and continuous settings. Moreover, the
robust combination of multiple independent, local observations into a
single optimized object distance estimate was considered.

To allow for a meaningful statistical analysis and a systematic
assessment of matching errors, this work proposed the use of robust,
location-free measures of scale, along with a novel object-based temporal
disparity error variation measure. The study was performed on a large
dedicated dataset, using a long-range RADAR sensor for reference.

Overall, the best accuracy was obtained by the robust combination of
multiple independent observations per object. Notably, the obstacle point
distance estimates provided by the proposed PHT/FPHT detection sys-
tem can directly be utilized for this purpose, resulting in highly accurate
results on par with the top-performing dedicated matching algorithms.
The attained error scale estimates lie below 1/10 pixel, with a temporal
error variation of less than 1/20 pixel. Across all considered algorithms,
the largest matching errors were caused by the use of improper object
support or by the pixel-locking artifacts of discrete matching methods.
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In addition to providing reference values for the matching accuracy
achievable in practice, the presented experiments also illustrate the
influence of calibration errors, which highlights the necessity of reliable
online self-calibration algorithms.

In future experiments, state-of-the-art long-range LIDAR sensors could
be employed to obtain ground truth data of even better quality, regarding
both accuracy and density.

Naturally, the analysis could be extended further by including addi-
tional stereo algorithms, for example variants of phase correlation-based
local matching. As an alternative to the presented Joint Matching and
Segmentation (MSEG) algorithms, recently proposed machine learning-
based methods such as Mask R-CNN [He et al., 2017] offer a powerful
tool for optimizing the object support used for matching. Such methods
could also be used to alleviate potential foreground fattening artifacts
resulting from the PHT/FPHT object detection algorithms. Beyond that,
recent developments towards direct regression of stereo disparity via
Convolutional Neural Networks (CNNs), as e. g. shown by Kendall et al.
[2017], open up a new field of possibilities to be considered in subsequent
studies.
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