Supplementary Material 1

Angela Oppelt, Daniel Kaschek, Suzanna Huppelschoten, Rowena Sison-Young, Fang Zhang, Marie Buck-Wiese, Franziska Herrmann, Sebastian Malkusch, Carmen L. Krüger, Mara Meub, Benjamin Merkt, Lea Zimmermann, Amy Schofield, Robert P. Jones, Hassan Malik, Marcel Schilling, Mike Heilemann, Bob van de Water, Christopher E. Goldring, B. Kevin Park, Jens Timmer, Ursula Klingmüller

April 6, 2018

Contents

1	Fluorescence microscopy data								
2	ynamic pathway modeling 1 The full model	4 4 4 7 7							
	2.1.4 Parameter transformations	8 8 9 10							
3	npact of DCF on the TNFa/TNFR interaction in HepG2 cells	17							
4	Predicted A20 dynamics for DILI compounds								
5	Data availability 18								
6	ose response curves	19							
7	Quantitative immunoblot data								

1 Fluorescence microscopy data

Single-cell fluorescence microscopy data is combined with average-cell quantitative immunoblot data in a mathematical model based on ordinary differential equations to describe the average dynamics. In this context, it is important to check whether the average cell shows the same dynamics as the averaged dynamics over all cells. To this end, the distance of the NF κ B dynamics of each cell from the average NF κ B dynamics has been computed by the equation

$$D_k = \sqrt{\sum_i (x_{ik} - \langle x_i \rangle)^2},\tag{1}$$

where k denotes different cells, $\langle x_i \rangle$ is the average NF κ B signal at time point t_i and x_{ik} is the NF κ B signal of the cell k at time point t_i . Figure S1 shows 62 randomly chosen cells, sorted by their distance to the average dynamics.

The plot shows that different cells are well synchronized over 360 minutes. The single-cell data is highly consistent with the average data corroborating our reduction approach of using the mean fluorescence signal for model calibration.

Figure S1: Single-cell versus average data. The plot shows nuclear signals of 62 randomly selected HepG2 cells expressing NF κ B-GFP treated with TNF α (red curves). The cells are sorted by their similarity to the average fluorescence signal (black curve). The graphical analysis indicates that all cells share the same frequency of oscillation and consistently react to TNF α stimulation.

2 Dynamic pathway modeling

2.1 The full model

2.1.1 Reactions and differential equations

The model topology is represented by Figure S2.

Figure S2: Reaction scheme of the full model. Schematic representation of the model indicating the considered components and reactions. Arrows indicate biochemical reactions. Boxes with round corners symbolize proteins, parallelograms represent RNA. Slashed circles represent degradation or production. Black lines indicate reactions induced by pathway activation.

Each arrow in the schematics corresponds to an elementary process in the mathematically formulated reaction network. Table S1 shows a list of all reactions included in the full model. Some of the reaction rates are formulated as products of a reference rate parameter and additional rate parameters, indicated by the prefix eta_, to systemmatically deviate from the reference rate.

	Educt	\rightarrow	Product	Rate	
1		\rightarrow	TNFR	uptake · TNF	
2	TNFR	\rightarrow		$deact_TNFR \cdot TNFR$	
3	Ikk	\rightarrow	pIkk	(act_Ikk_by_TNF / (1 + A20 / inh_Ikk)) \cdot TNFR \cdot Ikk	
4	Ikk	\rightarrow	pIkk	$act_Ikk_Base \cdot Ikk$	
5	pIkk	\rightarrow	ppIkk	act_pIkk · pIkk	
6	ppIkk	\rightarrow	iIkk	deact_ppIkk · ppIkk	
7	iIkk	\rightarrow	Ikk	trigger_iIkk · iIkk	
8	NfkIkb	\rightarrow	NfkpIkb	(act_Ikb_Base) · NfkIkb	
9	NfkIkb	\rightarrow	NfkpIkb	(act_Ikb_by_Ikk) · pIkk · NfkIkb	
10	NfkIkb	\rightarrow	NfkpIkb	(act_Ikb_by_Ikk · eta_s_ppIkk) · ppIkk · NfkIkb	
11	NfkIkb	\rightarrow	pNfkIkb	(act_Nfk_Base) · NfkIkb	
12	NfkIkb	\rightarrow	pNfkIkb	(act_Nfk_by_Ikk) · pIkk · NfkIkb	
13	NfkIkb	\rightarrow	pNfkIkb	(act_Nfk_by_Ikk · eta_s_ppIkk) · ppIkk · NfkIkb	
14	pNfkIkb	\rightarrow	pNfkpIkb	(act_Ikb_Base · eta_act_Ikb_Base_c_pNfkIkb) ·	
15	pNfkIkb	\rightarrow	pNfkpIkb	(act_Ikb_by_Ikk · eta_act_Ikb_c_pNfkIkb) · pIkk · pNfkIkb	
16	pNfkIkb	\rightarrow	pNfkpIkb	(act_Ikb_by_Ikk · eta_s_ppIkk ·	
17	NfkpIkb	\rightarrow	pNfkpIkb	(act_Nfk_Base · eta_act_Nfk_Base_c_NfkpIkb) · NfkpIkb	
18	NfkpIkb	\rightarrow	pNfkpIkb	(act_Nfk_by_Ikk · eta_act_Nfk_c_NfkpIkb) · pIkk · NfkpIkb	
19	NfkpIkb	\rightarrow	pNfkpIkb	(act_Nfk_by_Ikk · eta_s_ppIkk · eta act_Nfk_c_NfkpIkb) · ppIkk · NfkpIkb	
20	NfkpIkb	\rightarrow	Nfk + pIkb	split NfkpIkb · NfkpIkb	
21	pNfkpIkb	\rightarrow	pNfk + pIkb	(split_NfkIkb · eta_split_pNfkpIkb) · pNfkpIkb	
22	Mfk + Ikb	\rightarrow	NfkIkb	form_complex \cdot Nfk \cdot Ikb	
23		\rightarrow	mIkb	prod_mIkb_by_nNfk · nNfk	
24	mIkb	\rightarrow		degrad_mIkb · mIkb	
25		\rightarrow	Ikb	prod_lkb · mlkb	
26	pIkb	\rightarrow		degrad_Ikb · pIkb	
27	Ikb	\rightarrow	nIkb	$(int_Nfk \cdot eta_int_Ikb) \cdot Ikb$	
28	pNfk	\rightarrow	pnNfk	$(int_Nfk \cdot eta_int_pNfk) \cdot pNfk$	
29	Nfk	\rightarrow	nNfk	$(int_Nfk) \cdot Nfk$	
30	pnNfk	\rightarrow	nNfk	$deact_pnNfk \cdot pnNfk$	
31	nIkb + nNfk	\rightarrow	nNfkIkb	$(form_complex \cdot eta_form_compex_nuc) \cdot nNfk \cdot$	
0.2			NT (1 T) 1	nikb	
32	nNfklkb	\rightarrow	Nfklkb	ext_nNtklkb · nNtklkb	
33		\rightarrow	KnaA20_1	build_RnaA20 · nNtk	
34	RnaA20_1	\rightarrow	RnaA20_2	shuttle_RnaA20 · RnaA20_1	
35	RnaA20_2	\rightarrow	RnaA20	$shuttle_RnaA20 \cdot RnaA20_2$	
$36 \qquad \operatorname{RnaA20} \rightarrow \qquad \qquad \operatorname{degrad}_{\operatorname{RnaA20}} \cdot \operatorname{RnaA20}$		degrad_RnaA20 · RnaA20			
37	1.00	\rightarrow	A20	build_A20 · RnaA20	
38	A20	\rightarrow		degrad_A20 · A20	

Table S1: Table of reactions of the full model.

The table of reactions with the specified rate expressions uniquely determines the set of differential equations describing the dynamics of the system, see Table S2.

$\frac{d}{dt}$ TNFR = 1 · (uptake · TNF) - 1 · (deact_TNFR · TNFR)	
$\frac{d}{dt}$ Ikk = -1 · ((act_Ikk_bv_TNF / (1 + A20 / inh_Ikk)) · TNFR · Ikk)	-1.
$(act_Ikk_Base \cdot Ikk) + 1 \cdot (trigger_Ikk \cdot ikk)$	
$\frac{d}{dt}$ pIkk = 1 · ((act Ikk by TNF / (1 + A20 / inh Ikk)) · TNFR · Ikk) -	+1.
$dt^{\text{prime}} = 1 ((acc_{\text{min}} \circ s_{\text{min}})^{-1} (1 + 112 \circ s_{\text{min}})^{-1} (1$	
d null $d_{\text{null lk}} = 1$ (act null $d_{\text{null lk}} = 1$ (denot null $d_{\text{null lk}}$ null $d_{\text{null lk}}$	
$\frac{d}{dt}$ ppikk = 1 · (dct_pikk · pikk) - 1 · (dcact_ppikk · ppikk)	
$\frac{d}{dt}$ IIKK = 1 · (deact_ppikk · ppikk) - 1 · (trigger_likk · likk)) () () ()
$\frac{d}{dt} \text{NtkIkb} = -1 \cdot ((\text{act_lkb_Base}) \cdot \text{NtkIkb}) - 1 \cdot ((\text{act_lkb_by_lkk}) \cdot \text{plkk} \cdot$	Nikiko) -
$1 \cdot ((act_{kb_by_{kk} \cdot eta_s_ppkk) \cdot ppkk \cdot Nfkkb) - 1 \cdot$	
$((act_Nfk_Base) \cdot NfkIkb) - 1 \cdot ((act_Nfk_by_Ikk) \cdot pIkk \cdot Nfk$	Ikb) - 1 \cdot
$((act_Nfk_by_Ikk \cdot eta_s_ppIkk) \cdot ppIkk \cdot NfkIkb) + 1 \cdot (form_b)$	$_{\rm complex}$ ·
$Nfk \cdot Ikb) + 1 \cdot (ext_nNfkIkb \cdot nNfkIkb) \cdot (Vnuc / 1)$	
$\frac{d}{dt} \text{NfkpIkb} = 1 \cdot ((\text{act_lkb_Base}) \cdot \text{NfkIkb}) + 1 \cdot ((\text{act_lkb_by_lkk}) \cdot \text{pIkk} \cdot 1)$	NfkIkb) +
$1 \cdot ((act_{kb_by_{k} \cdot eta_{s_pp}kk) \cdot pp_{kk} \cdot Nfk_{kb}) - 1 \cdot$	
((act_Nfk_Base · eta_act_Nfk_Base_c_NfkpIkb) · NfkpIkb) - 1	
((act_Nfk_by_Ikk · eta_act_Nfk_c_NfkpIkb) · pIkk · NfkpIkb) -	· 1 ·
((act_Nfk_by_Ikk · eta_s_ppIkk · eta_act_Nfk_c_NfkpIkb) · ppI	kk ·
NfkpIkb) - 1 · (split_NfkpIkb · NfkpIkb)	
$\frac{d}{dt}$ pNfkIkb = 1 · ((act Nfk Base) · NfkIkb) + 1 · ((act Nfk by Ikk) · pIkk ·	NfkIkb)
$\frac{dt}{dt} P^{-1} \cdots P^{-1} = ((acc_1 \cdots ac_{k-1}) + 1 \cdot ((acc_{k-1} \cdots ac_{k-1}) + (acc_{k-1} \cdots ac_{k-1}) + ((acc_{k-1} \cdots ac_{k-1}) + (acc_{k-1} \cdots ac_{k-1}) + ((acc_{k-1} \cdots ac_{k-1}) + (acc_{k-1} \cdots a$	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$((act Ikb Base \cdot eta act Ikb Base c pNfkIkb) \cdot pNfkIkb) - 1 \cdot$	
$((act_kb_b_b_kc_ct_kb_b_b_b_b_b_b_b_b_b_b_b_b_b_b_b_b_b_b$	1.
$((act_kb_by_kk_cta_cta_kb_cp) + kk_cat_kb_cp)$	rlr.
pNftIkb)	XK ·
d pNftrpIth -1 ((set Ith Page at a set Ith Page a pNftrIth) pNftrIth)	L 1
$\frac{dt}{dt} \text{pivikpikb} = 1 \cdot ((\text{act_ikb_base} \cdot \text{eta_act_ikb_base} - \text{pivikikb}) \cdot \text{pivikikb}) + ((\text{act_ikb_base} \cdot \text{eta_act_ikb_base} - \text{pivikikb}) + ((\text{act_ikb_base} - \text{pivikikb}) + \text{pivikikb})) + ((\text{act_ikb_base} - \text{pivikikb}) + \text{pivikikb}) + ((\text{act_ikb_base} - \text{pivikikb}) + \text{pivikikb})) + ((\text{act_ikb_base} - \text{pivikikb})) + ((\text$	⊢⊥· 1
$((act_KD_Dy_KK \cdot eta_act_KD_C_p(KKKD) \cdot p(KK \cdot p(KKKD) + ((act_KD_Dy_KK) + b)))$	- 1 ·
$((act_KD_Dy_KK \cdot eta_S_ppKK \cdot eta_act_KD_C_pNKKD) \cdot ppH$	XK ·
$P(\mathbf{k} \mathbf{k} \mathbf{k}) + 1 \cdot ((\mathbf{a} \mathbf{c} \mathbf{L} \mathbf{N} \mathbf{k} \mathbf{L} \mathbf{a} \mathbf{s} \mathbf{c} \cdot \mathbf{c} \mathbf{a} \mathbf{a} \mathbf{c} \mathbf{c} \mathbf{L} \mathbf{N} \mathbf{k} \mathbf{L} \mathbf{a} \mathbf{s} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{N} \mathbf{k} \mathbf{p} \mathbf{k} \mathbf{c})$, 11_1_
$N(\mathbf{k}\mathbf{p}) + 1 \cdot ((\mathbf{a}\mathbf{c})\mathbf{k}\mathbf{k} \cdot \mathbf{e}\mathbf{t}_{\mathbf{a}}\mathbf{c}\mathbf{c}) + 1$	
$NIKPIKD$ + 1 · ((act_NIK_Dy_IKK · eta_s_ppiKK · eta_act_NIK_C	_NIKPIKD)
\cdot pplkk \cdot Nikplkb) - 1 \cdot ((split_Niklkb \cdot eta_split_pNikplkb) \cdot)	pNfkpIkb)
$\frac{d}{dt} pNfk = 1 \cdot ((split_Nfklkb \cdot eta_split_pNfkplkb) \cdot pNfkplkb) - 1 \cdot ((int$	_Nfk ·
$eta_int_pNfk) \cdot pNfk)$	
$\frac{d}{dt} Nfk = 1 \cdot (\text{split}_NfkpIkb \cdot NfkpIkb) - 1 \cdot (\text{form}_complex \cdot Nfk \cdot Ikb)$	-1.
$((\mathrm{int_Nfk}) \cdot \mathrm{Nfk})$	
$\frac{d}{dt} pIkb = 1 \cdot (split_NfkpIkb \cdot NfkpIkb) + 1 \cdot ((split_NfkIkb \cdot eta_split_FkIkb) + 1 \cdot (split_NfkIkb \cdot eta_split_FkIkb) + 1 \cdot (split_NfkIkb) + 1 \cdot (split_NfkIkbb) + 1 \cdot (split_NfkIkbb) + 1 \cdot (split_NfkIkbbb) + 1 \cdot (split_NfkIkbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb$	NfkpIkb)
\cdot pNfkpIkb) - 1 \cdot (degrad_Ikb \cdot pIkb)	
$\frac{d}{dt}$ Ikb = -1 · (form_complex · Nfk · Ikb) + 1 · (prod_Ikb · mIkb) - 1 · ($((int_Nfk \cdot$
$eta_int_Ikb) \cdot Ikb)$	
$\frac{d}{dt}$ mIkb = 1 · (prod_mIkb_by_nNfk · nNfk) - 1 · (degrad_mIkb · mIkb)	
$\frac{d}{d}$ nIkb = 1 · ((int_Nfk · eta int_Ikb) · Ikb) · (1 / Vnuc) - 1 · ((form_cor	nplex ·
eta form compex nuc) \cdot nNfk \cdot nIkb)	I ·
$\frac{d}{d}$ pnNfk = 1 · ((int. Nfk · eta int. pNfk) · pNfk) · (1 / Vnuc) - 1 · (deact.	nnNfk .
dt phi (m $(m - 1)$ (m $m - p - m)$ prom) prom) (1 / $m - p - m$ (double)	P111 (111
$\frac{d}{dn}$ Nfk - 1. ((int Nfk). Nfk). (1 / Vnuc) + 1. (deact nnNfk. nnNfk)	1.
$\frac{dt}{dt} \prod_{i=1}^{dt} \prod_{i=1$	-1.
$\frac{d}{d}$ n Nfl-Ille $\frac{1}{d}$ (forms complex sets forms compared pusc) n Nfl- n Ille $\frac{1}{d}$	
\overline{dt} INVIKIKD = 1 · ((IOFTIL_COMPLEX · eta_IOFTIL_COMPEX_INC) · INVIK · INKD) - 1	•
$(\text{ext_HINIKIKD} \cdot \text{mINIKIKD})$	
$\frac{1}{dt}$ KnaA20_1 = 1 · (build_KnaA20 · nNtk) - 1 · (shuttle_KnaA20 · RnaA20_1)	100.0
$\frac{d}{dt}$ RnaA20_2 = 1 · (shuttle_RnaA20 · RnaA20_1) - 1 · (shuttle_RnaA20 · Rna	A20_2)
$\frac{a}{dt} \operatorname{Rna}A20 = 1 \cdot (\operatorname{shuttle_Rna}A20 \cdot \operatorname{Rna}A20_{-2}) - 1 \cdot (\operatorname{degrad_Rna}A20 \cdot \operatorname{Rna}A20_{-2}) - 1 \cdot (\operatorname{degrad_Rna}A20_{-2}) - 1 \cdot (\operatorname{degrad_Rna}$	A20)
$\underline{\underline{dt}} A20 = 1 \cdot (\text{build} A20 \cdot \text{Rna} A20) - 1 \cdot (\text{degrad} A20 \cdot A20)$	

Table S2: List of differential equations of the full model

2.1.2 Observation function

The states of the ODE model, also called the internal states, are related to experimentally observed quantities, the observables, via an observation function. The observation function employed for our model is summarized in Table S3.

observable		relation with internal states
nuclear NFkB	=	$\log((s_Nuclei \cdot (pnNfk + nNfk + nNfkIkb) +$
		off_Nuclei) $\cdot \exp(- tau_Nuclei \cdot time))$
cytoplasmic NFkB	=	$\log((s_Vytoplasm \cdot (NfkIkb + NfkpIkb + pNfkIkb))$
		+ pNfkpIkb + pNfk + Nfk) + off_Cytoplasm) \cdot
		$\exp(-tau_Cytoplasm \cdot time))$
A20	=	$\log((s_A20 \cdot A20 + off_A20) \cdot exp(- tau_A20 \cdot$
		time))
IkBa	=	$\log(s_{kBa} \cdot (NfkIkb + pNfkIkb + NfkpIkb + pIkb)$
		$+$ Ikb) $+$ off_IkBa)
pNFkB	=	$\log(s_pp65 \cdot (pNfkpIkb + pNfkIkb + pNfk) +$
		$off_pp65)$
pIkBa	=	$\log(s_pIkBa \cdot (NfkpIkb + pNfkpIkb + pIkb) +$
		off_pIkBa)
pIKK	=	$\log(s_{pIKK} \cdot (pIkk + ppIkk) + off_{pIKK})$
IP:IkBa IB:IkBa	=	$\log(s_{kBa_{P}} \cdot (NfkIkb + pNfkIkb + NfkpIkb +$
		$pIkb + Ikb) + off_IkBa_IP)$
$IP:NFkB \mid IB:NFkB$	=	$\log(s_p65_IP \cdot (NfkIkb + pNfkIkb + NfkpIkb +$
		$pNfkpIkb + pNfk + Nfk) + off_p65_IP$
$IP:NFkB \mid IB:pIkBa$	=	$\log(s_pIkBalpha_tp65_IP \cdot (NfkpIkb + pNfkpIkb) +$
		off_pIkBalpha_tp65_IP)
$IP:NFkB \mid IB:pNFkB$	=	$\log(s_pp65_IP \cdot (pNfkpIkb + pNfkIkb + pNfk) +$
		off_pp65_IP)
IP:IkBa IB:pNFkB	=	$\log(s_tIkBalpha_pp65_IP \cdot (pNfkpIkb + pNfkIkb) +$
		$off_tIkBalpha_pp65_IP)$
IP:IkBa IB:NFkB and		
$IP:NFkB \mid IB:IkBa$	=	$\log(s_tIkBalpha_tp65_IP \cdot (NfkIkb + NfkpIkb +$
		$pNfkIkb + pNfkpIkb) + off_tIkBalpha_tp65_IP)$
NFkB/IkBa ratio	=	$\log((NfkIkb + NfkpIkb + pNfkIkb + pNfkpIkb +$
		pNfk + Nfk) / (NfkIkb + NfkpIkb + pNfkIkb +
		pNfkpIkb + pIkb + Ikb))

Table S3: List of observables

The observation functions collect all internal states contributing to the measurement by antibody- or fluorescent labeling-based methods. In addition, the equations contain scaling parameters (prefix s_{-}) and offset parameters (prefix off_). The variance of the measurement data is most uniformly described on log-scale. Therefore, the log-transformation is applied to all observables. Fluorescence measurements suffer from photobleaching leading to an exponentally decaying signal which is accounted for by exponential functions within the observation function.

2.1.3 Steady-state assumptions

The system is assumed to be in a steady state at t = 0 min. Since the system has two conserved quantities, see Table S4, the dynamic parameters are not sufficient to determine the steady-state concentrations uniquely. Instead, additional quantities total_NFkB (c_1) and total_Ikk (c_2) being additional parameters, need to be provided to determine the steady-state together with the rate parameters p.

observable		relation with internal states
total_NFKB	=	$1 \cdot \text{NfkIkb} + 1 \cdot \text{NfkpIkb} + 1 \cdot \text{pNfkIkb} + 1 \cdot \text{pNfkpIkb} + 1 \cdot$
		$pNfk + 1 \cdot Nfk + Vnuc \cdot (1 \cdot pnNfk + 1 \cdot nNfk + 1 \cdot nNfkIkb)$
total_IKK	=	Ikk + pIkk + ppIkk + iIkk

Table S4: Conserved quantities

Let C(x) be the conserved quantity expressions, i.e., $C_1(x)$ and $C_2(x)$ correspond to total NF κ B and total IKK, respectively. The system is in a steady state when the model states do not change: $\dot{x} = f(x, p) = 0$. Steady-state values are determined solving the implicit equations

$$f(x(p), p) = 0$$

 $C(x(p)) - c = 0$
(2)

jointly. Given (p, c), the solution x^* of equation (2) is determined by Newton's method. The mapping ϕ_{SS} : $p \mapsto (p, x^*)$ is treated as a usual parameter transformation, see section 2.1.4. Here, c has been absorbed into the parameter vector p.

2.1.4 Parameter transformations

The solution of the dynamic system $\dot{x} = f(x, p)$ depends on dynamic parameters (rate constants, volumes, etc.) and initial value parameters x_0 . The initial values are fully determined by the dynamic parameters and two additional parameters, total_NFKB and total_IKK. We chose to parameterize our system on a log-scale, meaning that any parameter p_i is expressed by its corresponding log-parameter θ_i via the relation $\theta_i = \log(p_i)$ or equivalently

$$p_i = \phi_i(\theta) = e^{\theta_i}.\tag{3}$$

In addition, parameters which are fixed to certain values are expressed by the parameter transformation ϕ , too, e.g., $p_i = \phi_i(\theta) = 1$ whenever *i* refers to a parameter fixed to 1. Finally, the steady-state transformation $\phi_{SS} : p \mapsto (p, x^*)$ is concatenated with the transformation ϕ to yield the full transformation,

$$\phi_{\rm SS} \circ \phi : \theta \mapsto (p(\theta), x^*(p(\theta))), \tag{4}$$

translating a set of log-parameters into positive rate constants and positive initial values in steady-state.

2.1.5 Parameter estimation

Parameter estimation is based on the maximum-likelihood method. We assume that noise in the measurements are log-normally distributed. The objective function to be minimized to obtain parameter values is the negative log-likelihood

$$-2\log(L(\theta)) = \sum_{i} \left\| \frac{g \circ x \circ \phi_{\rm SS} \circ \phi(t_i, \theta) - y_i^D}{\sigma_i(\theta)} \right\|^2 - \log \sigma_i(\theta)^2 + \left\| \frac{\theta - \mu}{\sigma_\mu} \right\|^2.$$
(5)

Here, g denotes the observation function, x is the model prediction function, y_i^D refers to the data and $\sigma_i(\theta)$ is the measurement uncertainty. The first term of the sum donetes the least-squares contribution. Given the time point t_i and parameter vector θ , the model prediction $g \circ x \circ \phi_{SS} \circ \phi$ is computed. The expected uncertainty $\sigma_i(\theta)$ of the *i*th residual is either taken from the data or computed from an error model (for observables Nuclei, Cytoplasm and A20). Here, we assume that each observable has a constant error on the log-scale which gives us one error model parameter per observable to be estimated. The second term reflects that the uncertainty is estimated. Small values of σ are penalized. The third term incorporates prior knowledge about the parameter position and range. Ideally, all necessary information to estimate the parameters is contained in the data. In practice, priors are used to regularize the estimation process. For the final result, the prior strength is lowered until its effect on the parameter estimates becomes negligible.

Figure S3: Reaction fluxes. The increase of concentration per time caused by several processes is shown for seven different targets, indicated in the figure legends. The different fluxes, distinguished by color, are accumulated to the total influx (topmost contour). Small fluxes appear as thin stripes.

2.2 Model reduction

The full model has been fitted to the experimental data. Based on the estimated parameters, the mathematical expressions as being collected in the Rate column of Table S1 were evaluated. Each expression is denoted as a reaction flux, describing the change of concentration per time caused by the corresponding reaction. Figure S3 shows all influxes for seven different internal states. Different reaction fluxes, shown in different colors, are stacked, i.e., the value of the flux is given by the height of the corresponding colored band. The accumulated height of all bands corresponds to the total influx.

The plot of pIkk fluxes indicates that basal IKK phosphorylation is negligible relative to IKK phosphorylation by TNFR. We can therefore drop the basal phosphorylation from the model without deteriorating the fit between model and data. Similarly, basal IkB phosphorylation in NfkIkb and basal Nfk phosphorylation in NfkIkb is so low that it is removed from the model. Ikb and Nfk phosphorylation by ppIkk is a negligible contribution in all targets and is therefore removed. Concerning the pNfkpIkb-complex, only basal Ikb phosphorylation of pNfkIkb, Ikb phosphorylation by pIkk and Nfk phosphorylation by pIkk is considered.

The inspection of reaction fluxes yields negligible fluxes, i.e., elementary processes which can be removed from the reaction network. Another means to reduce the model is the inspection of the parameter profile likelihood. The profile likelihood is computed by fixing a parameter of interest to certain values. For fixed parameter value, the objective function is reoptimized with respect to all other parameters. Compared to the log-likelihood at the original optimum, the new objective value is higher. The difference is denoted as $\Delta \chi^2$. The objective function is composed of two contributions: (1) the log-likelihood of the data and (2) the parameter prior, see eq. (5). Figure S4 shows the result of evaluating the profile likelihood for selected parameters. Investigating the profiles of the parameters deact_TNFR, int_Nfk, tau_A20 and off_IkBa_IP we fixed those values to 0 ($-\infty$ on log-scale). Reaction rates ext_nNfkIkb and eta_form_complex_nuc can become arbitrarily large without deteriorating the fit between model and data, reflected by the solid line flattening out towards larger parameter values. We fixed the values of these parameters to 1000 (6.9 on log-scale).

Figure S4: Profile likelihood for selected parameters. The total profile likelihood (dashed line) is composed of a contribution originating from the data points (solid line) and the parameter prior (dotted line).

2.3 The reduced model

Model reduction by flux and profile-likelihood analysis yields the reduced list of reactions as shown in Table S5.

	Educt	\rightarrow	Product	Rate	Description
1		\rightarrow	TNFR	uptake \cdot TNF	TNFR act
2	TNFR	\rightarrow		$deact_TNFR \cdot TNFR$	TNFR deact
3	Ikk	\rightarrow	pIkk	act_Ikk_by_TNF · TNFR · Ikk	IKK phos by TNFR
4	pIkk	\rightarrow	ppIkk	$act_pIkk \cdot pIkk$	pIKK phos
5	ppIkk	\rightarrow	iIkk	$deact_ppIkk \cdot ppIkk$	ppIKK dephos
6	iIkk	\rightarrow	Ikk	trigger_iIkk · iIkk	IKK triggering
7	NfkIkb	\rightarrow	NfkpIkb	(act_Ikb_by_Ikk) · pIkk · NfkIkb	Ikb phos in NfkIkb by pIkk
8	pNfkIkb	\rightarrow	pNfkpIkb	(act_Ikb_complex) · pNfkIkb	Basal Ikb phos in pNfkIkb
9	pNfkIkb	\rightarrow	pNfkpIkb	(act_Ikb_by_Ikk) · pIkk · pNfkIkb	Ikb phos in pNfkIkb by pIkk
10	NfkIkb	\rightarrow	pNfkIkb	(act_Nfk_by_Ikk) · pIkk · NfkIkb	Nfk phos in NfkIkb by pIkk
11	NfkpIkb	\rightarrow	pNfkpIkb	(act_Nfk_by_Ikk_complex) · pIkk · NfkpIkb	Nfk phos in NfkpIkb by pIkk
12	NfkpIkb	\rightarrow	Nfk + pIkb	$split_NfkpIkb \cdot NfkpIkb$	Split NfkpIkb
13	pNfkpIkb	\rightarrow	pNfk + pIkb	$split_NfkIkb \cdot pNfkpIkb$	Split pNfkpIkb
14	Nfk + Ikb	\rightarrow	NfkIkb	$form_complex \cdot Nfk \cdot Ikb$	Form NfkIkb
15		\rightarrow	mIkb	prod_mIkb_by_nNfk · nNfk	Prod mIkb by nNfk
16	mIkb	\rightarrow		$degrad_mIkb \cdot mIkb$	Degrad mIkb
17		\rightarrow	Ikb	prod_Ikb · mIkb	Prod Ikb
18	pIkb	\rightarrow		degrad_Ikb · pIkb	Degra pIkb
19	Ikb	\rightarrow	nIkb	int_Ikb · Ikb	Internalize Ikb
20	pNfk	\rightarrow	pnNfk	$(int_Nfk \cdot eta_int_pNfk) \cdot pNfk$	Internalize pNfk
21	Nfk	\rightarrow	nNfk	$(int_Nfk) \cdot Nfk$	Internalize Nfk
22	pnNfk	\rightarrow	nNfk	$deact_pnNfk \cdot pnNfk$	Dephos pnNfk
23	nIkb + nNfk	\rightarrow	nNfkIkb	$form_complex_nuc \cdot nNfk$ $\cdot nIkb$	Form nNkfIkb
24	nNfkIkb	\rightarrow	NfkIkb	$ext_nNfkIkb \cdot nNfkIkb$	Externalize nNfkIkb
25		\rightarrow	RnaA20_1	$build_RnaA20 \cdot nNfk$	build RNA A20
26	$RnaA20_{-1}$	\rightarrow	RnaA20	shuttle_RnaA20 · RnaA20_1	shuttle RNA A20
27	RnaA20	\rightarrow		$degrad_RnaA20 \cdot RnaA20$	degrad RNA A20
28		\rightarrow	A20	$build_A20 \cdot RnaA20$	Prod A20
29	A20	\rightarrow		degrad_A20 \cdot A20	Degrad A20

Table S5: List of reactions for the reduced model

Accordingly, the reduced set of ordinary differential equations is shown in Table S6.

$\frac{d}{dt}$ TNFR	=	$1 \cdot (\text{uptake} \cdot \text{TNF}) - 1 \cdot (\text{deact_TNFR} \cdot \text{TNFR})$				
$\frac{d}{dt}$ Ikk	=	- 1 · (act_Ikk_by_TNF · TNFR · Ikk) + 1 · (trigger_iIkk · iIkk)				
$\frac{d}{dt}$ pIkk	=	1 · (act_Ikk_by_TNF · TNFR · Ikk) - 1 · (act_pIkk · pIkk)				
$\frac{d}{dt}$ ppIkk	=	$1 \cdot (act_pIkk \cdot pIkk) - 1 \cdot (deact_ppIkk \cdot ppIkk)$				
$\frac{d}{dt}$ iIkk	=	$1 \cdot (\text{deact_ppIkk} \cdot \text{ppIkk}) - 1 \cdot (\text{trigger_iIkk} \cdot \text{iIkk})$				
$\frac{d}{dt}$ NfkIkb	=	- 1 · ((act_Ikb_by_Ikk) · pIkk · NfkIkb) - 1 · ((act_Nfk_by_Ikk) · pIkk ·				
		$NfkIkb$) + 1 · (form_complex · Nfk · Ikb) + 1 · (ext_nNfkIkb · nNfkIkb)				
		\cdot (Vnuc / 1)				
$\frac{d}{dt}$ NfkpIkb	=	$1 \cdot ((act_kb_by_kk) \cdot pIkk \cdot NfkIkb) - 1 \cdot ((act_Nfk_by_kk_complex) \cdot$				
,		$pIkk \cdot NfkpIkb) - 1 \cdot (split_NfkpIkb \cdot NfkpIkb)$				
$\frac{d}{dt}$ pNfkIkb	=	- 1 · ((act_Ikb_complex) · pNfkIkb) - 1 · ((act_Ikb_by_Ikk) · pIkk ·				
1		$pNfkIkb) + 1 \cdot ((act_Nfk_by_Ikk) \cdot pIkk \cdot NfkIkb)$				
$\frac{d}{dt}$ pNfkpIkb	=	$1 \cdot ((act_kb_complex) \cdot pNfkIkb) + 1 \cdot ((act_kb_by_Ikk) \cdot pIkk \cdot$				
		pNfkIkb) + 1 · ((act_Nfk_by_Ikk_complex) · pIkk · NfkpIkb) - 1 ·				
7		$(\text{split_NfkIkb} \cdot \text{pNfkpIkb})$				
$\frac{a}{dt}$ pNfk	=	$1 \cdot (\text{split_NfkIkb} \cdot \text{pNfkpIkb}) - 1 \cdot ((\text{int_Nfk} \cdot \text{eta_int_pNfk}) \cdot \text{pNfk})$				
$\frac{d}{dt}$ Nfk	=	$1 \cdot (\text{split_NfkpIkb} \cdot \text{NfkpIkb}) - 1 \cdot (\text{form_complex} \cdot \text{Nfk} \cdot \text{Ikb}) - 1 \cdot$				
1		$((int_Nfk) \cdot Nfk)$				
$\frac{d}{dt}$ plkb	=	$1 \cdot (\text{split_Nfkplkb} \cdot \text{Nfkplkb}) + 1 \cdot (\text{split_Nfklkb} \cdot \text{pNfkplkb}) - 1 \cdot (\text{split_Nfklkb} \cdot \text{pNfkplkb})$				
<i>d</i> 1 1		$(\text{degrad}_{\text{lkb}} \cdot \text{plkb})$				
$\frac{d}{dt}$ lkb	=	$-1 \cdot (\text{form_complex} \cdot \text{Nfk} \cdot \text{lkb}) + 1 \cdot (\text{prod_lkb} \cdot \text{mlkb}) - 1 \cdot (\text{int_lkb} \cdot \text{mlkb})$				
d III		$\mathbf{Ikb} $				
$\frac{d}{dt}$ mikb	=	$1 \cdot (\text{prod_mikb_by_nNtk} \cdot \text{nNtk}) - 1 \cdot (\text{degrad_mikb} \cdot \text{mikb})$				
$\frac{d}{dt}$ nikb	=	$1 \cdot (\text{int_lkb} \cdot \text{lkb}) \cdot (1 / \text{Vnuc}) - 1 \cdot (\text{form_complex_nuc} \cdot \text{nNfk} \cdot \text{nlkb})$				
$\frac{a}{dt}$ pnNfk	=	$1 \cdot ((\text{int_Nik} \cdot \text{eta_int_pNik}) \cdot \text{pNik}) \cdot (1 / \text{Vnuc}) - 1 \cdot (\text{deact_pnNik} \cdot \text{Nic})$				
d NTC		pnNik)				
$\frac{d}{dt}$ nNtk	=	$1 \cdot ((\text{int_Nik}) \cdot \text{Nik}) \cdot (1 / \text{Vnuc}) + 1 \cdot (\text{deact_pnNik} \cdot \text{pnNik}) - 1 \cdot (C - \text{Nic} - \text{Nic} - \text{Nic})$				
d Marin		$(\text{IOrm_complex_nuc · nNik · nIkb})$				
$\frac{\ddot{d}t}{dt}$ niNtkikb	=	$1 \cdot (\text{torm_complex_nuc} \cdot \text{nNtk} \cdot \text{nlkb}) - 1 \cdot (\text{ext_nNtk1kb} \cdot \text{nNtk1kb})$				
$\frac{\ddot{d}t}{dt}$ KnaA20_1	=	$1 \cdot (\text{build}_{\text{KnaA2U}} \cdot \text{nNtk}) - 1 \cdot (\text{shuttle}_{\text{KnaA2U}} \cdot \text{KnaA2U})$				
$\frac{d}{dt}$ RnaA20	=	$1 \cdot (\text{snuttle_KnaA20} \cdot \text{KnaA20_1}) - 1 \cdot (\text{degrad_KnaA20} \cdot \text{RnaA20})$				
$\frac{\alpha}{44}$ A20	=	$1 \cdot (\text{build} A20 \cdot \text{Rna}A20) - 1 \cdot (\text{degrad} A20 \cdot A20)$				

Table S6: List of differential equations of the reduced model

Upon parameter estimation, the profile likelihood as been computed for all parameters veryfying that all model parameters can be constrained within finite confidence intervals. The profile likelihood is shown in Figure S5.

Based on the profiles, the parameter values and their lower and upper bounds according to a 95% confidence level were extracted. The result is shown in Table S7.

- - total ---- data · · · · prior

Figure S5: Profile likelihood for the reduced model.

	value	lower (95%)	upper (95%)
act_Ikb_by_Ikk	-0.92	-1.70	-0.26
act_Ikb_complex	0.33	-0.33	1.56
act_Ikk_by_TNF	-2.64	-3.10	-2.21
act_Nfk_by_Ikk	-0.44	-0.84	-0.00
act_Nfk_by_Ikk_complex	-1.27	-1.76	-0.92
act_pIkk	-2.74	-2.94	-2.52
build_A20	-7.38	-7.84	-6.46
$deact_ppIkk$	-1.80	-2.42	0.42
$degrad_A20$	-4.46	-5.97	-3.32
degrad_Ikb	-0.46	-0.72	-0.08
$degrad_mIkb$	-3.46	-3.66	-3.24
degrad_RnaA20	-4.72	-5.97	-3.32
Delta_DCF_act_Ikb_by_Ikk	-0.94	-1.66	-0.45
$Delta_DCF_act_Ikk_by_TNF$	-0.72	-0.98	-0.46
$Delta_DCF_act_pIkk$	0.91	0.57	1.27
$Delta_DCF_degrad_mIkb$	-1.77	-2.06	-1.50
Delta_DCF_prod_mIkb_by_nNfk	-0.83	-0.94	-0.73
$Delta_DCF_shuttle_RnaA20$	-0.96	-1.68	-0.52
Delta_DCF_trigger_iIkk	1.56	1.10	2.05
eta_int_pNfk	2.89	2.71	3.10
form_complex	1.04	-0.21	3.03
int_Ikb	-2.10	-2.29	-1.89
prod_mIkb_by_nNfk	-5.36	-5.47	-5.25
$shuttle_RnaA20$	-3.47	-4.60	-2.36
split_NfkpIkb	-2.51	-3.11	-2.06
$tau_Cytoplasm$	-7.78	-7.90	-7.68
tau_Nuclei	-7.84	-8.00	-7.70
trigger_iIkk	-5.50	-5.87	-5.15

Table S7: List of estimated parameters with lower and upper 95% confidence bounds.

Tables S8 and S9 show the values of the untransformed parameters, i.e., the parameter values as they enter in numeric integration of the model ODEs. Those parameters coinciding with state names refer to initial value parameters whereas all other parameters are rate constants and dynamic parameters.

	no+TNF	DCF+TNF	
A20	0.0000	0.0000	
act_Ikb_by_Ikk	0.3980	0.1562	*
act_Ikb_complex	1.3897	1.3897	
act_Ikk_by_TNF	0.0714	0.0347	*
act_Nfk_bv_Ikk	0.6438	0.6438	
act_Nfk_bv_Ikk_complex	0.2816	0.2816	
act_pIkk	0.0648	0.1603	*
build_A20	0.0006	0.0006	
build_RnaA20	1.0000	1.0000	
deact_pnNfk	1000.0000	1000.0000	
deact_ppIkk	0.1660	0.1660	
deact_TNFR	0.0010	0.0010	
degrad_A20	0.0116	0.0116	
degrad_Ikb	0.6308	0.6308	
degrad_mIkb	0.0313	0.0053	*
degrad_RnaA20	0.0089	0.0089	
eta_int_pNfk	17.9585	17.9585	
ext_nNfkIkb	1000.0000	1000.0000	
form_complex	2.8390	2.8390	
form_complex_nuc	1000.0000	1000.0000	
iIkk	0.0000	0.0000	
Ikb	0.0000	0.0000	
Ikk	1.0000	1.0000	
int_Ikb	0.1226	0.1226	
${\rm int_Nfk}$	0.0100	0.0100	
mIkb	0.0000	0.0000	
Nfk	0.0000	0.0000	
NfkIkb	1.0000	1.0000	
NfkpIkb	0.0000	0.0000	
nIkb	0.0000	0.0000	
nNfk	0.0000	0.0000	
nNfkIkb	0.0000	0.0000	
off_A20	0.6623	0.6623	
$off_Cytoplasm$	0.7859	0.7859	
off_IkBa	0.0000	0.0000	
off_IkBa_IP	0.0000	0.0000	
off_Nuclei	0.9765	0.9765	
off_p65_IP	0.8554	0.8554	
off_pIkBa	0.2278	0.2278	
off_pIkBalpha_tp65_IP	0.2036	0.2036	
off_pIKK	0.4393	0.4393	
$ m off_pp65$	0.2969	0.2969	
off_pp65_IP	0.4303	0.4303	
off_tIkBalpha_pp65_IP	0.4437	0.4437	
$off_tIkBalpha_tp65_IP$	0.2716	0.2716	
pIkb	0.0000	0.0000	

Table S8: List of model parameters (part 1) as being employed for numeric integration of the model ODEs. Parameters differing between the no-DCF and DCF conditions are marked by asterisks in the last column.

	no+TNF	DCF+TNF	
pIkk	0.0000	0.0000	
pNfk	0.0000	0.0000	
pNfkIkb	0.0000	0.0000	
pNfkpIkb	0.0000	0.0000	
pnNfk	0.0000	0.0000	
ppIkk	0.0000	0.0000	
prod_Ikb	1.0000	1.0000	
prod_mIkb_by_nNfk	0.0047	0.0020	*
RnaA20	0.0000	0.0000	
RnaA20_1	0.0000	0.0000	
s_A20	1.0000	1.0000	
$s_Cytoplasm$	0.3244	0.3244	
s_IkBa	1.1868	1.1868	
s_IkBa_IP	1.7393	1.7393	
s_Nuclei	1.1236	1.1236	
s_p65_IP	0.1694	0.1694	
s_pIkBa	5.5684	5.5684	
s_pIkBalpha_tp65_IP	6.5120	6.5120	
s_pIKK	2.4711	2.4711	
s_pp65	4.9452	4.9452	
s_pp65_IP	2.1543	2.1543	
s_tIkBalpha_pp65_IP	4.6047	4.6047	
s_tIkBalpha_tp65_IP	1.3426	1.3426	
$shuttle_RnaA20$	0.0311	0.0119	*
sigma_A20	0.0585	0.0585	
$sigma_Cytoplasm$	0.0251	0.0251	
sigma_Nuclei	0.0294	0.0294	
split_NfkIkb	1.0000	1.0000	
$split_NfkpIkb$	0.0811	0.0811	
tau_A20	0.0000	0.0000	
$tau_Cytoplasm$	0.0004	0.0004	
tau_Nuclei	0.0004	0.0004	
TNF	1.0000	1.0000	
TNFR	0.0000	0.0000	
$total_IKK$	1.0000	1.0000	
$total_NFKB$	1.0000	1.0000	
trigger_iIkk	0.0041	0.0195	*
uptake	1.0000	1.0000	
Vnuc	1.0000	1.0000	

Table S9: List of model parameters (part 2) as being employed for numeric integration of the model ODEs. Parameters differing between the no-DCF and DCF conditions are marked by asterisks in the last column.

Pre-treatment	Stimulation time	Stimulation	TNFR1 [clusters/µm²]	Cluster radius (DBSCAN) [nm]
- DCF	0 min	-	1.1 ± 0.1	28.7 ± 0.4
	2 min	-	1.0 ± 0.1	26.7 ± 0.4
		ΤΝFα	1.0 ± 0.1	28.7 ± 0.5
	5 min	-	1.1 ± 0.2	27.1 ± 0.4
		ΤΝFα	0.9 ± 0.1	29.3 ± 0.5
	10 min	-	0.9 ± 0.1	26.2 ±0.4
		ΤΝFα	1.2 ± 0.3	31.1 ± 0.6
	negative	e control	0.2 ± 0	-
+ DCF	0 min	-	1.1 ± 0.1	28.8 ± 0.4
	2 min	-	1.0 ± 0.1	32.4 ± 0.7
		ΤΝFα	1.8 ± 0.3	26.8 ± 0.4
	5 min	-	1.2 ± 0.2	28.2 ± 0.4
		ΤΝFα	0.9 ± 0.1	29.4 ± 0.7
	10 min	-	1.0 ± 0.2	30.5 ± 0.7
		ΤΝFα	1.1 ± 0.1	28.4 ± 0.5
	negative	e control	0.1 ± 0	-

3 Impact of DCF on the TNFa/TNFR interaction in HepG2 cells

Table S10: Density of TNFR1 clusters on the membrane of HepG2 cells without and with treatment with DCF. Cells were stimulated with TNFa with incubation times of 2 min, 5 min and 10 min. Cells stained with secondary antibody only were used as a negative control. Cluster radii were obtained from DBSCAN analysis.

4 Predicted A20 dynamics for DILI compounds

The simplified mechanism of action of diclofenac (DCF) allowed to estimate drug-specific parameters enabling the prediction of nuclear NF κ B dynamics, see main text. We found that DCF could possibly modify A20 production and that the delayed dynamics of nuclear NF κ B is not sufficient to correctly describe the A20 dynamics.

In order to investigate how the A20 dynamics could be impacted by the DILI compounds amiodarone (AMD), acetaminophen (APAP), ximelagatran (XIM) and fialuridine (FIAU), we assumed that either A20 production is affected in the same way as for DCF (direct impact) or A20 production is only altered due to the different dynamics of nuclear NF κ B (mediated impact). For both scenarios, A20 time courses are predicted, as shown in Figure S6.

Figure S6: Predicted A20 dynamics. The dynamics of A20 was simulated for different DILI compounds, indicated by different colors, and two scenarios of how the DILI compounds interact with A20.

Both scenarios show that AMD is likely to affect the A20 dynamics in a similar way as DCF. In contrast, APAP and XIM have a smaller inhibitory effect on A20. Finally, FIAU could even increase the production of A20.

5 Data availability

All data used for model calibration is available as separate CSV file:

data_TNFa_171110.csv

Table S11: Data used for modeling is available in a separate CSV file. The column description is as follows: **name** (Name of the measured target according to names in the manuscript), **time** (Time in minutes value Measured value on log scale sigma Uncertainty of the measurement), **condition** (Unique identifier of the measurement condition), **treatment** (Treatment of the cells: no, TNF), **compound** (Compound: no, DCF, AMD, APAP, FIAU, XIM) **cell** (Cell type: HepG2, PHH) **scale** (Scale of the measurement: 1, 2, 3. If observations agree by name and scale, their values can be directly compared. observations with the same name but different scale have no common point of reference. Their values are shifted by an unknown offset (log-values), corresponding to an unknown scaling factor on nominal scale.)

6 Dose response curves

Figure S7: Dose response. $I\kappa B\alpha$ phosphorylation was determined at different time points characteristic for different doses of diclofenac, amiodarone, acetaminophen and ximelagatran. $IKK\beta$ phosphorylation was determined for different doses of fialuridine. Data is shown as dots. Model fits by a non-linear regression model are shown as solid lines.

7 Quantitative immunoblot data

Immunoblots for figures 1C and 2C: HepG2 TNF α and DCF [500 μ M] AB: pIKK β samples were loaded in randomized order

Figure S8: IKK phosphorylation in HepG2 cells.

Immunoblots for figures 1C and 2C: HepG2 TNF α and DCF [500 μ M] AB: pIKK β samples were loaded in randomized order

Figure S9: IKK phosphorylation in HepG2 cells.

Immunoblots for figures 1C and 2C: HepG2 TNF α and DCF [500 μ M] AB: pIKK β samples were loaded in randomized order

Figure S10: IKK phosphorylation in HepG2 cells.

Figure S11: $I\kappa B\alpha$ in HepG2 cells.

Figure S12: $I\kappa B\alpha$ in HepG2 cells.

Immunoblots for figures 1C and 2C: HepG2 TNF α and DCF [500µM] AB: IkB α samples were loaded in randomized order

Figure S13: $I\kappa B\alpha$ in HepG2 cells.

Immunoblots for figures 1C and 2C: HepG2 TNF α and DCF [500µM] AB: plkB α samples were loaded in randomized order

Figure S14: $I\kappa B\alpha$ phosphorylation in HepG2 cells.

Immunoblots for figure 1C and 2C: HepG2 TNFα and DCF [500μM] AB: plkBα samples were loaded in randomized order time after TNFα stimulation [min] 70 20 0 50 30 15 40 10 0 50 70 5 15 60 30 90 10 60 20 40 5 90

Figure S15: $I\kappa B\alpha$ phosphorylation in HepG2 cells.

Figure S16: NF_KB phosphorylation in HepG2 cells.

Immunoblots for figures 1C and 2C: HepG2 TNF α and DCF [500 μ M] AB: pNF κ B samples were loaded in randomized order

Figure S17: NF_KB phosphorylation in HepG2 cells.

Figure S18: Primary Human Hepatocytes.

Figure S19: Primary Human Hepatocytes.

Figure S20: Primary Human Hepatocytes.

Figure S21: Primary Human Hepatocytes.

Immunoblots for figures 1E and 2C: HepG2 TNF α and DCF [500µM] IP: I κ B α IB: I κ B α samples were loaded in randomized order

Figure S22: $I\kappa B\alpha$ in Co-IP.

Immunoblots for figures 1E and 2C: HepG2 TNF α and DCF [500µM] IP: IkB α IB: pIkB α samples were loaded in randomized order

Figure S23: $I\kappa B\alpha$ in Co-IP.

Immunoblots for figures 1E and 2C: HepG2 TNF α and DCF [500µM] IP: IkB α IB: pNFkB samples were loaded in randomized order

Figure S24: I κ B α in Co-IP.

Immunoblots for figures 1E and 2C: HepG2 TNF α and DCF [500µM] IP: IkB α IB: NFkB samples were loaded in randomized order

Figure S25: $I\kappa B\alpha$ in Co-IP.

Immunoblots for figures 1E and 2C: HepG2 TNF α and DCF [500µM] IP: NF κB IB: I $\kappa B\alpha$ samples were loaded in randomized order

Figure S26: NF κ B in Co-IP.

Raw data for figures 1 and 2: HepG2 TNF α and DCF [500µM] IP: NF κ B IB: pI κ B α samples were loaded in randomized order

Figure S27: NF κ B in Co-IP.

Immunoblots for figures 1E and 2C: HepG2 TNF α and DCF [500µM] IP: NF κ B IB: pNF κ B samples were loaded in randomized order

Figure S28: NF κ B in Co-IP.

Immunoblots for figures 1E and 2C: HepG2 TNF α and DCF [500µM] IP: NF κ B IB: NF κ B samples were loaded in randomized order

Figure S29: NF κ B in Co-IP.

Immunoblots for figure 6: HepG2 TNF α and AMD [35 μ M] AB: pIKK β samples were loaded in randomized order

Figure S30: Amiodarone treatment.

Immunoblots for figure 6: HepG2 TNF α and AMD [35 μ M] AB: I κ B α samples were loaded in randomized order

Figure S31: Amiodarone treatment.

Immunoblots for figure 6: HepG2 TNF α and AMD [35µM] AB: plkB α samples were loaded in randomized order

Figure S32: Amiodarone treatment.

Figure S33: Amiodarone treatment.

Immunoblots for figure 6: HepG2 TNF α and APAP [10mM] AB: pIKK β samples were loaded in randomized order

Figure S34: Acetaminophen treatment.

Immunoblots for figure 6: HepG2 TNF α and APAP [10mM] AB: I κ B α samples were loaded in randomized order

Figure S35: Acetaminophen treatment.

Immunoblots for figure 6: HepG2 TNF α and APAP [10mM] AB: plkB α samples were loaded in randomized order

Figure S36: Acetaminophen treatment.

Immunoblots for figure 6: HepG2 TNF α and APAP [10mM] AB: pNF κ B samples were loaded in randomized order

Figure S37: Acetaminophen treatment.

Immunoblots for figure 6: HepG2 TNF α and XIM [800 μ M] AB: pIKK β samples were loaded in randomized order

Figure S38: Ximelagatran treatment.

Immunoblots for figure 6: HepG2 TNF α and XIM [800 μ M] AB: IkB α samples were loaded in randomized order

Figure S39: Ximelagatran treatment.

Immunoblots for figure 6: HepG2 TNF α and XIM [800µM] AB: plkB α samples were loaded in randomized order

Figure S40: Ximelagatran treatment.

Immunoblots for figure 6: HepG2 TNF α and XIM [800 μ M] AB: pNF κ B samples were loaded in randomized order

Figure S41: Ximelagatran treatment.

Immunoblots for figure 6: HepG2 TNF α and FIAU [500µM] AB: pIKK β samples were loaded in randomized order

Figure S42: Fialuridine treatment.

Immunoblots for figure 6: HepG2 TNF α and FIAU [500µM] AB: I $\kappa B\alpha$ samples were loaded in randomized order

Figure S43: Fialuridine treatment.

Figure S44: Fialuridine treatment.

Figure S45: Fialuridine treatment.