Magnetic resonance as a local probe for kagomé magnetism in Barlowite Cu₄(OH)₆FBr

K. M. Ranjith^{1,*}, C. Klein², A. A. Tsirlin³, H. Rosner¹, C. Krellner², and M. Baenitz¹

¹*Max- Plank- Institute for Chemical Physics of Solids, 01187 Dresden, Germany*

² Physikalisches Institut, Goethe-Universitat Frankfurt, 60438 Frankfurt, Germany

³ Experimental Physics VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany

^{*}ranjith.kumar@cpfs.mpg.de

MAGNETIZATION

The temperature dependence of (1.8 K $\leq T \leq$ 300 K) magnetic susceptibility (χ) measured at different applied magnetic fields (*H*) is shown in Fig. S1(a). At high temperatures, $\chi(T)$ behaves in a Curie-Weiss manner and can be fitted by the expression

$$\chi = \chi_0 + \frac{C}{T - \theta_{\rm CW}}$$

where χ_0 is the temperature-independent contribution consists of diamagnetism of the core electron shells (χ_{core}) and Van-Vleck paramagnetism (χ_{VV}) of the open shells of the Cu²⁺ ions present in the sample. The second term is the Curie-Weiss (CW) law with the Curie-Weiss temperature (θ_{CW}) and curie constant $C = N_A \mu_{eff}^2/3k_B$, where N_A is Avogadro's number, k_B is the Boltzmann constant, and μ_{eff} is the effective moment. The expression for effective moment is given by $\mu_{eff} = g\sqrt{S(S+1)}\mu_B$ where g is the Landé g-factor and S is the spin quantum number. Our fit to the 0.1 T data [Fig. S1(b)] in the high temperature regime yields $\chi_0 \simeq -1.19 \times 10^{-6}$ cm³/mol, $C \simeq 0.45$ cm³K/mol, and $\theta_{CW} \simeq -145$ K. The effective moment was calculated to be $\mu_{eff} \simeq 1.9 \ \mu_B/Cu$. These values are in good agreement with the reported values.[1]

Fig. S1. (Color online) (a) The temperature dependence of magnetic susceptibility (χ) measured at different applied field. (b) Inverse magnetic susceptibility $1/\chi$ at 0.1 T and the solid line is the Curie-Weiss fit. The inset shows the field-cooled and zero-field-cooled susceptibility measured at 0.05 T

At low temperatures (1.8 K $\leq T \leq$ 30 K) zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility was measured at an applied field of 0.005 T. As Shown in the inset of Fig. S1(b), the ZFC-FC data shows a clear splitting at 15 K which indicates a phase transition to a long-range ordered state with a small ferromagnetic moment. Isothermal magnetization M(H) measured at different temperatures are shown inf Fig. S2. It shows a hysteresis below T_N due to the interkagome Cu or Dzyaloshinskii-Moriya interaction (DMI).

REFERENCES

1. Han, T.-H., Singleton, J. & Schlueter, J. A. Barlowite: A spin-1/2 antiferromagnet with a geometrically perfect kagome motif. *Phys. Rev. Lett.* **113**, 227203 (2014).

Fig. S2. (Color online) Magnetization isotherms (M vs. H) of measured at different temperatures.