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ABSTRACT  20 

Background 21 

Drugs used to treat gastrointestinal diseases (GI drugs) are widely used either as prescription or over-22 

the-counter (OTC) medications and belong to both the ten most prescribed and ten most sold OTC 23 

medications worldwide. Current clinical practice shows that in many cases, these drugs are administered 24 

concomitantly with other drug products. Due to their metabolic properties and mechanisms of action, 25 

the drugs used to treat gastrointestinal diseases can change the pharmacokinetics of some co-26 

administered drugs. In certain cases, these interactions can lead to failure of treatment or to the 27 

occurrence of serious adverse events. The mechanism of interaction depends highly on drug properties 28 

and differs among therapeutic categories. Understanding these interactions is essential to providing 29 

recommendations for optimal drug therapy.  30 

 31 

Objective 32 

To discuss the most frequent interactions between GI and other drugs, including identification of the 33 

mechanisms behind these interactions, where possible.  34 

 35 

Conclusion 36 

Interactions with GI drugs are numerous and can be highly significant clinically. Whilst alterations in 37 

bioavailability due to changes in solubility, dissolution rate and metabolic interactions can be (for the 38 

most part) easily identified, interactions that are mediated through other mechanisms, such as 39 

permeability or microbiota, are less well understood. Future work should focus on characterizing these 40 

aspects.  41 

  42 
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1. Introduction 72 

It is estimated that 60-70 million US-Americans suffer annually from various types of gastrointestinal (GI) 73 

diseases, with GI diseases being the underlying cause of approximately 10% of all deaths in the U.S.[1,2] In 74 

fact, statistical data on global sales of prescription medication from 2014 indicate that sales of drug 75 

products for the treatment of GI diseases rank 12th with regard to sales of prescription medication 76 

worldwide.[3]  77 

The term gastrointestinal diseases covers a wide range of disorders, which can be either acute or 78 

chronic. Non ulcer or functional dyspepsia, for example, is usually an acute condition that affects the 79 

upper GI tract and is expressed by symptoms such as nausea, vomiting, heartburn, bloating and stomach 80 

discomfort. The treatment of functional dyspepsia can involve various drug classes depending on the 81 

symptoms as well as the possible causative factors.[4–6] Crohn’s disease, by contrast, is a chronic 82 

inflammatory disorder that can affect any part of the GI tract from the mouth to the anus. Although as of 83 

yet there is no cure for Crohn’s disease, there are several treatment options which can relieve the 84 

symptoms and prevent relapse.[7] As illustrated by these two examples, it is evident that a diversity of 85 

drugs with different mechanisms of action are required to address the various targets across the 86 

spectrum of GI diseases.  87 

Frequently, patients are prescribed several drugs concomitantly. Drug-Drug Interactions (DDIs) are a 88 

common problem during drug treatment and can sometimes lead to failure of treatment, or can cause 89 

serious or even fatal adverse events.[8]  90 

Medications used for the treatment of GI diseases can alter the GI physiology and thus interact with the 91 

absorption of concomitant medications, but they can also alter the metabolism and/or elimination of co-92 

administered drugs, potentially resulting, on the one hand, in a lack of efficacy of the co-administered 93 

drug or, on the other hand, in adverse drug reactions. From a regulatory perspective, studies of potential 94 

drug-drug interactions which lead to changes in absorption are required for the marketing authorization 95 
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of medicinal products in the European Union and United States.[8,9] In particular, these studies are 96 

designed to evaluate the effect of increased GI pH, the possibility of complexation and alterations in GI 97 

transit time.[8] Understanding the effect of GI drugs on the physiology of the GI tract and achieving a 98 

mechanistic understanding of the interaction(s) involved are key to successfully managing concomitant 99 

drug therapy. 100 

In clinical trials drug performance is determined under controlled conditions (e.g. with strict 101 

inclusion/exclusion criteria, under absence of, or controlled co-medication and with monitoring of 102 

compliance). But, in clinical practice, where a much wider variety of patient characteristics, disease 103 

states and multimorbidity is usual, the potential for DDIs is much greater. In fact, statistics show that one 104 

in a hundred hospital admissions occurs as a result of a drug-drug interaction.[10] The number of 105 

unreported/ less severe interactions is probably far greater.  106 

In addition to potential interactions with prescription drugs, one must also consider the possibility of 107 

interactions with over-the-counter medication (OTC). FDA publishes information leaflets for consumers 108 

about the most typical drug interactions that occur with specific OTC medications. It is interesting to 109 

note that four out of the twelve drugs discussed by FDA in these leaflets involve drugs used to treat 110 

gastrointestinal diseases.[11] European statistics indicate that there may be similar issues with 111 

concomitant use of OTC medication in the European Union, since 20-70% of those surveyed reported 112 

using OTC medicines.[12] 113 

Keeping in mind these statistics, as well as the fact that medications used to treat GI diseases count 114 

among the 10 most prescribed medicines - and also fall within the top 10 in terms of sales of OTC 115 

medications - worldwide,[3,13] it is evident that there is a high potential for DDIs with these medications. 116 

The objective of this review is first, to present and discuss the effects of drugs used to treat GI diseases, 117 

both prescription and OTC, on the pharmacokinetics and bioavailability of co-administered drugs and 118 

second, to identify the mechanisms behind these interactions insofar as possible. The review is organized 119 

according to the therapeutic indication of the drug (see Figure 1 for an overview) and covers drugs used 120 
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to prevent/treat all major GI diseases. Although several reviews concerning DDIs of specific GI drug 121 

classes, e.g. PPIs, are available in the literature, to the best of these authors’ knowledge this is the first to 122 

provide an overview of interactions that are likely to occur across the range of drugs used to treat GI 123 

diseases.  124 
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2. Medicines used to treat gastrointestinal diseases and their effect on co-administered drugs 125 

2.1 Agents affecting gastrointestinal motility 126 

Various neurotransmitters have an effect on GI motility and its coordination. Dopamine, for example, is 127 

present in significant amounts in the GI wall and has an inhibitory effect on motility.[14,15] Dopamine 128 

receptor antagonists are currently being used for motor disorders of the upper GI tract, 129 

gastroesophageal reflux disease, chronic dyspepsia and gastroparesis and have also been investigated 130 

for therapy of motility disorders of the lower GI tract.[16,17] Acetylcholine, by contrast, stimulates GI 131 

motility through increased contractile activity by the smooth muscle.[18,19] Serotonin, which is mainly 132 

present in the enterochromaffin cells in the enteric epithelium and colon, has a wide range of effects on 133 

the GI tract. The diversity of effects can be explained by the presence of multiple subtypes of 5-HT 134 

receptors, located on different types of cells. Both agonists and antagonists of 5-HT receptors are used 135 

for the treatment of GI diseases.[20,21]  136 

2.1.1 Prokinetic agents 137 

Prokinetic agents promote gut wall contractions and increase their coordination, thus enhancing GI 138 

motility. However, they do not disrupt the normal physiological pattern of motility.[16,17]  139 

2.1.1.1 Metoclopramide 140 

Metoclopramide is a first generation prokinetic agent with antidopaminergic properties (D1 and D2 141 

receptor antagonist). In addition, metoclopramide is a 5-HT3 receptor antagonist and a 5-HT4 receptor 142 

agonist. Metoclopramide promotes the response to acetylcholine in the upper GI tract and therefore 143 

accelerates gastric emptying and increases the tone of the lower esophageal sphincter.[22] The effect is 144 

observed in both healthy volunteers and those with GI diseases.[23–25] For example, Fink et al. 145 

demonstrated that metoclopramide accelerates gastric emptying in patients with gastroesophageal 146 

reflux disease independent of their gastric emptying status (Figures 2a and 2b).[25] Metoclopramide is 147 

used for the symptomatic treatment of postoperative or chemotherapy-induced nausea and vomiting, 148 
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gastro-esophageal reflux disease and gastroparesis.[23] A summary of the effects of concomitant use of 149 

metoclopramide on the absorption of several APIs is presented in Table 1 and mechanistic explanations 150 

for the observed effects are presented in the following text.  151 

It is known that migraine attacks are often accompanied by delayed gastric emptying.[26] Tokola et al., 152 

1984, investigated the effect of metoclopramide on the absorption of tolfenamic acid in patients 153 

diagnosed with migraine. According to the protocol, the volunteers took part in the absorption studies 154 

twice in the absence of migraine and twice as soon as possible after the beginning of a migraine attack. 155 

After rectal administration of metoclopramide, the absorption of the tolfenamic acid was accelerated 156 

compared to control (rectal administration of placebo) in all subjects. However, the total bioavailability 157 

of tolfenamic acid did not change significantly.[27] A similar study had been conducted in 1975 by Volans, 158 

in which the effect of metoclopramide on the absorption of aspirin during migraine attacks was 159 

investigated.[28] In that study, the delayed gastric emptying during a migraine attack was confirmed. In 160 

addition, it was shown that the plasma levels of salicylate achieved during a migraine attack, after 161 

intramuscular administration of metoclopramide, were higher in comparison to those achieved without 162 

metoclopramide pre-treatment.  163 

Gothoni et al., 1972, reported an earlier time to achieve maximum plasma concentration (tmax) and 164 

elevated serum tetracycline concentrations in six healthy volunteers after co-administration of 165 

tetracycline with intramuscular metoclopramide. Nonetheless, the total area under the curve (AUC) 166 

remained unaltered. In the same study, an increase in the rate of absorption of oral pivampicillin was 167 

reported when administered along with metoclopramide.[29]  168 

Concomitant administration of metoclopramide has also been shown to increase the absorption rate of 169 

acetaminophen, mexiletine, lithium, droxicam and morphine. Nimmo et al., 1973, studied the absorption 170 

of acetaminophen with and without co-administration of metoclopramide in five healthy volunteers. The 171 

mean tmax was reduced from 120 min to 48 min while the mean maximum plasma concentration 172 

(Cmax) increased from 125 μg/mL to 205 μg/mL. The urinary excretion of acetaminophen was not 173 
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influenced. Given the fact that tmax is a function of both absorption and elimination rates, the shortened 174 

tmax after pre-treatment with metoclopramide indicates an enhanced absorption rate.[30] Similar results 175 

were obtained in the study of Wing et al., 1980, in which the authors demonstrated an increased 176 

absorption rate of mexiletine after co-administration of metoclopramide. Here too, it was observed that 177 

the bioavailability of mexiletine was unaltered, indicating that during chronic dosing of mexiletine, the 178 

antiarrhythmic effect is unlikely to change after concomitant use of metoclopramide.[31] In a further 179 

study by Crammer et al., 1974, it was shown that metoclopramide reduced the tmax of co-administered 180 

lithium by two hours.[32] Sánchez et al., 1989, investigated the effect of intravenous metoclopramide on 181 

the absorption of droxicam (a piroxicam prodrug) and Manana et al., 1988, investigated the effect of oral 182 

metoclopramide after concomitant administration of an oral controlled release formulation of morphine. 183 

In both cases, a significant reduction of tmax was observed, but other pharmacokinetic parameters were 184 

not significantly different.[33,34] Thus, in most studies it has been demonstrated that although 185 

concomitant administration of metoclopramide increases absorption rate, there is little or no effect on 186 

AUC, or clinical efficacy.  187 

In a study by Morris et al., 1976, it was likewise observed that the co-administration of metoclopramide 188 

resulted in an increased rate of absorption of levodopa and higher peak plasma concentrations, 189 

consistent with the earlier tmax.[35] In this case, though, the authors emphasized the fact that higher 190 

peak concentrations of levodopa may result in dyskinetic movements and therefore, this should be taken 191 

into consideration when metoclopramide is co-administered with levodopa.  192 

Considering the properties of metoclopramide and the fact that besides promoting gastric emptying, it 193 

also increases the upper small intestinal motility, administration of metoclopramide could also decrease 194 

the time available for absorption in the small intestine and thus lead to a reduction of total 195 

bioavailability. Gugler et al., 1981, explored this hypothesis by studying the absorption of cimetidine 196 

when given concomitantly with antacids or metoclopramide. The study was conducted in eight healthy 197 

volunteers and showed that there was a tendency to a shorter time to reach maximum plasma 198 
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concentrations when metoclopramide was co-administered. Additionally, a decrease in AUC of 199 

approximately 22% was observed, although in neither case did the difference reach statistical 200 

significance.[36] On the other hand, Mahony et al., 1984, conducted a clinical study with children with 201 

leukemia and reported that concomitant administration of methotrexate tablets with oral 202 

metoclopramide led to significantly lower AUC. Consistent with these findings, Pearson et al., 1985, 203 

demonstrated that a very fast or slow small intestinal transit in children with leukemia reduces the Cmax 204 

of methotrexate. [37,38]  205 

In the studies conducted by Manninen et al., co-administration of metoclopramide with digoxin in eight 206 

healthy adults or in eleven patients on digoxin therapy resulted in reduced serum digoxin 207 

concentrations.[39,40] The lower bioavailability of digoxin was attributed to its dissolution rate-limited 208 

absorption, since the changes were only observed when digoxin was given as a tablet and not when it 209 

was given as a solution. For this reason, authors suggested that fast dissolving tablets of digoxin would 210 

be less affected by co-administration of drugs which alter the GI motility. Supporting this hypothesis, 211 

Johnson et al., 1984, demonstrated that digoxin was absorbed completely and more quickly when it was 212 

given as soft-gelatin capsules rather as a tablet. Oral metoclopramide reduced the tmax for both 213 

formulations, but only reduced the AUC of the tablet formulation.[41] From these two studies it is 214 

apparent that co-administration of metoclopramide may result in impaired drug absorption and 215 

decreased bioavailability in cases when a poorly soluble API exhibits dissolution-rate limited absorption.  216 

In contrast to the results discussed above, Wadhwa et al., 1986, conducted a clinical study in fourteen 217 

kidney transplant patients with the aim of increasing the bioavailability of cyclosporine. Cyclosporine is 218 

incompletely absorbed in the small intestine with a dose-dependent rate and extent of absorption. The 219 

authors reasoned the concomitant administration of cyclosporine with metoclopramide would increase 220 

the absorption rate and possibly the bioavailability of this immunosuppressive. Due to accelerated 221 

gastric emptying, there was a very significant increase in the Cmax of cyclosporine, as well as a decrease 222 

in tmax. Furthermore, an average increase of 29% in the AUC was observed (p=0.003). However, the 223 
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authors concluded that further studies would be required to determine whether metoclopramide can 224 

reproducibly increase the absorption of cyclosporine on a long term basis.[42]  225 

Overall, it appears that co-administration of metoclopramide, leads to a decreased tmax of the co-226 

administered drugs, indicating a faster rate of absorption. However, the effect of concomitant use of 227 

metoclopramide on the AUC of the co-administered drug is variable. Although the reported examples are 228 

limited, it appears that after co-administration of metoclopramide small intestinal transit may be too fast 229 

for poorly permeable (e.g. cimetidine) or poorly dissolving (e.g. digoxin) drugs to be adequately 230 

absorbed. Thus, in this case, BCS classification may be helpful in identifying potential problems in 231 

bioavailability when metoclopramide is co-administered. 232 

2.1.2 Anticholinergic agents 233 

Propantheline is an anticholinergic agent which reduces gastrointestinal motility and prolongs gastric 234 

emptying rate. It is usually used in combination with other medicines to treat stomach ulcers. As for 235 

metoclopramide, propantheline has been investigated with respect to its potential effect on the 236 

absorption of concomitant medications. As one would anticipate, propantheline decreased the 237 

absorption rate of acetaminophen and lithium when given concurrently. [30,32] Co-administration of 238 

propantheline with a rapidly and a slowly dissolving tablet of digoxin resulted in increased serum digoxin 239 

concentrations only for the slowly dissolving formulation.[39,40] 240 

2.1.3 Laxatives  241 

Laxatives promote defecation and are often used OTC for the treatment of constipation. They can be 242 

grouped in osmotic, stimulant and bulk laxatives (Table 2).[43] An overview of the effects of laxatives and 243 

antidiarrheal agents on gastrointestinal physiology is given in Table 3. Osmotic laxatives (indigestible 244 

disaccharides, sugar alcohols, synthetic macromolecules, saline laxatives) attract and retain water in the 245 

intestinal lumen by increasing the luminal osmotic pressure. Stimulant laxatives (such as bisacodyl, senna 246 

and sodium picosulfate) act locally by increasing colonic motility and decreasing water absorption in the 247 
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large intestine.[44] Bulk laxatives such as bran, isphagula and sterculia adsorb and retain luminal fluids 248 

and increase the fecal mass. For constipation linked with specific diseases additional treatment options 249 

are available: Linaclotide, an agonist of guanylate cyclase-C, stimulates fluid secretion, accelerates 250 

intestinal transit and is used for constipation-predominant irritable bowel syndrome.[45] 251 

In general, laxatives shorten GI transit time, but depending on the type of laxative, the extent of the 252 

effect on transit time through specific GI compartments may vary (Figure 3). Studies have been 253 

conducted with a variety of methods including radiopaque markers method,[46–48] following transit of a 254 

single metal sphere (diameter 6 m, density 1.4 g/ml) using a metal detector[49], [13C]-octanoate and 255 

lactose-[13C] ureide breath tests[50] and scintigraphy.[45,51–54]  256 

For healthy subjects the following observations have been reported: The total GI transit time was 257 

reduced in thirteen subjects after treatment for nine days with either the bulk laxative wheat bran (39.0 258 

h vs. 69.0 h) or the stimulant laxative senna (41.0 h vs. 69.0 h) compared to the baseline value.[46] Small 259 

intestinal transit time was reduced by bisacodyl (dose 10 mg) from approximately 2.5 h to 1.5 h in ten 260 

subjects,[49] while the osmotic laxatives polyethylene glycol and lactulose, had a minimum effect (if any) 261 

on the small intestinal transit time after being administered at a dose of 10 g twice daily for five days.[51] 262 

Administration of an isosmotic solution containing 40 g polyethylene glycol 3350 resulted in a significant 263 

decrease in oro-caecal transit time from 423.8±28.1 min to 313.8±17.2 min in twelve subjects.[50] In 264 

another study, administration of 5 mg bisacodyl in twenty-five subjects significantly accelerated the 265 

transit through the ascending colon (median 6.5 h vs. 11.0 h).[54] Similarly, 10-20 mL of lactulose 266 

(Duphalac; Duphar Laboratories Ltd., England) three times daily for five days resulted in a significant 267 

decrease of the mean proximal colon transit time from 12.9±3.7 h to 7.0±2.5 h in eleven subjects.[53] The 268 

total colonic transit time was reduced to a greater extent after administration of 10 mg bisacodyl (from 269 

31±14 h to 7±8 h) than by treatment with 30 g lactulose (from 34±12 h to 30±19 h) in ten subjects.[49] 270 

In patient populations the following observations have been reported: In twelve subjects with 271 

constipation-predominant irritable bowel syndrome, treatment with lincalotide (dose 100 μg or 1000 μg) 272 
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did not affect the gastric or small intestinal transit time.[45] However, the ascending colon transit time 273 

was decreased by 54% at a high dose of 1000 μg of linaclotide. At a lower dose of 100 μg there was a 274 

decrease of 33%, although this was not statistically significant. In line with these observations, the total 275 

colonic transit time was only significantly accelerated by the higher dose.[45] In nine subjects with chronic 276 

nonorganic constipation, treatment with an isosmotic electrolyte solution containing polyethylene glycol 277 

4000 (14.6 g) for eight weeks did not significantly alter the transit time through the proximal colon, while 278 

the transit through the left colon and rectum was significantly accelerated (46±29 h vs. 62±20 h and 279 

37±42 vs. 78±21 h, respectively).[48] The results in eight patients with slow transit constipation were 280 

similar after administration of 60 g polyethylene glycol 4000 daily for six weeks; the right colon transit 281 

time was not significantly different compared to placebo, while the transit time through the left colon 282 

was significantly accelerated (13 h vs. 45 h) resulting in a reduction of total colonic transit time from 91 h 283 

to 43 h.[47] In summary, laxatives decrease transit times in healthy subjects throughout the GI tract, while 284 

in constipated patients the effects are mainly limited to the colon. 285 

Changes in GI transit times induced by laxatives can lead to changes in bioavailability. For example, co-286 

administration of senna (20 mL of Liquidepur, Fa. Nattermann, Cologne, Germany) with a sustained-287 

release quinidine formulation (0.5 g every 12 hours) reduced quinidine plasma levels by 25% in nine 288 

patients with cardiac arrhythmia on long-term treatment, resulting in reoccurrence of supraventricular 289 

extrasystoles.[55] Similarly, polyethylene glycol 4000 reduced the absorption of digoxin by 30% when co-290 

administered with digoxin tablets (dose 0.5 mg) in eighteen healthy subjects.[56] However, it is not clear 291 

whether the same effect would be observed in cardiac patients or what the clinical ramifications would 292 

be. Further, a trend (although not statistically significant) to decreased AUC of estradiol glucuronide 293 

(dose 1.5 mg) was observed when co-administered for ten days with the maximum tolerated dose of 294 

wheat bran (-13%) and senna (-10%) in twenty healthy postmenopausal women.[57]  295 

Many laxatives have been shown to alter the production of short chain fatty acids (SCFA). SCFA are 296 

usually associated with a decrease in luminal pH. After treatment with senna or wheat bran, fecal SCFA 297 
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concentrations were increased in healthy subjects (n=13) by 82% and 19%, respectively.[46] After 298 

administration of senna, the pH in the middle and distal colon was decreased (6.39 vs. 6.85, 6.66 vs. 299 

7.14).[46] Lactulose significantly acidified the contents in the lower small intestine as well as in the right 300 

colon.[58–60] Sodium sulphate also decreased the pH, with the greatest effect in the left colon.[58] By 301 

contrast, wheat bran reduced the pH in the distal colon of thirteen healthy subjects only slightly (6.88 vs. 302 

7.08).[46] But mechanisms other than via SCFA can also be at play. For example, the increase in the pH in 303 

the lower small intestine, colon and rectum observed after administration of magnesium sulphate is 304 

postulated to be the result of gastric conversion to magnesium chloride and subsequent reconversion to 305 

insoluble magnesium carbonate in the colon prompted by increased colonic bicarbonate secretion.[58] 306 

The possible pH changes observed with laxatives are not clearly associated with changes in drug product 307 

performance. For example, mesalazine release from a delayed-release, pH-dependent formulation of 308 

mesalazine (Asacol®, SmithKline Beecham, UK) was not affected by the co-administration of ispaghula 309 

husk or lactulose despite their known pH-lowering effect in the colon.[61,62] Nonetheless, the UK 310 

manufacturers of delayed-release mesalazine formulations (Asacol®, Allergan Ltd, Bucks, UK and 311 

Salofalk® granules, Dr. Falk Pharma UK Ltd, Bourne End, UK) suggest that drug release might be impaired 312 

by preparations with pH-lowering effect.[63,64]  313 

With respect to the gut microbiota, the fecal microbiota of patients with chronic idiopathic constipation 314 

(n=65) treated with lactulose over twenty-eight days was increased in Anaerobes by 3% and 315 

Bifidobacteria by 8%, while treatment with polyethylene glycol 4000 resulted in a reduced fecal amount 316 

of Bifidobacteria (-14%).[65] Lactulose administration in patients taking coumarins (acenocoumarol, 317 

phenprocoumon) increased their risk of over-anticoagulation, as assessed in a population-based cohort 318 

study, because of changes in the vitamin K production of the colonic bacterial flora. By contrast, 319 

concomitant intake of isphagula with coumarins did not alter the risk of over-anticoagulation.[66] 320 

The importance of the gut microbiota on oral pharmacotherapy is discussed in section 2.6 “Antibiotics”. 321 
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2.1.4 Antidiarrheal agents 322 

Antidiarrheal agents provide symptomatic relief of diarrhea by decreasing fluid loss, by slowing down the 323 

passage of the gastrointestinal contents through the digestive tract, by increasing fluid absorption 324 

and/or by reducing intestinal secretions.[67] They can be classified according to their mechanism of action 325 

(Table 2). Opioids (such as loperamide, diphenoxylate and codeine phosphate) inhibit intestinal transit by 326 

activating μ-opioid receptors. Adsorbents and bulking agents (kaolin, isphagula, methylcellulose) adsorb 327 

water and increase the fecal mass, while the antisecretory action of racecadotril, an enkephalinase 328 

inhibitor, is linked to reducing chloride and fluid flux into the GI lumen.  329 

Differences in the GI transit time have been observed after oral loperamide administration (Figure 4). 330 

The total GI transit time was increased after loperamide administration in healthy subjects (74.0 h vs. 331 

50.3 h, n=11), as measured by radiopaque marker pellets, presumably due to reduced, irregular motor 332 

activity and therefore, prolonged transit time in the jejunum.[46,68,69] Gastric emptying time was not 333 

significantly different in twenty-four healthy subjects treated with 4 mg loperamide compared to 334 

placebo as measured with a radio-labeled meal.[70] However, gastric residence time measured with a 335 

radiotelemetry capsule was increased two-fold in five healthy subjects treated with 8 mg loperamide (4 336 

doses, every 6 hours).[71] Small intestinal transit time, as measured with the hydrogen breath test, was 337 

increased by 80-130% in healthy subjects receiving 4 to 8 mg of loperamide.[70–72]  338 

With respect to the composition of GI fluids, loperamide has been shown to decrease prostaglandin-E2 339 

induced water and electrolyte secretion in the jejunum of healthy volunteers and reduce postprandial 340 

secretion of trypsin and bilirubin by more than 50% in patients with short bowel syndrome.[69,73,74] 341 

Similarly, basal and amino acid stimulated gallbladder motility was decreased by loperamide (dose 8 mg) 342 

in eight healthy subjects as measured by ultrasonography and bilirubin output in the duodenum.[75] After 343 

loperamide administration fecal SCFA concentrations were decreased in healthy subjects (82.0 μmol/g 344 

wet weight vs. 152.0 μmol/g wet weight; n=13).[46]  345 
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In terms of DDIs, administration of 4 mg loperamide 24 h, 12 h and 1 h before desmopressin 346 

administration increased the bioavailability of desmopressin in eighteen healthy subjects (AUC 3.1-fold, 347 

Cmax 2.3-fold) and prolonged the time to reach the maximum plasma concentration (2 h vs. 1.3 h) 348 

without affecting the elimination half-life.[76] These effects could be explained by the decrease in GI 349 

motility. Desmopressin is highly soluble but poorly permeable (bioavailability approx. 0.1%), so longer 350 

transit times are expected to lead to a longer contact time of the drug with the absorptive mucosa.[77] 351 

Co-administration of loperamide at the maximum tolerated dose over 10-12 days also increased the AUC 352 

of estradiol glucuronide (dose 1.5 mg) by 15% in twenty healthy postmenopausal women, although the 353 

difference did not reach statistical significance.[57]  354 

On the other hand, a single dose of loperamide (16 mg) decreased the bioavailability of the poorly 355 

soluble drug saquinavir (dose 600 mg) by 54% in twelve healthy subjects when administered 356 

concomitantly. This could be explained by the decreased motility and/or a reduction of electrolyte and 357 

fluid secretion which could hinder dissolution.[78] Additionally, it is possible that a decreased secretion of 358 

bile salts secondary to reduced gallbladder motility[75] impeded the solubilisation of saquinavir.  359 

On the other hand, loperamide co-administration (8 mg every 6 hours) in twelve healthy male subjects 360 

decreased the absorption rate of theophylline from a sustained-release 600 mg formulation (Cmax 3.2 361 

mg/L vs. 4.6 mg/L, tmax 20 h vs. 11 h), which could be explained by impeded release from the 362 

formulation due to a decrease in hydrodynamics (decreased motility) or perhaps a prolonged gastric 363 

residence time of the formulation/released drug. However, the AUC was not affected.[79]  364 

Last but not least, the surface of bulk laxatives and bulking agents offers a site for drug adsorption. 365 

Concomitant administration of kaolin-pectin decreased the absorption of tetracycline (20%), aspirin (5-366 

10%), procainamide (30%), quinidine (58%), trimethoprim (12-20%), lincomycin (90%), chloroquine (29%) 367 

and digoxin (15-62%), which is most likely the result of adsorption of the drugs onto kaolin.[80–88] Drug 368 
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adsorption is also observed onto dietary fibers and therefore, similar DDIs to those observed with dietary 369 

fibers are further considered in section 2.2.  370 

An overview of the effects of antidiarrheal agents on gastrointestinal physiology is given in Table 3.  371 

2.2 Dietary fibers  372 

The use of dietary fibers in the treatment of various diseases, such as diabetes, hypercholesterolemia, 373 

obesity, chronic constipation and gastrointestinal motility disorders, has increased over the last years. 374 

However, there are few studies that have investigated the impact of concomitant use of dietary fibers 375 

with other drugs. From the studies available it seems that the effect of the concomitant use of dietary 376 

fibers depends on the type of fiber used. 377 

The interaction of levothyroxine with dietary fibers is well established. Concomitant use of dietary fibers, 378 

such as oat bran, soy fiber and ispaghula husk, result in decreased bioavailability of levothyroxine, due to 379 

adsorption of the drug to the fibers in the GI tract.[89] The authors commented that the adsorption of 380 

levothyroxine to soluble fibers and the consequent reduction in bioavailability might be greater than its 381 

adsorption to insoluble fibers. The interaction with levothyroxine is also noted by FDA in a consumers’ 382 

information leaflet regarding drug interactions with food.[90]  383 

In a case study reported by Perlman, the blood levels of lithium were decreased by 48%, when a patient 384 

was treated simultaneously with lithium and ispaghula husk .[91] There is also some evidence that fibers 385 

interact with some tricyclic antidepressants. The clinical effectiveness of tricyclic antidepressants 386 

appears usually after an administration period of 2-6 weeks. During this period, due to anticholinergic 387 

effects of the drugs, constipation is a common side effect. Therefore, patients receiving antidepressant 388 

medication often ingest dietary fibers. Already in 1992, Stewart observed a decrease in plasma 389 

concentrations of three tricyclic antidepressants (amitriptyline, doxepin and imipramine) in three 390 

patients, who concurrently ingested a diet rich in fibers.[92]  391 



19 
 

There are conflicting inputs in the literature about the interaction of dietary fibers and digoxin. Brown et 392 

al., 1977, reported a significant decrease in the bioavailability of digoxin when given to twelve healthy 393 

volunteers with regular or high fiber diet concomitantly, as opposed to administering digoxin alone in 394 

the fasted state.[93] Albert et al., 1978, reported that when kaolin-pectin suspension was given 395 

simultaneously with digoxin, the total amount of digoxin absorbed was decreased by 62%. However, no 396 

significant interactions were observed when digoxin was given 2 h before the administration of the fiber 397 

suspension.[85] However, studies by Lembcke et al., 1982, and Kasper et al., 1979, found no effect on the 398 

bioavailability of digoxin when it was administered together with guar gum or other fibers.[94,95] In a later 399 

study Huupponen et al., 1984, investigated the effect of guar gum on the absorption of digoxin in ten 400 

healthy volunteers. It was demonstrated that co-administration of guar gum with digoxin resulted in 401 

reduced plasma concentrations of digoxin and a decrease of 15% of the AUC for the first six hours (p< 402 

0.05).[96]  403 

Holt et al., 1979, investigated the effect of co-administration of the soluble fibers guar gum and pectin 404 

on the absorption of acetaminophen. Concomitant administration with these fibers resulted in delayed 405 

absorption and decreased Cmax. However, the total absorption of acetaminophen was not significantly 406 

reduced. The authors attributed their results to delayed gastric emptying. Moreover, they argued that 407 

because guar gum, when hydrated, forms a viscous colloidal suspension, the high viscosity of this 408 

suspension could be a possible reason for the observed delay in gastric emptying.[97] The results from this 409 

study correlate well with the study conducted by Reppas et al., 1998, in mongrel dogs, in which the 410 

effect of elevated luminal viscosity on the absorption of acetaminophen, hydrochlorothiazide, cimetidine 411 

and mefenamic acid was investigated.[98] Elevated luminal viscosity was achieved by administering saline 412 

solutions of the water-soluble guar gum. When given concurrently with the guar gum solutions, the 413 

Cmax and AUC of the highly soluble acetaminophen and hydrochlorothiazide were significantly 414 

decreased, suggesting that the decreased rate of dissolution, due to the higher luminal viscosity, led to 415 

lower concentrations at the absorption sites. In the case of cimetidine, concurrent administration of the 416 
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guar gum solution led only to a decrease in Cmax and not AUC. For the poorly soluble but highly 417 

permeable mefenamic acid, neither the Cmax nor the AUC were significantly affected by the 418 

concomitant administration of the guar gum in dogs.[98] Huupponen et al., 1984, reported a decrease in 419 

Cmax and AUC of penicillin when given together with guar gum.[96] Finally, Astarloa et al., 1992, 420 

investigated the effect of a diet rich in insoluble fiber on the pharmacokinetics of levodopa. Consumption 421 

of two months of the dietary supplement with the usual dose of levodopa led to elevated plasma levels 422 

of levodopa especially at 30 and 60 minutes after oral administration.[99,100]  423 

It is evident from these studies that it is currently not possible to make any generalizations about DDIs 424 

with dietary fibers although it seems that there is a tendency for decreased maximum plasma 425 

concentrations of the co-administered drug. These events are likely attributable to slower gastric 426 

emptying, higher viscosity and, perhaps in some cases, adsorption phenomena.[101] It also seems that the 427 

type of interaction, if any, is highly dependent on the type of dietary fiber used. It remains to be 428 

investigated whether these interactions, such as they exist, lead to clinically significant differences. 429 

2.3 Antiemetics 430 

Antiemetics are classified according to their mechanism of action. There are five receptors that play a 431 

key role in the vomiting reflex; muscarinic, dopaminergic, histaminic, serotoninergic and substance 432 

P/neurokinin receptors.  433 

Aprepitant is a very potent neurokinin-1 receptor antagonist used for the prevention of acute and 434 

delayed chemotherapy-induced nausea and vomiting.[102,103] Aprepitant is metabolized primarily by 435 

CYP3A4 and secondarily by CYP1A2 and CYP2C19. It also acts as a moderate inhibitor of CYP1A2, CYP2C9, 436 

CYP2C19, CYP2E1 and as a weak inducer of CYP2C.[102,103] Caution is therefore necessary, especially when 437 

administered concomitantly with chemotherapy agents that are metabolized primarily by CYP3A4, as 438 

inhibition by aprepitant may lead to higher plasma levels and toxic side effects. According to the Public 439 

Assessment Report, EMEND® capsules (which contain aprepitant as API), should not be concomitantly 440 
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administered with ergot alkaloid derivatives, pimozide, terfenadine, astemizole, or cisapride, as the 441 

competitive inhibition of the CYP3A4 by aprepitant results in elevated plasma concentrations, leading to 442 

adverse effects.[103] Further pharmacokinetic interactions that have been reported for aprepitant in the 443 

literature are those with midazolam, warfarin, dexamethasone and methylprednisolone.[22,104]  444 

Majumdar et al., 2003, investigated the effect of aprepitant on the pharmacokinetics of single dose 445 

midazolam on day 1 and on day 5 during daily administration of aprepitant for five days. In this study, 446 

two dose regimens of aprepitant were used; 125/80 mg and 40/25 mg. It was concluded that co-447 

administration of midazolam with the 125/80 mg regimen (125 mg on day 1 and 80 mg on days 2-5) 448 

resulted in a 2.3-fold increase in midazolam AUC on day 1 and a 3.3-fold increase on day 5. The plasma 449 

concentrations achieved 1 h after dosing (C1h) and the half-life (t1/2) were also increased due to the 450 

inhibition of first pass and systemic metabolism and subsequent reduction in clearance. Although co-451 

administration of midazolam with the 40/25 mg dose regimen did not result in any significant change in 452 

the pharmacokinetics of midazolam, this lower dose is not used in clinical practice.[105] Majumdar et al., 453 

2007, later investigated the effect of aprepitant on intravenously administered midazolam and the 454 

findings were consistent with the first study, but with an increase in AUC of 1.47-fold. The authors 455 

suggested that the lower increase in AUC observed after intravenous administration of midazolam, might 456 

be due to lack of inhibition of presystemic metabolism when midazolam is given intravenously.[106]  457 

In an analogous study by McCrea et al., 2003, the effect of a 5-day administration of 125/80 mg 458 

aprepitant regimen on the pharmacokinetics of orally administered methylprednisolone and 459 

dexamethasone was evaluated. Due to the inhibition of CYP3A4 by aprepitant, the Cmax of 460 

methylprednisolone was increased 1.5-fold while the AUC increased 2.5-fold. An increase of 2.2-fold in 461 

AUC was observed for dexamethasone.[107] Clinically, unnecessary high exposure to corticosteroids 462 

should be avoided due to the potential risk of adverse effects such as hyperglycemia and increased 463 

susceptibility to infections. For these reasons, it is suggested that the oral doses of dexamethasone and 464 

methylprednisolone should be reduced by half when used for the management of chemotherapy-465 
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induced nausea and vomiting concurrently with aprepitant.[107] The interaction of aprepitant with 466 

warfarin is less clear.[108] In a study by Takaki et al., 2016, a decrease in warfarin plasma levels was 467 

observed, but no significant interaction between warfarin and aprepitant was established. One possible 468 

reason for the lack of interaction could be the fact that the volunteers who took part in this clinical study 469 

were also receiving several other chemotherapeutic agents. In any case, careful monitoring of patients 470 

on chronic warfarin therapy is required.[104,109]  471 

Serotonin plays an important role in various body functions. Most serotonin is synthesized in the GI tract 472 

and it affects various aspects of intestinal physiology. Multiple subtypes of 5-HT receptors exist on 473 

various types of cells, such as smooth muscle and enterocytes, and agonists or antagonists of 5-HT 474 

receptors are used in the treatment of different gastrointestinal disorders.[21] 5-HT3 receptor antagonists, 475 

for example ondasentron and granisetron, have been successfully used in the treatment of 476 

chemotherapy-induced nausea and vomiting. Recommendations, published by the American Society of 477 

Clinical Oncology (ASCO) for the use of the 5-HT3 receptor antagonists, do not distinguish among them 478 

with regard to their safety and efficacy. Nonetheless, these compounds differ significantly in their 479 

pharmacokinetic properties and especially with respect to their potential to interact with CYP 480 

enzymes.[110,111] Granisetron, for example, does not inhibit any of the CYP enzymes which are commonly 481 

involved in drug metabolism, whereas ondansetron inhibits both CYP1A2 and CYP2D6 and can thus 482 

interact with various concurrently used drugs.  483 

However, the interactions reported in literature are not solely attributed to their enzyme inhibitory 484 

properties. Concomitant use of ondansetron with cyclophosphamide resulted in reduced systemic 485 

exposure, probably due to increased systemic clearance.[112,113] In any case, there is a need for more 486 

studies to increase knowledge about drug interactions of chemotherapeutic agents with commonly used 487 

antiemetics, as even a slight change in the pharmacokinetic parameters or pharmacodynamics of the 488 

anti-cancer medication could jeopardize the effectiveness of chemotherapy.[112] 489 
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2.4 Gastric acid reducing agents and Antacids 490 

Proton-pump inhibitors (PPIs), H2-receptor antagonists (H2RAs) and antacids are widely used in the 491 

treatment of various gastric acid related disorders, such as peptic ulcers and gastroesophageal reflux 492 

disease. In fact, PPIs and H2RAs are classified among the three most prescribed drug classes for the years 493 

2011-2014 and  the situation is similar today.[114] Indeed, esomeprazole, a proton-pump inhibitor, ranks 494 

among the top five most prescribed medications worldwide.[115] Of particular concern for these drugs is 495 

their increasing OTC use. Despite the fact that gastric antisecretory agents or antacids are tolerated well, 496 

with a low overall frequency of adverse reactions,[116] their concurrent use with other medications can 497 

have a great effect on drug absorption. If prescribed, identification of potential interactions by the 498 

prescribing physician and/or dispensing pharmacist is possible, but this control mechanism is largely lost 499 

if the drugs are obtained OTC or via e-pharmacies. 500 

2.4.1 Proton Pump Inhibitors  501 

Proton-pump inhibitors are a group of substituted benzimidazole sulfoxide drugs with strong inhibitory 502 

effects on gastric acid secretion from the parietal cells in the stomach. At present, six PPIs 503 

(dexlansoprazole, esomeprazole, lansoprazole, omeprazole, pantoprazole, rabeprazole) are available on 504 

the market.[117] PPIs are used in the treatment of acid-related disorders and for the prevention of 505 

gastrointestinal bleeding in patients receiving dual antiplatelet therapy of clopidogrel and aspirin. 506 

Furthermore, they are used as a component of combination therapy for the eradication of H. pylori, 507 

because their properties enhance the anti-H. pylori activities of the co-administered antibacterials 508 

(clarithromycin and amoxicillin).[118] PPIs can affect the absorption of the co-administered drugs to a 509 

great extent, mainly due to the increase in gastric pH. In a recent study, the effect of 40 mg of 510 

pantoprazole administered orally once per day for four days and 20 mg of the H2RA famotidine 511 

administered orally twice within 12 hours, on the GI physiology of eight healthy male volunteers was 512 

investigated.[119] In both cases, the gastric pH differed significantly in comparison to the control group 513 
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(Figure 5). However, PPIs can also affect the pharmacokinetics of co-administered drugs through other 514 

mechanisms,[120] and several excellent reviews have been written regarding the drug-drug interactions of 515 

PPIs.[121–123]  516 

As already mentioned, gastric pH is an important parameter that can affect absorption of drugs, 517 

especially these which are poorly soluble weak bases. For example, Jaruratanasirikul et al., 1998, 518 

investigated the effect of 40 mg oral omeprazole on the pharmacokinetics of a single 200 mg capsule of 519 

itraconazole in eleven healthy volunteers. Concomitant use of omeprazole resulted in reduction of the 520 

mean AUC and Cmax of itraconazole by 64% and 66% respectively. No interaction due to omeprazole’s 521 

inhibition of CYP3A4 was reported.[124] On the other hand, Johnson et al., 2003, investigated the effect of 522 

concomitant use of 40 mg oral omeprazole with a 40 mg dose oral solution of itraconazole in twenty 523 

volunteers. It was reported that there was no statistically significant difference on the AUC, tmax and 524 

Cmax with the co-administration of omeprazole.[125] The results of these two clinical studies (one with a 525 

solid dosage form, one with itraconazole in solution) suggest that co-administration of omeprazole and 526 

elevation of gastric pH, affects the dissolution of itraconazole capsules rather than the permeability of 527 

itraconazole. The results regarding ketoconazole are similar. In 1995, Chin et al., conducted a clinical 528 

study with nine healthy volunteers, in which the effects of 60 mg oral omeprazole or an acidic beverage 529 

on the pharmacokinetics of orally administered 200 mg ketoconazole were investigated. Pre-treatment 530 

with omeprazole resulted in significantly lower AUC and Cmax and a prolongation of tmax.[126] 531 

Ketoconazole and itraconazole are both practically insoluble at pH>4. Co-administration of PPIs with 532 

poorly soluble imidazole antifungal agents when given as capsules or tablets is, therefore, not 533 

recommended.[127] Interestingly, the elevated gastric pH does not affect the bioavailability of fluconazole 534 

tablets.[128] This lack of interaction is underscored by the high solubility of fluconazole over the whole pH 535 

range of the GI tract. Thus, stomach acidity does not limit the dissolution rate of fluconazole or its 536 

absorption.[129,130]  537 
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The increase in the gastric pH caused by PPIs can also greatly affect the bioavailability and effectiveness 538 

of anti-retroviral agents, depending on their pH/solubility profiles. Tappouni et al., 2008, conducted a 539 

clinical study with sixteen patients, in which the effect of omeprazole on indinavir was evaluated. With 540 

pre-treatment and co-administration of 20 mg oral omeprazole, the Cmax of indinavir decreased by 29% 541 

and the AUC by 34%, whereas at a higher dose of 40 mg omeprazole, the Cmax and AUC of indinavir 542 

decreased by 41% and 47% respectively.[131] Co-administration of omeprazole resulted in reduction to 543 

the systemic exposure to both nelfinavir and its metabolite. In particular, the AUC of nelfinavir was 544 

decreased by 36%.[132] Tomilo et al., 2006, reported a 94% and 91% decrease in AUC and Cmax, 545 

respectively, of 400 mg oral atazanavir, when co-administered with 60 mg lansoprazole in ten healthy 546 

volunteers.[133] The results were similar when omeprazole was co-administered.[134] However, the clinical 547 

impact of this drug-drug interaction on the clinical effect of atazanavir is not clear.[135,136] It seems that 548 

co-administration of PPIs with an atazanavir/ritonavir regimen does not affect the ability of atazanavir to 549 

achieve the minimum plasma concentration necessary for the virologic response, i.e. the concomitant 550 

use of atazanavir/ritonavir regimen and PPIs was not associated with higher virologic failure rate. [135] 551 

Nonetheless, further studies, in which both the pharmacokinetic parameters and the clinical response 552 

rates are simultaneously investigated, are needed to understand the interaction and its consequences 553 

more fully. 554 

In contrast to the results mentioned so far, in the study of Winston et al., 2006, co-administration of 40 555 

mg oral omeprazole with 1000 mg saquinavir (given orally as 1000 mg saquinavir/100 mg ritonavir 556 

combination) resulted in an 82% increase in the mean AUC of saquinavir in eighteen healthy volunteers. 557 

The increase did not result in an increase in adverse effects. The authors commented that further work is 558 

necessary in order to understand the mechanism of this DDI and to address whether the effects of 559 

omeprazole on saquinavir’s pharmacokinetics would be the same even in the absence of ritonavir. The 560 

authors also discussed the possibility of whether the increase could be the result of inhibition of 561 

transmembrane-transporters, such as P-gp or MRP by omeprazole.[137]  562 
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As for most of the antifungal and antiviral drugs, the absorption of mycophenolate mofetil is impaired by 563 

concomitant administration of PPIs. Kofler et al., 2009, measured the levels of mycophenolic acid (active 564 

metabolite) in thirty-three patients concurrently receiving 40 mg oral pantoprazole. Cmax and AUC of 565 

mycophenolic acid were significantly lower when patients were pretreated with pantoprazole.[138] As 566 

anticipated, co-administration of pantoprazole with an enteric coated formulation of mycophenolic acid 567 

had no significant effect on its pharmacokinetics.[139]  568 

Apart from affecting the solubility of APIs in the stomach, an increase in the gastric pH can jeopardize the 569 

bioavailability of formulations with pH-dependent release. The effect of concomitant administration of 570 

esomeprazole on the bioavailability of risedronate sodium DR was evaluated in a clinical study involving 571 

eighty-seven postmenopausal women. The results showed that esomeprazole administration one hour 572 

before dinner or one hour before breakfast resulted in 32% and 48% reduction in the bioavailability of 573 

risedronate sodium DR, respectively. In the report, it was suggested that an increase in the gastric pH 574 

may compromise the enteric coating of risedronate delayed release formulation, thus resulting in release 575 

of risedronate sodium in the stomach, where it could convert to the less soluble free acid.[140] However, 576 

as it has been shown that PPIs (pantoprazole) decrease buffer capacity as well as increase gastric pH,[119] 577 

a premature release due to enteric coating failure appears unlikely.  578 

A review of all the available clinical data from literature describing the effect of the administration of 579 

various gastric acid reducing agents on the absorption and bioavailability of co-administered weakly 580 

basic anticancer drugs was published by Budha et al.[141] The authors attempted to correlate the 581 

physicochemical properties and pH-solubility profiles of the different anticancer drugs with the observed 582 

effect on the absorption caused by the elevation of the gastric pH after the administration of the acid 583 

reducing agents (PPIs, H2RAs and antacids). It was concluded that the impact of the elevation of gastric 584 

pH is more prominent for the anticancer drugs which exhibit an exponentially decreasing solubility in the 585 

pH range 1-4 and for which the maximum dose strength is not soluble in 250 mL of water. Elevation of 586 
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gastric pH is expected to substantially decrease the dissolution rate of these drug products, thus leading 587 

to incomplete dissolution of the dose and impaired absorption.  588 

In 2013, Mitra and Kesisoglou described strategies to minimize or avoid reduced absorption of weakly 589 

basic drugs resulting from elevated gastric pH.[142] 590 

The observed DDIs with PPIs occur not only because of their elevation of gastric pH, but can also arise 591 

from other properties. It has been shown that concurrent administration of 10 mg of nifedipine with 20 592 

mg of omeprazole for eight days (short-term treatment) resulted in an AUC increase of 26%, whereas no 593 

increase was observed after co-administration of a single 20 mg dose of omeprazole.[143] The authors 594 

hypothesize that the higher levels might be due to inhibition of CYP3A4, but they note that this increase 595 

is not likely to have major clinical relevance, especially when taking into account the intra- and inter-596 

individual variability observed for nifedipine.[143] In contrast, in the study by Bliesath et al., 1996, co-597 

administration of 20 mg of nifedipine with 40 mg of pantoprazole for ten days, had no effect on the 598 

pharmacokinetics of nifedipine.[144] This apparent discrepancy in DDI tendency might be due to the 599 

different CYP-isoenzymes inhibitory properties of the two PPIs. It is believed that among all PPIs, 600 

omeprazole is the one which has the greatest potential for drug interactions, since it has a high affinity 601 

for CYP2C19 and CYP3A4.[145–148]  602 

Another example of a non-pH related DDI with PPIs is the delayed elimination of plasma methotrexate, 603 

independent of renal function.[149]  604 

Last, but not least, there has been an increasing interest in investigating the mechanism of drug 605 

interactions of PPIs with clopidogrel. Clopidogrel is a prodrug that requires activation via cytochrome 606 

P450 isozymes (CYP2C19, CYP3A4, CYP3A5) in order to transform to its pharmacologically active form. 607 

Therefore, inhibition of the cytochrome isoenzymes, which are involved in the metabolic pathway of 608 

clopidogrel, may reduce its antiplatelet activity and potentially increase the risk of thrombosis. In fact, in 609 

2009 FDA published a warning note on the drug label of Plavix® (clopidogrel, Sanofi Clir SNC, France) and 610 

continues to warn the public against concomitant use of clopidogrel and omeprazole. It should be noted 611 
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that, although studies have demonstrated that concomitant use of clopidogrel and PPIs, especially 612 

omeprazole, reduces the antiplatelet effect of clopidogrel, the mechanism behind this interaction and 613 

the clinical importance (cardiovascular risk) has not yet been clearly established.[150–155]  614 

2.4.2 H2 receptor antagonists  615 

The H2RAs are another drug class used to treat gastric acid related disorders. These compounds bind to 616 

histamine H2 receptors on parietal cells and antagonize the action of histamine, which is the major 617 

transmitter for stimulation of acid secretion.[156] As with the PPIs, there are DDIs with different classes of 618 

drugs and these are mainly attributed to the elevation of the gastric pH (see Figure 5). For example, 619 

ketoconazole and itraconazole demonstrate impaired drug absorption when they are concomitantly 620 

used with H2RAs as well as with PPIs. Piscitelli et al., 1991, investigated the effect of 150 mg orally 621 

administered ranitidine on 400 mg oral ketoconazole in six healthy volunteers. The decreased Cmax and 622 

AUC and bioavailability of ketoconazole in this study was attributed to the elevated gastric pH, which 623 

resulted in a decreased and incomplete ketoconazole dissolution.[157] The results were similar when the 624 

effect of cimetidine on the absorption and pharmacokinetics of ketoconazole was investigated.[122] Lim et 625 

al., 2007, investigated the effect of famotidine on the absorption of fluconazole and itraconazole. Twenty 626 

healthy volunteers received orally 40 mg famotidine with 200 mg itraconazole or 100 mg fluconazole. 627 

Co-administration of famotidine resulted in a 52.9% decrease in Cmax and a 51.1% decrease in the AUC 628 

of itraconazole, but no difference was observed in the pharmacokinetics of fluconazole.[158] This different 629 

behavior of fluconazole had previously been observed by Blum et al., 1991 and can be explained by its 630 

much higher solubility (see 2.4.1).[159]  631 

The situation is similar with anti-retroviral medications.[160] Analogous to the PPIs/saquinavir interaction, 632 

co-administration of cimetidine resulted in increased exposure to saquinavir. [137,161]  633 

Russell et al., investigated the effect of a single dose of 40 mg of famotidine on the pharmacokinetics of 634 

the weak base dipyridamole in eleven elderly adults with normal gastric acid secretion. After co-635 
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administration of famotidine, the Cmax and absorption constant (ka) of dipyridamole decreased 636 

significantly. The total AUC decreased by 37%, but this decrease was not found to be statistically 637 

significant. The authors attributed the observed differences to slower dissolution rate of dipyridamole 638 

tablets at elevated gastric pH.[162] In other studies, co-administration of ranitidine with two weak bases, 639 

enoxacin and cefpodoxime, resulted in decreased bioavailability, which was again attributed to 640 

decreased solubility in the gastric environment at elevated pH.[163,164] 641 

As with the PPIs, DDIs with H2RAs can occur not only because of their elevation of gastric pH, but can 642 

also arise from their other properties. In particular, it has been shown that, among the various H2RAs, 643 

cimetidine is the most potent inhibitor of the CYP450 enzymes. The inhibition is attributable to the 644 

imidazole ring in its structure, and results in changes in the metabolism of various co-administered 645 

drugs.[165] In cases where a clinical significant interaction is suspected, other H2RAs (e.g. ranitidine, 646 

famotidine) are preferred over cimetidine.[166,167] Among the various metabolic interactions that have 647 

been reported after co-administration of cimetidine,[165] the metabolic interactions observed with 648 

warfarin and propranolol have been most intensively studied and the clinical significance of these 649 

interactions has also been evaluated. Toon et al., investigated the effect of a nine-day short treatment of 650 

cimetidine and ranitidine (800 mg oral dose daily and 300 mg oral dose daily respectively) on the 651 

pharmacokinetics of 25 mg of racemic warfarin, administered orally starting on the fourth day of 652 

cimetidine treatment and continuing for the next five days, in nine healthy volunteers.[168] The 653 

prothrombin time and Factor VII clotting time were also evaluated. Whilst ranitidine had no effect on the 654 

pharmacokinetics of either of the two enantiomers of warfarin, cimetidine significantly increased the 655 

elimination half-life and decreased the clearance of the (R)-enantiomer of warfarin. In contrast, the 656 

pharmacokinetics of the (S)-enantiomer of warfarin were not affected by co-administration of 657 

cimetidine. Nonetheless, co-administration of either ranitidine or cimetidine did not result in a clinically 658 

significant difference in terms of the anti-coagulation effect of warfarin.[168] These results were further 659 
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confirmed by a later study from Niopas et al.[169] It should be noted however, that both studies were 660 

conducted in healthy volunteers and therefore, the clinical effects on patient populations could differ.  661 

The effect of a daily oral dose of 1000 mg cimetidine on the steady state plasma levels of propranolol, 662 

administered as a 160 mg sustained-release formulation daily, was evaluated in seven healthy volunteers 663 

during a thirteen-day treatment (administration of cimetidine started on the eighth day).[170] It was 664 

concluded that co-administration of cimetidine resulted in decreased clearance of propranolol and thus 665 

increased propranolol plasma levels at steady state. In a similar study, Reimann et al. investigated the 666 

effect of cimetidine (1000 mg daily, one day oral pretreatment) and ranitidine (300 mg daily oral dose, 667 

one and six days pretreatment) on the steady state propranolol plasma levels (160 mg sustained-release 668 

capsule, once daily) of five healthy volunteers.[171] It was shown that one-day pretreatment with 669 

cimetidine resulted in elevated propranolol plasma levels at steady state, while ranitidine pretreatment 670 

for one or six days did not affect significantly the propranolol plasma levels at steady state. However, the 671 

authors stated that the elevated plasma levels of propranolol observed after pretreatment with 672 

cimetidine did not lead to a clinically significant effect.[171] Again, the study was conducted in healthy 673 

volunteers and the clinical effects on patient populations could differ. Nonetheless, it should be noted 674 

that the companies are required by the regulatory authorities to inform the patients that there is a 675 

potentially clinically significant DDI of cimetidine and propranolol in the patient information leaflets.[172] 676 

It is obvious that there are many interactions of PPIs and H2RAs with other concomitantly used drugs, 677 

especially poorly soluble weak bases, and that their use should be monitored, particularly in cases where 678 

the DDI is well established. Besides the elevation of gastric pH and the interactions with metabolic 679 

pathways, it should be noted that PPIs and H2RAs can also affect other aspects of the physiology in the 680 

gastrointestinal tract. Recent data in literature suggest that administration of PPIs or H2RAs can be 681 

accompanied by reduced buffer capacity, chloride ion concentration, osmolality and surface tension in 682 

stomach and an increase in the pH of the upper small intestine of up to 0.7 units, an increase that would 683 

be especially relevant for compounds (basic or acidic) with pKas between 6 and 7.[119] Carefully designed 684 
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DDI studies, in terms of dosing and duration of treatment, are needed in order to accurately determine 685 

the effect of H2RAs or PPIs on the pharmacokinetics of co-administered drugs and investigate the clinical 686 

consequences of these interactions.  687 

2.4.3 Antacids  688 

The term “antacids” describe a category of salts, formulated as the combination of polyvalent cations 689 

such as calcium, aluminium, or magnesium with a base, such as hydroxide, trisilicate or carbonate. 690 

Aluminium hydroxide alone, or in combination with magnesium hydroxide, is the main ingredient of 691 

many antacid products. Since the appearance of the PPIs and H2RAs, which are more potent drugs and 692 

can be used for a wide variety of gastrointestinal disorders, antacids have been mainly marketed as OTC 693 

medications. However, the concomitant use of antacids with other drugs can significantly affect their 694 

absorption or even their therapeutic effect. Considering the fact that the use of OTC antacids is 695 

widespread, there is a particular need for appropriate information for patients, doctors and pharmacists. 696 

Besides interactions associated with increased pH, the major DDIs with antacids involve chelation 697 

reactions. Various categories of drugs, such as quercetin, catechol derivatives and tetracyclines, are 698 

known to form drug/metal chelates.[173–175] Fluoroquinolones also interact with multivalent cations and 699 

this interaction can lead to reduced antimicrobial activity.[176] 700 

Deppermann et al., 1989, and Garty et al., 1980, investigated the effect of H2RAs or antacids (mixture of 701 

aluminium hydroxide and magnesium hydroxide) on the oral absorption of various tetracycline 702 

antibiotics. The antacids resulted in reduction of the oral bioavailability of tetracyclines by 80% or more, 703 

whereas co-administration of the H2RAs did not affect the pharmacokinetic parameters of 704 

tetracyclines.[177,178] For this reason, it was concluded that chelation rather than elevation of gastric pH is 705 

the probable mechanism of this DDI. The complexes that are formed by chelation are insoluble and 706 

therefore they precipitate, preventing absorption. The results are similar with co-administration of 707 

antacids and fluoroquinolones. Aluminium ions form a stable and insoluble complex with quinolones, 708 
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thus preventing their intestinal absorption and reducing their bioavailability.[179,180] By contrast, 709 

concomitant administration of an H2RA did not have a significant effect on the AUC of ciprofloxacin.[177] 710 

Since the formation of the chelate complex is the limiting factor to absorption of quinolone antibiotics, 711 

many studies have been conducted in order to establish an optimal interval of antacid dosing before or 712 

after the administration of the antimicrobial agents. With regard to fluoroquinolones, it has been 713 

concluded that administration of antacids four hours earlier or two hours later than the administration 714 

of the antibiotic, would circumvent the interaction.[181–185]  715 

As with the PPIs and H2RAs, the elevation of gastric pH that is observed after administration of antacids 716 

could also impact the dissolution or oral solid formulations and change their pharmacokinetics. Indeed, 717 

co-administration of itraconazole with antacids resulted in decreased AUC.[186] However, in a pilot study 718 

by Brass et al. (n=4) the absorption of ketoconazole was not significantly decreased. [187]  719 

The interaction of antacids and NSAIDs is also an interesting case. NSAIDs are among the most popular 720 

OTC and frequently prescribed medications for acute or short-term pain and chronic inflammatory 721 

diseases. Since NSAIDs cause dyspepsia and damage in the upper gastrointestinal mucosa they are often 722 

given with antacids. Interactions of antacids with NSAIDs are not clearly established and no general 723 

recommendations can be made for this drug category. However, there are studies indicating that co-724 

administration with antacids containing magnesium hydroxide or sodium bicarbonate could enhance the 725 

rate and possibly the extent of absorption of some NSAIDs, i.e. ibuprofen, tolfenamic and mefenamic 726 

acid, diflunisal and naproxen.[188–191] This has been attributed to the fact that magnesium hydroxide, in 727 

addition to increasing gastric pH, also accelerates gastric emptying. Such effects have not been observed 728 

for aluminium hydroxide, which in contrast to magnesium hydroxide prolongs gastric emptying[192]  729 

There have been many further studies investigating the interactions of antacids with APIs from various 730 

drug classes, including corticosteroids, cardiovascular agents and antidiabetic agents. However, it has not 731 

been possible to make any generalizations about the observed interactions. Furthermore, in some cases 732 
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there is no evidence that differences in pharmacokinetic parameters translate into clinically significant 733 

differences.[192]  734 

2.5 Probiotics 735 

It is well known that the intestinal microflora plays a key role in physiological, metabolic, immunological 736 

and nutritional processes in the human body. For this reason, there is currently great interest in 737 

influencing the composition of the microflora and its activity using probiotics for both the prevention 738 

and treatment of various diseases.[193] According to WHO, probiotics are “live microorganisms which, 739 

when administered in adequate amounts, confer a health benefit on the host”.[194] There are several 740 

clinical studies that have illustrated their beneficial effects on gastrointestinal disorders such as diarrhea 741 

and irritable bowel syndrome. The gram-negative bacterium Escherichia coli Nissle 1917, for example, 742 

has been used since 1920 for the treatment or prevention of irritable bowel syndrome, chronic 743 

constipation, non-ulcer dyspepsia and other gastrointestinal disorders.[195] The mechanism of action of 744 

the probiotics is not yet fully understood. It seems that they may modulate the intestinal epithelial 745 

barrier and transport across it, noting that in inflammatory bowel diseases, e.g. ulcerative colitis and 746 

Crohn’s disease, the barrier properties of the epithelium are compromised due to secreted cytokines 747 

and/or medication.[196]  748 

Despite the wealth of evidence regarding their advantageous and well-tolerated use, the literature on 749 

interactions between concomitantly administered probiotics and drugs with respect to drug 750 

pharmacokinetics is mainly limited to animal experiments. In the study of Mikov et al., 2006, the effect of 751 

co-administration of probiotics (oral 2 g dose of freeze dried powder of a mixture of the strains 752 

Lactobacillus acidophilus L10, Bifidobacterium lactis B94 and Streptococcus salivarius K12 every 12 h for 753 

three days) on sulfasalazine metabolism (sulfasalazine administered as an oral dose of 100 mg/kg 754 

dissolved in saline via gavage 6 h after completing the three day treatment with probiotics) in the rat gut 755 

lumen was investigated. The authors showed that administration of probiotics significantly increased the 756 
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conversion of sulfasalazine to sulfapyridine and 5-aminosalicylic acid by increasing azoreductase activity. 757 

This could possibly enhance sulfasalazine therapy, which would be important in patients with reduced 758 

gut microflora, subsequent to antibiotic therapy, or in severe diarrhea.[197] Lee et al., 2012, confirmed an 759 

increase of azoreductase activity in ex vivo colon rat fluids. However, no differences were found in the 760 

pharmacokinetic parameters of sulfasalazine and sulfapyridine.[198] Kunes et al., 2011, investigated the 761 

effect of E. coli Nissle 1917 probiotic medication on the absorption kinetics of 5-aminosalicylic acid in 762 

rats. The results showed that there was no difference in the pharmacokinetics of 5-aminosalicylic acid 763 

and that E. coli Nissle 1917 medication did not affect the absorption of 5-aminosalicylic acid.[199] Al 764 

Salami et al., 2008, investigated the effect of a mixture of three probiotics in diabetic rats on gliclazide 765 

pharmacokinetics. They observed that gliclazide’s absorption and bioavailability were reduced in healthy 766 

rats. The authors attributed this change to several possible causes, most of which had to do with 767 

intestinal efflux drug transporters.[200] Saksena et al., 2011, reported that Lactobacilli or their soluble 768 

factors significantly enhanced P-gp expression and function under normal and inflammatory conditions 769 

in mice.[201] Finally, Matuskova et al., 2014, investigated the effect of administration of E. coli Nissle 1917 770 

on amiodarone absorption in rats. This resulted in 43% increase in the AUC of amiodarone. Interestingly, 771 

this effect was not observed when E. coli Nissle 1917 was replaced by a reference non-probiotic E. coli 772 

strain suggesting that the increase in AUC of amiodarone was due to the administration of the 773 

probiotic.[202]  774 

Clearly, studies in humans are needed in order to investigate whether these results can be extrapolated 775 

well to patients with altered intestinal microflora.  776 

2.6 Antibiotics used for gastrointestinal infections  777 

Antibiotics aim to attack targets specific to bacterial organisms such as bacterial cell walls, bacterial cell 778 

membranes, bacterial metabolism or replication, in order to avoid damage to human cells. However, 779 

antibiotics are not 100% selective for bacteria that are pathogenic for the host organism. As a result, the 780 
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GI microbiota is frequently disturbed after treatment with antibiotics.[203,204] In fact depending on the 781 

antibiotic, 5-25% of patients treated experience diarrhoea.[205,206]  782 

 Sullivan et al. reviewed the effect of various antibiotics on the abundance of bacterial types and 783 

species.[204] Differences in the composition of the microbiota could alter the composition of colonic fluids 784 

and permeability of the gut wall as well as the abundance of bacterial enzymes.  785 

Colonic bacteria are involved in the cleavage of dietary fibres to oligosaccharides and monosaccharides 786 

and their further fermentation to short chain fatty acids (SCFAs) such as acetate, propionate and 787 

butyrate.[207] Patients treated with antibiotics showed a decreased colonic carbohydrate fermentation 788 

and consequently lower fecal concentrations of SCFAs.[208–212] In other studies it was shown that SCFAs 789 

stimulate ileal and colonic motility.[213–215]  The inhibition of gastric emptying by nutrients that reach the 790 

ileo-colonic junction, the so-called “ileocolonic brake”, is also associated with SCFAs.[216] But GI transit 791 

times can also be affected by certain antibiotics through other mechanisms: for example, erythromycin 792 

accelerates gastric emptying (-25% to -77%) by acting as a motilin agonist, while prolonging small 793 

intestinal transit time (+20% to +45%) for liquids and solids in healthy volunteers and patients.[217–222] For 794 

example, when erythromycin was co-administered with a controlled-release formulation of pregabalin, 795 

designed to remain for a prolonged time in the stomach, in eighteen healthy subjects there was a 796 

reduction of AUC and Cmax by 17% and 13% respectively, due to erythromycin’s prokinetic action.[223] 797 

Since the pregabalin exposure was still in the range calculated for patients receiving an immediate 798 

release formulation of pregabalin, the interaction was deemed not to be clinically relevant.  799 

If bacterial enzymes are involved in the biotransformation of a drug, the intake of antibiotics can affect 800 

its metabolism by changing the composition of the microbiota and thus altering the bacterial enzyme 801 

activity.[224,225] At least thirty commercially available drugs have been reported to be metabolised by 802 

bacterial enzymes in the gastrointestinal tract.[224] The serum concentrations of digoxin, which is partly 803 

metabolised by gut microbiota, increased two-fold after administration of erythromycin or tetracycline 804 

for five days in four healthy volunteers.[226] In another report, toxic digoxin plasma levels were observed 805 
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in a patient after co-treatment with erythromycin, possibly due to the inhibition of Eubacterium lentum 806 

which converts digoxin to its reduced derivatives.[227] Incubation of flucytosine with fecal specimens of 807 

neutropenic patients before and after treatment with antibiotics (ciprofloxacin, penicillin, co-808 

trimoxazole) and antimycotics (amphotericin B, fluconazole, nystatin) indicated that the transformation 809 

of flucytosine to its active metabolite, fluorouracil, was reduced.[228] Similarly, concomitant 810 

administration with ampicillin (250 mg four times daily for five days) with sulfasalazine (single dose 2 g) 811 

led to a decrease in the AUC of sulfapyridine by 35% in five healthy subjects suggesting a decrease in 812 

azoreductase activity and prodrug activation.[229]  813 

An altered colonic microflora could also adversely affect the drug release from colon-targeting 814 

formulations coated with water-insoluble polysaccharides.[230] Since polysaccharides such as guar gum, 815 

pectin and chitosan are degraded by bacterial enzymes in the colon, release of the drug relies on the 816 

abundance and activity of the polysaccharide-specific bacterial enzymes. Samples (fecal slurries) from 817 

volunteers treated with antibiotics within the last three months should be excluded from the evaluation 818 

of such formulations in in vitro dissolution tests.[230]  819 

The microbiota is also involved in the modification of primary bile acids to secondary bile acids, such as 820 

deoxycholic acid and lithocholic acid, via microbial 7α-dehydroxylase and in the deconjugation of 821 

conjugated bile acids.[231] Unconjugated bile acids are less likely to be reabsorbed in the terminal ileum 822 

and therefore, bacterial action promotes the excretion of bile acids.[232] Thus, antibiotic treatment may 823 

cause changes in the bile acid pool. Indeed, treatment with oral vancomycin decreased fecal levels of 824 

secondary bile acids and increased fecal levels of primary bile acids in healthy volunteers (n=10). By 825 

contrast, treatment with oral amoxicillin showed no such effect.[233] It has also been hypothesized that 826 

antibiotic-induced differences in the bile acid composition could affect the solubilisation of lipophilic 827 

drugs. However, a recent study evaluating the differences in the solubilisation capacity of primary and 828 

secondary bile acids for nine poorly water-soluble drugs revealed at most minor differences between 829 
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conjugated and unconjugated bile acids. Only dehydroxylation at C-7 improved drug solubilisation 830 

significantly for the compounds investigated.[234]  831 

With regard to DDIs at the level of metabolism, the effect of antibiotics on metabolic enzymes is often 832 

specific to the antibiotic agent. Macrolide antibiotics interact with substrates metabolized by CYP3A4 833 

(i.e. carbamazepine, terfenadine, cyclosporine) depending on the macrolide’s specific affinity for 834 

CYP3A4. The interaction potential can be high (troleandomycin, erythromycin), moderate 835 

(clarithromycin, roxithromycin) or low (azithromycin).[235] For example, concomitant administration of 836 

erythromycin (500 mg three times daily for seven days) with midazolam (single dose 15 mg) resulted in a 837 

4-fold increase of the AUC of midazolam in fifteen healthy subjects.[236] Similarly, when administered 838 

with clarithromycin (500 mg twice daily for 7 days), the bioavailability of midazolam (single dose 4 mg) 839 

was increased 2.4-fold in sixteen healthy subjects.[237] But, after pretreatment with azathioprine (500 mg 840 

daily for three days), no significant effect on the pharmacokinetics of midazolam (single dose 15 mg) was 841 

observed in twelve healthy subjects.[238]  842 

For the fluoroquinolones, depending on the fluoroquinolone’s specific affinity for CYP1A2, interactions 843 

with CYP1A2 substrates (i.e. clozapine, theophylline) have been observed.[239] Concomitant oral 844 

administration of enoxacin (400 mg twice daily for six days) with theophylline (250 mg twice daily for 845 

eleven days) resulted in a reduction in total clearance of theophylline by 74% in six healthy subjects,[240] 846 

while ciprofloxacin (500 mg twice daily for two and a half days) reduced theophylline’s total clearance by 847 

19% after a single oral dose of theophylline syrup (3.4 mg/kg) in nine healthy subjects.[241] In contrast, 848 

concomitant administration of norfloxacin (400 mg twice daily for four days) with theophylline (200 mg 849 

three times daily for four days) had no significant effect on theophylline’s total clearance in ten healthy 850 

subjects.[242] For more detailed information, the reader is referred to several review articles.[235,239,243]  851 
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2.7 Anti-inflammatory drugs for IBD 852 

Anti-inflammatory agents, such as aminosalicylates and corticosteroids, are the most commonly used 853 

drugs in inflammatory bowel disease (IBD). Treatment with aminosalicylates includes a range of prodrugs 854 

(sulfasalazine, olsalazine, balsalazine) or modified release formulations to deliver aminosalicylates to 855 

their target site in the intestine. If remission cannot be achieved with aminosalicylates, the next 856 

treatment option consists of different corticosteroids ranging from locally acting drugs (budesonide) to 857 

systemic acting ones (hydrocortisone, prednisolone, dexamethasone).  858 

Aminosalicylates have shown to alter the GI physiology. In terms of GI transit time, olsalazine accelerated 859 

transit, with a mean gastric emptying time of 45.3±24.2 min vs. 67.3±33.1 min, a mouth to caecum 860 

transit time of 242±41 min  vs. 325±33 min and whole gut transit time of 37.8±17.8 h  vs. 60.5±26 h in six 861 

patients with ulcerative colitis whereas intake of sulfasalazine had no effect in six healthy subjects 862 

(measured by scintigraphy of a solid radio-labelled meal or hydrogen breath test).[244–246] The authors 863 

commented that this may be the result of a direct action of olsalazine on contractile activity in the small 864 

intestine, inducing hypersecretion or decreasing fluid absorption.[245]  865 

With respect to luminal pH, treatment with sulfasalazine in patients with ulcerative colitis in remission 866 

resulted in a decrease in colonic pH to 4.90±1.3 compared to treatment with Asacol® (mesalazine) with a 867 

colonic pH of 5.52 ±1.13 or Dipentum® (olsalazine) with a pH of 5.51±0.37.[247] Nugent et al. postulated 868 

that reduced colonic pH may impair drug release from delayed-release formulations targeting the 869 

terminal ileum/colon (trigger pH for release is >6-7) or alter bacterial enzyme activity.[248] 870 

Regarding permeability, jejunal perfusion studies showed a decreased absorption of water, sodium, 871 

potassium and chloride in the presence of olsalazine or sulfasalazine.[249] In ileal perfusion studies, 872 

reduced absorption of water and glucose was observed, when olsalazine was present, which in turn   873 

could explain the higher volume of ileostomy fluid observed after oral administration of this drug.[249,250] 874 

By contrast, no changes in absorption or volume of fluids was observed in ileal perfusion studies in the 875 

presence of sulfasalazine.[249] With regard to specific uptake mechanisms, sulfasalazine reduced the 876 
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uptake of folic acid and methotrexate by folate transporters in biopsy specimens taken from the 877 

duodenojejunal region while olsalazine only decreased folic acid uptake.[251] In an intervention study, 878 

sulfasalazine treatment was discontinued in rheumatoid arthritis patients who had previously received a 879 

combination of sulfasalazine and methotrexate. The intervention resulted in a more than 2-fold increase 880 

of methotrexate serum concentrations, in line with the ability of sulfasalazine to compete with 881 

methotrexate for the folic acid transporter.[252] 882 

After treatment with sulfasalazine the fecal microbiota of patients with rheumatoid arthritis was richer in 883 

Bacillus, whereas decreased numbers of aerobic bacteria, Escherichia coli, Clostridium perfringens and 884 

Bacteroides were observed.[253–255] Treatment with mesalazine resulted in a decreased diversity of the 885 

intestinal microbiota and also reduced the quantity of fecal bacteria in patients with diarrhea-886 

predominant irritable bowel syndrome.[256,257] These changes in colonic bacteria may have ramifications 887 

for drugs like digoxin, which are partly metabolised by bacterial enzymes (see section 2.6 888 

“Antibiotics”).[258–260]  889 

With regard to DDIs, pre-treatment with sulfasalazine (500 mg for six days) in ten healthy subjects 890 

decreased the AUC of digoxin by 25% after being administered as oral solution (dose 0.5 mg).[261] The 891 

mechanism of the interaction is not yet understood. Differences in bioavailability could possibly be 892 

attributed to a direct action of sulfasalazine on the intestinal mucosa or induced differences in the gut 893 

microbiota enhancing digoxin metabolism. For a patient on concomitant treatment with cyclosporin (480 894 

mg daily) and sulfasalazine (1.5 g daily), increased plasma concentrations of cyclosporine were observed 895 

five days after the treatment of sulfasalazine was stopped making it necessary to reduce the dose of 896 

cyclosporine by 60%.[262] While the interaction is not yet understood, an induction of metabolic enzymes 897 

is plausible considering the time course of the observation. For 6-mercaptopurine (50-75 mg), a 898 

metabolic interaction was observed with concomitantly administered olsalazine (1000-1750 mg) in a 899 

patient with Crohn’s disease, resulting in bone marrow suppression and required dose reduction of 6-900 

mercaptopurine.[263] This interaction may be caused by the inhibition of thiopurine methyltransferase, 901 
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which is responsible for 6-mercaptopurine metabolism; inhibition of this enzyme by aminosalicylates has 902 

been demonstrated in in vitro enzyme kinetic studies.[264]  903 

After treatment with corticosteroids, the phospholipid mucus layer can be fluidized, resulting in a 904 

thinner mucus barrier.[265] Impairment of membrane integrity can cause side-effects such as 905 

gastrointestinal bleeding and bowel perforation.[266] The corticosteroids can also affect active transport 906 

mechanisms such as bile salt reuptake and exo-transport. Treatment with budesonide results in 907 

upregulation of the apical sodium-dependent bile acid transporter in the terminal ileum, which enhances 908 

bile acid absorption in both healthy controls and patients with Crohn’s disease.[267,268] Consequently, 909 

lower luminal bile salt concentrations may impede solubilisation and absorption of lipophilic poorly 910 

soluble compounds.[269] In terms of transporters, budesonide and prednisone are substrates of the efflux 911 

transporter P-glycoprotein.[270] However, it is unclear whether these alterations result in clinically 912 

significant DDIs.  913 

The main elimination pathway of corticosteroids is the metabolism by intestinal and hepatic CYP3A4 914 

which is especially important for high-clearance corticosteroids such as budesonide and prednisone.[271] 915 

Co-administration of prednisone with metronidazole in six patients with Crohn’s disease reduced the 916 

bioavailability of metronidazole by 31%, most likely attributed to the induction of liver enzymes 917 

responsible for metabolizing metronidazole.[272] Likewise, co-treatment with prednisone resulted in 918 

decreased serum concentrations of salicylates in a 11-year-old child with juvenile rheumatoid arthritis 919 

due to the induction of salicylate clearance by prednisone.[273] On the other hand, drugs inhibiting 920 

CYP3A4 in the intestinal wall and liver such as ketoconazole, itraconazole, clarithromycin and HIV-921 

protease inhibitors reduce the metabolism of corticosteroids and increase their bioavailability.[274–277]  922 

2.8 Immunosuppressive agents for IBD 923 

Immunosuppressive agents are frequently used in gastroenterology for the treatment of inflammatory 924 

bowel disease, autoimmune hepatitis, autoimmune pancreatitis, sclerosing cholangitis and in the post-925 
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transplantation setting.[278] Especially in IBD, therapy with immunosuppressive agents has gained in 926 

importance over the last few years.[279] Immunosuppressive agents can be classified in 927 

immunomodulators (e.g., thiopurines (6-mercaptopurine, azathioprine), methotrexate, tacrolimus, 928 

sirolimus, everolimus, cyclosporine A) and biologics (e.g., monoclonal antibodies: infliximab, 929 

adalimumab, vedolizumab, golimumab).[279] Depending on the specific immunosuppressive agent, 930 

gastrointestinal transit time, bile flow and/or permeability can be altered, which could further affect 931 

drug product performance of co-administered drugs.  932 

Regarding transit time, gastric emptying time (as measured with magnetic markers after a standardized 933 

meal using Alternating Current Biosusceptometry) was decreased in patients treated with tacrolimus 934 

after kidney transplant (47±34 min) compared to healthy subjects (176±42 min) or patients treated with 935 

cyclosporine A (195±42 min).[280]  936 

In terms of drug absorption, immunosuppressants can result in increased permeability on the one hand, 937 

but decreased surface area on the other hand. Intestinal permeability was increased (75% of median 938 

value; indicated by an increased lactulose/L-rhamnose excretion ratio) in liver graft recipients treated 939 

with tacrolimus (n=12) compared to healthy subjects (n=9) and by 48% compared to untreated liver 940 

transplant patients (n=5).[281] Only the permeability via the transcellular pathway seems to be increased 941 

by tacrolimus, as indicated by an increased lactulose/L-rhamnose ratio (+160%) and unchanged excretion 942 

of lactulose in treated orthotopic liver transplantation patients.[281,282]  943 

Another side-effect of immunosuppressive therapy, especially with methotrexate (including low-dose 944 

therapy) is GI mucositis resulting in the loss of villi in the duodenum, crypts in the colon and 945 

enterocytes.[283–287] Oral mucositis is a side-effect of azathioprine therapy.[288] In patients with oral 946 

mucositis, bupivacaine absorption from lozenges was increased and a trend to higher fentanyl 947 

absorption administered with a sublingual spray was observed but did not reach statistical 948 

significance.[289,290] The effect may be due to impairment of the barrier function of the mucosa. 949 
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In terms of transporter systems and metabolism, immunosuppressants (cyclosporine A, tacrolimus, 950 

everolimus and sirolimus) are substrates of P-glycoprotein and CYP3A4.[291–293] As a result, various drug 951 

interactions with P-gp substrates such as aliskiren and anthracyclines have been reported for 952 

cyclosporine A.[294–296] Additionally, concomitant administration of inhibitors (e.g. azole antifungal drugs, 953 

macrolide antibiotics) and inducers (e.g. anti-convulsants, rifampicin) of CYP3A4 can modify therapeutic 954 

response and toxicity of the abovementioned immunosuppressants.[297–299] Methotrexate intra muscular 955 

or subcutaneous co-treatment in patients with Crohn’s disease or oral co-treatment in patients with 956 

rheumatoid arthritis resulted in increased infliximab concentrations, most likely due to a decrease in the 957 

development of infliximab antibodies.[300,301] Co-administration of azathioprine in patients treated with 958 

warfarin resulted in higher warfarin doses needed to reach therapeutic anticoagulant effects but the 959 

mechanism of the interaction is unclear.[302–304]  960 

2.9 Bile acid sequestrants 961 

Bile acid sequestrants (BAS) such as cholestyramine, colesevelam and colestipol are used for the 962 

treatment of primary hyperlipidaemia, as monotherapy or in combination with statins or ezetimibe, and 963 

in the treatment of gastrointestinal diseases.[305] Cholestyramine is indicated for diarrhea associated with 964 

Crohn’s disease, ileal resection, vagotomy, diabetes, diabetic vagal neuropathy and radiation.[306] Whilst 965 

colesevelam is not licensed for the treatment of bile acid malabsorption, several clinical trials have 966 

demonstrated positive outcomes which has provoked its off-label use in this indication.[307–309]  967 

Bile acid sequestrants are positively charged ion-exchange resins which bind bile acids in the intestine to 968 

form insoluble complexes and as a consequence reduce the bile acid pool.[306] As a result of decreased 969 

luminal bile acid concentrations, BAS are expected to interfere with the bioavailability of lipophilic, low-970 

soluble compounds by impeding their solubilization. For several drugs, such as rifaximin[310] and 971 

troglitazone[311] the presence of bile acids was shown to increase drug solubility and therefore, their 972 

absorption may be impeded by co-therapy with BAS.  973 
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The positive charge of BAS leads to a high affinity for deprotonated acidic drugs in the intestine. Binding 974 

of these anions increases the excretion and impedes the absorption of acidic co-administered drugs. 975 

Drugs that are known to be affected by this mechanism are furosemide,[312] warfarin,[313] 976 

phenprocoumon,[314,315] sulindac,[316] cerivastatin,[317] levothyroxine,[318] glipizide,[319] mycophenolic 977 

acid,[320] folic acid[321] and valproate[322]. The binding affinity for co-administered drugs can vary among 978 

the different BAS e.g., cholestyramine, which has a high affinity for hydrophobic compounds,[305,323] 979 

decreased ibuprofen and diclofenac absorption to a higher extent than colestipol; and colesevelam has a 980 

favorable DDI-profile compared to other BAS.[324–326]  981 

High-molecular lipophilic drugs are typical substrates for enterohepatic recirculation.[327] By binding 982 

drugs or drug metabolites that undergo enterohepatic recirculation, BAS can enhance drug elimination 983 

of the victim drug even if the administration was not concomitant. Drugs affected by this mechanism 984 

include oral anticoagulants,[313–315] cardiac glycosides[328] and mycophenolate mofetil[320]. It is difficult to 985 

predict which drugs that undergo enterohepatic recirculation will be affected by BAS, since various 986 

factors such as polarity, ionization properties and metabolism by liver and microbiota all influence biliary 987 

excretion.[329] Prolonging the interval between administration of BAS and co-medication often reduces 988 

the potential for drug interactions and must be adapted for extended-release formulations. 989 

BAS can also affect gastrointestinal transit time: Cholestyramine prolonged the transit time in the 990 

transverse colon by up to eight hours in thirteen patients with idiopathic bile acid diarrhea (as measured 991 

with radiopaque markers), while total colonic transit was not altered.[330] After concomitant 992 

administration of a sustained-release formulation of verapamil (dose 240 mg) with colesevelam (dose 4.5 993 

g), a reduction in AUC of 11% and decreased plasma levels of verapamil were observed in thirty-one 994 

healthy subjects.[331] This interaction was deemed not to be clinically relevant.[331]  995 

An overview of DDIs of bile acid sequestrants and their mechanism is given in Table 4.  996 
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3. Conclusions and future perspectives 997 

Gastrointestinal events and conditions play a key role in the bioavailability of an orally administered drug 998 

and its therapeutic action. Concomitant use of various medications can affect the absorption and the 999 

pharmacokinetics of the administered drugs and therefore, their performance. As presented in this 1000 

review article, various interactions between drugs used to treat gastrointestinal diseases and co-1001 

administered drugs have been identified. These interactions are of particular concern, since GI drugs are 1002 

commonly prescribed and many of them are also available OTC. Prescribing physicians and pharmacists 1003 

need to be aware of and monitor these potential interactions. Furthermore, information involving 1004 

interactions with GI drugs should be made available not only to clinical practitioners, but also to patients, 1005 

in order to prevent the appearance of adverse effects, on the one hand, and failure of treatment on the 1006 

other hand.  1007 

It should be noted, however, that despite the large number of DDI studies with GI drugs reported in 1008 

literature, most studies have only investigated the effects of short-term treatment and little is known 1009 

about the ramifications of long-term administration on DDIs. Furthermore, most DDI studies have been 1010 

conducted in healthy volunteers and may not necessarily reflect the degree of interaction in patients. As 1011 

most of the DDIs have been based on changes in pharmacokinetics, it is also not clear in all cases 1012 

whether the DDI has any ramifications for the therapeutic effect. Indeed, some studies have suggested 1013 

that even quite significant changes in pharmacokinetics do not always lead to a change in the clinical 1014 

response. More work on pharmacokinetics/pharmacodynamics (PK/PD) relationships and the influence 1015 

of DDIs on them will be necessary to tease out the clinical implications of DDIs. 1016 

However, the number of studies that can be conducted to test for potentially clinically relevant DDIs is 1017 

limited, due to both ethical and cost-related issues. So there is a need for innovative evaluation methods 1018 

to address knowledge gaps and provide key information on safe and effective drug use.[332] In the last ten 1019 

years, there has been an increasing use of Physiologically Based Pharmacokinetic (PBPK) modelling and 1020 
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simulation at different stages of drug development.[333] To date, PBPK modelling and simulation has been 1021 

mostly used for predicting enzyme interactions which, as mentioned in this article, can also occur with 1022 

concomitant administration of GI drugs.[334–339] PBPK modelling is gaining acceptance at the various 1023 

regulatory agencies as a tool to qualitatively and quantitatively predict DDIs and, in some cases, the 1024 

simulation results may even be used to support labeling, depending on the clinical importance of the 1025 

interaction.[8]  1026 

One of the advantages of PBPK modelling is that it is able to account for both formulation characteristics 1027 

and physiological parameters. As such, it can be used to help define a “safe space” by identifying the 1028 

range of dosing conditions under which the pharmacokinetic parameters will not be significantly affected 1029 

by changes in the release properties of the dosage form. This approach, which is sometimes referred to 1030 

as “virtual bioequivalence”, has already been used to explore whether bioequivalence decisions based 1031 

on clinical trials in healthy adults can be extrapolated to special populations, such as the hypochlorhydric 1032 

or achlorhydric population, in whom the gastrointestinal physiology differs from that of healthy 1033 

adults.[340–342] 1034 

The same approach could be extended to predict pre-absorptive DDIs with GI drugs, since these are 1035 

intended to modify gastrointestinal physiology. First attempts have already been made for acid reducing 1036 

agents, with results from in vitro dissolution experiments , which are tailored to mimic the changes in the 1037 

upper gastrointestinal tract after the administration of these drugs, combined with PBPK models for 1038 

healthy adults.[340,341,343] This approach should be broadened to encompass other classes of GI drugs. 1039 

Possible future steps include tailoring dissolution tests and PBPK models to the physiological conditions 1040 

observed in special populations, thus allowing for predictions of the in vivo performance of drug 1041 

products in special populations (pediatrics, geriatrics, ethnic groups, the obese, hepatically impaired etc.) 1042 

who concomitantly receive GI drugs. This approach will provide the way forward to predicting 1043 

pharmacokinetic differences resulting from these combinations and, especially when coupled with PK/PD 1044 
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relationships, whether these are likely to be clinically significant, in a wide variety of populations and 1045 

dosing conditions. 1046 
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Tables 2008 

Table 1: Reported Pharmacokinetic Interactions with Metoclopramide 2009 

 

Interaction 

with: 

Effect 

References Rate of 

absorption 
Cmax Tmax AUC 

Dr
ug

-D
ru
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te
ra

ct
io

ns
 w

ith
 M

et
oc

lo
pr

am
id
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Acetaminophen ↑ ↑ ↓  
Nimmo et 

al., 1973[30] 

Cimetidine 

 ↓  ↓ 
Gugler et al., 

1981[36] 

 ↓   
Lee et al., 

2000[344] 

Cyclosporine  ↑ ↓ ↑ 
Wadhwa et 

al., 1986[42] 

Digoxin 

  ↓ 
↓  

(only for tablet)  

Johnson et 

al., 1984[41] 

 ↓   
Manninen et 

al., 1973[40] 

Droxicam   ↓  
Sánchez et 

al., 1989[33] 

Levodopa ↑ ↑ ↓  
Morris et al., 

1976[35] 

Lithium   ↓  
Crammer et 

al., 1974[32] 
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Methotrexate    
↓ 

(pediatrics) 

Mahony et 

al., 1984[37] 

Mexiletine 
↑    Wing et al., 

1980[31] 

Morphine 
  ↓  Manara et 

al., 1988[34] 

Salicylic acid 

 ↑ plasma levels  

(in patients with 

migraine 

attacks) 

  

Volans et al., 

1975[28] 

Tetracycline 
  ↓  Gothoni et 

al., 1972[29] 

Tolfenamic acid 
↑    Tokola et al., 

1984[27] 

 2010 

Table 2: Classification of laxatives and antidiarrheal agents [43–45] 2011 

 Class Subgroup Examples 

Laxatives Osmotic laxatives 

Indigestible 

disaccharides 
Lactulose 

Sugar alcohols Sorbitol 

Synthetic 

macromolecules 
Polyethylene glycol 4000 

Saline laxatives 
Sodium sulphate 

Magnesium sulphate 
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Stimulant laxatives  

Bisacodyl 

Senna 

Phenolphthalein 

Casanthranol 

Sodium picosulfate 

Bulk laxatives  

Wheat bran 

Isphagula 

Sterculia 

Others  Linaclotide 

Antidiarrheal agents 

Opioids  

Loperamide 

Diphenoxylate 

Codeine phosphate 

Adsorbents/Bulking 

agents 
 

Kaolin 

Isphagula 

Methylcellulose 

Miscellaneous  Racecadotril 

 2012 

Table 3: Effects of laxatives and antidiarrheal agents on gastrointestinal conditions[45,46,49,51–54,58–60,65,345,346] 2013 

Drug category Implication on gastrointestinal conditions 

Laxatives 
↓Gastrointestinal 

transit time 

Small intestinal transit time (bisacodyl) 

Colonic transit time (bisacodyl, linaclotide, lactulose, 

polyethylene glycol) 

Whole gastrointestinal transit time (wheat bran, 
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senna, bisacodyl) 

pH in the colon 
↓ pH (lactulose, senna, wheat bran, sodium sulphate) 

↑ pH (magnesium sulphate) 

Fecal short chain 

fatty acids 
↑ (bisacodyl, senna, wheat bran) 

Differences in gut 

microbiota 

↑ Anaerobes, Bifidobacteria (lactulose) 

↓ Bifidobacteria (polyethylene glycol-4000) 

Haustra (small 

pouches in the colon) 
↓ (chronic use of stimulant laxatives) 

Antidiarrheal agents 

↑ Gastrointestinal 

transit time 
↑ intestinal transit time (loperamide) 

Fecal short chain 

fatty acids 
↑ (loperamide) 

 2014 

Table 4: Drug-Drug Interactions with concomitant administration of bile acid sequestrants 2015 

Implication on 

gastrointestinal conditions 

Associated risk for co-

medication 
Reported interactions 

Binding of weakly acidic drugs 
↓Bioavailability of co-

administered drug 

Furosemide[312] warfarin,[313] 

phenprocoumon,[314,315] 

sulindac,[316] cerivastatin,[317] 

levothyroxine,[318] glipizide,[319] 

mycophenolic acid,[320] folic 

acid,[321] valproate[322] 

Disruption of enterohepatic 

recirculation of drugs 

↑ Excretion of co-administered 

drug 

Anticoagulants,[313–315] cardiac 

glycosides,[328] mycophenolate 
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mofetil[320] 

Possible impact on 

gastrointestinal transit time  

↓↑Time available at 

gastrointestinal absorption site, 

effect on tmax 

Sustained-release formulation of 

verapamil[331]* 

Reduced concentrations of bile 

acids for drug solubilization 

↓ Absorption of low-soluble 

compounds  

*not clinically significant due to high variability in the pharmacokinetics of verapamil   2016 

 2017 

Figure Captions 2018 

 2019 

Figure 1: Gastrointestinal drugs discussed in this review. 2020 

 2021 

Figure 2: Gastric emptying results in twelve gastroesophageal reflux patients with delayed basal 2022 

emptying rates (A) and in fourteen gastroesophageal reflux patients with normal basal emptying rates 2023 

(B), in a two-way crossover design consisting of a control phase and a phase in which 10 mg 2024 

metoclopramode was ingested orally. The data are expressed as the mean percent (± 1 SEM) isotope 2025 

remaining in the stomach for a period of 90 min after ingestion of an isotope-labeled test meal.[25] Figure 2026 

reprinted from Fink et al. with permission from Springer Nature. 2027 

 2028 

Figure 3: Impact of laxatives on colonic transit times of a) healthy subjects and b) patients, measured by 2029 

scintigraphy (1), metal detector (2) or radiopaque markers method (3); patterned bars represent 2030 

controls.[45,47–49,53,54]  2031 

 2032 

Figure 4: Effect of loperamide on gastrointestinal transit time after oral administration in healthy 2033 

subjects.[46,70–72]  2034 

 2035 
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Figure 5: pH in the stomach of fasted healthy adults as a function of time, after administration of 240 mL 2036 

table water into the antrum of the stomach. Key: (From left to right boxes) White boxes, Phase 1 (control 2037 

phase); Light pink boxes, Phase 2 (pantoprazole phase); Dark blue boxes, Phase 3 (famotidine phase). 2038 

Each box was constructed by using 7–8 individual values.[119] 2039 
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