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Abstract
Himalopsyche Banks, 1940 (Trichoptera, Rhyacophilidae) is a genus of caddisflies inhabiting mountain and 
alpine environments in Central and East Asia and the Nearctic. Of 53 known species, only five species have 
been described previously in the aquatic larval stage. We perform life stage association using three strategies 
(GMYC, PTP, and reciprocal monophyly) based on fragments of two molecular markers: the nuclear CAD, 
and the mitochondrial COI gene. A total of 525 individuals from across the range of Himalopsyche (Hima-
layas, Hengduan Shan, Tian Shan, South East Asia, Japan, and western North America) was analysed and 
32 operational taxonomic units (OTUs) in our dataset delimited. Four distinct larval types of Himalopsyche 
are uncovered, and these are defined as the phryganea type, japonica type, tibetana type, and gigantea type 
and a comparative morphological characterisation of the larval types is presented. The larval types differ in a 
number of traits, most prominently in their gill configuration, as well as in other features such as setal con-
figuration of the pronotum and presence/absence of accessory hooks of the anal prolegs.
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Introduction

With ~15,000 described and around 50,000 presumed species, caddisflies are one of 
the larger insect orders and the largest primary aquatic insect order (de Moor and 
Ivanov 2008). Trichoptera have merolimnic life histories and the larvae have long been 
recognised as important ecological indicators (Resh and Unzicker 1975). They have 
several remarkable ecological traits, among others their diverse case-building behaviour 
or their ability to invade all types of aquatic habitats across the globe (except Antarc-
tica; Holzenthal et al. 2007, Wiggins 1996). While renowned for their intricate cases, 
larvae of some caddis families roam freely, and only build pupal retreats. Among those, 
the family Rhyacophilidae Stephens, 1836 is particularly noteworthy for their diver-
sity and ecological differentiation. This family entails the genera Himalopsyche Banks, 
1940, Fansipangana Mey, 1996, Philocrena Lepneva, 1956, Phoupanpsyche Malicky, 
2008, and Rhyacophila Pictet, 1834.

Species of the genus Himalopsyche are a particularly interesting group of caddisflies. 
They primarily inhabit mountain and alpine environments in Central and East Asia, 
although the genus also radiated into the Nearctic where it is represented by a single 
species, H. phryganea (Ross, 1941). Himalopsyche larvae mostly inhabit highly turbu-
lent, fast-flowing streams, where they live as ferocious predators.

Including recent species descriptions, the genus Himalopsyche currently comprises 
53 known species, adding to the status of the last major treatment of Himalopsyche 
by Schmid and Botosaneanu (1966). While our knowledge of the adult taxonomy of 
Himalopsyche is comparatively good, we know very little about the larval taxonomy and 
ecology of individual species. To date, five species have been described in the larval stage: 
H. japonica (Morton, 1900), H. phryganea, H. gigantea (Martynov, 1914), H. tibetana 
(Martynov, 1930), and H. acharai Malicky & Chantaramongkol, 1989 (Flint 1961, 
Graf and Sharma 1998, Lepneva 1945, 1970, Saito 1965, Tanida 1985, Thamsenanu-
pap et al. 2005), as well as a larva corresponding to a hitherto unknown species, referred 
to as H. ‘larva hoplura’ (Lepneva 1945, 1970). Three distinct types of Himalopsyche 
larvae have been differentiated, most prominently based on their gill configuration, but 
also on differences in setal configuration of the pronotum and anal sclerites. In their 
comparative study, Graf and Sharma (1998) defined two of these larval types, Type A 
and Type B, which differ distinctly from the previously known larvae of H. phryganea 
and H. japonica. Type B could be assigned to H. tibetana. The species identity of larvae 
assigned to Type A could not be clarified before now, but this type shows similarities to 
larvae of H. gigantea. The larva of H. acharai was described by Thamsenanupap et al. 
(2005) and was compared to H. japonica and H. phryganea, but not with Type A and B 
sensu Graf and Sharma (1998). Thus, all Himalopsyche species known in the larval stage 
have never been compared and characterised simultaneously before.

Caddisflies are good biological indicators (e.g., Rainbow et al. 2012) and are essen-
tial elements in many standardised assessment systems, especially in North America, 
Europe, and Australia (e.g., Schmidt-Kloiber et al. 2008). However, the practical use 
of Trichoptera larvae as biological indicators is limited whenever taxonomic knowl-
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edge is poor. Higher-level taxonomic resolution (e.g., genus or family level) can often 
mask the variability of environment/species interactions that act at the species level 
and make these taxa valuable indicator species (Resh and Unzicker 1975, Verdonschot 
2006, Ruiter et al. 2013).

Molecular data have proven successful in facilitating the association of larvae with 
adults in Trichoptera (e.g., Graf et al. 2005, Ruiter et al. 2013, Zhou et al. 2007). 
Since the earliest studies of this kind (Graf et al. 2005, Zhou et al. 2007) the mito-
chondrial cytochrome c oxidase (COI) and nuclear rDNA 28S genes have been the 
markers of choice for life stage associations. Zhou et al. (2007) suggested a protocol 
for life stage association based on COI (439 bp) and 28S (~430 bp) and emphasised 
that it is important to use more than a single genetic marker for life stage association. 
There are several reasons for this. First, data from different genes provide the possibility 
to cross-validate the results from each gene, and to identify potential contamination 
issues. Second, gene trees are likely to differ from the species phylogeny among close 
relatives because of incomplete lineage sorting (Funk and Omland 2003). Using more 
than one gene therefore increases the opportunities to cross-validate results from one 
gene with the other gene(s).

In this study, we associate larvae with adults based on molecular data from a 
nuclear and a mitochondrial gene, CAD and COI, respectively, and employ three 
different methods for life stage association to generate a consensus result. We then 
present the first comparative morphological characterisation of all known larval 
types of Himalopsyche.

Materials and methods

Sampling

Larval specimens used in this study were mostly collected in Nepal and China in 
2011–2013; adult material was largely obtained from research collections (Suppl. 
material 1). In Nepal, samples were collected in 2012 and 2013 from the Langtang, 
Indrawati, and Arun catchments (Tachamo Shah et al. 2015) and in China from the 
Lancang and Jinsha catchments in 2011 and 2013 (Figure 1). Larvae were collected 
from streams using hand nets, kick nets and hand-picking. Adults were collected using 
light traps, and occasionally with hand nets and a Malaise trap. Light traps were either 
set up at dusk, using a white sheet and a UV lamp (active light trapping), or left over 
night with the lamp placed over a small pan filled with soap water (passive light trap-
ping; Blahnik and Holzenthal 2004, Malicky 2004). Lamps used included 12V 15W 
Bioform blacklights, F8W/T5/BL350 Sylvania blacklights, and 22W circline BioQuip 
blacklights. All specimens were stored directly in 95% ethanol in the field, and refriger-
ated in the lab. Museum specimens of adults were borrowed for DNA sequencing from 
the private collection of Hans Malicky (Lunz am See, Austria), and from the Museum 
für Naturkunde (Berlin, Germany).
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Figure 1. Map showing sampling localities in A North America, and B East Asia. Colours/symbols indicate 
larval types of the OTUs. Elevation data from Jarvis et al. (2008), stream data from Andreadis et al. (2013).



Molecular association and morphological characterisation of Himalopsyche larval types... 83

Molecular data

For this study, we used partial sequence data of the single copy nuclear marker CAD 
and the mitochondrial COI. CAD has proved useful for insect phylogenetics (Bukon-
taite et al. 2014, Ekrem et al. 2010, Johanson and Malm 2010, Klopfstein et al. 2013, 
Moulton and Wiegmann 2004, Sharanowski et al. 2011, Wild and Maddison 2008) 
and in species delimitation (Foster et al. 2013, Song and Ahn 2014, Vitecek et al. 
2017). For COI, we targeted the 658 bp “standard barcode region” fragment of COI 
that has been used extensively for species identification, but also for life stage associa-
tion, population genetics, and phylogeny in insects (e.g., Hebert et al. 2004, Hjalmars-
son et al. 2015, Ruiter et al. 2013, Zhou et al. 2007, 2016).

DNA was extracted from legs using one of the following methods: HotShot pro-
tocol (Montero-Pau et al. 2008; mainly used for larvae), Qiagen Dneasy Blood & 
Tissue Kit (Qiagen, mainly used for fresh adult material), or QIAamp DNA Micro 
Kit (Qiagen, mainly used for museum material). We used a combination of previously 
published and newly developed primers, specific to Himalopsyche. The primers for 
CAD were: 743nF-ino & 1028r-ino (850 bp; Johanson and Malm 2010) and C1Fb & 
C7Ra (758 bp; this work, Table 1). The COI primers were: HCO1490 & LCO2198 
(658 bp; Folmer et al. 1994), and B1Fa & B3Ra (367 bp; this work, Table 1). Polymer-
ase Chain Reaction (PCR) was performed using PeqGOLD Hot Start Taq Polymerase 
kits (PeqLab VWR) in standard reactions, for some protocols with the addition of BSA 
(Table 2). Sanger sequencing of PCR products was performed on a 3730XL DNA An-
alyzer (Applied Biosystems) at the Senckenberg Biodiversity Climate Research Centre 
Laboratory Centre. Sequences were assembled and edited in Geneious 7.0.6 (Kearse et 
al. 2012). Ambiguities were coded using IUPAC codes. Multiple sequence alignments 
of CAD and COI were made using the ClustalW algorithm (Thompson et al. 1994) as 
implemented in Geneious, and were checked for stop codons.

Life stage association

Adult males were identified to species based on morphology. The dataset included 
38 adult species based on males, including four putative new species (Hjalmarsson 
submitted, Kuranishi et al. unpublished data). We used and compared the results of 
three phylogenetic association criteria: Poisson Tree Process (PTP; Zhang et al. 2013), 
General Mixed Yule Coalescent method (GMYC; Fujisawa and Barraclough 2013, 
Pons et al. 2006), and reciprocal monophyly. In total, we had five life stage association 
criteria (PTP and GYMC for each gene, and reciprocal monophyly). Life stage asso-
ciation was considered successful if at least three criteria were fulfilled. The life stage 
association criteria were defined as follows. PTP: larvae are conspecific with an adult 
if they form a PTP cluster containing only one and the same adult species. GMYC: 
larvae are conspecific with adults if they form a GMYC cluster containing only one 
and the same adult species. Reciprocal monophyly: species are considered reciprocally 
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Table 1. Primers used for PCR and sequencing. Fragment lengths refer to the primer pairs 743nF-ino & 
1028r-ino, C1Fb & C7Ra, HCO1490 & LCO2198, and B1Fa & B3Ra.

Gene Primer Sequence Tm 
(°C)

Fragment 
length (bp) Reference

CAD 743nF-ino 5’-GGIGTIACIACIGCITGYTTYGARCC-3’ 52.4 850 Johanson and 
Malm 2010

CAD 1028r-ino 5’–TTRTTIGGIARYTGICCICCCAT–3’ 42.1 850 Johanson and 
Malm 2010

CADinternal C1Fb 5’–TGYGTTGTRAAGATTCCGAG-3’ 51.8 736 this work
CADinternal C7Ra 5’–TGTCCATTACAACCTCGAATG-3’ 62.3 736 this work

COI HCO1490 5’-GGTCAACAAATCATAAAGATATTGG-3’ 53.2 658 Folmer et al. 
1994

COI LCO2198 5’-TAAACTTCAGGGTGACCAAAAAATCA-3’ 51.0 658 Folmer et al. 
1994

COIinternal B1Fa 5’-ATTGCDACWGATCAWACAAA-3’ 54.9 367 this work
COIinternal B3Ra 5’-AAYGTARTWGTWACWGCTCA-3’ 47.2 367 this work

monophyletic if both genes return a monophylum containing one and the same adult 
species, and the same larval specimens. Reciprocal monophyly could only be tested 
for species with data from both genes and with >1 specimen per gene. We considered 
nodes as supported if they had posterior probability of at least 95%. We refer to groups 
of unresolved and paraphyletic species as ‘species complexes’.

Gene trees of all available specimens were reconstructed in MrBayes v3.2.6 (Ron-
quist et al. 2012). Alignments were partitioned per codon position with independent 
rates among partitions. Nucleotide substitution models were determined in Partition-
Finder v2.1.1. (Lanfear et al. 2016; Table 3). Runs were generated for 10 to 50 million 
generations and were checked for convergence in Tracer v.1.6 (Rambaut et al. 2014). 
Fully resolved 50% majority rule consensus trees were generated using the ‘sumt’ com-
mand, with 25% burn-in. PTP and test of reciprocal monophyly were performed on 
the gene trees from MrBayes.

The GMYC method uses a haplotype-based ultrametric gene tree to determine the 
transition from inter- to intraspecific branching patterns (Fujisawa and Barraclough 
2013; Pons et al. 2006). For this, we reconstructed chronograms in BEAST (see be-
low). GMYC was performed separately on chronograms from each gene in R 3.2.3 (R 
Core Team 2015), using the splits package (Ezard et al. 2014). The single-threshold 
option of GMYC was used. It sets a single limit between inter- and intraspecific di-
vergence patterns and has been shown to outperform the multiple-threshold option 
(Fujisawa and Barraclough 2013).

Haplotype-based chronograms require that identical sequences be removed from 
the alignment, leaving an alignment consisting only of unique sequences. Identi-
cal haplotypes were removed from the original alignments using collapsetypes_v4.6 
(Chesters 2013), which outputs a reduced fasta-alignment and haplotype assigna-
tions of each sequence. Ultrametric gene trees based on haplotype alignments were 
reconstructed in BEAST2 v. 2.3.1 (Bouckaert et al. 2014). Model selection was done 
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Table 2. Protocols for 10 μL PCR reactions, using VWR peqGOLD Hot Taq DNA Polymerase kits. BSA 
= Bovine serum albumin. All numbers are given in μL.
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CAD 1028r-ino, 
743nF-ino 1 0 1 0 0.25 0.25 0.1 1 6.4 5’ 95°C, 35x (45’’ 95°C, 45” 55°C, 

60” 72°C) 5’ 72°C

CAD C1Fb, C7Ra 1 0 1 0 0.25 0.25 0.1 1 6.4 5’ 95°C, 35x (30’’ 95°C, 30” 50°C, 
45” 72°C) 5’ 72°C

COI HCO1490, 
LCO2198 1 0 1 0 0.25 0.25 0.1 1 6.4

5’ 95°C, 5 x (30’’ 95°C, 1’ 44°C, 
1’ 72°C), 15x (30’’ 95°C, 30’’ 

48°C, 1’ 72°C), 20 x (30’’ 95°C, 
30’’ 50°C, 1’ + (10’’ * n) 72°C), 

5’ 72°C

COI B1Fa, B3Ra 1 0 1 0.4 0.25 0.25 0.1 1 6.0 5’ 95°C, 35x (30’’ 95°C, 30” 45°C, 
45” 72°C) 5’ 72°C

Table 3. Specifications of alignments used for gene tree reconstruction with BEAST and MrBayes.

Alignment Number of 
sequences

Length 
(bp)

Variable 
sites

Parsimony in-
formative sites

Missing 
data Analysis Substitution 

model

CAD 353 736 37,6% 28,0% 1.5% MrBayes
1: GTR+I

2: F81
3: HKY+G

CAD haplotypes 136 736 31.8% 26.4% 1.6% BEAST
1: BMod
2: BMod
3: BMod

COI 451 658 40,0% 37,7% 18.5% MrBayes
1: SYM+I+G

2: F81+I
3: GTR+I+G

COI haplotypes 183 658 39.2% 35.0% 15.9% BEAST
1: BMod
2: BMod
3: BMod

using bModeltest (Bouckaert and Drummond 2015), which estimates the best fit-
ting model of sequence evolution simultaneously with the Bayesian tree search. The 
transition/transversion split option was chosen, which searches among 31 models of 
sequence evolution. The ‘empirical’ option was used for base frequencies. Alignments 
were partitioned per codon position with independent rates among partitions; trees 
and clocks were linked among partitions. Trees were reconstructed under a relaxed 
lognormal clock, and with a coalescent constant population tree prior. Priors were set 
to default settings, with infinity values replaced with hard bounds at 1000, to avoid 
improper priors. Independent analyses were executed with a run time of 0.5 to 1 
billion generations each and runs were checked in Tracer. Maximum clade credibil-
ity trees were generated in TreeAnnotator, with 10–50% burn-in. PTP and GMYC 
analyses were performed on two independent trees, to check stability of the results. 
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Rhyacophila polonica McLachlan, 1879 was included as outgroup for MrBayes analy-
ses but was not included in BEAST analyses.

For this paper, we define the use of the terms ‘species’, ‘putative new species’, ‘clus-
ter’ and ‘OTU’ (operational taxonomic unit) as follows: ‘Species’ refers to formally 
described morphological taxa, following established taxonomy. With ‘putative new 
species’ we mean morphologically distinct taxa that are still unknown in the literature. 
The term ‘cluster’ refers to specific results from one of the two analyses, outputting 
delimited GMYC and PTP ‘clusters’, respectively. For our consensus result from mor-
phology, PTP, and GMYC based on CAD and COI we use the term OTU, which can 
represent single species or groups of species referred to as species complexes.

Comparative morphological studies

Comparative morphological analysis of larvae followed a standard procedure. We 
screened all larvae of each OTU for consistent morphological characters. Instar dif-
ferentiation and thus assignment of most larvae to different instars is not possible with 
the currently available material. Therefore, general features commonly represented by 
all OTUs within one phylogenetic clade were considered as synapomorphies. Some 
characters were found present across all size classes of single OTUs and phylogenetic 
clades, e.g., distolateral accessory hooks on lateral plates of anal prolegs were consist-
ently present in even the smallest instars.

Results

Datasets

The dataset comprised 525 Himalopsyche individuals (205 adults, 313 larvae and 8 pu-
pae), and R. polonica as outgroup for MrBayes. We generated 352 Himalopsyche se-
quences of CAD (736 bp) and 450 Himalopsyche sequences of COI (658 bp). After 
haplotype reduction of the alignments, the CAD alignment had 136 unique haplotypes 
and the COI had 183 unique haplotypes. The total CAD alignment had 37.6% vari-
able sites; the total COI haplotype alignment had slightly more with 40% (Table 3). 
For morphological treatment, we also included larvae collected in Japan and Thailand 
identified as H. japonica and H. acharai, respectively, although no molecular data for 
these specimens were available.

Life stage association

PTP delimited 29 clusters with CAD, and 62 with COI for the ingroup. GMYC delim-
ited 27 clusters with CAD and 46–48 clusters with COI. The results from separate runs 
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were stable except for GMYC with COI. This instability did not affect larval association 
and we hereafter only refer to COI run 1 which delimited 48 GMYC clusters (Table 4, 
Suppl. material 2, 3). We defined OTUs based on adult male morphospecies to the ex-
tent that it was possible. Clades containing several paraphyletic species were grouped into 
‘species complexes’. In all cases but two, COI clusters were nested within CAD clusters, 
yielding an overall compatible result. The exceptions were the OTUs japonica-complex 
(H. japonica and a putative new Japanese species [H. sp. n. 1529]), and triloba-complex 
(H. triloba (Hwang, 1958), H. efiel Malicky, 2012, H. hageni Banks, 1940, H. malenanda 
Schmid, 1963, H. maculipennis (Ulmer, 1905a), and H. yatrawalla Schmid & Botosane-
anu, 1966), which both were paraphyletic in COI. The remaining species complexes 
were: martynovi-complex (H. martynovi Banks, 1940, H. epikur Malicky, 2011), and ex-
cisa-complex (H. excisa Ulmer, 1905b, H. placida Banks, 1947 and H. maitreya Schmid, 
1963). Three OTUs were identified for which only larval material was available: H. sp. 
1196 (L), H. sp. 1338 (L), and H. sp. 1254 (L). A H. platon Malicky, 2011 male formed 
a clade together with samples of larvae and females in COI but we lacked CAD data from 
the adult male so we cannot at this stage conclude whether this monophylum constitutes 
one or several species, and refer to this monophylum as platon-complex.

We could unambiguously associate 239 larvae and eight pupae to the following 
nine species: H. acharai, H. anomala Banks, 1940, H. digitata (Martynov, 1935), H. 
gregoryi (Ulmer, 1932), H. phryganea, H. sylvicola, H. tibetana, H. 677, and H. 685 
(Table 5, Suppl. material 1). We could additionally associate 65 larvae to OTU-level 
for seven OTUS: excisa-complex, martynovi-complex, platon-complex, H. sp. 1196 
(L), H. sp. 1254 (L), H. sp. 1338 (L), and triloba-complex.

Morphology of Himalopsyche larvae

Synapomorphic larval characters of Himalopsyche according to Lepneva (1970), Ross 
(1956), Flint (1961), Ulmer (1957), and the present study are:

•	 Mandibles	with	prominent	lateral	protuberances	(Figure	14,	arrow)
•	 2nd and 3rd leg with anterodorsal single coxal gills (e.g., Figure 18, arrow a, Figure 

20, arrow a)
•	 Abdomen	with	prominent	and	complex	gills	consisting	of	a	multitude	of	gill	fila-

ments positioned on several bases or a single base which can be slightly to distinctly 
protuberant (e.g. Figure 3).

•	 Anal	proleg	with	 two	proximal	 accessory	hooks	 fused	with	 lateral	 sclerites	 (e.g.	
Figure 38, arrow d, Figure 41, arrow d).

Based on these characters, larvae of Himalopsyche can easily be differentiated from 
the closely related genera Philocrena and Rhyacophila. The larvae of the monotypic 
genera Fansipangana and Phoupanpsyche are unknown. Within Himalopsyche, the four 
different larval types can easily be differentiated based on distinct character states.
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Table 4. Number of clusters delimited by PTP and GMYC. Number of PTP clusters refer to the ingroup 
only.

Gene Method Run Chain length Burn-in ESS Clusters

CAD MrBayes & PTP 1 1* 107 25% All >200 29
CAD MrBayes & PTP 2 1* 107 25% All >200 29
CAD BEAST & GMYC 1 1* 109 50% All >200 27
CAD BEAST & GMYC 2 5 * 108 10% Most >200 27 
COI MrBayes & PTP 1 5* 107 25% All >200 62
COI MrBayes & PTP 2 1* 107 25% Most >200 62
COI BEAST & GMYC 1 1* 109 10% All >200 48
COI BEAST & GMYC 2 1 * 109 10% All >200 46

phryganea type

Himalopsyche phryganea is the only species known with this larval type. Larvae of H. 
phryganea were described and illustrated by Flint (1961) and Wiggins (1996). Larvae 
of the phryganea type are characterised by the following set of characters:

Thorax. Pronotum with a single row of long dark setae along the entire anterior mar-
gin; short light recumbent setae concentrated at anterolateral pronotal edges; Sa1 present 
as a transversal band of 4–5 setae, Sa2 absent (Figure 7); legs without dorsal fringe of 
setae (Figure 11). Gills. Ventral gills at meso- and metathorax absent (Figure 23); thoracic 
and abdominal gills arranged on a single suboval, slightly protuberant base extending 
obliquely from anterodorsal to mediolateral position (Figs 3, 15, 16, 25, 29, 30). Abdo-
men. Abdomen without ventral protuberances (Figure 30); single ventral medial scler-
ite on abdomen III-VII, oval, transversally elongated (Figure 30, arrow). Anal prolegs. 
Stout, distolateral accessory hook absent, dorsal plate with rounded central protuberance 
(Figs 37–38, arrow b); dorsal spine on basal anal claw dark (Figure 37, arrow c).

tibetana type

One species with larvae of the tibetana type has been described in the larval stage: H. 
tibetana (Graf and Sharma 1998, Type B). The following OTUs could be assigned to 
the tibetana type: H. anomala, H. digitata, excisa-complex, H. gregoryi, martynovi-com-
plex, platon-complex, H. sp. 1196 (L), and H. sp. 1254 (L), H. tibetana, H. 677, and 
H. 685. Larvae of the tibetana type are characterised by the following set of characters:

Thorax. Pronotum with two rows of setae along the anterior edge, anteriormost 
row of setae short, light, recumbent and posterior row setae longer, black; Sa 1 present 
as a transversal band of 4–5 setae, Sa2 absent (Figure 8); legs without dorsal fringe of 
setae (Figure 11). Gills. Ventral gills at meso- and metathorax absent (Figure 23); tho-
racic gills arranged on anterodorsal and anterolateral bases, abdominal gills arranged 
on anterodorsal, anterolateral and posterolateral bases (Figs 4, 17, 18, 26, 31, 32); an-
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H. tibetana
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complex*

H. todma

H. lua

H. yongma

H. 1338 (L)
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Figure 2. Summary of GMYC results from the CAD and COI, indicating the overlap in results from the 
two genes. Colours indicate larval types, inferred from this study and the literature.
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Figures 3–6. Habitus of Himalopsyche larvae. 3 H. phryganea 4 H. gregoryi 5 H. japonica 6 H. sylvicola. 
Arrow A points to anterior.
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terodorsal and anterolateral gill bases on abdomen I close, seemingly fused. Abdomen. 
Without ventral protuberances; single ventral medial sclerite on abdomen III-VII oval, 
transversally elongated (Figure 32, arrow). Anal prolegs. More elongated, with distolat-
eral accessory hook (Figs 39–40, arrow a), dorsal plate with central hook (Figs 39–40, 
arrow b), dorsal spine on basal anal claw dark (Figs 39–40, arrow c).

japonica type

Two species of the japonica type have been described in the larval stage: H. acharai by 
Thamsenanupap et al. (2005), and H. japonica by Saito (1965) and Tanida (1985). 
Larvae of the japonica type are characterised by the following set of characters:

Thorax. Pronotum with a single row of setae along the anterior edge; Sa1 present as 
a transversal row of 2–4 dark setae medially, Sa2 present as a group (sometimes arranged 
as sagittal band) of 2–4 setae (Figure 9); legs without dorsal fringe of setae (Figure 11). 
Gills. Ventral gills at meso- and metathorax present (Figure 24, arrows, Figure 20, arrow 
b); thoracic and abdominal gills arranged on two joint bases, one anterodorsal and one 
on a small lateral protuberance, extending posterolaterally (Figs 5, 19, 20, 27, 33, 34); 
abdomen I with gills on a single base only. Abdomen. With ventral protuberances (Fig 
34, arrow); ventral medial sclerites absent (Figure 34). Anal prolegs. Stout, distolateral 
accessory hook present (Figs 41–42, arrow a), dorsal plate flat without rounded central 
protuberance; dorsal spine on basal anal claw yellowish (Figure 41, arrow c).

gigantea type

Larvae of this type have been described by Lepneva (1945, 1970), Schmid and Botosane-
anu (1966), and Graf and Sharma (1998, Type A). Both Graf and Sharma (1998) and 
Schmid and Botosaneanu (1966) described larvae of unknown species identity. We as-
signed the following OTUs to the gigantea type: H. sylvicola, triloba-complex, and H. sp. 
1338 (L). Larvae of the gigantea type are characterised by the following set of characters:

Thorax. Pronotum with a single row of setae along the anterior edge; Sa1 present as 
a transversal band of 2–4 setae, Sa2 present as a sagittal band of 7–9 dark setae, promi-
nent (10); legs with dorsal fringe of setae (Figure 12), with pennate setae on coxa and 
femora (Figure 13). Gills. Ventral gills at meso- and metathorax absent (Figure 23); 
thoracic and abdominal gills arranged on large lateral processes (conical processes sensu 
Graf and Sharma 1998), lateral processes slightly smaller on meso-and metathorax 
and distinctly smaller on abdomen I (Figs 6, 21, 22, 28, 35, 36); lateral processes with 
small rounded protuberances proximoventrally (Figure 36, arrow a). Abdomen. With-
out ventral protuberances; single ventral medial sclerite on abdomen II-VII suboval, 
thin, transversally elongated (Figure 36, arrow b). Anal prolegs. Stout, without disto-
lateral accessory hook, dorsal plate flat without protuberance or hook (Figs 43–44); 
dorsal spine on basal anal claw yellowish (Figs 43–44, arrow c).
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Figures 7–10. Pronotum of Himalopsyche larvae. 7 H. phryganea 8 H. anomala 9 H. japonica 10 H. 
sylvicola. Arrow A points to anterior.
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Figures 11–14. Mesolegs and head of Himalopsyche larvae. 11 Mesoleg of H. gregoryi 12 Mesoleg of H. 
sylvicola, arrows indicate dorsal fringe of setae on legs 13 Mesoleg of H. sylvicola. Arrows indicate pennate 
setae on coxa and femora 14 Head of H. phryganea, arrow points to lateral protuberances on mandible.
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Figures 15–22. Thorax of Himalopsyche larvae in dorsal and lateral view. 15, 16 H. phryganea 17, 18 H. 
gregoryi, arrow a points to anterodorsal single coxal gill 19, 20 H. japonica, arrow a indicates anterodorsal 
single coxal gill; arrow b indicates the ventral gills 21, 22 H. sylvicola. Arrows A points to anterior.
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Figures 23–28. Thorax ventral, abdomen dorsal. 23 H. gregoryi 24 H. japonica, arrows indicate ventral 
gills 25 H. phryganea 26 H. gregoryi, 27 H. acharai 28 H. sylvicola. Arrows A points to anterior.
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Figures 29–36. Abdomen lateral, ventral. 29, 30 H. phryganea, arrow points to ventral medial sclerite 
31, 32 H. gregoryi, arrow points to ventral medial sclerite 33, 34 H. japonica, arrow points to ventral protu-
berance 35, 36 H. sylvicola, arrow a indicates small rounded protuberance on lateral process, while arrow b 
indicates the ventral medial sclerite. Roman numbers indicate abdominal segments. Arrow A points to anterior.
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Figures 37–44. Anal prolegs, lateral, caudal. 37, 38 H. phryganea 39 H. gregoryi 40 H. tibetana 
41, 42 H. japonica 43, 44 H. sylvicola. Key: arrows a distolateral accessory hook. arrows b protuberance/
hook on dorsal plate. arrows c dorsal spine on basal anal claw. arrows d proximal accessory hooks fused 
with lateral sclerites. Arrow A points to anterior.



Anna E. Hjalmarsson et al.  /  ZooKeys 773: 79–108 (2018)100

Discussion

We used several life stage association strategies based on two genes in a comparative 
setting: PTP, GMYC and reciprocal monophyly. All strategies acknowledge a success-
ful association in cases of sequence identity, but differ in that PTP and GMYC use 
branch lengths to estimate which clades represent distinct units, and that reciprocal 
monophyly requires congruence of gene trees. The importance of using more than one 
gene (Dupuis et al. 2012) was apparent in this study, as the two genes yielded some-
what different, albeit overall compatible, results. Delimitation results based on COI 
tended to split species into several units, especially with PTP, where CAD did not. 
This could be explained by the quicker coalescence time in COI, with its matrilineal 
inheritance leading to an effective population size 1/4 of that of nuclear genes. The 
PTP and GMYC methods search for the transition between inter- and intraspecific 
branching patterns, and if coalescence of COI lineages occurs within isolated popula-
tions, then the PTP and GMYC methods cannot distinguish between population and 
species signals. CAD was generally congruent with established taxonomy except in the 
species complexes, which were unresolvable by either gene. The major assumption, 
and limitation, of all association methods employed here is that they assume mono-
phyletic gene trees. Closely related species may be difficult to separate genetically due 
to incomplete lineage sorting, and recent or ongoing gene flow (e.g., Kutschera et al. 
2014). Therefore, recent divergences will always be problematic for PTP and GMYC 
analyses. GMYC has, for example, been shown to be an accurate and conservative 
method under conditions where effective sample sizes are low, and divergence times 
between species are high, since such conditions yield monophyletic species (Esselstyn 
et al. 2012, Fujisawa and Barraclough 2013). To resolve the species complexes more 
genes should be used, ideally under a multi-species coalescence approach, such as BPP 
(Yang 2015), or STACEY (Jones 2017). These methods combine data from several 
genes to estimate the species borders, accounting for incomplete lineage sorting and 
conflicting information among genes.

We observed clear morphological differences in morphology between the larval 
types. Within larval types, however, the examined material did not show any stable and 
reliable morphological characters to delimitate larvae at species-level. More material, 
particularly of last instar larvae, and ideally from numerous sites is required to better 
assess interspecific, intraspecific and ontological variation in the here described as well 
as other morphological characters. Only then will it be possible to assess if the observed 
morphological variation is useful for delimiting species in the larval stage.

Conclusion

In this study, we present the characteristic morphological differences of four larval 
types of Himalopsyche. Life-stage association based on molecular data enabled us to 
do this, as it provided an OTU assignation for over 300 larvae. We found little or no 
morphological differences among species within the same type. Once we are able to 
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better discern organisms at lower taxonomic rank (by morphology or molecular asso-
ciation, e.g., in high-throughput barcoding studies), aquatic insects and other benthic 
invertebrates can become much more valuable for biological monitoring in poorly 
studied regions. More generally, it is essential to be able to distinguish taxa at the low-
est taxonomic resolution (i.e., to species) to understand their ecology and evolution. 
This is also of great relevance when developing tools to assess ecological status to ensure 
sustainable use and management of natural resources.
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