A Diverse Benchmark Based on 3D Matched Molecular Pairs for Validating Scoring Functions

Lena Kalinowsky^{1 ‡}, Julia Weber^{1 ‡}, Shantheya Balasupramaniam², Knut Baumann² and Ewgenij Proschak^{*,1}.

 Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 9, Frankfurt a.M., D-60438 Germany.

 Institute of Medicinal and Pharmaceutical Chemistry, Technical University of Braunschweig, Beethovenstr. 55, Braunschweig, D-38106 Germany. The 13 scoring functions evaluated in this study are briefly described below. A detailed description of the scoring functions can be found in the cited references.

(1) **MOE.** The commercially available software MOE 2014.09¹ provides four empirical scoring functions (London dG, ASE, Affinity dG, Alpha HB) and one force-field scoring function (GBVI/WSA dG).

(1.1) **London dG/MOE.** London dG estimates free binding energy of ligands using a set of energy and assessment terms. Those include hydrogen and metal bond geometries, rotation and translation entropy as well as solvation energy contributions.

(1.2) **ASE/MOE.** ASE accumulates the Gaussian function of all atom-receptor pairs and Atom-Alpha HB sphere pairs of each complex.

(1.3) **Affinity dG/MOE.** Affinity dG uses a linear function to calculate the enthalpy contribution to the binding free energy (G).

(1.4) **Alpha HB/MOE.** Alpha HB uses a linear combination of two terms. One term comprises the geometric fit of the ligand to the binding site. The other term comprises hydrogen bond effects.

(1.5) **GBVI/WSA dG/MOE.** The force-field scoring function GBVI/WSA dG was trained at the MMFF94x² and AMBER99 force-field^{3–5} using the SIE (solvated interaction energy) training data set.⁶ It estimates the free binding energy with weighted terms for the Coulomb energy, solvation energy and van-der-Waals contributions.

(2) **GOLD.** The genetic algorithm GOLD (genetic optimization for ligand docking) is available in the software package GOLD Suite 5.2.2.^{7–14} The package provides two empirical scoring functions (ChemPLP and ChemScore), one knowledge-based scoring function (ASP) and one force-field scoring function (GoldScore).

(2.1) **ChemPLP/GOLD.** The ChemPLP scoring function combines parameter from the ChemScore (distance and angle dependences of hydrogen and metal bonds) and PLP (Piecewise

S2

Linear Potential) scoring function (heavy-atom-collision and torsion potentials, covalent bond contributions, protein sidechain flexibility and optional constrains).¹¹

(2.2) **ChemScore/GOLD.** The empirical scoring function ChemScore was trained with experimental binding affinities. The function is composed of the binding free energy contribution as well as penalty values for collisions, internal torsions, covalent contributions and constrains (see ChemPLP).^{12,13}

(2.3) **ASP/GOLD.** The ASP (Astex Statistical Potential) is a statistic atom-atom potential generated from statistical analysis of protein-ligand interactions found in the PDB.¹⁰

(2.4) **GoldScore/GOLD.** GoldScore as a force-field scoring function consists of four terms for hydrogen binding and van-der-Waals energy further intern van-der-Waals and torsion energies.¹⁵

(3) **AutoDock Tools.** The scoring functions AutoDock 4.2.6and AutoDock Vina 1.1.2 are provided by the software package AutoDock Tools.¹⁶

(3.1) **AutoDock 4.2.6.** AutoDock 4.2.6 is a semi-empirical, force-field scoring function which calculates pairwise interactions between protein and ligand. The surrounding water is evaluated with an empirical method. Both enthalpy and entropy contributions are about to be considered.¹⁷

(3.2) **AutoDock Vina 1.1.2.** AutoDock Vina 1.1.2 is a combination of a knowledge-based and empirical scoring function to consider the advantages of both scoring function types.¹⁸

(4) **X-Score.** X-Score is an empirical scoring function considering van-der-Waals interactions, hydrogen bridge bonds, entropy loss due to ligand binding, the hydrophobic effect and a regression constant considering the loss of enthalpy and entropy due to ligand btargetinding.¹⁹

(5) **DSX.** DSX is a knowledge-based scoring function which composed of three weighted parts of a distance dependent pair-potential, a knowledge-based angel dependent torsion potential as well as a ratio of the solvent-accessible surface (SAS) from the bound and unbound state.²⁰

Table S1. Detailed information regarding PDB codes, affinity data and target-protein name of the data set of 99 3D-MMPs.

Cluster ID	ID_pair	Affinity_L	Affinity_R		Target-protein	Aaffinity
Cluster_ID	(L/R)	[µM]	[µM]		name	Zummey
	3HVH_3HVJ	0.003	0.002			0.18
23	30E4_30ZT	0.034	74.9	K_i	O-methyltransferase	-3.34
	30ZS_30ZT	4.645	74.9			-1.21
	3SV2_3QX5	64	63.5			0.003
59	2ZDA_3SI4	0.004	132.2	K_i	Thrombin	-4.52
	1QBV_3SV2	4.1	64			-1.19
0.2	3QU0_3QXP	0.02	0.02			0.0
83	3R9H_3QXP	100	0.02	IC_{50}	CDK2	3.7
	2VTP_2VTT	0.003	0.044			-1.17
150	4JQ7_4JR3	0.393	0.218	10	ECED	0.26
156	4JR3_4JQ8	0.218	0.008	IC_{50}	EGFR	1.44
	4JRV_4JQ8	0.029	0.008			0.56
167	$4C38_4C37$	0.0174	0.0197	IC	Ductain Vinces A	-0.05
10/	20W3_20W4	80	5.2	IC 50	Protein Kinase A	0.70
	3SWW 3SX4	0.018	0.002	V		0.12
10/	30C0 3KWE	0.004	0.003	Λ_i	Human DPP_IV	1.88
174		0.52	0.0068	IC 50		0.81
	4LK0_4J110	0.006	0.00094	K_i		0.01
224	2XPK_2J62	0.000005	0.0000046	V	O Clanagasa	0.04
324	2WB5_2J02 2WB5_2VDV	0.00074	0.0000046	$\mathbf{\Lambda}_{i}$	0-Gichaease	2.21
	2 W B5_2AI K	0.000/4	0.000003			2.17
325	101E 2175	0.036	0.048	K,	Beta-Glucosidase	-1.07
525	217G 217E	0.019	0.223	\mathbf{n}_{d}	Deta-Olucosidase	0.32
	3EIO_3EIR	0.0027	0.040			0.0
441	3DX1_2F70	265	0.036	K_i	Golgi Alpha-	3.87
	2F18 2F1B	80	1000	IC_{50}	Mannosidase II	-1.1
	 4H1E 4H3I	0.003	0.003	<i>K</i> .		0.0
466	410F 411C	0.45	0.003	\mathbf{n}_{l}	BACE-1	1 75
	4JP9 4JPC	0.024	0.000	IC_{50}		-0.59
	3UO5 3UP2	0.039	0.04	Ka		-0.01
487	4DEA 3UP7	0.256	0.0061	IC 50	Aurora A	1.62
	3UNZ 3UOJ	0.016	0.051	K _d		-0.5
	20NZ 20BF	0.0013	0.0014	Ki		-0.03
518	3KR0 3KR1	20	1.8	K _d	hPNMT	1.05
	- 1N7J 1HNN	0.37	0.58	K _i		-0.2
	- 3GE7_3EOS	0.002	0.004	11		-0.3
686	1839 1838	0.02	7	Ki	tRNA-Guanine	-2.54
000	3V0Y 3RR4	4.1	28.05		Transglycosylase	-0.84
	1LOQ 3WJW	200	134		Orotidine 5'-	0.17
710	3G1V_1LOR	645	0.000088	K	monophosphate	7.87
/10	- 3G1V_1KM3	615	10 /	\mathbf{n}_l	decarboxylase	1.72
		043	12.4		(UDCase)	0.0
745	$2VCJ_2VCI$	0.021	0.021	IC ₅₀	HSP90 Chaperone	0.0
	2XHX_2XHT	0.25	1.1	K_d	-	-0.64

	2YI0_2YI7	0.0075	0.0048			0.19
	2XBX_2XBW	0.015	0.01			0.18
790	2UWO_2UWP	0.002	0.154	K_i	Factor XA	-1.89
	2JKH_2Y5F	0.009	0.002			0.65
	4DE3_4DDY	3	2.4		OTV MO dans Alberta	0.1
806	4DE2_4DDY	76	2.4	K_i	LIX-M-9 Class A beta-	1.5
	3G35_4DE3	21	3		lactamase	0.85
	1F8C_2QWE	0.04	0.033		Influonzo	0.08
810	1F8E_1F8C	15	0.04	K_i	Neuraminidase	2.57
	1F8D_1F8B	400	4		i (ourummuuso	2.0
	309A_309D	0.00002	0.000019			0.02
812	309B_309A	0.0000005	0.00002	K_i	HIV-1 Protease	-1.6
	4DJR_309D	0.000003	0.000019			-0.8
	3IOC_3IOD	210	80		Mycobacterium	0.42
873	3IUB_3IUE	29	1.5	K_d	I uberculosis Pantothenate	1.29
	3COY_3COW	0.96	0 125		Synthetase	0.89
	3NX7 3F15	0.00788	0.00788		S J Mile Case	0.0
900	3LKA 3LK8	1500	0.0197	K_d	Human MMP12	4.88
	3LK8_3F15	0.0197	0.00788			0.4
	2ZFS 2ZQ2	0.287	0.276	Kı		0.02
914	1035_1031	10	0.17	m a	Serine Protease	1 77
	1TNK 1TNL	32500	13300	K_i		0.39
	3E6K 3LP4	7	13.1			-0.27
929	3F80 2AEB	60	0.005	K_d	Arginase I	4.08
	3SJT_3SKK	0.88	34		0	-1.59
	1Q6J 1Q6M	0.016	0.013	IC_{50}		0.09
942	20BP 2NT7	0.004	0.015	<i>K</i> .	Protein-tyrosine	-1.88
12	2VEX 2VEW	0.004	0.3	K_i	phosphatase 1b	0.45
		0.18	0.064	<i>IC</i> 50		0.43
975	INVK_INVQ	0.0078	0.0056	K_i	Checkpoint Kinase 1	0.14
)15	2XEZ_2XF0	1.5	30	<i>IC</i> 50	(CHK1)	-1.5
	$\frac{2 \text{WWW}}{2 \text{WWA}}$	0.39	0.80			-0.34
979	1005_1009	0.9	0.04	K	Urokinase	1.2
	1W0Z_1W11	0.021	0.04	\mathbf{n}_l	Olokindse	0.54
	4EHV 4EH9	5103	5453			-0.03
1024	3NNU 3NNW	0.048	0 009	IC_{50}	P38 MAP kinase	0.73
1024	3GCU 3GCV	0.165	0.074	Κ.	1 50 With Killuse	0.35
	3750 3750	0.105	0.074	K _d		0.16
1025	323Q_3230	10.9	/.6	K_d		0.10
1025	SAV9_SAVB	435	85.2	IC_{50}	HIV type I integrase	0.71
	4CEB_3ZSW	1080	2000	K_d		-0.27
	3F3D_3F3E	0.069	0.02	K_d		0.54
1050	3F48_3F3E	0.512	0.02	u .	LeuT	1.41
	2Q72_2Q6H	2090	250	<i>IC</i> 50		0.92
	1I9Q_1G48	0.0039	0.0039	K_d		0.0
1051	2H15_3HKU	2.135	0.005	K.	Carbonic Anhydrase II	2.63
	3IBI_3IBU	0.0026	0.0007	Λį		0.57
	1MQH_1MQG	0.3	0.52			-0.24
1059	1MQJ_1MQI	4.76	0.02353	<i>IC</i> 50	GluR2	2.31
	1MQJ_1MQH	4.76	0.3			1.2
1072	1JVU_100M	7	7.1	K,	Ribonuclease A	-0.01
10/2	3DXG_3D6O	4000	77			1.72

	100H_1AFK	1.2	0.24			0.7
	3MRT_3MS2	200	192.4	<i>IC</i> 50	Glycogen	0.02
1081	4EL5_4EJ2	4.3	3204	V	nhosnhorvlase h (GPh)	-2.87
	3SYR_3T3H	7.9	1.94	$\mathbf{\Lambda}_i$		0.61

Table S2. Prediction accuracy of the 9 scoring functions calculated at UB. The ability of the scoring functions to predict the direction of a transformation effect (positive or negative) with and without the consideration of water is shown. Only more potent 3D-MMPs (i.e. affinity < 1 μ M) were considered. Results significantly different from chance (i.e. 50%) are highlighted in blue.

scoring	3D-MN ∣∆affini	IPs with $ ty \ge 0.5$	3D-MMPs with $ \Delta affinity \ge 1.0$		
function ^a	w/ water	w/o water	w/ water	w/o water	
Affinity dG	60.0	76.0	61.5	76.9	
London dG	64.0	68.0	61.5	69.2	
Alpha HB	56.0	68.0	53.9	76.9	
ASE	76.0	76.0	69.23	76.9	
GBVI/WSA dG	64.0	68.0	76.9	76.9	
ChemScore	52.0	68.0	53.8	61.5	
GOLDScore	52.0	44.0	61.5	61.5	
ChemPLP	60.0	60.0	61.5	61.5	
ASP	56.0	52.0	53.9	46.2	
Consensus	60.0	76.0	61.5	69.2	

^{*a*}Scoring functions tested for the prediction accuracy of the transformation effect in %. The prediction accuracy of the majority vote over all scoring functions for each 3D-MMP is listed as 'Consensus'. ^{*b*}Scoring under consideration of water. ^{*c*}Scoring without consideration of water. σ_{crit} : [68.0% 69.2%] for *n*: [25 13]; Note that σ_{crit} is the critical value while *n* represents the respective subset size; The calculations of the critical value are provided in the supporting information; Values are given for subsets 5 and 6.

Table S3. Prediction accuracy of the 9 scoring functions calculated at UB after geometryoptimization. The ability of the scoring functions to predict the direction of a transformation effect (positive or negative) with and without the consideration of water is shown. Results significantly different from chance (i.e. 50%) are highlighted in blue.

scoring	$3D-MMPs$ with $ \Delta affinity > 0.5$		$3D$ -MMPs with $ \Delta a = 1.0$		3D-MMPs with $ \Delta affinity > 2.0$	
function ^a	w/	$ y \ge 0.3$ W/O	w/	$ y \ge 1.0$ W/O	w/	$ y \ge 2.0$ W/O
	water	water	water	water	water	water
Affinity dG	41.4	50.0	38.5	48.7	53.3	40.0
London dG	44.8	58.6	46.2	64.1	66.7	66.7
Alpha HB	53.4	60.3	59.0	64.1	80.0	73.3
ASE	56.9	62.1	53.8	59.0	60.0	53.3
GBVI/WSA dG	48.3	50.0	38.5	46.2	46.7	40.0
ChemScore	41.4	43.1	41.0	46.2	46.7	46.7
GoldScore	46.6	43.1	43.6	38.5	66.7	53.3
ChemPLP	41.4	51.7	43.6	51.3	60.0	66.7
ASP	43.1	43.1	38.5	43.6	66.7	53.3
Consensus	46.6	53.4	43.6	51.3	66.7	53.3

^{*a*}Scoring functions tested for the prediction accuracy of the transformation effect in %. The prediction accuracy of the majority vote over all scoring functions for each 3D-MMP is listed as 'Consensus'. ^{*b*}Scoring under consideration of water. ^{*c*}Scoring without consideration of water. σ_{crit} : [58.6% 60.3% 64.1% 73.3%] for *n*: [99 58 39 15]; Note that σ_{crit} is the critical value while *n* represents the respective subset size; The calculations of the critical value are provided in the supporting information; Values are given for subsets 1 to 3.

Table S4. Prediction accuracy of the 9 scoring functions calculated at UB after geometryoptimization. The ability of the scoring functions to predict the direction of a transformation effect (positive or negative) with and without the consideration of water is shown. Only more potent 3D-MMPs (i.e. affinity < 1 μ M) were considered. Results significantly different from chance (i.e. 50%) are highlighted in blue.

scoring	3D-MN ∆affini	IPs with $ ty \ge 0.5$	3D-MMPs with $ \Delta affinity \ge 1.0$		
function ^a	w/ water	w/o water	w/ water	w/o water	
Affinity dG	40.0	52.0	46.2	53.8	
London dG	48.0	64.0	53.8	76.9	
Alpha HB	64.0	68.0	76.9	69.2	
ASE	68.0	76.0	69.2	84.6	
GBVI/WSA dG	52.0	52.0	53.8	61.5	
ChemScore	52.0	48.0	61.5	61.5	
GOLDScore	52.0	44.0	53.8	46.2	
ChemPLP	48.0	52.0	53.8	53.8	
ASP	48.0	44.0	38.5	46.2	
Consensus	52.0	56.0	53.8	61.5	

^{*a*}Scoring functions tested for the prediction accuracy of the transformation effect in %. The prediction accuracy of the majority vote over all scoring functions for each 3D-MMP is listed as 'Consensus'. ^{*b*}Scoring under consideration of water. ^{*c*}Scoring without consideration of water. σ_{crit} : [68.0% 69.2%] for *n*: [25 13]; Note that σ_{crit} is the critical value while *n* represents the respective subset size; The calculations of the critical value are provided in the supporting information; Values are given for subsets 5 and 6.

ID_pair	Resolution	R _{free}	R _{work}	Resolution	R _{free}	Rwork
(L/R)	L	L	L	R	R	R
3HVH_3HVJ	1,30	0,153	0,130	1,79	0,235	0,183
30E4_30ZT	1,49	0,203	0,178	1,48	0,224	0,187
30ZS_30ZT	1,44	0,209	0,180	1,48	0,224	0,187
3SV2_3QX5	1,30	0,165	0,140	1,35	0,156	0,132
2ZDA_3SI4	1,73	0,228	0,172	1,27	0,159	0,137
1QBV_3SV2	1,80	observe	ed 0,193	1,30	0,165	0,140
3QU0_3QXP	1,95	0,251	0,200	1,75	0,254	0,214
3R9H_3QXP	2,10	0,259	0,214	1,75	0,254	0,214
2VTP_2VTT	2,15	0,247	0,186	1,68	0,227	0,199
4JQ7_4JR3	2,73	0,237	0,207	2,70	0,248	0,213
4JR3_4JQ8	2,70	0,248	0,213	2,83	0,232	0,183
4JRV_4JQ8	2,80	0,227	0,193	2,83	0,232	0,183
4C38_4C37	1,58	0,178	0,153	1,70	0,179	0,155
2UW3_2UW4	2,19	0,252	0,187	2,00	0,274	0,216
2OH0_2OJF	2,20	0,320	0,273	2,10	0,290	0,265
3SWW_3SX4	2,00	0,234	0,197	2,60	0,275	0,203
3OC0_3KWF	2,70	0,286	0,236	2,40	0,246	0,200
4LKO_4JH0	2,43	0,263	0,226	2,35	0,272	0,243
2XPK_2J62	2,40	0,242	0,196	2,26	0,219	0,179
2WB5_2J62	2,31	0,237	0,186	2,26	0,219	0,179
2WB5_2XPK	2,31	0,237	0,186	2,40	0,242	0,196
2CES_2J7E	2,15	0,247	0,192	2,19	0,252	0,185
10IF_2J75	2,12	0,257	0,199	1,85	0,243	0,191
2J7G_2J7E	1,91	0,225	0,187	2,19	0,252	0,185
3EJQ_3EJR	1,45	0,200	0,166	1,27	0,173	0,148
3DX1_2F7O	1,21	0,163	0,127	1,43	0,235	0,206
2F18_2F1B	1,30	0,180	0,168	1,45	0,194	0,173
4H1E_4H3I	1,90	0,297	0,26	1,96	0,254	0,213
4I0F_4I1C	1,80	0,266	0,208	2,00	0,262	0,207
4JP9_4JPC	1,80	0,221	0,187	1,80	0,210	0,185
3UO5_3UP2	2,70	0,273	0,217	2,30	0,249	0,206
4DEA_3UP7	2,45	0,262	0,218	3,05	0,292	0,233
3UNZ_3UOJ	2,80	0,278	0,231	2,90	0,274	0,227
2ONZ_2OBF	2,80	0,264	0,216	2,30	0,267	0,217
3KR0_3KR1	2,60	0,257	0,217	2,30	0,249	0,218
1N7J_1HNN	2,70	0,268	0,232	2,40	0,273	0,230
3GE7_3EOS	1,50	observe	ed 0,162	1,78	observe	ed 0,173
1839_1838	1,95	0,242	0,209	1,81	0,222	0,197

Table S5. Resolution, R_{free} and R_{work} values for the 99 3D-MMPS. Collected from the PDB.²¹

3V0Y_3RR4	No ED available. Replaced by PDB ID 4Q4R		1,68	0,200	0,159	
1LOQ_3WJW	1,50	0,198	0,173	1,59	0,186	0,164
3G1V_1LOR	1,30	0,211	0,193	1,60	0,196	0,173
3G1V_1KM3	1,30	0,211	0,193	1,50	0,192	0,162
2VCJ_2VCI	2,50	0,305	0,221	2,00	0,278	0,207
2XHX_2XHT	2,80	0,407	0,244	2,27	0,297	0,225
2YI0_2YI7	1,60	0,234	0,197	1,40	0,196	0,175
2XBX_2XBW	1,85	0,235	0,195	1,72	0,218	0,192
2UWO_2UWP	1,75	0,254	0,199	1,75	0,212	0,185
2JKH_2Y5F	1,25	0,221	0,195	1,29	0,175	0,138
4DE3_4DDY	1,44	0,206	0,163	1,36	0,205	0,171
4DE2_4DDY	1,40	0,194	0,154	1,36	0,205	0,171
3G35_4DE3	1,41	0,182	0,155	1,44	0,206	0,163
1F8C 2QWE	1,70	0,216	0,178	2,00	observe	d 0,149
1F8E_1F8C	1,40	0,221	0,193	1,70	0,216	0,178
1F8D_1F8B	1,40	0,231	0,201	1,80	0,214	0,166
309A 309D	1,90	0,216	0,179	1,85	0,226	0,174
309B_309A	1,50	0,189	0,165	1,90	0,216	0,179
4DJR 309D	1,55	0,196	0,170	1,85	0,226	0,174
3IOC 3IOD	2,50	0,261	0,162	1,75	0,207	0,169
3IUB 3IUE	1,50	0,209	0,177	1,73	0,208	0,172
3COY 3COW	2,03	0,221	0,166	1,80	0,209	0,160
3NX7 3F15	1,80	0,200	0,162	1,70	0,190	0,171
3LKA 3LK8	1,80	0,210	0,169	1,80	0,200	0,168
3LK8_3F15	1,80	0,200	0,168	1,70	0,190	0,171
2ZFS 2ZQ2	1,51	0,191	0,133	1,40	0,162	0,116
1035_103J	1,41	0,198	0,164	1,40	0,198	0,188
1TNK_1TNL	1,80	observe	d 0,171	1,90	observe	d 0,164
3E6K 3LP4	2,10	0,245	0,164	1,90	0,204	0,155
3F80_2AEB	1,60	0,184	0,147	1,29	observe	d 0,165
3SJT_3SKK	1,60	0,163	0,129	1,70	0,178	0,136
1Q6J 1Q6M	2,20	0,245	0,215	2,20	0,246	0,210
2QBP 2NT7	2,50	0,245	0,209	2,10	0,231	0,206
2VEX_2VEW	2,20	0,261	0,208	2,00	0,239	0,201
1NVR_1NVQ	1,80	0,226	0,193	2,00	0,234	0,206
2XEZ_2XF0	2,25	0,238	0,210	2,40	0,244	0,203
2WMW_2WMX	2,43	0,250	0,229	2,45	0,244	0,219
1GI8 1GI9	1,75	0,254	0,200	1,80	0,238	0,192
10WE_10WH	1,60	0,236	0,210	1,61	0,265	0,211
1W0Z_1W11	1,90	0,221	0,199	2,00	0,249	0,199
4EHV_4EH9	2,10	0,235	0,189	2,30	0,254	0,196
3NNU_3NNW	1,60	0,252	0,221	2,10	0,280	0,229

3GCU_3GCV	2,40	0,227	0,177	1,89	0,213	0,167
3ZSQ_3ZSO	1,70	0,200	0,161	1,75	0,209	0,163
3AV9_3AVB	1,70	0,202	0,164	1,85	0,194	0,163
4CEB_3ZSW	1,75	0,198	0,169	1,80	0,206	0,174
3F3D_3F3E	2,30	0,224	0,197	1,80	0,205	0,179
3F48_3F3E	1,90	0,229	0,211	1,80	0,205	0,179
2Q72_2Q6H	1,70	0,219	0,203	1,85	0,218	0,198
1I9Q_1G48	1,80	0,240	0,183	1,86	0,239	0,178
2H15_3HKU	1,90	0,225	0,186	1,80	0,198	0,152
3IBI_3IBU	1,93	0,205	0,169	1,41	0,215	0,200
1MQH_1MQG	1,80	0,231	0,198	2,15	0,233	0,185
1MQJ_1MQI	1,65	0,229	0,208	1,35	0,218	0,200
1MQJ_1MQH	1,65	0,229	0,208	1,80	0,231	0,198
1JVU_100M	1,78	0,240	0,190	1,50	0,244	0,211
3DXG_3D60	1,39	0,254	0,208	1,58	0,227	0,186
100H_1AFK	1,20	0,221	0,190	1,70	0,266	0,211
3MRT_3MS2	1,98	0,216	0,181	2,10	0,223	0,183
4EL5_4EJ2	2,00	0,210	0,163	2,65	0,233	0,159
3SYR_3T3H	2,40	0,217	0,176	2,60	0,221	0,158

Cluster_ID	ID_pair (L/R)	EDIA _m _L	EDIA _m _R
	3HVH_3HVJ	1,04	1,01
23	30E4 30ZT	1,06	1,03
	30ZS_30ZT	0,99	1,03
	3SV2_3QX5	1,02	1,01
59	2ZDA_3SI4	0,97	0,91
	1QBV_3SV2	No ED available ¹	1,02
	3QU0_3QXP	0,99	1,02
83	3R9H_3QXP	0,86	1,02
	2VTP_2VTT	0,84	1,02
	4JQ7_4JR3	0,67	0,71
156	4JR3_4JQ8	0,71	0,78
	4JRV_4JQ8	0,77	0,78
	4C38_4C37	1,03	1,03
167	2UW3_2UW4	0,98	0,87
	2OH0_2OJF	No ED available ¹	No ED available ¹
	3SWW_3SX4	0,98	0,62
194	3OC0_3KWF	0,64	0,85
	4LKO_4JH0	0,73	0,90
	2XPK_2J62	0,82	0,91
324	2WB5_2J62	0,89	0,91
	2WB5_2XPK	0,89	0,98
	2CES_2J7E	0,97	0,90
325	10IF_2J75	1,00	1,07
	2J7G_2J7E	0,92	0,90
	3EJQ_3EJR	1,00	0,97
441	3DX1_2F7O	0,99	1,00
	2F18_2F1B	0,93	0,92
	4H1E_4H3I	0,96	0,98
466	4I0F_4I1C	1,02	0,98
	4JP9_4JPC	0,99	0,95
	3UO5_3UP2	0,80	0,96
487	4DEA_3UP7	0,97	0,55
	3UNZ_3UOJ	0,80	0,64
	20NZ_20BF	0,83	0,99
518	3KR0_3KR1	0,87	0,94
	1N7J_1HNN	0,68	0,95
686	3GE7_3EOS	0,88	1,02
000	1839_1838	0,99	0,93

Table S6. EDIA_m values for the data set of 99 3D-MMPs.²²

		No ED available.	
	3V0Y_3RR4	Replaced by PDB ID	1,02
		4Q4R	1.06
710	ILOQ_3WJW	1,04	1,06
/10	3GIV_ILOR	1,01	1,04
	3GIV_IKM3	1,01	No ED available ⁴
	2VCJ_2VCI	0,93	0,78
745	2XHX_2XH1	0,68	0,52
	2910_2917	1,05	1,08
	2XBX_2XBW	0,97	1,01
790	2UWO_2UWP	0,96	0,93
	2JKH_2Y5F	0,92	0,91
	4DE3_4DDY	0,94	0,90
806	4DE2_4DDY	0,93	0,90
	3G35_4DE3	1,01	0,94
	1F8C_2QWE	1,04	No ED available ¹
810	1F8E_1F8C	1,01	1,04
	1F8D_1F8B	1,06	1,03
	309A_309D	0,99	1,02
812	309B_309A	1,03	0,99
	4DJR_309D	0,99	1,02
	3IOC_3IOD	0,81	0,80
873	3IUB_3IUE	0,93	0,96
	3COY_3COW	1,00	1,03
	3NX7_3F15	0,94	0,93
900	3LKA_3LK8	0,82	0,93
	3LK8_3F15	0,93	0,93
	2ZFS_2ZQ2	0,98	0,37
914	1035_103J	1,00	0,81
	1TNK_1TNL	No ED available ¹	No ED available ¹
	3E6K_3LP4	0,64	0,86
929	3F80_2AEB	0,97	No ED available ¹
	3SJT_3SKK	0,93	1,02
	1Q6J_1Q6M	1,01	1,03
942	2QBP_2NT7	0,86	No ED available ¹
	2VEX_2VEW	0,91	0,87
	1NVR 1NVQ	1,04	1,02
975	2XEZ 2XF0	0,94	0,82
	2WMW ² WMX	0,81	0,78
	1GI8 1GI9	0,98	0,91
979	10WE 10WH	0,95	0,89
	1W0Z 1W11	No ED available ¹	No ED available ¹
	4EHV 4EH9	0.98	0.67
1024	3NNU 3NNW	0,97	1,03
	. –	,	,

	3GCU_3GCV	0,98	0,94
	3ZSQ_3ZSO	1,02	0,83
1025	3AV9_3AVB	No ED available ¹	No ED available ¹
	4CEB_3ZSW	1,00	0,91
	3F3D_3F3E	0,79	1,07
1050	3F48_3F3E	1,02	1,07
	2Q72_2Q6H	0,98	0,84
	1I9Q_1G48	No ED available ¹	No ED available ¹
1051	2H15_3HKU	0,56	0,97
	3IBI_3IBU	0,90	0,72
	1MQH_1MQG	No ED available ¹	No ED available ¹
1059	1MQJ_1MQI	No ED available ¹	No ED available ¹
	1MQJ_1MQH	No ED available ¹	No ED available ¹
	1JVU_100M	No ED available ¹	1,00
1072	3DXG_3D60	0,61	0,29
	1O0H_1AFK	1,02	No ED available ¹
	3MRT_3MS2	1,03	0,83
1081	4EL5_4EJ2	1,04	0,27
	3SYR_3T3H	0,96	0,87

¹No electron density available. Prior to February 1, 2008, it was not mandatory to deposit structure factor amplitudes/intensities for crystal structures for PDB deposition. (http://www.rcsb.org/pdb/static.do?p=general_information/news_publications /news/news_2007.html#20071204)

PDB ID	Resolution	EDIAm	Electron density map ^a	Polder map ^b
4JQ7	2.73	0.67		
4JR3	2.7	0.71		
4JQ8	2.38	0.78		
4JRV	2.8	0.77		
38X4	2.6	0.62		
3OC0	2.7	0.64		
4LKO	2.4	0.38		
3UP7	3.05	0.55		

Table	S7.	Electron	density	and	polder	maps	for	structures	with	EDIA_{m}	values	smaller
than 0	.8.22											

3UOJ	2.9	0.64	
2VCI	2.0	0.78	
2XHX	2.8	0.68	
2XHT	2.27	0.52	
2ZQ2	1.4	0.37	
3E6K	2.1	0.64	
4EH9	2.1	0.67	
3F3D	2.3	0.79	
2H15	1.9	0.56	*
3IBU	1.4	0.72	

^{*a*}Electron density map image from http://www.ebi.ac.uk/pdbe/eds. ^{*b*}Polder maps generated with Phenix and visualised with WinCoot²³.

А

Figure S1. Scatter plots displaying the correlation between the scaled binding affinity data for the 332 energy-optimized complexes of the CSAR-NRC data set, excluding the proteinligand complexes of Factor Xa and the corresponding scores of ASE (A) and Affinity dG (B). The Pearson and Spearman correlation coefficient of both scoring functions are given in the figure.

Figure S2. Scatter plot displaying the correlation between the scaled binding affinity data for the 343 energy-optimized complexes of the entire CSAR-NRC data set and the corresponding scores of GBVI/WSA dG. The coefficient of determination R^2 is given in the figure.

Critical values for statistical significance of the prediction accuracy using *Ascore to predict*

<u>∆affinity</u>

Subset	n	σ _{crit}
	99	58 (58.6%)
1	58	35 (60.3%)
2	39	25 (64.1%)
3	15	11 (73.3%)
4	54	33 (61.1%)
5	25	17 (68.0%)
6	13	9 (69.2%)

n

: number of objects in the corresponding subset

 σ_{crit} : critical value that the prediction accuracy is considered to be significantly different from chance (i.e. 50%) based on the 95th percentile ($\alpha = 0.05$; one-sided)

- Chemical Computing Group Inc. Molecular Operating Environment (MOE), 2014.09.
 Molecular Operating Environment (MOE), 2014.09. 1010 Sherbrooke St. West, Suite #910, QC, Canada, H3A 2R7 2014.
- (2) Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. *J. Comput. Chem.* **1996**, *17*, 490–519.
- (3) Weiner, P. K.; Kollman, P. A. AMBER: Assisted Model Building with Energy Refinement. A General Program for Modeling Molecules and Their Interactions. J. Comput. Chem. 1981, 2, 287–303.
- Weiner, S. J.; Kollman, P. A.; Case, D. A. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. *J. Am. Chem. Soc.* 1984, *106*, 765–784.
- (5) Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. An All Atom Force Field for Simulations of Proteins and Nucleic Acids. *J. Comput. Chem.* **1986**, *7*, 230–252.
- (6) Naïm, M.; Bhat, S.; Rankin, K. Solvated Interaction Energy (SIE) for Scoring Protein-Ligand Binding Affinities. 1. Exploring the Parameter Space. J. Chem. Inf. Model. 2007, 122–133.
- (7) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking. *J. Mol. Biol.* **1997**, *267* (3), 727–748.
- (8) Jones, G.; Willett, P.; Glen, R. C. Molecular Recognition of Receptor Sites Using a Genetic Algorithm with a Description of Desolvation. *J Mol Biol* 1995, 245, 43–53 ST– Molecular recognition of receptor site.
- (9) Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Improved Protein – Ligand Docking Using GOLD. *Proteins Struct. Funct. Bioinforma.* 2003, 623 (January), 609–623.
- (10) Mooij, W. T. M.; Verdonk, M. L. General and Targeted Statistical Potentials for Protein-Ligand Interactions. *Proteins Struct. Funct. Genet.* 2005, *61*, 272–287.
- (11) Korb, O.; Stützle, T.; Exner, T. E. Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS. J. Chem. Inf. Model. 2009, 49, 84–96.
- (12) Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V; Mee, R. P. Empirical Scoring Functions .1. The Development of a Fast Empirical Scoring Function to Estimate

the Binding Affinity of Ligands in Receptor Complexes. J. Comput. Aided. Mol. Des. **1997**, 11, 425–445.

- (13) Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R.; Eldridge, M. D. Flexible Docking Using Tabu Search and an Empirical Estimate of Binding Affinity. *Proteins Struct. Funct. Genet.* **1998**, *33*, 367–382.
- (14) CCDC Gold Suite 5.2.2. Cambridge, United Kingdom.
- (15) Verdonk, M. L.; Berdini, V.; Hartshorn, M. J.; Mooij, W. T. M.; Murray, C. W.; Taylor, R. D.; Watson, P. Virtual Screening Using Protein-Ligand Docking: Avoiding Artificial Enrichment. J. Chem. Inf. Comput. Sci. 2004, 44, 793–806.
- (16) Sanner, M. F. Python: A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999, 17, 57–61.
- (17) Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. Software News and Update a Semiempirical Free Energy Force Field with Charge-Based Desolvation. *J. Comput. Chem.* 2007, 28, 1145–1152.
- (18) Trott, O.; Olson, A. J. Software News and Update AutoDock Vina : Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461.
- (19) Wang, R.; Liu, L.; Lai, L.; Tang, Y. SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex. J. Mol. Model 1998, 4, 379–394.
- (20) Neudert, G.; Klebe, G. DSX: A Knowledge-Based Scoring Function for the Assessment of Protein-Ligand Complexes. *J. Chem. Inf. Model.* **2011**, *51*, 2731–2745.
- (21) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. *Nucleic Acids Res.* 2000, 28 (1), 235–242.
- (22) Meyder, A.; Nittinger, E.; Lange, G.; Klein, R.; Rarey, M. Estimating Electron Density Support for Individual Atoms and Molecular Fragments in X-Ray Structures. J. Chem. Inf. Model. 2017, 57 (10), 2437–2447.
- (23) Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features and Development of Coot. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 2010, *66* (4), 486–501.