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Abstract: Far outside the surface of slabs, the exact exchange (EXX) potential vx falls off as −1/z, if z
denotes the direction perpendicular to the surface and the slab is localized around z = 0. Similarly,
the EXX energy density ex behaves as −n/(2z), where n is the electron density. Here, an alternative
proof of these relations is given, in which the Coulomb singularity in the EXX energy is treated
in a particularly careful fashion. This new approach allows the derivation of the next-to-leading
order contributions to the asymptotic vx and ex. It turns out that in both cases, the corrections are
proportional to 1/z2 in general.
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1. Introduction and Summary of Results

The application of Kohn–Sham density functional theory (DFT) to surfaces was initiated by
the seminal work of Lang and Kohn [1–3] (see also [4]). While the initial focus was on metals and
the jellium model, soon, also semi-conducting materials were investigated [5]. In practice, DFT
calculations for surfaces often rely on slabs, in which a limited number of atomic layers simulates
the bulk material [5,6]. The number of layers required for an accurate description of the surface
primarily depends on the electronic structure, in particular on the localization of the states. Obviously,
a decoupling of the surface states on the two sides of the slab is desirable. If relaxation of the atomic
positions at the surface or surface reconstruction is of interest, one has to make sure that some bulk-like
layers remain in the middle of the slab. Nevertheless, often a rather small number of layers is sufficient
in the case of non-metallic solids. Particularly accurate results for quantities such as the work function
and the surface energy can be obtained by extrapolating data from slabs with different thicknesses to
the limit of infinite thickness.

However, slabs are also of interest in themselves. The most prominent example is single- and
bi-layer graphene [7–10], but also other 2D materials have attracted considerable attention recently,
such as silicene [11–13], hexagonal boron nitride nanosheets [14,15] and mono- and multi-layer
transition metal dichalcogenides [16–18] (as well as structures obtained by a combination of these
materials with graphene).

The most important quantity for the density functional description of surfaces and slabs is
the exchange-correlation (xc) potential vxc (for an overview of DFT, see [19]). Starting with Lang and
Kohn [1–3], the xc-potential at surfaces has been studied extensively [20–43]. While the discussion of
the xc-potential turned out to be difficult for semi-infinite matter (see [31,33]), definitive information is
available for the exact exchange (EXX) potential vx of slabs. Both vx and the EXX energy density ex of
metallic slabs have been investigated by Horowitz and collaborators [28,29,32,36] and by Qian [33]
(based on extensive work by Sahni and collaborators [23–26] on semi-infinite matter), relying on the
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jellium model (i.e., on full translational symmetry in the directions parallel to the surface). If the slab
is parallel to the xy-plane and has its center at z = 0, the exact vx behaves as −1/z far outside the
surface (atomic units are used throughout this work). Similarly, the EXX energy density of jellium
slabs falls off as −n/(2z), where n is the electron density [28]. This latter result is of particular
interest, since ex defines the Slater potential, vSlater = 2ex/n, which is the core contribution to the
often used Krieger–Li–Iafrate approximation [44] for the exact vx and its refinement, the localized
Hartree–Fock/common energy denominator approximation [45,46]. Both results have subsequently
been generalized [34,35] to non-jellium slabs, for which one has a Bravais lattice in the xy-directions,

ex(r)
z�L−−→ −n(r)

2z
(1)

vx(r)
z�L−−→ −1

z
. (2)

Here, L characterizes the position of the surface, i.e., the slab extends from −L to L.
In this contribution, a particularly careful derivation of the relations (1) and (2) is given, in which

the crucial Coulomb singularity in the EXX energy is handled in a mathematically unambiguous
fashion. In contrast to the approaches used in [34,35], this derivation allows one to extract the
next-to-leading order contributions to both ex and vx. Moreover, unlike the argument in [35], the present
proof of (2) does not employ the ultimate asymptotic form of the density from the very outset, but
rather is based on a completely general variation of the asymptotic n as a function of r.

The derivation is prepared by a brief review of the asymptotic form of the Kohn–Sham (KS) states
(in Section 2), relying on the analysis of [47]. In particular, the coupling of the Fourier amplitudes for the
states is discussed, in order to show which amplitudes are asymptotically dominant. On this basis, the
asymptotic behavior of ex (Section 3), vSlater (Section 4) and vx (Section 5) is analyzed. In this analysis,
the Coulomb singularity is kept under control by addition and subtraction of a suitably-screened
exchange kernel. One finds that the next-to-leading order term in ex has the form −p(r)/(2z2) where
p is a generalized density with weights determined by the first moments of the transition matrix.
p can be explicitly expressed in terms of n, if the asymptotic density is dominated by the states in the
vicinity of a single k-point q in the interior of the first Brillouin zone (which is the standard situation for
non-metallic slabs [43]). In this case, one finds p(r) z→∞−−−→ mqβn(r), where mqβ denotes the first moment
of the most weakly-decaying state β at q. In the same fashion, the next-to-leading order contribution
to vx(r) is obtained as −mqβ/z2, and this correction also applies to vSlater. It seems worthwhile to
remark that all results can be generalized to the situation that there are several degenerate most
weakly-decaying states at q. Moreover, the derivation of higher order corrections can basically follow
the same route.

2. Asymptotic Behavior of States

In the case of slabs, the total KS potential vs is invariant under translation by an arbitrary
two-dimensional (2D) Bravais vector in the xy-directions, but confines the electrons in the z-direction,

vs(r) = ∑
G

eiG·r‖ v(G, z) . (3)

Here, r‖ = (x, y), and G is a vector of the 2D reciprocal lattice in the xy-directions. The
corresponding KS states are given by:

φkα(r) =
eik·r‖
√

A
∑
G

eiG·r‖ ckα(G, z) , (4)
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where k is the 2D crystal momentum. The normalization is chosen so that ckα integrates up to one for
a single 2D unit cell with area A,

δα,α′ =
∫ ∞

−∞
dz ∑

G
c∗kα(G, z) ckα′(G, z) . (5)

The coefficients ckα satisfy the KS equations on the reciprocal lattice,

(G + k)2 − ∂2
z

2
ckα(G, z) + ∑

G′
v(G−G′, z) ckα(G

′, z) = εkα ckα(G, z) . (6)

In [35], it has been shown that the exact vx behaves as −1/z for z→ ∞. In the following, vs(r) is
therefore assumed to have the asymptotic form:

vs(r)
z�L−−→ −u

z
+ . . . , (7)

with u being allowed to vanish. For the Fourier component with G = 0, one then has:

v(0, z) z�L−−→ −u
z
+ . . . , (8)

while all other v(G, z) decay at least as fast as 1/z2 (typically even faster). It seems worthwhile to
emphasize that the next-to-leading order contributions to v(0, z) not included in Equations (7) and (8)
are irrelevant for the derivation of the asymptotic forms of ex, vSlater and vx in Sections 3–5.

The asymptotic behavior of the solutions of the differential equation (6) with the potential (8) has
been analyzed in detail in [47]. For large z, the solutions can be expressed as:

c(G, z) = ch(G, z) + ∑
G′ 6=G

ci(G, G′, z) (9)

(the quantum numbers kα are omitted for brevity in the rest of this section). Here, ch denotes the
general solution of the homogeneous differential equation:

∂2
zch(G, z) =

[
(G + k)2 − 2ε + 2v(0, z)

]
ch(G, z) . (10)

For the asymptotic potential (8), this solution is to leading order given by:

ch(G, z) z�L−−→ f0(G) zu/γ(G) e−γ(G)z , (11)

with:

γ(G) =
[
(G + k)2 − 2ε

]1/2
. (12)

On the other hand, ci accounts for the coupling of all amplitudes in (6),

ci(G, G′, z) = − 1
γ(G)

∫ z

z1

dz′
( z

z′
)u/γ(G)

eγ(G)(z′−z) v(G−G′, z′) c(G′, z′)

− 1
γ(G)

∫ ∞

z
dz′

(
z′

z

)u/γ(G)

eγ(G)(z−z′) v(G−G′, z′) c(G′, z′) (13)

(z1 < z must be chosen sufficiently large, so that the z′-integration only extends over the
asymptotic region).

The asymptotic behavior of the solutions is primarily controlled by the exponent γ(G),
Equation (12). As long as (G + k)2 > k2 for all G 6= 0, i.e., for states inside the first Brillouin
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zone (BZ), there is a unique most slowly-decaying amplitude, ch(0, z). For states on the boundary
of the first BZ, on the other hand, one has a second amplitude ch(Ḡ, z) with (Ḡ + k)2 = k2, which
shows the same asymptotic decay as ch(0, z). In fact, for large z, these two amplitudes only differ by
the constant f0 in Equation (11), since γ(Ḡ) = γ(0).

For all states and all G′ 6= 0, the function ci(0, G′, z) falls off faster than ch(0, z). The contribution
of ci(0, G′, z) is largest for states on the boundary of the first BZ, for which a second amplitude ch(Ḡ, z)
decays as slowly as ch(0, z). For these states, one finds that ci(0, Ḡ, z) is suppressed by:∫ ∞

z
dz′ v(−Ḡ, z′)

compared to ch(0, z) (and an analogous statement holds for the relation between ci(Ḡ, 0, z) and
ch(Ḡ, z)). However,

∫ ∞
z dz′ v(−Ḡ, z′) vanishes at least as fast as 1/z, so that the second term on the

right-hand side of (9) is irrelevant for the asymptotically-leading amplitude(s) in the case of all states.
One thus has:

c(0, z) z�L−−→ ch(0, z) (14)

(and an analogous relation for c(Ḡ, z) for states on the boundary of the first BZ).
In the case of all other c(G, z), the contribution of ci(G, G′, z) cannot be neglected, since, at least in

general, ch(G, z) decays faster than the product v(G, z)ch(0, z). However, all ci(G, G′, z) decay faster
than the most weakly-decaying amplitude ch(0, z), so that Equation (9) can be solved iteratively for
large z. A single iteration of this equation, i.e., replacement of the full solution c(G′, z) on the right-hand
side of (13) by ch(G′, z), is sufficient to obtain the correct asymptotic behavior of the next-to-most
weakly-decaying amplitudes. For all yet faster decaying amplitudes, further iteration can (but need
not) be required, depending on the asymptotic behavior of the v(G, z) involved.

In summary, the asymptotic behavior the states well inside the first BZ is determined by
the amplitude with G = 0, which, in turn, approaches the homogeneous solution (11) for large
z. All amplitudes with G 6= 0 are suppressed relative to ch(0, z), with the suppression factor
c(G, z)/ch(0, z) depending on the structure of the potential. In the case of the next-to-most
weakly-decaying amplitudes, the suppression factor is either given by the most weakly-decaying
Fourier component of the potential v(G1, z) with non-zero G1 or by ch(G, z)/ch(0, z), if this ratio
decays more slowly than v(G1, z).

In the following, it is assumed for simplicity that: (i) the most weakly-decaying occupied state
in the first BZ, i.e., the minimum exponent γ(0), is found for a single k-point well inside the first
BZ; (ii) γ(0) is Taylor expandable at this k-point; and (iii) all states in a complete neighborhood of
this k-point are also occupied. In this situation, the statements of the previous paragraph apply to
all asymptotically-relevant states, and the simplest version of the BZ integration scheme of [43] can
be used.

3. Asymptotic Behavior of Exchange Energy Density

In the case of spin-saturated slabs, ex(r) and n(r) are given by:

ex(r) = − A2
∫

1BZ

d2k
(2π)2

d2k′

(2π)2 ∑
α,α′

Θkα Θk′α′

∫
d3r′

φ†
kα(r)φk′α′(r)φ†

k′α′(r
′)φkα(r′)

|r− r′| (15)

n(r) = 2A
∫

1BZ

d2k
(2π)2 ∑

α

Θkα|φkα(r)|2 , (16)
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where Θkα denotes the occupation of the state kα and the k-integrations extend over the first BZ.
Insertion of (4) into the exchange energy density (15) and use of the 2D Fourier transform of the
Coulomb interaction yields:

ex(r) = ∑
G

eiG·r‖ ex(G, z) (17)

ex(G, z) = −
∫

1BZ

d2k
(2π)2

d2k′

(2π)2 ∑
α,α′

ΘkαΘk′α′ ∑
G′

∫ ∞

−∞
dz′

2π e−|k−k′+G′ ||z−z′ |

|k− k′ + G′|

×∑
G′′

c∗k′α′(G
′′ −G′, z) ckα(G

′′ + G, z) ∑
G′′′

c∗kα(G
′′′, z′) ck′α′(G

′′′ −G′, z′) . (18)

In order to extend the k′-integration to the complete 2D k-space, one uses the fact that the
coefficients ckα(G) only depend on k + G,

ckα(G, z) = ck+G,α(0, z) . (19)

If one extends the occupation function accordingly,

Θk+G,α := Θkα , (20)

the exchange energy density can be expressed as:

ex(G, z) = −
∫

1BZ

d2k
(2π)2

∫ d2k′

(2π)2 ∑
α,α′

ΘkαΘk′α′

∫ ∞

−∞
dz′

2π e−|k
′−k||z−z′ |

|k′ − k|

×∑
G′

c∗k′α′(G
′, z) ckα(G

′ + G, z) ∑
G′′

c∗kα(G
′′, z′) ck′α′(G

′′, z′) . (21)

At this point, one can choose the origin of the k′-integration to be at k,

ex(G, z) = −
∫ d2k′

(2π)2

∫ ∞

−∞
dz′

2π e−|k
′ ||z−z′ |

|k′| f (k′, G, z, z′) , (22)

with:

f (k′, G, z, z′) :=
∫

1BZ

d2k
(2π)2 ∑

α,α′
ΘkαΘk+k′α′ ∑

G′
c∗k+k′α′(G

′, z) ckα(G
′ + G, z)

×∑
G′′

c∗kα(G
′′, z′) ck+k′α′(G

′′, z′) . (23)

In the following, the behavior of ex in the regime z � L is analyzed (with L characterizing the
extension of the slab whose center is at the origin). In order to isolate the asymptotically-dominating
term without any mathematical ambiguity, the integrand is first split into a short- and
a long-wavelength component,

ex(G, z) = eL
x (G, z) + eS

x(G, z) (24)

eL
x (G, z) = −

∫ d2k′

2π

∫ ∞

−∞
dz′

e−|k
′ |(|z−z′ |+µ)

|k′| f (0, G, z, z′) (25)

eS
x(G, z) = −

∫ d2k′

2π

∫ ∞

−∞
dz′

e−|k
′ ||z−z′ |

|k′|

[
f (k′, G, z, z′)− f (0, G, z, z′) e−µ|k′ |

]
. (26)
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The k′-integral in (25) can be performed directly,

eL
x (G, z) = −

∫ z

−∞
dz′

f (0, G, z, z′)
z− z′ + µ

−
∫ ∞

z
dz′

f (0, G, z, z′)
z′ − z + µ

. (27)

For large z, the overlap function f (k′, G, z, z′) vanishes exponentially with z. This is immediately
clear for the integrand in (23), since, in view of Equation (14), ckα(0, z) has the form (11) for large z,
and all ckα(G, z) decay even faster than ckα(0, z). Moreover, this exponential decay is preserved by the
k-integration, which may be performed using the approach of [43]. Consequently, the second term
in (27) is exponentially smaller than the first term in the asymptotic regime,

eL
x (G, z) z�L−−→ −

∫ z

−∞
dz′

f (0, G, z, z′)
z− z′ + µ

. (28)

The function f (k′, G, z, z′) also vanishes exponentially for z′ → ∞, the arguments being the same
as in the case of z. In fact, the BZ integration scheme of [43] is particularly appropriate if both z and z′

are large. The exponential decay of f (k′, G, z, z′) with large z′ allows one to expand the denominator in
powers of z′/(z + µ). Subsequently, one can extend the z′-integration to infinity, without introducing
additional power-law corrections,

eL
x (G, z) z�L−−→ −

∫ ∞

−∞
dz′

f (0, G, z, z′)
z + µ

[
1 +

z′

z + µ
+ . . .

]
. (29)

The leading term of this expansion can be evaluated by use of (5),

∫ ∞

−∞
dz′ f (0, G, z, z′) =

∫
1BZ

d2k
(2π)2 ∑

α

Θkα ∑
G′

c∗kα(G
′, z) ckα(G

′ + G, z) .

This expression is easily identified as the Fourier component of the density (16),

n(r) = 2 ∑
G

eiG·r‖
∫

1BZ

d2k
(2π)2 ∑

α

Θkα ∑
G′

c∗kα(G
′, z) ckα(G

′ + G, z) . (30)

The long-range component of the exchange energy density therefore asymptotically behaves as:

eL
x (G, z) z�L−−→ − n(G, z)

2(z + µ)
− p(G, z)

2(z + µ)2 . (31)

with:

p(G, z) = 2
∫ ∞

−∞
dz′ z′ f (0, G, z, z′) . (32)

Since µ can be chosen reasonably small, one obtains for the leading two orders:

eL
x (G, z) z�L−−→ −n(G, z)

2z

(
1− µ

z

)
− p(G, z)

2z2 + . . . . (33)

Now, consider the short-wavelength component of ex, Equation (26). In order to analyze its
behavior for large z, the k′-integration is decomposed into integrals over an elementary (simply
connected) cell V, which is periodically repeated to fill the complete 2D momentum space without
leaving any void. V could, for instance, have the shape of the first BZ, but a reduced spatial extension.
In this case, the vectors Q, which connect the centers of the cells, are correspondingly scaled reciprocal
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lattice vectors. However, for the present purpose, V could also be a small square, so that the vectors Q
are the reciprocal lattice vectors of the associated 2D simple cubic lattice,

eS
x(G, z) = −∑

Q

∫
V

d2k′

2π

∫ ∞

−∞
dz′

e−|k
′−Q||z−z′ |

|k′ −Q|

[
f (k′ −Q, G, z, z′)− f (0, G, z, z′) e−µ|k′−Q|

]
.

As soon as Q 6= 0, there is no Coulomb singularity in the k′-integral: in this case, the k′-integral
is well defined for arbitrary z, z′. For z→ ∞, these contributions decay exponentially faster than the
term with Q = 0, so that only the latter term remains to be analyzed,

eS
x(G, z) z�L−−→ −

∫
V

d2k′

2π

∫ ∞

−∞
dz′

e−|k
′ ||z−z′ |

|k′|

[
f (k′, G, z, z′)− f (0, G, z, z′) e−µ|k′ |

]
. (34)

For large z, an expansion of the expression in square brackets about k′ = 0 is legitimate, since:
(i) the k′-integral is dominated by the vicinity of the Coulomb singularity; (ii) the integrand falls off
rapidly for large z; and (iii) V can be chosen much smaller than the first BZ,

eS
x(G, z) z�L−−→ −

∫
V

d2k′

2π

∫ ∞

−∞
dz′

e−|k
′ ||z−z′ |

|k′|

×
[

∂ f (k′, G, z, z′)
∂k′

∣∣∣∣
k′=0
· k′ + f (0, G, z, z′) µ|k′|+ . . .

]
. (35)

Due to the inversion symmetry of V, one has:

∫
V

d2k
2π

k
|k| e−|k||z−z′ | = 0 . (36)

The k′-integral in the second term on the right-hand side of (35) can be evaluated further in
polar coordinates,

∫
V

d2k
2π

e−|k||z−z′ | =
∫ 2π

0

dϕ

2π

∫ S(ϕ)

0
kdk e−|z−z′ |k

=
∫ 2π

0

dϕ

2π

[
1

|z− z′|2 −
e−|z−z′ |S

|z− z′|2
(
1 + |z− z′|S

) ]
, (37)

where S(ϕ) defines the boundary of the integration area V. If, for instance, V is chosen to be a square
with its corners at (±d,±d), S(ϕ) is given by:

S(ϕ) =



d
cos(ϕ)

0 ≤ ϕ ≤ π
4

d
sin(ϕ)

π
4 ≤ ϕ ≤ 3π

4
−d

cos(ϕ)
3π
4 ≤ ϕ ≤ 5π

4
−d

sin(ϕ)
5π
4 ≤ ϕ ≤ 7π

4
d

cos(ϕ)
7π
4 ≤ ϕ ≤ 2π

.

The leading contribution to eS
x is thus obtained as

eS
x(G, z) z�L−−→ −µ

∫ ∞

−∞
dz′

f (0, G, z, z′)
|z− z′|2

∫ 2π

0

dϕ

2π

[
1− e−|z−z′ |S (1 + |z− z′|S

)]
. (38)
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It seems worthwhile to emphasize that the z′-integral is well defined, since for z′ close to z,
one has:

1− e−|z−z′ |S (1 + |z− z′|S
)

= 1−
(

1− |z− z′|S +
(|z− z′|S)2

2
+ . . .

) (
1 + |z− z′|S

)
=

(|z− z′|S)2

2
+ . . . .

Taking this into account, the leading term for large z is given by:

eS
x(G, z) z�L−−→ −µ

n(G, z)
2z2 , (39)

since S > 0 for all ϕ and f (0, G, z, z′) decays exponentially with z′. Upon addition of (33) and (39),
one finds for the leading two orders of the asymptotic energy density,

ex(G, z) z�L−−→ − n(G, z)
2z

− p(G, z)
2z2 . (40)

The result is independent of µ, as it should be. In real space, one thus obtains:

ex(r)
z�L−−→ − n(r)

2z
− p(r)

2z2 . (41)

4. Asymptotic Behavior of Slater Potential

Equation (41) shows that the Slater potential asymptotically behaves as:

vSlater(r) = 2
ex(r)
n(r)

z�L−−→ − 1
z
− p(r)

n(r)z2 . (42)

In order to evaluate the next-to-leading order term further, the k-integrations involved in p(r)
and n(r) need to be analyzed. Asymptotically, the density (30) is dominated by the coefficients ckα

with the lowest exponents γkα(G) for which Θkα > 0. If the lowest value of γkα(G) is found well
inside the first BZ (which is usually the case [43]), the coefficients ckα(G = 0, z) decay most slowly, as
discussed in Section 2,

n(r) z�L−−→ 2
∫

1BZ

d2k
(2π)2 ∑

α

Θkα |ckα(0, z)|2 , (43)

with ckα(0, z) given by (11), due to (14). The same argument can be applied to the asymptotic p(r),

p(r) = ∑
G

eiG·r‖ p(G, z)

z�L−−→ 2
∫ ∞

−∞
dz′ z′

∫
1BZ

d2k
(2π)2 ∑

α,α′
ΘkαΘkα′ c

∗
kα′(0, z) ckα(0, z) ∑

G′′
c∗kα(G

′′, z′) ckα′(G
′′, z′) . (44)

In general, one particular band α falls off most slowly for each k. On the other hand, if there are
two degenerate highest occupied states α and α′ for some k, the asymptotically-leading terms in the
corresponding coefficients ckα(0, z) and ckα′(0, z) only differ by some constant, since γkα(0) = γkα′(0).
It is thus sufficient to restrict the expression (44) to the terms with α′ = α,

p(r) z�L−−→ 2
∫

1BZ

d2k
(2π)2 ∑

α

Θkα mkα |ckα(0, z)|2 . (45)
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Here, mkα denotes the first moment of |ckα(G, z)|2,

mkα =
∫ ∞

−∞
dz z ∑

G
|ckα(G, z)|2 , (46)

in the non-degenerate case and a combination of the moments of the degenerate states otherwise.
The combination of Equations (43) and (45) with the asymptotic form (11) of ckα shows that the

asymptotic behavior of both the density (30) and the first moment (32) is controlled by a BZ integral of
the form discussed in [43], i.e., Equation (18) of this reference. In the case of the density, the generic
integrand Akα in Equation (18) of [43] corresponds to 2| f0,kα|2, for the first moment Akα corresponds
to 2mkα| f0,kα|2. Both (43) and (45) are asymptotically dominated by the state(s) with the minimum
exponent γkα(G = 0), as discussed in [43]. If there is only a single k-point q and band β for which
γkα(G = 0) reaches its minimum value inside the integration region, one finds:

p(r) z�L−−→
mqβ

2π
| f0,qβ(G = 0)|2 z2u/γqβ−1 e−2γqβz [det (Γ)]−1/2 (47)

n(r) z�L−−→ 1
2π
| f0,qβ(G = 0)|2 z2u/γqβ−1 e−2γqβz [det (Γ)]−1/2 , (48)

where Γ is defined by:

Γ =
∂2γkβ(G = 0)

∂k∂k
(q) . (49)

p(r) therefore has the same asymptotic behavior as n(r), so that p/n z→∞−−−→ mqβ. The ratio p/n also
approaches a constant for large z, if f0,qβ(G = 0) = 0, since this affects the z-dependence of p and n in
the same way. Moreover, the same statement applies, if there is more than one k-point and/or more
than one band for which γkα(G = 0) assumes its minimum value (see [43]). One thus finally arrives at:

vSlater(r) = 2
ex(r)
n(r)

z�L−−→ − 1
z
−

mqβ

z2 + . . . , (50)

with mqβ being replaced by a superposition of the moments of all asymptotically-relevant states in
the more general situation. Depending on the symmetry of the relevant states at k = q under the
transformation z→ −z, mqβ can vanish. This is the case in particular, if one has reflection symmetry
with respect to the xy-plane, so that |cqβ(G,−z)| = |cqβ(G, z)|.

5. Asymptotic Behavior of Exact Exchange Potential

For a discussion of the exact vx, one starts with the total exchange energy per unit cell, expressed
in terms of the amplitudes ckα(G, z),

Ex = −A
∫

1BZ

d2k
(2π)2

d2k′

(2π)2 ∑
α,α′

Θkα Θk′α′ ∑
G

∫ ∞

−∞
dz
∫ ∞

−∞
dz′

2π e−|k−k′+G||z−z′ |

|k− k′ + G|

×∑
G′

c∗k′α′(G
′, z) ckα(G

′ + G, z) ∑
G′′

c∗kα(G
′′, z′) ck′α′(G

′′ −G, z′) (51)

(which is obtained by integration of (17) over the complete unit cell). In the following, the variation of
this expression under a variation δn(r) of the asymptotic density is studied. However, a variation of
the asymptotic density implies a variation of ckα(G, z), since there exists a one-to-one correspondence
between the KS states and the density (30),

δn(r) = 2 ∑
G

eiG·r‖
∫

1BZ

d2k
(2π)2 ∑

α

Θkα ∑
G′

δc∗kα(G
′, z) ckα(G

′ + G, z) + c.c. . (52)
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In addition, since only the asymptotic density is to be varied (but not the complete n(r)), δckα(G, z)
is non-zero only for large z [δckα(G, z) can be assumed to have the standard shape of a test function].

Now, consider the variation of Ex under the variation of ckα(G, z),

δEx = −2 A
∫

1BZ

d2k
(2π)2

d2k′

(2π)2 ∑
α,α′

Θkα Θk′α′ ∑
G

∫ ∞

−∞
dz
∫ ∞

−∞
dz′

2π e−|k−k′+G||z−z′ |

|k− k′ + G|

×∑
G′′

c∗k′α′(G
′′, z′) ckα(G

′′ + G, z′) ∑
G′

δc∗kα(G
′, z) ck′α′(G

′ −G, z) + c.c. . (53)

Using (19) and (20), the k′-integration can be combined with the sum over G. If the origin of the
resulting k′-integration over the complete k-space is chosen to be at k, one obtains:

δEx = −2 A
∫

1BZ

d2k
(2π)2

∫ d2k′

(2π)2 ∑
α,α′

Θkα Θk+k′ ,α′

∫ ∞

−∞
dz
∫ ∞

−∞
dz′

2π e−|k
′ ||z−z′ |

|k′|

×∑
G′′

c∗k+k′ ,α′(G
′′, z′) ckα(G

′′, z′) ∑
G′

δc∗kα(G
′, z) ck+k′ ,α′(G

′, z) + c.c. . (54)

Next, δEx is split into a long- and a short-wavelength component, in analogy to (24),

δEL
x = −2 A

∫
1BZ

d2k
(2π)2

∫ d2k′

(2π)2 ∑
α,α′

Θkα Θkα′

∫ ∞

−∞
dz
∫ ∞

−∞
dz′

2π e−|k
′ |(|z−z′ |+µ)

|k′|

×∑
G′′

c∗kα′(G
′′, z′) ckα(G

′′, z′) ∑
G′

δc∗kα(G
′, z) ckα′(G

′, z) + c.c. (55)

δES
x = δEx − δEL

x . (56)

The evaluation of δEL
x proceeds in straightforward fashion. One first performs the k′-integral,

δEL
x = −2 A

∫
1BZ

d2k
(2π)2 ∑

α,α′
Θkα Θkα′

∫ ∞

−∞
dz
∫ ∞

−∞
dz′

1
|z− z′|+ µ

×∑
G′′

c∗kα′(G
′′, z′) ckα(G

′′, z′) ∑
G′

δc∗kα(G
′, z) ckα′(G

′, z) + c.c. . (57)

One can then follow the argument leading from (27) to (29), since ckα′(G′, z) falls off exponentially
with z, irrespective of δc∗kα(G

′, z),

δEL
x

z�L−−→ −2 A
∫

1BZ

d2k
(2π)2 ∑

α,α′
Θkα Θkα′

∫ ∞

−∞
dz
∫ ∞

−∞
dz′

1
z + µ

[
1 +

z′

z + µ
+ . . .

]
×∑

G′′
c∗kα′(G

′′, z′) ckα(G
′′, z′) ∑

G′
δc∗kα(G

′, z) ckα′(G
′, z) + c.c. . (58)

First, focus on the leading order term of the expansion (L0). This term can be evaluated further by
use of the orthonormality relation (5),

δEL0
x

z�L−−→ −2 A
∫

1BZ

d2k
(2π)2 ∑

α

Θkα

∫ ∞

−∞

dz
z + µ ∑

G′
δc∗kα(G

′, z) ckα(G
′, z) + c.c. . (59)
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One can now re-introduce the x-y-integrations and identify δn(r),

δEL0
x

z�L−−→ −
∫

A
d2r‖

∫ ∞

−∞

dz
z + µ

×2 ∑
G

eiG·r‖
∫

1BZ

d2k
(2π)2 ∑

α

Θkα ∑
G′

[
δc∗kα(G

′, z) ckα(G
′ + G, z) + c.c.

]
= −

∫
A

d2r‖
∫ ∞

−∞
dz

δn(r)
z + µ

. (60)

Finally, an expansion in powers of µ/z is legitimate, since µ can be chosen to be much smaller
than the z-values for which δckα(G, z) is non-zero,

δEL0
x

z�L−−→ −
∫

A
d2r‖

∫ ∞

−∞
dz

δn(r)
z

[
1− µ

z
+ . . .

]
. (61)

Next, consider the short-wavelength component (56),

δES
x = −2 A

∫
1BZ

d2k
(2π)2

∫ d2k′

(2π)2 ∑
α,α′

Θkα

∫ ∞

−∞
dz
∫ ∞

−∞
dz′

2π e−|k
′ ||z−z′ |

|k′|

×
[

Θk+k′ ,α′ ∑
G′′

c∗k+k′ ,α′(G
′′, z′) ckα(G

′′, z′) ∑
G′

δc∗kα(G
′, z) ck+k′ ,α′(G

′, z)

−Θkα′

(
∑
G′′

c∗kα′(G
′′, z′) ckα(G

′′, z′) ∑
G′

δc∗kα(G
′, z) ckα′(G

′, z)
)

e−|k
′ |µ
]
+ c.c. . (62)

The arguments that lead from (26) to (35) also apply to (62). Using (36), one arrives at:

δES
x

z�L−−→ −2 A µ
∫

1BZ

d2k
(2π)2

∫
V

d2k′

(2π)2 ∑
α,α′

Θkα Θkα′

∫ ∞

−∞
dz
∫ ∞

−∞
dz′ 2π e−|k

′ ||z−z′ |

×∑
G′′

c∗kα′(G
′′, z′) ckα(G

′′, z′) ∑
G′

δc∗kα(G
′, z) ckα′(G

′, z) + c.c. . (63)

One can then employ (37) for the k′-integration and expand in powers of 1/z, since the remaining
z′-integral is free of any singularities,

δES
x

z�L−−→ −2 A µ
∫

1BZ

d2k
(2π)2 ∑

α,α′
Θkα Θkα′

∫ ∞

−∞
dz′ ∑

G′′
c∗kα′(G

′′, z′) ckα(G
′′, z′)

×
∫ ∞

−∞

dz
z2 ∑

G′
δc∗kα(G

′, z) ckα′(G
′, z) + c.c. . (64)

Use of the orthonormality relation (5) and the density variation (52) then shows that this expression
cancels exactly with the first order contribution to (61).

Finally, consider the first order contribution (L1) to the expansion in (58),

δEL1
x

z�L−−→ −2 A
∫

1BZ

d2k
(2π)2 ∑

α,α′
Θkα Θkα′

∫ ∞

−∞

dz
z2 ∑

G′
δc∗kα(G

′, z) ckα′(G
′, z)

×
∫ ∞

−∞
dz′ z′∑

G′′
c∗kα′(G

′′, z′) ckα(G
′′, z′) + c.c. . (65)

A completely general representation of δEL1
x in terms of δn, as achieved for δEL0

x , is not obvious.
In the following, therefore, only the most important class of variations will be considered. For very
large z, the BZ integral in the density (30) is dominated by the vicinity of the k-point(s) for which the
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exponent γkα(G), Equation (12), assumes its lowest value in the integration region [43]. If one is only
interested in a variation of the asymptotic density, it is therefore sufficient to vary only the amplitudes
of the states in the vicinity of the states with minimal γkα(G). Assume, for simplicity, that the lowest
value of the exponent is obtained only for a single state, denoted by qβ. If only the amplitudes ckβ in
the vicinity of q are varied, while all other ckα are kept unchanged, δn is given by:

δn(r) = 2 ∑
G

eiG·r‖
∫

1BZ

d2k
(2π)2 ∑

G′
δc∗kβ(G

′, z) ckβ(G
′ + G, z) + c.c. . (66)

Now, consider δEL1
x for this variation. For any given δc∗kα(G

′, z), i.e., any given state kα, the sum
over α′ in (65) is dominated by the most weakly-decaying occupied amplitude among the ckα′(G′, z).
In the case of the variation (66), δEL1

x thus reduces to:

δEL1
x

z�L−−→ −2 A
∫

1BZ

d2k
(2π)2 mkβ

∫ ∞

−∞

dz
z2 ∑

G′
δc∗kβ(G

′, z) ckβ(G
′, z) + c.c. , (67)

with mkβ defined by Equation (46). Since δckβ(G′, z) is non-zero only for large z and ckβ(G′, z) decays
exponentially for these z-values, the k-integration in (67) can be simplified by a Taylor expansion of
the smooth parts of the integrand about k = q,

δEL1
x

z�L−−→ −2 A mqβ

∫
1BZ

d2k
(2π)2

∫ ∞

−∞

dz
z2 ∑

G′
δc∗kβ(G

′, z) ckβ(G
′, z) + c.c. . (68)

At this point, one can finally re-introduce the xy-integrations and utilize (66),

δEL1
x

z�L−−→ −mqβ

∫
A

d2r‖
∫ ∞

−∞
dz

δn(r)
z2 . (69)

Thus, for the relevant class of variations δEL1
x can be explicitly expressed in terms of δn.

A completely general variation of n includes this particular class.
One thus concludes that, in general, the next-to-leading order contribution to the asymptotic exact

exchange potential is proportional to 1/z2,

vx(r) =
δEx

δn(r)
z�L−−→ −1

z
−

mqβ

z2 + . . . , (70)

where (61), (64) and (69) have finally been combined.

6. Concluding Remarks

In this work, the next-to-leading order contributions to the EXX energy density, the associated
Slater potential and the exact EXX potential have been calculated for arbitrary slabs, including
semi-conducting and insulating materials. If the asymptotic density is dominated by the states
of the band β in the vicinity of a single k-point q in the interior of the first BZ, one finds:

ex(r)
z�L−−→ n(r)

2

[
−1

z
−

mqβ

z2 +O
(

z−3
)]

(71)

vSlater(r)
z�L−−→ −1

z
−

mqβ

z2 +O
(

z−3
)

(72)

vx(r)
z�L−−→ −1

z
−

mqβ

z2 +O
(

z−3
)

, (73)

where mqβ denotes the first moment (46) of the most weakly-decaying occupied state. If there are
several degenerate most weakly-decaying states at the k-point q or states at several k-points show
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the same asymptotic behavior (due to symmetry), this coefficient has to be suitably generalized
(compare [43]).

The results (71)–(73) show exactly the required behavior under a translation of the coordinate
system. Consider two coordinate systems whose origin differs by a shift ∆ in the z-direction, z′ = z+∆.
At the same physical point far from the surface, Equation (73) then yields in the two coordinate systems,

− 1
z′
−

m′qβ

(z′)2 +O
(
(z′)−3

)
!
= −1

z
−

mqβ

z2 +O
(

z−3
)

, (74)

where m′qβ denotes the moment of the state qβ evaluated with respect to the primed coordinate system,

m′qβ =
∫ ∞

−∞
dz′ z′ ∑

G
|c′qβ(G, z′)|2

=
∫ ∞

−∞
dz′ z′ ∑

G
|cqβ(G, z′ − ∆)|2

=
∫ ∞

−∞
dz (z + ∆) ∑

G
|cqβ(G, z)|2

= mqβ + ∆ . (75)

Insertion into (74) demonstrates that this relation is in fact satisfied in the leading two orders,

− 1
z′
−

m′qβ

(z′)2 = − 1
z

[
1− ∆

z

]
−

mqβ + ∆
z2 +O

(
z−3
)

= − 1
z
−

mqβ

z2 +O
(

z−3
)

.

Equation (75) reflects the fact that the value of a moment always depends on the coordinate system
in which it is calculated. As long as the origin of the coordinate system is chosen to be in the middle of
the slab, its extension L essentially provides an upper limit for the size of mqβ; a highly localized most
weakly-decaying state right at one of the two surfaces of the slab would yield |mqβ| ≈ L. However,
as Equation (75) shows, mqβ can also be made to vanish in a suitably chosen coordinate system.
This approach could be particularly attractive for the prime application of Equations (72) and (73),
the normalization of numerically-generated EXX potentials.
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EXX exact exchange
xc exchange-correlation
BZ Brillouin zone
DFT density functional theory
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