Endothelial AMP-Activated Kinase α1 Phosphorylates eNOS on Thr495 and Decreases Endothelial NO Formation

Nina Zippel ¹, Annemarieke E. Loot ¹, Heike Stingl ^{1,2}, Voahanginirina Randriamboavonjy ^{1,2}, Ingrid Fleming^{1,2} and Beate FissIthaler^{1,2,*}

- ¹ Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; NZippel@gmx.de (N.Z.); a.loot@certe.nl (A.E.L.); Stingl@vrc.uni-frankfurt.de (H.S.); Voahangy@vrc.uni-frankfurt.de (V.R.); fleming@em.uni-frankfurt.de (I.F.)
- ² DZHK (German Centre for Cardiovascular Research) partner site RhineMain, Theodor Stern Kai 7, 60590 Frankfurt, Germany
- * Correspondence: fisslthaler@vrc.uni-frankfurt.de; Tel.: +49-69-6301-6994

Supplementary Materials:

Figure S1. Vascular function in carotid arteries from wild-type (WT) and AMPK α 1^{-/-} mice. (A) Contraction induced by KCl (80 mmol/L), (B) concentration response curves to phenylephrine (PE), and relaxation curves to (C) acetylcholine (ACh) or (D) sodium nitroprusside (SNP) in PE-contracted vessels. The graphs summarize data obtained from 7 animals in each group.

Figure S2. Endothelial cell specific deletion of AMPK α 1. (**A**) AMPK α 1 expression in freshly isolated pulmonary endothelial cells from AMPK α 1^{AEC} or Cre^{-/-} (wild-type; WT) mice. (**B**) Expression of eNOS, AMPK α 1 and AMPK α 2 in aortic ring lysates from WT or AMPK α 1^{AEC} (Δ EC) mice. (**A**) The blots presented are representative of 12 additional experiments using 2 mice per group.

Figure S3. Effect of endothelial specific deletion of AMPK α 2 on vascular reactivity of aortic rings (**A**) Dose dependent contraction to PE of wild-type (open symbols) or AMPK α 2^{Δ EC} mice (closed symbols). (**B**) Relaxation curves of aortic rings to acetylcholine (ACh) after PE constriction of wild-type (open

symbols) or AMPK $\alpha 2^{\Delta EC}$ mice (closed symbols). (C) Dose-dependent relaxation to SNP. The graphs summarize data obtained from 6 animals in each group.

Figure S4. Effect of AMPK activators on the relaxation of aortic rings. (**A**,**B**) Concentration dependent effects of resveratrol (**A**) and amurensin G (**B**) on vascular tone in phenylephrine preconstricted aortic rings from wild-type (WT) and AMPK α 1^{AEC} (α 1^{AEC}) mice; n = 6 animals in each group. (**C**,**D**) Time-dependent effects of PT-1 (**C**, 30 µmol/L) and 991 (**D**; 30 µmol/L) on vascular tone in phenylephrine preconstricted aortic rings from wild-type (WT) and AMPK α 1^{AEC} (α 1^{AEC}) mice; n = 4 animals in each group. (**E**) Effects of the AMPK activators on the phosphorylation of AMPK (on Thr172) and ACC (Ser79) in endothelial cells isolated from aortic rings from wild-type mice. Experiments were performed in the absence (Basal) and presence of 991 (30 µmol/L), AICAR (0.5 mmol/L) or PT-1 (30 µmol/L) for 60 min. Comparable results were obtained in 3 additional independent experiments.