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Abstract

A lot of software systems today need to make real-time decisions to optimize an objective

of interest. This could be maximizing the click-through rate of an ad displayed on a

web page or profit for an online trading software. The performance of these systems is

crucial for the parties involved. Although great progress has been made over the years

in understanding such online systems and devising efficient algorithms, a fine-grained

analysis and problem specific solutions are often missing. This dissertation focuses on

two such specific problems: bandit learning and pricing in gross-substitutes markets.

Bandit learning problems are a prominent class of sequential learning problems with

several real-world applications. The classical algorithms proposed for these problems,

although optimal in a theoretical sense often tend to overlook model-specific proper-

ties. With this as our motivation, we explore several sequential learning models and

give efficient algorithms for them. Our approaches, inspired by several classical works,

incorporate the model-specific properties to derive better performance bounds.

The second part of the thesis investigates an important class of price update strategies

in static markets. Specifically, we investigate the effectiveness of these strategies in

terms of the total revenue generated by the sellers and the convergence of the resulting

dynamics to market equilibrium. We further extend this study to a class of dynamic

markets. Interestingly, in contrast to most prior works on this topic, we demonstrate that

these price update dynamics may be interpreted as resulting from revenue optimizing

actions of the sellers. No such interpretation was known previously. As a part of this

investigation, we also study some specialized forms of no-regret dynamics and prediction

techniques for supply estimation. These approaches based on learning algorithms are

shown to be particularly effective in dynamic markets.



Zusammenfassung

Viele Softwaresysteme müssen heute Echtzeitentscheidungen treffen, um eine bestimmte

Zielfunktion zu optimieren. Das Ziel könnte die Maximierung der Klickrate einer Inter-

netanzeige sein oder die Optimierung des Gewinns einer Online-Handelssoftware. Die

Leistung dieser Systeme ist für die beteiligten Parteien von entscheidender Bedeutung.

Obwohl im Laufe der Jahre große Fortschritte beim Verständnis solcher Online-Systeme

und der Entwicklung effizienter Algorithmen gemacht wurden, fehlen oft eine feingran-

ular Analyse und problemspezifische Lösungen. Diese Dissertation konzentriert sich auf

zwei spezifische Probleme dieser Art: Bandit-Lernen und Preisgestaltung in Märkten.

Im ersten Teil untersuchen wir Verlustmodelle, die eine Mischung aus den gut unter-

suchten gegnerischen und stochastischen Modellen sind. Dabei ergeben sich Algorith-

men, die die zusätzliche Struktur ausnutzen. Wir zeigen auch, wie einige existierende

Techniken und Ideen genutzt werden können, um effiziente Algorithmen für unsere prob-

lemspezifischen Modelle zu entwickeln. Im zweiten Teil untersuchen wir das etablierte

Konzept des Marktgleichgewichts und zeigen dabei, dass dieses Lösungskonzept auch als

Ergebnis der strategischen Interaktionen zwischen den beteiligten Akteuren, nämlich den

Käufern und Verkäufern, entsteht. Darüber hinaus analysieren wir diese Interaktionen

für dynamische Märkte und demonstrieren ihre Wirksamkeit bei der Aufrechterhaltung

einer ungefähren Markträumung.

Bandit-Lernen

Betrachte das folgende klassische Problem das aus einem lernenden Agenten und einer

Menge von Aktionen besteht. In jedem Zeitschritt wählt der Agent eine dieser Aktio-

nen und bekommt einen zugehörigen Nutzen. Er lernt jedoch nichts über den Nutzen,

den er bekommen hätte, wenn er eine der anderen Aktionen gewählt hätte. Die Nutzen-

werte, die mit den Aktionen assoziiert sind, können entweder beliebig sein oder aus einer

Wahrscheinlichkeitsverteilung gezogen werden. Das hängt von dem Modell ab. Dieses

Problem heißt in Literatur Multi-armed Bandit Problem.

Dieses Problem ist in den letzten zwei Jahrzehnten in vielen Varianten erforscht worden.

Das Interesse besteht nicht nur für die theoretischen Aspekte, sondern auch für die

Anwendbarkeit aus reale Probleme. Betrachte das folgende Beispiel als Motivation:



Eine Hotelbuchungsfirma bietet Buchungsmöglichkeiten rund um die Welt. Für jedes

Zimmer bzw. Apartment, das durch die Firma gebucht wird, bekommt sie einen Anteil

der Miete als Kommission. Deshalb beeinflusst die Wahrscheinlichkeit, dass ein Zimmer

gebucht wird, direkt den Umsatz der Firma. Die Firma hat schon festgestellt, dass diese

Wahrscheinlichkeit direkt proportional zur Qualität der Fotos ist, die den Kunden gezeigt

werden. Dieser Qualitätsparameter ist aber subjektiv und hängt von den Kunden ab.

Angenommen, dass viele Fotos zu einem Zimmer verfügbar sind, aber nur eines gezeigt

werden kann, wie soll die Firma die Fotos auswählen, um zu lernen, welches Foto für

jede ZImmer optimal ist, und dadurch den Umsatz zu optimieren?

Um die Leistung der Algorithmen zu messen, benutzen wir in den meisten Fällen die

bekannte Standarddefinition von Regret als die Differenz zwischen dem gesamten Ver-

lust des Algorithmus und dem Verlust einer Strategie die immer die beste Aktion in

Nachhinein wählt. Für das Modell, wenn die Nutzenwerte von einer unbekannten aber

bestimmten Wahrscheinlichkeitsverteilung gezogen werden, existieren Algorithmen, die

eine obere Regretschranke von O(log T ) liefern, wobei T die Anzahl der Zeitschritte ist.

Wenn die Werte dagegen beliebig sind, d.h. ohne stochastische Annahme, dann gibt es

Algorithmen, die eine bestmögliche obere Regretschranke von O(
√
T ) liefern. Es gibt

aber Fälle, in denen die Nutzenwerte nicht beliebig, sondern semi-strukturiert sind. In-

tuitiv sollte mehr Struktur in den Nutzenwerten bessere Regretschranken ermöglichen.

In Anlehnung an einige der neueren Arbeiten definieren wir auch Modelle, die einen

gewissen Grad an Struktur aufweisen. Das ist das Hauptthema in Kapitel 2.

Um die Struktur auszunutzen, benutzen wir Trenderkennung als Haupttechnik. Grob

gesagt, wenn sich die Nutzenwerte der Aktionen deutlich verbessern, bzw. verschlechtern,

wird eine Verschiebung des Wahrscheinlichkeitsgewichts auf die neue beste Aktion aus-

gelöst. Ein wichtiger Vorteil dieses Vorgehens ist, dass man damit eine obere Re-

gretschranke in Bezug auf eine Strategie zeigen kann, die die beste Aktion in jedem

Trend auswählt. Dies ist eine viel stärkere Garantie im Vergleich zur Standarddefini-

tion. Genauer gesagt zeigen wir, dass auch in Bezug auf diesen stärkeren Benchmark

eine Regretschranke von O(
√
T ) erreichen werden können.

Kapitel 3 handelt von einer anderen Variante von Bandit Problemen, sogennanten kom-

binatorische Multi-Armed Bandit Probleme mit Rechen- und Wechselkosten. Das kom-

binatorische Multi-Armed Bandit Problem ist ähnlich zur klassischen Variante, außer

dass der Agent jetzt nicht nur eine, sondern eine Menge von Aktionen wählen muss.

Eine gültige Menge von Aktionen wird von dem Modell bestimmt. Dieser Ansatz war

genau das Thema der Arbeit von Kveton et al. [1]. Wir betrachten eine Variante dieses

Problems, in der dem Agenten Kosten entstehen, um eine Aktion zu berechnen und um

eine gewählte Aktion zu ändern.



Eine Motivation sind Sensornetzwerke, in denen ein zentraler Agent einen minimalen

Spannbaum für effiziente Kommunikation lernen will. Für dieses Beispiel sind die

möglichen Spannbäume die Aktionen. Zur Berechnung der Aktion für den Fall des

Spannbaumes, muss ein verteilter Algorithmus im Netzwerk ausgeführt werden. Diese

Berechnung verbraucht jedoch Energie, die knapp ist, und deswegen entstehen Kosten

dafür.

Preisgestaltung in wettbewerbsorientierten Märkten

Das Internet hat die Art und Weise, wie Waren gekauft und verkauft werden, revolu-

tioniert. Dies hat eine Reihe von neuen Möglichkeiten eröffnet, den Preis der Waren

strategisch und dynamisch zu bestimmen. Dies gilt insbesondere für Einzelhandels- und

Bekleidungsgeschäfte im Internet, für die die Kosten und der Aufwand für die Preisak-

tualisierung vernachlässigbar geworden sind. Diese Flexibilität hat die Forschung in den

letzten zehn Jahren zu einer dynamischen Preisgestaltung angetrieben. Meist geht es

dabei um die Bestimmung optimaler Verkaufspreise in einer unbekannten Umgebung,

um ein Ziel, normalerweise die Einnahmen, zu optimieren. In Verbindung mit dem

Vorhandensein von digital verfügbaren und häufig aktualisierten Verkaufsdaten, kann

dies auch als (Online-) Lernproblem angesehen werden.

Ausgehend von dieser Motivation konzentrieren wir uns im zweiten Teil der Arbeit

auf die folgenden zwei Fragen: 1. Wie soll ein Verkäufer in einem wettbewerbsori-

entierten Markt den Preis für sein Gut bestimmen, um den Ertrag zu optimieren? 2.

Wie wirken sich dynamische Marktparameter auf die Markträumung aus? Um unsere

Antworten auf diese Fragen zu beschreiben, müssen wir zunächst ein generisches Mark-

tmodell einführen. Der Markt besteht aus einer bestimmten Anzahl von Käufern und

Verkäufern. Jeder Verkäufer bringt ein einzigartiges Gut zum Markt. Jedes Käufer hat

sein eigenes Budget. Assoziiert mit jedem Käufer ist eine Nutzenfunktion, die den Wert

einer Menge von Gütern bestimmt. In jedem Zeitschritt wählt jeder Verkäufer einen

Preis für sein Gut. Basierend auf diesen Preisen und der Nutzenfunktion verlangt jeder

Käufer eine Menge der Güter. Der Verkäufer beachtet die Nachfrage und aktualisiert

den Preis seines Gutes im nächsten Zeitschritt, um seinen Ertrag zu verbessern. Die

optimale Preis-Update-Strategie hängt von den Nutzenfunktionen ab

In Kapitel 6 untersuchen wir eine allgemeine Preisstrategie, die auf Algorithmen zur

Regret Minimierung basiert. Dies ist eine Verallgemeinerung der Multi-Armed-Bandit-

Algorithmen, die wir im ersten Abschnitt betrachtet haben, zu konvexen, bzw. konkaven

Funktionen. Der Kern unserer Idee stammt aus einer Arbeit von Syrgkanis et al. [2].

Die Autoren beweisen, dass für ein Spiel mit mehreren Agenten, wenn jeder Agent



einen Regret-minimierenden Algorithmus mit einem geeigneten Schrittgrößenparameter

verwendet, der eine bestimmte technische Eigenschaft erfüllt, dann ist der individuelle

Regret jedes Agenten durch O(T 1/4) begrenzt, wobei T die Gesamtzahl der Runden ist.

Das ist eine deutliche Verbesserung im Vergleich zu den Standardalgorithmen wie Online

Gradient Descent [3], die eine Regretschranke von O(T 1/2) liefern.

Wir modellieren das dynamische Preisgestaltungproblem als ein Spiel, wobei die Verkäufer

die Spieler sind, der Preis ihre Aktion ist, und der Ertrag ihr Nutzen ist. Es wird

angenommen, dass die Nutzenfunktionen die IGS Eigenschaft erfüllen. Mit diesem

Eigenschaft kann man den Umsatz als eine konkave Funktion darstellen. Es ermöglicht

uns, die oben gennante Technik von Syrgkanis et al. zu verwenden. Man braucht je-

doch noch mehrere andere Ideen, um eine scharfe Schranke auf den Umsatzverlust zu

beweisen.

In Kapitel 5 konzentrieren wir uns auf einen anderen Preisaktualisierungsprozess, der

“Tatonnement” genannt wird. In früheren Arbeiten wurde gezeigt, dass dieser Prozess

zu einem Gleichgewicht konvergiert, d.h. zu Preisen, bei denen die Nachfrage für jedes

Gut gleich dem Angebot ist. In diesem Kapitel zeigen wir, dass dieser Prozess für eine

prominente Klasse von Nutzenfunktionen auch individuell für die Verkäufer rational ist

und den Umsatz der Verkäufer optimiert.

Der Ansatz in diesem Kapitel unterscheidet sich Kapitel 6 auf zwei Arten: Hier konzen-

trieren wir uns auf bestimmte Klassen von Nutzenfunktionen, nämlich konstante Sub-

stitutionselastizität (auf Englisch, CES). Diese Klasse von Nutzenfunktionen wird oft in

der Wirtschaftsforschung verwendet. Daneben zeigen wir in diesem Kapitel eine Ober-

grenze für den Ertragsverlust eines Verkäufers in Bezug auf eine Strategie, die in jedem

Zeitschritt den Beste-Antwort-Preis wählt und dadurch ein stärkerer Benchmark ist.

Für das untersuchte Nutzenmodell zeigen wir, dass in einem statischen Markt, wenn

jeder Verkäufer den Tatonnement-Prozess anwendet, der Ertragsverlust eines Verkäufers

durch eine Konstante begrenzt ist. Wir untersuchen diesen Preisaktualisierungsprozess

auch, wenn das Angebot der Verkäufer dynamisch ist. In diesem Fall zeigen wir, dass

der gesamt Ertragsverlust eines Verkäufers mit zunehmender Instabilität Verfügbarkeit

des Gutes steigt.

Tatonnement ist ein Preisaktualisierungsprozess, der für eine große Klasse von Märkten

eine Konvergenz zum Gleichgewicht garantiert. Darüber hinaus rechtfertigt und erklärt

er die in der Realität auftretenden Preisanpassungsprozesse. Die meisten der bisheri-

gen Analysen der Tatonnement-basierten Dynamik gehen jedoch bisher davon aus, dass

der Markt und seine Eigenschaften (z.B. Agenten, Budgets, Nutzenfunktionen, Ange-

bot) im Laufe der Zeit unverändert bleiben. In dem letezten Kapitel untersuchen wir



die Wirksamkeit des Tatonnementprozesses hinsichtlich seiner Fähigkeit, ein annähern-

des Marktgleichgewicht in dynamischen Märkten aufrechtzuerhalten. Zu diesem Zweck

konzentrieren wir uns auf einen Fisher-Markt mit CES-Nutzenfunktion. Dieser Markt

besteht aus der gleichen Gruppe von Verkäufern und Käufern, die sich jedoch einem

ständigen Wandel in einem der Marktparameter unterziehen. Der Marktparameter kann

z.B. Angebot, Käuferbudgets oder deren Nutzenfunktionen sein. Wir erweitern unsere

Technik auf eine allgemeine Klasse von Lyapunov-dynamischen Systemen mit einem

Update-Prozess, der die Lyapunov-Funktion in einer einzigen Runde multiplikativ ver-

ringert.

Zusammenfassend konzentrieren wir uns auf zwei breite und wichtige Klassen von Online-

Lern- /Optimierungsproblemen. Im ersten Teil der Arbeit haben wir zwei Varianten von

Multi-Armed-Bandit-Problemen untersucht, nämlich die klassische Variante mit Tren-

derkennung und die kombinatorische Variante mit Rechenkosten. Für das erstgenannte

Problem zeigt sich, dass sogar einige schwache strukturelle Eigenschaften der Verluste

genutzt werden können, um starke Regretschranken abzuleiten. Für das zweite Prob-

lem wird gezeigt, dass man trotz des Overheads der Rechenkosten fast genauso gute

Regretschranken zeigen kann wie im klassischen Problem.

Der zweite Teil der Arbeit besteht aus zwei wichtigen Klassen von Preisstrategien für die

Ertragsoptimierung, nämlich Algorithmen zur Regret-Minimierung und Tatonnement.

Bei beiden Ansätzen zeigen sich starke Regretschranken auf den Ertragsverlust bei den

Verkäufern in Abhängigkeit von den Nutzenfunktionen. Es wird weiterhin gezeigt, dass

der Tatonnement-Prozess gegenüber sich ändernden Marktparametern robust ist und

somit ein ungefähres Marktgleichgewicht aufrecht erhält.
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Chapter 1

Introduction

Online optimization consists of a class of problems where an agent interacts with the

system in discrete time steps. In these time steps, it makes irrevocable decisions with

the intention of optimizing an objective of interest. In contrast to a widely studied

class of optimization problems, where the entire input is known beforehand, the agent

in this model receives the inputs one-at-a-time. These class of problems, having been

a subject of intense research for several decades now, have resulted in two analysis

approaches: First is the competitive analysis where the performance of an algorithm

is compared to that of an offline version, i.e., assuming all the information is available

from the beginning. The second approach, which also is the subject matter of this thesis,

abstracts the problem as a learning problem. Depending on the actual problem being

studied, a variety of benchmarks are used to measure the algorithm performance.

While sequential learning has been an area of intense research in the last decades, several

new problem domains have sprung up in recent years. For example, the problem of

dynamic allocation of jobs to servers in data centres to balance performance and energy

efficiency, or the problem of displaying relevant items to a user on an e-commerce website.

In this thesis, we focus on two such problem classes. The first class of problems also

referred to as bandit problems, refers to the class of problems, where the learner chooses

an action (or set of actions) from a pool and observes the performance of these actions.

The goal of the learner is to maximize the cumulative reward (respectively, minimize

the cumulative loss). This basic model has been extended in several directions since its

introduction capturing a variety of learning problems encountered in reality. In the first

part, we also introduce two interesting variants and give algorithms for them.

The second class of problems we study focuses broadly on the different pricing strategies

in the market. Under suitable market assumptions, we propose plausible explanations

for the pricing behaviour observed in the real world. We study the impact of the pricing

1
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methods on the revenue of sellers in the market. We find the results given to be par-

ticularly interesting since they incorporate elements of competition, a most commonly

observed phenomenon in real markets, in the end-results. In the subsequent sections,

we introduce each of these classes of problems in more detail.

1.1 Bandit Learning

Consider the following problem faced by a web-based hotel booking company called

ABC.com. ABC hosts hotel listings from all over the world. For every room booked on

their website, ABC receives a certain percentage of the rent as commission. Therefore,

increasing the likelihood that a website visitor actually books a room has a direct impact

on their own revenue. A recent survey conducted by ABC internally revealed that the

likelihood that a visitor books a room is directly proportional to the quality of the

property picture presented to the website visitor i.e. irrespective of the actual quality

of the hotel room, the first few pictures that a visitor sees has a major impact on the

likelihood of the sale. Note that this quality as mentioned above is a subjective measure

and may differ across the website visitors. Even if that was not the case, since ABC

hosts millions of listings on its website, manually choosing the “best” picture for every

property listed is not possible. How could ABC go about optimizing its sale probability

and thereby its revenue?

This problem is a representative example of a class of sequential learning problems,

also referred to as “bandit learning problems”. These differ from classical, or machine

learning-style optimization methods, in that the learner does not have access to“batch”

or historical data and needs to optimize in real-time with the limited feedback that the

learner has access to. Problems of this flavour have been a subject of intense study

under a variety of models, and continue to be so even today. The classical version of

this problem is modelled as a sequence of “bandit machines” where pulling the handle

(or arm) of such a machine results in a certain reward. The goal of the learner is to

maximize the cumulative reward. The reward observed on pulling the handle of a given

machine can either be stochastic or adversarial depending on the model under study.

Although the problem description is straightforward in this abstract model, it allows

one to construct theoretically clean models for more complex problems, for example, the

one introduced above. For example, the problem of ABC may be modelled as follows:

The potential customers approach the booking platform sequentially, and for each of

these customers, depending on the hotel s/he searches, ABC chooses a certain set of

pictures to display. Here we are implicitly assuming that for every listing, there exists

a pool of pictures from which the server chooses a small set. The user perception based
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on which the customer makes a decision is a stochastic variable. Therefore, for a given

set of pictures displayed, there exists a certain (unknown) probability of the property

being booked. The problem of optimizing the sale probability can thus be posed as the

problem of finding the set of display pictures that maximizes the sale probability with

respect to the unknown stochastic process.

A characteristic feature of most algorithms for online optimization is the exploration-

exploitation trade-off. For example, if the rewards of the chosen action are drawn from

a probability distribution, then choosing the action with maximum expected reward is

clearly the optimal strategy. But without any prior knowledge of the underlying reward

distribution, any algorithm is forced to try-out several different actions at random, until

the optimal action can be clearly identified. Such random trials are often referred to

in the literature as exploration phases. By definition, there exist no guarantees on the

rewards achieved in this period. To be able to prove guarantees, the algorithm has to, at

some point, use the feedback gathered in these exploration phases, to choose an action

that is optimal with respect to this feedback. These are often referred to as exploitation

phases. The optimal algorithms for such problems usually involve a clever interleaving

of exploration and exploitation phases.

1.2 Online Pricing in Markets

Consider now a different scenario, one of a vegetable market in a small town. This

market consists of sellers, each bringing some quantity of a vegetable every day to the

market. For simplicity, suppose that each seller brings a single variety to the market.

The people of the town, also the buyers, have their own individual preferences over

the vegetables. For example, one particular individual may like or dislike one or more

varieties of vegetables over the others. For purposes of modelling, assume that these

preferences can be completely captured by some closed-form expressions. We refer to

them as the utility function of the buyer. Furthermore, depending on the needs of the

buyer, or perhaps depending on her financial capability, the buyer decides to spend a

certain amount of money in a certain time interval. One may simply model this as the

buyer’s private budget. Based on the utility function and the private budget, which may

differ across buyers, the buying decisions are made. The goal of the sellers is to price

their vegetable such that their revenue is maximized.

This problem is an example of online optimization in the presence of strategic agents,

or simply, competition. Models of this nature have only recently started to receive

attention, particularly in the computer science community. Note that one of the primary

differences from the model described in the previous section is that the reward observed
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by any given agent for any given action depends on the choices of all other agents. For

example, one would expect the demand observed by a certain seller for his vegetable

to increase if the price of some other vegetable increases, causing people to shift to a

more affordable option. The degree of such a shift in demand naturally depends on the

inherent preferences of the buyers.

This dependency of the revenue obtained by a given seller on the prices chosen by other

sellers makes this problem particularly challenging. Furthermore, changing the depen-

dency relationship changes the entire problem and hence necessitates a new approach.

In this thesis, we study the pricing problem in markets where the buyer utilities belong

to a general class, namely the CES utilities. Fixing such a utility function on part of

the buyers essentially defines the dependency relationship mentioned above and lends

additional structure to the pricing problem. It is this structure that allows one to design

more efficient algorithms than for the general online optimization problem described in

the previous section. For example, as mentioned before, any learning algorithm in the

general case has to adopt the exploration-exploitation strategy. With the additional

structure, the learner is able to forego the purely random try-outs and adopt a fixed

iterative strategy.

Our approach to design these algorithms rely on previous work in the theory of mar-

ket equilibrium. It is postulated in economic theory that large repeated markets often

operate close to equilibrium. In the second part of this thesis, we establish connections

between the problem of revenue maximization of sellers in a market and that of dis-

tributed computation of market equilibrium for a prominent class of markets. For this

class, we provide an alternative justification of the existence of market equilibrium as a

result of the sellers optimizing their own revenue.

1.3 Thesis Overview

As mentioned before, in this thesis we focus on two broad classes of online optimization

problems, namely Bandit Learning and Pricing in Markets with Gross Substitutes Utili-

ties, which also form its two main parts. In the first part, we focus on two specific bandit

learning problems. In Chapter 2, based on joint work with Rebecca Reiffenhäuser, we

investigate two structured loss models and give algorithms that take advantage of this

additional structure to obtain better learning guarantees. In Chapter 3, we explore a

model commonly encountered in decentralized learning systems where computation of

the new action to be taken is too expensive to be done every round. For this model,

we show that in spite of the additional computation costs, one can achieve learning

guarantees which are almost as good as the classical model.
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The second part of the thesis focuses exclusively on the problem of pricing in markets. In

Chapter 5, based on joint work with Martin Hoefer, we study an existing price adaptation

strategy called tatonnement, and show that for a certain class of markets this strategy

also optimizes seller revenue in a competitive market. In addition, we provide concrete

bounds on the loss in revenue incurred by any seller in static and dynamic markets. In

chapter 6, we continue this study but for markets with different classes of buyer utility.

For this more general class of strategies studied here, we give bounds on losses in revenue

of the seller with respect to suitable benchmarks. In Chapter 7, based on joint work

with Yun Kuen Cheung and Martin Hoefer, we shift our focus to questions concerning

the convergence properties of the tatonnement process in markets, when parameters

like supply and buyer budget are subject to perturbation. The resulting analysis and

conclusion is then extended to a broad class of Lyapunov dynamical systems.

1.4 List of Papers

Most of the results in this thesis are taken from a series of manuscripts, listed below for

completeness.

List of Papers:

[1] Martin Hoefer and Paresh Nakhe. Revenue optimization via tatonnement in

fisher markets. Manuscript under submission, 2018.

[2] Yun Kuen Cheung, Martin Hoefer, and Paresh Nakhe. Tracing equilibrium in

dynamic markets via distributed adaptation. Manuscript under submission,

2018.

[3] Paresh Nakhe. Dynamic pricing in competitive markets. In International

Conference on Web and Internet Economics (WINE), pages 354–367. Springer,

2017.

[4] Paresh Nakhe and Rebecca Reiffenhäuser. Trend detection based regret mini-

mization for bandit problems. In 2016 IEEE International Conference on Data

Science and Advanced Analytics (DSAA), pages 263–271. IEEE, 2016.





Part I

Bandit Learning

7





Chapter 2

Learning via Trend Detection

2.1 Introduction

Consider the following problem: Suppose you own an apparel store and have purchased a

fixed number of ad slots on some website, say, Facebook. Every time someone visits the

website, you can choose a set of ad impressions to display. Let’s assume that an ad here

consists of an image of a clothing item and that each image is associated with a click-

through-rate unknown to you. Your goal is to choose images to display such that the

cumulative click-through-rate is maximized. How would you choose these images? This

problem falls into the domain of reinforcement learning and, more specifically, multi-

armed bandit learning. Contrary to supervised learning (and most of current research

in statistical pattern recognition and artificial neural networks), multi-armed bandit

learning is characterized by its interactive nature between an agent and an uncertain

environment. Such a learning algorithm makes its next move based on the history of its

past decisions and their outcomes.

More specifically, a multi-armed bandit problem is a sequential learning problem where

the learner chooses an action from a set of actions in every round. Associated with

each action is a loss unknown to the learner1. The goal of the learner is to minimize

the loss incurred. Performance of the learning algorithm is measured by regret, com-

pared to a certain benchmark strategy. Conventionally, in multi-armed bandit problems

the benchmark strategy is to always choose the single best action in hindsight, i.e., an

action with minimum cumulative loss. This problem has been thoroughly studied in

a variety of settings [4–7]. A distinguishing feature of such problems is the inherent

exploration-exploitation trade-off. When the losses are generated from a fixed but un-

known distribution, there exist algorithms [5, 7, 8] that can achieve a regret guarantee

1The case with rewards is symmetric.

9
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of O(log T ), where T denotes the number of rounds. On the other hand, when losses

for the actions are generated under no statistical assumption, or alternately when losses

are generated by an adversary, the best possible regret guarantee that can be achieved

is O(
√
T ) [6]. Recently, interest has been developing [9, 10] in the question of achieving

non-trivial regret guarantees when the loss model is semi-structured. Intuitively, more

structure in the losses should enable more exploitation and hence allow for better re-

gret guarantees. Along the lines of some of the recent work [9], we also define models

exhibiting a certain degree of structure.

Often the real-world problems do not exhibit adversarial behaviour, and in many cases

the losses of different actions follow a trend structure, i.e. when one action is consistently

better than others in a certain interval. For such more specialized models, the standard

techniques prove insufficient since they do not take advantage of these properties. In

this paper, we address this deficiency using the paradigm of trend detection. Broadly,

we propose a strategy that keeps track of the current trend and restarts the regret

minimization algorithm whenever a trend change is detected. This allows us to give

regret guarantees with respect to a strategy that chooses the best action in each trend.

This is a significantly stronger benchmark than the one conventionally considered. The

regret guarantee with respect to this benchmark is also called switching regret.

More importantly, our proposed strategy is not specific to a particular regret minimiza-

tion algorithm unlike the approaches in some recent works [11]. In this paper, we use

Exp3 as the underlying regret minimizing algorithm for its simplicity and almost op-

timal regret guarantee [4]. However, one can use any other algorithm and analyze it

in a similar way. Because of this modular structure of the algorithm, we can extend

the arguments and proofs for the conventional multi-armed bandits problem to a more

general setting where instead of a single action, the learner chooses multiple actions in

each round [12]. This problem has been studied in stochastic [13] and adversarial [14]

settings, but to the best of our knowledge, there are no prior works giving a switching

regret guarantee for it.

One of the primary motivations for studying these bandit problems comes from the

domain of recommender systems. Many web tasks such as ad serving and recommenda-

tions in e-commerce systems can be modeled as bandit problems. In these problems, the

system only gets feedback for the actions chosen, for example whether the user selects

the recommended items or not. Notice that these systems may recommend one or more

items in each round. The trend detection paradigm used in this chapter is motivated by

the observation that in many cases, the performance of actions follow a trend structure.

In the above mentioned case of an apparel store, for example, swimsuits may be the
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better choice during the warm parts of the year, or perhaps what is currently in vogue

in popular fashion.

Related Work

The problem of giving regret guarantees with respect to a switching strategy has been

considered previously in several works (albeit in more restricted settings), all of which

consider the case when the learner chooses exactly one action in each round. Auer

et al. proposed Exp3.S [4] along the same lines as Exp3 by choosing an appropriate

regularization factor for the forecaster. This enables the algorithm to quickly shift focus

on to better performing actions. For an abruptly changing stochastic model, Discounted-

UCB[15] and SW-UCB [16] have been proposed along the lines of UCB. In the former

algorithm, a switching regret bound is achieved by progressively giving less importance

to old losses while in SW-UCB, the authors achieve the same by considering a fixed size

sliding window. Both these algorithms achieve a regret bound of O(
√
MT log T ), where

M is the number of times the distribution changes and T denotes the number of rounds.

Our work is closest to the algorithm Exp3.R proposed by Feraud et al. [11] who also

follow a paradigm very similar to trend detection. However, their algorithm is specific

to Exp3 and applies only to the version of the bandit problem where one chooses a

single action in each round. Furthermore, their algorithm assumes a certain gap in the

performance of actions that depends on the knowledge of run time of the algorithm.

This makes it inapplicable to a number of real-world scenarios.

The trend detection idea used in our algorithm is similar to the change detection problem

studied in statistical analysis. Similar ideas have also been used for detection of concept

drift in online classification [17, 18]. Common applications include fraud detection,

weather prediction, and advertising. In this context, the statistical properties of a target

variable change over time, and the system tries to detect this change and learn the new

parameters.

Overview: We start by introducing the basic model in Section 2.2 and the two main

loss structures we investigate in subsequent sections. For the standard K-armed bandit

problem, we propose a new algorithm called Exp3.T in Section 2.3. This algorithm

guarantees switching regret of Õ
(
N
√
TK

∆sp

)
where N is the number of trend changes and

not known to the learner. ∆sp indicates the degree of structure in loss model. This

regret bound is proved in Section 2.4. This guarantee extends to the anytime setting i.e.

when the duration of the run, T , is not known in advance. In Section 2.5, the analysis

is further extended to the case when instead of a single action the learner chooses K

actions in each round. The underlying regret minimization algorithm used in this case is
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OSMD [14]. The resulting algorithm achieves switching regret of Õ
(
Nm
√
TK

∆sp

)
. Finally,

in Section 2.6, we provide empirical evidence for this algorithm’s performance in the

classical setting. To sum up, in comparison to the state-of-the-art algorithms, we show

that our algorithms are particularly effective when the structure of the losses encountered

satisfy some weak assumptions.

2.2 Model and Preliminaries

We consider a multi-armed bandit problem with losses for K distinct actions. The

learner chooses one of the K actions sequentially for T rounds. Let the set of these

K actions be denoted by [K]. The losses of these K actions can be represented by a

sequence of loss vectors {x}Tt=1 where x = {(x1, x2 · · ·xK)}t. The loss sequence is divided

into N trends of variable lengths. Their starting rounds are given by {Tn}Nn=1 and are

unknown to the learner. A trend is defined as a sequence of rounds where a set S of

m actions is significantly better than others for the duration of this trend. We say that

the trend has changed when this set of actions changes. Within each trend the losses of

actions in the set S are “separated” from all others by a certain gap. Particularly, we

consider a finer characterization of loss models than just stochastic or adversarial within

a trend. Similar to the loss model introduced by Seldin et al [9], we focus on models

exhibiting a “gap” in losses. Although this model is weaker than the adversarial model

it still covers a large class of possible loss models. We express the gap in our loss models

by an abstract term ∆sp, the separation parameter. Although the exact definition of

this parameter changes depending on the actual model, in each case it conveys the same

idea that a larger value of this parameter implies a larger gap between losses of actions

in S and every other action.

1. Dynamic Stochastic Regime (DSR): For the stochastic loss model, the loss

of each action a at round t is drawn from an unknown distribution with mean µat .

Let a∗ and a be any actions in sets S and [K]−S respectively. Then for all rounds

t in trend τ , µa
∗
t < µat and the separation parameter is defined as:

∆sp(τ) = min
t∈τ
{µat − µa

∗
t }.

The loss model is stochastic with separation parameter ∆sp = min
τ

∆sp(τ) > 0.

The identity of best action a∗ changes N times.

2. Adversarial Regime with Gap (ARG): We use a modified version of the loss

model introduced in [9]. Within each trend τ , there exists a set S of m actions
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which is the best set for any interval of (sufficiently large) constant size, C. More

precisely, let λz(a) =
∑
t∈z

`a,t be the cumulative loss of an action a in interval z

consisting of C rounds. Then for any action a∗ ∈ S and a ∈ [K]− S we define the

separation parameter for trend τ as:

∆sp(τ) = min
z∈τ


min
a′ 6=a∗

λz(a
′)− λz(a∗)

|z|


It is the smallest average gap between any sub-optimal action and any action in set

S for any interval z of size C. As in the above model, we say that a model satisfies

the ARG property with separation parameter ∆sp when ∆sp = min
τ

∆sp(τ) > 0.

Assumption: For the algorithm considered in this chapter, we assume that the loss

model, either stochastic or adversarial regime with gap, has separation parameter lower

bounded by 4∆, a constant known to us i.e. ∆sp ≥ 4∆.

Notice that in the first trend, spanning from the first round till some round n, each

action satisfies the gap conditions defined above for all the constituent rounds (DSR)

or intervals of size C (ARG), for the respective setting. We define n to be the last such

round, i.e., these conditions are violated at round n + 1, indicating the start of a new

trend.

We study two variants of this problem. In the first variant, the algorithm chooses exactly

one action every round while in the other, the algorithm can choose any set of m actions.

For both the variants, the algorithm observes losses only of the actions chosen (or the

single action chosen for the former variant). We assume the presence of an oblivious

adversary which decides on the exact loss sequences before the start of the game. The

sequence is of course not known to the algorithm. We also make the standard assumption

that losses come from the [0, 1] interval.

For the problem setting as described, our goal is to design an algorithm A to minimize

the cumulative loss incurred in the T rounds that the game is played. For the case when

the algorithm chooses exactly one action every round, its performance is measured with

respect to a strategy that chooses the best action in each trend. Specifically, let It denote

the action chosen by the algorithm in round t and let Xt
It

denote the corresponding loss

incurred by this action. Then the cumulative loss incurred by the algorithm is:

LA =

T∑
t=1

Xt
It .
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For ease of notation, we denote the rounds in trend n, i.e., [Tn, Tn+1− 1] by [n]. Let I∗[n]

be the best action in trend n, then the loss incurred by the switching strategy described

above is:

L∗ =

N∑
n=1

Tn+1−1∑
t=Tn

Xt
I∗
[n]
,

where trend n occurs in the interval [Tn, Tn+1 − 1]. We define the regret incurred by

algorithm A as follows:

R∗T = LA − L∗.

Exactly analogous definitions apply to the case when the algorithm chooses multiple

actions in each round.

2.3 The Exp3.T Algorithm

Algorithm 1 Exp3 [19]

1: . Parameter: a non-increasing sequence of real numbers ηt
2: Let p1 be the uniform distribution over 1, ...,K.
3: for each interval round t = 1, 2, . . . T do
4: Choose an arm It from distribution pt
5: for each arm i = 1, · · ·K do
6: ˜̀

i,t =
`i,t
pi,t

1It=i

7: L̃i,t = L̃i,t−1 + ˜̀
i,t

8: end for
9: pi,t+1 =

exp(−ηtL̃i,t)
K∑
k=1

exp(−ηtL̃k,t)

10: end for

The algorithm Exp3.T is composed of two governing ideas: The Exp3 algorithm and a

trend detection routine. Exp3 (see algorithm 1) gives almost optimal regret bounds with

respect to the single best action in hindsight when the loss model is adversarial. However,

when the losses exhibit a certain structure or when regret with respect to a stronger

benchmark is desired, Exp3 proves to be insufficient. In our algorithm, we overcome

this problem by identifying trends in losses and resetting the Exp3 algorithm whenever

a change in trend is detected. One advantage of using Exp3 in settings exhibiting

structured losses is that it is robust to changes in the losses of actions as long as the best

action remains same. We exploit this property in our algorithm so that it is applicable

to a large class of loss models. In the analysis we use the following regret bound given

by [19].
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Lemma 2.1. For any non-increasing sequence {η}t∈N, the regret of the Exp3 algorithm

with K actions satisfies

RT ≤
K

2

T∑
t=1

ηt +
lnK

ηT
.

Algorithm 2 shows the skeleton of the procedure to achieve the desired bound on the

switching regret. At a high level, the algorithm divides the total run into runs on

smaller intervals. Within each interval the algorithm runs Exp3 (parameter η) with

loss monitoring(LM) plays randomly interspersed among all rounds. The length of this

interval is controlled by parameter γ. These loss monitoring plays choose different actions

for a fixed number of rounds without regards to regret. The loss values collected from

this process are used to give an estimation of the mean loss of each action in a given

interval. The number of such plays required to give a good estimation of loss depends

on the actual model under consideration and is captured by the parameter t∗. Based

on this estimation, the trend detection module outputs with probability at least 1 − δ
whether the best action has changed or not, alternatively whether the trend has changed

or not.

The Make Schedule(·) procedure assigns Exp3 plays and fixed action plays to monitor

loss (exactly t∗ many per action) randomly to rounds at the start of an interval and

returns the randomly generated schedule. The random generation of schedule protects

the algorithm from making biased estimates of actual losses.

Algorithm 2 Exp3.T

1: . Parameters: δ, γ and η
2: Set interval length |I| = Kt∗

γ
3: for each interval I do
4: Schedule ← Make Schedule(I)
5: for t = 1, 2 · · · |I| do
6: if Schedule(t) = Exp3 Play then
7: Call Exp3 play()
8: else
9: Call LM play(Schedule(t))

10: end if
11: end for
12: if trendDetection() == True then
13: Restart Exp3
14: end if
15: end for
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Trend Detection

In any interval, the loss monitoring component of Algorithm 2 chooses each action a

sufficient number of times, and these choices are randomly distributed over the interval.

The samples obtained from these plays are used to give a bound on the deviation of the

empirical mean of losses from the true mean. Particularly, we use the following lemma

by Hoeffding [20] for sampling without replacement from a finite population.

Lemma 2.2. Let X = (x1, x2, · · ·xN ) be a finite population of N real points from [0, 1],

X1, X2 · · ·Xn denote random sample without replacement from X . Then, for all ε > 0,

P

(
1

n

n∑
i=1

Xi − µ ≥ ε
)
≤ exp(−2nε2)

where µ = 1
N

N∑
i=1

xi is the mean of X .

For each interval we maintain information about the empirical mean of losses for each

action, i.e., the mean over loss values actually seen by the algorithm. By Lemma 2.2,

all of these estimates are close to the actual mean with probability at least 1− δ, where

δ is a parameter of the algorithm. In the case of change in trend within an interval

I, these guarantees are of course void as the losses do not maintain a uniform pattern.

Therefore, a change in trend can be detected by comparing the empirical estimates

obtained at the end of the next interval to those obtained prior to the trend change.

This idea is represented in Algorithm 3.

Algorithm 3 trendDetection()

1: Let p be the index of the current interval
2: I∗p ← action with minimum empirical mean loss, µ̂, in interval p.
3: if p = 1 or p = 2 then
4: return False
5: end if
6: if I∗p 6= I∗p−2 then
7: return True
8: end if
9: return False

2.4 Regret Analysis

For ease of notation in the analysis, we define the detector complexity t∗ as the number

of loss monitoring samples required for each action so that the trend detection procedure

works with probability at least 1 − δ, provided there is no trend change in the actual



Chapter 2. Learning via Trend Detection 17

interval. In what follows, we give detector complexity bounds for different models and

use it as an abstract parameter in regret analysis.

Lemma 2.3. The detector complexity in dynamic stochastic regime satisfies

t∗DSR =
1

2∆2
ln

(
4K

δ

)
.

Proof. Fix an action a and an interval I. Let the expected reward of action a on interval

I be given by the sequence {µat }t∈I and the actual realization of rewards be given by

{Xa
t }t∈I . First we observe that the expected reward of a over the interval I is given by

µa,I =

∑
t∈I µ

a
t

|I| .

Let the set of loss monitoring samples collected by our algorithm for action a be denoted

by Za. The algorithm uses these samples to calculate the empirical mean of rewards for

the action a. We denote it by µ̂Za .

Step 1: First we show that the empirical mean of losses over the entire interval is close

to the expected mean, µa,I . Let {Xa
t }t∈I be the sequence of actual reward realizations

for arm a in interval I. Denote by µ̄a,I the mean of these actual realizations. Applying

Hoeffding’s inequality,

P (|µa,I − µ̄a,I | > ∆) ≤ 2 exp(−2|I| ·∆2)

≤ 2 exp(−2t∗DSR ·∆2) =
δ

2K
,

i.e., the empirical mean of losses for action a over the interval I is close to the actual

mean with probability at least 1− δ
2K .

Step 2: Now we show that the empirical mean of loss-monitoring samples collected

for action a is close to the mean of the actual realizations, µ̄a,I . This follows from

Lemma 2.2:

P (|µ̄a,I − µ̂Za | > ∆) ≤ 2 exp(−2t∗DSR∆2) =
δ

2K
.

Therefore, with probability at least 1− δ
K , the mean of loss monitoring samples for any

action is within 2∆ of the actual mean. By applying a union bound over all actions,

with probability at least 1− δ the same guarantee holds over all actions, which in turn

implies that the trend detection module can detect whether the best action has changed

with the same probability.
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Lemma 2.4. The detector complexity in the adversarial regime with gap satisfies

t∗ARG ≥
(b− a)2

8∆2
ln

(
2K

δ

)
when the losses in the given trend are drawn from interval [a, b].

Proof. The proof for this lemma goes along the same lines as for Lemma 2.3 except that

in this case we do not need step 1. Further, in this case, we can allow the empirical mean

of collected samples to be within 2∆ of the actual mean of all losses in the interval instead

of just ∆. For this particular loss model, if additional information about the range

of losses within a trend is available, then using the generalized version of Hoeffding’s

inequality we achieve a tighter detector complexity bound. Unless defined otherwise,

our losses are always drawn from the range [0, 1].

In the rest of the analysis, we use the model-oblivious parameter t∗ to represent t∗DSR

or t∗ARG.

Theorem 2.5. The expected regret of Exp3.T is

RT = O

(
N
√

(TK lnK) ln (TK lnK)

∆sp

)
.

Proof. We divide the regret incurred by Exp3.T in three distinct components; the first

is the regret incurred just by running and restarting of Exp3. To bound this component

of total regret we use the regret bound as in Lemma 2.1. Let F (T ) denote the number

of false trend detections, i.e., the number of times when there was no change in detection

but the detection algorithm still indicated a change. Then the regret incurred due to

Exp3 is

RExp3 ≤
K

2

T∑
t=1

ηt +
(N − 1 + F (T )) lnK

ηT
.

As trend detection fails with probability at most δ, the expected number of false detec-

tions is at most

F (T ) ≤ δ

(
T

|I| + 1

)
.

The second component of the total regret is on account of intervals wasted due to delay

in detection of trend change. Specifically, if the trend changes in a given interval I, the

regret guarantee obtained as part of Exp3 is not with respect to the best action before

and after trend change. As we cannot give the required guarantee for this interval, we
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count this interval as wasted and account it towards regret. Secondly, since the trend

detection algorithm detects the change with probability at least 1−δ, the expected num-

ber of trend detection calls required (or alternatively the expected number of intervals)

is at most 1
1−δ . Therefore, the total number of wasted rounds is at most

Rwasted ≤ N

(
1 +

1

1− δ

)
|I|.

The third and final component of regret incurred is due to the loss monitoring plays

in each interval. No guarantee can be given about the regret incurred in these rounds

and hence all such rounds are also accounted in regret. Since in each interval there are

exactly Kt∗ number of such plays, the total number of such rounds is at most

Rloss monitor ≤ Kt∗
(
T

|I| + 1

)
= γT +Kt∗.

Putting all together, the total regret is

RT ≤ K
T∑
t=1

ηt +
(N − 1 + γδT

Kt∗ ) lnK

ηT

+N

(
1 +

1

1− δ

)
Kt∗

γ
+ γT +Kt∗.

Setting η =
√

lnK
TK , γ =

√
Kt∗ lnK

T and δ =
√

K
T lnK , the regret incurred by Exp3.T is

RT ≤
√
TK lnK + N

√
TK lnK +

√
TK lnK

t∗
+ 2N

√
TKt∗

lnK

+ 2N
K
√
t∗

lnK
+

√
t∗TK lnK + Kt∗,

where t∗ = O
(

ln(TK lnK)
∆2
sp

)
. Alternatively, RT = O

(
N
√

(TK lnK) ln(TK lnK)

∆sp

)
.

Extension to the Anytime Version

The parameters derived to achieve the desired regret bound in Theorem 2.5 depend on

the knowledge of T , the length of the total run of the algorithm. This dependency can

be circumvented by using a standard doubling trick. Particularly, we can divide the

total time into periods of increasing size and run the original algorithm in each period.

Since the guarantee of this algorithm rests crucially on the probability of correct trend

detection, in our case we need to modify the δ parameter as well.
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Algorithm 4 Anytime Exp3.T

1: . Choose an initial estimate T ′ of length of run
2: for i = 0, 1, 2 · · · do
3: Let Ti = 2iT ′

4: Set γi =
√

Kt∗i lnK
Ti

, δi = 1

T
3/2
i

√
K

lnK

5: Run Exp3.T with parameters γi, δi in period Ti
6: end for

Theorem 2.6. The expected regret of Anytime Exp3.T with ηi =
√

lnK
TiK

, γi =
√

Kt∗i lnK
Ti

and δi = 1

T
3/2
i

√
K

lnK is O

(
N
√

(TK lnK) ln(TK lnK)

∆sp

)
.

Proof. We follow the same steps as in the proof of Theorem 2.5. We divide the regret

incurred into three different components: regret due to Exp3 algorithm, due to the

wasted intervals during detection and due to the loss monitoring plays. Compared to

the proof of Theorem 2.5 the only difference is that here we have to sum the regret of

Exp3.T over multiple runs. If T is the actual length of play, then the number of times

we run Exp3.T is at most log T . The regret due to the Exp3 algorithm (running and

restarting) is:

RExp3 ≤
dlog T e∑
i=0

(
K

2
Tiηi +

(Ni − 1 + F (Ti)) lnK

ηi

)
,

where Ni and F (Ti) are the number of changes in trend and number of false detections

in ith run of Exp3.T respectively. As before,

F (Ti) ≤ δi

(
Ti
|I|i

+ 1

)
=

1

T
3/2
i

√
K

lnK
·
(

Ti
Kt∗i

√
Kt∗i lnK

Ti
+ 1

)
≤ 2

Ti
.

Using this bound in the above inequality

RExp3 ≤
dlog T e∑
i=0

[
KTiηi

2
+
N lnK

ηi
+

2 lnK

Tiηi

]

≤
√
K lnK ·

dlog T e∑
i

(√
Ti
2

+N
√
Ti +

2√
Ti

)
≤ C1

(√
TK lnK +N

√
TK lnK

)
.
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The inequalities follow by using parameters ηi and δi as defined in the algorithm. For

ease of representation, we capture all constants with a single constant C1. The regret

incurred due to wasted intervals is:

Rwasted ≤
dlog T e∑
i=0

Ni

(
1 +

1

1− δi

)
|Ii|

≤
dlog T e∑
i=0

2N (1 + δi)
Kt∗i
γi

≤
dlog T e∑
i=0

4NKt∗i
γi

≤
dlog T e∑
i=0

N

√
t∗iTiK

lnK
≤ C2 ·

(
N

√
TKt∗

lnK

)

Here we use the fact that t∗i = O(t∗), the detector complexity had we known T before-

hand. All the constants involved in the above inequality are captured by C2. Similarly,

the regret due to loss monitoring plays is:

Rloss monitor ≤ K

dlog T e∑
i=0

t∗i
Ti
|Ii|

≤
dlog T e∑
i=0

γiTi

≤ C3 ·
(√

KTt∗ lnK
)
,

where the constant C3 captures the constants involved. Combining the above mentioned

bounds we get the desired claim. This bound is only a constant factor worse than the

bound proved in Theorem 2.5.

It is easy to verify that the above analysis holds if δi is of the order of δ. This condition

is met when T ′ is of order at least T
1
3 . If, however, T ′ is not a good estimate of T in

the above sense, the output of the trend detection procedure in initial runs will not be

correct with sufficiently high probability and hence the aforementioned guarantees do

not hold. We account for the regret incurred in the first few runs (till Ti ≥ T
1
3 ) by

simply disregarding all of them and consider them as wasted rounds.

The principle of trend detection and restarting of a base algorithm (Exp3 in our context)

according to changes in the trend can be extended to any multi-armed bandit algorithm

for the adversarial setting. The final regret guarantee obtained naturally depends on
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the performance of the base algorithm. We notice, however, that due to the necessary

number of exploration rounds, no base algorithm can allow us to achieve regret o(
√
T ).

In particular, by choosing an appropriate base algorithm, our framework can be adjusted

to a number of different loss structures and problem settings. In the following section,

we use exactly this principle to design an algorithm to minimize regret with respect to

the m best actions.

2.5 Extension to Top-m Actions

In this section, we extend the ideas introduced above to a setting where in each round

we choose m > 1 actions out of the K available. For this variant of the problem, the

Exp3 algorithm cannot be used. Instead we use the more general approach proposed by

Audibert et al. [14]. This approach called Online Stochastic Mirror Descent (OSMD) is

based on a powerful generalization of gradient descent for sequential decision problems.

Similar to Exp3, the regret bound obtained by this technique is with respect to the best

combination of actions in hindsight and holds even for adversarial losses. We refer the

reader to [19] for a thorough treatment of the technique. In our proposed algorithm,

OSMD.T, we apply this technique as a black box and only use the final regret bound.

Lemma 2.7. The regret of the OSMD algorithm in the m-set setting with F (x) =
K∑
i=1

xi log xi −
K∑
i=1

xi and learning rate η satisfies

RT ≤
ηTK

2
+
m log K

m

η
.

Here F (x) is a Legendre function and is a parameter used within the OSMD algorithm.

The trend detection algorithm in this model uses the same idea as in Algorithm 3 except

that instead of a single action we now check if the set of m best actions have changed

with probability at least 1−δ. Even in this case, we denote by t∗ the number of samples

needed for each action to ensure that trend detection works with the above mentioned

probability. The bounds derived in Lemma 2.3 and Lemma 2.4 apply in this case too.

There are only a few differences in Algorithm 5 as compared to Algorithm 2. Firstly,

instead of using Exp3 for regret minimization we use the more sophisticated OSMD

algorithm. This algorithm gives tight regret guarantees and is polynomial-time com-

putable2. Secondly, the trend detection algorithm changes slightly as mentioned above.

2The OSMD technique can also be used when there are more generic combinatorial constraints on
the set of actions chosen each round. For these generic cases, the algorithm need not be polynomial-time
computable. However, for the uniform matroid case (under consideration here) it is in fact polynomial-
time computable.
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Finally, since we choose m actions in every round, we need a factor of m lesser number

of loss monitoring plays. Alternatively, the size of an interval I is chosen to be Kt∗

mγ .

Algorithm 5 OSMD.T

. Parameters: δ, γ and η
Set interval length |I| = Kt∗

mγ
for each interval I do

Schedule ← Make Schedule(I)
for t = 1, 2 · · · |I| do

if Schedule(t) = OSMD Play then
Call OSMD play()

else
Call LM play(Schedule(t) )

end if
end for
if trendDetection() == True then

Restart OSMD
end if

end for

Theorem 2.8. The expected regret of OSMD.T is

RT = O

Nm
√
TK ln

(
TK
m

)
∆sp

 .

Proof. The main analysis steps in this setting are exactly the same as in Theorem 2.5.

The component of regret due to the OSMD algorithm is

Rosmd ≤
ηTK

2
+ (N − 1 + F (T ))

m log K
m

η
,

where F (T ) is the number of false detections as before and given by F (T ) ≤ δ
(
T
|I| + 1

)
.

This inequality follows by Lemma 2.7 and considering the fact that the algorithm is

restarted at most N−1+F (T ) times. Following the same arguments as in Theorem 2.5,

the regret incurred on account of wasted intervals is at most:

Rwasted ≤ Nm

(
1 +

1

1− δ

)
|I|.

Unlike Theorem 2.5, each wasted round incurs a regret of m instead of 1 since we cannot

guarantee regret for any of the chosen actions. Finally, since both the number of loss

monitoring plays and the length of an interval are reduced by a factor of m, the regret

incurred on account of the loss monitoring plays is:

Rloss monitoring ≤
⌈
Kt∗

m

⌉
·
⌈
T

|I|

⌉
= O (γT ) .
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(a) K = 2, ∆sp = 0.55 (b) K = 10, ∆sp = 0.40

Figure 2.1: DSR Model

Putting these bounds together,

RT = Rosmd + Rwasted + Rloss monitoring

≤ ηTK

2
+ (N − 1 +

δγmT

Kt∗
)
m log K

m

η
+ Nm

(
1 +

1

1− δ

)
Kt∗

γm
+ γT.

By setting η = m

√
ln(K/m)
TK , δ =

√
mK
T and γ = 1

m

√
Kt∗

T we get:

RT ≤ m

√
TK ln

K

m
+ Nm

√
TK ln

K

m
+

√
mTK ln

K

m
t∗

+ 2Nm
√
TKt∗ + 2NK

√
mt∗ +

1

m

√
t∗TK.

Alternatively, RT = O

(
Nm

√
TK ln(TKm )
∆sp

)
.

2.6 Simulations

Since our proposed algorithm falls into the domain of active learning, it is not possible

to reliably use any fixed data set. Instead, to assess the performance of our algorithm

we use artificially constructed loss generation models; a standard approach for problems

of this nature.

For each of the two models introduced, we compare the performance of the Exp3.T

algorithm with Exp3.R [11], an algorithm closest in spirit to our work. To emphasize that
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(a) K = 2, ∆sp = 0.40 (b) K = 10, ∆sp = 0.30

Figure 2.2: ARG Model

we obtain switching regret guarantee, a stronger benchmark than what is conventionally

used, we also compare our algorithm with Exp3 i.e., the performance, measured in

terms of the cumulative loss, is with respect to a switching strategy that chooses the

best action in each trend. Each experiment is run independently 10 times, and the mean

of the results is shown in the figures.

Experiment 1: DSR model Within each trend, the expected loss of the best action

is set to 0.10 and for other actions it is set to 0.5. This is the setup where ∆sp = 0.4.

For the setup with ∆sp = 0.55, the expected loss of other actions is set to 0.65. For each

of the loss models, we run the experiment with K = 2 and K = 10 actions respectively.

The dynamic stochastic loss model used here is a representative of a worst case scenario

i.e., we do not assume any information about the loss structure except for the separation

parameter ∆sp (refer Fig. 2.1). The performance of Exp3.T is almost identical to Exp3.R,

an algorithm specifically designed for stochastic model. For a smaller gap, however, our

algorithm still manages to do marginally better than Exp3.R. We note here that the

parameters of the Exp3.R algorithm are set such that the assumptions required for the

algorithm hold.

Experiment 2: ARG model We design the semi-structured property of the ARG

model as follows: For ∆sp = 0.3 case, within each trend the loss of best action is a

sequence of 100 consecutive 0s followed by 100 consecutive 1s. In the same rounds,

losses of sub-optimal actions are 1 and 0.6 respectively. For ∆sp = 0.4 case, losses of

the best action are same as before but losses of sub-optimal actions are kept constant at

0.9. These loss structures are chosen as representatives of the possible instances of the

ARG model. The advantage of our algorithm is clearly highlighted in this more general

model. The worse performance of Exp3.R is expected since it assumes more structure
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than provided by the model; Exp3.T in contrast is able to exploit the little structure

available and detect changes much faster.

There exists a subtle case when the guarantees presented in this chapter do not hold.

This happens when the length of the interval is comparable to the total run time of the

algorithm i.e. O(T ). For example, if the length of each interval is T/2, then Exp3.T

does not provide any switching regret guarantee since for the first two intervals Exp3.T

behaves exactly like Exp3. Therefore in the worst case, the regret bounds presented

here are void but the bounds of Exp3 still apply.



Chapter 3

Learning with Computation Costs

In the previous chapter, we considered a bandit learning problem, where the learner

chose only one action every round. Furthermore, it was implicitly assumed that the

computation costs incurred to choose an action every round were negligible. In this

chapter, we extend the classical model of the multi-armed bandits problem to account

for these changes. We point out to the reader that unlike in the previous chapter, in

this chapter we study algorithms that are designed for the stochastic reward model.

3.1 Introduction

Consider the following motivating example: There is a wireless sensor network with

sensors spread across a geographical area. Any given sensor can communicate with

other sensors in its neighborhood on fixed pre-defined channels. The throughput of

these channels is, however, apriori unknown. Specifically, for any given channel, the

observed throughput in any given round is drawn from a fixed but unknown distribution.

Furthermore, the sensors are power constrained and incur a constant cost, in terms of

the power spent, on every unit of communication. Our goal in such a network is to find a

spanning tree in this network with maximum throughput to ensure efficient broadcasting

of data.

This is a representative of the learning problems encountered in decentralized multi-

agent systems. Another prominent one being that of multi-user channel allocations in

cognitive radio networks. In this, the goal is to learn an optimal allocation of available

channels to players so that the cumulative throughput is maximized. This problem has

been addressed under various model assumptions, see [21–25].

27
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Similar to the models studied previously, we assume that the performance of channels (or

in general actions) is stochastic in nature. This may be viewed as being stochastic noise.

The goal is to compute / learn the efficiency maximizing configuration. One may as

well abstract the problem a bit to pose it as a general combinatorial multi-armed bandit

problem. In this generalized model, the learner chooses a feasible set of actions every

round. A feasible set is determined by the problem under consideration; for example,

in our motivating example, actions correspond to the set of all spanning trees in the

network. The learner receives as feedback the reward / loss associated with (and only)

the chosen set. The CMAB problem is therefore just a generalization of the classical

multi-armed bandit problem to any combinatorial constraint on the set of actions.

In spite of the generalization mentioned above, there are several factors that differen-

tiates our motivating problem from the canonical CMAB problem and hence the same

algorithms do not work out of the box. For example, there is no concept of communi-

cation cost in the canonical problem. Similarly, since it is a decentralized system, there

is additional overhead involved in our problem to even compute a solution (an action),

and if needed, to change it. This necessitates the need for algorithms that are frugal in

updating the actions and at the same time strive to minimize the regret incurred. We

would like to point out to the reader that although our motivating example consists of

several decentralized agents, they are not strategic and simply follow a central protocol.

In this sense, this is a centralized learning problem.

Related Work

In the context of learning in decentralized systems, most prior research has focused

on problems in concurrent and reinforcement learning. These learning models assume

that agents are strategic and do not model the communication explicitly. Since several

players learn simultaneously from their interaction with one another, there is often a

strong game-theoretic component associated with it. In contrast, in this chapter we

focus on system-wide and not device-level learning. We refer the interested reader to a

nice survey on this topic [26].

The approach and the analysis are inspired broadly from the classical multi-armed

bandits algorithms, for example [27–31]. More recently, there has been increased in-

terest in combinatorial multi-armed bandit problems (CMAB). Some recent examples

include [1, 13, 32]. However, this body of work assumes that the computation required

to choose a set of actions can be performed every round without any overhead.

The problem of decentralized multi-armed bandits has been considered in some papers

previously, although for very specific problems.Avner et al. [22] study the problem of
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matching users to channels in cognitive radio networks. They design an algorithm to

learn an orthogonal mapping over a period of time that is stable and works with minimal

assumptions on communication between agents. However, their solution uses a compli-

cated signaling protocol, and the mapping constructed does not have any performance

guarantees except that it is stable. Gai et al. [21] also study a very similar problem

but relax the constraint that agents may not directly communicate. They consequently

achieve much stronger performance guarantees.

To find the middle ground between the two extremes on the assumption of communica-

tion, Kalathil et al.[23, 24] proposed a new model which allows the agents to communi-

cate for purposes of co-ordination. Such communication incurs cost and is accounted for

in overall regret calculations. Along these lines they proposed two algorithms studying

the problem of matching agents to actions in settings when the reward characteristics

of different actions differ for different agents.

Overview: In what follows, in Section 3.2, we describe the exact model under study

and some related preliminaries like the benchmark used to measure the performance of

our algorithm. In Section 3.3, we describe the main algorithm of this chapter and give

concrete regret bounds for it.

3.2 Model and Preliminaries

Following the terminology used for the CMAB problem [13], we define a learning problem

instance by the tuple B = (E ,Θ, P ), where E = {1, · · · , L} is the ground set of actions

(also elements) that the learner may choose from, Θ ⊂ 2E is the subset of feasible

combinations of actions, and P is a fixed but unknown probability distribution over a

unit cube [0, 1]L. The time is discrete and proceeds in rounds. In any given round t, the

leaner may choose a set of actions (also solution) At and observes the rewards of each

action in At. The rewards of other actions are not observed by the learner. The reward

vector of the actions at any round t, denoted by wt, is drawn i.i.d from the distribution

P . The total reward of the learner is the sum of the rewards of each action chosen, it is

denoted by

f(At,wt) =
∑
i∈A

wt(i).

We denote the expected reward of actions as w̄ = Ew∼P [w]. The model described till

now is exactly the one studied by Kveton et al [13]. In addition, associated with each

decision round, that is, the round in which the learner / algorithm recomputes the

solution, is a constant computation cost C. Furthermore, if the recomputed solution,
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Algorithm 6 CombUCB1, Kveton et al. [13]

1: Input: Feasible set Θ
2: for all t = t0, . . . , n do
3: // Compute upper confidence bounds
4: Ut(e)← ŵTt−1(e)(e) + ct−1,Tt−1(e) ∀e ∈ E
5:
6: // Solve the optimization problem
7: At ← argmaxA∈Θ f(A,Ut)
8:
9: // Observe the weights of chosen items

10: Observe {(e, wt(e)) : e ∈ At}, where wt ∼ P
11:
12: // Update statistics
13: Tt(e)← Tt−1(e) ∀e ∈ E
14: Tt(e)← Tt(e) + 1 ∀e ∈ At
15: ŵTt(e)(e)←

Tt−1(e)ŵTt−1(e)(e) + wt(e)

Tt(e)
∀e ∈ At

16: end for

differs from the previous one, then switching to the new solution also incurs a constant

switching cost S.

The goal of the learner is to maximize the expected cumulative reward over T rounds.

Let A∗ denote the expected optimal solution with respect to the distribution P i.e.

A∗ = argmaxA∈Θ f(A, w̄). The performance of the algorithm used by the learner is

measured against a strategy that chooses A∗ in every round. In other words, if π(i)

denotes the solution chosen by the learner in round i ∈ [1, T ], then the performance is

measured in terms of the expected cumulative regret, defined as:

R(T ) = E

[
T∑
t=1

f(A∗,wπ(t))− f(At,wπ(t)) − C · 1{Aπ(t) 6= Aπ(t−1)} − S · χ(t)

]
,

where χ(t) is an indicator variable that is 1 for rounds when the algorithm computes a

solution and zero otherwise.

CombUCB1 Algorithm

Since our algorithm is inspired from the algorithm, CombUCB1, by Kveton et al. we

briefly introduce it here. This algorithm, see Algorithm 6, designed for stochastic com-

binatorial semi-bandits problem, was itself motivated by the classical stochastic multi-

armed bandit algorithm, UCB [29]. It proceeds by computing an upper confidence bound

on the expected weight for each item e as in line 4 of Algorithm 6. ŵs(e) is the average

of s observed weights of item e, Tt(e) denotes the number of times item e was chosen in
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t rounds and ct,s is the confidence radius around the computes average and is given as:

ct,s =

√
1.5 log t

s
.

By a basic application of Hoeffding’s inequality it can be shown that the true ex-

pected weight of an item is within this confidence radius with high probability. Next,

CombUCB1 calls the optimization oracle to solve the combinatorial problem with UCBs

as weights (line 7) and observes the weight of all chosen items. It is important to note

here that the algorithm does not incur any additional cost to solve the combinatorial

problem (whereas in our algorithm we account for it). Since the weights of other items

remain unknown, this feedback is said to be semi-bandit.

3.3 The CombUCB4 Algorithm

The approach in this chapter is inspired from two existing algorithms in the stochastic

reward model. The first, given by Kveton et al [13], ensures a logarithmic regret guaran-

tee for the vanilla version of the problem, i.e., without switching or computation costs.

Their algorithm is based on upper confidence bounds on action rewards to compute

a feasible solution in each round. The second algorithm by Kalathil et al [23] uses a

similar approach to give an O(log2 T ) regret bound in the case when the learner chooses

a single action but also incurs computation cost. The CombUCB4 algorithm presented

here draws upon these techniques and ensures a O(log2 T ) regret bound for the CMAB

problem with switching costs. In what follows, we use the term action and element

interchangeably.

We denote the upper confidence bound of element e at time t as:

Ut(e) = ŵTt−1(e)(e) + ct−1,Tt−1(e),

where ŵs(e) denotes the empirical mean of s observed weights, drawn i.i.d from an

unknown distribution, of element e, Tt−1(e) denotes the number of times element e was

observed in t− 1 rounds and ct,s is the confidence interval around the expected reward,

w̄e, of element e, and is computed as:

ct,s =

√
2.5 log t

s
.

We denote by A∗ the optimal solution, i.e., A∗ = argmax
A∈Θ

∑
e∈A

w̄(e). The gap of a solution

A is ∆A = f(A∗, w̄) − f(A, w̄), where f(S,w) denotes the reward of solution S under
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endstart mini-epoch

epoch

Computation rounds

αj+1 αj+2 αj+3αj

Figure 3.1: Epoch structure

weight w. Let ∆e,min be the minimum gap of any sub-optimal solution containing

element e ∈ Ñ , i.e.,

∆e,min = min
A∈Θ:e∈A

∆A,

where Ñ = N \ A∗. The rounds when a solution is computed are denoted by the

sequence of random variables {αj}χ(T )
j=1 , where χ(T ) is a random variable denoting the

total number of computations. The actual values of these random variables depend

on the particular run of the stochastic process. We refer to the run of the algorithm

between two successive computations as a mini-epoch and the time interval during which

the algorithm chooses the same solution in consecutive rounds as an epoch. Naturally,

an epoch contains one or more mini-epochs, see Figure 3.1.

Algorithm 7 CombUCB4

1: Initialization: Choose each action in E at least once. Update Ut(e) for e ∈ [1, L].
2: η ← 1
3: while t ≤ T do
4: if η = 2p for some p = 0, 1 · · · then
5: // Update UCBs
6: Ut(e) = ŵTt−1(e)(e) + ct−1,Tt−1(e)

7:

8: // Compute new solution
9: At ← argmax

A∈Θ
f(A,Ut)

10: if At 6= At−1 then
11: Reset η ← 1
12: end if
13: else
14: At ← At−1

15: end if
16: η ← η + 1
17:

18: // Update statistics
19: Tt(e)← Tt−1(e) // ∀e ∈ At
20: Tt(e)← Tt−1(e) + 1 // ∀e ∈ At

21: ŵTt(e)(e)←
ŵTt−1(e)

(e)Tt−1(e)+wt(e)

Tt(e)
// ∀e ∈ At

22: end while
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Theorem 3.1. The regret of algorithm CombUCB4 is bounded as follows:

R(T ) ≤ 96K
4
3 log T

∑
e∈Ñ

(
2

∆e,min
+

(1 + log T )(C + 2S)

∆2
e,min

) + (C+ 2S)
π2N

3
+ 1.

Proof. Let ξt = {∃e ∈ N : |w̄(e) − ŵTt−1(e)(e)| ≥ ct−1,Tt−1(e)} be the event that the

empirical estimate of element e is outside the confidence interval around w̄(e) for some

item e at round t. Let ξ̄t be the complement of ξt, i.e. for all elements e the empirical

estimate is within the confidence interval of the actual mean. For ease of exposition

we shall refer to ξ as a bad event and ξ̄ as good event. In each computation step, the

algorithm incurs a constant cost, C, and for each epoch change a loss of at most S.

Based on this notation, the regret incurred by CombUCB4 can be expressed as:

R(T ) ≤
T∑
t=1

1{∆Aπ(t) ≥ 0, ξ̄t}RAπ(t) +

χ(T )∑
j=1

1{ξαj}Rαj+1−αj

+

χ(T )∑
j=1

(
C + S1{Aπ(αj+1) 6= Aπ(αj)}

)
,

(3.1)

where Rαj+1−αj is the regret incurred in the jth mini-epoch, Ai is the solution selected

in epoch i, and RAi denotes the regret incurred in epoch i.

Part 1. Regret due to bad events: Because the length, position, and number of epochs

are determined by a stochastic process it is cumbersome to directly bound the regret using

expression in Equation 3.1. Hence, we take an indirect approach. Instead of bounding

the number of bad events as we do below, let’s focus on directly bounding the regret

incurred due to the bad events. Note that the expected regret incurred due to bad events

is upper bounded by the following:

χ(T )∑
j=1

1{ξαj }Rαj+1−αj =

T∑
m=1

∞∑
k=0

2k · Pr
(

bad event occurs at round m+ 2k
)

=
T∑

m=1

∞∑
k=0

2k · Pr
(
|w̄(e)− ŵT

m+2k
(e)(e)| ≥ cm+2k,T

m+2k
(e)

)
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IendIstart

Ht

Epoch I: Play AI

Ht

αj+1 αj+2 αj+3αj

Figure 3.2: Regret conditioned on good events

Taking union bound on all possible values of Tm+2k(e), the above expression can be upper

bounded as:

Rbad(T ) ≤
T∑

m=1

∞∑
k=0

2k
m+2k∑
s=1

Pr
(
|w̄(e)− ŵs(e)| ≥ cm+2k,s

)
≤

T∑
m=1

∞∑
k=0

2k
m+2k∑
s=1

1

(m+ 2k)5

≤
T∑

m=1

∞∑
k=0

2k

(m+ 2k)4
≤ 1.

Part 2. Regret conditioned on good events: For ease of exposition, we define a

mapping π that maps any round to the corresponding epoch based on the actual sequence

of actions chosen, i.e., for all rounds t in epoch I, π(t) = I. Based on this, we define

an event as follows:

Ht =

Aπ(t) = argmax
A

f(A,Ut), ∆Aπ(t) ≤ 2
∑

e∈Ãπ(t)

cT,Tt−1(e),∆Aπ(t) > 0

 , (3.2)

where Ãπ(t) = A∗ \Aπ(t). This event will be used in the sequel.

Consider any epoch I, where a sub-optimal solution AI is chosen. Let the start and

end round of epoch I be denoted by Istart and Iend, respectively. Since the system chose
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solution AI over A∗ at round Istart, this implies:

f(A∗, Ut) ≤ f(AI , Ut)∑
e∈A∗\AI

Ut(e) ≤
∑

e∈AI\A∗
Ut(e)

∑
e∈A∗\AI

w̄(e) ≤
∑

e∈AI\A∗
w̄(e) + 2

∑
e∈AI\A∗

ct−1,Tt−1(e)

∆AI ≤ 2
∑

e∈AI\A∗
ct−1,Tt−1(e)

∆AI ≤ 2
∑

e∈AI\A∗
cT,Tt−1(e).

(3.3)

This implies that at time t = Istart, event Ht must have taken place. Consider the epoch

as shown in Figure 3.2 for illustration. If the system chose solution AI from rounds αj

to αj+3, then by definition of the confidence bound it must be the case that for all time

t ∈ [Istart, αj+3], Ut(AI) ≥ Ut(A
∗). Alternatively, for this time interval the event Ht

must hold. Since the solution changed after the execution at Iend, it must be the case

that the event Ht stopped being true for some t ∈ [αj+3, Iend]. We denote the length of

the interval for which the event Ht was true by zI . We shall refer to the rounds left in

epoch I after zI as wasted rounds of epoch I. To proceed with the analysis, we rely on

a Lemma from [13] used to bound the regret of the CombUCB1 algorithm.

Lemma 3.2 (Kveton et al.[13]). Let

Ft =

∆At ≤ 2
∑
e∈Ãt

cT,Tt−1(e), ∆At > 0


be an event as defined above where At denotes the action chosen by the CombUCB1

algorithm in round t. Then,

T∑
t=1

∆At1{Ft} ≤
∑
e∈Ñ

96K4/3

∆e,min
log T.

Note that conditioned on good events, the events Ft and Ht are identical. It is implicit

in the CombUCB1 algorithm that whenever the event Ft occurs, the chosen solution

At is optimal with respect to the upper confidence bounds. In the case of dCombUCB4

however, even when conditioned on good events, the chosen solution Aπ(t) at round t

might not be optimal with respect to confidence bounds at time t. We shall denote such
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an event by Ht i.e.

Ht =

{
Aπ(t) 6= argmax

A
f(A,Ut), ξ̄t

}
.

Using these definitions we can bound the regret incurred by dCombUCB4 conditioned on

good events as follows:

T∑
t=1

∆Aπ(t) · 1{ξ̄t,∆Aπ(t)
>0}

≤
T∑
t=1

∆Aπ(t) · 1{ξ̄t,Ht} +

T∑
t=1

∆Aπ(t) · 1{ξ̄t,Ht}

(a)

≤ 2

T∑
t=1

∆Aπ(t) · 1{ξ̄t,Ht}

(b)

≤ 2
T∑
t=1

∆Aπ(t) · 1{Ft}

(c)

≤
∑
e∈Ñ

192K4/3

∆e,min
log T.

(3.4)

The inequality (a) is evident from the fact that the number of rounds event Ht occurs is

upper bounded by the number of rounds event Ht occurs. (b) is based on the observation

that event {ξ̄t,Ht} is equivalent to event Ft as defined in Lemma 3.2. (c) follows directly

from Lemma 3.2.

Part 3. Regret due to computation and switching cost: First assume that all

computations occur conditioned on good events. We can express χ(T ) = χ1(T ) + χ2(T )

where χ1(T ) and χ2(T ) denote the number of computations that resulted in a sub-optimal

and an optimal solution being chosen respectively. Note that χ1(T ) can be upper bounded

by the number of times the algorithm chose a sub-optimal solution, i.e.

χ1(T ) ≤
T∑
t=1

Aπ(t) 6=A∗

1{Ht}

≤
∑
e∈Ñ

96K4/3

∆2
e,min

log T,

(3.5)

where the second inequality is due to Theorem 3, [13] derived as part of analysis of

CombUCB1. To bound χ2(T ), note that the number of computations that result in a

transition from a sub-optimal to optimal solution is upper bounded by χ1(T ). Further-

more, for every such transition, there can be at most O(log T ) computations without
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switching to a sub-optimal solution. Therefore, χ2(T ) is bounded as:

χ2(T ) ≤ χ1(T ) log T.

This bound is conditioned on good events. The number of computations on account of

bad events can simply be bounded by the number of these bad events and can be bounded

as: ∑
e∈N

n∑
t=1

t∑
s=1

P [|w̄(e)− ŵs(e)| ≥ ct,s] ≤
π2

3
N.

Finally, the number of switches can be bounded by 2χ1(T ). Putting this all together, the

regret due to computation and switching cost is bounded by:

(C + 2S) ·

∑
e∈Ñ

96K4/3

∆2
e,min

log T (1 + log T ) +
π2N

3

 .

3.4 Open Problem

In this chapter, we focused on the combinatorial multi-armed bandit problem with semi-

bandit feedback. Since the rewards of the actions are stochastic, it allows the use of well

understood techniques like the variants of UCB that we have used here. The problem

however, is much more challenging for the case of adversarial rewards. For the classical

problem, i.e. where the learner chooses only one action in a round, [33] give an algorithm

with a switching regret guarantee of Θ(T 2/3). This was supplemented by the lower bound

by [34] who showed that no algorithm can guarantee a switching regret bound better

than T 2/3. In this sense, the algorithm in [33] is optimal. The techniques for the vanilla

version, however, do not extend to the CMAB problem studied here. While there exist

algorithms [35] that guarantee regret bound of O(T 1/2) with semi-bandit feedback, they

have not yet been extended to the switching costs model.





Part II

Pricing in Markets with

Gross-Substitutes Utilities
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Chapter 4

Motivation and Preliminaries

4.1 Dynamic Pricing in the Presence of Competition

In the subsequent chapters, and especially in Chapters 5 and 6, we investigate several

pricing strategies in some prominent market models. A characterizing aspect of our study

is the incorporation of the competitive nature of the market agents. In this section, we

motivate our study in a general sense by sketching some of the past approaches taken

and why they are inadequate in competitive environments.

The Internet has revolutionized the way goods are bought and sold. This has created

a range of new possibilities to price the goods strategically and dynamically. This is

especially true for online retail and apparel stores where the cost and effort to update

prices has become negligible. This flexibility in pricing has propelled the research in

dynamic pricing in the last decade or so, informally defined as the study of determining

optimal selling prices in an unknown environment to optimize an objective, usually

revenue. Coupled with the presence of digitally available and frequently updated sales

data one may also view this as an (online) learning problem.

The inherent hurdles in dynamic pricing arise on account of lack of information. In the

context of a single good, this could be the underlying demand function that maps a given

price to the observed demand. Indeed, this problem has been studied in several models

in the literature and strong results are now known for it. However, the problem becomes

all the more challenging in a realistic setting where multiple sellers independently choose

prices for their goods, and the demand observed by any single seller is a function of all

the prices. For example, some fixed seller might observe completely different demands

for the same price she uses for her items depending on the prices chosen by other sellers.

Such a seller might falsely conclude of being in a dynamic environment even when the

underlying demand function is static.

41
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Several existing approaches for dynamic pricing assume a parametric form for the under-

lying demand function and choose a sequence of prices to learn the individual parameters

by statistical estimation. This approach is commonly referred to as “learn-and-earn” in

the literature [36, 37]. It would, however, be unrealistic in the presence of multiple sellers

since that would imply learning highly nonlinear and possibly unstructured functions in

high dimensions.

For this problem, we propose two different approaches depending on the market model

under consideration. These approaches rely on some existing results in the domain of

markets and equilibrium theory. We briefly introduce them in Section 4.2. In Chapter

7, in addition to these concepts, we also use sequential learning algorithms and the

corresponding analysis for online convex optimization. These are reviewed in Section 4.3.

4.2 Markets and Equilibrium

A sizeable body of literature in economics has focused on the question of how a large

number of seemingly unconnected decisions taken by strategic agents, namely the buyers

and sellers in any large market, leads to a balancing of supply and demand and thereby

facilitates an efficient allocation of goods in the market. Perhaps as one might expect,

all of the classical works point to the same underlying reasoning: It is the pricing system

in the market that inherently guides it towards efficiency. To better explain the concept

of efficiency, let us first define a market. Specifically, since the subsequent chapters focus

on Fisher markets, we shall restrict our discussion only to this class of markets.

Fisher Market: A Fisher market can be defined as a congregation of two types of

agents, namely the buyers and the sellers. Let there be m buyers and n sellers. For ease

of exposition assume each of the n sellers bring exactly one good to the market, where

seller i brings wi units of her good. This good is assumed to be infinitely divisible. The

buyers on the other hand bring money to the market. The budget of buyer j is denoted

by bj . Furthermore, associated with each buyer is a utility function that quantifies the

value the buyer derives from a given bundle of goods. We note here that the seller

has no utility associated with the goods she brings. Similarly, the buyers derive utility

only from the bundle of items they get and therefore, spends their entire budget. Let p

denote the vector of prices chosen by the sellers. In response, every buyer j internally

solves an optimization problem to compute the bundle of goods that would maximize

her utility given the prices and subject to her budget constraint. This forms the demand

xj(p) of buyer j. We denote by xij(p) the demand of buyer j for item i. It is implicit

in the definition of this market that the budget and the demand of a buyer for any good
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is always non-negative. The supply of good i is wi, and we set w = (wi)i=1,...,n. Let

z = (zi)i=1,...,n be the vector of excess demand, i.e., demand minus supply: zi = xi−wj .

Note: For a given price vector p, we refer to the demand of buyer j by xj(p), whereas

the cumulative demand observed by a seller i is denoted by xi(p).

A pair (x∗,p∗) is a competitive or market equilibrium if (1) each vector x∗j is a demand

of buyer j at prices p∗, (2) for each good i with p∗i > 0, demand is equal to suppy

(i.e., p∗i · zi = 0), and (3) for each good i with p∗i = 0, demand is at most supply (i.e.,

zi ≤ 0). An equilibrium price vector p∗ is also called a vector of market clearing prices.

In general, such a price may not exist but for the utility functions we use in subsequent

chapters, existence is guaranteed.

While the existence of a competitive equilibrium for such markets has been qualita-

tively proven in economics, the question of whether they can be computed efficiently

remained until recently largely unaddressed. More recently, computation of competitive

equilibrium has become a central area in algorithmic game theory, in which a variety

of interesting algorithmic techniques have been applied successfully [38, 39]. Indeed, in

a market where equilibrium price is known to exist, if one cannot compute the equilib-

rium even using computers, it is likely that such equilibria will fail to arise in reality

too. While many computational techniques to compute competitive equilibria are in-

herently centralized, most large-scale markets lack a central authority that determines

and dictates prices and allocation. Instead, prices of goods are updated in a distributed

fashion. Towards this end, Walras [40] proposed a natural price adaptation process,

called tatonnement, and has been studied as a continuous-time process in economics

since the late 1950s.

The basic idea underlying the tatonnement process is as follows: if the demand ob-

served for a good is more than the supply, i.e., if the good is over-demanded, increase

the price of the good. In most natural settings, one would expect a decrease in the

demand. On the other hand, if a good is under-demanded, decrease the price of the

good to achieve the opposite effect. For general Arrow-Debreu exchange markets, price

updates of this form converge to an equilibrium in markets with gross substitutes prop-

erty [41], but might not converge in markets beyond this class [42]. In recent years,

discrete-time tatonnement has been analyzed in a series of works in computer science.

These results show fast convergence of this process in Fisher markets with utilities with

constant elasticity of substitution (CES), even when the utilities imply that buyers have

complementary preferences.
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4.2.1 Gross Substitutes

Gross Substitutes markets are a prominent class of markets where positive results, like

uniqueness and stability of competitive equilibrium, has been proven. Since this property

is fundamental to the algorithms and analysis introduced in the subsequent chapters,

we introduce it here. Two goods are said to be gross substitutes if an increase in the

price of one good increases the demand for the other. Informally, a buyer can replace

one good by another if its price increases so as to maximize the utility gains. Formally,

it is defined as follows:

Definition 4.1. A demand function x(p) is said to satisfy the gross-substitutes property

if, whenever p and p′ are such that p′k > pk and p′l = pl for all l 6= k, then xl(p
′) > xl(p)

for all l 6= k.

4.2.2 CES Utilities

As mentioned in the previous section, strong positive results are known about the efficacy

of the tatonnement update process to converge to equilibrium when the buyer utilities

satisfy the CES property. Since we also extensively use this property in the Chapters 5

and 7, we introduce the property here for all subsequent references.

The utility uj of buyer j is said to satisfy the constant elasticity of substitution (CES)

property, when for any demand bundle xj it is of the form,

uj(xj) =

 m∑
j=1

aij · (xij)ρ
1/ρ

, (4.1)

where 1 ≥ ρ > −∞ and all aij ≥ 0. Utility functions with 1 > ρ > 0 satisfy the

gross-substitutes property and are our primary focus in Chapter 6. According to this

property, if the price of any good i increases, then the demand for any other good j

also increases. This property enables us to show several positive results. For ρ < 1 and

ρ 6= 0, buyer j’s demand for good i is

x̂ij = bi ·
(aij)

1−c(pj)
c−1∑n

k=1(aik)1−c(pk)c
, where c =

ρ

ρ− 1
.

Elasticity of demand: In the course of the analysis in subsequent chapters, we often

need to use the definition of elasticity of demand (also, own price elasticity of demand).

This is a market parameter that measures the responsiveness of the demand of an item

for a given change in its price. Formally, it is the percentage change in demand for a
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unit percentage change in the price. For price vector p the elasticity of demand is given

by:

Ei(p) =
∂xi(p)/xi(p)

∂pi/pi
.

Similarly, we can also define the cross-price elasticity of demand which captures the

sensitivity of demand of a good to changes in the price of another good. The cross-price

elasticity of good i with respect to good j is:

Eij(p) =
∂xi(p)/xi(p)

∂pj/pj
.

4.2.3 IGS Utilities

In Chapter 6, we assume a class of buyer utilities which do not have a closed form

expression as in the case CES utilities but nevertheless satisfy the gross substitutes

property. We define it here for subsequent references.

Definition 4.2 (Iso-elastic and Gross Substitutes (IGS) utility). We say that a

utility function is IGS when it satisfies the following conditions:

a) The utility function satisfies the gross substitutes property and the resulting demand

functions are continuous.

b) Increasing the price of any good i decreases the total spending on the item i.e. pixi(p).

c) The price elasticity of good i for any price vector p satisfies:∣∣∣∣∂ lnxi(p)

∂ ln pj

∣∣∣∣ = E ∀j ∈ [1, n]

where E > 1 is a constant.

This model may be viewed as an approximate form of the CES utilities (with the pa-

rameter ρ ∈ (0, 1) ) since they satisfy parts (a) and (b) in Definition 4.2. Note that for

CES utilities, instead of a fixed constant as price elasticity, this parameter depended on

the prices of all goods i.e.
∣∣∣∂ lnxi(p)
∂ ln pj

∣∣∣ = Ei(p).

4.3 Primer on Online Convex Optimization

In the following chapters, we use concepts and techniques pertaining to online convex

optimization for our analysis. In this section, we give a brief primer on the basic model
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studied, a benchmark to compare the performance of different learning algorithms, and

one of the most well-studied class of algorithms.

Model: The problem consists of a learner and an adversary. The adversary chooses a

sequence of convex functions f1, f2, . . . , fT . For our purposes, we assume the adversary

is oblivious, i.e., the adversary chooses this sequence before the start of the algorithm.

It therefore cannot be changed depending on the choices made by the algorithm. In any

given round t, the learner chooses a distinct point wt from a fixed convex set S before

observing the loss function picked by the adversary for that round. Depending on this

choice, the learner incurs a cost given by ft(w
t) and receives as feedback the function

ft. The goal of the learner is to choose a sequence of points w1,w2, . . . ,wT such that∑
t
ft(w

t) is minimized.

A systematic way to measure the performance of an algorithm in online learning prob-

lems is to analyze its regret. This benchmark measures the total cost incurred by the

learner with respect to any single fixed action in hindsight. Formally, the regret with

respect to any fixed action w∗ is defined as:

Regret(w∗) =
T∑
t=1

ft(w
t) −

T∑
t=1

ft(w
∗).

Follow-the-Regularized-Leader (FTRL): FTRL is one of the standard algorithms

studied for online learning problems in various models. It’s appeal stems from the intu-

itive interpretation of the algorithm, which is to choose a point that simply minimizes

the cost over all past rounds and an additional regularization term. This term stabi-

lizes the dynamic by preventing big fluctuations in the actions taken. Formally, for a

regularization function R : S → R we can define the FTRL algorithm as follows:

∀t : wt = argmin
w∈S

t−1∑
i=1

fi(w) + R(w).

For the special case, when R(w) = ‖w‖2
2η the FTRL algorithm corresponds to the online

gradient descent algorithm (also called greedy projection algorithm) by Zinkevich [3].

The learning algorithm can then also be described as follows:

1. Start with an initial point w1 ∈ F . Let {ηt} be a sequence of learning rates.

2. In each round t, do:

wt+1 ←
∏
S

(
xt − ηt · ∇ft(wt)

)
.
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Here ∇ft denotes the gradient of the function at the chosen point and
∏
S projects the

resulting update back into the set S. Below, we state the regret bound of this algorithm

and its analysis for completeness.

Theorem 4.3. If ηt = t−1/2, the regret of the greedy projection algorithm is:

R(T ) ≤ ‖S‖2
√
T

2
+

(√
T − 1

2

)
‖∇f‖2 ,

where ‖S‖ is the diameter i.e. max
x,y∈S

d(x,y) and ‖∇f‖ = sup
w∈S
‖∇ft(w)‖.

Proof. We first note that the learner observes the value of the loss incurred, i.e., ft(w
t)

as well as the gradient of the loss function. Let ∇ft(wt) = gt. Since the loss function is

convex, it follows that

ft(w
t)− ft(w∗) ≤ gt · (wt −w∗).

Summing over all rounds t, we have:

R(T ) ≤
∑
t

ft(w
t)− ft(w∗) ≤

∑
t

gt · (wt −w∗). (4.2)

Let yt denote the unprojected update at round t, i.e., wt =
∏

(yt). By the update rule

of the algorithm,

yt+1 = wt − ηt · gt

yt+1 −w∗ = wt −w∗ − ηt · gt

(yt+1 −w∗)2 = (wt −w∗)2 − 2ηt g
t · (wt −w∗)︸ ︷︷ ︸

target expression

+ η2
t ·
∥∥gt∥∥2

.

Since for all y ∈ Rn and w ∈ F , (y−w)2 ≥ (
∏

(y)−w)2 and
∥∥gt∥∥ ≤ ‖∇f‖ it follows

that:
(wt+1 −w∗)2 ≤ (wt −w∗)2 − 2ηtg

t · (wt −w∗) + η2
t · ‖∇f‖2

gt · (wt −w∗) ≤ 1

2ηt

(
(wt −w∗)2 − (wt+1 −w∗)2

)
+
ηt
2
· ‖∇f‖2 .

(4.3)
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Using Inequalities 4.2 and 4.3 together,

R(T )

≤
∑
t

1

2ηt

(
(wt −w∗)2 − (wt+1 −w∗)2

)
+
‖∇f‖2

2

∑
t

ηt

≤ (w1 −w∗)2

2η1
− (wT+1 −w∗)2

2ηT
+

1

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
(wt −w∗)2 +

‖∇f‖2
2

∑
t

ηt

≤
(

1

2η1
+

1

2

T∑
t=2

(
1

ηt
− 1

ηt−1

))
‖F‖2 +

‖∇f‖2
2

∑
t

ηt

≤ ‖S‖2
2ηT

+
‖∇f‖2

2

∑
t

ηt.



Chapter 5

Pricing via Tatonnement

5.1 Introduction

As described in Chapter 4, competitive equilibrium is the central solution concept when

studying trading in large-scale market models. Moreover, it is also known that price

update strategies based on the concept of tatonnement converge to equilibrium for a

large class of markets. In this chapter, we investigate the question of whether such price

update strategies are also individually rational for the sellers and the impact of these

strategies on the sellers’ revenue.

Tatonnement has been shown to realistically capture the behavior in laboratory experi-

ments [43–45]. Furthermore, in recent years, discrete-time price update processes based

on this concept are getting increasingly more attention. This is particularly the case

for Fisher Markets with CES utilities, see for example [46, 47]. In these works, the

authors have used several different price update methods and proved that the dynamics

converge to equilibrium under their assumed market model. Although interesting in its

own right, these updates have a strategic problem in the sense that it remains unclear

why self-interested sellers should follow these protocols. Motivated by this issue, we

study pricing from a revenue maximization perspective in repeated Fisher markets.

Specifically, we focus on the price update strategy used in Cole et al [46] as our taton-

nement update. We show that for a static gross-substitutes market, apart from con-

verging to equilibrium these dynamics have the additional property that if adopted by

all sellers, the resulting sequence of prices yields a total revenue for each seller that

is almost optimal in hindsight. In particular, each seller suffers only a constant total

regret, i.e., a constant loss against the optimal total revenue achievable in hindsight via

an individual best response in each of the T rounds. This result may be viewed in the

49
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context of a recent line of work that studies novel performance guarantees for regret-

minimizing players in repeated games [48–50]. The authors in these papers show that

if each player chooses a regret minimizing algorithm belonging to a certain class, then

this strategy results in a significantly improved external regret bound for each player.

The results in this chapter are similar but differ in two important ways. First, instead

of general no-regret learning we study the special but prominent adaptation process of

tatonnement. Second, for such a process we provide very strong constant bounds in

terms of the regret incurred with respect to the best responses in every round. This

is a much stronger notion than the standard definition of regret, which is the loss with

respect to that of a fixed action over all rounds. We also provide a brief conceptual

argument as to why this adaptation process is a good approach – it is guaranteed to

converge to a revenue-maximizing price for each seller individually when the prices of

all other sellers stay fixed.

In addition to static markets, we also analyze the revenue guarantees of our tatonnement

update in Fisher markets with dynamic supplies. This is especially interesting since for

such markets the adaptation process itself is dynamic, since it depends on the supply

observed in the current round. In the course of the analysis, we give a clear charac-

terization of how the loss in revenue incurred by any seller depends on the variation in

supplies and prove bounds which degrade smoothly with the total variation in supplies

observed. When the total variation in supplies is large, for example when the supplies

are chosen by an adversary, these bounds can be much worse than the one obtained by a

fixed adaptation process, i.e. one using a fixed supply parameter. We show that a slight

adaptation of the standard process using a supply estimator can address this problem

by stabilizing the process and thereby leading to improved bounds on the cumulative

loss of any seller.

Related Work

Our work studies discrete-time tatonnement price updates in Fisher markets with CES

substitutes utilities. Such dynamics have received significant interest in algorithmic game

theory over the last decade. In addition to guarantees on the convergence time [51], a

focus has been the study of warehouses to store excess demands [52–54]. Moreover,

discrete-time tatonnement has been shown to converge quickly to market equilibrium,

even in Fisher markets without gross-substitutes property [55, 56]. However, these works

focus squarely on the question of convergence to equilibrium and warehouse considera-

tions, without regards to the incentives of sellers and the question of revenue efficiency

of the price updates.
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One of the distinctive features is our focus on revenue optimization in a market model

explicitly incorporating competition. There has been prior work, for example [57, 58],

focusing on dynamic pricing in models considering competition, but none of this liter-

ature studies a generalized market setting. Most approaches consider discrete choice

models of demand, where a single consumer approaches and buys a discrete bundle of

goods. The sellers in this model are also assumed to have a fixed inventory level which

are not replenished. For a thorough survey of the existing literature, we refer the reader

to [59].

In terms of incentive properties in Fisher markets, there has been some very recent work

on forms of best-response dynamics with lookahead and changing beliefs [60]. These

dynamics are grounded in modeling seller incentives and can be shown to converge to

equilibrium. In contrast, we study the simple form of tatonnement and show that the

resulting dynamics manage to provide near-optimal revenue.

Overview: This chapter investigates an established price adaptation strategy in Fisher

markets with buyers that have CES utilities with gross-substitutes property. We start

with markets with fixed supplies in Section 5.2. After presenting preliminaries in Sec-

tion 5.2.1, the first main result is presented in Section 5.2.2: After T rounds of price

updates, each seller has a total regret for his revenue that is at most a constant (The-

orem 5.6). The constant term depends on a number of market parameters that stay

invariant over time, such as the utility parameters and budgets of the agents and the

initial prices. Moreover, based on these initial conditions a suitable fixed price space P
is defined for the analysis. This price space is a function of the initial price, the utility

functions and the parameters used in the price update, which are all invariant over time.

The technique used relies on establishing a bound on the revenue loss in a single round

and connecting it to a potential function Ψ associated with the market. This potential

function was proposed by [55] and may be interpreted as a measure of distance of the

current price vector from the equilibrium. Specifically, it is shown that the revenue

loss in a single round t for seller i can be tied using a time-invariant factor to its

excess demand |zti |, which in turn is shown to be related to Ψ via a β-smoothness

property. By establishing these properties and using the fact that the price update rule

guarantees a linear convergence rate in Ψ [55], we establish that the total accumulated

revenue loss over all T rounds is bounded by a geometric series with constant parameters.

Section 5.2.3 discusses how these price updates also justify the incentive considerations

of a strategic seller by interpreting it as an update that myopically optimizes the revenue

of the seller.

The above mentioned technique is extended to markets with dynamic supplies in Sec-

tion 5.3 where there is a time-dependent supply wtj for each good j and each round t.
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The loss in revenue in such markets is bounded using the same price adaption process

as before. Section 5.3.2 focuses on a slightly modified price adaptation process that uses

a supply estimator to choose the price in consecutive rounds. This supply estimator ŵtj

is computed using the follow-the-regularized-leader strategy. For this modified process

we obtain a bound that relates the revenue loss to an “regret” in supply, i.e., the total

absolute norm difference of the supplies to the best single estimator of supply in hind-

sight (Theorem 5.12). Intuitively, this approach works well when the supply changes are

adversarial.

5.2 Repeated Markets with Fixed Supplies

5.2.1 Preliminaries

We consider a market M consisting of a set G of n sellers and a set B of m buyers.

Associated with each buyer j ∈ B is a fixed budget bj and a utility function uj (described

below). We denote the cumulative buyer budget by B =
∑

j bj . Each seller i offers a

single, infinitely divisible good and strives to maximize revenue. We assume that the

market operates in a synchronous, round-based fashion. The supply wi of seller i is fixed

throughout. The supplies of all sellers are succinctly represented by the vector w.

In each round t, every seller i sets a fixed price pti on her good, which yields a price vector

pt. Depending on these prices, the buyers demand a utility-maximizing bundle, which

yields an aggregate demand xi(p
t) observed by seller i. After observing the demand,

the seller meets this demand subject to availability. If a good is under-demanded (i.e.,

xi(p
t) < wi), then the portion wi − xi(p

t) remains unsold. We assume goods are

perishable, and unsold supply is discarded after each round.

For a given price vector p, the demand results from buyers choosing a bundle of goods

that maximizes their utility and is affordable. Let yj = (yji)
n
i=1 denote an arbitrary

bundle of goods for buyer j. The demand of buyer j is yj(p) = argmax{uj(yj) |∑
i piyji ≤ bj}, and the total demand for good i is xi(p) =

∑m
j=1 yji(p). In this chapter,

we assume that the utility of each buyer satisfies the gross substitutes CES property i.e,

0 < ρ < 1. This property is discussed in detail in Chapter 4.

Log-Revenue Objective. Given this setup, for any feasible price vector p, the revenue

of seller i is ri(p) = pi · min {xi(p), wi} where xi(p) and wi are the demand observed

and the supply of seller i. If the buyer utilities are as in (4.1), then the revenue func-

tion as mentioned above is not concave and as such is not amenable to optimization.

Interestingly however, the revenue objective in log scale, also called the log-revenue,
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r̃i(p)

p̃ip̃ : xi(p) = wi

Figure 5.1: Revenue in log scale

r̃i(p) = p̃i+min {x̃i(p), w̃i} is concave (see Fig. 5.1). Furthermore, the revenue optimiz-

ing price of a seller is also the price for which her excess demand is zero. This implies

that for a market in equilibrium, each seller obtains the maximum revenue possible given

the prices of other goods. We make these ideas more formal in the following claim.

Claim 5.1. Assuming the buyer utilities satisfy the CES property with 0 < ρ < 1, then

if the prices of all other goods are fixed to pt-i:

(a) The log-revenue, r̃i(pi, p
t
-i), of seller i is concave in p̃i.

(b) There exists a unique price p∗i that maximizes the revenue of seller i.

(c) This maximum revenue is achieved when excess demand is zero.

Proof. We prove the concavity by a simple second derivative test. Taking the derivative

of log-revenue with respect to p̃i, we have:
∂r̃i(pi,p

t
−i)

∂p̃i
= 1 when for the chosen price,

xi(p) > wi and
∂r̃i(pi, p

t
−i)

∂p̃i
= 1 +

∂x̃i(p)

∂p̃i
= 1− Ei(p)

where Ei(p) denotes the own-price elasticity of demand for good i. By definition,−Ei(p) =
∂xi/xi
∂pi/pi

and can be expressed in terms of spending si, i.e., the fraction of the total money

spent on item i is −Ei(pi) = −E + (E − 1)si (see [61] for more details). Here E is the

elasticity of substitution of the market.
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∂2r̃i(p
t)

∂p̃2
i

=
∂

∂p̃i
(1− E + (E − 1)si)

= (E − 1)
∂si
∂p̃i

= pi(E − 1)
∂pixi
∂pi

= pi(E − 1)

(
xi + pi ·

∂xi
∂pi

)
= pi(E − 1)

(
xi − pi · Ei(p) ·

xi
pi

)
= (E − 1) · si (1− Ei(p)) < 0

The last inequality follows since Ei(p) > 1 for any price vector p. By the gross-

substitutes property, keeping prices of all other items fixed, the demand for item i

decreases monotonically with increase in pi, i.e., there exists a unique price p∗i which

simultaneously ensures zero excess demand and maximum revenue.

Competitive Equilibrium and Convex Potential Function. For the Fisher mar-

kets we consider in this chapter, there exists a convex potential function which can be

interpreted as a measure of distance from the equilibrium configuration that guaran-

tees market clearing. For such a market M with price and supply vectors p and w

respectively, the potential function is defined as follows:

ΨM (w,p) = ΦM (w,p)− ΦM (w,p∗)

where ΦM (w,p) = w · p −
m∑
j=1

bj · ln
(

n∑
k=1

(ajk)
1−c(pk)

c

)1/c

,
(5.1)

and c = ρ
ρ−1 .

We denote by p∗ an equilibrium price vector, i.e., a price vector at which the demand

for each good is exactly equal to its supply. It was shown in [55] that Ψ is convex for all

prices and minimized at p∗. Hence, ΨM (w,p) can be interpreted as a distance measure.

Henceforth, when clear from the context, we drop the subscript M.

A notable property of this potential function is that its gradient with respect to a

price vector is exactly the negative excess demand vector observed for that price, i.e.,

∇iΨ (w,p) = −zi(p). We rely on this property in the next section to prove bounds on

revenue loss.
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If each seller in a market updates the price of her good according to the following

tatonnement update rule

pt+1
i ← pti exp

(
γ
(
xi(p

t)− wi
))

for all i ∈ G. (5.2)

where γ is a suitable fixed parameter, then Ψ is guaranteed to decrease by a constant

factor. Over a period of rounds, the potential converges linearly to the minimum. We

state the result in a simplified form.

Theorem 5.2 (Theorem 43, [55]). For all gross-substitute CES markets, for the sequence

of prices pt defined by the update step (5.2)

Ψ
(
w,pt+1

)
≤ (1− δ) ·Ψ

(
w,pt

)
,

where p∗ is the equilibrium price vector and δ depends on the initial price vector p0 and

market parameters.

5.2.2 A Constant Bound on Total Revenue Loss

Depending on the initial price vector p0, we define a set P of prices such that for a

market with static supply, the prices pt chosen by the sellers and their corresponding

best response prices p∗,t at any round t ≥ 1 are in P. Since the price updates are

deterministic functions, it is clear that there always exists such a set P. In the following,

we use this fact to show a smoothness property on the potential function.

Proposition 5.3. There is a constant βP,M depending on the price set P and the market

M such that the potential function ΨM is βP,M-smooth convex for all p ∈ P.

We defer the proof of this proposition to Section 5.4.1. We now connect the loss in

revenue of any seller i at round t to the excess demand vector observed. Let p+
i be the

maximum price that seller i will set for her good in the course of the price updates.

Moreover, we define

Si(P) = max
p∈P

∑
j

∑
k 6=i

a1−c
jk

(
ptk
)c

∑
k

a1−c
jk

(
ptk
)c .

Note that p+
i and Si can be bounded by a fixed constant parametrized by the initial

price vector p0.

Lemma 5.4. Consider the price vector pt and the excess demand vector zt in round

t. Then the loss in revenue of any seller i with respect to their best-response prices is

bounded by
∥∥zt∥∥

1
· CP,M, where CP,M =

(
wi(p

+
i )2

m−Si(P) + p+
i

)
is a constant depending on

the space P of prices and the market M.
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We defer the proof of this lemma to Section 5.4.1. As the final step, we use a known

result connecting the gradient of a β-smooth convex function f to the optimum value of

the function. We state the following proposition with a proof for completeness.

Proposition 5.5. For any β-smooth convex function f : Rd → R, the gradient at any

point x is bounded by

‖∇f(x)‖21 ≤ 2dβ (f(x)− f∗) .

Proof. By β-smoothness we know that:

f(y) ≤ f(x) +∇f(x) · (y − x) +
β

2
‖y − x‖22 .

If y = x− 1
β∇f(x) then:

f

(
x− 1

β
∇f(x)

)
≤ f(x)− ∇f(x) · ∇f(x)

β
+
β

2
· ‖∇f(x)‖22

β2

= f(x)− ‖∇f(x)‖22
2β

.

Since f is a convex function, it follows that:

‖∇f(x)‖22
2β

≤ f(x)− f∗.

The proposition now follows by using the fact that ‖·‖1 ≤
√
d ‖·‖2.

We are now ready to prove a bound on the cumulative revenue loss.

Theorem 5.6. If each seller in the market uses price update rule (5.2), then the cumu-

lative loss of any seller i over any number of rounds is bounded by

LT ≤
2CP,M

√
2nβP,M ·Ψ (w,p0)

δ
.

Proof. The revenue loss of any seller i in round t can be bounded using Lemma 5.4 by

`t ≤ CP,M ·
∥∥zt∥∥

1

(a)

≤ CP,M

√
2nβP,M ·Ψ (w,pt)

(b)

≤ CP,M

√
2nβP,M ·Ψ (w,p0) · (1− δ)t/2 ,
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where p0 is the initial price. Inequality (a) follows from Proposition 5.5, inequality (b)

from Theorem 5.2. Summing the loss over all rounds:

LT ≤
∑
t

`t ≤ CP,M

√
2nβP,M ·Ψ (w,p0) ·

∞∑
t=1

(1− δ)t/2

≤ 2CP,M
√

2nβP,M ·Ψ (w,p0)

δ
.

5.2.3 Tatonnement and Myopic Revenue Optimization

In the previous section, we showed that a standard price adaptation process, which

was previously proven to converge to equilibrium, also guarantees near-optimal revenue.

Note, however, that this update strategy does not offer any justification for the incentive

considerations of the strategic sellers from their localized perspective. Interestingly, as we

show next, tatonnement can also be interpreted as an update that myopically optimizes

the revenue of the sellers.

Observe that from the localized view of a seller, the log-revenue function (Fig. 5.1) is

concave. Optimizing revenue with respect to this local view amounts to optimizing

the log-revenue objective. Also, since the objective is concave, iterative optimization

methods, such as gradient ascent are ideal candidates. However, a sequence of price

updates that maximizes the log-revenue objective in this localized view would be myopic

since the prices of all goods change every round leading to correspondingly different local

views.

Nevertheless, direct optimization of this objective is not possible using gradient-based

methods since the gradient information itself might not be available. If a seller, however,

uses her excess demand zi(p) = xi(p)−wi as a proxy for the gradient, then the resulting

price update step is exactly the price adaptation strategy used in the previous section:

p̃t+1
i ← p̃ti + γ

(
xi
(
pt
)
− wi

)
⇒ pt+1

i ← pti exp
(
γ
(
xi
(
pt
)
− wi

))
.

It is possible to show that this price update rule converges linearly to a revenue-

maximizing price, provided other prices do not change. We defer the proof of the

following lemma to Section 5.4.2.

Lemma 5.7. Assuming p−i is fixed, the price update rule (5.2) of seller i converges

linearly to p∗i , where p∗i = argmax
pi∈P

r̃i(pi, p−i).
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In this sense, tatonnement may be interpreted as a gradient-ascent-style update from the

perspective of any fixed seller, which myopically optimizes her revenue. In other words,

such a price adaptation process aligns itself naturally to the strategic considerations of

the individual sellers.

5.3 Repeated Markets with Dynamic Supplies

5.3.1 Preliminaries

In this section, we turn our attention to markets with dynamic supplies. A market M
with dynamic supplies consists of the same set of buyers and sellers over T consecutive

rounds. The supplies of goods may change between rounds. In particular, we assume

that the supplies w1,w2 · · ·wT for the T rounds are chosen by an oblivious adversary.

As before, the subscriptM captures the dependence on buyer utilities and budgets and

is dropped when clear from context. In the rest of the section, we assume any norm to

be a `1-norm, unless otherwise specified.

The tatonnement price updates react to excess demands and thereby attempt to stabilize

the market. In this fashion, the price updates also can be seem as a predictor about

the supply and demand conditions in the next round. Here we define a set P of prices

parametrized by the initial price vector p0 and supplies {wt}Tt=1, such that the price

vector pt, chosen by the sellers and their corresponding best-response prices p∗,t at any

round t ≥ 1 are in P. Let P = max
p∈P
‖p‖∞ denote the maximum price that can be

observed across all sellers. Recall that B =
∑

j bj is total money in the market. Using

Corollary 5.19 (proof in Section 5.4.3), we can obtain a bound on the potential function

in round t

Ψ
(
wt,pt

)
≤ (1− δ)t−1 Ψ

(
w1,p1

)
+ (P +B)

t−1∑
i=0

(1− δ)i
∥∥wt−i −wt−i−1

∥∥ ,
where δ is a constant depending on the market parameters and the price space P.

Summing over all rounds,

∑
t

Ψ
(
wt,pt

)
≤ Ψ

(
w1,p1

) T∑
t=1

(1− δ)t−1 + (P +B)

T∑
t=1

t−1∑
i=0

(1− δ)i
∥∥wt−i −wt−i−1

∥∥
≤ 1

δ

(
(1− δ)Ψ

(
w1,p1

)
+ (P +B)

T∑
i=1

∥∥wi −wi−1
∥∥ ) .

Using the connection between potential function and revenue outlined in the previous

section, this directly implies bounds on the cumulative revenue loss of any seller i.
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Proposition 5.8. If each seller in a market with dynamic supplies uses the tatonnement

update rule (5.2), then the cumulative loss in revenue of any seller is bounded by

LT ≤
√
T ·

√√√√2nC2
P,M · βP,M ·

1

δ
·
(

T∑
t=1

(1− δ)Ψ(w1,p1) + (P +B)
t∑
t=1

‖wi −wi−1‖
)

.

Proof. By Proposition 5.5, the squared loss of any seller i at round t is bounded by

`2t ≤ 2nC2
P,M · βP,M ·Ψ

(
wt,pt

)
.

Summing this over all rounds and using the Cauchy-Schwarz inequality:

T∑
t=1

`t ≤
√

2nC2
P,M · βP,M ·

T∑
t=1

√
Ψ (wt,pt)

≤

√√√√2nC2
P,M · βP,M ·

T

δ
·
(

T∑
t=1

(1− δ)Ψ(w1,p1) + (P +B)

t∑
t=1

‖wi −wi−1‖
)
.

Note that we lose the factor of
√
T when simplifying the bound with Cauchy-Schwarz,

which is not necessary if supplies are identical.

5.3.2 Tatonnement with Supply Estimation

The tatonnement rule relies only on the supplies in the current round to predict the

price in the subsequent round. Instead, in markets where supplies are dynamic, and

potentially adversarial, it can be profitable for sellers to rely on a learning algorithm

to generate a supply estimator. Towards this end, we study tatonnement-style price

update (as in Section 5.2) coupled with a supply-predicting learning algorithm. We

show that such a price dynamic stabilizes the market, in terms of the prices offered by

the sellers, and ensures that the average potential of the market stays bounded. Again,

via the relation of revenue loss and potential function, we provide concrete bounds on

the revenue loss for such markets.

The sellers use the same price adaptation approach except that the supply parameter

used in the update step is now chosen from a learning algorithm. More precisely, the

update step is:

pt+1
j = ptj · exp

(
γ
(
xj(p

t)− ŵtj
))
, (5.3)
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where ŵtj is obtained from a follow-the-regularized-leader strategy as below:

ŵtj = argmin
w∈W

t−1∑
i=1

∣∣wtj − w∣∣+
w2

2ηt
. (5.4)

As before, we define a set P of prices parametrized by an initial price vector p0 and sup-

plies {wt}Tt=1 such that the price vector pt chosen by the sellers and their corresponding

best response prices p∗,t at any round t ≥ 1 are in P. Moreover, P = max
p∈P
‖p‖∞ is the

maximum price that can be observed across all sellers.

Theorem 5.9. Let w1,w2 · · ·wT denote the supplies chosen by an oblivious adversary.

If each seller in the market predicts her supply using update (5.4) and uses it in the price

update (5.3), then

T∑
t=1

Ψ
(
wt,pt

)
≤

T∑
t=1

(1− δ)t−1 Ψ
(
w1,p1

)
+ (P +B)

T∑
t=1

∥∥wt −w∗
∥∥ + O

(√
T
)
,

where δ is a constant depending on the market parameters and the price space P.

Proof. Recall the definition of Ψ(w,p) = Φ(w,p) − Φ∗(w,p). For any vector ŵt, we

can express Φ at round t as follows:

Φ
(
wt,pt

)
= wt · pt −

m∑
j=1

bj · ln
(

n∑
k=1

(ajk)
1−c(pk)

c

)1/c

= Φ
(
ŵt,pt

)
+ pt ·

(
wt − ŵt

)
.

A direct calculation (see Lemma 5.18 in Section 5.4.3) shows that

Ψ
(
ŵt,pt

)
≤ (1− δ)

[
Φ
(
ŵt−1,pt−1

)
− Φ∗

(
ŵt−1

)]
+ (P +B)

∥∥ŵt − ŵt−1
∥∥ . (5.5)

Using this above,

Ψ
(
wt,pt

)
≤ (1− δ) Ψ

(
ŵt−1,pt−1

)
+ (P +B)

∥∥ŵt − ŵt−1
∥∥+ pt ·

(
wt − ŵt

)
+ Φ∗(ŵt)− Φ∗(wt)

(a)

≤ (1− δ) Ψ
(
ŵt−1,pt−1

)
+ (P +B)

(∥∥ŵt − ŵt−1
∥∥+

∥∥wt − ŵt
∥∥)

(b)

≤ (1− δ)t−1 Ψ
(
ŵ1,p1

)
+ (P +B)

(
t−1∑
i=0

(1− δ)i
∥∥ŵt−i − ŵt−i−1

∥∥
1

+
∥∥wt − ŵt

∥∥
1

)
.

The inequality (a) uses the fact that w · p ≤ ‖p‖∞ ‖w‖1 and Lemma 5.22. Inequality

(b) follows by applying (5.5) recursively. Hence, the potential at round t is bounded as
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a function of all supplies seen until round t− 1. Summing the potential over all rounds:

T∑
t=1

Ψ
(
wt,pt

)
≤

T∑
t=1

(1− δ)t−1 Ψ
(
ŵ1,p1

)

+ (P +B)

T∑
t=1

(∥∥wt − ŵt
∥∥

1
+

t−1∑
i=0

(1− δ)i
∥∥ŵt−i − ŵt−i−1

∥∥
1

)

≤
T∑
t=1

(1− δ)t−1 Ψ
(
ŵ1,p1

)
+ (P +B)

T∑
t=1

∥∥wt −w∗
∥∥ + C

√
T ,

where w∗ is any fixed vector, and C =
(
F 2+W 2

2 + W
√
n

δ

)
, with F = max

t

∥∥wt −w∗
∥∥

2

and W = max
t

∥∥wt
∥∥

2
. The second inequality is from Corollary 5.20 in Section 5.4.4.

The theorem shows that the average potential of the market (alternatively, the distance

to an underlying “average equilibrium” state) is governed by the `1 distance of the supply

vectors from a single optimal supply vector in hindsight, which the sellers could have

chosen as part of their price updates.

Remark 5.10. In update 5.4, instead of w2

2ηt
one could also use a different regularizer as

long as it is strongly convex and satisfies the following property:

T∑
t=1

(∥∥wt − ŵt
∥∥+

t−1∑
i=0

(1− δ)i
∥∥ŵt−i − ŵt−i−1

∥∥) ≤ ∑
t

∥∥wt −w∗
∥∥ + O

(√
T
)
.

This is the core property that ensures that the analysis goes through.

Remark 5.11. Recall that our price update is pt+1
j ← ptj ·exp (γzj), where γ is a constant.

In Cheung et al. [55] use a time-dependent step size

γtj =

[
5 ·max

{
1,

1− cmin
2

}
·max

{
1, xtj

}
.

]−1

.

However, their analysis holds also for a constant step size provided that it is small

enough.

Given Theorem 5.9, we can now bound the cumulative loss in the revenue of any seller

i as above. The proof is a straightforward adaptation of the one for Proposition 5.8.

Theorem 5.12. If each seller in a market with dynamic supplies uses price update 5.3,

then the cumulative loss in revenue of any seller is bounded by

LT ≤
√
T ·

√√√√2nC2
P,M · βP,M ·

(
ψ (w1,p1)

δ
+ (P +B)

T∑
t=1

‖wt −w∗‖ + O
(√

T
))

.
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Remark 5.13. If
T∑
t=1

∥∥wt −w∗
∥∥ = O(Tα) for α ∈ [1/2, 1), then one can observe that the

cumulative loss incurred by any seller increases only sub-linearly in T . In particular,

it follows that
∑T

t=1 `t ≤ O
(
T (1+α)/2

)
, i.e., this bound improves smoothly with the

benignity of the supply sequence observed.

5.4 Omitted Proofs

5.4.1 A Constant Bound on Total Revenue Loss

Lemma 5.4. Consider the price vector pt and the excess demand vector zt in round

t. Then the loss in revenue of any seller i with respect to their best-response prices is

bounded by
∥∥zt∥∥

1
· CP,M, where CP,M =

(
wi(p

+
i )2

m−Si(P) + p+
i

)
is a constant depending on

the space P of prices and the market M.

Proof. Let the price vector at round t be pt, and let p∗,ti denote the price that maximizes

the revenue of seller i keeping the other prices pi− fixed. Hence, xi

(
p∗,ti , p−i

)
= wi. The

revenue loss of seller i at round t, `ti, is given by

`ti = p∗,ti · wi − pti ·min{wi, xti(p)}

≤ p∗,ti · wi − pti
(
wi −

∣∣zti ∣∣)
≤ wi(p

∗,t
i − pti) + p+

i

∣∣zti ∣∣ .
(5.6)

Note here that
∣∣zti ∣∣ ≤ ∥∥zt∥∥

1
and therefore we need to bound only p∗,ti − pti. Suppose

p∗,ti ≤ pti, then the revenue loss can simply be upper bounded by p+
1 ·
∥∥zt∥∥

1
. Hence, for

the remainder of the proof we assume p∗,ti > pti

Note that p∗,ti > pti is equivalent to xi(p
t) > wi, which is equivalent to zti > 0. Therefore,

zti = xi
(
pti, p

t
−i
)
− xi

(
p∗,ti , p

t
−i

)
.

Using the definition of CES functions, we can explicitly express the demands by

zti =
∑
j

 a1−c
ji

(
pti
)c−1∑

k 6=i
a1−c
jk

(
ptk
)c

+ a1−c
ji (pti)

c −
a1−c
ji

(
p∗,ti

)c−1

∑
k 6=i

a1−c
jk

(
ptk
)c

+ a1−c
ji

(
p∗,ti

)c


=
∑
j

 (
pti
)c−1

Kt
j + (pti)

c −

(
p∗,ti

)c−1

Kt
j +

(
p∗,ti

)c

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where Kt
j =

∑
k 6=i

a1−cjk (ptk)
c

a1−cji

. By letting d = −c:

zti =
∑
j

 (
pti
)−d−1

Kt
j + (pti)

−d −

(
p∗,ti

)−d−1

Kt
j +

(
p∗,ti

)−d


=
∑
j

 1

pti
· 1

1 +Kt
j (pti)

d
− 1

p∗,ti
· 1

1 +Kt
j

(
p∗,ti

)d


=
∑
j

 1

pti

(
1−

Kt
j

(
pti
)d

1 +Kt
j (pti)

d

)
− 1

p∗,ti

1−
Kt
j

(
p∗,ti

)d
1 +Kt

j

(
p∗,ti

)d



=
∑
j

( 1

pti
− 1

p∗,ti

)
+ Kt

j


(
p∗,ti

)d
·
(
p∗,ti

)−1

1 +Kt
j

(
p∗,ti

)d −
(
pti
)d · (pti)−1

1 +Kt
j (pti)

d




=
1

pti · p
∗,t
i

∑
j

(p∗,ti − pti) + Kt
j


(
p∗,ti

)d
· pti

1 +Kt
j

(
p∗,ti

)d −
(
pti
)d · p∗,ti

1 +Kt
j (pti)

d




=
1

pti · p
∗,t
i

∑
j

(p∗,ti − pti) + Kt
j

 pti

(pti)
−d

+Kt
j

− p∗,ti(
p∗,ti

)−d
+Kt

j




≥ 1

pti · p
∗,t
i

∑
j

(p∗,ti − pti) + Kt
j

 pti(
p∗,ti

)−d
+Kt

j

− p∗,ti(
p∗,ti

)−d
+Kt

j




This implies

zti ≥
p∗,ti − pti
pti · p

∗,t
i

∑
j

1 −
Kt
j(

p∗,ti

)−d
+Kt

j

 ≥ p∗,ti − pti
pti · p

∗,t
i

(m− Si(P)) .

Rearranging this yields

p∗,ti − pti ≤
zti · (p+

i )2

m− Si(P)
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and substituting this back in (5.6) proves the lemma.

Proposition 5.14. There is a constant βP,M depending on the price set P and the

market M such that the potential function ΨM is βP,M-smooth convex for all p ∈ P.

Proof. Note that the Jacobian Jz of ∇Ψ = −z(p) can be expressed as:

−∂x1(p)
∂p1

−∂x2(p)
∂p1

. . . −∂xn(p)
∂p1

−∂x1(p)
∂p2

...
. . . −∂xn(p)

∂p2

...

−∂x1(p)
∂pn

. . . −∂xn(p)
∂pn


=



−E11
x1(p)
p1

−E21
x2(p)
p1

. . . −En1
xn(p)
p1

−E12
x1(p)
p2

...
. . . −En2

xn(p)
p2

...

−E1n
x1(p)
pn

. . . −Enn xn(p)
pn


where Eij denotes the elasticity of the demand of good i with respect to price of good

j. We note that for CES substitutes utilities, the elasticity of demand of any good with

respect to its own price is negative whereas with respect to prices of other goods is

positive. More precisely, Eii = −E + (E − 1)si and Eij = (E − 1)sj , where E is the

elasticity of substitution and si denotes the fraction of total money in the market spent

on good i.

One can easily verify that the matrix is symmetric. We note that the diagonal terms are

all positive. Since the potential function Ψ is known to be convex, Jz is positive semi-

definite. Next we show that Jz is, in fact, positive definite and Ψ is strongly convex. To

do so, we use the following result (see, e.g., [62, Chapter 7.6]).

Lemma 5.15 (Sylvester’s criterion). A matrix is positive definite if all upper left k× k
determinants of a symmetric matrix are positive.
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Now consider the determinant for the general case.

det(A) =
x1x2 · · ·xn
p1p2 · · · pn︸ ︷︷ ︸

X

·

∣∣∣∣∣∣∣∣∣∣∣∣∣

−E11 −E21 . . . −En1

−E12 −E22 −E32 . . . −En2

...
...

...
...

−E1n −E2n . . . −En−1,n −Enn

∣∣∣∣∣∣∣∣∣∣∣∣∣

= X ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

E − (E − 1)s1 −(E − 1)s1 −(E − 1)s1 . . . −(E − 1)s1

−(E − 1)s2 E − (E − 1)s2 −(E − 1)s2 . . . −(E − 1)s2

...
...

...
...

−(E − 1)sn −(E − 1)sn . . . E − (E − 1)sn

∣∣∣∣∣∣∣∣∣∣∣∣∣

= X(E − 1)n
n∏
i=1

si

∣∣∣∣∣∣∣∣∣∣∣∣∣

E
(E−1)s1

− 1 −1 −1 . . . −1

−1 E
(E−1)s2

− 1 −1 . . . −1

...
...

...
...

−1 −1 . . . −1 E
(E−1)sn

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= X(E − 1)n
n∏
i=1

si

∣∣∣∣∣∣∣∣∣∣∣∣∣

E
(E−1)s1

0 0 . . . −1

− E
(E−1)s2

E
(E−1)s2

0 . . . −1

...
...

...
...

0 0 . . . − E
(E−1)sn

E
(E−1)sn

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

We now execute transformations C1 ← C1−C2, C2 ← C2−C3, · · · , Cn−1 ← Cn−1−Cn
and take out factors E/(E − 1) from the resulting columns. This yields
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det(A) = XEn(E − 1)
n∏
i=1

si

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/s1 0 0 0 . . . −1

−1/s2 1/s2 0 0 . . . −1

0 −1/s3 1/s3 0 . . . −1

...
...

...
...

0 0 . . . −1/sn
E

(E−1)sn
− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

This determinant can be shown to be always greater than zero by inductively computing

i× i lower right sub-determinants. As a base case, note that

A2×2 =

∣∣∣∣∣∣
1/sn−1 −1

−1/sn
E

(E−1)sn
− 1

∣∣∣∣∣∣ =
E

(E − 1)snsn−1
− 1

sn−1
− 1

sn
> 0.

For all i > 2, one can show that:

Ai×i =
1

sn−i
·A(i−1)×(i−1) −

1

snsn−1 · · · sn−i+1

=
1

snsn−1 · · · sn−i

 E

E − 1
−

n∑
j=n−i

sj

 ,

and hence An×n is always positive. Interestingly, with the same set of determinant

transformations, one can show that all upper left k×k sub determinants are also strictly

greater than zero. By Lemma 5.15, we can therefore claim that Jz is positive definite.

Since Ψ is strongly, and also strictly, convex and since Ψ is differentiable everywhere in

P, there must exist a constant βP,M > 0 such that Ψ is βP,M smooth.

5.4.2 Tatonnement and Myopic Revenue Optimization

Lemma 5.7. Assuming p−i is fixed, the price update rule (5.2) of seller i converges

linearly to p∗i , where p∗i = argmax
pi∈P

r̃i(pi, p−i).

Proof. Let φi(p̃) = xi(p, p−i) − wi for some unknown but fixed p−i. The tatonnement

update step (5.2) can then be written as: p̃t+1
i ← p̃ti + γφi(p̃

t
i) or more succinctly as
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p̃t+1
i ← F

(
p̃ti
)

where F is the operator defined as

F : R→ R : p̃ 7→ p̃+ γφi(p̃). (5.7)

The following properties of the function φi, used in the subsequent claim, can be easily

verified:

1. φi is differentiable over the range of prices P.

2. p̃i < p̃′i ⇒ φi(p̃i) > φi(p̃
′
i), i.e. φi is a strictly decreasing function in p̃i.

3. φi(p̃
∗
i ) = 0, where p∗i = argmax

pi∈P
ri(pi, p−i).

Using these properties, we characterize the operator F as follows:

Claim 5.16. The operator F defined in (5.7) satisfies the following properties:

a) φi(p̃i) = 0 if and only if p̃i is a fixed point of operator F .

b) For any two prices p1 and p2,
∣∣F(p̃1)−F(p̃2)

∣∣ ≤ ρ
∣∣p̃1 − p̃2

∣∣ for ρ ∈ [0, 1), i.e. F is

a contraction mapping.

Proof. Let p̃i be a price such that φi(p̃i) = 0. From the update rule it follows directly

that F(p̃i) = p̃i and hence a fixed point. Conversely, if p̃i is a fixed point of operator F ,

then x = x+ γφi(p̃i) implying φi(p̃i) = 0 since γ 6= 0. For the second part,

∣∣F(p̃1)−F(p̃2)
∣∣ =

∣∣p̃1 + γφi(p̃
1) − p̃2 − γφi(p̃2)

∣∣
=
∣∣(p̃1 − p̃2) + γ

(
φi(p̃

1)− φi(p̃2)
)∣∣

(a)
=
∣∣(p̃1 − p̃2) + η∇φi(p̃z)(p̃1 − p̃2)

∣∣
=
∣∣(p̃1 − p̃2) (1 + γ∇φi(p̃z))

∣∣
(b)

≤ ρ
∣∣p̃1 − p̃2

∣∣ for ρ ∈ [0, 1).

The equality (a) follows from the mean value theorem for scalar functions [63] and

inequality (b) follows from the fact that φi is differentiable over the entire domain and

is strictly decreasing.

The lemma now follows directly from the Banach fixed-point theorem (See Chapter

3, [63] for more details), which states that if an operator F : X → X is a contraction
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mapping in a metric space, i.e., |F(x)−F(y)| ≤ ρ |(x− y)| for ρ ∈ [0, 1), then F admits

a unique fixed point and the iterate xt satisfies:

∥∥xt − x∗
∥∥ ≤ ρt

∥∥x0 − x∗
∥∥ .

Remark 5.17. Excess demand is not the only possible proxy for the gradient that may

be used by sellers. In principle, the sellers may use any proxy as long as the resulting φi

function satisfies the same properties as in the lemma above. For example, the sellers

may use ln
(
xi(p)
wi

)
resulting in the price update step pt+1

i ← pti (xi (p) /wi)
γ . Indeed,

this is very closely related1 to the update rule studied by [53] to prove fast convergence

of CES substitutes markets to equilibrium, albeit using a different potential function.

5.4.3 Bounding Potential with Dynamic Supplies

In this section, we present bounds on the convex potential function (5.1) of the market

when each seller updates the prices of her goods using standard tatonnement. It is

implicitly assumed here that the set of sellers, buyers and their budgets and utilities

stay the same throughout. Let Qj(p) = ln
(∑n

k=1(ajk)
1−c(pk)

c
)1/c

.

Lemma 5.18. Let wt+1,wt and pt+1,pt denote the supplies observed and the corre-

sponding prices chosen according to the tatonnement rule (5.2) in consecutive rounds.

Then

Ψ
(
wt+1,pt+1

)
≤ (1− δ) Ψ(wt,pt)− Φ∗

(
wt
)

+ (P +B)
∥∥wt+1 −wt

∥∥ .

1The actual price update studied by [53] is pt+1
i ← pti

(
1 + λmin

(
1, xi−wi

wi

))
.
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Proof.

Ψ(wt+1,pt+1)

= Φ(wt+1,pt+1)− Φ∗(wt+1)

≤

wt · pt+1 +
∑
j

bjQj(p
t+1)− Φ∗(wt)

+ pt+1 ·
∣∣wt+1 −wt

∣∣+ Φ∗(wt)− Φ∗(wt+1)

=
(
Φ(wt,pt+1)− Φ∗(wt)

)
+ pt+1 ·

(
wt+1 −wt

)
+ Φ∗(wt)− Φ∗(wt+1)

≤ (1− δ)
[
Φ(wt,pt)− Φ∗(wt)

]
+
∥∥pt+1

∥∥
∞
∥∥wt+1 −wt

∥∥
1

+ Φ∗(wt)− Φ∗(wt+1)

≤ (1− δ) Ψ(wt,pt) + P
∥∥wt+1 −wt

∥∥
1

+ Φ∗(wt)− Φ∗(wt+1)

By Lemma 5.22, we have already shown that Φ∗(wt) − Φ∗(wt+1) ≤ B
∥∥wt+1 −wt

∥∥
1
.

The lemma follows from this.

By a straightforward application of this lemma, one can also bound the potential at any

round T .

Corollary 5.19. Let {wi}Ti=1 and {pi}Ti=1 denote the sequence of supplies observed and

the corresponding prices chosen according to the tatonnement rule (5.2) in consecutive

rounds. Then:

Ψ
(
wT ,pT

)
≤ (1− δ)T−1 Ψ

(
w1,p1

)
+ (P +B)

T−1∑
i=0

(1− δ)i
∥∥wT−i −wT−i−1

∥∥ .
5.4.4 Regret-Style Bounds for Tatonnement with Supply Estimation

Recall that w∗ is any fixed vector and C =
(
F 2+W 2

2 + W
√
n

δ

)
, with F = max

t

∥∥wt −w∗
∥∥

2

and W = max
t

∥∥wt
∥∥

2
.

Corollary 5.20. If all sellers use a fixed step size η = 1/
√
T for their supply predic-

tion(5.4), then

T∑
t=1

∥∥wt − ŵt
∥∥ +

t−1∑
i=0

(1− δ)i
∥∥ŵt−i − ŵt−i−1

∥∥ ≤ T∑
t=1

∥∥wt −w∗
∥∥ + C

√
T .

This is a direct consequence of the following lemma that gives a bound for decreasing

step size.
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Lemma 5.21. If the supply parameter in the tatonnement update is chosen as in Equa-

tion 5.4, then

T∑
t=1

(∥∥wt − ŵt
∥∥ +

t−1∑
i=0

(1− δ)i
∥∥ŵt−i − ŵt−i−1

∥∥)

≤
∑
t

∥∥wt −w∗
∥∥ +

F 2

2ηT
+
W 2

2

∑
t

ηt + W ·
T∑
t=1

t∑
i=0

(1− δ)i ηt,

where F = max
t

∥∥wt −w∗
∥∥

2
and W = max

t

∥∥wt
∥∥

2
.

Proof. Let f t(w) =
∥∥wt −w

∥∥ be the loss function. Since the sellers use Equation 5.4

to choose ŵt, this corresponds to online gradient descent being used on the sequence of

functions {f t}t2. Our goal, however, is to bound the following modified regret:

RT =
T∑
t=1

(
f t(ŵt) +

t−1∑
i=0

(1− δ)i
∥∥ŵt−i − ŵt−i−1

∥∥)− f t(w∗), (5.8)

which accounts for the cost of all previous switches with geometrically decreasing weights,

in addition to the standard regret. From the analysis of online gradient descent [3],

∑
t

f t(ŵt)− f t(w∗) ≤ F 2

2ηT
+

W 2

2

∑
t

ηt, (5.9)

where W = max
t

∥∥∇f t(ŵt)
∥∥

2
= max

t

∥∥wt
∥∥

2
and F = max

t

∥∥wt −w∗
∥∥

2
. One can directly

use the online gradient descent update to bound
∥∥ŵk − ŵk−1

∥∥
1

for any round k, i.e.

ŵk+1 = ŵk − ηk · ∇fk(ŵk)∥∥∥ŵk+1 − ŵk
∥∥∥

1
= ηk

∥∥∥∇fk(ŵk)
∥∥∥

1

= ηk

∥∥∥wk
∥∥∥

1
≤ √n · ηk

∥∥∥wk
∥∥∥

2
≤ √nW · ηk.

Therefore,

T∑
t=1

t−1∑
i=0

(1− δ)i
∥∥ŵt−i − ŵt−i−1

∥∥
1
≤ √n

T∑
t=1

t∑
i=0

(1− δ)i ηi
∥∥wi

∥∥
2
.

2This is because the FTRL algorithm on a convex function with w2

2η
as regularizer is known to be

equivalent to online gradient descent. See [64] for more details.
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Using this and (5.9) in our modified regret (5.8)

RT ≤
F 2

2ηT
+

W 2

2

∑
t

ηt +
√
nW

T∑
t=1

t∑
i=0

(1− δ)i ηi.

Lemma 5.22. For any supply vectors w1,w2 ∈ W,

ϕ∗(w1)− ϕ∗(w2) ≤ B ‖w1 −w2‖1 .

Proof. Let p∗1 and p∗2 denote the equilibrium price vectors for supplies w1 and w2,

respectively.

ϕ∗(w2) = w2p
∗
2 − f(p∗2)

≥ w1p
∗
2 − f(p∗2) − p∗2 · (w2 −w1)

≥ ϕ∗(w1) − ‖p∗2‖∞ ‖w2 −w1‖1 (by definition of ϕ∗(w1))

≥ ϕ∗(w1) − B ‖w2 −w1‖1 ,

where f(p) = b ln
[(∑n

k=1(ak)
1−c(pk)

c
)1/c]

. The last inequality holds since each equi-

librium price is bounded above by B, the total amount of money in the market.





Chapter 6

Pricing via Regret Learning

6.1 Introduction

In the previous chapter we described how the well-studied price update procedure based

on tatonnement not only leads the market to equilibrium but also optimizes the revenue

of every seller with respect to the optimal price in hindsight. Since the behaviour of

tatonnement is well understood in Fisher markets with substitutes CES utilities, we were

able to use its properties together with convexity of the associated potential function

to bound the loss in revenue of any seller. On second thoughts, one may argue that

the assumption that every seller in the market follows the protocol prescribed by the

tatonnement update exactly is too strong. In this chapter, we follow exactly this line of

argument and explore alternative price update dynamics that can deliver similar results.

As in the previous chapter, we view the market as a set of strategic agents (the sellers)

choosing successive actions (prices) in order to maximize their utility (revenue) and

focus on using the existing rich tool-kit of agnostic learning in game-theoretic models

to prove fast convergence to optimal prices. The advantages of an agnostic learning

approach are multifold: Firstly, it does not rely on the precise parametric form of the

underlying demand function, and secondly it can be easily extended to the case when

the market parameters may change across rounds. The downside, however, being that

in the best case of static markets with clean parametric representation, the algorithms

might converge to optimal prices only asymptotically [65, 66]. Consequently, to measure

the performance of the actions (prices) chosen by such a learning algorithm we typically

compare it to a certain benchmark sequence of actions and the regret bound represents

the loss incurred by the algorithm for not having chosen the benchmark sequence instead.

This is the same benchmark as used in the previous chapter.

73
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We base our dynamic pricing approach on the work by Syrgkanis et al [2], where the

authors prove that in a game with multiple agents if each agent uses a regret-minimizing

algorithm with a suitable step-size parameter and satisfying a certain technical property,

then the individual regret of each agent is bounded by O(T 1/4) where T is the total

number of rounds. Although the main result is proved in the discrete action setting,

the authors show that the same technique can be extended to agents with continuous

action sets as well. In a nutshell, these algorithms anticipate the utility vector for the

forthcoming round and choose a price such that the cumulative utility over all previous

rounds and the forthcoming one is maximized. The regret bound thus obtained holds

with respect to the single best price in hindsight and is one of the benchmarks we use

to measure the performance of our approach.

Related Work

The problem of learning an optimal pricing policy for various demand models and in-

ventory constraints has been researched extensively in the last decade. However, many

consider the problem of a single good with no competition effects. Several works [65, 67–

70] study a parametric family of demand functions and design an optimal pricing policy

by estimating the unknown parameters by standard techniques such as linear regression

or maximum likelihood estimation. In addition, there are works [36, 71, 72] that consider

Bayesian and non-parametric approaches.

Closer to the theme of this chapter there has also been a considerable amount of research

about dynamic pricing in models incorporating competition, eg., [73–75]. However,

most of these works consider discrete choice models of demand, where a single consumer

approaches and buys a discrete bundle of goods. Moreover, they assume that every seller

has a fixed inventory level in the beginning and is not replenished during the course of

the algorithm. We, on the other hand, consider demand originating from a general mass

of consumers with large volumes in which case, the items may be considered divisible.

For a more thorough survey of the existing literature we refer the reader to [76].

6.2 Model and Preliminaries

We consider a market with n sellers, each selling a single good to a general population

of consumers. We assume that the market operates in a round-based fashion. In each

round t every seller i chooses a price pti for her good. The supply wi of seller i stays

the same every round. No left-over supply from previous rounds is carried over (which

is the case for example for perishable goods). Depending on the resulting price vector
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pt = (pti)i, each seller observes a certain demand for her item given by xi(p
t). These

observed demands are governed by an underlying utility function of the consumers. To

ensure that the problem is well defined we assume that the optimal revenue of any seller

i for any profile p−i of prices chosen by others is bounded in [r,R]. Intuitively, this is

equivalent to saying that the set of allowed prices and supplies are such that revenue of

any seller is not arbitrarily small or large.

We measure the performance of the pricing strategy used by the seller in terms of

regret. Formally, the regret of an algorithm after T rounds is defined as the loss with

respect to the single best action (here price) in hindsight. For example, if {rti(pi)}t
denotes the sequence of revenue functions faced by the seller i then the regret with

respect to the sequence of prices {pti}Tt=1 is defined as: RT =
∑
t
rti(p

∗
i ) − rti(pti) where

p∗i = argmax
p

∑
t
rti(p). Analogously, one can also define dynamic regret as the regret

incurred with respect to a dynamic benchmark sequence. For example, if p∗1, p
∗
2 · · · p∗T is

the sequence of prices against which we measure the loss of our algorithm, then dynamic

regret is defined as:

RT (p∗1, p
∗
2 · · · p∗T ) =

∑
t

rti(p
∗
t )− rti(pti)

Log-Revenue Objective: Along the same lines as in previous chapter, we take an

indirect approach to the problem of revenue optimization by optimizing the log-revenue

objective instead of the actual revenue. For completeness, we define it again here:

ln ri(p) = ln [pi min {xi(p), wi}] .

6.3 Regret Learning with CES Utilities

In this section, we demonstrate the kind of regret bounds that can be achieved in gross-

substitutes CES markets (i.e., with the parameter ρ ∈ (0, 1)). We showed in the previous

chapter (Section 5.2.1), that the log-revenue curve for CES utilities is concave with the

gradient being a function of the price elasticity of demand. To ensure that the problem

is well-defined we assume that the price elasticity of demand for any item i and any price

vector p is bounded in [Emin, Emax]. Since the gradient of the log-revenue objective for

any price p chosen by the seller is not known, direct application of the online gradient

ascent1 algorithm by Zinkevich [77] is not possible. Nevertheless, in what follows, we

show that one can modify the algorithm and its analysis to recover the O(
√
T ) regret

bound. This modification of the algorithm only relies on the information whether the

actual gradient is positive or negative. In the context of a seller, this simply corresponds

1See chapter 4 for an elaborate description.
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to the sign of the excess demand. Before proceeding with the algorithm, we start with

a claim for general convex functions with modified feedback.

Claim 6.1. Consider a sequence of convex functions f1, f2 · · · fT satisfying the following

condition:

g ≤ |∇ft(x)| ≤ G ∀t ∈ [T ], x ∈ X .

Suppose for the action xt chosen in round t and for γ = G
g , we receive as feedback

∇gt(xt) ∈
[
∇ft(xt)

γ , γ∇ft(xt)
]
, then the regret bound of OGD for step-size ηt = 1/

√
t is

given by RT ≤ γ
√
T .

Proof. The update rule of the OGD algorithm when the feedback ∇ft(xt) is available

is given by: xt+1 = Π [xt − ηt · ∇ft(xt)] where Π(·) is the euclidean projection opera-

tor. Since we use ∇gt(xt) instead, we would get a different sequence of decision points

according to the update step as follows:

x′t+1 = Π
[
x′t − ηt · ∇gt(x′t)

]
.

Since ∇gt(x′t) ∈
[
∇ft
γ , γ∇ft

]
, we can re-write the same update step as:

x′t+1 = Π
[
x′t − η′t · ∇ft(x′t)

]
,

where η′t ∈
[
ηt
γ , γηt

]
is such that ηt · ∇gt(xt) = η′t · ∇ft(xt). Therefore, we get the

same sequence of steps by using ∇ft but with a difference step size sequence. The claim

follows from the same analysis as in Zinkevich [77] and replacing ηt by η′t.

This property allows us to use OGD even with imperfect gradient feedback, upto a

multiplicative constant, to obtain regret bounds that are also within this same factor.

Since the exact gradient in the case when xi(p) < wi is not available to the algorithm,

we modify the feedback gradient based on the demand observed,

∂r̃i
∂p̃i

=

1− Ei(p) ⇒ −1, for pi : xi(p) < wi

1 ⇒ 1, for pi : xi(p) ≥ wi
(6.1)

i.e., we work around this problem by choosing as feedback the gradient −1 whenever

xi(p) < wi and +1 otherwise.

Theorem 6.2. If any player i uses OGD on the log-revenue curve with ηt = t−1/2 with

the adjusted gradient feedback as in Equation (6.1), then the cumulative loss in revenue
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of seller i is bounded by

∑
t

rti(p
∗
i )− rti(pt) = O

(
R ·max

{
Emax − 1,

1

Emin − 1

}
T 1/2

)
,

where p∗i = argmax
pi

∑
t
r̃i(pi, p

t
−i).

Proof. The price elasticity of demand for any item i at any price vector p satisfies

1 < Emin < |Ei(p)| < Emax. Hence for the case when xi(p) < wi, the gradient of

log-revenue curve satisfies:

Emin − 1 ≤
∣∣∣∣∂r̃i∂p̃i

∣∣∣∣ ≤ Emax − 1.

Using the same idea as in Claim 6.1, we can pretend to be using OGD on the actual

log-revenue curve with a correspondingly modified step size η′ ∈
[
(Emax − 1)η, η

Emin−1

]
.

The following bound then follows directly:

∑
t

r̃i(p
∗, pt−i)− r̃i(pti, pt−i) = O

(
max

{
Emax − 1,

1

Emin − 1

}
T 1/2

)
,

where p∗ = argmax
pi

∑
t
ri(pi, p

t
−i). The left-hand side of the above inequality can be

further lower bounded:

∑
t

r̃i(p
∗, pt−i)− r̃i(pti, pt−i) = −

∑
t

ln

(
1 +

rti(p
t
i)− rti(p∗)
rti(p

∗)

)

≥
∑
t

rti(p
∗
i )− rti(pt)
rti(p

∗)

≥
∑
t

rti(p
∗
i )− rti(pt)
R

.

This bound shows that for a broad class of learning dynamics, the regret incurred by any

seller increases monotonically (as O(
√
T )) with the number of rounds. Note that this is

in stark contrast to our finding in the Chapter 5, where we showed that for a different

class of price dynamics, the regret incurred with respect to the best-response prices (a

stricter benchmark) by any seller in such a market is bounded by a constant. Although

the tatonnement dynamics guarantee good bounds for static markets, it is arguably not

the most natural price update dynamics. Furthermore, these guarantees require the

market model to be static, which also limits its usefulness. A natural question, is then
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r̃i(·,p−i))

p̃ipi : xi(p) = wi

Figure 6.1: Log-revenue for IGS utilities

to ask: Do natural price-update strategies exist that guarantee better regret bounds than

the OGD algorithm?

In the next section, we show that it is indeed possible to achieve a middle ground, i.e.

where the sellers may choose their price update strategies from a sufficiently broad set

of dynamics and at the same time achieve a better regret bound than the one we just

showed.

6.4 Regret Learning with IGS Utilities

In this section, we consider the same market model as before (Section 6.2) except that

the buyer utilities belong to the set of IGS utilities. For the definition of these utilities,

we refer the reader to Section 4.2.3 in Chapter 4. Using the definition of IGS utility

functions (Section 4.2.3) we can derive the following straightforward fact used directly

in the rest of the chapter. The proposition follows from the definition of log-revenue

function and the price elasticity of demand.

Proposition 6.3. The gradient of the log-revenue function r̃i(p̃i) satisfies:

∂r̃i
∂p̃i

=

1− E for pi : xi(p) < wi

1 for pi : xi(p) ≥ wi

This proposition implies that the log-revenue function for seller i, keeping prices of all

other items fixed, takes a rather simple form as seen in figure 6.1.

6.4.1 Game Theoretic Interpretation

We start our investigation into this problem by observing that the revenue optimization

problem in a market (as defined in Section 6.2) is equivalent to agents in a game using
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learning algorithms locally to optimize their utility, where this utility is a function of the

strategies of all agents in the game. Problems of this flavor have already been studied

in different game-theoretic settings but are not applicable in a black-box fashion to

our problem on account of the market specific constraints. Specifically, the log-revenue

objective although concave is not smooth, an assumption used in almost all gradient-

based learning algorithms. This calls for a different approach than the ones taken in the

idealized settings.

With this context in mind, we start from the result of [2], where it is proved that if all

players in a game use learning algorithms satisfying a certain technical property, called

the RVU property (see Definition 6.4), then the regret incurred by each individual agent

is O(T 1/4). A natural question is then: Can we use the same technique in our revenue

optimization problem in markets?

Definition 6.4 (RVU property, [2]). We say that a vanishing regret algorithm satisfies

the Regret bounded by Variation in Utilities (RVU ) property with parameters α > 0 and

0 < β ≤ γ and a pair of dual norms (‖·‖ , ‖·‖∗) if its regret on any sequence of utilities

u1,u2, . . .uT is bounded by:

T∑
t=1

〈
p∗ − pt

∣∣ut〉 ≤ α + β
T∑
t=1

∥∥ut − ut−1
∥∥
∗ − γ

T∑
t=1

∥∥pt − pt−1
∥∥ .

Although this property is defined for linear utility functions, we can extend this definition

to concave utilities by using the gradient of the utility with respect to pi as proxy for

ut. In the context of our problem

r̃ti(p
∗
i )− r̃ti(pti) ≤

〈
p∗ − pt

∣∣∣∣ ∂r̃i∂p̃i

〉
.

As noted in [2], the standard online learning algorithms such as Online Mirror Descent

(generalization of OGD) and Follow-the-Regularized-Leader (FTRL) do not satisfy the

RVU property. However, Rakhlin and Sridharan [78] and Syrgkanis et al. [2] have devel-

oped modified versions of these algorithms, namely Optimistic Mirror Descent (OMD)

and Optimistic FTRL (OFTRL) respectively, that do satisfy this property,

Proposition 6.5 (Informal, [2]). Let D denote a measure of the diameter of the decision

space. Then:

1. The OMD algorithm using step size η satisfies the RVU property with constants

α = D/η, β = η and γ = 1/(8η)

2. The OFTRL algorithm using step size η satisfies the RVU property with constants

α = D/η, β = η and γ = 1/(4η)
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In the context of continuous games, the utility function (alternatively, the objective)

of each player should additionally satisfy some regularity conditions. For ease of pre-

sentation, we shall refer to the player objectives satisfying these conditions as regular

objectives and are defined, in a general sense, as follows:

Definition 6.6 (Regular Objective). Let the strategy space of each player i be denoted

by Si ∈ Rd and the combined strategy space by S = S1 × S2 × · · ·Sn. Let w = (si)
n
i=1

denote the combined strategy profile where the strategy of each player si ∈ Si. An

objective function fi : S → R of a player i is said to be regular if it satisfies the following

conditions:

1. (Concave in player strategy) For each player i and for each profile of opponent

strategies s−i, the function fi(·, s−i) is concave in si.

2. (Lipschitz Gradient) For each player i, the gradient of the objective with respect to

i, δi(s) = ∇ifi(s) is L-Lipschitz continuous with respect to the L1-norm. i.e.

∥∥δi(s)− δi(s′)
∥∥
∗ ≤ L ·

∥∥s− s′
∥∥ .

6.4.2 Smoothed Log-Revenue Curve

One of the foremost requirements to apply the analysis based on the RVU property is that

the utility function should be smooth, specifically, the gradient of the objective should

be L-Lipschitz continuous.2 Clearly, as seen in Figure 6.1, this is not the case with

our log-revenue objective. We work around this problem by using a smoothed gradient

feedback.

Definition 6.7 (Smoothed Gradient Feedback). For any fixed seller i and price

vector p−i, we define the smoothed gradient for player i, δi,Xi(·), as follows:

δi,Xi(pi) =


1, for pi : xi(p) > wi

1− E, for pi : xi(p) < Xi

1 + E(x̃i(p)−w̃i)
w̃i−X̃i

, otherwise

where Xi is a threshold parameter for seller i.

For ease of notation, we shall denote δi,Xi(pi) by simply δi when clear from context. For

purposes of analysis, we parametrize the threshold parameter of seller i as Xi = wi
exp(εr)

2Informally, this is required to ensure that small changes in prices do not lead to large changes in
utility gradient.
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r̃sm,alyt
i

p̃iwi Xi

Figure 6.2: Smoothed log-
revenue from an analytical stand-

point

r̃smi

p̃iwi Xi

Cost of Smoothness

Figure 6.3: Smoothed vs actual
log-revenue curve

where ε is a small constant and r is a lower bound on optimal revenue of seller i. Also,

henceforth we shall refer to the actual revenue curve by r̃(·) and the algorithm’s view of

smoothed revenue curve by r̃sm(·) .

Lemma 6.8. The smoothed revenue objective, r̃smi (p), for any seller i is regular.

The proof of this lemma can be found in Section 6.7.1.

6.4.3 Cost of Smoothness

Since our learning algorithm only uses the smoothed gradient feedback the resulting

regret bound also holds only for the smoothed view of the log-revenue curve. Therefore,

the optimal price in this smoothed view would be the price for which the smoothed

gradient is zero, although this price is clearly suboptimal for the actual revenue curve.

(See Fig 6.3). To prove bounds with respect to the actual revenue curve, we need to

draw connections between the smoothed and actual revenue for any fixed price.

Lemma 6.9. For any seller i and fixed p−i and for any fixed price p chosen by seller i:

0 ≤ r̃i(p,p−i) − r̃smi (p,p−i) ≤ εr

Theorem 6.10. Suppose each seller i uses the OFTRL algorithm on the log-revenue

objective using the smoothed gradient feedback and threshold demand Xi = wi
exp(εr) .

Let p∗∗i = argmaxp
∑

t r̃
t
i(p) denote the optimal price in hindsight with respect to the

log-revenue objective. Then the actual loss in revenue is bounded by:

T∑
t=1

(1− εR) rti(p
∗∗
i )− rti(pt) = O

((
R2E2

εr

)1/2

T 1/4

)
− εRT.
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Proof. Since r̃smi (pi,p−i) satisfies the regularity condition (Definition 6.6), if each seller

uses a learning algorithm satisfying the RVU property, then the individual regret satisfies:∑
t

r̃smi (p∗∗i ,p
t
−i) − r̃smi (pti,p

t
−i) ≤

∑
t

r̃smi (p̄∗i ,p
t
−i) − r̃smi (pti,p

t
−i)

≤
∑
t

〈
δi,Xi(p

t)
∣∣ ˜̄p∗i − p̃ti

〉
,

where p̄∗i = argmax
p

∑
t
r̃smi (p,pt−i). For ease of notation, we denote δi,Xi(p

t) by δti . Using

Lemma 6.9 to lower bound the left-hand-side above:∑
t

r̃smi (p∗∗,pt−i) − r̃smi (pti,p
t
−i) ≥

∑
t

(
r̃ti(p

∗∗
i ) − εr

)
− r̃i(p

t
i)

≥
∑
t

(1− ε) r̃i(p∗∗i ) − r̃i(p
t
i).

(6.2)

The last inequality holds since r is a lower bound on revenue. We still have to prove an

upper bound on the expression
∑
t

〈
δti
∣∣ ˜̄p∗i − p̃ti

〉
. Since our learning algorithm satisfies

the RVU property, by Definition 6.4 it follows that:

RT ≤ α + β
T∑
t=1

∣∣δti − δt−1
i

∣∣2 .
Since the smoothed gradient δi(p) for any seller is L-Lipschitz continuous (Lemma 6.19),

for L = E2

εr we can bound
∣∣δti − δt−1

i

∣∣2 by

∣∣δti − δt−1
i

∣∣2 ≤ L2

∑
j

∣∣∣ptj − pt−1
j

∣∣∣
2

≤ L2n
∑
j

∣∣∣ptj − pt−1
j

∣∣∣2 .
In addition to the fact that OFTRL satisfies the RVU property, it is also known that the

algorithm satisfies a stability property (Lemma 20, [2]), i.e.,
∣∣∣ptj − pt−1

j

∣∣∣ ≤ 2η where η is

the step-size parameter of the algorithm.

We can now bound the regret by: RT ≤ α + 4n2βL2η2T . Finally, substituting the

RVU parameters of the algorithm (Proposition 7, [2]) α = D/η, β = η and γ = 1/4η with

η = (Ln)−1/2T−1/4 we get:

RT ≤ D/η + 4η3L2n2T = O(
√
Ln(D + 4)T 1/4).
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Combining this with Equation 6.2 and substituting the value of L we get:

T∑
t=1

(1− ε) r̃ti(p∗∗i )− r̃ti(pti) ≤ O

((
E2

εr

)1/2

· T 1/4

)
.

Rearranging the inequality and using same steps as in the proof of Lemma 6.2:

∑
t

rti(p
∗∗
i )− rti(pt)
rti(p

∗∗)
≤ O

((
E2

εr

)1/2

· T 1/4

)
+ ε

T∑
t=1

r̃ti(p
∗∗
i )

∑
t

rti(p
∗∗
i )− rti(pt) ≤ O

((
E2R2

εr

)1/2

· T 1/4

)
+ εR

T∑
t=1

r̃ti(p
∗∗
i )

≤ O

((
R2E2

εr

)1/2

T 1/4

)
+Rε

T∑
t=1

(rti(p
∗∗
i )− 1)

∑
t

(1− εR) rti(p
∗∗
i )− rti(pt) ≤ O

((
R2E2

εr

)1/2

T 1/4

)
− εRT

Similar bounds can be shown in the case when sellers use the Optimistic Mirror Descent

(OMD) algorithm.

Remark 6.11. Here we compare the total revenue obtained to the total revenue with

respect to the fixed price p∗∗ = argmax
p

∑
t
r̃ti(p) i.e. the price in hindsight that optimizes

the cumulative log-revenue objective and not necessarily the revenue objective itself. We

note that since the revenue function need not be concave, it is not immediately clear

how to characterize the resulting cumulative revenue function and the price optimizing

it. For this reason, we are using the price that optimizes the cumulative log-revenue.

6.5 Learning with a Dynamic Benchmark

A bound on the loss of revenue of a seller with respect to the single price p∗∗i in hindsight

is a comparatively weak benchmark. In order to prove a regret bound with respect to a

stronger benchmark, we shall focus on a more constrained sequence of benchmark prices.

In what follows, we define a class of learning algorithms whose guarantees apply to any

game setting where strategic players use regret minimization to maximize their own

utility. For generality, we define this class for any sequence of concave utility functions
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{uti(·)}t. In the following section, we shall specialize this guarantee to the context of

revenue optimization in markets.

Definition 6.12 (DRVU property). We say that a vanishing regret algorithm satisfies

the Dynamic Regret bounded by Variation in Utilities (DRVU) property with parameters

α, ρ > 0 and 0 < β ≤ γ and a pair of dual norms (‖·‖ , ‖·‖∗) if its regret on any sequence

of utilities u1,u2, . . .uT with respect to the benchmark sequence {p∗,ti }t is bounded by:

T∑
t=1

〈
p∗,t − pt

∣∣ut〉 ≤ α + β
T∑
t=1

∥∥ut − ut−1
∥∥2

∗

+ ρ
T∑
t=1

∥∥p∗,t − p∗,t−1
∥∥ − γ

T∑
t=1

∥∥pt − pt−1
∥∥ .

This definition is an extension of the RVU property. The difference is in the term

ρ
∑
t

∥∥p∗,t − p∗,t−1
∥∥ that quantifies the hardness of learning with respect to a dy-

namic strategy. As for the RVU property, this property is defined with respect to linear

utilities and can be extended to concave utilities by standard arguments.

Theorem 6.13 (Informal). The OMD algorithm, with step size η and suitably chosen

parameters, satisfies the DRVU property with constants α = D1/η, ρ = D2/η β = η and

γ = 1/(8η) for constants D1 and D2.

For purposes of readability we defer the proof of this theorem to Section 6.7.3. This sec-

tion also contains a more detailed discussion on the optimistic mirror descent algorithm

(OMD), as used in the lemma. Using this new definition we can now extend almost all

of the results in [2] to corresponding results for dynamic regret. We state the following

claim for concreteness.

Corollary 6.14. Let CT =
∑

t ‖ p
∗,t
i − p

∗,t−1
i ‖ denote the cumulative change in bench-

mark strategies of player i. If all players use algorithms satisfying the DRVU property,

then the regret incurred by any player i satisfies:

∑
t

uti
(
pti, p

t
−i
)
− uti

(
p∗,ti , p

t
−i

)
= O

(
(1 + CT )T 1/4

)

6.5.1 Revenue Optimization in Dynamic Markets

Dynamic Market Model: We define a dynamic market M = (M1,M2 · · ·MT ), as a

sequence of markets with the same set of sellers and buyers, with the same IGS utility
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functions as in Definition 4.2 but with a dynamic supply vector i.e. we characterize

the dynamicity of the market by the sequence of supply vectors w1,w2 · · ·wT . In order

to achieve a strong dynamic regret bound, we shall assume that the income elasticity

parameter of the market is equal to one. This is a standard assumption in many market

models and is also satisfied by CES utilities.

In this section, we connect the dynamic regret of any seller i to the inherent instability of

the market by choosing the sequence of equilibrium prices for seller i at each round as the

benchmark sequence, i.e. {peq,ti }Tt=1. Since the supply vector may change every round,

the equilibrium prices may also correspondingly change. These changes in equilibrium

prices completely capture the inherent instability of the market. For example, if the

supply stays the same every round, then this benchmark is the same as choosing the

equilibrium price in each round. On the other hand, if the supply fluctuates wildly from

one round to the next, then so do the equilibrium prices and there is no hope of achieving

a sub-linear regret bound. That is, the resulting dynamic regret bound captures the

inherent market instability. In what follows, we derive a relationship connecting the

changes in equilibrium prices, which is also our benchmark, to the changes in supply

observed. The main theorem bounding the loss in revenue can then be derived using a

similar approach as in Theorem 6.10.

Lemma 6.15. For some gross-substitutes market let pold, xold and pnew, xnew denote

the price and the resulting demand vectors, respectively.

(a) If pnew = pold(1 + ε) then, xnew = xold

1+ε .

(b) If pnew = pold

(1+ε) then, xnew = xold(1 + ε).

Proof. We only prove Part (a) here. Part (b) follows from identical steps. Note that

increasing the prices of all items by a factor of (1 + ε) is equivalent to decreasing the

income of all buyers by the same factor. Let the income of player i be denoted by Ii.

Then for any buyer i, Inewi =
Ioldi

(1+ε) . Further, for gross-substitutes markets with CES

utilities, it is known that the income elasticity parameter, εI , for any player is exactly

equal to 1. By definition of income elasticity:

εI =
xnew−xold

xold

Inew−Iold
Iold

=
xnew−xold

xold

−ε
1+ε

= 1

Rearranging, xnew = xold

1+ε .

Lemma 6.16. Suppose the supply vector changes from wold = (wi)i to wnew = (w′i, w−i).

Let peq,old and peq,new be the equilibrium price vectors corresponding to the old and new

supply vectors, respectively.
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(a) If w′i = wi · (1 + ε) then,

1 ≤ max
j

peq,oldj

peq,newj

≤ (1 + ε)

(b) If w′i = wi
1+ε then,

1 ≥ min
j

peq,oldj

peq,newj

≥ 1

1 + ε

Proof. Consider the case where w′i = wi · (1 + ε). To prove a contradiction, assume that

for some player j,
peq,oldj

peq,newj
= z > (1 + ε). By equilibrium condition,

wnewj = xj

(
peq,newj , peq,new−j

)
= xj

(
peq,oldj

z
, peq,new−j

)

(a)

≥ xj

(
peq,oldj

z
,
peq,old−j
z

)
(b)
= z · xj

(
peq,old

)
= z · woldj .

(6.3)

The inequality (a) follows from the definition of gross substitutes markets. Equality (b)

is the direct application of Lemma 6.15. Since this is a contradiction, we conclude that

max
j

peq,oldj

peq,newj
≤ (1 + ε).

For the lower bound suppose that for some item j,
peq,oldj

peq,newj
= z2 < 1. Then,

wnewj = xj(p
eq,new) = xj

(
peq,oldj

z2
, peq,new−j

)

(a)

≤ xj

(
peq,oldj

z2
,
peq,old−j
z2

)
(b)
= xj(p

eq,old) · z2 = woldj · z2,

which is a contradiction for any z2 < 1. The inequalities (a) and (b) follow the same

reasoning as in Inequality (6.3). This implies that for an increase in supply of item i,

the price of no item j increases and the maximum decrease in the price of any item j

is at most a factor of (1 + ε). By analogous arguments, we can prove the result for the

case when the supply decreases.
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Corollary 6.17. Let ‖·‖1 denote the 1-norm. If the supply vector changes from wt to

wt+1, where the supply of each item may change independently, then:

max
j
|p̃eq,t+1
j − p̃eq,tj | ≤

∥∥w̃t+1 − w̃t
∥∥

1

Proof. First note that we can re-write the result of Lemma 6.16 in log scale as:

max
j
|p̃eq,t+1
j − p̃eq,tj | ≤ |w̃t+1

i − w̃ti |,

where we assumed that the supply of only item i changed. Now, for any two supply

vectors wt+1 and wt, consider the switch from wt to wt+1 sequentially in a pre-defined

order while keeping the supplies of remaining sellers fixed during this switch. From

Lemma 6.16, we know that for each such intermediate step, where the supply of only item

j changes, the maximum change in equilibrium is at most |w̃t+1
j − w̃tj |. The cumulative

change in equilibrium can then simply be upper bounded by the sum of these individual

changes.

Theorem 6.18. Let WT =
∑

t

∥∥w̃t − w̃t−1
∥∥

1
denote the cumulative change in the

market in terms of changes in supplies. Suppose each seller i uses the OMD algo-

rithm on the log-revenue function with smoothed gradient feedback and threshold demand

Xti =
wti

exp(εr) . Let {peq,ti }t denote the sequence of equilibrium prices for seller i. Then:

T∑
t=1

(1− εR) rti(p
eq,t
i )− rti(pt) ≤ O

((
R2E2

εr

)1/2

· (1 +WT )T 1/4

)

Proof. This bound can be derived using almost the same steps as in Theorem 6.10 and

using Corollary 6.17 to account for the cumulative change in benchmark prices.

6.6 Experimental Evaluation

We analyze the performance of our modified OGD and Optimistic Mirror Descent

(OMD) algorithms in the case where the consumer utility functions satisfy the CES

property. We are able to do this since by choosing the utility parameters appropriately,

the CES utilities approximately satisfies the definition of IGS. In our simulations, we

show that the OMD algorithm indeed performs as proved in our analysis.

We consider the scenario with 2 items and the value of E = 2.5. We assume that the

market is static in that each seller has a supply of one unit every round and uses the

threshold parameter Xi = 0.9. We observe that the modified OGD algorithm converges

quickly to the neighbourhood of the optimal price but then keeps oscillating around
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Figure 6.4: Modified OGD vs OMD

it. This is expected since in this neighbourhood the observed gradients might change

abruptly. The OMD algorithm on the other hand takes a while before it comes close to

the neighbourhood but once there converges to optimum quickly. As described in the

analysis, this is precisely the reason for using the smoothed gradient feedback.

6.7 Omitted Proofs

6.7.1 Proof of Lemma 6.8

The proof depends on the Lipschitz continuity property proved in the following lemma.

Lemma 6.19. For any seller i, the gradient of the smoothed revenue curve with threshold

demand Xi = wi
exp(εr) satisfies E2

εr -Lipschitz continuity, i.e.,

∥∥δi(p1)− δi(p2)
∥∥
∗ ≤

E2

εr
·
∥∥p̃1 − p̃2

∥∥ . (6.4)

Proof. It is known that (Lemma 24, [2]) if for all j,

∥∥δi(p1)− δi(p2
j ,p

1
−j)
∥∥
∗ ≤

E2

εr
·
∥∥p̃1

j − p̃2
j

∥∥
then δi(·) satisfies Inequality (6.4). We shall first prove the case when j is equal to i.

This is equivalent to proving ∂δi(p
1)

∂p̃i
≤ E2

εr since the revenue curve is differentiable. By

observation, we note that the maximum change in smoothed gradient δi(p) occurs for
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prices when Xi ≤ xi(p) ≤ wi. This implies:∣∣∣∣∂δi(p1)

∂p̃i

∣∣∣∣ ≤ ∣∣∣∣ ∂∂p̃i
(

1 +
E(x̃i(p)− w̃i)

w̃i − X̃i

)∣∣∣∣
=

∣∣∣∣ E

w̃i − X̃i
· ∂
∂p̃i

x̃i(p)

∣∣∣∣
=

∣∣∣∣Eεr · −Ei(p)

∣∣∣∣∣∣∣∣∂δi(p1)

∂p̃i

∣∣∣∣ ≤ E2

εr
.

In a similar way, we can show that the smoothed gradient of seller i is Lipschitz con-

tinuous also with respect to the price of any other seller j, i.e., ∂δi(p
1)

∂p̃j
≤ E2

εr . Using the

same arguments as above, we get:

∂δi(p
1)

∂p̃j
≤ E

w̃i − X̃i
·
∣∣∣∣ ∂∂p̃j x̃i(p)

∣∣∣∣ .
The cross derivative term ∂x̃i(p)

∂p̃j
is exactly the cross-price elasticity of item i with respect

to item j. We denote it by Eij(p). By definition of IGS utility functions this is exactly

E. Therefore, ∣∣∣∣∂δi(p1)

∂p̃j

∣∣∣∣ ≤ E2

εr
.

Lemma 6.8. The smoothed revenue objective, r̃smi (p), for any seller i is regular.

The lemma now follows directly from Lemma 6.19 the fact that r̃smi (p) is concave in p̃i.

6.7.2 Proof of Lemma 6.9

To prove Lemma 6.9, we first quantify the difference in optimal revenues with respect

to the log-revenue and its smoothed version.

Lemma 6.20. For a fixed p−i let pi,Xi denote the price such that xi(pi,Xi ,p−i) = Xi,

where Xi = wi
exp(εr) is the threshold demand of seller i. Then:

r̃i(p
∗
i ,p−i) − r̃i(pi,Xi ,p−i) =

E − 1

E
· εr

Proof. The lemma follows directly from the following two observations:
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1. For any price pi > p∗i , where p∗i is the revenue maximizing price of seller i, chosen

by seller,

r̃i(p
∗
i )− r̃i(pi) = (E − 1)(p̃i − p̃∗i ).

This follows from our assumption that the gradient of log-revenue curve for any

price pi > p∗i is a constant equal to −(E − 1).

2. For p̃i,Xi and p̃∗i as defined above, the following holds:

p̃i,Xi − p̃∗i =
εr

E
.

This can be shown by the following sequence of utilities.

r̃i(p
∗
i ) = r̃i(pi,Xi) + (E − 1)(p̃i,Xi − p̃∗i )

p̃∗i + w̃i = p̃i,Xi + x̃i(pi,Xi) + (E − 1)(p̃i,Xi − p̃∗i )

w̃i − x̃i(pi,Xi) = E(p̃i,Xi − p̃∗i )

Since x̃i(pi,Xi) = X̃i, it follows that

w̃i − x̃i(pi,Xi) = ln

(
wi

xi(pi,Xi)

)
= εr.

The lemma follows from this.

We are now ready to bound the difference between the actual revenue and the smoothed

revenue for any seller i and price pi.

Lemma 6.9. For any seller i and fixed p−i and for any fixed price p chosen by seller i:

0 ≤ r̃i(p,p−i) − r̃smi (p,p−i) ≤ εr

Proof. The left hand-side of the inequality follows directly from our construction of

smoothed gradient. For the right-hand side we observe that the difference between the

revenue values of the two curves is maximum at p∗i . Hence, in the following, we shall

focus on bounding r̃i(p
∗
i ) − r̃smi (p∗i ). Note that the gradient of the smoothed revenue

function changes gradually from −(E − 1) to 1 in the price range pi,Xi to p∗i and in the

worse case, might change abruptly, i.e.

r̃smi (p∗) ≥ r̃smi (pi,Xi) − (p̃i,Xi − p̃∗i )

≥ r̃smi (pi,Xi) −
εr

E
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Using Lemma 6.20 and using the fact that r̃smi (pi,Xi) = r̃i(pi,Xi):

r̃i(p
∗
i ) − r̃i(pi,Xi) =

E − 1

E
· εr

r̃i(p
∗
i ) −

(
r̃smi (p∗i ) +

εr

E

)
≤ E − 1

E
· εr

r̃i(p
∗
i ) − r̃smi (p∗i ) ≤ εr

6.7.3 Optimistic Mirror Descent and the DRVU Property

Optimistic Mirror Descent (OMD): Consider the following online convex optimiza-

tion problem: Let F be the convex set of actions of the learner. In each round t, the

learner chooses an action xt and observes a linear utility function ut3. The goal of the

agent is to maximize her utility, i.e.
∑

t

〈
xt
∣∣ut〉. Let R be a 1-strongly convex function

with respect to some norm ‖·‖ on F . Suppose the agent has a prediction, Mt, about the

forthcoming utility vector in round t. The OMD algorithm incorporates this information

into the decision process by the following interleaved sequence:

xt = argmin
x∈F

ηt 〈x |Mt〉+DR(x,yt−1) yt = argmin
y∈F

ηt
〈
y
∣∣ut〉+DR(y,yt−1)

where DR is the Bregman divergence with respect to R and {ηt} is the sequence of

step-sizes that can be chosen adaptively.

Theorem 6.21 (Rakhlin and Sridharan [79]). The loss incurred by a learning agent in

round t under Optimistic Mirror Descent by choosing action xt ∈ F with respect to any

feasible strategy x∗ is upper bounded by:

〈
xt − x∗,t

∣∣ut〉 ≤ ∥∥ut −Mt

∥∥ ‖xt − yt‖ +
1

η

[
DR(x∗,t,yt−1)−DR(x∗,t,yt)

]
− 1

2η

[
‖xt − yt‖2 +

∥∥xt − yt−1

∥∥2
]

Fact 6.22. For any ρ > 0 and any numbers a and b: a · b ≤ ρ
2a

2 + 1
2ρb

2.

Fact 6.23. For any points x,y, z ∈ F ,

DR(x, z)−DR(y, z) ≤ DF ‖x − y‖

where DF = max
a,b∈F

‖a − b‖.
3For simplicity of presentation, we assume the utility function is linear
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Fact 6.24. For any points xt,xt−1,y0 ∈ F ,

∑
t

∥∥xt − xt−1

∥∥2 ≤ 2

(∑
t

‖xt − y0‖2 +
∥∥xt−1 − y0

∥∥2

)

Theorem 6.13. The dynamic regret of an agent under Optimistic Mirror Descent with

Mt = ut−1 with respect to the benchmark sequence of strategies {x∗,t}t is upper bounded

by:

RT ≤
R

η
+
DF
η

∑
t

∥∥x∗,t − x∗,t−1
∥∥+ η

∑
t

∥∥ut − ut−1
∥∥2

∗ −
1

8η

∑
t

∥∥xt − xt−1

∥∥2

where R = sup
x
DR(x,y0) and DF = max

a,b∈F
‖a − b‖.

Proof. By Theorem 6.21 instantiated for Mt = ut−1, we have:

〈
xt − x∗,t

∣∣ut〉 ≤ ∥∥ut − ut−1
∥∥ ‖xt − yt‖ +

1

η

[
DR(x∗,t,yt−1)−DR(x∗,t,yt)

]
− 1

2η

[
‖xt − yt‖2 +

∥∥xt − yt−1

∥∥2
]

Using Fact 6.22 and by choosing ρ = 2η, we can bound the first part of the expression

as: ∥∥ut − ut−1
∥∥
∗ ‖xt − yt‖ ≤ η

∥∥ut − ut−1
∥∥2

∗ +
1

4η
‖xt − yt‖2 (6.5)

Next, we can sum and rearrange the Bregman divergence terms to get:

T∑
t=1

DR(x∗,t,yt−1)−DR(x∗,t,yt) ≤ R+

(∑
t

DR(x∗,t,yt−1)−DR(x∗,t−1,yt−1)

)

where R = sup
x
DR(x,y0). Using Fact 6.23 in above inequality we get:

T∑
t=1

DR(x∗,t,yt−1)−DR(x∗,t,yt) ≤ R+
∑
t

D
∥∥x∗,t − x∗,t−1

∥∥ (6.6)

Finally, we bound the last part of the expression using Fact 6.24 and observing that in

OMD algorithm we choose x0 = y0 = argmin
x

R(x).

1

4η

[
‖xt − yt‖2 +

∥∥xt − yt−1

∥∥2
]
≥ 1

8η

∑
t

∥∥xt − xt−1

∥∥2
.



Chapter 7

Tracing Equilibrium in Dynamic

Markets

A fundamental concept governing trade in large markets is the notion of competitive

or market equilibrium. Several classical works, especially in economics, accept the ex-

istence of such equilibria as an axiom. Although the existence and characterization of

equilibrium in markets has been a topic of interest for many years, only in the last

decade or so has there been a renewed interest in the questions of what are some natural

dynamics that might drive these markets to equilibrium. Such computational aspects of

competitive equilibria is one of the central themes in algorithmic game theory, mainly for

the prominent class of Fisher markets. As mentioned in Chapter 4, there are approaches

based on distributed adaptation processes, namely tatonnement , that converge to equi-

librium in a Fisher market setting. In this same chapter, we also saw how tatonnement

provides an explanation how decentralized price adjustment can lead a market into an

equilibrium state, thereby providing additional justification for the concept. Recently,

several works derived a detailed analysis and proved fast convergence of discrete-time

tatonnement in markets [8–11,13,14].

Most of the analysis of tatonnement-based dynamics till now assumes that the market

and its properties (agents, budgets, utilities, supplies of goods) remain static and un-

changed over time. In fact, to the best of our knowledge, all of the existing work on

computation of market equilibrium in algorithmic game theory assumes that the market

is essentially a static environment. In contrast, in many (if not all) applications of mar-

kets, the market itself is subject to dynamic change, in the sense that supplies of goods

changes over time, agents have different budgets at their disposal that they can spend,

or the preferences of agents expressed via utility functions evolve over time. Analyz-

ing and quantifying the impact of dynamic change in markets is critical to understand

93
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the robustness of market equilibrium in general, and of price adaptation dynamics like

tatonnement in particular.

This chapter continues the algorithmic study of dynamic markets in the form of dy-

namically evolving environments and specifically focuses on the performance of dynamic

adaptation processes like tatonnement. We analyze a discrete-time process, where in

each round t tatonnement provides a price for each good, which is then updated using

the excess demand for each good. In each round t the excess demand comes from a

possibly different, arbitrarily perturbed market. This dynamic nature of markets gives

rise to a number of interesting issues. Notably, even when in each round t the market

has a unique equilibrium, over time this equilibrium becomes a dynamic object. As such,

exact market equilibria can rarely or never be reached. Instead, we consider how taton-

nement can trace the equilibrium by maintaining a small distance (in terms of suitably

defined notions of distance), which also results in approximate clearing conditions.

In this chapter we study the same model as one in Chapter 5: Fisher markets with

buyer utilities exhibiting the constant elasticity of substitution (CES) property. In this

versatile framework, we analyze the impact of changes in supply of goods, budgets of

agents, and their utility parameters. The adaptation approaches equilibrium conditions,

but since the equilibrium is moving, prices and allocations follow and chase the equilib-

rium point over time. Our analysis provides distance bounds, which can be seen as a

quantification of the extent of out-of-equilibrium trade due to the interplay of market

perturbation and adaptation of agents.

On a technical level, our analysis primarily focuses on quantifying the impact of per-

turbation in market parameters on the associated potential function. Our main result

then follows from the convergence guarantees for static markets. Moreover, this gen-

eral approach is shown to constitute a powerful framework to analyze a large variety of

protocols and dynamics that are well-understood in static systems, when these systems

become subject to dynamic perturbation. This is demonstrated using a rather simple

but concrete load balancing system with dynamic machine speeds.

Overview: In this chapter we investigate the effectiveness of the tatonnement price

adaptation strategy in terms of its ability to maintain an approximate market-clearing

property in dynamic markets. To this end, we focus on a Fisher market with CES

utilities consisting of the same set of sellers and buyers but which undergoes a perpetual

change in one of the market parameters, i.e., supply of sellers, buyer budgets or their

utilities.
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To quantify the deviation of the market from its market clearing state we use a convex

potential function introduced in [46]. In Section 7.2, we quantify the impact of pertur-

bation in the supply of goods, the budgets, and the utility function of buyers. These

bounds reveal that the change is often a rather mild additive change in this market

potential. Together with the fact that tatonnement decreases the potential multiplica-

tively, we see that the price adaptation is indeed able to incorporate and adapt to the

changes quickly. Overall, the dynamics can trace the equilibrium point up to a distance

that evolves from the change in a small number of recent rounds.

The technique we apply for markets can be executed much more generally for a class

of dynamical systems, which we outline in Section 7.4. These systems have a set of

control parameters (e.g., prices in markets, or strategic decisions in games) and system

parameters (e.g., supplies or utilities in markets, or payoff values in games). Moreover,

these systems admit a Lyapunov function, and a round-based adaptation process for

the control parameters (e.g., tatonnement in markets, or best-response dynamics in

classes of games) that multiplicatively decreases the Lyapunov function in a single round.

Our results provide a bound on the value of the Lyapunov function when the system

parameters are subject to dynamic change. We explicitly discuss such a system in

Section 7.4.1.

Related Work

Decentralized adaptation processes such as tatonnement are important due to their

simple nature and plausible applicability in real markets. Arrow, Block and Hurwitz [80]

showed that a continuous version of tatonnement converges to an equilibrium for markets

satisfying the weak gross substitutes (WGS) property. Several algorithmic advances since

then provide new insights in analyzing tatonnement [46, 81]. Cole and Fleischer [82]

proposed the ongoing market model, in which warehouses are introduced to allow out-

of-equilibrium trade, and prices are updated in tatonnement-style asynchronously, to

provide an in-market process which might capture how real markets work. There has

been significant recent interest in further aspects of ongoing markets or asynchronous

tatonnement [47, 83–85].

Notions of games and markets with perturbation and dynamic change are only very

recently starting to receive increased interest in algorithmic game theory. For example,

recent work has started to quantify the average performance of simple auctions and

regret-learning agents in combinatorial auctions with dynamic buyer population [86, 87].

In these scenarios, however, equilibria are probabilistic objects and convergence in the
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static case can only be shown in terms of regret on average in hindsight. Moreover, the

main goal is to bound the price of anarchy.

7.1 Model and Preliminaries

Along the same lines as the model studied in Chapter 5, we consider a Fisher market

with n goods and m buyers, each having CES utility functions with gross-substitutes

property. See Chapter 4 for a detailed discussion on this. The notation for the demand

and utility functions of the buyers also follows this chapter. The vector of budgets is

denoted by b = (bi)i=1,...,m, where B =
∑

i bi is the total budget in the market.

Dynamic Markets. We study a slightly different model of dynamic market than the

ones in previous chapters. In our model, we consider a dynamic market where in the

beginning of each round t = 1, . . . , T our tatonnement dynamics propose a vector of

prices pt. Dynamic market parameters like budgets bt, supplies wt and utility functions

ut are manifested, which can be different from their value in previous rounds 0, . . . , t−1.

Agents request a demand bundle based on the prices pt and market Mt = (ut,bt,wt),

which yields a vector of excess demands zt. Then the system proceeds to the next round

t+ 1.

We first provide a basic insight that lies at the core of the analysis and manages to lift

convergence results for a class of static markets to a bound for dynamic markets from

that class. Formally, assume that the following properties hold:

Potential: There is a non-negative potential function Φ(M,p), for every marketM =

(u,b,w) and every price vector p. It holds Φ(M,p) = 0 if and only if p is a vector

of clearing prices for market M.

Price-Improvement: The price dynamics satisfy Φ(M,pt) ≤ (1− δ) ·Φ(M,pt−1), for

some 1 ≥ δ > 0 and every market M.

Market-Perturbation: The market dynamics satisfy Φ(Mt,p) ≤ Φ(Mt−1,p) + ∆t,

for some values ∆t ≥ 0 and every price vector p.

Proposition 7.1. Suppose the price and market dynamics satisfy the Potential, Price-

Improvement, and Market-Perturbation properties. Then

Φ(MT ,pT ) ≤ (1− δ)T · Φ(M0,p0) +

T−1∑
t=1

(1− δ)T−τ∆τ .
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Let ∆ = maxt=1,...,T ∆t, then it follows for any t ≤ T

Φ(MT ,pT ) ≤
T∑

τ=t+1

(1− δ)T−τ∆τ +
(1− δ)T−t

δ
·∆ + (1− δ)T · Φ(M0,p0) .

The proof follows by a direct application of the three properties. We prove it for a much

more general class of dynamic systems with Lyapunov functions in Section 7.4.

Consider the three terms in the latter bound for Φ. The first term captures the im-

pact of recent changes to the market. The second term bounds the effect of all older

changes. The third term decays exponentially over time. Hence, when the process runs

long enough, the potential is only affected by recent changes of the market, while all

older changes can be accumulated into a constant term based on ∆ and δ. Intuitively,

the price dynamics follows the evolution of the equilibrium up to a “distance” of ∆/δ

in the potential function value. Hence, if market perturbation ∆ is small and price im-

provement δ is large, the process succeeds to maintain market clearing conditions almost

exactly.

7.2 Dynamic Fisher Markets via Convex Potential

In this section, we focus on dynamic Fisher markets through the lens of a convex potential

function proposed in [46]. This potential has a natural interpretation as a parameter

quantifying the violation of market clearing conditions. In what follows, we use this

property of the potential function to quantify the deviations induced by perturbation in

market parameters like supply, budgets and buyer utilities.

The convex potential function for a static CES Fisher market is [46]

ΨCPF(M,p) =

n∑
j=1

wj ·pj −
∑
i

bi ·lnQi(p), where Qi(p) =

(
n∑
k=1

(aik)
1−c(pk)

c

)1/c

.

Note that Qi(p) is independent of the supplies of goods and the budgets of buyers; it

can be interpreted as the minimum amount of money buyer i needs to use to earn one

unit of utility [88]. Since the minimum value of ΨCPF(M,p) is not zero in general we

use a normalized version ΦCPF(M,p) := ΨCPF(M,p)−Ψ∗CPF(M), where Ψ∗CPF(M) :=

minp ΨCPF(M,p) to apply our general framework.

We study the following tatonnement price-update rule:

pt+1
j ← ptj · exp

(
γztj
)
, (7.1)
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where γ is a constant depending on market parameters.

Let Ψ∗CPF(M) denote the minimum value of the function ΨCPF(M). The following

theorem, stated in a simplified format from [46], demonstrates the Price-Improvement

property.

Theorem 7.2 ([46]). Let p0 denote the initial prices and p∗ denote the mark et equi-

librium. Suppose prices are updated according to the rule (7.1). If minj p
0
j/p
∗
j ≥ q > 0,

then there exists δ = δ(q, λ) > 0 such that for any time t ≥ 0, it holds ΨCPF(M,pt+1)−
Ψ∗CPF(M) ≤ (1− δ) · (ΨCPF(M,pt)−Ψ∗CPF(M)).

For our dynamic environment, we denote the market at time t by Mt = (ut,bt,wt),

and

ΨCPF(Mt,pt) =

n∑
j=1

wtj ·ptj −
∑
i

bti ·lnQti(pt), where Qti(p) =

(
n∑
k=1

(atik)
1−c(pk)

c

)1/c

.

Let Ψ∗,tCPF = minp ΨCPF(Mt,p), and ΦCPF(Mt,p) = ΨCPF(Mt,p)−Ψ∗,tCPF.

In the following sections we establish the Market-Perturbation property for the cases

when the supplies, budgets and utility functions are dynamic.

7.2.1 Dynamic Supply

In this section, we consider the case when the supplies are changing, while buyers’

budgets and utility functions are fixed. Thus, the function Qti and budget bti does not

change over time, and we write Qi and bi instead.

Proposition 7.3. A market with changing supplies, keeping other parameters fixed,

satisfies the market perturbation property with ∆t = (P +B)
∑

j |wt+1
j − wtj |.
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Proof.

ΦCPF(Mt+1,pt+1) = ΨCPF(Mt+1,pt+1)−Ψ∗,t+1
CPF

≤

 n∑
j=1

wtj · pt+1
j −

∑
i

bi · lnQi(pt+1) − Ψ∗,tCPF

 +
n∑
j=1

pt+1
j ·

∣∣∣wt+1
j − wtj

∣∣∣
+ (Ψ∗,tCPF −Ψ∗,t+1

CPF )

=
[
ΨCPF(Mt,pt+1)−Ψ∗,tCPF

]
+

n∑
j=1

pt+1
j ·

∣∣∣wt+1
j − wtj

∣∣∣ + (Ψ∗,tCPF −Ψ∗,t+1
CPF )

≤ (1− δ) ·
[
ΨCPF(Mt,pt)−Ψ∗,tCPF

]
+ P ·

n∑
j=1

∣∣∣wt+1
j − wtj

∣∣∣ + (Ψ∗,tCPF −Ψ∗,t+1
CPF )

= (1− δ) · ΦCPF(Mt,pt) + P‖εt‖ + (Ψ∗,tCPF −Ψ∗,t+1
CPF ).

The last term in the above expression can be bounded as follows: Let p∗,t+1 denote the

price vector which attains the minimum value of ΨCPF(Mt+1,p). Then

Ψ∗,t+1
CPF =

n∑
j=1

wt+1
j · p∗,t+1

j −
∑
i

bi · lnQi(p∗,t+1)

≥
n∑
j=1

wtj · p∗,t+1
j −

∑
i

bi · lnQi(p∗,t+1) −
n∑
j=1

p∗,t+1
j ·

∣∣∣wt+1
j − wtj

∣∣∣
≥ Ψ∗,tCPF −

n∑
j=1

p∗,t+1
j ·

∣∣∣wt+1
j − wtj

∣∣∣ (by definition of Ψ∗,tCPF)

≥ Ψ∗,tCPF − B‖εt‖1.

The last inequality holds since each equilibrium price is bounded above by B, the total

amount of money in the market. Thus, (Ψ∗,tCPF − Ψ∗,t+1
CPF ) is bounded above by B‖εt‖.

Summarizing,

ΦCPF(Mt+1,pt+1) ≤ (1− δ) · ΦCPF(Mt,pt) + (P +B)‖εt‖1,

i.e., ∆t = (P +B)‖εt‖1.

7.2.2 Dynamic Budgets

In this section, we consider the case when the buyers’ budgets are changing, while

supplies and buyers’ utility functions are fixed.
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Proposition 7.4. A market with changing buyers’ budgets, keeping other parameters

fixed, satisfies the market perturbation property with ∆t = C ′
∑

i |bt+1
i −bti|. for a constant

C ′.

Proof.

ΦCPF(Mt+1,pt+1) = ΨCPF(Mt+1,pt+1)−Ψ∗,t+1
CPF

=

 n∑
j=1

wj · pt+1
j −

∑
i

bti · lnQi(pt+1) − Ψ∗,tCPF

 − ∑
i

(bt+1
i − bti) · lnQi(pt+1)

+ (Ψ∗,tCPF −Ψ∗,t+1
CPF )

=
[
ΨCPF(Mt,pt+1)−Ψ∗,tCPF

]
−
∑
i

(bt+1
i − bti) · lnQi(pt+1) + (Ψ∗,tCPF −Ψ∗,t+1

CPF )

≤ (1− δ) · ΦCPF(Mt,pt) −
∑
i

(bt+1
i − bti) · lnQi(pt+1) + (Ψ∗,tCPF −Ψ∗,t+1

CPF ).

Using a similar approach as in the previous section, we can bound (Ψ∗,tCPF −Ψ∗,t+1
CPF ).

Ψ∗,t+1
CPF =

n∑
j=1

wj · p∗,t+1
j −

∑
i

bt+1
i · lnQi(p∗,t+1)

=
n∑
j=1

wj · p∗,t+1
j −

∑
i

bti · lnQi(p∗,t+1) −
∑
i

(bt+1
i − bti) · lnQi(p∗,t+1)

≥ Ψ∗,tCPF −
∑
i

(bt+1
i − bti) · lnQi(p∗,t+1).

Combining the above two inequalities yields

ΦCPF(Mt+1,pt+1) ≤ (1− δ) · ΦCPF(Mt,pt) +
∑
i

(bt+1
i − bti) · ln

Qi(p
∗,t+1)

Qi(pt+1)
.

Cheung et al. [46, Section 6.3] showed that in the static market setting, if the initial

prices are neither too high nor too low, then Qi(p
∗,t+1)

Qi(pt+1)
has time-independent upper and

lower bounds. In the dynamic market setting, we assume that there exists a constant

C ≥ 1 such that the budget of each buyer i changes within the range [b0i /C,C · b0i ]. Let

U∗, L∗ be the time-independent upper and lower bounds derived in [46], for the static

market setting with b = (b01, . . . , b
0
m). Following the argument in [46], their upper bound

on pt+1
k can be carried through to the dynamic market setting by increasing by a factor of

C, while their lower bound on pt+1
k can be carried through to the dynamic market setting

by shrinking by a factor of 1/C; these hold similarly for the equilibrium prices. Thus,
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for the dynamic market setting, we have time-independent upper and lower bounds on
Qi(p

∗,t+1)
Qi(pt+1)

of values C2 · U∗ and L∗/C2 respectively. Thus, by setting

C ′ := max
{ ∣∣ln(C2 · U∗)

∣∣ , ∣∣ln(L∗/C2)
∣∣ } ,

we have

ΦCPF(Mt+1,pt+1) ≤ (1− δ) · ΦCPF(Mt,pt) + C ′ ·
∑
i

∣∣bt+1
i − bti

∣∣ ,
i.e., ∆t = C ′ ·∑i

∣∣bt+1
i − bti

∣∣.

7.2.3 Dynamic Buyer Utility

In this section, we consider the case when the buyers’ utility function are changing, while

supplies and budgets are fixed. In this case, changes to utility functions induce changes

to the functions Qti.

Proposition 7.5. A market with changing buyers’ utility functions, keeping other pa-

rameters fixed, satisfies the market perturbation property with ∆t = 2B lnχt, where

χt = maxi,j((χ
t
ij)
−1/ρ, (χtij)

1/ρ). Here χij denotes the multiplicative change in utility

value aij.

Proof.

ΦCPF(Mt+1,pt+1) = ΨCPF(Mt+1,pt+1)−Ψ∗,t+1
CPF

=

 n∑
j=1

wj · pt+1
j −

∑
i

bi · lnQti(pt+1) − Ψ∗,tCPF

 − ∑
i

bi · ln
Qt+1
i (pt+1)

Qti(p
t+1)

+ (Ψ∗,tCPF −Ψ∗,t+1
CPF )

=
[
ΨCPF(Mt,pt+1)−Ψ∗,tCPF

]
−
∑
i

bi · ln
Qt+1
i (pt+1)

Qti(p
t+1)

+ (Ψ∗,tCPF −Ψ∗,t+1
CPF )

≤ (1− δ) · ΦCPF(Mt,pt) −
∑
i

bi · ln
Qt+1
i (pt+1)

Qti(p
t+1)

+ (Ψ∗,tCPF −Ψ∗,t+1
CPF ).
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(Ψ∗,tCPF −Ψ∗,t+1
CPF ) can be bounded as follows:

Ψ∗,t+1
CPF =

n∑
j=1

wj · p∗,t+1
j −

∑
i

bi · lnQt+1
i (p∗,t+1)

=

n∑
j=1

wj · p∗,t+1
j −

∑
i

bi · lnQti(p∗,t+1) −
∑
i

bi · ln
Qt+1
i (p∗,t+1)

Qti(p
∗,t+1)

≥ Ψ∗,tCPF −
∑
i

bi · ln
Qt+1
i (p∗,t+1)

Qti(p
∗,t+1)

.

Combining yields

ΦCPF(Mt+1,pt+1) ≤ (1− δ) ·ΦCPF(Mt,pt) +
∑
i

bi · ln
(
Qt+1
i (p∗,t+1)

Qti(p
∗,t+1)

· Qti(p
t+1)

Qt+1
i (pt+1)

)
.

Starting from the initial utility values, each aij can in each round be changed by some

multiplicative factor χtij . Let χt = maxi,j((χ
t
ij)
−1/ρ, (χtij)

1/ρ) and χ = maxt χ
t. Note

that (1− c)/c = −1/ρ, so 1/χt ≤ Qt+1
i (p)/Qti(p) ≤ χt for any price vector p. Thus,∣∣∣∣ln(Qt+1

i (p∗,t+1)

Qti(p
∗,t+1)

· Qti(p
t+1)

Qt+1
i (pt+1)

)∣∣∣∣ ≤ 2 lnχt,

and hence

ΦCPF(Mt+1,pt+1) ≤ (1− δ) · ΦCPF(Mt,pt) + 2B lnχt,

i.e., ∆t = 2B lnχt.

7.3 Connections to Bounds on Revenue Loss

Up until now, we have focused on the tatonnement price update with goal of analyzing

its robustness to arbitrary changes in market parameters. In the previous sections,

we showed that indeed, on account of the fact that tatonnement converges linearly

to equilibrium, even in the case when market parameters are subject to perturbation,

tatonnement ensures that the market stays in a state of approximate equilibrium, where

the state of the market is measured with respect to a convex potential function. This

approximation however naturally depends on the magnitude of these perturbations.

The reader may recall that in Chapter 5, we established a connection between the value

of the potential function in any given round to the loss incurred by any seller in the

same round. For the same tatonnement updates as considered here, we showed a bound

on the loss in the revenue of any seller, albeit in static markets. One can however, as

well borrow this analysis and plug-in the value of the potential of a perturbed market
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to derive analogous bounds on the loss incurred by any seller. We note here, that this

bound would now be a function of the magnitude of the changes in the potential function

induced by the perturbations encountered. The magnitude of these changes is exactly

what we have analyzed in Sections 7.2.

7.4 Parametrized Lyapunov Dynamical Systems

In this section, we prove a general theorem, which includes as special case the bound

shown for markets in Proposition 7.1. Our focus here are dynamical systems, in which

time is discrete and represented by non-negative integers. Note, however, that the

formulation below can be easily generalized to settings with continuous time.

We assume that the dynamical system can be described by two sets of parameters.

There is a set of control variables that can be adjusted by an algorithm or a protocol.

In addition, there is a set of system parameters that can change in each round in an

adversarial way. For example, in our analysis of markets in the previous section, the

control variables are prices of goods, whereas system parameters can be supplies of

goods, budgets of agents, or utility parameters. As another example, in games the

control variables could be the strategy choices of agents, whereas system parameters are

utility and payoff values of states.

The classical theory of dynamical systems often studies the behaviour of systems with

static system parameters. However, dynamical systems with varying system parameters

often arise in practice (see Section 7.4.1 for an example). Here, we propose a simple

framework to analysis Lyapunov dynamical systems with varying system parameters.

More formally, the dynamical system L is described by an initial control variable vector

p0 ∈ Rn and an evolution rule F : Rn → Rn, which specifies how the control variables

are adjusted. For each time t ≥ 1, we have pt = F (pt−1).

The system L is called a Lyapunov dynamical system (LDS) if it admits a Lyapunov

function G : Rn → R+ such that

(a) for every fixed point (equilibrium) p of F with F (p) = p it holds G(p) = 0;

(b) for every p ∈ Rn it holds G(F (p)) ≤ G(p).

An LDS L is called linearly converging (LCLDS) if it further satisfies

(c) there exists a decay parameter δ = δ(L) > 0 such that for any p ∈ Rn,

G(F (p)) ≤ (1− δ) ·G(p).
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Let L be a family of dynamical systems, while each dynamical system Ls ∈ L is

parametrized by a system parameter vector s ∈ Rd. The family L is called a family

of parametrized, linearly converging LDS (PLCLDS) if each Ls ∈ L is an LCLDS and

δ(L) = infLs∈L δ(Ls) > 0. For each Ls, we denote its evolution rule by Fs and its

Lyapunov function by Gs.

In many scenarios, particularly in agent-based dynamical systems, the control variables p

change by the evolution rule that expresses, e.g., the sequential decisions of the agents,

but the system parameters s can change in an exogeneous (or even adversarial) way.

However, in many cases the impact of changes in a single time step is rather mild.

The following theorem states our recovery result by relating the Lyapunov value to the

magnitude of changes in each step. Intuitively, it characterizes the “distance” that the

evolution rule maintains to a fixed point over the course of the dynamics.

Theorem 7.6. Let L be a PLCLDS with δ ≡ δ(L) > 0, let s0, s1, . . . , sT denote the

system parameter vectors at times 0, 1, · · · , T , respectively, and let Φ(st,pt) = Gst(p
t).

Suppose that for every t = 1, . . . , T the system parameters st−1, st ∈ Rd invoke a change

such that for every p ∈ Rn, we have Φ(st,p) ≤ Φ(st−1,p) + ∆t. The initial control

variable vector is denoted by p0, and the system evolves such that for every t ≥ 1 we

have pt = Fst−1(pt−1). Then

Φ(sT ,pT ) ≤ (1− δ)T · Φ(s0,p0) +

T∑
t=1

(1− δ)T−t ·∆t .

Let ∆ = maxt=1,...,T ∆t, then it follows for any t ≤ T

Φ(sT ,pT ) ≤
T∑

τ=t+1

(1− δ)T−τ∆τ +
(1− δ)T−t

δ
·∆ + (1− δ)T · Φ(s0,p0) .

Proof. For any time t ≥ 1,

Φ(st,pt) = Gst(p
t) ≤ Gst−1(pt) + ∆t

= Gst−1(Fst−1(pt−1)) + ∆t

≤ (1− δ) ·Gst−1(pt−1) + ∆t = (1− δ) · Φ(st−1,pt−1) + ∆t.

Iterating the above recurrence yields the first result. For the second result, note that

t∑
τ=1

(1−δ)T−τ∆τ ≤ ∆(1− δ)T ·
t∑

τ=1

(
1

1− δ

)τ
= ∆ · (1− δ)T+1

δ
·
((

1

1− δ

)t+1

− 1

1− δ

)
< ∆ · (1− δ)T

δ
·
(

1

1− δ

)t
.
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In the scenarios where
∑T

t=1 ∆t = O(Tα) for small constant α, we have the following

corollary.

Corollary 7.7. In the setting of Theorem 7.6, if
∑T

t=1 ∆t = O(Tα) for some constant

α > 0, then for any constant β > 0,

Φ(sT ,pT ) ≤
T∑

τ=T−dα+βδ log Te+1

∆τ + O(T−β) + (1− δ)T · Φ(s0,p0).

As T →∞, the last two terms of the above inequality diminish. The bound is dominated

by the first term, which describes the impact of the changes in the recent O
(

log T
δ

)
steps.

7.4.1 Load Balancing with Dynamic Machine Speed

Consider a setting with n distinct machines connected to each other to form an arbitrary

network. For ease of notation, we label the machines as mi for i = 1 to n. Each

machine mi can process jobs at speed si. Jobs/tasks, assumed to be infinitely divisible,

of total weight M are arbitrarily distributed over the network. Our goal is to design a

decentralized load balancing algorithm with the objective that the total processing time

over all machines is minimized.

Algorithm 8 Diffusion

1: for t = 1 to T do
2: for each machine mi do
3: f

(t)
i ← total processing time on mi

4: broadcast f
(t)
i to all j ∈ nbd(mi)

5: for all j ∈ nbd(mi) do

6: if f
(t)
i > f

(t)
j then

7: Send Pij(f
(t)
i − f

(t)
j )si load to j

8: end if
9: end for

10: end for
11: end for

Before proceeding, we set up some notation. s denotes the vector of machine speeds.

`(t) = (`
(t)
i )i denotes the vector of loads and f (t) = (f

(t)
i )i the corresponding finishing

times at round t. We assume throughout that the total load stays constant i.e.
∑

i `
(t)
i =

M . For machine speed s, f∗,s denotes the corresponding vector of finishing times in the

balanced state, i.e., a state where the finishing time of all machines is the same.

Algorithm 8 is based on the diffusion principle [89], where if a machine has more jobs

than its neighbours, then some jobs diffuse to the neighbour. In our context, since the
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goal is to equalize the finishing times of all machines, the number of jobs that diffuse

is proportional to the difference in the finishing times. The proportionality constant

depends on the connecting edge. Specifically, in the algorithm that follows we use a

diffusivity matrix P satisfying the following conditions: (a) Pii ≥ 1/2 (b) Pij > 0 iff

(i, j) is an edge in G. (c) P is symmetric and stochastic, i.e., for every machine mi,∑
j Pij = 1.

If each machinemi uses the load balancing protocol as described above, then the finishing

time of machine mi at time t+ 1 is:

f
(t+1)
i =

`
(t+1)
i

si
=

1

si

`(t)i − n∑
j=1

Pij

(
`
(t)
i

si
−
`
(t)
j

sj

)
si


=

1

si

`(t)i − n∑
j=1

Pij`
(t)
i +

n∑
j=1

Pij
`
(t)
j

sj
si


=

1

si

 n∑
j=1

Pijf
(t)
j si

 =
(
Pf (t)

)
i
.

It therefore follows that f (t+1) = P f (t). Further, in the balanced state f∗, since the

finishing time of all machines is the same,

(P f∗)i =
n∑
j=1

Pijf
∗
j = f∗i

n∑
j=1

Pij = f∗i ,

i.e., P f∗ = f∗. If we denote the error in round t+ 1 by e(t+1), then:

e(t+1) = f (t+1) − f∗ = P (f (t) − f∗) = Pe(t),

i.e., the same transformations apply to the error vector as well. Since P is a symmetric

matrix, it has n eigenvalues λ1, λ2 · · ·λn and linearly independent corresponding eigen-

vectors. By the theory of Markov chains, it is also known that 1 = |λ1| ≥ |λ2| ≥ · · · |λn|.
Since P scales the length of e(t) by a factor of at most |λ2|:∥∥∥e(t+1)

∥∥∥ =
∥∥∥Pe(t)

∥∥∥ ≤ |λ2|
∥∥∥e(t)

∥∥∥ ⇒ ∥∥∥e(t+1)
∥∥∥ ≤ |λ2|t

∥∥∥e(0)
∥∥∥ . (7.2)

For a given speed vector s, one can define the “potential” as the normed distance:∥∥f (t) − f∗,s
∥∥

1
. This measures the imbalance in the network in terms of the finishing

times. From (7.2), since the error vector e converges to zero linearly, the potential

at the balanced state is zero. Note that this load balancing setting is an instance

of the Lyapunov dynamical system introduced in Section 7.4. Specifically, the speed

vector s is the system parameter, the evolution function F (`(t)) is the diffusion process
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as described in Algorithm 8 and the potential as mentioned above corresponds to the

Lyapunov function Gs(`
(t)) = Gts. Note that by (7.2) it follows that Gt+1

s ≤ |λ2|tG0
s.

In the following, all norms are assumed to be L1 norms.

Proposition 7.8. For a speed vector s and an arbitrary load profile vector `, let f

denote the corresponding finishing time vector. For a Lyapunov function defined as

Gs = ‖f − f∗,s‖, if the speed vector changes to s′ for the same load profile, then:

Gs′ ≤ Gs + Mn

∣∣∣∣ 1

‖s′‖ −
1

‖s‖

∣∣∣∣ .
Proof. For a change in the speed vector to s′ with the same load profile, the Lyapunov

function is given by:

Gs′ =
∥∥∥f − f∗,s

′
∥∥∥ ≤ ‖f − f∗,s‖ +

∥∥∥f∗,s′ − f∗,s
∥∥∥ = Gs +

∥∥∥f∗,s′ − f∗,s
∥∥∥ . (7.3)

Let `i denote the load on machine mi. Using the underlying symmetry, we can claim

that the load on any machine mi in the balanced state and its corresponding finishing

time are `∗i = si·M∑
k sk

and f∗,si =
`∗i
si

= M∑
k sk

respectively. It then follows that:

∥∥∥f∗,s′ − f∗,s
∥∥∥ =

∑
i

∣∣∣∣∣`
′∗
i

s′i
− `∗i
si

∣∣∣∣∣ =
∑
i

∣∣∣∣ M∑
k s
′
k

− M∑
k sk

∣∣∣∣ = Mn

∣∣∣∣ 1

‖s′‖ −
1

‖s‖

∣∣∣∣ .

To formalize the problem, let LB(N,M) be a family of load balancing environments

where N denotes the network of underlying machines and M the total weight of jobs.

Each individual environment LBs ∈ LB(N,M) is parameterized by the machine-speed

vector s. The corresponding potential (also Lyapunov) function is denoted by Gs.

Proposition 7.9. Let LB(N,M) be a family of load balancing environments on n ma-

chines with the corresponding diffusivity matrix being PN . Let s0, s1, · · · , sT denote the

vector of machine speeds at times 0, 1 · · ·T respectively. If we denote by λ2 the second

largest eigenvalue of PN and Φ(st, `t) := Gst(`
t), then

Φ(sT , `T ) ≤ |λ2|T · Φ(s0, `0) + Mn

T∑
t=1

|λ2|T−t ·
∣∣∣∣ 1

‖st+1‖ −
1

‖st‖

∣∣∣∣ .
Proof. The result follows from the fact that Gt+1

s ≤ |λ2|Gts and Theorem 7.6.
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Since Φ is a measure of load imbalance in the network in terms of finishing times, the

above theorem implies that if the change in the speed vectors across rounds is small,

then the imbalance at time T is small and depends largely on the most recent changes.



Chapter 8

Conclusions

In this thesis, we focused on a rather broad class of problems ranging from product

recommendations to a website visitor to pricing strategies in large markets. In all of the

problems considered, we identified a key property of the model and designed approaches

that take advantages of it. For example, in Chapter 2, we exploited the trend structure

that is often inherent in several loss models. Similarly, in Chapter 3, we were able to

design efficient algorithms by making use of the stochastic nature of channel performance.

The approaches used in both these chapters although inspired from solutions to the

classical problems, need significant changes to achieve stronger performance guarantees.

This suggests that to design algorithms for sequential learning problems based on non-

standard models, it is crucial to identify and characterise the key properties of the

model, since black-box approaches are often too broad and cannot account for the model

subtleties.

The insights obtained from the pricing problems we study are much deeper. Firstly,

we note that the tatonnement update method, which has been widely studied in both

algorithms and economics circle, has not yet shown to be individually rational i.e., it is

not clear that this (and exactly this) price update is in the best interest of each seller. In

chapters 5 and 7, we demonstrated that this price update not only leads to fast conver-

gence to equilibrium, or approximate convergence in the case of dynamic markets, but

also ensures revenue optimality. One can therefore argue that the tatonnement update

method, as studied in this thesis, is a result of the revenue optimizing actions of the sell-

ers. Our results, however, only apply to the gross-substitutes class of markets. Proving

similar connections for a larger class of markets is still open. For the class of dynamic

markets, we observed that some specialized forms of no-regret dynamics and predic-

tion techniques for supply estimation can also be used. Although their performance is

109
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weaker than the tatonnement update for the specific class of CES utility functions, these

techniques are applicable to a larger class of functions.
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[15] Levente Kocsis and Csaba Szepesvári. Discounted ucb. In 2nd PASCAL Challenges

Workshop, pages 784–791, 2006.
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