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Background: Many gene variants modulate the individual perception of pain and
possibly also its persistence. The limited selection of single functional variants is
increasingly being replaced by analyses of the full coding and regulatory sequences
of pain-relevant genes accessible by means of next generation sequencing (NGS).

Methods: An NGS panel was created for a set of 77 human genes selected following
different lines of evidence supporting their role in persisting pain. To address the role
of these candidate genes, we established a sequencing assay based on a custom
AmpliSeqTM panel to assess the exomic sequences in 72 subjects of Caucasian
ethnicity. To identify the systems biology of the genes, the biological functions associated
with these genes were assessed by means of a computational over-representation
analysis.

Results: Sequencing generated a median of 2.85 · 106 reads per run with a mean depth
close to 200 reads, mean read length of 205 called bases and an average chip loading of
71%. A total of 3,185 genetic variants were called. A computational functional genomics
analysis indicated that the proposed NGS gene panel covers biological processes
identified previously as characterizing the functional genomics of persisting pain.

Conclusion: Results of the NGS assay suggested that the produced nucleotide
sequences are comparable to those earned with the classical Sanger sequencing
technique. The assay is applicable for small to large-scale experimental setups to target
the accessing of information about any nucleotide within the addressed genes in a study
cohort.
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INTRODUCTION

Persisting pain has been proposed to result from a gene
environment interaction where nerve injuries or inflammatory
processes act as triggers while the clinical symptoms develop only
in a minority of subjects (Lee and Tracey, 2013). A role of the
genetic background in pain is supported by evidence of many
variants modulating the individual perception of pain and the
development of its persistence (Diatchenko et al., 2005; Lötsch
et al., 2009b; Mogil, 2012). Genetic variants have been reported
to confer protection against pain such as the rs1799971 variant in
the µ-opioid receptor gene (OPRM1) (Lötsch et al., 2006), or to
increase the risk for persisting pain such as the rs12584920 variant
of the 5-hydroxytryptamine receptor 2A gene (HTR2A) (Nicholl
et al., 2011) or the rs734784 polymorphism in the voltage-
gated potassium ion channel modifier, subfamily S member 1,
gene (KCNS1) (Costigan et al., 2010). Nevertheless, the genetic
background of persisting pain is still incompletely understood
(Mogil, 2009; Lötsch and Geisslinger, 2010) and under intense
discussion.

Until recently, research focused on the role of selected
functional genetic variants as protective or risk factors of
persisting pain. This has changed with the broader availability
of next generation sequencing (NGS) (Metzker, 2010). To make
use of these technical advancements, we developed a custom
AmpliSeqTM library and sequencing assay for efficient detection
of genetic variants possibly associated with persisting pain. We
propose an assay of a set of 77 genes supported by evidence of an
involvement in pain and its development toward persistence. The
set size fully uses the technical specifications of the AmpliSeqTM

gene sequencing library technique.

MATERIALS AND METHODS

Selection of Genes Relevant for
Persisting Pain
A set of candidate genes with shown or biologically plausible
relevance to persisting pain was created by applying a
combination of criteria, which provided three different genetic
subsets. Subset 1 was chosen exclusively on the basis of
computational functional genomics based on a recently published
analysis of persisting pain regarded as displaying systemic
features of learning and neuronal plasticity (Mansour et al., 2014).
As discussed previously (Ultsch et al., 2016), the view of chronic
pain as a dysregulation in biological processes of learning and
neuronal plasticity (Alvarado et al., 2013) seems to be captured
by the controlled vocabulary (Camon et al., 2004) of the Gene
Ontology (GO) knowledge base by the GO terms “learning or
memory” (GO:0007611)1 and “nervous system development”
(GO:0007399)2. An intersection of the genes annotated to these
GO terms with a set of 539 “pain genes” identified empirically as
relevant to pain provided the first subset of 34 genes described
in detail previously (Ultsch et al., 2016). Briefly, the intersecting

1http://amigo.geneontology.org/amigo/term/GO:0007611
2http://amigo.geneontology.org/amigo/term/GO:0007399

set of so-called “pain genes” consists of a combination of (i) genes
listed in the PainGenes database (Lacroix-Fralish et al., 2007)3, (ii)
genes causally involved in human hereditary diseases associated
with extreme pain phenotypes, (iii) genes found to be associated
with chronic pain in at least three human studies, and (iv) genes
coding for targets of novel analgesics under clinical development
(Lötsch et al., 2013).

Subset 2 consisted of genes that were reported to carry
variants modulating the risk or the phenotypic symptoms in
at least two different clinical settings of persisting pain. They
were obtained using (i) a PubMed database search for the
string “(chronic OR persisting OR neuropathic OR back OR
inflammatory OR musculoskeletal OR visceral OR widespread
OR idiopathic OR fibromyalgia) AND pain AND (polymorphism
OR variant) NOT review,” to which genes highlighted in
overviews on pain genetics (e.g., Edwards, 2006) were added. The
intersection of the queried genes with the set of 539 “pain genes”
(see above) provided a subset of 13 genes (Table 1).

Finally, subset 3 comprised genes that have consistently been
included in human pain research projects over the last several
years. One of them is the OPRM1 gene that codes for the human
µ-opioid receptor and which has been shown to modulate the
time course of persisting cancer pain by delaying the necessity
of opioid treatment (Lötsch et al., 2010). However, further genes
were added such as the GDNF gene coding for the glial cell
derived neurotrophic factor, which has been shown to be involved
in a glia-dependent mechanism of neuropathic pain (Wang et al.,
2014) although no modulating human genetic variants have been
reported so far. Following expert counseling within the EU-
funded “glial-opioid interface in chronic pain, GLORIA” research
consortium (Kringel and Lötsch, 2015)4, a subset of 30 genes
(Table 1) was identified. Thus, the complete set as the union of
the three subsets comprised 43 + 13 + 30 = 77 genes that are
proposed to be included in an NGS panel of human persisting
pain.

DNA Sample Origin
Due to the costs of assay development (for details, see second
paragraph of the Discussion), the AmpliseqTM panel was
established in a limited number of n = 72 DNA samples. This
corresponds to the number of samples used in comparable recent
studies for NGS assay establishment and validation (Bruera et al.,
2018; De Luca et al., 2018; Mustafa et al., 2018; Shah et al.,
2018). To further limit the project costs, the AmpliseqTM panel
was established in a subset of samples originating from a clinical
cohort of 1,000 women who had undergone breast cancer surgery
(Kaunisto et al., 2013; Lötsch et al., 2018). The study followed the
Declaration of Helsinki and was approved by the Coordinating
Ethics Committee of the Helsinki University Hospital. Each
participating subject had provided a written informed consent
including genetic studies.

Specifically, for the presently reported method establishment,
a subsample of 72 women (age 58.4 ± 8 years, mean ± standard
deviation, weight 69.3 ± 11 kg), was drawn from the clinical

3http://www.jbldesign.com/jmogil/enter.html
4http://gloria.helsinki.fi
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TABLE 1 | Genes included in the proposed NGS panel of persisting pain, combined from three subsets included on different bases.

Gene symbol NCBI Gene description Reference

Subset #1

ADCY1 107 Adenylate cyclase 1 Vadakkan et al., 2006

BDNF 627 Brain-derived neurotrophic factor Obata and Noguchi, 2006

CDK5 1020 Cyclin-dependent kinase 5 Yang et al., 2014

CHRNB2 1141 Cholinergic receptor, nicotinic, beta 2 Dineley et al., 2015

CNR1 1268 Cannabinoid receptor 1 (brain) Smith et al., 1998

DLG4 1742 Disks, large homolog 4 (Drosophila) Florio et al., 2009

DRD1 1812 Dopamine receptor D1 Onojjighofia et al., 2014

DRD2 1813 Dopamine receptor D2 Onojjighofia et al., 2014

DRD3 1814 Dopamine receptor D3 Potvin et al., 2009

EGR1 1958 Early growth response 1 Ko et al., 2005

FOS 2353 Cellular oncogene FOS Abbadie et al., 1994

FYN 2534 Src family tyrosine kinase Liu et al., 2014

GABRA5 2558 GABA A receptor, alpha 5 Bravo-Hernández et al., 2016

GALR2 8811 Galanin receptor 2 Hulse et al., 2012

GRIN1 2902 Glutamate receptor, NMDA 1 Petrenko et al., 2003

GRIN2A 2903 Glutamate receptor, NMDA 2A Petrenko et al., 2003

GRIN2B 2904 Glutamate receptor, NMDA 2B Petrenko et al., 2003

GRM5 2915 Glutamate receptor, metabotropic 5 Walker et al., 2001

HRH3 11255 Histamine receptor H3 Huang et al., 2007

KIT 3815 Tyrosine kinase KIT Sun et al., 2009

NF1 4763 Neurofibromin 1 Wolters et al., 2015

NGF 4803 Nerve growth factor Kumar and Mahal, 2012

NTF4 4909 Neurotrophin 4 Kumar and Mahal, 2012

NTRK1 4914 Neurotrophic tyrosine kinase 1 Kumar and Mahal, 2012

OXT 5020 Oxytocin prepropeptide Goodin et al., 2015

PLCB1 23236 Phospholipase C, beta 1 Shi T.-J.S. et al., 2008

PRKCG 5582 Protein kinase C, gamma Sluka and Audette, 2006

PRNP 5621 Prion protein Gadotti and Zamponi, 2011

PTN 5764 Pleiotrophin Gramage and Herradon, 2010

PTPRZ1 5803 Protein tyrosine phosphatase Z 1 Ultsch et al., 2016

RELN 5649 Reelin Buchheit et al., 2012

S100B 6285 S100 calcium binding protein B Zanette et al., 2014

SLC6A4 6532 Serotonin transporter Offenbaecher et al., 1999

TH 7054 Tyrosine hydroxylase Bravo et al., 2014

Subset #2

ADRB2 154 Adrenoceptor beta 2 Hocking et al., 2010

COMT 1312 Catechol-O-methyltransferase Feng et al., 2013

ESR1 2099 Extrogen Receptor 1 Ribeiro-Dasilva et al., 2009

GCH1 2643 GTP cyclohydrolase 1 Tegeder et al., 2006

IL1B 3553 Interleukin 1B Loncar et al., 2013

IL4 3565 Interleukin 4 Sugaya et al., 2002

IL6 3569 Interleukin 6 Shoskes et al., 2002

IL10 3586 Interleukin 10 Stephens et al., 2014

P2RX7 5027 Purinergic Receptor P2X7 Sorge et al., 2012

SCN9A 6335 Sodium voltage-gated alpha subunit 9 Reimann et al., 2010

SOD2 6648 Superoxide dismutase 2 Schwartz et al., 2009

TNF 7124 Tumor necrosis factor Leung and Cahill, 2010

TRPV1 7442 Transient receptor potential cation channel, subfamily V, member 1 Bourinet et al., 2014

Subset #3

ABHD12 26090 Abhydrolase domain containing 12 Kim, 2015

ABHD16A 7920 Abhydrolase domain containing 16A Kim, 2015

ABHD6 57406 Abhydrolase domain containing 6 Kim, 2015

(Continued)
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TABLE 1 | Continued

Gene symbol NCBI Gene description Reference

CACNG2 10369 Calcium voltage-gated channel auxiliary subunit gamma 2 Nissenbaum et al., 2010

CSF1 1435 Colony stimulating factor 1 Thuault, 2016

DRD4 1815 Dopamine receptor D4 Buskila et al., 2004

FAAH 2166 Fatty acid amide hydrolase Jayamanne et al., 2006

FKBP5 2289 Fk506 binding protein 5 Fujii et al., 2014

GDNF 2668 Glial cell derived neurotrophic factor Sah et al., 2005

GFRA1 2674 GDNF family receptor alpha 1 Yamamoto et al., 2003

GPR132 29933 G protein-coupled receptor 132 Hohmann et al., 2017

HCN2 610 Hyperpolarization-activated cyclic nucleotide-gated Tsantoulas et al., 2016

HLA-DQB1 3119 Major histocompatibility complex, class II, DQ beta 1 Dominguez et al., 2013

HLA-DRB1 3123 Major histocompatibility complex, class II, DR beta 1 Dominguez et al., 2013

HTR1A 3350 5-hydroxytryptamine (serotonin) receptor 1A Lindstedt et al., 2012

HTR2A 3356 5-hydroxytryptamine (serotonin) receptor 2A Nicholl et al., 2011

IL1R2 7850 Interleukin 1 receptor type 2 Stephens et al., 2014

KCNS1 3787 Potassium voltage-gated channel, modifier subfamily S, member 1 Costigan et al., 2010

LTB4R 1241 Leukotriene b4 receptor Zinn et al., 2017

LTB4R2 56413 Leukotriene b4 receptor 2 Zinn et al., 2017

OPRD1 4985 Opioid receptor delta 1 Law et al., 2013

OPRK1 4986 Opioid receptor kappa 1 Guerrero et al., 2010

OPRM1 4988 Opioid receptor mu 1 Lötsch and Geisslinger, 2005

RET 5979 RET receptor tyrosine kinase Snider and McMahon, 1998

RUNX1 861 Runt related transcription factor 1 Chen et al., 2006

TLR4 7099 Toll like Receptor 4 Hutchinson et al., 2010

TRPA1 8989 Transient receptor potential cation channel, subfamily A, member 1 Bourinet et al., 2014

TRPM8 79054 Transient receptor potential cation channel, subfamily M, member 8 Bourinet et al., 2014

TRPV4 59341 Transient receptor potential cation channel, subfamily V, member 4 Bourinet et al., 2014

TSPO 706 Translocator protein Loggia et al., 2015

Subset #1 comprises d = 34 genes that had resulted from a computational functional genomics analysis (Ultsch et al., 2016) pursuing the hypothesis that persisting pain
displays systemic features of learning and neuronal plasticity (Mansour et al., 2014). Hence, from a set of genes identified empirically as relevant to pain and listed in the
PainGenes database (http://www.jbldesign.com/jmogil/enter.html, Lacroix-Fralish et al., 2007), those were selected that are annotated to the Gene Ontology (Ashburner
et al., 2000) terms “learning or memory” and “nervous system development.” The references are those found to provide evidence for an association with pain, except for
PTPRZ1 that was a novel finding in (Ultsch et al., 2016). Subset #2 comprises d = 13 genes identified empirically as relevant to pain and listed in the PainGenes database
(http://www.jbldesign.com/jmogil/enter.html, Lacroix-Fralish et al., 2007) and reported to carry variants that modulated the risk or the symptomatology in at least two
different clinical settings of persisting paint. Subset #3 comprises d = 30 genes repeatedly shown during the last several years to play a role in the human genetics of
persisting pain or recently reported as novel players.

subgroup not having developed persisting pain during the
observation period. This was believed to come closer to a
random sample than a mixture of patients with persisting and
without persisting pain. This limitation of the sample selection
has probably affected which and how many variants were
identified. However, it is unlikely to have jeopardized the general
applicability of the gene selection heuristics, assay establishment
and validation, and of the functional analysis of the selected
subset of genes.

DNA Template Preparation and
Amplification
A multiplex PCR amplification strategy for the coding gene
sequences was accomplished online (Ion AmpliseqTM Designer)5

to amplify the target region specified above (for primer
sequences, see Supplementary Table 1) with 25 base pair exon
padding. After a comparison of several primer design options,

5http://www.ampliseq.com

the design providing the maximum target sequence coverage
was chosen. The ordered 1,953 amplicons covered approximately
97.5% of the target sequence (Supplementary Table 2). A total
of 10 ng DNA per sample was used for the target enrichment by
a multiplex PCR and each DNA pool was amplified with the Ion
AmpliseqTM Library Kit in conjunction with the Ion AmpliseqTM

“custom Primer Pool”-protocols according to the manufacturer’s
procedures (Life Technologies, Darmstadt, Germany).

After each pool had undergone 18 PCR cycles, the PCR
primers were removed with FuPa Reagent and the amplicons
were ligated to the sequencing adaptors with short stretches of
index sequences (barcodes) that enabled sample multiplexing
for subsequent steps (Ion XpressTM Barcode Adapters Kit;
Life Technologies). After purification with AMPure XP beads
(Beckman Coulter, Krefeld, Germany), the barcoded libraries
were quantified with a Qubit R© 2.0 Fluorimeter (Life Technologies,
Darmstadt, Germany) and normalized for DNA concentration
to a final concentration of 20 pmol/l using the Ion Library
EqualizerTM Kit (Life Technologies, Darmstadt, Germany).
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Equalized barcoded libraries from seven to eight samples at a time
were pooled. To clonally amplify the library DNA onto the Ion
Sphere Particles (ISPs; Life Technologies, Darmstadt, Germany),
the library pool was subjected to emulsion PCR by using an
Ion PGM HI-Q View Template Kit on an PGM OneTouch
system (Life Technologies, Darmstadt, Germany) following the
manufacturer’s protocol.

Sequencing
Enriched ISPs which carried many copies of the same DNA
fragment were subjected to sequencing on an Ion 318 Chip to
sequence pooled libraries with seven to eight samples. During
this process, bases are inferred from light intensity signals, a
process commonly referred to as base-calling (Ledergerber and
Dessimoz, 2011). The number of combined libraries that can
be accommodated in a single sequencing run depends on the
size of the chip, the balance of barcoded library concentration,
and the coverage required. The high-capacity 318 chip was
chosen (instead of the low-capacity 314 or the medium-capacity
316 chip) to obtain a high sequencing depth of coverage for a
genomic DNA library with >95% of bases at 30x. Sequencing
was performed using the sequencing kit (Ion PGM Hi-Q
Sequencing Kit; Life Technologies, Darmstadt, Germany) as
per the manufacturer’s instructions with the 200 bp single-
end run configuration. This kit contained the most advanced
sequencing chemistry available to users of the Ion PGM System
(Life Technologies, Darmstadt, Germany).

Data Analysis
Bioinformatics Generation of Sequence Information
The raw data (unmapped BAM-files) from the sequencing runs
were processed using Torrent Suite Software (Version 5.2.2, Life
Technologies, Darmstadt, Germany) to generate read alignments
which were filtered by the software into mapped BAM-files
using the reference genomic sequence (hg19) of target genes.
Variant calling was performed with the Torrent Variant Caller
Plugin using as key parameters: minimum allele frequency = 0.15,
minimum quality = 10, minimum coverage = 20 and minimum
coverage on either strand = 3.

The annotation of called variants was done using the Ion
Reporter Software (Version 4.4; Life Technologies, Darmstadt,
Germany) for the VCF files that contained the nucleotide reads
and the GenomeBrowse R© software (Version 2.0.4, Golden Helix,
Bozeman, MT, United States) to map the sequences to the
reference sequences GRCh37 hg19 (dated February 2009). The
SNP and Variation Suite software (Version 8.4.4; Golden Helix,
Bozeman, MT, United States) was used for the analysis of
sequence quality, coverage and for variant identification.

Based on the observed allelic frequency, the expected
number of homozygous and heterozygous carriers of the
respective SNP (single nucleotide polymorphism) was calculated
using the Hardy-Weinberg equation. Only variants within the
Hardy-Weinberg equilibrium as assessed using Fisher’s exact
test (Emigh, 1980) were retained. The SNP and Variation
Suite software (Version 8.4.4; Golden Helix, Bozeman, MT,
United States) was used for the analysis of sequence quality,
coverage and for variant identification.

Assay Validation
Method validation was accomplished by means of Sanger
sequencing (Sanger and Coulson, 1975; Sanger et al., 1977) in an
independent external laboratory (Eurofins Genomics, Ebersberg,
Germany). As performed previously with different AmpliSeqTM

panels (Kringel et al., 2017) and other genotyping assays (Skarke
et al., 2004, 2005), four DNA samples have been chosen randomly
from an independent cohort of healthy subjects and sequenced
with the current NGS panel. For the detected variant type,
single nucleotide polymorphisms from five different genomic
regions for which clinical associations have been reported
(Table 2), i.e., rs324420 (FAAH), rs333970 (CSF1), rs4986790
(TLR4), rs4633 (COMT), and rs17151558 (RELN) were chosen
for external sequencing. Amplification of the respective
DNA segments was done using PCR primer pairs (forward,
reverse) of (i) 5′-TTTCTTAAAAAGGCCAGCCTCCT-3′
and 5′-AATGACCCAAGATGCAGAGCA-3′ (ii) 5′-GCCTT
CAACCCCGGGATGG-3′ and 5′-CTCCGATCCCTGGTGC
TCCTC-3′ (iii) 5′-TTTATTGCACAGACTTGCGGGTTC-3′
and 5′-AGCCTTTTGAGAGATTTGAGTTTCA-3′ (iv) 5′-CC
TTATCGGCTGGAACGAGTT-3′ and 5′-GTAAGGGCTTT
GATGCCTGGT-3′ (v) 5′-GTTATTCCTCTGTAAGCAGCTGCC
T-3′ and 5′-TGTTTGTTTTAGATTGTGGTGGGTT-3′.
Results of Sanger sequencing were aligned with the genomic
sequence and analyzed using Chromas Lite R© (Version 2.1.1,
Technelysium Pty Ltd, South Brisbane, QLD, Australia) and the
GenomeBrowse R© (Version 2.0.4, Golden Helix, Bozeman, MT,
United States) was used to compare the sequences obtained with
NGS or Sanger techniques.

RESULTS

The NGS assay of the proposed set of 77 human genes
relevant to persisting pain was established in 72 genomic DNA
samples. As applied previously (Kringel et al., 2017), only exons
including 25 bases of padding around all targeted coding regions
for which the realized read-depths for each nucleotide was
higher than 20 were contemplated as successfully analyzed.
With this acceptance criterion the whole or almost whole
coverage of the relevant sequences was obtained (Table 1; for
details on missing variants, see Supplementary Table 3). The
NGS sequencing process of the whole patient cohort required
ten separate runs, each with samples of n = 7 or n = 8
patients. Coverage statistics were analogous between all runs
and matched the scope of accepted quality levels [20–22].
A median of 2.85 · 106 reads per run was produced. The mean
depth was close to 200 reads, the mean read length of called
bases resulted in 205 bases and average chip loading was 71%
(Figure 1A). To establish a sequencing output with a high
density of ISPs on a sequencing chip, the chip loading value
should exceed 60% (Life Technologies, Carlsbad, United States).
The generated results of all NGS runs matched with the
results obtained with Sanger sequencing of random samples
(Figure 1B), meaning the accordance of nucleotide sequences
between NGS and Sanger sequencing was 100% in all validated
samples.
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TABLE 2 | A list of coding human variants in the 77 putative chronic pain genes, found in the present random sample of 72 subjects of Caucasian ethnicity, for which
clinical associations have been reported.

Gene Variant dbSNP# accession number Known clinical association Reference

Pain context

FAAH 1:46870761-SNV rs324420 Effect of endocannabinoid degradation on pain Cajanus et al., 2016

FAAH 1:46870761-SNV rs324420 Cold and heat pain sensitivity Kim et al., 2006b

CSF1 1:110466338-SNV rs333970 Rheumatoid arthritis Solus et al., 2015

NGF 1:115829313-SNV rs6330 Procedural pain Ersig et al., 2017

NGF 1:115829313-SNV rs6330 Susceptibility to migraine Coskun et al., 2016

IL1B 2:113590966-SNV rs1143634 Adverse effects in postoperative pain Somogyi et al., 2016

IL1B 2:113590966-SNV rs1143634 Low back pain Feng et al., 2016

SCN9A 2:167099158-SNV rs6746030 Pain susceptibility in Parkinson disease Greenbaum et al., 2012

SCN9A 2:167099158-SNV rs6746030 Congenital insensitivity to pain Klein et al., 2013

SCN9A 2:167099158-SNV rs6746030 Basal Pain Sensitivity Duan et al., 2015

SCN9A 2:167145122-SNV rs188798505 Altered pain perception Reimann et al., 2010

DRD3 3:113890815-SNV rs6280 Acute pain in sickle cell disease Jhun et al., 2014

DRD3 3:113890815-SNV rs6280 Higher prevalence of migraine Hu et al., 2014

ADRB2 5:148206646-SNV rs1042717 Musculoskeletal pain Diatchenko et al., 2006

ADRB2 5:148206885-SNV rs1800888 Migraine Schurks et al., 2009

ESR1 6:152129077-SNV rs2077647 Migraine Schürks et al., 2010

ESR1 6:152129077-SNV rs2077647 Musculoskeletal pain Wise et al., 2009

OPRM1 6:154360797-SNV rs1799971 Pain of various origins Lötsch et al., 2009c

SOD2 6:160113872-SNV rs4880 Migraine Palmirotta et al., 2015

IL6 7:22771039-SNV rs13306435 Low back pain Eskola et al., 2010

OPRK1 8:54142157-SNV rs702764 Neuropathic pain Garassino et al., 2013

TLR4 9:120475302-SNV rs4986790 Musculoskeletal pain Gębura et al., 2017

TH 11:2188238-SNV rs6357 Widespread Pain Jhun et al., 2015

TH 11:2190951-SNV rs6356 Migraine Corominas et al., 2009

BDNF 11:27679916-SNV rs6265 Widespread Pain Ersig et al., 2017

DRD2 11:113283459-SNV rs6277 Post-surgical pain Kim et al., 2006a

DRD2 11:113283477-SNV rs6275 Migraine Onaya et al., 2013

P2RX7 12:121600253-SNV rs208294 Cold pain sensitivity Ide et al., 2014

P2RX7 12:121605355-SNV rs7958311 Neuropathic pain Ursu et al., 2014

HTR2A 13:47409034-SNV rs6314 Migraine susceptibility Yücel et al., 2016

TRPV1 17:3480447-SNV rs8065080 Neuropathic pain Doehring et al., 2011

KCNS1 20:43723627-SNV rs734784 Neuropathic pain Doehring et al., 2011

COMT 22:19950235-SNV rs4633 Postoperative pain Khalil et al., 2017

COMT 22:19950263-SNV rs6267 Widespread Pain Lin et al., 2017

COMT 22:19951271-SNV rs4680 Altered pain perception Wang et al., 2015

Other context

CSF1 1:110466466-SNV rs1058885 Periodontitis Chen et al., 2014

CSF1 1:110466555-SNV rs2229165 Carcinogenesis/breast cancer Savas et al., 2006

NTRK1 1:156846233-SNV rs6334 Nephropathy Hahn et al., 2011

NTRK1 1:156848946-SNV rs6339 Acute myeloid leukemia Schweinhardt et al., 2008

SCN9A 2:167143050-SNV rs41268673 Erythromelalgia Klein et al., 2013

TRPM8 2:234854550-SNV rs11562975 Hyperresponsiveness in bronchial asthma Naumov et al., 2015

TRPM8 2:234905078-SNV rs11563208 Anthropometric parameters Potapova et al., 2014

DRD3 3:113890789-SNV rs3732783 Phenotypic traits relevant to anorexia nervosa Root et al., 2011

KIT 4:55593464-SNV rs3822214 Cancer risk Pelletier and Weidhaas, 2010

KIT 4:55602765-SNV rs3733542 Glandular odontogenic cyst Siqueira et al., 2017

HTR1A 5:63257483-SNV rs1799921 Bipolar disorders Goodyer et al., 2010

ADRB2 5:148206646-SNV rs1042717 Cognitive dysfunction in opioid-treated patients with cancer Kurita et al., 2016

DRD1 5:174868840-SNV rs155417 Alcohol dependence Hack et al., 2011

HLA-DQB1 6:32629920-SNV rs41544112 Ulcerative colitis Achkar et al., 2012

FKBP5 6:35544942-SNV rs34866878 Clinical response in pediatric acute myeloid leukemia Mitra et al., 2011

(Continued)
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TABLE 2 | Continued

Gene Variant dbSNP# accession number Known clinical association Reference

CNR1 6:88853635-SNV rs1049353 Bone mineral density Woo et al., 2015

CNR1 6:88853635-SNV rs1049353 Alcohol dependence Marcos et al., 2012

CNR1 6:88853635-SNV rs1049353 Nicotine dependence Chen et al., 2008

CNR1 6:88853635-SNV rs1049353 Obesity Schleinitz et al., 2010

CNR1 6:88853635-SNV rs1049353 Psychiatric disorders Hillard et al., 2012

ESR1 6:152129077-SNV rs2077647 Breast cancer susceptibility Li et al., 2016

ESR1 6:152129077-SNV rs2077647 Prostate cancer development Jurečeková et al., 2015

ESR1 6:152129077-SNV rs2077647 Osteoporosis Sonoda et al., 2012

ESR1 6:152129308-SNV rs746432 Mood disorders Mill et al., 2008

ESR1 6:152201875-SNV rs4986934 Endometrial cancer risk Wedrén et al., 2008

OPRM1 6:154360508-SNV rs6912029 Irritable bowel syndrome Camilleri et al., 2014

OPRM1 6:154360797-SNV rs1799971 Schizophrenia Serý et al., 2010

OPRM1 6:154414573-SNV rs562859 Depressive disorder Garriock et al., 2010

OPRM1 6:154414563-SNV rs675026 Treatment response for opiate dependence Al-Eitan et al., 2012

SOD2 6:160113872-SNV rs4880 Development of type 2 diabetes mellitus Li et al., 2015

SOD2 6:160113872-SNV rs4880 Breast cancer susceptibility Rodrigues et al., 2014

SOD2 6:160113872-SNV rs4880 Asthma Yucesoy et al., 2012

ADCY1 7:45703971-SNV rs1042009 Bipolar disorder Shi J. et al., 2008

RELN 7:103124207-SNV rs1062831 Attention deficit hyperactivity disorder Kwon et al., 2016

RELN 7:103251161-SNV rs362691 Childhood epilepsy Dutta et al., 2011

OPRK1 8:54142154-SNV rs16918875 Susceptibility to addiction Kumar et al., 2012

TRPV1 8:72948588-SNV rs13280644 Perception olfactory stimuli Schütz et al., 2014

TLR4 9:120475602-SNV rs4986791 Breast cancer susceptibility Milne et al., 2014

GRIN1 9:140051238-SNV rs6293 Schizophrenia Georgi et al., 2007

RET 10:43610119-SNV rs1799939 Hirschsprung’s disease Vaclavikova et al., 2014

RET 10:43615094-SNV rs1800862 Medullary thyroid carcinoma Ceolin et al., 2012

GFRA1 10:117884950-SNV rs2245020 Age-related macular degeneration Schmidt et al., 2006

DRD4 11:637537-Del rs587776842 Acousticous neurinoma Nöthen et al., 1994

BDNF 11:27720937-SNV rs66866077 Irritable bowel syndrome-diarrhea Camilleri et al., 2014

DRD2 11:113283484-SNV rs1801028 Neurologic disorders Doehring et al., 2009

GRIN2B 12:13717508-SNV rs1806201 Alzheimer’s disease Andreoli et al., 2014

TRPV4 12:110252547-SNV rs3742030 Hyponatremia Tian et al., 2009

P2RX7 12:121592689-SNV rs17525809 Multiple sclerosis Oyanguren-Desez et al., 2011

HTR2A 13:47466622-SNV rs6305 Susceptibility to substance abuse Herman and Balogh, 2012

LTB4R 14:24785092-SNV rs34645221 Asthma susceptibility Tulah et al., 2012

GABRA5 15:27182357-SNV rs140682 Autism-spectrum disorders Hogart et al., 2007

GRIN2A 16:9943666-SNV rs2229193 Hyperactivity disorder Kim et al., 2017

DLG4 17:7099811-SNV rs17203281 Schizophrenia Tsai et al., 2007

SLC6A4 17:28530193-SNV rs6352 Autism-spectrum disorders Prasad et al., 2009

NF1 17:29553485-SNV rs2285892 Neurofibromatosis Maertens et al., 2007

HCN2 19:607984-SNV rs3752158 Risk of depression McIntosh et al., 2012

PRKCG 19:54394965-SNV rs3745396 Osteosarcoma susceptibility Lu et al., 2015

PRNP 20:4680251-SNV rs1799990 Creutzfeldt-Jakob disease Mead et al., 2009

HRH3 20:60791422-SNV rs3787430 Risk of chronic heart failure He et al., 2016

S100B 21:48022230-SNV rs1051169 Schizophrenia Liu et al., 2005

The selection is restricted to one or two publications per variant, and it focuses on a pain context corresponding to the main aim of the present NGS gene panel; however,
functional variants highlighted in another clinical context are additionally provided in the lower part of the table. #Database of Single Nucleotide Polymorphisms (dbSNP).
Bethesda (MD, United States): National Center for Biotechnology Information, National Library of Medicine. Available from: http://www.ncbi.nlm.nih.gov/SNP/ (Sherry
et al., 2001).

Following elimination of nucleotides agreeing with the
standard human genome sequence GRCh37 g1k (dated February
2009), the result of the NGS consisted of a vector of nucleotide
information about the d = 77 genes for each individual DNA

sample (Figure 2). This vector had a length equaling the set
union of the number of chromosomal positions in which a non-
reference nucleotide had been found in any probe of the actual
cohort. Specifically, a total of 3,185 genetic variants was found, of
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FIGURE 1 | Assay establishment and validation. (A) Pseudo-color image of
the Ion 318TM v2 Chip plate showing percent loading across the physical
surface. This sequencing run had a 76% loading, which ensures a high Ion
Sphere Particles (ISP) density. Every 318 chip contains 11 million wells and the
color scale on the right side conduces as a loading indicator. Deep red
coloration stays for a 100% loading, which means that every well in this area
contains an ISP (templated and non-templated) whereas deep blue coloration
implies that the wells in this area are empty. (B) Alignment of a segment of the
ion torrent sequence of the COMT gene as a Golden Helix Genome Browse R©

readout versus the same sequence according to an externally predicted
Sanger electropherogram. Highlighted is the COMT variant rs4633 (COMT
c.186C>T→ p.His62 = ) as a heterozygous mutation and a non-mutated wild
type. The SNP is part of the functional COMT haplotype comprising rs4633,
rs4818 and rs4680, which showed >11-fold difference in expressed enzyme
activity and was reported to be associated with different phenotypes of pain
sensitivity (Diatchenko et al., 2005).

which 659 were located in coding parts of the genes, 1,241 were
located in introns and 1,285 in the 3′-UTR, 5′-UTR, upstream or
downstream regions. The coding variants for which a clinical or
phenotypic association have been reported are listed in Table 2
together with an example of each variant. Most of the observed
variants were single nucleotide polymorphisms (d = 571) whereas
mixed polymorphisms (d = 26), nucleotide insertions (d = 18) or
nucleotide deletions (d = 44) were more rarely found.

DISCUSSION

In this report, development and validation of a novel AmpliseqTM

NGS assay for the coding regions and boundary parts of d = 77

genes qualifying as candidate modulators of persisting pain is
described. The NGS assay produced nucleotide sequences that
corresponded, with respect to the selected validation probes, to
the results of classical Sanger sequencing. However, the NGS
assay substantially reduced the laboratory effort to obtain the
genetic information and provides the perquisites to be used
in high throughput environments. In particular, the presented
NGS assay is convenient for small up to large-scale setups. As
mentioned in the methods section, a limitation of the present
results applies to the identified genetic variants as only samples
from Caucasian women were included. By contrast, the validity of
gene selection and assay establishment is unlikely to be reduced
by this selection chosen to remain within the financial limits of
the present project.

Specifically, as observed previously (Kringel et al., 2017), the
comprehensive genetic information and the high throughput are
reflected in the assay costs. Specifically, sequencing of the 77
genes in 72 DNA samples required approximately € 18,000 for
the AmpliSeqTM custom panel, € 5,500 for library preparation,
€ 700 for template preparation and € 700 for sequencing. Ten 318
sequencing chips cost around € 7,000 and in addition and basic
consumables and laboratory supplies issued approximately € 800.
With 7–8 barcoded samples loaded on ten chips, the expense
to analyses the gene sequence for a single patient were around
€ 325. While NGS costs are likely to decrease in the near future
(Lohmann and Klein, 2014), present assay establishment was
therefore applied in DNA samples planned for future genotype
versus phenotype association analysis, which required using DNA
from patients of a pain-relevant cohort instead from a true
random sample of healthy subjects.

As a result of the present assay development, a set of d = 77
genes was chosen as potentially relevant to persisting pain. The
chosen set of genes differs from alternative proposals aiming
at similar phenotypes (Mogil, 2012; Zorina-Lichtenwalter et al.,
2016). However, when analyzing these alternatives for mutual
agreement, only limited overlap could be observed (Figure 3).
This emphasizes that the genetic architecture of persisting
pain is incompletely understood, and several independent
lines of research can be pursued. Of note, the present set
showed the largest agreement with a set of d = 539 genes
identified empirically as relevant to pain and listed in the
PainGenes database (Lacroix-Fralish et al., 2007)6 or recognized
as causing human hereditary diseases associated with extreme
pain phenotypes (Lötsch et al., 2013; Ultsch et al., 2016).
Combining all proposals into a large panel was not an option due
to the technical limitations of the IonTorrent restricting the panel
size to 500 kb (pipeline version 5.6.2); therefore, further genes
would need to be addressed in separate panels.

In the present study sample, selected with a certain bias by
using, as explained above for cost saving, clinical samples from
only women and only Caucasians, a total of 659 genetic coding
variants were found. Regardless of the sample preselection, 105
clinical associations (Table 2) could be queried for the observed
variants from openly obtainable data sources comprising (i) the

6http://www.jbldesign.com/jmogil/enter.html
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FIGURE 2 | Mosaic plot representing a contingency table of the types of genetic variants detected by means of the present AmpliSeqTM panel versus the genes
included in the assay. The vertical size of the cells is proportional to the number of variants of a particular type; the horizontal size of the cells is proportional to the
number of variants found in the respective gene. The location of the variants is indicated at the left of the mosaic plot in letters colored similarly to the respective bars
in the mosaic plot. Variants were not found at all possible locations of each gene, which causes the reduction of several bars to dashed lines drawn as placeholders
and indicating that at the particular location no variant has been found in the respective gene. The figure has been created using the R software package (version
3.4.2 for Linux; http://CRAN.R-project.org/, R Development Core Team, 2008). UTR: untranslated region. NCExonic: Non-coding exonic.
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FIGURE 3 | Venn diagram (Venn, 1880) visualizing the intersections between
the presently proposed set of human genes involved in modulating the risk or
the clinical course of persisting pain (“Current set,” green frame), and two
alternative proposals [“Mogil” (Mogil, 2012), blue frame and
“Zorina-Lichtenwalter” (Zorina-Lichtenwalter et al., 2016), violet frame]. In
addition, a set of d = 539 genes identified empirically as relevant to pain and
either listed in the PainGenes database (http://www.jbldesign.com/
jmogil/enter.html, Lacroix-Fralish et al., 2007) or added because recognized as
causing human hereditary diseases associated with extreme pain phenotypes,
found to be regulated in chronic pain in at least three studies including human
association studies, or being targets of novel analgesics. The number of
shared genes between data sets is numerically shown in the respective
intersections of the Venn diagram. The figure has been created using the R
software package (version 3.4.2 for Linux; http://CRAN.R-project.org/, R
Development Core Team, 2008) with the particular package “Vennerable”
(Swinton J., https://r-forge.r-project.org/R/?group_id=474).

Online Mendelian Inheritance in Man (OMIM R©) database7, (ii)
the NCBI gene index database8, the GeneCards database9 [27]
and the “1000 Genomes Browser”10 (all accessed in December
2017). The observation of functional variants in the present
cohort preselected for the absence of pain persistence is plausible
as (i) variants can exert protective effects against chronic pain
and (ii) most genetic variants identified so far exert only small
effects on pain and the individual result of their functional
modulations depends on their combined effects or from the sum
of positive and negative effects on pain perception (Lötsch et al.,
2009a).

The selection of genes (Table 1) relied on empirical evidence
of their involvement in pain. For subset #1 (d = 34), this had been
shown for 33 genes in the original paper (Ultsch et al., 2016). As
the hypothesis that persisting pain displays systemic features of

7http://www.ncbi.nlm.nih.gov/omim
8http://www.ncbi.nlm.nih.gov/gene
9http://www.genecards.org
10https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes

learning and of neuronal plasticity (Mansour et al., 2014) could
be substantiated at a computational functional genomics level,
the further gene (PTPRZ1, protein tyrosine phosphatase Z 1)
can also be regarded as supported by prior knowledge to be
included in the present set. The subset comprised, for example,
genes associated with the mesolimbic dopaminergic system, i.e.,
DRD1, DRD2, DRD3, which code for dopamine receptors, and
TH, which is the coding gene for the tyrosine hydroxylase, a
metabolic restricting enzyme in dopaminergic pathways, which
have been implicated in promoting chronic back pain (Hagelberg
et al., 2003, 2004; Jaaskelainen et al., 2014; Martikainen et al.,
2015). Further 14 genes were involved in the circadian rhythm
recognized as a modulatory factor in various pain conditions
such as arthritis (Haus et al., 2012; Gibbs and Ray, 2013) and
neuropathic pain (Gilron and Ghasemlou, 2014). The subset
further included three NMDA receptor genes (GRIN1, GRIN2A,
and GRIN2B) known to be major players in a number of essential
physiological functions including neuroplasticity (Coyle and Tsai,
2004). In addition, metabotropic glutamate receptors (mGluR)
have been implemented in several chronic pain conditions. One
subtype, mGluR5, coded by GRM5, is of particular interest
in the context of pain conditions as recent studies showed
a pro-nociceptive role of mGluR5 in models of chronic pain
(Walker et al., 2001; Crock et al., 2012). Furthermore, genes
associated with histaminergic signaling such as HRH3 have been
implicated in pain transmission (Hough and Rice, 2011) and
analgesia (Huang et al., 2007).

The second subset of genes relied on a new PubMed
search rather than on a previously published and hypothesis-
based selection of candidate genes. A computational functional
genomics analysis of this subset (details not shown) suggested
its involvement in (i) immune processes and (ii) nitric oxide
signaling. The genes annotated to the GO term “immune system
process” included interleukin (IL1B, IL4, IL6, IL10) (Dinarello,
1994; Choi and Reiser, 1998; Mocellin et al., 2004; Nemeth
et al., 2004) and histocompatibility complex related (HLA-B)
genes (Dupont and Ceppellini, 1989), which have been shown to
be involved in immunological mechanisms of pain (Sato et al.,
2002; de Rooij et al., 2009). This is also supported by published
evidence for the further genes in this list, such as, TNF (Vassalli,
1992; Franchimont et al., 1999), GCH1 (Schott et al., 1993) and
P2RX7 (Chen and Brosnan, 2006). The second major process
group emerging from the functional genomics analysis of the
key evidence for genetic modulation of clinical chronic pain
was nitric oxide signaling, in particular metabolic processes,
summarized in this context under the GO term “reactive oxygen
species metabolic process” which includes the genes IL6 (Deakin
et al., 1995), TNF (Deakin et al., 1995; Katusic et al., 1998),
ESR1 (Clapauch et al., 2014), IL10 (Cattaruzza et al., 2003),
GCH1 (Katusic et al., 1998; Zhang et al., 2007), IL1B (Katusic
et al., 1998), IL4 (Coccia et al., 2000), P2RX7 (Gendron et al.,
2003), SOD2 (Fridovich, 1978). Furthermore, catecholamines
including noradrenaline, adrenaline and dopamine have multiple
functions in the brain and spinal cord including pain perception
and processing (D’Mello and Dickenson, 2008). Catechol-O-
methyltransferase, encoded by the COMT gene, is one of several
enzymes that degrade dopamine, noradrenaline and adrenaline
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FIGURE 4 | Top–down representation of the annotations (GO terms) representing the taxonomy of the functional differences between the set of d = 77 genes
included in the proposed NGS panel of persisting pain and two alternative proposals of genes modulating persisting pain in humans (Mogil, 2012;
Zorina-Lichtenwalter et al., 2016). The figure represents the results of an over-representation analysis of the present set of d = 77 genes against the reference
comprising the set intersection of the alternative gene lists. A p-value threshold of 0.01 and Bonferroni α-correction were applied. Significant terms are shown as
colored circles with the number of member genes, the number of expected genes by change and the significance of the deviation of the observed from the expected
number of genes indicated (yellow = headline, red = significant term, blue = significant term located as a leave at the end of a taxonomy in the polyhierarchy). The
graphical representation follows the standard of the GO knowledgebase, where GO terms are related to each other by “is-a,” “part-of,” and “regulates” relationships
forming a polyhierarchy organized in a directed acyclic graph (DAG, Thulasiraman and Swamy, 1992). The figure has been created using our R library “dbtORA”
(https://github.com/IME-TMP-FFM/dbtORA, Lippmann et al., 2018) on the R software package (version 3.4.2 for Linux; http://CRAN.R-project.org/, R Development
Core Team, 2008) and the freely available graph visualization software GraphViz (http://www.graphviz.org, Gansner and North, 2000).

and has become one of the most frequently addressed genes in
pain research (Nackley et al., 2006).

Finally, subset #3 (d = 30) consists of genes repeatedly shown
to play a role in the genetic modulation of persisting pain in
humans or, by contrast, included a few novel items only recently
published in the context of pain. This included members of
the transient receptor potential (TRP) family (TRPA1, TRPM8,
TRPV4) that are expressed at nociceptors and which are well
established players in the perception of pain via their excitation
by chemical, thermal or mechanical stimuli (Clapham, 2003).
This similarly applies to the opioidergic system represented by
the inclusion of the genes coding for the major opioid receptors
(OPRM1, OPRK1 OPRD1), which have been associated with
variations in pain or opioid response in various settings (Lötsch
and Geisslinger, 2005). The most important of this group, the
µ-opioid receptor encoded by the OPRM1 gene, carriers several
variants of which the 118 A>G (rs1799971) has been studied
most extensively since the early description of its association with
a functional phenotype in humans (Lötsch et al., 2002).

Almost half of the present sets of genes were chosen based
on a computational functional genomics analysis that attributed
persisting pain to GO processes of “learning or memory” and
“nervous system development” (Ultsch et al., 2016) as likely
to reflect systemic features of persisting pain. This implied
a functional bias and therefore, the present set of d = 77
genes (Figure 4) was analyzed whether this bias prevailed
when comparing it with the alternative sets of human genes
proposed to modulate persisting pain (Mogil, 2012; Zorina-
Lichtenwalter et al., 2016). As applied previously (Lippmann
et al., 2018), the biological roles of the set of d = 77 genes
were queried from the Gene Ontology knowledgebase (GO)11

(Ashburner et al., 2000) where the knowledge about the biological
processes, the molecular functions and the cellular components
of genes is formulated using a controlled and clearly defined
vocabulary of GO terms. Particular biological roles of the set
of d = 77 genes, among all human genes, were analyzed by

11http://www.geneontology.org/
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TABLE 3 | Current targeting of the genes included in the proposed NGS panel of persisting pain by novel drugs that are currently under active clinical development and
include analgesia as the main clinical target or at least as one of the intended clinical indication.

Gene Status Drug Action Company

ABHD12 – – – –

ABHD16A – – – –

ABHD6 Preclinical Benzylpiperidin methanone Acylamino-Acid-Releasing Enzyme Scripps Research Institute

ADCY1 Under Active Development NB-001 Adenylate Cyclase Inhibitors Forever Cheer International

ADRB2 Phase II/III Gencaro Signal Transduction Modulators ARCA

BDNF Phase I CXB-909 Nerve Growth Factor (NGF) Enhancers Krenitsky

CACNG2 Preclinical Hanfangchin Calcium Channel Blockers Millenia Hope Kaken

CDK5 Biological Testing Litvinolin CDK5/p25 Inhibitors Hong Kong University

CHRNB2 Biological Testing Epiboxidine Nicotinic alpha4beta2 Receptor Agonists Pfizer

CNR1 Registered Epidiolex Cannabinoid Receptor Agonists InSys Therapeutics

COMT Clinical Nitecapone Catechol-O-Methyl Transferase (COMT) Inhibitors Orion

CSF1 – – – –

DLG4 Preclinical AB-125 Protein Inhibitors Lundbeck University of Copenhagen

DRD1 Phase II/III Ecopipam Dopamine D1 Receptor (DRD1) Antagonists Merck & Co.

DRD2 Phase II/III Sarizotan hydrochloride Dopamine D2 Receptor (DRD2) Antagonists Newron

DRD3 Phase II Brilaroxazine D3 Receptor (DRD3) Agonists Reviva Pharmaceuticals

DRD4 Biological Testing Mesulergine hydrochloride Dopamine Receptor Agonists Novartis

EGR1 Phase II Brivoligide EGR1 Expression Inhibitors Adynxx

ESR1 Phase II Zindoxifene Selective Estrogen Receptor Modulators Evonik

FAAH Phase I/II Minerval Fatty Acid Amide Hydrolase (FAAH) Inhibitors Scripps Research Institute

FKBP5 Phase II Barusiban Oxytocin Receptor Antagonist Ferring

FOS Registered Macrilen FOS Expression Enhancers Strongbridge Biopharma

FYN Phase II Bafetinib Fyn Kinase Inhibitors Nippon Shinyaku

GABRA5 Phase III Ganaxolone GABA(A) Receptor Modulators Marinus Pharmaceuticals

GALR2 Preclinical NAX-810-2 GAL2 Receptor Ligands NeuroAdjuvants

GCH1 – – – –

GDNF Phase II Edonerpic maleate Signal Transduction Modulators Toyama

GFRA1 – – – –

GPR132 – – – –

GRIN1 Phase II Dimiracetam Signal Transduction Modulators Metys Pharmaceuticals

GRIN2A Phase I Dexanabinol NMDA Receptor Antagonists e-Therapeutics Pharmos

GRIN2B Phase I Gacyclidine NMDA Receptor Antagonists INSERM

GRM5 Phase II Mavoglurant Signal Transduction Modulators Novartis

HCN2 Clinical Ivabradine Adrenoceptor Antagonists Servier

HLA-DQB1 – – – –

HLA-DRB1 – – – –

HRH3 Phase I Immethridine Histalean Abbott

HTR1A Phase II Eltoprazine hydrochloride 5-HT1A Receptor Agonists Elto Pharma

HTR2A Phase II Midomafetamine 5-HT2 Receptor Agonists Assoc

IL10 Phase II BT-063 Signal Transduction Modulators Anti-IL-10 Biotest AG

IL1B Phase III Resunab IL-1beta Inhibitors Corbus

IL1R2 – – – –

IL4 – – – –

IL6 Preclinical Azintrel Signal Transduction Modulators Anti-IL-6 Jazz Pharmaceuticals

KCNS1 Preclinical Crotamine Voltage-Gated K(V) Channel Blockers Celtic Biotech

KIT Phase II Vatalanib succinate KIT (C-KIT) Inhibitors Novartis

LTB4R Phase II Coversin Signal Transduction Modulators Akari Therapeutics

LTB4R2 Phase II Coversin Signal Transduction Modulators Akari Therapeutics

NF1 – – – –

NGF Phase III Tanezumab Anti-Nerve Growth Factor (NGF) Pfizer

NTF4 – – – –

(Continued)
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TABLE 3 | Continued

Gene Status Drug Action Company

NTRK1 Phase II Danusertib NTRK1 Inhibitors Pfizer

OPRD1 Preclinical Metenkephalin Delta-Opioid Receptor Agonists TNI Pharmaceuticals

OPRK1 Phase III Morphine glucuronide Opioid Receptor Agonists PAION

OPRM1 Registered Naltrexone mu-Opioid Receptor Antagonists Pfizer

OXT Phase II Barusiban Oxytocin Receptor Antagonist Ferring

P2RX7 Preclinical BIL-06v Anti-P2RX7 Biosceptre International

PLCB1 Biological Testing Vinaxanthone Signal Transduction Modulators Roche

PRKCG Phase III Rydapt Protein Kinase C (PKC) Inhibitors Yeda

PRNP – – – –

PTN – – – –

PTPRZ1 – – – –

RELN Preclinical IAIPs Serine Protease Inhibitors ProThera Biologics

RET Phase II Danusertib Ret (RET) Inhibitors Pfizer

RUNX1 – – – –

S100B – – – –

SCN9A Phase III Priralfinamide Voltage-Gated Sodium Channel Blockers Newron

SLC6A4 Phase II Litoxetine Signal Transduction Modulators Sanofi

SOD2 Phase II Avasopasem manganese Superoxide Dismutase (SOD) Mimetics MetaPhore

TH – – – –

TLR4 Phase II Eritoran tetrasodium Toll-Like Receptor 4 (TLR4) Antagonists Eisai

TNF Phase III Givinostat hydrochloride TNF-alpha Release Inhibitors Italfarmaco

TRPA1 Phase II Cannabidivarin TRPA1 Agonists GW Pharmaceuticals

TRPM8 Phase II Cannabidivarin TRPM8 Antagonists GW Pharmaceuticals

TRPV1 Phase I/II Resiniferatoxin TRPV1 (Vanilloid VR1 Receptor) Agonists Icos

TRPV4 Phase II GSK-2798745 TRPV4 Antagonists GlaxoSmithKline

TSPO Clinical [11C]CB-184 Translocator Protein (TSPO) Ligands Tokyo Metrop Geriatr
Hosp Inst Gerontol

The information was queried from the Thomson Reuters Integrity database at https://integrity.thomson-pharma.com on July 11, 2018.

means of over-representation analysis (ORA). This compared
the occurrence of the particular GO terms associated with
the present set of genes with their expected occurrence by
chance (Backes et al., 2007). In contrast to enrichment analysis,
any quantitative criteria such as gene expression values are
disregarded (Backes et al., 2007). The analyses were performed
using our R library “dbtORA” (Lippmann et al., 2018)12 on the R
software environment (version 3.4.2 for Linux; R Development
Core Team, 2008)13.

Surprisingly, the results of this analysis indicated that the
functional bias of the present gene set toward “learning or
memory” (GO:0007611) and “nervous system development”
(GO:0007399) was not maintained against the alternative gene
sets. Instead, a few more general GO terms such as “behavior”
(“single organism behavior,” GO:0044708), or “response to
organic cyclic compound” (GO:0014070) and response to
alkaloid (GO:0043279), which could be identified as morphine
and cocaine when repeating the analysis with a less conservative
α-correction (further details not shown), were overrepresented,
as well as the pain specific term “sensory perception of pain”
(GO:0019233). A possible explanation that the selection bias of

12https://github.com/IME-TMP-FFM/dbtORA
13http://CRAN.R-project.org/

the present gene set was not maintained when comparing it
with alternative proposals is that the two biological processes,
“learning or memory” and “nervous system development,” reflect
indeed an important biological function of persisting pain and
even when choosing candidate genes without having these
processes in mind as for the alternative gene sets, they are
nevertheless included. This may be regarded as support for the
present gene set as suitable candidates for future association
studies with persisting pain phenotypes.

Although the present gene set has been assembled with
a focus of a relevance to pain, many of its members have
pharmacological implications. Specifically, 58 of the 77 genes
(75%) have been chosen as targets of analgesics, approved or
under current clinical development (Table 3). Moreover, several
of the genes in the present NGS panel have been implicated
in pharmacogenetic modulations of drug effects (Table 4).
Possibly the most widely studied gene in analgesic research is
OPRM1 because coding for the primary target of opioids (Peiro
et al., 2016). Several polymorphisms have been described in
OPRM1, among which the best characterized may be rs1799971
(OPRM1 118A>G) that leads to an asparagine to aspartate
substitution at the extracellular terminal of the receptor protein
(Bond et al., 1998). May studies have addressed this variant
(for reviews, see Walter et al., 2013; Somogyi et al., 2015).
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TABLE 4 | Summary of variants in genes included in the proposed NGS panel of persisting pain, that have been implicated in a pharmacogenetic context to modulate
the effects of drugs administered for the treatment of pain or as disease modifying therapeutics in painful disease.

Modulated process Gene Variant Affected drug Findings Reference

G protein coupled signaling COMT rs4680 (Val158Met) Morphine Carriers of val/val and val/met genotype
required higher morphine dose
compared to carriers of met/met
genotype

Reyes-Gibby et al., 2007

DRD2 rs6275 Heroine Polymorphism is associated with
decreased likelihood of headache
disorders

Cargnin et al., 2014

DRD4 rs1800955 Heroine Polymorphism had lower pain threshold
versus CC/CT controls

Ho et al., 2008

OPRM1 rs1799971 (A118G) Various opioids Tendency toward increased pain in
dose-dependent manner with the
µ-opioid receptor variant 118G

Lötsch et al., 2009c

OPRK1 rs1051660 Morphine Patients with the polymorphism and
cancer-related pain may require a
reduced dose escalation of morphine

Chatti et al., 2017

Neurotransmitters BDNF rs6265 Various opioids Polymorphism is associated with
decreased likelihood of headache
disorders

Cargnin et al., 2014

HTR2A rs12584920 Various opioids Increased likelihood of having chronic
widespread pain

Nicholl et al., 2011

Ion Channels TRPV1 7 intronic SNPs Capsaicin TRPV1 polymorphisms had only 50%
of the mRNA and protein expression
levels of normally sensing subjects

Park et al., 2007

Proinflammatory Cytokines IL6 rs1800795 Etanercept Polymorphism is associated with
increased response to adalimumab,
etanercept or infliximab in people with
painful Arthritis

Davila-Fajardo et al., 2014

Other ESR1 rs2234693 Leflunomide Polymorphism is associated with
increased response to leflunomide in
women with painful Arthritis

Dziedziejko et al., 2011

FAAH rs2295632 Various opioids Polymorphism is associated with
increased risk of Respiratory
Insufficiency

Biesiada et al., 2014

TLR4 rs4986790 Methotrexate Polymorphism associated with
increased risk of adverse drug events
when treated with folic acid and
methotrexate in people with Arthritis

Kooloos et al., 2010

TNF rs361525 Infliximab Polymorphism is associated with
increased response to infliximab in
people with painful Arthritis

Maxwell et al., 2008

The information was derived by literature search and by querying the Pharmacogenetics Research Network/Knowledge base at http://www.pharmgkb.org (accessed in
July 2018). Only key or example references are given.

Summarizing its effects, the variant is associated with decreased
receptor expression and signaling efficiency (Oertel et al.,
2012) which leads to reproducibly reduced pharmacodynamic
effects in human experimental settings while the effect size
seems insufficient to be a major factor of opioid response in
clinical settings, despite several reports of modulations of opioid
demands or side effects. For example, subjects carrying the
118A>G variant were found to have a reduced response to
morphine treatment (Hwang et al., 2014), reduced analgesic
response to alfentanil (Oertel et al., 2006) and demanded higher
doses of morphine for pain relief (Klepstad et al., 2004; Hwang
et al., 2014). However, the importance of this variant seems to be
comparatively high in patients with an Asian ethnic background,

which might be related to the higher allelic frequency as
compared to other ethnicities. COMT is a key modulator of
dopaminergic neurotransmission and in the signaling response
to opioids The Val158Met polymorphism (rs4680) causes an
amino acid substitution in the enzyme, which reduced the
enzyme active to a forth (Peiro et al., 2016). Carriers of the
homozygous Met/Met variant had lower morphine requirements
than those with a the wild type COMT (Rakvag et al., 2005).
Furthermore, a modulation of the effects of TRPV1 targeting
analgesics is supported by observations that intronic TRPV1
variants were associated with insensitivity to capsaicin (Park
et al., 2007) while the coding TRPV1 variant rs8065080 was
associated with altered responses to experimentally induced pain
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(Kim et al., 2004). Moreover, gain-of-function mutations in
TRPV1 have been associated with increased pain sensitivity
(Boukalova et al., 2014), for which TRPV1 antagonists would
enable a specific pharmacogenetics-based personalized cure.

CONCLUSION

The breakthrough in mapping the whole human genome
(Lander et al., 2001; Venter et al., 2001) along with genome
wide association studies (GWAS) has led to rapid advances
in the knowledge of the genetic bases of human diseases
(Wellcome Trust Case Control and Consortium, 2007). Genetic
research in pain medicine has directed to the recognition of
genes in which variants influence pain behavior, post-operative
drug requirements, and the temporal developments of pain
toward persistence (James, 2013). While many candidate gene
association studies have identified multiple genes relevant for
pain phenotypes (Fillingim et al., 2008), pain related genetic
studies have so far been owned by investigations of a limited
number of genes. Roughly ten genes or gene complexes account
for over half of the extant findings and several of these candidate
gene associations have held up in replication (Mogil, 2012).
The selection of variants has been limited and they have been
addressed in most studies repeatedly, leading to the perception
that genetic research in pain produces often unsatisfactory results
(Mogil, 2009). However, this may soon change with the arise
of new technologies. In this manuscript, we present a validated
NGS assay for a set of 77 genes supported by empirical evidence
and computational functional genomics analyses as relevant

factors modulating the risk for persisting pain or its clinical
picture.
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Jurečeková, J., Babušíková, E., Kmet’ová, M., Kliment, J., and Dobrota, D. (2015).
Estrogen receptor alpha polymorphisms and the risk of prostate cancer
development. J. Cancer Res. Clin. Oncol. 141, 1963–1971. doi: 10.1007/s00432-
015-1966-6

Katusic, Z. S., Stelter, A., and Milstien, S. (1998). Cytokines stimulate GTP
cyclohydrolase I gene expression in cultured human umbilical vein endothelial
cells. Arterioscler. Thromb. Vasc. Biol. 18, 27–32. doi: 10.1161/01.ATV.
18.1.27

Kaunisto, M. A., Jokela, R., Tallgren, M., Kambur, O., Tikkanen, E., Tasmuth, T.,
et al. (2013). Pain in 1000 women treated for breast cancer: a prospective
study of pain sensitivity and postoperative pain. Anesthesiology 119, 1410–1421.
doi: 10.1097/ALN.0000000000000012

Khalil, H., Sereika, S. M., Dai, F., Alexander, S., Conley, Y., Gruen, G., et al. (2017).
OPRM1 and COMT gene-gene interaction is associated with postoperative pain
and opioid consumption after orthopedic trauma. Biol. Res. Nurs. 19, 170–179.
doi: 10.1177/1099800416680474

Kim, H., Lee, H., Rowan, J., Brahim, J., and Dionne, R. A. (2006a). Genetic
polymorphisms in monoamine neurotransmitter systems show only weak
association with acute post-surgical pain in humans. Mol. Pain 2:24. doi: 10.
1186/1744-8069-2-24

Kim, H., Mittal, D. P., Iadarola, M. J., and Dionne, R. A. (2006b). Genetic predictors
for acute experimental cold and heat pain sensitivity in humans. J. Med. Genet.
43:e40. doi: 10.1136/jmg.2005.036079

Kim, H., Neubert, J. K., San Miguel, A., Xu, K., Krishnaraju, R. K., Iadarola, M. J.,
et al. (2004). Genetic influence on variability in human acute experimental pain
sensitivity associated with gender, ethnicity and psychological temperament.
Pain 109, 488–496. doi: 10.1016/j.pain.2004.02.027

Kim, H. Y. (2015). Phospholipids: a neuroinflammation emerging target. Nat.
Chem. Biol. 11, 99–100. doi: 10.1038/nchembio.1740

Kim, J. I., Kim, J.-W., Park, J.-E., Park, S., Hong, S.-B., Han, D. H., et al. (2017).
Association of the GRIN2B rs2284411 polymorphism with methylphenidate

response in attention-deficit/hyperactivity disorder. J. Psychopharmacol. 31,
1070–1077. doi: 10.1177/0269881116667707

Klein, C. J., Wu, Y., Kilfoyle, D. H., Sandroni, P., Davis, M. D., Gavrilova, R. H.,
et al. (2013). Infrequent SCN9A mutations in congenital insensitivity to pain
and erythromelalgia. J. Neurol. Neurosurg. Psychiatry 84, 386–391. doi: 10.1136/
jnnp-2012-303719

Klepstad, P., Rakvag, T. T., Kaasa, S., Holthe, M., Dale, O., Borchgrevink, P. C., et al.
(2004). The 118 A > G polymorphism in the human micro-opioid receptor gene
may increase morphine requirements in patients with pain caused by malignant
disease. Acta Anaesthesiol. Scand. 48, 1232–1239. doi: 10.1111/j.1399-6576.
2004.00517.x

Ko, S. W., Vadakkan, K. I., Ao, H., Gallitano-Mendel, A., Wei, F., Milbrandt, J.,
et al. (2005). Selective contribution of Egr1 (zif/268) to persistent inflammatory
pain. J. Pain 6, 12–20. doi: 10.1016/j.jpain.2004.10.001

Kooloos, W. M., Wessels, J. A., Van Der Straaten, T., Allaart, C. F., Huizinga, T. W.,
and Guchelaar, H. J. (2010). Functional polymorphisms and methotrexate
treatment outcome in recent-onset rheumatoid arthritis. Pharmacogenomics 11,
163–175. doi: 10.2217/pgs.09.139

Kringel, D., and Lötsch, J. (2015). Pain research funding by the european union
seventh framework programme. Eur. J. Pain 19, 595–600. doi: 10.1002/ejp.690

Kringel, D., Sisignano, M., Zinn, S., and Lötsch, J. (2017). Next-generation
sequencing of the human TRPV1 gene and the regulating co-players LTB4R
and LTB4R2 based on a custom AmpliSeq panel. PLoS One 12:e0180116. doi:
10.1371/journal.pone.0180116

Kumar, D., Chakraborty, J., and Das, S. (2012). Epistatic effects between variants
of kappa-opioid receptor gene and A118G of mu-opioid receptor gene increase
susceptibility to addiction in Indian population. Prog. Neuropsychopharmacol.
Biol. Psychiatry 36, 225–230. doi: 10.1016/j.pnpbp.2011.10.018

Kumar, V., and Mahal, B. A. (2012). NGF – The TrkA to successful pain treatment.
J. Pain Res. 5, 279–287. doi: 10.2147/JPR.S33408

Kurita, G. P., Ekholm, O., Kaasa, S., Klepstad, P., Skorpen, F., and Sjøgren, P.
(2016). Genetic variation and cognitive dysfunction in opioid-treated patients
with cancer. Brain Behav. 6:e00471. doi: 10.1002/brb3.471

Kwon, H. J., Jang, W.-C., and Lim, M. H. (2016). Association between
RELN gene polymorphisms and attention deficit hyperactivity disorder in
korean children. Psychiatry Investig. 13, 210–216. doi: 10.4306/pi.2016.13.
2.210

Lacroix-Fralish, M. L., Ledoux, J. B., and Mogil, J. S. (2007). The pain genes
database: an interactive web browser of pain-related transgenic knockout
studies. Pain 131, e1–e4. doi: 10.1016/j.pain.2007.04.041

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J.,
et al. (2001). Initial sequencing and analysis of the human genome. Nature 409,
860–921. doi: 10.1038/35057062

Law, P. Y., Reggio, P. H., and Loh, H. H. (2013). Opioid receptors: toward
separation of analgesic from undesirable effects. Trends Biochem. Sci. 38, 275–
282. doi: 10.1016/j.tibs.2013.03.003

Ledergerber, C., and Dessimoz, C. (2011). Base-calling for next-generation
sequencing platforms. Brief. Bioinform. 12, 489–497. doi: 10.1093/bib/bbq077

Lee, M., and Tracey, I. (2013). Neuro-genetics of persistent pain. Curr. Opin.
Neurobiol. 23, 127–132. doi: 10.1016/j.conb.2012.11.007

Leung, L., and Cahill, C. M. (2010). TNF-alpha and neuropathic pain–a review.
J. Neuroinflamm. 7:27. doi: 10.1186/1742-2094-7-27

Li, J. Y., Tao, F., Wu, X. X., Tan, Y. Z., He, L., and Lu, H. (2015). Polymorphic
variations in manganese superoxide dismutase (MnSOD) and endothelial nitric
oxide synthase (eNOS) genes contribute to the development of type 2 diabetes
mellitus in the Chinese Han population. Genet. Mol. Res. 14, 12993–13002.
doi: 10.4238/2015.October.21.20

Li, T., Zhao, J., Yang, J., Ma, X., Dai, Q., Huang, H., et al. (2016). A Meta-Analysis
of the association between ESR1 genetic variants and the risk of breast cancer.
PLoS One 11:e0153314. doi: 10.1371/journal.pone.0153314

Lin, C.-H., Chaudhuri, K. R., Fan, J.-Y., Ko, C.-I., Rizos, A., Chang, C.-W.,
et al. (2017). Depression and Catechol-O-methyltransferase (COMT) genetic
variants are associated with pain in Parkinson’s disease. Sci. Rep. 7:6306. doi:
10.1038/s41598-017-06782-z

Lindstedt, F., Karshikoff, B., Schalling, M., Olgart Hoglund, C., Ingvar, M.,
Lekander, M., et al. (2012). Serotonin-1A receptor polymorphism (rs6295)
associated with thermal pain perception. PLoS One 7:e43221. doi: 10.1371/
journal.pone.0043221

Frontiers in Pharmacology | www.frontiersin.org 18 September 2018 | Volume 9 | Article 1008

https://doi.org/10.1097/00115550-200703000-00006
https://doi.org/10.1097/00115550-200703000-00006
https://doi.org/10.1155/2012/545386
https://doi.org/10.1155/2012/545386
https://doi.org/10.1016/j.bbi.2009.08.004
https://doi.org/10.1016/j.bbi.2009.08.004
https://doi.org/10.1097/ALN.0000000000000405
https://doi.org/10.1097/ALN.0000000000000405
https://doi.org/10.1186/1744-8069-10-75
https://doi.org/10.1186/1744-8069-10-75
https://doi.org/10.1016/j.pain.2014.08.029
https://doi.org/10.1177/2049463713506408
https://doi.org/10.1038/sj.bjp.0706510
https://doi.org/10.1038/sj.bjp.0706510
https://doi.org/10.1213/ANE.0000000000000382
https://doi.org/10.2217/pgs.15.126
https://doi.org/10.1007/s00432-015-1966-6
https://doi.org/10.1007/s00432-015-1966-6
https://doi.org/10.1161/01.ATV.18.1.27
https://doi.org/10.1161/01.ATV.18.1.27
https://doi.org/10.1097/ALN.0000000000000012
https://doi.org/10.1177/1099800416680474
https://doi.org/10.1186/1744-8069-2-24
https://doi.org/10.1186/1744-8069-2-24
https://doi.org/10.1136/jmg.2005.036079
https://doi.org/10.1016/j.pain.2004.02.027
https://doi.org/10.1038/nchembio.1740
https://doi.org/10.1177/0269881116667707
https://doi.org/10.1136/jnnp-2012-303719
https://doi.org/10.1136/jnnp-2012-303719
https://doi.org/10.1111/j.1399-6576.2004.00517.x
https://doi.org/10.1111/j.1399-6576.2004.00517.x
https://doi.org/10.1016/j.jpain.2004.10.001
https://doi.org/10.2217/pgs.09.139
https://doi.org/10.1002/ejp.690
https://doi.org/10.1371/journal.pone.0180116
https://doi.org/10.1371/journal.pone.0180116
https://doi.org/10.1016/j.pnpbp.2011.10.018
https://doi.org/10.2147/JPR.S33408
https://doi.org/10.1002/brb3.471
https://doi.org/10.4306/pi.2016.13.2.210
https://doi.org/10.4306/pi.2016.13.2.210
https://doi.org/10.1016/j.pain.2007.04.041
https://doi.org/10.1038/35057062
https://doi.org/10.1016/j.tibs.2013.03.003
https://doi.org/10.1093/bib/bbq077
https://doi.org/10.1016/j.conb.2012.11.007
https://doi.org/10.1186/1742-2094-7-27
https://doi.org/10.4238/2015.October.21.20
https://doi.org/10.1371/journal.pone.0153314
https://doi.org/10.1038/s41598-017-06782-z
https://doi.org/10.1038/s41598-017-06782-z
https://doi.org/10.1371/journal.pone.0043221
https://doi.org/10.1371/journal.pone.0043221
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01008 September 17, 2018 Time: 10:19 # 19

Kringel et al. NGS for Persistent Pain

Lippmann, C., Kringel, D., Ultsch, A., and Lötsch, J. (2018). Computational
functional genomics-based approaches in analgesic drug discovery and
repurposing. Pharmacogenomics 19, 783–797. doi: 10.2217/pgs-2018-
0036

Liu, J., Shi, Y., Tang, J., Guo, T., Li, X., Yang, Y., et al. (2005). SNPs and haplotypes
in the S100B gene reveal association with schizophrenia. Biochem. Biophys. Res.
Commun. 328, 335–341. doi: 10.1016/j.bbrc.2004.12.175

Liu, Y. N., Yang, X., Suo, Z. W., Xu, Y. M., and Hu, X. D. (2014). Fyn kinase-
regulated NMDA receptor- and AMPA receptor-dependent pain sensitization
in spinal dorsal horn of mice. Eur. J. Pain 18, 1120–1128. doi: 10.1002/j.1532-
2149.2014.00455.x

Loggia, M. L., Chonde, D. B., Akeju, O., Arabasz, G., Catana, C., Edwards, R. R.,
et al. (2015). Evidence for brain glial activation in chronic pain patients. Brain
138, 604–615. doi: 10.1093/brain/awu377

Lohmann, K., and Klein, C. (2014). Next generation sequencing and the future
of genetic diagnosis. Neurotherapeutics 11, 699–707. doi: 10.1007/s13311-014-
0288-8

Loncar, Z., Curic, G., Mestrovic, A. H., Mickovic, V., and Bilic, M. (2013). Do IL-
1B and IL-1RN modulate chronic low back pain in patients with post-traumatic
stress disorder? Collegium Antropol. 37, 1237–1244.

Lötsch, J., Doehring, A., Mogil, J. S., Arndt, T., Geisslinger, G., and Ultsch, A.
(2013). Functional genomics of pain in analgesic drug development and
therapy. Pharmacol. Ther. 139, 60–70. doi: 10.1016/j.pharmthera.2013.
04.004

Lötsch, J., Fluhr, K., Neddermayer, T., Doehring, A., and Geisslinger, G. (2009a).
The consequence of concomitantly present functional genetic variants for
the identification of functional genotype-phenotype associations in pain. Clin.
Pharmacol. Ther. 85, 25–30. doi: 10.1038/clpt.2008.103

Lötsch, J., Geisslinger, G., and Tegeder, I. (2009b). Genetic modulation of the
pharmacological treatment of pain. Pharmacol. Ther. 124, 168–184. doi: 10.
1016/j.pharmthera.2009.06.010

Lötsch, J., Von Hentig, N., Freynhagen, R., Griessinger, N., Zimmermann, M.,
Doehring, A., et al. (2009c). Cross-sectional analysis of the influence
of currently known pharmacogenetic modulators on opioid therapy in
outpatient pain centers. Pharmacogenet. Genom. 19, 429–436. doi: 10.1097/
FPC.0b013e32832b89da

Lötsch, J., and Geisslinger, G. (2005). Are mu-opioid receptor polymorphisms
important for clinical opioid therapy? Trends Mol. Med. 11, 82–89. doi: 10.1016/
j.molmed.2004.12.006

Lötsch, J., and Geisslinger, G. (2010). A critical appraisal of human genotyping
for pain therapy. Trends Pharmacol. Sci. 31, 312–317. doi: 10.1016/j.tips.2010.
04.002

Lötsch, J., Klepstad, P., Doehring, A., and Dale, O. (2010). A GTP cyclohydrolase 1
genetic variant delays cancer pain. Pain 148, 103–106. doi: 10.1016/j.pain.2009.
10.021

Lötsch, J., Sipilä, R., Tasmuth, T., Kringel, D., Estlander, A. M., Meretoja, T., et al.
(2018). Machine-learning-derived classifier predicts absence of persistent pain
after breast cancer surgery with high accuracy. Breast Cancer Res./Treatment.
[Epub ahead of print]. doi: 10.1007/s10549-018-4841-8

Lötsch, J., Skarke, C., Grosch, S., Darimont, J., Schmidt, H., and Geisslinger, G.
(2002). The polymorphism A118G of the human mu-opioid receptor gene
decreases the pupil constrictory effect of morphine-6-glucuronide but not that
of morphine. Pharmacogenetics 12, 3–9. doi: 10.1097/00008571-200201000-
00002

Lötsch, J., Stuck, B., and Hummel, T. (2006). The human mu-opioid receptor gene
polymorphism 118A > G decreases cortical activation in response to specific
nociceptive stimulation. Behav. Neurosci. 120, 1218–1224. doi: 10.1037/0735-
7044.120.6.1218

Lu, H., Zhu, L., Lian, L., Chen, M., Shi, D., and Wang, K. (2015). Genetic
variations in the PRKCG gene and osteosarcoma risk in a Chinese population:
a case-control study. Tumour Biol. 36, 5241–5247. doi: 10.1007/s13277-015-
3182-z

Maertens, O., De Schepper, S., Vandesompele, J., Brems, H., Heyns, I., Janssens, S.,
et al. (2007). Molecular dissection of isolated disease features in mosaic
neurofibromatosis type 1. Am. J. Hum. Genet. 81, 243–251. doi: 10.1086/519562

Mansour, A. R., Farmer, M. A., Baliki, M. N., and Apkarian, A. V. (2014). Chronic
pain: the role of learning and brain plasticity. Restor. Neurol. Neurosci. 32,
129–139.

Marcos, M., Pastor, I., De La Calle, C., Barrio-Real, L., Laso, F.-J., and González-
Sarmiento, R. (2012). Cannabinoid receptor 1 gene is associated with alcohol
dependence. Alcohol. Clin. Exp. Res. 36, 267–271. doi: 10.1111/j.1530-0277.
2011.01623.x

Martikainen, I. K., Nuechterlein, E. B., Pecina, M., Love, T. M., Cummiford, C. M.,
Green, C. R., et al. (2015). Chronic back pain is associated with alterations in
dopamine neurotransmission in the ventral striatum. J. Neurosci. 35, 9957–
9965. doi: 10.1523/JNEUROSCI.4605-14.2015

Maxwell, J. R., Potter, C., Hyrich, K. L., Barton, A., Worthington, J., Isaacs,
J. D., et al. (2008). Association of the tumour necrosis factor-308 variant
with differential response to anti-TNF agents in the treatment of rheumatoid
arthritis. Hum. Mol. Genet. 17, 3532–3538. doi: 10.1093/hmg/ddn245

McIntosh, A. M., Simen, A. A., Evans, K. L., Hall, J., Macintyre, D. J., Blackwood, D.,
et al. (2012). Genetic variation in hyperpolarization-activated cyclic nucleotide-
gated channels and its relationship with neuroticism, cognition and risk of
depression. Front. Genet. 3:116. doi: 10.3389/fgene.2012.00116

Mead, S., Poulter, M., Uphill, J., Beck, J., Whitfield, J., Webb, T. E. F., et al.
(2009). Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-
wide association study. Lancet Neurol. 8, 57–66. doi: 10.1016/S1474-4422(08)
70265-5

Metzker, M. L. (2010). Sequencing technologies – The next generation. Nat. Rev.
Genet. 11, 31–46. doi: 10.1038/nrg2626

Mill, J., Kiss, E., Baji, I., Kapornai, K., Daróczy, G., Vetró, A., et al. (2008).
Association study of the estrogen receptor alpha gene (ESR1) and childhood-
onset mood disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B,
1323–1326. doi: 10.1002/ajmg.b.30751

Milne, R. L., Burwinkel, B., Michailidou, K., Arias-Perez, J.-I., Zamora, M. P.,
Menéndez-Rodríguez, P., et al. (2014). Common non-synonymous SNPs
associated with breast cancer susceptibility: findings from the Breast Cancer
association consortium. Hum. Mol. Genet. 23, 6096–6111. doi: 10.1093/hmg/
ddu311

Mitra, A. K., Crews, K., Pounds, S., Cao, X., Downing, J. R., Raimondi, S., et al.
(2011). Impact of genetic variation in FKBP5 on clinical response in pediatric
acute myeloid leukemia patients: a pilot study. Leukemia 25, 1354–1356. doi:
10.1038/leu.2011.74

Mocellin, S., Marincola, F., Rossi, C. R., Nitti, D., and Lise, M. (2004). The
multifaceted relationship between IL-10 and adaptive immunity: putting
together the pieces of a puzzle. Cytokine Growth. Factor. Rev. 15, 61–76. doi:
10.1016/j.cytogfr.2003.11.001

Mogil, J. S. (2009). Are we getting anywhere in human pain genetics? Pain 146,
231–232. doi: 10.1016/j.pain.2009.07.023

Mogil, J. S. (2012). Pain genetics: past, present and future. Trends Genet. 28,
258–266. doi: 10.1016/j.tig.2012.02.004

Mustafa, A. E., Faquih, T., Baz, B., Kattan, R., Al-Issa, A., Tahir, A. I., et al. (2018).
Validation of ion torrent(TM) inherited disease panel with the PGM(TM)
sequencing platform for rapid and comprehensive mutation detection. Genes
(Basel.) 9, 267. doi: 10.3390/genes9050267

Nackley, A. G., Shabalina, S. A., Tchivileva, I. E., Satterfield, K., Korchynskyi, O.,
Makarov, S. S., et al. (2006). Human catechol-O-methyltransferase haplotypes
modulate protein expression by altering mRNA secondary structure. Science
314, 1930–1933. doi: 10.1126/science.1131262

Naumov, D. E., Perelman, J. M., Kolosov, V. P., Potapova, T. A., Maksimov,
V. N., and Zhou, X. (2015). Transient receptor potential melastatin 8 gene
polymorphism is associated with cold-induced airway hyperresponsiveness
in bronchial asthma. Respirology 20, 1192–1197. doi: 10.1111/resp.
12605

Nemeth, E., Rivera, S., Gabayan, V., Keller, C., Taudorf, S., Pedersen, B. K., et al.
(2004). IL-6 mediates hypoferremia of inflammation by inducing the synthesis
of the iron regulatory hormone hepcidin. J. Clin. Invest. 113, 1271–1276. doi:
10.1172/JCI200420945

Nicholl, B. I., Holliday, K. L., Macfarlane, G. J., Thomson, W., Davies, K. A.,
O’neill, T. W., et al. (2011). Association of HTR2A polymorphisms with
chronic widespread pain and the extent of musculoskeletal pain: results from
two population-based cohorts. Arthritis Rheum. 63, 810–818. doi: 10.1002/art.
30185

Nissenbaum, J., Devor, M., Seltzer, Z., Gebauer, M., Michaelis, M., Tal, M., et al.
(2010). Susceptibility to chronic pain following nerve injury is genetically
affected by CACNG2. Genome Res. 20, 1180–1190. doi: 10.1101/gr.104976.110

Frontiers in Pharmacology | www.frontiersin.org 19 September 2018 | Volume 9 | Article 1008

https://doi.org/10.2217/pgs-2018-0036
https://doi.org/10.2217/pgs-2018-0036
https://doi.org/10.1016/j.bbrc.2004.12.175
https://doi.org/10.1002/j.1532-2149.2014.00455.x
https://doi.org/10.1002/j.1532-2149.2014.00455.x
https://doi.org/10.1093/brain/awu377
https://doi.org/10.1007/s13311-014-0288-8
https://doi.org/10.1007/s13311-014-0288-8
https://doi.org/10.1016/j.pharmthera.2013.04.004
https://doi.org/10.1016/j.pharmthera.2013.04.004
https://doi.org/10.1038/clpt.2008.103
https://doi.org/10.1016/j.pharmthera.2009.06.010
https://doi.org/10.1016/j.pharmthera.2009.06.010
https://doi.org/10.1097/FPC.0b013e32832b89da
https://doi.org/10.1097/FPC.0b013e32832b89da
https://doi.org/10.1016/j.molmed.2004.12.006
https://doi.org/10.1016/j.molmed.2004.12.006
https://doi.org/10.1016/j.tips.2010.04.002
https://doi.org/10.1016/j.tips.2010.04.002
https://doi.org/10.1016/j.pain.2009.10.021
https://doi.org/10.1016/j.pain.2009.10.021
https://doi.org/10.1007/s10549-018-4841-8
https://doi.org/10.1097/00008571-200201000-00002
https://doi.org/10.1097/00008571-200201000-00002
https://doi.org/10.1037/0735-7044.120.6.1218
https://doi.org/10.1037/0735-7044.120.6.1218
https://doi.org/10.1007/s13277-015-3182-z
https://doi.org/10.1007/s13277-015-3182-z
https://doi.org/10.1086/519562
https://doi.org/10.1111/j.1530-0277.2011.01623.x
https://doi.org/10.1111/j.1530-0277.2011.01623.x
https://doi.org/10.1523/JNEUROSCI.4605-14.2015
https://doi.org/10.1093/hmg/ddn245
https://doi.org/10.3389/fgene.2012.00116
https://doi.org/10.1016/S1474-4422(08)70265-5
https://doi.org/10.1016/S1474-4422(08)70265-5
https://doi.org/10.1038/nrg2626
https://doi.org/10.1002/ajmg.b.30751
https://doi.org/10.1093/hmg/ddu311
https://doi.org/10.1093/hmg/ddu311
https://doi.org/10.1038/leu.2011.74
https://doi.org/10.1038/leu.2011.74
https://doi.org/10.1016/j.cytogfr.2003.11.001
https://doi.org/10.1016/j.cytogfr.2003.11.001
https://doi.org/10.1016/j.pain.2009.07.023
https://doi.org/10.1016/j.tig.2012.02.004
https://doi.org/10.3390/genes9050267
https://doi.org/10.1126/science.1131262
https://doi.org/10.1111/resp.12605
https://doi.org/10.1111/resp.12605
https://doi.org/10.1172/JCI200420945
https://doi.org/10.1172/JCI200420945
https://doi.org/10.1002/art.30185
https://doi.org/10.1002/art.30185
https://doi.org/10.1101/gr.104976.110
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01008 September 17, 2018 Time: 10:19 # 20

Kringel et al. NGS for Persistent Pain

Nöthen, M. M., Cichon, S., Hemmer, S., Hebebrand, J., Remschmidt, H.,
Lehmkuhl, G., et al. (1994). Human dopamine D4 receptor gene: frequent
occurrence of a null allele and observation of homozygosity. Hum. Mol. Genet.
3, 2207–2212. doi: 10.1093/hmg/3.12.2207

Obata, K., and Noguchi, K. (2006). BDNF in sensory neurons and chronic pain.
Neurosci. Res. 55, 1–10. doi: 10.1016/j.neures.2006.01.005

Oertel, B. G., Doehring, A., Roskam, B., Kettner, M., Hackmann, N., Ferreiros, N.,
et al. (2012). Genetic-epigenetic interaction modulates mu-opioid receptor
regulation. Hum. Mol. Genet. 21, 4751–4760. doi: 10.1093/hmg/dds314

Oertel, B. G., Schmidt, R., Schneider, A., Geisslinger, G., and Lötsch, J. (2006). The
mu-opioid receptor gene polymorphism 118A>G depletes alfentanil-induced
analgesia and protects against respiratory depression in homozygous carriers.
Pharmacogenet. Genom. 16, 625–636. doi: 10.1097/01.fpc.0000220566.90466.a2

Offenbaecher, M., Bondy, B., De Jonge, S., Glatzeder, K., Kruger, M., Schoeps, P.,
et al. (1999). Possible association of fibromyalgia with a polymorphism in the
serotonin transporter gene regulatory region. Arthritis Rheum. 42, 2482–2488.
doi: 10.1002/1529-0131(199911)42:11<2482::AID-ANR27>3.0.CO;2-B

Onaya, T., Ishii, M., Katoh, H., Shimizu, S., Kasai, H., Kawamura, M., et al. (2013).
Predictive index for the onset of medication overuse headache in migraine
patients. Neurol. Sci. 34, 85–92. doi: 10.1007/s10072-012-0955-7

Onojjighofia, T., Meshkin, B., Nguyen, S. V., Schwartz, D., and Akindele, B. (2014).
Perception of analgesia in narcotic users with chronic pain: a multi-center cross-
sectional study comparing genotype to pain VAS (P.A.I.N. Study). Neurology
82:E39.

Oyanguren-Desez, O., Rodríguez-Antigüedad, A., Villoslada, P., Domercq, M.,
Alberdi, E., and Matute, C. (2011). Gain-of-function of P2X7 receptor gene
variants in multiple sclerosis. Cell Calcium 50, 468–472. doi: 10.1016/j.ceca.
2011.08.002

Palmirotta, R., Barbanti, P., De Marchis, M. L., Egeo, G., Aurilia, C., Fofi, L., et al.
(2015). Is SOD2 Ala16Val polymorphism associated with migraine with aura
phenotype? Antioxid. Redox Signal. 22, 275–279. doi: 10.1089/ars.2014.6069

Park, J. J., Lee, J., Kim, M. A., Back, S. K., Hong, S. K., and Na, H. S. (2007).
Induction of total insensitivity to capsaicin and hypersensitivity to garlic extract
in human by decreased expression of TRPV1. Neurosci. Lett. 411, 87–91. doi:
10.1016/j.neulet.2006.10.046

Peiro, A. M., Planelles, B., Juhasz, G., Bagdy, G., Libert, F., Eschalier, A., et al.
(2016). Pharmacogenomics in pain treatment. Drug Metab. Pers Ther. 31,
131–142. doi: 10.1515/dmpt-2016-0005

Pelletier, C., and Weidhaas, J. B. (2010). MicroRNA binding site polymorphisms as
biomarkers of cancer risk. Expert. Rev. Mol. Diagn. 10, 817–829. doi: 10.1586/
erm.10.59

Petrenko, A. B., Yamakura, T., Baba, H., and Shimoji, K. (2003). The role of
N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth. Analg. 97,
1108–1116. doi: 10.1213/01.ANE.0000081061.12235.55

Potapova, T. A., Babenko, V. N., Kobzev, V. F., Romashchenko, A. G., Maksimov,
V. N., and Voevoda, M. I. (2014). Associations of cold receptor TRPM8
gene single nucleotide polymorphism with blood lipids and anthropometric
parameters in Russian population. Bull. Exp. Biol. Med. 157, 757–761. doi:
10.1007/s10517-014-2660-4

Potvin, S., Larouche, A., Normand, E., De Souza, J. B., Gaumond, I., Grignon, S.,
et al. (2009). DRD3 Ser9Gly polymorphism is related to thermal pain perception
and modulation in chronic widespread pain patients and healthy controls.
J. Pain 10, 969–975. doi: 10.1016/j.jpain.2009.03.013

Prasad, H. C., Steiner, J. A., Sutcliffe, J. S., and Blakely, R. D. (2009). Enhanced
activity of human serotonin transporter variants associated with autism. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 364, 163–173. doi: 10.1098/rstb.2008.0143

R Development Core Team (2008). R: A Language and Environment for Statistical
Computing. Vienna: R Development Core Team.

Rakvag, T. T., Klepstad, P., Baar, C., Kvam, T. M., Dale, O., Kaasa, S., et al. (2005).
The Val158Met polymorphism of the human catechol-O-methyltransferase
(COMT) gene may influence morphine requirements in cancer pain patients.
Pain 116, 73–78. doi: 10.1016/j.pain.2005.03.032

Reimann, F., Cox, J. J., Belfer, I., Diatchenko, L., Zaykin, D. V., Mchale, D. P.,
et al. (2010). Pain perception is altered by a nucleotide polymorphism in
SCN9A. Proc. Natl. Acad. Sci. U.S.A. 107, 5148–5153. doi: 10.1073/pnas.091318
1107

Reyes-Gibby, C. C., Shete, S., Rakvag, T., Bhat, S. V., Skorpen, F., Bruera, E., et al.
(2007). Exploring joint effects of genes and the clinical efficacy of morphine for

cancer pain: OPRM1 and COMT gene. Pain 130, 25–30. doi: 10.1016/j.pain.
2006.10.023

Ribeiro-Dasilva, M. C., Peres Line, S. R., Leme Godoy, Dos Santos, M. C., Arthuri,
M. T., Hou, W., et al. (2009). Estrogen receptor-alpha polymorphisms and
predisposition to TMJ disorder. J. Pain 10, 527–533. doi: 10.1016/j.jpain.2008.
11.012

Rodrigues, P., De Marco, G., Furriol, J., Mansego, M. L., Pineda-Alonso, M.,
Gonzalez-Neira, A., et al. (2014). Oxidative stress in susceptibility to breast
cancer: study in Spanish population. BMC Cancer 14:861. doi: 10.1186/1471-
2407-14-861

Root, T. L., Szatkiewicz, J. P., Jonassaint, C. R., Thornton, L. M., Pinheiro, A. P.,
Strober, M., et al. (2011). Association of candidate genes with phenotypic traits
relevant to anorexia nervosa. Eur. Eat Disord. Rev. 19, 487–493. doi: 10.1002/
erv.1138

Sah, D. W., Ossipov, M. H., Rossomando, A., Silvian, L., and Porreca, F.
(2005). New approaches for the treatment of pain: the GDNF family of
neurotrophic growth factors. Curr. Top. Med. Chem. 5, 577–583. doi: 10.2174/
1568026054367593

Sanger, F., and Coulson, A. R. (1975). A rapid method for determining sequences
in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448.
doi: 10.1016/0022-2836(75)90213-2

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-
terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467. doi: 10.1073/
pnas.74.12.5463

Sato, M., Ohashi, J., Tsuchiya, N., Kashiwase, K., Ishikawa, Y., Arita, H., et al.
(2002). Association of HLA-A∗3303-B∗4403-DRB1∗1302 haplotype, but not of
TNFA promoter and NKp30 polymorphism, with postherpetic neuralgia (PHN)
in the Japanese population. Genes Immun. 3, 477–481. doi: 10.1038/sj.gene.
6363890

Savas, S., Schmidt, S., Jarjanazi, H., and Ozcelik, H. (2006). Functional nsSNPs from
carcinogenesis-related genes expressed in breast tissue: potential breast cancer
risk alleles and their distribution across human populations. Hum. Genomics 2,
287–296. doi: 10.1186/1479-7364-2-5-287

Schleinitz, D., Carmienke, S., Böttcher, Y., Tönjes, A., Berndt, J., Klöting, N.,
et al. (2010). Role of genetic variation in the cannabinoid type 1 receptor
gene (CNR1) in the pathophysiology of human obesity. Pharmacogenomics 11,
693–702. doi: 10.2217/pgs.10.42

Schmidt, S., Hauser, M. A., Scott, W. K., Postel, E. A., Agarwal, A., Gallins, P.,
et al. (2006). Cigarette smoking strongly modifies the association of LOC387715
and age-related macular degeneration. Am. J. Hum. Genet. 78, 852–864. doi:
10.1086/503822

Schott, K., Gutlich, M., and Ziegler, I. (1993). Induction of GTP-cyclohydrolase
I mRNA expression by lectin activation and interferon-gamma treatment in
human cells associated with the immune response. J. Cell. Physiol. 156, 12–16.
doi: 10.1002/jcp.1041560103

Schurks, M., Kurth, T., Buring, J. E., and Zee, R. Y. (2009). A candidate gene
association study of 77 polymorphisms in migraine. J. Pain 10, 759–766. doi:
10.1016/j.jpain.2009.01.326

Schürks, M., Rist, P. M., and Kurth, T. (2010). Sex hormone receptor
gene polymorphisms and migraine: a systematic review and meta-analysis.
Cephalalgia 30, 1306–1328. doi: 10.1177/0333102410364155

Schütz, M., Oertel, B. G., Heimann, D., Doehring, A., Walter, C., Dimova, V., et al.
(2014). Consequences of a human TRPA1 genetic variant on the perception
of nociceptive and olfactory stimuli. PLoS One 9:e95592. doi: 10.1371/journal.
pone.0095592

Schwartz, E. S., Kim, H. Y., Wang, J., Lee, I., Klann, E., Chung, J. M., et al.
(2009). Persistent pain is dependent on spinal mitochondrial antioxidant levels.
J. Neurosci. 29, 159–168. doi: 10.1523/JNEUROSCI.3792-08.2009

Schweinhardt, P., Sauro, K. M., and Bushnell, M. C. (2008). Fibromyalgia:
a disorder of the brain? Neuroscientist 14, 415–421. doi: 10.1177/
1073858407312521

Serý, O., Prikryl, R., Castulík, L., and St’astný, F. (2010). A118G polymorphism of
OPRM1 gene is associated with schizophrenia. J. Mol. Neurosci. 41, 219–222.
doi: 10.1007/s12031-010-9327-z

Shah, N. D., Shah, P. S., Panchal, Y. Y., Katudia, K. H., Khatri, N. B., Ray, H. S. P.,
et al. (2018). Mutation analysis of BRCA1/2 mutations with special reference
to polymorphic SNPs in Indian breast cancer patients. Appl. Clin. Genet. 11,
59–67. doi: 10.2147/TACG.S155955

Frontiers in Pharmacology | www.frontiersin.org 20 September 2018 | Volume 9 | Article 1008

https://doi.org/10.1093/hmg/3.12.2207
https://doi.org/10.1016/j.neures.2006.01.005
https://doi.org/10.1093/hmg/dds314
https://doi.org/10.1097/01.fpc.0000220566.90466.a2
https://doi.org/10.1002/1529-0131(199911)42:11<2482::AID-ANR27>3.0.CO;2-B
https://doi.org/10.1007/s10072-012-0955-7
https://doi.org/10.1016/j.ceca.2011.08.002
https://doi.org/10.1016/j.ceca.2011.08.002
https://doi.org/10.1089/ars.2014.6069
https://doi.org/10.1016/j.neulet.2006.10.046
https://doi.org/10.1016/j.neulet.2006.10.046
https://doi.org/10.1515/dmpt-2016-0005
https://doi.org/10.1586/erm.10.59
https://doi.org/10.1586/erm.10.59
https://doi.org/10.1213/01.ANE.0000081061.12235.55
https://doi.org/10.1007/s10517-014-2660-4
https://doi.org/10.1007/s10517-014-2660-4
https://doi.org/10.1016/j.jpain.2009.03.013
https://doi.org/10.1098/rstb.2008.0143
https://doi.org/10.1016/j.pain.2005.03.032
https://doi.org/10.1073/pnas.0913181107
https://doi.org/10.1073/pnas.0913181107
https://doi.org/10.1016/j.pain.2006.10.023
https://doi.org/10.1016/j.pain.2006.10.023
https://doi.org/10.1016/j.jpain.2008.11.012
https://doi.org/10.1016/j.jpain.2008.11.012
https://doi.org/10.1186/1471-2407-14-861
https://doi.org/10.1186/1471-2407-14-861
https://doi.org/10.1002/erv.1138
https://doi.org/10.1002/erv.1138
https://doi.org/10.2174/1568026054367593
https://doi.org/10.2174/1568026054367593
https://doi.org/10.1016/0022-2836(75)90213-2
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1038/sj.gene.6363890
https://doi.org/10.1038/sj.gene.6363890
https://doi.org/10.1186/1479-7364-2-5-287
https://doi.org/10.2217/pgs.10.42
https://doi.org/10.1086/503822
https://doi.org/10.1086/503822
https://doi.org/10.1002/jcp.1041560103
https://doi.org/10.1016/j.jpain.2009.01.326
https://doi.org/10.1016/j.jpain.2009.01.326
https://doi.org/10.1177/0333102410364155
https://doi.org/10.1371/journal.pone.0095592
https://doi.org/10.1371/journal.pone.0095592
https://doi.org/10.1523/JNEUROSCI.3792-08.2009
https://doi.org/10.1177/1073858407312521
https://doi.org/10.1177/1073858407312521
https://doi.org/10.1007/s12031-010-9327-z
https://doi.org/10.2147/TACG.S155955
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01008 September 17, 2018 Time: 10:19 # 21

Kringel et al. NGS for Persistent Pain

Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., et al.
(2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29,
308–311. doi: 10.1093/nar/29.1.308

Shi, J., Badner, J. A., Hattori, E., Potash, J. B., Willour, V. L., Mcmahon, F. J.,
et al. (2008). Neurotransmission and bipolar disorder: a systematic family-based
association study. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 1270–1277.
doi: 10.1002/ajmg.b.30769

Shi, T.-J. S., Liu, S.-X. L., Hammarberg, H., Watanabe, M., Xu, Z.-Q. D., and
Hökfelt, T. (2008). Phospholipase C{beta}3 in mouse and human dorsal root
ganglia and spinal cord is a possible target for treatment of neuropathic pain.
Proc. Natl. Acad. Sci. U.S.A. 105, 20004–20008. doi: 10.1073/pnas.0810899105

Shoskes, D. A., Albakri, Q., Thomas, K., and Cook, D. (2002). Cytokine
polymorphisms in men with chronic prostatitis/chronic pelvic pain syndrome:
association with diagnosis and treatment response. J. Urol. 168, 331–335. doi:
10.1016/S0022-5347(05)64916-6

Siqueira, E. C. D., De Sousa, S. F., França, J. A., Diniz, M. G., Pereira, T. D. S. F.,
Moreira, R. G., et al. (2017). Targeted next-generation sequencing of glandular
odontogenic cyst: a preliminary study. Oral. Surg. Oral Med. Oral. Pathol. Oral
Radiol. 124, 490–494. doi: 10.1016/j.oooo.2017.07.001

Skarke, C., Kirchhof, A., Geisslinger, G., and Lötsch, J. (2004). Comprehensive
mu-opioid-receptor genotyping by pyrosequencing. Clin. Chem. 50, 640–644.
doi: 10.1373/clinchem.2003.027607

Skarke, C., Kirchhof, A., Geisslinger, G., and Lötsch, J. (2005). Rapid genotyping
for relevant CYP1A2 alleles by pyrosequencing. Eur. J. Clin. Pharmacol. 61,
887–892. doi: 10.1007/s00228-005-0029-3

Sluka, K. A., and Audette, K. M. (2006). Activation of protein kinase C in the spinal
cord produces mechanical hyperalgesia by activating glutamate receptors, but
does not mediate chronic muscle-induced hyperalgesia. Mol. Pain 2:13. doi:
10.1186/1744-8069-2-13

Smith, F. L., Fujimori, K., Lowe, J., and Welch, S. P. (1998). Characterization of
delta9-tetrahydrocannabinol and anandamide antinociception in nonarthritic
and arthritic rats. Pharmacol. Biochem. Behav. 60, 183–191. doi: 10.1016/S0091-
3057(97)00583-2

Snider, W. D., and McMahon, S. B. (1998). Tackling pain at the source: new ideas
about nociceptors. Neuron 20, 629–632. doi: 10.1016/S0896-6273(00)81003-X

Solus, J. F., Chung, C. P., Oeser, A., Li, C., Rho, Y. H., Bradley, K. M., et al.
(2015). Genetics of serum concentration of IL-6 and TNFα in systemic
lupus erythematosus and rheumatoid arthritis: a candidate gene analysis. Clin.
Rheumatol. 34, 1375–1382. doi: 10.1007/s10067-015-2881-6

Somogyi, A. A., Coller, J. K., and Barratt, D. T. (2015). Pharmacogenetics of opioid
response. Clin. Pharmacol. Ther. 97, 125–127. doi: 10.1002/cpt.23

Somogyi, A. A., Sia, A. T., Tan, E.-C., Coller, J. K., Hutchinson, M. R., and Barratt,
D. T. (2016). Ethnicity-dependent influence of innate immune genetic markers
on morphine PCA requirements and adverse effects in postoperative pain. Pain
157, 2458–2466. doi: 10.1097/j.pain.0000000000000661

Sonoda, T., Takada, J., Iba, K., Asakura, S., Yamashita, T., and Mori, M.
(2012). Interaction between ESRα polymorphisms and environmental factors
in osteoporosis. J. Orthop. Res. 30, 1529–1534. doi: 10.1002/jor.22083

Sorge, R. E., Trang, T., Dorfman, R., Smith, S. B., Beggs, S., Ritchie, J., et al. (2012).
Genetically determined P2X7 receptor pore formation regulates variability in
chronic pain sensitivity. Nat. Med. 18, 595–599. doi: 10.1038/nm.2710

Stephens, K., Cooper, B. A., West, C., Paul, S. M., Baggott, C. R., Merriman,
J. D., et al. (2014). Associations between cytokine gene variations and severe
persistent breast pain in women following breast cancer surgery. J. Pain 15,
169–180. doi: 10.1016/j.jpain.2013.09.015

Sugaya, K., Nishijima, S., Yamada, T., Miyazato, M., Hatano, T., and Ogawa, Y.
(2002). Molecular analysis of adrenergic receptor genes and interleukin-
4/interleukin-4 receptor genes in patients with interstitial cystitis. J. Urol. 168,
2668–2671. doi: 10.1016/S0022-5347(05)64241-3

Sun, Y.-G., Gracias, N. G., Drobish, J. K., Vasko, M. R., Gereau, R. W.,
and Chen, Z.-F. (2009). The c-kit signaling pathway is involved in the
development of persistent pain. Pain 144, 178–186. doi: 10.1016/j.pain.2009.
04.011

Tegeder, I., Costigan, M., Griffin, R. S., Abele, A., Belfer, I., Schmidt, H., et al.
(2006). GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity
and persistence. Nat. Med. 12, 1269–1277. doi: 10.1038/nm1490

Thuault, S. (2016). A peripheral messenger for chronic pain. Nat. Neurosci. 19:9.
doi: 10.1038/nn.4217

Thulasiraman, K., and Swamy, M. N. S. (1992). Graphs : Theory and Algorithms.
New York, NY: Wiley. doi: 10.1002/9781118033104

Tian, W., Fu, Y., Garcia-Elias, A., Fernández-Fernández, J. M., Vicente, R., Kramer,
P. L., et al. (2009). A loss-of-function nonsynonymous polymorphism in
the osmoregulatory TRPV4 gene is associated with human hyponatremia.
Proc. Natl. Acad. Sci. U.S.A. 106, 14034–14039. doi: 10.1073/pnas.09040
84106

Tsai, S.-J., Hong, C.-J., Cheng, C.-Y., Liao, D.-L., and Liou, Y.-J. (2007). Association
study of polymorphisms in post-synaptic density protein 95 (PSD-95) with
schizophrenia. J. Neural Transm. (Vienna) 114, 423–426. doi: 10.1007/s00702-
006-0587-2

Tsantoulas, C., Mooney, E. R., and Mcnaughton, P. A. (2016). HCN2 ion channels:
basic science opens up possibilities for therapeutic intervention in neuropathic
pain. Biochem. J. 473, 2717–2736. doi: 10.1042/BCJ20160287

Tulah, A. S., Beghe, B., Barton, S. J., Holloway, J. W., and Sayers, I. (2012).
Leukotriene B4 receptor locus gene characterisation and association studies in
asthma. BMC Med. Genet. 13:110. doi: 10.1186/1471-2350-13-110

Ultsch, A., Kringel, D., Kalso, E., Mogil, J. S., and Lötsch, J. (2016). A data
science approach to candidate gene selection of pain regarded as a process
of learning and neural plasticity. Pain 157, 2747–2757. doi: 10.1097/j.pain.
0000000000000694

Ursu, D., Ebert, P., Langron, E., Ruble, C., Munsie, L., Zou, W., et al. (2014).
Gain and loss of function of P2X7 receptors: mechanisms, pharmacology and
relevance to diabetic neuropathic pain. Mol Pain 10:37. doi: 10.1186/1744-
8069-10-37

Vaclavikova, E., Dvorakova, S., Skaba, R., Pos, L., Sykorova, V., Halkova, T., et al.
(2014). RET variants and haplotype analysis in a cohort of Czech patients with
Hirschsprung disease. PLoS One 9:e98957. doi: 10.1371/journal.pone.0098957

Vadakkan, K. I., Wang, H., Ko, S. W., Zastepa, E., Petrovic, M. J., Sluka, K. A.,
et al. (2006). Genetic reduction of chronic muscle pain in mice lacking
calcium/calmodulin-stimulated adenylyl cyclases. Mol. Pain 2:7. doi: 10.1186/
1744-8069-2-7

Vassalli, P. (1992). The pathophysiology of tumor necrosis factors. Annu. Rev.
Immunol. 10, 411–452. doi: 10.1146/annurev.iy.10.040192.002211

Venn, J. (1880). On the diagrammatic and mechanical representation of
propositions and reasonings. Dublin Philos. Mag. J. Sci. 9, 1–18. doi: 10.1080/
14786448008626877

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G.,
et al. (2001). The sequence of the human genome. Science 291, 1304–1351.
doi: 10.1126/science.1058040

Walker, K., Bowes, M., Panesar, M., Davis, A., Gentry, C., Kesingland, A., et al.
(2001). Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive
function. I. Selective blockade of mGlu5 receptors in models of acute, persistent
and chronic pain. Neuropharmacology 40, 1–9. doi: 10.1016/S0028-3908(00)
00113-1

Walter, C., Doehring, A., Oertel, B. G., and Lötsch, J. (2013). µ-opioid receptor
gene variant OPRM1 118 A>G: a summary of its molecular and clinical
consequences for pain. Pharmacogenomics 14, 1915–1925. doi: 10.2217/pgs.
13.187

Wang, C., Wang, H., Pang, J., Li, L., Zhang, S., Song, G., et al. (2014). Glial cell-
derived neurotrophic factor attenuates neuropathic pain in a mouse model
of chronic constriction injury: possible involvement of E-cadherin/p120ctn
signaling. J. Mol. Neurosci. 54, 156–163. doi: 10.1007/s12031-014-0266-y

Wang, X.-S., Song, H.-B., Chen, S., Zhang, W., Liu, J.-Q., Huang, C., et al.
(2015). Association of single nucleotide polymorphisms of ABCB1, OPRM1
and COMT with pain perception in cancer patients. J. Huazhong Univ. Sci.
Technolog. Med. Sci. 35, 752–758. doi: 10.1007/s11596-015-1502-6

Wedrén, S., Lovmar, L., Humphreys, K., Magnusson, C., Melhus, H., Syvänen, A.-
C., et al. (2008). Estrogen receptor alpha gene polymorphism and endometrial
cancer risk–a case-control study. BMC Cancer 8:322. doi: 10.1186/1471-2407-
8-322

Wellcome Trust, Case Control, and Consortium. (2007). Genome-wide association
study of 14,000 cases of seven common diseases and 3,000 shared controls.
Nature 447, 661–678. doi: 10.1038/nature05911

Wise, B. L., Demissie, S., Cupples, L. A., Felson, D. T., Yang, M., Shearman, A. M.,
et al. (2009). The relationship of estrogen receptor-alpha and -beta genes with
osteoarthritis of the hand. J. Rheumatol. 36, 2772–2779. doi: 10.3899/jrheum.
081208

Frontiers in Pharmacology | www.frontiersin.org 21 September 2018 | Volume 9 | Article 1008

https://doi.org/10.1093/nar/29.1.308
https://doi.org/10.1002/ajmg.b.30769
https://doi.org/10.1073/pnas.0810899105
https://doi.org/10.1016/S0022-5347(05)64916-6
https://doi.org/10.1016/S0022-5347(05)64916-6
https://doi.org/10.1016/j.oooo.2017.07.001
https://doi.org/10.1373/clinchem.2003.027607
https://doi.org/10.1007/s00228-005-0029-3
https://doi.org/10.1186/1744-8069-2-13
https://doi.org/10.1186/1744-8069-2-13
https://doi.org/10.1016/S0091-3057(97)00583-2
https://doi.org/10.1016/S0091-3057(97)00583-2
https://doi.org/10.1016/S0896-6273(00)81003-X
https://doi.org/10.1007/s10067-015-2881-6
https://doi.org/10.1002/cpt.23
https://doi.org/10.1097/j.pain.0000000000000661
https://doi.org/10.1002/jor.22083
https://doi.org/10.1038/nm.2710
https://doi.org/10.1016/j.jpain.2013.09.015
https://doi.org/10.1016/S0022-5347(05)64241-3
https://doi.org/10.1016/j.pain.2009.04.011
https://doi.org/10.1016/j.pain.2009.04.011
https://doi.org/10.1038/nm1490
https://doi.org/10.1038/nn.4217
https://doi.org/10.1002/9781118033104
https://doi.org/10.1073/pnas.0904084106
https://doi.org/10.1073/pnas.0904084106
https://doi.org/10.1007/s00702-006-0587-2
https://doi.org/10.1007/s00702-006-0587-2
https://doi.org/10.1042/BCJ20160287
https://doi.org/10.1186/1471-2350-13-110
https://doi.org/10.1097/j.pain.0000000000000694
https://doi.org/10.1097/j.pain.0000000000000694
https://doi.org/10.1186/1744-8069-10-37
https://doi.org/10.1186/1744-8069-10-37
https://doi.org/ 10.1371/journal.pone.0098957
https://doi.org/10.1186/1744-8069-2-7
https://doi.org/10.1186/1744-8069-2-7
https://doi.org/10.1146/annurev.iy.10.040192.002211
https://doi.org/10.1080/14786448008626877
https://doi.org/10.1080/14786448008626877
https://doi.org/10.1126/science.1058040
https://doi.org/10.1016/S0028-3908(00)00113-1
https://doi.org/10.1016/S0028-3908(00)00113-1
https://doi.org/10.2217/pgs.13.187
https://doi.org/10.2217/pgs.13.187
https://doi.org/10.1007/s12031-014-0266-y
https://doi.org/10.1007/s11596-015-1502-6
https://doi.org/10.1186/1471-2407-8-322
https://doi.org/10.1186/1471-2407-8-322
https://doi.org/10.1038/nature05911
https://doi.org/10.3899/jrheum.081208
https://doi.org/10.3899/jrheum.081208
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01008 September 17, 2018 Time: 10:19 # 22

Kringel et al. NGS for Persistent Pain

Wolters, P. L., Burns, K. M., Martin, S., Baldwin, A., Dombi, E., Toledo-Tamula,
M. A., et al. (2015). Pain interference in youth with neurofibromatosis type 1
and plexiform neurofibromas and relation to disease severity, social-emotional
functioning, and quality of life. Am. J. Med. Genet. A 167A, 2103–2113. doi:
10.1002/ajmg.a.37123

Woo, J. H., Kim, H., Kim, J. H., and Kim, J. G. (2015). Cannabinoid receptor gene
polymorphisms and bone mineral density in Korean postmenopausal
women. Menopause 22, 512–519. doi: 10.1097/GME.000000000000
0339

Yamamoto, M., Ito, Y., Mitsuma, N., Hattori, N., and Sobue, G. (2003). Pain-
related differential expression of NGF, GDNF, IL-6, and their receptors in
human vasculitic neuropathies. Intern. Med. 42, 1100–1103. doi: 10.2169/
internalmedicine.42.1100

Yang, L., Gu, X., Zhang, W., Zhang, J., and Ma, Z. (2014). Cdk5
inhibitor roscovitine alleviates neuropathic pain in the dorsal
root ganglia by downregulating N-methyl-D-aspartate receptor
subunit 2A. Neurol. Sci. 35, 1365–1371. doi: 10.1007/s10072-014-
1713-9
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