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Supplementary Figure 1: Fourier statistics of leaky integrate-and-fire spiking responses (LIF) evoked by
Ornstein-Uhlenbeck stimuli from Fig. 6 E in the main article. (A) Voltage trajectory and spikes in a
LIF spiking neuron. In this model a spike (black vertical line) is emitted whenever the voltage crosses a
threshold value, after a spike voltage is reset to its reset value. Here, the firing rate is 29 Hz and the mean
interspike interval is 33 ms. (B) Probability distribution of Fourier coefficients cR(ω) (blue) and cR|s(ω)
(red) in spiking responses from (A). (C) We can confirm that the amplitudes are Rayleigh-distributed
and that the phases are uniformly distributed (D). Black lines in (C) and (D) denote the respective fits.
In (E) we numerically confirm that the real and imaginary part for each frequency between 1 and 500 Hz
are indeed uncorrelated, as mathematical proofs indicate. (F) Similar lack of correlation holds across
different frequencies (∆f = 1 Hz). We note that the deviation of the mean correlation coefficient in (E)
and (F) is a finite size effect that can be further reduced by increasing the recording duration and trial
number. In this figure we present Fourier statistics at ω = 22πHz, τmem = 10 ms, analogous statistics
can be observed at other frequencies and membrane time constants.
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Supplementary Figure 2: Fourier statistics of adaptive leaky integrate-and-fire spiking responses (aLIF)
evoked by Ornstein-Uhlenbeck stimuli from Fig. 6 F in the main article. (A) Voltage trajectory and
spikes in a aLIF spiking neuron. In this model a spike (black vertical line) is emitted whenever the voltage
crosses a threshold value, after a spike voltage is reset to its reset value. Here, the resulting firing rate
is 50 Hz and the mean interspike interval is 19 ms. (B) Probability distribution of Fourier coefficients
cR(ω) (blue) and cR|s(ω) (red) in spiking responses from (A). (C) We can confirm that the amplitudes
are Rayleigh-distributed and that the phases are uniformly distributed (D). Black lines in (C) and (D)
denote the respective fits. In (E) we numerically confirm that the real and imaginary part for each
frequency between 1 and 500 Hz are indeed uncorrelated, as mathematical proofs indicate. (F) Similar
lack of correlation holds across different frequencies (∆f = 1 Hz). We note that the deviation of the mean
correlation coefficient in (E) and (F) is a finite size effect that can be further reduced by increasing the
recording duration and trial number. In this figure we present Fourier statistics at ω = 8πHz, τmem = 10
ms, analogous statistics can be observed at other frequencies and membrane time constants.
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Supplementary Figure 3: Fourier statistics of exponential integrate-and-fire spiking responses (EIF)
evoked by Ornstein-Uhlenbeck stimuli from Fig. 6 G in the main article. Voltage trajectory and spikes in
a EIF spiking neuron. In this model a spike (black vertical line) is emitted whenever the voltage crosses a
threshold value, after a spike voltage is reset to its reset value. Here, the firing rate is 25 Hz and the mean
interspike interval is 40 ms. (B) Probability distribution of Fourier coefficients cR(ω) (blue) and cR|s(ω)
(red) in spiking responses from (A). (C) We can confirm that the amplitudes are Rayleigh-distributed
and that the phases are uniformly distributed (D). Black lines in (C) and (D) denote the respective fits.
In (E) we numerically confirm that the real and imaginary part for each frequency between 1 and 500 Hz
are indeed uncorrelated, as mathematical proofs indicate. (F) Similar lack of correlation holds across
different frequencies (∆f = 1 Hz). We note that the deviation of the mean correlation coefficient in (E)
and (F) is a finite size effect that can be further reduced by increasing the recording duration and trial
number. In this figure we present Fourier statistics at ω = 8πHz, τmem = 10 ms, analogous statistics can
be observed at other frequencies and membrane time constants.
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Supplementary Figure 4: Convergence of the ISI information as a function of discretisation. The signal
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supplementary figure, we show data from Fig. 5 A evaluated at τstim = 10 ms in the leaky integrate and
fire neuron. For all values of the ISI information in Fig. 5 we display the information values which were
we reached at saturation, NH ≥ 1000.

4



Fourier6coefficients6in6spiking6response

P
ro

b
ab

ili
ty

6d
en

si
ty

Amplitudes6are6Rayleigh6distributed

B

C D

Phase6of6cR6and6cR|s6

Phases6are6uniformly

C S X
C

CLX

CL8

Amplitudes6of6cR6and6cR|s

6

V
ol

ta
ge

6[m
V

]

Voltage6process6with6spikes

Time6[s]

A

S

IS

I6
C CLM CLS CLN CLX CL5

6

P
ro

b
ab

ili
ty

6d
en

si
ty

I5
C

CLS

CLX

Re6of6cR6and6cR|s

C 5

ρ3Re3cR5,6Im3cR556and6ρ3Re3cR|s5,6Im3cR|s55

ρ3cR63ωM5,cR3ωS556and6ρ3cR|s3ωM5,cR|s3ωS55

−CLX −CLS C CLS CLX
C

MC

SC

NC

XC

XC

NC

SC

P
ro

b
ab

ili
ty

6d
en

si
ty

Lack6of6correlation6across6frequencies6

P
ro

b
a

b
ili

ty
6d

e
n

si
ty

MC

Lack6of66correlation6in6real6and6

−CLX

imaginary6part

E

−CLS C CLS CLX
C

Correlation6coefficient

Correlation6coefficient

Threshold

Reset

Iπ C π

3Sπ5IM

distributed

F

C MC SC NC XC
C

XC

8C

In
fo

rm
a

tio
n

6r
a

te
6[b

it6
sIM

]

Membrane6time6constant6[ms]

Information6rate

5C

SNRM
SNRS

σX,M
σX,S

Supplementary Figure 5: Fourier statistics of leaky integrate-and-fire spike trains evoked by a stochastic
switching process alternating between two Ornstein-Uhlenbeck states. (A) Voltage and spikes evoked by
a stimulus alternating stochastically between two Ornstein-Uhlenbeck states. The two states differ in
their variance and stimulus-to-noise ratios. Spikes are denoted by black vertical lines. (B) Probability
distribution of Fourier coefficients cR(ω) (blue) and cR|s(ω) (red) from spiking responses from (A). (C)
Amplitudes of Fourier coefficients cR and mean normalized cR|s are Rayleigh distributed and their phases
are uniform (C inset). Black lines denote the respective Rayleigh and uniform fits. In (B) and (C) we
considered Fourier statistics at ω = 10π Hz. (D) Distribution of correlation coefficients between the real
and the imaginary part for each frequency between 1 and 500 Hz, confirming the absence of correlation
implied by mathematical proofs. (E) Similar lack of correlation in cR and cR|s holds across different
frequencies (∆f = 1 Hz). (F) Information content given by the correlation theory (blue squares) and
the direct method (black triangles) yield equivalent results across two orders of magnitude in membrane
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Supplementary Figure 6: Fourier statistics of leaky integrate-and-fire spike trains evoked by stationary
switching processes. (A) Three trials with varying stimuli (left top) and repeating stimuli (left bottom).
The resulting spike trains evoked by varying and repeating stimuli are shown (right top and right bottom).
In this example, the stimuli and noise processes follow the same distribution and alternate stochastically
(Poisson process, average switching rate 10 Hz) between an Ornstein-Uhlenbeck process and a sinusoid.
At the beginning of the recording and at the onset of each sinusoidal segment the initial phase is reset to
a random value φi ∈ [−π, π]. (B) Probability distribution of Fourier coefficients cR(ω) (blue) and cR|s(ω)
(red) in spiking responses in (A). (C) Amplitudes of Fourier coefficients cR and mean normalized cR|s
are Rayleigh distributed, their while the phases of cR and mean normalized cR|s are uniform (C inset).
Black lines denote the respective Gaussian and Rayleigh fits. (D and E) We confirm the predictions
of the correlation theory that the real and imaginary part for each frequency between 1 and 500 Hz
are uncorrelated in cR and cR|s. (E) Similar lack of correlation in cR and cR|s holds across different
frequencies (∆f = 1Hz). In (B)-(E) Fourier statistics for ω = 18πHz is shown, parameter values of
the leaky integrate and fire model are given on p. 6-7, membrane time constant τmem = 25 ms, which
corresponds to the leftmost point in Fig. 7.

6



0.4 0.4

−500 0 500

2

4

N
or

m
.Hc

or
re

la
tio

n

TimeHdelayH[ms]
−500 0 500

2

4

SpikeHcrossHcorrelationSpikeHautoHcorrelation

0 200 400
0

If
ω

)[
bi

tHf
H

zH
s)

-1
]

FrequencyH[Hz]

C

⋅

TimeHdelayH[ms]
−500 0 500

2

4

N
or

m
.Hc

or
re

la
tio

n

TimeHdelayH[ms]
−500 0 500

2

4

SpikeHcrossHcorrelationSpikeHautoHcorrelation

0 200 400
0If

ω
)[

bi
tHf

H
zH

s)
-1
]

FrequencyH[Hz]

A

⋅

MembraneHtimeHconstantH[ms]

20 40 60
0

20

40

InformationHrate
In

fo
rm

at
io

nH
ra

te
H[b

itH
s-1

]
B

TimeHdelayH[ms]

Supplementary Figure 7: Information content and spike correlation functions in leaky integrate-and-fire
spike trains evoked by stationary switching processes from Fig. 6. (A, top) Spike auto and cross correlation
functions at τmem = 25 ms, each is normalized by the firing rate squared for better comparison. We note
that both the auto and cross correlation functions decay to zero for long time delays. This indicates that
spike trains have finite memory. (A, bottom) Information rate per frequency I(ω) as calculated from
correlation functions in (A,top). (B) Information content given by the correlation theory (blue) and the
direct method (black). As expected from finite memory and stationarity of the spikes the information
content, the information content given by the direct method and correlation theory are in agreement.
(C) Spike auto and cross correlation functions at τmem = 55 ms, each is normalized by the firing rate
squared for better comparison. We note that both the auto and cross correlation functions decay to zero
for long time delays. This indicates that spike trains have finite memory. (C, bottom) Information rate
per frequency I(ω) as calculated from correlation functions in (C,top)
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Supplementary Figure 8: Fourier statistics of leaky integrate-and-fire spike trains evoked by partially
stationary switching processes. (A) Three trials with varying stimuli (left top) and repeating stimuli (left
bottom). The resulting spike trains evoked by varying and repeating stimuli (right top and right bottom).
Here, the stimuli and noise processes follow the same distribution and alternate stochastically (Poisson
process, average switching rate 10 Hz) between an Ornstein-Uhlenbeck process and a sinusoid. At the
beginning of the recording the phase is randomly selected but at each subsequent onset of a sinusoidal
segment the phase is selected such that phase coherence to the last sinusoid segment is maintained. (B)
Probability distribution of Fourier coefficients cR(ω) (blue) and cR|s(ω) (red) in spiking responses in (A).
(C) Amplitudes of Fourier coefficients cR and mean normalized cR|s are Rayleigh distributed, their while
the phases of cR and mean normalized cR|s are uniform (C inset). Black lines denote the respective
Gaussian and Rayleigh fits. (D and E) Real and imaginary part for each frequency between 1 and 500 Hz
are uncorrelated in cR and cR|s. (E) Correlation coefficients of cR and cR|s across different frequencies
(∆f = 1Hz) have a zero-centered distributions. The distribution of cross frequency correlation coefficients
for cR|s has long tails suggesting cross frequency coupling. In (B)-(E) Fourier statistics for ω = 18πHz
is shown, parameter values of the leaky integrate and fire model are given on p. 6-7, membrane time
constant τmem = 25 ms, which corresponds to the leftmost point in Fig. 9.
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Supplementary Figure 9: Information content and spike correlation functions in leaky integrate-and-fire
spike trains evoked by partially stationary switching processes from Fig. 8. (A, top) Spike auto and
cross correlation functions at τmem = 25 ms, each is normalized by the firing rate squared for better
comparison. We note that neither the auto nor the cross correlation function decay to zero for long
time delays. This indicates that spike trains have infinitely long phase coherence and therefore infinite
memory. (A, bottom) Information rate per frequency I(ω) as calculated from correlation functions in (A).
(B) Information content given by the correlation theory (blue) and the direct method (black). As expected
from non-stationary spike trains with infinite memory neither direct method nor correlation theory are
valid exactly and therefore result in different information values. While the information predicted by
the correlation theory agrees with the finite memory contribution from Fig. 9 B, the direct method leads
to comparable results only for longer membrane time constants. (C) Spike auto and cross correlation
functions at τmem = 55 ms, each is normalized by the firing rate squared for better comparison. We
note that neither the auto nor the cross correlation function decay to zero for long time delays. This
indicates that spike trains have infinitely long phase coherence and therefore infinite memory. (C, bottom)
Information rate per frequency I(ω) as calculated from correlation functions in (C, top)
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Supplementary Figure 10: Fourier statistics of leaky integrate-and-fire spike trains evoked by periodic
inputs. (A) Trajectory of a periodic input (50 Hz). (B) Periodic auto covariance function of the stimulus
shown in (A). (C) Periodic voltage trajectory and spikes (black vertical lines) of a LIF neuron evoked
by the periodic input shown in (A). (D) Non-Gaussian probability distribution of Fourier coefficients
cR(ω) (blue) and cR|s(ω) (red) in spiking responses evoked by stimuli drawn from (A). As expected from
non-stationary spike trains with infinite memory, we can confirm that the amplitudes are not Rayleigh-
distributed (E) and that the phase are not uniformly distributed (F). For reference black lines denote
the Gaussian (D), Rayleigh (E) and uniform (F) distributions calculated using the measured variances.
In D-F ω is equal to 8πHz.
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Table 1: Parameter sets and binary word statistics across neuron models in Fig. 6

Threshold based neuron (Fig. 6A)
τmem [ms] Firing 〈ISI〉 [ms] Window sizes [ms] Binary word stats 3. window size

rate [Hz] / bin size [ms] window/# bins/p(1 spike)/p(> 1 spikes)
1 45.1 21.7 {10,12,16,22,40}/2 16 ms/ 8 / 35.3% / 15.9%

3.2 24.8 38.98 {10,12,16,22,40}/2 16 ms / 8 / 30.2% / 4.4%
10 13.0 73.78 {10,12,16,22,40}/2 16 ms/ 8 / 18.6% / 1.1%
32 5.9 152.98 {10,12,16,22,40}/2 16 ms/ 8 / 8.8%/ 0.3%
100 1.7 406.66 {60,74,96,137,240}/12 96 ms/ 8 / 11.2% / 2.2%

Leaky integrate-and-fire (Fig. 6E)
τmem [ms] Firing 〈ISI〉 [ms] Window sizes [ms] Binary word stats 3. window size

rate [Hz] / bin size [ms] window/# bins/p(1 spike)/p(> 1 spikes)
3.2 107.5 8.7 {10,12,16,22,40}/2 16 ms / 8 / 15.2% / 36.9%
10 29.3 32.6 {10,12,16,22,40}/2 16 ms / 8 / 19.9% / 11.5%
32 6.7 138.2 {50,60,80,110,200}/10 80 ms / 8 / 28.8% / 11.1%
100 1.1 753.7 {50,60,80,110,200}/10 80 ms / 8 / 8.7% / 0.04%

Adaptive leaky integrate-and-fire (Fig. 6F)
τmem [ms] Firing 〈ISI〉 [ms] Window sizes [ms] Binary word stats 3. window size

rate [Hz] / bin size [ms] window/# bins/p(1 spike)/p(> 1 spikes)
3.2 200 4.9 {10,12,16,22,40}/2 16 ms / 8 / 12.6% / 42.1%
10 49.9 19.2 {10,12,16,22,40}/2 16 ms / 8 / 11.1% / 18.8%
32 8.6 104.3 {50,60,80,110,200}/10 80 ms / 8 / 14.7% / 16.9%
100 0.99 802.07 {50,60,80,110,200}/10 80 ms / 8 / 6.2% / 0.8%

Adaptive leaky integrate-and-fire (Fig. 6F, inset)
τω [ms] Firing 〈ISI〉 [ms] Window sizes [ms] Binary word stats 3. window size

rate [Hz] / bin size [ms] window/# bins/p(1 spike)/p(> 1 spikes)
3.2 51.6 18.6 {25,30,40,55,100}/5 40 ms / 8 / 10.2% / 33.4%
5 49.9 19.2 {25,30,40,55,100}/5 40 ms / 8 / 13.8% / 34.9%
10 49.7 19 {25,30,40,55,100}/5 40 ms / 8 / 19.5% / 40%
31 51.4 20.1 {25,30,40,55,100}/5 40 ms / 8 / 22.6% / 46.6%
100 50.6 20.4 {50,60,80,110,200}/10 80 ms / 8 / 14.7% / 73.8%
316 50.6 20.4 {50,60,80,110,200}/10 80 ms / 8 / 14.5% / 70.9%

Exponential integrate-and-fire (Fig. 6G)
τmem [ms] Firing 〈ISI〉 [ms] Window sizes [ms] Binary word stats 3. window size

rate [Hz] / bin size [ms] window/# bins/p(1 spike)/p(> 1 spikes)
3.2 91.1 10.8 {80,96,128,176,320}/16 128 ms / 8 / 2.6% / 95.6%
10 24.5 40.3 {80,96,128,176,320}/16 128 ms / 8 / 16.7% / 70.9%
32 5.5 169.4 {160,192,256,352,640} / 32 256 ms / 8 / 33.7% / 41.3%
100 0.85 960.7 {160,192,256,352,640} / 32 256 ms / 8 / 20.3% / 0.84%
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Supplementary Note 1
Additional mathematical details and derivations
for correlation theory (equations 4 and 5)

Here, we provide additional mathematical details and derivations for the correlation theory of neural
information. To help our readers with its numerical implementation we also provide computer code
online [1].

We start by elaborating on the statistical properties we build on. We consider stationary spike trains
r(t) =

∑
j δ(t− tj) with finite memory and finite, non-zero coefficient of variation. Here, tj are the spike

times and δ(·) is the Dirac delta distribution, see p. 9 in [2]. Similarly, the input current that drives a
neuron’s decision to spike consists of stimuli and noise processes which are independent of each other and
each is stationary as a function of time and has finite temporal memory, finite means and finite variances.
Note, that the spike generation mechanism in our theory is also time invariant, it preserves these quantities
while it transforms inputs (a combination of stimuli and noise) into spike trains. Examples of such spike
generation mechanisms include the four types of integrate-and-fire type neuron models which we described
in the methods section of the main manuscript. Here, we now provide more details on the mathematical
definitions of stationarity and finite memory.
Stationarity : A process r(t) is stationary or ”time invariant” if the joint distribution of r(ti), ..., r(tn)
is equal to the joint distribution of r(ti+τ ), ..., r(tn+τ ) for all τ . In other words,

P(s(ti), ..., s(tn)) = P(s(ti+τ ), ..., s(tn+τ )) for all n and τ. (1)

This means that once the probability distribution of the process is specified, it remains the same across
time. In particular, this means that the mean and the auto covariance function are also time invariant

E[s(t)] = 〈s(t)〉trials = 〈s(t)〉time = µs for all t, (2)

Cov[s(t), s(t+ τ)] = Cov(τ) for all t. (3)

This standard requirement of stationarity is necessary to define any probability density and calculate the
information content. Should this requirement not be fulfilled by a given neural system, it is typically
nevertheless possible to consider information content and probabilities, however, only for shorter segments
of time, segments that are much smaller than the time scale of the system evolution.
Finite memory, finite coefficient of variation In a system with finite memory the interactions
between any two time points vanish if the two points are sufficiently far apart [3, 4]. In other words the
values r(ti) and r(tj) are only correlated if |tj − ti| < TC , where TC is the finite correlation time of the
process. Mathematically, it implies

lim
|τ |→∞

Cov(τ) = 0. (4)

Finite coefficient of variation is guaranteed if the mean and variance are both finite and non-zero, 0 <
〈r(t)〉time < ∞ and 0 < 〈r(t)2〉time < ∞, respectively. We will use these three properties later in the
application of the Central Limit Theorem to the Fourier coefficients to show that they converge to a
stable Gaussian distribution. Let us note that finite mean and finite variance can be achieved in time
continuous as well as discrete point processes which may be infinite at some points (e.g. spike trains∑
tj
δ(t− tj)).

We also note that the properties of finite memory and finite variability are plausible for any biological
system where molecular constituents have finite lifetimes and finite operational ranges. Overall, we
require rather weak statistical properties and do not specify any functional form of interactions. Processes
fulfilling these stationarity and finite memory criteria may include Markovian, non-Markovian, Gaussian,
non-Gaussian, time continuous or time discrete processes.

Fourier statistics of spike trains We consider a spike train r(t) =
∑
j δ(t− tj) that was recorded for

a time period T . Following the ideas in [3] we are interested in the Fourier representation of this spike
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train. Its complex Fourier coefficients c(ω) are given by

c(ω) =
1

T

∑
tj

exp(iωtj) (5)

where ω = 2πf . For finite recording lengths, the frequency f is discrete f = n/T , where n is an integer,
but it gradually becomes continuous as T grows. We recapitulate two important properties of the spike
train and its coefficients c(ω). First, spike trains are real processes. Therefore, Fourier coefficients for
ω and −ω are linearly dependent, c(ω) = c∗(−ω). This implies that it is sufficient to consider only
positive frequencies to obtain the complete information content. Second, we assume that spike trains
are stationary processes. This implies that the information the spikes convey is independent of the time
frame when they are recorded, e.g. time segments [0, T ] and [∆, T + ∆] carry the same information. This
means that by shifting the time reference by any arbitrary time amount ∆ we can induce any phase shift
φ in the Fourier coefficients c(ω) → c(ω) · exp(iφ) without affecting the information content. From this
follows that the phase carries no information.
To calculate the mutual information, we need to obtain the distribution P (cR(ω)) of Fourier coefficients
cR(ω) from spikes recorded in trials with varying stimuli and the distribution P (cR|s(ω)) of coefficients
cR|s(ω) from spikes recorded in trials with repeated presentations of stimulus s.
To obtain distributions P (cR(ω)) and P (cR|s(ω)), we recall the finite memory property and assume that
the recording time T is much longer than the correlation time of the process, T � TC . The Fourier
coefficients thus contain a sum of largely uncorrelated variables. Therefore, we can apply the Central
Limit Theorem and conclude that cR(ω) and cR|s(ω) will both converge towards a Gaussian random
value. In essence, the Central Limit Theorem states that no matter what the distribution of exp(iωtj) is,
as long as it has finite variance, their sum will always be a Gaussian random variable. To make this more
accessible for our readers we now highlight the Gaussianity of Fourier coefficients in Fig. 2 in the main
manuscript. We now mathematically formalize this Gaussian intuition and use the proofs by Kawata [5]
and Brillinger (Theorem 4.4.1 in [3] and [4], [6]) to derive P (cR(ω)) and P (cR|s(ω)) and their properties.

Obtaining the probability distribution P (cR(ω)) To this end, we consider trials with varying stimuli
where at each trial stimuli and noise are drawn independently from their respective distributions such
that the spike trains are also independent across trials. Subsequently, we investigate the distribution
of spiking Fourier coefficients across trials. Brillinger and Kawaka have shown in their work that the
distribution of Fourier coefficients cR(ω) across trials follows a zero-mean, complex normal distribution
with variance σ2

R(ω) in the limit of infinitely long recording times T in trials with varying stimuli, such
that

P(cR(ω)) = P

 1

T

∑
j

exp(iωtj)

 T→∞−−−−→ Nc(0, σ2
R(ω)). (6)

Furthermore, the distributions P (cR(ω1)) and P (cR(ω2)) for ω1 6= ω2 are asymptotically independent for
large T . In a complex normal distribution Nc(0, σ2

R(ω)) the real and imaginary parts are statistically
independent and Gaussian distributed with equal variance σ2

R(ω)/2 (see [3], [4]). Considering the fact
that the Fourier coefficients cR(ω) originate from a stationary process we also know that the amplitude
of cR(ω) but not its phase carries information about the stimulus structure. For completeness, let us
note that in any given recording the spike times are typically discretized and can be numbered from 0 to
N · dt, where N is the last recording point and dt is the bin size. In this case a small, countable number
of frequencies (ω = 0,±π/dt,±2π/dt, ...) leads to a real rather than complex Gaussian distribution. For
example ω = 0 and ω = π/dt lead to c(0) = c(π/dt) = 1

T

∑
tj

1 = ν, where ν is the firing rate. Since, the

Riemann integral over the frequency space is not affected by this small, countable set of frequencies [7] we
do not consider this set in our calculations. In the continuous limit where dt→ 0 and N →∞ the only
ω-exception is ω = 0, a sole value which does not alter the value of Riemann integral over the Fourier
frequencies and which we therefore leave out in our further calculations.

Obtaining the probability distribution P (cR|s(ω)) To this end, we consider trials with repeating
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stimuli where at each trial the noise is drawn independently from its distribution but the temporal
stimulus trajectory repeats itself. This results in spike trains, which are correlated across trials. Here,
we investigate the distribution of spiking Fourier coefficients across trials. Following the arguments of
Brillinger and Kawaka, and using the assumption that stimulus and noise processes are independent of
each other and each is selected from a set of temporally stationary, finite memory processes, we find that
this leads again to the distribution of Fourier coefficients across trials is a complex Gaussian distribution
P(cR|s(ω)) which is described by

P(cR|s(ω)) = P

 1

T

∑
j

exp(iωtj)

 T→∞−−−−→ Nc(µ, σ2
R|s(ω)). (7)

In repeated presentations of the same stimulus which we consider here, the Fourier coefficients cR|s(ω) will
have a finite, non-zero mean µ which is determined by the specific trajectory of the chosen stimulus. But
since the trajectory of the stimulus and noise are independent and the recording length T is longer than
the time scale of both temporal interactions, the chosen temporal stimulus trajectory will not influence
the noise trajectory and its variance. While the stimulus remains the same across these trials, the noise
varies across trials and is independent from trial to trial. Furthermore, the spike mechanism itself is time
invariant such that the spikes inherit the finite memory property for any combination of stimulus and
noise processes and their temporal statistics are independent of the start and end point of the recording.
This leads to two observations. First, due to invariance of stimulus statistics with respect to the start
and end point of the recording the amplitude of the Fourier coefficients cR|s(ω) but not their phase
carries information about the stimulus structure. Second, to calculate the distribution of cR|s(ω) the
Central Limit Theorem can be applied in the same manner as for the coefficients cR(ω). This situation
is illustrated in Fig. 2 in the main manuscript and Figs 1, 2 and 3 where both the complex Gaussianity
and independence of frequencies is confirmed numerically.
To mathematically support this argument further we refer to p. 38 Theorem 2.9.1 [3]. This theorem
shows that the output of a time invariant spiking mechanism that receives stationary inputs with finite
memory is also a process which is stationary and has finite memory and thus has complex Gaussian
Fourier coefficients that are independent across frequencies. We follow the arguments by Brillinger and
consider a Volterra functional expansion which is given by

r(t) =

L∑
j=0

∑
u1,...,uj

aj(t− u1, ..., t− hj)X(u1) · ... ·X(uj), (8)

where X(ui) is the input at time ui and aj(t) are system specific Volterra kernels. The input is a function
of the stimulus and noise X(ui) = f(s(ui), n(ui)), which can be either a simple addition or any other
more complex relation. Since the spiking output is a sum of input processes weighted by the Volterra
kernels, its finite memory properties and invariance with respect to time shifts are directly inherited from
the inputs. Additionally, we recognize that the terms proportional to the stimulus (e.g. aj(t− u1)s(u1))
will contribute to the finite mean µ of the complex Gaussian Fourier distribution P(cR|s(ω)) which is
obtained across trials with repeated stimulus presentations. On the other hand, the terms proportional
to the noise process (e.g. aj(t − u1)n(u1) or aj(t − u1)s(nj)n(u1)) will lead in the Fourier space to a
Gaussian distribution across trials and will contribute to the variance σ2

R|s(ω) of Nc(µ, σ2
R|s(ω)). In other

words, the common stimulus component contributes to the mean Fourier coefficient while the noise is
responsible for the Gaussian distribution. Importantly, the noise-induced variability across trials, but
not the mean, determine the correlations across frequencies. Because the noise process has the same
statistical properties of stationarity and finite memory, as the combination of stimulus and noise in trials
with varying stimuli, the same arguments that lead to the independence of frequencies for P(cR(ω)) in the
proof by Brillinger apply here again. We thus obtain the result in equation (7) along with the statement
that the distributions P (cR(ω1)) and P (cR(ω2)) for ω1 6= ω2 are asymptotically independent for large
T . We numerically confirm these mathematical arguments in Fig. 2 of the main manuscript for bimodal
inputs in the leaky integrate-and-fire model and in Figs. 1-3 of this supplementary material for three
types of leaky integrate-and-fire models and in Figs. 5 and 6 for stochastic switching processes.

Details and derivations of mutual information Here, we consider the mutual information for each
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frequency component as defined by

I(ω) = Hsignal(ω)−Hnoise(ω) = −
∑
R

P (cR(ω)) log2 P (cR(ω)) +

〈∑
R

P (cR|s(ω)) log2 P (cR|s(ω))

〉
s

(9)

where 〈〉s denotes the average over all possible stimuli. Dealing with the complex Gaussian distributions
P (cR|s(ω)) and P (cR(ω)) which have additional symmetries with respect to phase shifts, we obtain the
following result

I(ω) =
1

2
log2

(
σ2
R(ω)/σ2

R|s(ω)
)
. (10)

To derive this result, we consider two important statements. First, the differential mutual information
of a (complex) Gaussian variable does not depend on its mean value, a property typically referred to as
”translational invariance” (pp.250 and 253 [8]). Second, the phases of the complex Gaussian Fourier
coefficients cR(ω) and cR|s(ω) carry no additional information because the statistics of spiking process
are independent of the start and end point of the recording, all information is contained already in the
amplitude of these variables. Taking these statements as a starting point we can write

I(ω) = HA
signal −HA

noise, (11)

where the superscript A denotes the Fourier amplitude for which the signal and noise entropies are
calculated. Using the property of translational invariance, we can zero center the distribution of cR|s(ω).
We are now dealing with zero mean complex Gaussian coefficients cR|s(ω) and cR(ω) whose amplitudes
can now be described by a Rayleigh distribution [9]. Importantly, the variance of the complex Gaussian
distribution is equal to the variance of the Rayleigh distribution. Now, we can use the entropy of a
Rayleigh distributed variable with variance σ2 which is given by H = 1

2 log2( 1
2σ

2e2+Γ), where Γ is Euler-
Mascheroni constant [10], to calculate the mutual information rate per frequency for our quantities of
interest. We obtain

I(ω) =HA
signal(ω)−HA

noise(ω) (12)

=
1

2
log2(

1

2
σ2
R(ω)e2+Γ)− 1

2
log2(

1

2
σ2
R|s(ω)e2+Γ) (13)

=
1

2
log2

(
1
2σ

2
R(ω)e2+Γ

1
2σ

2
R|s(ω)e2+Γ

)
=

1

2
log2

(
σ2
R(ω)/σ2

R|s(ω)
)
. (14)

We thus obtain the result in equation (10). We note that a division by a σ2
R|s(ω) is possible because

this quantity is non-zero. This is due to residual variability remaining in the response across trials due
to noise, even in trials with repeated stimulus s presentations. Following the results of Brillinger [3]
which we summarized above we also know that each frequency ω contributes independently to mutual
information. We thus can sum their contributions and obtain

I(R,S) =
1

2

∫ ∞
0

log2

(
σ2
R(ω)/σ2

R|s(ω)
)
dω. (15)

Note that because the spike trains are real processes the Fourier coefficients for ω and −ω are linearly
dependent and the contribution of positive frequencies is sufficient for the calculation of information. We
now proceed to calculate the variances σ2

R(ω) and σ2
R|s(ω).

Details on the variance calculations for σ2
R(ω) and σ2

R|s(ω) Here we show that variances σ2
R(ω),

σ2
R|s(ω) can be identified with the spike auto and cross correlation functions. We start by defining the

variance of a coefficient c(ω) and obtain

σ2(ω) = 〈c(ω)c(ω)∗〉trial − 〈c(ω)〉trial〈c(ω)∗〉trial. (16)

15



where 〈·〉trial denotes the average over the statistical ensemble and ∗ the complex conjugate. For a given
set of NT trials, we now calculate σ2

R(ω) and σ2
R|s(ω) of the Fourier coefficients cR(ω) and cR|s(ω). We

next evaluate

σ2(ω) =

[
NT∑
n

c(ω)trialnc(ω)∗trialn − (

NT∑
n

c(ω)trialn)(

NT∑
m

c(ω)∗trialm)/NT

]
/(NT − 1) (17)

=

NT∑
n

c(ω)trialnc(ω)∗trialn −
NT∑
n

c(ω)trialnc(ω)∗trialn/NT − (

NT∑
n

NT∑
n 6=m

c(ω)trialnc(ω)∗trialm)/NT

 /(NT − 1),

(18)

thus for large NT we obtain

σ2(ω) =
〈
c(ω)trialnc(ω)∗trialn

〉
trial
−
〈
c(ω)trialnc(ω)∗trialm

〉
trialn 6=trialm

. (19)

For Fourier coefficients σ2
R(ω) and σ2

R|s(ω) we obtain

σ2
R(ω) =

〈
c(ω)trialnc(ω)∗trialn

〉
trial

, (20)

σ2
R|s(ω) =

〈
c(ω)trialnc(ω)∗trialn

〉
trial
−
〈
c(ω)trialnc(ω)∗trialm

〉
trialn 6=trialm

. (21)

Note, that the second term describing the cross correlations across different trials vanishes for σ2
R(ω) but

is finite in σ2
R|s(ω). We now express these quantities via spike correlation functions. First we define the

Fourier transform (F) of the auto correlation function

Cspikeauto (ω) = F
(
Cspikeauto (τ)

)
= F

(
1

T

∫ T

0

r(t)r(t− τ)dt

)
(22)

and yield the variance σ2
R(ω) for presentations of varying stimuli

σ2
R(ω) =

1

T 2

〈
NS∑
i

exp(iωti)

NS∑
j

exp(−iωtj)

〉
trial

(23)

=
1

T
r(ω)r∗(ω), (24)

=
1

T
Cspikeauto (ω), (25)

where r(ω) is the Fourier transform of a spike train and NS is the number of spikes. Second, we define
the Fourier transform of the cross correlation function for trials n 6= m

Cspikecross(ω) = F
(
Cspikecross(τ)

)
= F

(
1

T

∫ T

0

rtrialn(t)rtrialm(t− τ)dt

)
(26)

and with equivalent calculations obtain the variance σ2
R|s(ω) for repeated stimulus presentation

σ2
R|s(ω) =

1

T

(
Cspikeauto (ω)− Cspikecross(ω)

)
. (27)

Inserting this in equation (14) it follows that the information rate per frequency is given by

I(ω) =
1

2
log2

(
σ2
R(ω)

σ2
R|s(ω)

)
=

1

2
log2

 1
T C

spike
auto (ω)

1
T

(
Cspikeauto (ω)− Cspikecross(ω)

)
 (28)

=− 1

2
log2

(
1− Cspikecross(ω)

Cspikeauto (ω)

)
, (29)
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and the information rate by

I(R,S) = −1

2

∫ ∞
−∞

log2

(
1− Cspikecross(ω)

Cspikeauto (ω)

)
dω. (30)

In Fig. 2 of the main manuscript we numerically confirmed that the Fourier coefficients cR(ω) and cR|s(ω)
indeed show the mathematically predicted properties such as Gaussianity and independence of the real
and imaginary part (Fig. 2 D,F), Rayleigh distribution of amplitudes and equal distribution of phases
(Fig.2 E,G) in the leaky integrate-and-fire model neuron driven by bimodal stimuli.

Additional details on the derivation of the linear approximation of the full
information content

One of the now classic linear approximations to the information content of a neuron has been proposed
by Stein and colleagues in 1970s [11–14]. Here, we show that a linear approximation, also referred to as
the lower bound estimate ILB(R,S), can be derived from our expression for the full information content
(equation (30), or main manuscript equation (4)).
We linearize the nominator within the logarithm of equation (30), which is the spike cross correlation
function Cspikecross(ω). We linearly approximate the spiking response to an input stimulus X(t) using the
first Wiener kernel υ1(τ):

r(t) ≈ rest(t) =

∫ ∞
−∞

υ1(τ)X(t− τ)dτ . (31)

Here, the first Wiener kernel υ1(τ) is derived using the standard reverse correlation method [15]

υ1(ω) =
r(ω)X∗(ω)

X(ω)X∗(ω)
. (32)

Decomposing the input current X(t) into the uncorrelated signal and noise part, X(t) = s(t) + n(t), we
obtain the linear approximation to the spike correlation function

Cspikecross(ω) ≈ 〈υ1(ω)s(ω)υ∗1(ω)s∗(ω)〉. (33)

Equipped with this result, we can now obtain the linear approximation to the information content:

ILB(R,S) =− 1

2

∫ ∞
0

log2

(
1− 〈υ1(ω)s∗(ω)υ∗1(ω)s(ω)〉

〈r∗(ω)r(ω)〉

)
dω, (34)

considering equation (32) we obtain

ILB(R,S) =− 1

2

∫ ∞
0

log2

(
1− 〈s

∗(ω)r(ω)〉 〈s(ω)r∗(ω)〉
〈s∗(ω)s(ω)〉 〈r∗(ω)r(ω)〉

)
dω (35)

=− 1

2

∫ ∞
0

log2

(
1− γ2

)
dω, (36)

where the coherence function is denoted by γ2 = 〈s∗(ω)r(ω)〉〈s(ω)r∗(ω)〉
〈s∗(ω)s(ω)〉〈r∗(ω)r(ω)〉 , see [13, 16]. This shows that the

linear approximation of our general result recovers the form of the coherence based, seminal lower bound
estimate of Stein and colleagues. Let us also note that the lower bound estimate is typically derived
assuming Gaussian stimulus and response statistics [11–14]. Here, however we obtained this result by
applying a linear approximation to our general result which holds for both Gaussian and non-Gaussian
stimuli. Additionally, let us mention that the coherence function in equation (36) can be related to the
signal-to-noise ratio SNR(ω) [12,13]

ILB(R,S) =
1

2

∫ ∞
0

log2 (1 + SNRLB(ω)) dω, (37)

where SNRLB(ω) =
〈s∗est(ω)sest(ω)〉
〈n∗(ω)n(ω)〉 is the signal-to-noise ratio of the estimated signal sest(ω) to the noise

n(ω) = s(ω) − sest(ω). The coherence function and the signal-to-noise ratio are related via γ2

1−γ2 =
〈s∗est(ω)sest(ω)〉
〈n∗(ω)n(ω)〉 .
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Additional mathematical details on the derivation of the peristimulus time histogram auto
correlation

In equation (15) of our manuscript, we used the identify relation between the auto correlation of the
peristimulus time histogram (PSTH) and the spike cross correlation function to estimate the information
contained in the stimulus-induced rate variations. Here, we derive this relation.
We start by defining the PSTH as the average firing rate across trials which was evoked by a repeating
stimulus, PSTH(t) = rs(t) = 1

NT

∑NT

i ri(t). Here, NT is the number of trials and ri(t) the firing rate at

time t in trial i. The auto correlation function of the PSTH CPSTHauto is given by

CPSTHauto (τ) = 〈rs(t) · rs(t+ τ)〉time (38)

where 〈·〉time denotes an average across time. Using the definition of the PSTH we obtain

CPSTHauto (τ) = 〈rs(t) · rs(t+ τ)〉time (39)

=

〈
1

NT

NT∑
i

ri(t) ·
1

NT

NT∑
j

rj(t+ τ)

〉
time

(40)

=
1

NT
2

〈
NT∑
i

ri(t)ri(t+ τ) +

NT∑
i

NT∑
i 6=j

ri(t)rj(t+ τ)

〉
time

(41)

Because the first term in equation (41) is of order NT and the second of order N2
T , only the second term

will remain in the limit NT →∞. We thus find

CPSTHauto (τ) = lim
NT→∞

1

NT
2

1

T

∫ T

0

NT∑
i

ri(t)ri(t+ τ) +

NT∑
i

NT∑
j 6=i

ri(t)rj(t+ τ)

dt (42)

=
1

NT
2

NT∑
i

NT∑
j 6=i

1

T

∫ T

0

ri(t)rj(t+ τ)dt = Cspikecross(τ) (43)

Finally, we apply apply the Fourier transformation and summarize the relation between the PSTH and
the spike cross correlation

Cspikecross(ω) = CPSTHauto (ω) = PSTH(ω) · PSTH∗(ω). (44)

Supplementary Note 2

Measuring neural information content

Here, we present four distinct ways to access neural information content from available spike data. The
first method (see paragraph ”Numerical implementation of correlation theory”) is a numerical implemen-
tation of our correlation theory and relies on the evaluation of spike auto and cross correlation functions,
see equation 5. The second method (see paragraph ”Numerical implementation of the direct method”)
is the standard direct method proposed by [17], which relies on the probabilities evaluation of binary
words. The third method (see paragraph ”Information contained in the interspike interval distribution”)
evaluates the information contained in the interspike probabilities. This method measures only a part
of the complete information content, the part encoded in the independent interspike intervals. In the
main manuscript, Fig.6 presents the results of the first and second methods along with their accuracies.
Fig.5 contrasts the approximate results of the third method with the exact solution provided by the first
method and the correlation theory.

Numerical implementation of correlation theory

Here, we present a numerical algorithm to evaluate the spike auto and cross correlation functions in
a data set. We consider a data set consisting of NT trials recorded for varying stimuli and NT trials
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recorded while the same stimulus was presented and the noise varied. Each of the trials has a duration
of T and a discretization time step of dt. The auto correlation function Cspikeauto (τ) is calculated from the
trials with varying stimuli and the spike cross correlation function Cspikecross(τ) is calculated from trials with
a repeated stimulus presentation and averaged across #S different stimuli.
To calculate the spike cross correlation function Cspikecross(τ) we have at our disposal 1

2 ·NT (NT − 1) possible
pairs that can be drawn from the NT trials, all or a subset of which can be evaluated. To make sure that
auto and cross correlation functions are estimated with approximately the same precision we used NT
rather than all 1

2 ·NT (NT − 1) pairs. To increase precision this number can be customized, particularly
in situations with a high trial-to-trial variability. To calculate the spike cross correlation function in pairs
of trials we apply a Gaussian filter with a time width of σG to each spike and consider the contribution
of spikes in the second spike train at time τ after each spike in the first spike train. For the spike
auto correlation function we repeat this procedure considering the contribution of spikes within the
same spike train. After obtaining both correlation functions Cspikecross(τ) and Cspikeauto (τ) for time delay
τ ∈ [−τmax, τmax] and discretization step δτ we verify the presence of two important features. First,
both functions decay to zero for large τ such that the spike processes fulfill the finite memory condition.
Second, the temporal structure of these functions is well-resolved and fully contained in the considered
interval τ ∈ [−τmax, τmax]. When necessary τmax or δτ is modified to meet these requirements. In the
subthreshold, fluctuation driven regime the neurons often have correlation times of a few tens of ms [18]
such that τmax ≈ 200−400 ms is sufficient to capture the full temporal correlation structure. In situations
with oscillatory cross correlations, e.g. in the superthreshold firing regime, temporal correlations can
extend over many hundreds of ms and therefore necessitate longer τmax values.
The next step is a transformation of auto and cross correlation functions into the Fourier domain and
the integration of their ratio according to equation 5 from zero to fmax.
For Fig.3 we considered the following parameters #S = 12, NT = 5000, T = 40 s, dt = 0.015 ms,
τmax = 200 ms, σG = 0.1 ms and fmax = 500 Hz. In Fig. 5 we set #S = 32, NT = 1000, T = 10 s,
dt = 0.05(0.01) ms, τmax = 500 ms, δτ = 1(0.1) ms, σG = 0.1(0.01) ms and fmax = 500(100) Hz. Values
in brackets denote the parameters for τstim = 0.1− 1 ms in Fig. 5 A, which were particularly small and
required higher temporal precision. In Fig. 6 we set #S = 32, NT = 1000, T = 50 s, dt = 0.05 ms,
τmax = 200 ms, σG = 0.1 ms and fmax = 500 Hz. For the exponential integrate-and-fire model in Fig. 6G
we selected τmax = 500 ms to fully capture its broader correlation functions.
To numerically evaluate the Fourier statistics in Fig. 2 and the Supplementary Figs. 1-3, we calculate in
each trial the Fourier transform of the spike train via c(ω) = 1

T

∑
tj

exp(iωtj) and consider its value at
the frequency of interest, e.g. ω = 2π · 11 Hz in Fig. 2D. To calculate the distribution of the real and the
imaginary parts of the Fourier coefficients c(ω) we calculate these values in each of NT trials and pool their
values across trials to construct the respective distributions in Fig. 2D and in the Supplementary Figs.
1-3B. For the amplitudes and the phases in Fig. 2E and the Supplementary Figs. 1-3C,D we subtract
the trial averaged mean from each c(ω) in trials with repeating stimuli. To calculate the correlation
coefficient in Fig. 2F and Supplementary Figs. 1-3E between the real and the imaginary values of c(ω)
we calculate the product Re(c(ω)) · Im(c(ω)) at each trial, sum them, divide by the number of trials
and subtract the product of the trial averaged means before dividing by the product of the variances to
obtain the correlation coefficient. Similarly, to evaluate the cross correlation of Fourier coefficients across
frequencies in Fig. 2G in the Supplementary Figs. 1-3F we calculate at each trial Re(c(ω1)) · Re(c(ω2))
sum them across trials, divide by the number of trials and subtract the product of the trial averaged
means before dividing by the product of the variances to obtain the correlation coefficient. For the Fourier
statistics displayed in Fig. 2 and the Supplementary Figs. 1-3 we set NT = 10.000, T = 40 s and voltage
discretization step dt = 0.1 ms.

Numerical implementation of the direct method

Here, we describe the implementation of the direct method [17] which we used in our article. We imple-
ment this method to provide a quantitative comparison between the exact solutions of our correlation
theory and a popular, currently used method for estimating the neural information content. At the core
of the direct method is a discretization of each spike train, such that a ”1” is assigned to a time bin of size
Tbin if at least one spike occurred in this bin and a ”0” otherwise. Each spike train is then partitioned into
B bins, Twindow = B ·Tbin. The word length B as well as the bin size Tbin has to be chosen such that the
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length and structure of temporal correlations is well resolved and fully-contained in each word. The next
step is the estimation of the occurrence probability for each of the possible 2B binary patterns in a word
consisting of B bins. To accurately estimate each of the 2B probabilities it is necessary to have a sufficient
number of observations for each of the patterns. Next, the probability of binary words P (r) occurring
during the NT trials with varying stimuli and the probability of binary words P (r|s) occurring during
NT trials of repeated stimulus presentations for each of #S stimuli are used to construct both the sig-
nal entropy Hsignal =

∑
R P (r) log2 P (r) and the noise entropy Hnoise = 1

#S

∑
S

∑
R P (r|s) log2 P (r|s),

respectively, where the sums run over the 2B different words and the #S different stimuli. Using the
signal and noise entropies we obtain the mutual information as their difference Hsignal −Hnoise. Next,
we follow the final steps detailed in [17] to obtain the information content and construct a linear fit of
the information rate as a function of the inverse window length and evaluate its crossing point with the
information axis at 1/Twindow = 0.
To choose the appropriate bin size, window lengths and trial number for a given data set, we make the
following considerations. First, the bin size Tbin needs to be small enough to resolve the temporal struc-
ture of a spike train but also big enough to contain some spikes. Second, the word length Tbin ·B needs
to be at least as large as the longest temporal spike correlations such that one or more spikes can be
observed and their interactions can be quantified. Particularly interesting in this context are non-trivial
words. These are binary words which contain two or more spikes and which describe temporal spike
interactions. Taking these considerations into account, we chose in Fig. 6 A,E-G bin size values such
that they were below the temporal width of the respective auto correlation functions Cspikeauto (τ). Secondly,
we chose the window lengths B such that Tbin · B was similar or larger than the temporal width of the
respective correlation function Cspikeauto (τ) in order to capture the temporal structure of a spike train and
allow for sizable non-trivial word probabilities. Let us note that spike trains where temporal correlations
have a smaller range than the average interspike interval require small bin sizes and small to moderate
window lengths. In this situation, the window size can be smaller than the average interspike interval
and each word may have only few spikes. This is the regime where large NT trial numbers are required
to accurately estimate the occurrence of rare non-trivial words, words that contain more than one spike
(see Supplementary Table 1). On the other hand, spike trains where the temporal correlations exceed
an average interspike interval will typically need long window lengths and moderate bin sizes. In this
situation, it is common to observe many spikes in a word and it is in general possible to estimate the
occurrence probability of each binary word with moderate trial numbers because each of them occurs
frequently. These considerations make it necessary to choose bin sizes, word lengths and trial numbers
carefully for each data set. To show that our correlation theory provides an accurate estimate of infor-
mation content across spiking models, firing rates and temporal structures we compared its results in
Fig. 6 to the direct method in which we used the following parameters. In Fig. 6A,E,F we estimate the
probabilities P (r) using NT = 16 · 106 trials, in Fig. 6F(inset) NT = 64 · 106 and in Fig. 6G 32 · 106

trials (each containing a statistically independent stimulus) and P (r|s) using NT = 0.5 · 106 trials in Fig.
6A,E,F,F (inset) and in Fig. 6G 106 trials for each of #S = 32 stimuli (#S = 128 for Fig. 6F (inset)).
Further details of the direct method such as bin sizes, window sizes and the resulting non-trivial word
statistics are summarized in the Supplementary Table 1.

Information in interspike intervals (ISI Information)

To estimate the information contained in the interspike interval distribution P (ISI) and to contrast it
with the complete information content of a spike train, we follow the procedure adapted from [19]. Here,
we denote by ISI the interspike interval between two consecutive spikes t1 and t2 and aim to calculate
the signal and noise entropies from P (ISI) and P (ISI|s). In order to calculate these quantities we need
control of the stimulus and noise values between two consecutive spikes and to initialize the neuronal
dynamics at t1 with a controlled stimulus value. This initial value will require knowledge about the spike
triggered distributions of the stimuli and the noise. Therefore, before proceeding with the calculation
of signal and noise entropies we briefly comment on how to obtain these distributions. Spike triggered
stimulus and noise distributions are obtained by starting with a random initial value and evolving the
voltage, stimulus and noise dynamics as specified in the methods sections ”input current statistics” and
”Spiking neuron models”. Specifically, this implies that at each time step of the Ornstein Uhlenbeck
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current evolution the variable η(t) is drawn randomly, see text to Eqs. 9-13. Similarly for binomial
inputs, the stimulus and noise values at each time step are drawn randomly from the binomial distribution
specified in Fig. 2. After a brief transient period, the voltage and spiking dynamics reaches a steady
state where the respective spike triggered distributions can be obtained by measuring the distribution of
stimulus and noise values at the spiking events.
Now, we proceed with the calculation of the signal entropy which is determined by
Hsignal=

∑
ISI P (ISI)log2 P (ISI). Obtaining P (ISI) involves repeating the following procedure for

NT trials. Starting at the time of a spike t1, the voltage is initialized at the threshold value and the
initial values for the noise and the stimulus are each drawn randomly from the respective spike triggered
stimulus and noise distributions. Next, the voltage dynamics are evolved until the next spike t2 using
the dynamical equations of the respective neuron model and the stimulus and noise dynamics determined
by Eqs. 9-13. The probability distribution P (ISI) is then calculated from all NT values of t2 − t1 via
a histogram consisting of NH bins. These bins are evenly distributed between zero and ten times the
standard deviation of the considered ISI distribution. Let us note, that this procedure is equivalent
to considering a long spike train emerging from the dynamics specified in Eqs.9-13 and by calculating
P (ISI) from NT sequentially observed interspike intervals ISI1 to ISIN , because each interspike interval
in this sequence will have naturally a different random initial signal and noise value.
Next, we address the calculation of the noise entropy which is given by
Hnoise =

∑
s P (s)

∑
ISI P (ISI|s)log2 P (ISI|s). Obtaining P (ISI|s) involves repeating the following

procedure for NT trials and each of #S different stimuli and then averaging over the stimuli. Starting at
the time of a spike t1, the voltage is initialized at the threshold value and the initial value for the noise
is drawn randomly from its spike triggered stimulus distribution at each of NT trials while the initial
stimulus value is drawn randomly only on the first trial and kept frozen for the remaining NT −1 trials of
a stimulus. Next, the voltage dynamics are evolved until the next spike t2 using the dynamical equations
of the respective neuron model and the stimulus and noise dynamics determined by Eqs. 9-13. At the
first of NT trials with a given stimulus, the sequence of stimulus values in time is drawn randomly but
is kept frozen for the remaining NT − 1 trials. The probability distribution P (ISI|s) is then calculated
from all NT values of t2 − t1 values recorded for each of #S stimuli via a histogram consisting of NH
bins.
With the signal and noise entropies we only need to ensure that their difference, the mutual information
I(R,S)ISI= Hsignal − Hnoise, is precise enough for our choice of NH . To this end, we evaluate the
difference between the signal and noise entropies I(R,S)ISI,NH

as a function of NH and study the regime
NH = 10 − 10.000 to make sure that I(R,S) has converged towards its steady state. We find that the
difference between signal and noise entropies reached its steady state for the spiking models in Fig. 5A
at NH = 1000 (NH = 5000 for τstim = 0.2, 0.5 ms) in Fig. 5B at NH = 5000, for Fig. 5 A,B we used
NT = 200.000, #S = 320.
Let us note that the complete information of a spike train is not an upper bound for the interspike
interval information. Theorem 2.6.6 in [8] states that including temporal correlations will reduce both
the signal and noise entropies, but they may not be reduced by the same amount. If the drop in noise
entropy is larger than that of the signal entropy then their new difference can be larger than the original.
To mechanistically describe when the ISI information over- or underestimates the full information, let’s
consider the numerator and denominator in equation (4). The numerator is the PSTH autocorrelation
and therefore neglects any temporal ISI interactions capturing only rate covariation, see below. The spike
auto correlation in the denominator is defined by two contributions, temporal interspike correlations and
the distribution of interspike intervals p(ISI). Neglecting temporal correlations within a spike train

amounts to replacing Cspikeauto (ω) with that of a new process whose interspike intervals are independently
drawn from p(ISI) of the original spike process. Let’s note that in contrast to the PSTH approximation,
neglecting temporal correlations only modifies the auto correlation function but doesn’t replace it with
a delta function. For example if p(ISI) is low for small ISIs, then the auto correlation function will

exhibit a refractory period. Overestimation can occur if Cspikeauto (ω) is larger than can be expected from
p(ISI) alone. In this case, neglecting temporal correlations will primarily decrease the denominator in
equation (4) and thereby increase the overall information content. Underestimation can occur in the

opposite scenario where Cspikeauto (ω) is smaller than can be expected from p(ISI) alone. The way temporal
correlations and p(ISI) combine to give rise to a spike auto correlation function is highly dependent
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on the spike generation mechanism, noise and signal time scales, and therefore the amount of under- or
overestimation may vary across neuron types and parameter details.

Supplementary Note 3

Additional details on the range of validity and the limits of correlation theory

Complex normal distributions obtained in integrate-and-fire type models for stationary,
finite memory inputs (data in Fig. 6 E-G)

Here, we expand on our findings from the main manuscript Fig. 6 E-G and present evidence that the
spikes of the leaky integrate-and-fire neuron, adaptive leaky integrate-and-fire neuron as well as of the
exponential integrate-and-fire neuron, which we studied in this figure, indeed all show the signatures of
independent complex Gaussian distributions. Parameter choices for each model as well as their Ornstein-
Uhlenbeck input current statistics the neurons received can be found in the methods section of our
main manuscript. In Fig. 6 E-G of the main manuscript we showed using these three models that the
information content provided by our correlation theory matched the prediction of the direct method across
two orders of magnitude of membrane time constants. Here, we provide further evidence in Figs. 1-3
on the Fourier statistics underlying this data. In panel A in Figs. 1-3 we show the voltage and spike
trajectories as they emerge from the corresponding leaky integrate-and-fire neuron (Fig. 1 A), adaptive
leaky integrate-and-fire neuron (Fig. 2 A) and the exponential integrate-and-fire neuron model (Fig. 3
A). We recognize that all three spike trajectories are largely irregular, where some spikes are emitted in
close succession followed by a few isolated spikes. Let us note, that in the firing rate in the selected,
short spike segments chosen for illustration can deviate from the average firing rate of this process, for
reference the average firing rate is the caption to each figure. In panel B in Figs. 1 we show that the real
parts of the Fourier coefficients at f = 11 Hz, ω = 22πHz (f = 4 Hz, ω = 8πHz in Figs.2- 3) for varying
stimuli as well as repeated stimulus presentations follow Gaussian distributions, as can be expected from
real and imaginary values of a complex normal distribution. Panel C in Figs. 1 - 3 shows, as predicted by
our correlation theory, that the amplitudes of cR(ω) and zero-centered cR|s(ω) Fourier coefficients follow
a Rayleigh distribution and have a uniform phase distribution (see panel D). In panels E, F in Figs. 1
-3 we recognize that in all three spiking models the real and imaginary parts of the Fourier coefficients
cR(ω) and cR|s(ω) are largely independent and their correlation across frequencies vanishes.
In summary, Figs. 1-3 corroborate that the spike trains emerging from three integrate and fire neurons as
they receive stationary finite memory inputs (Ornstein-Uhlenbeck in this example) fulfill all requirements
of stationarity and finite memory at the spiking level and show all aspects of complex normal distributions
in their Fourier coefficients that are required for the correlation theory to apply.

Additional examples exploring the limits of correlation theory via partially periodic pro-
cesses

The correlation theory we derived in our manuscript is valid for spike trains that fulfill the assumptions
of finite memory and stationarity. Here, we explore the limits of our correlation theory and show how it
can gradually loose validity as the spike trains transition from stationary processes with finite memory to
perfectly periodic, ”clock”-like state that is neither stationary nor has finite memory. As this transition
takes place, we will see that the distribution of Fourier coefficients transitions from a Gaussian to a
multimodal distribution.
We start by considering a leaky integrate-and-fire neuron driven by an input current consisting of a
stimulus and noise process that each alternate stochastically (Poisson switching with a rate r = 10 Hz)
between two Ornstein-Uhlenbeck states (see 5 A). First, let us note that each of the two constituent
Ornstein-Uhlenbeck states has finite memory therefore the combined switching process will have finite
memory, too. We also know that each of the constituent processes is stationary, however their combination
could potentially be non-stationary. To determine whether the combined switching process is stationary,
we consider how its statistics evolve as a function of time. Following the definition, the interswitch
intervals have a time invariant, exponential distribution. This means that the probability to jump from
state 1 to state 2 is the same as vice versa, p1→2 = p2→1 = r, where r is the switching rate. Because it
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is equally probable to leave state 1 as it is to leave state 2, the probability is equal to 0.5 for the process
to be in one of the two states, and importantly, this probability is time invariant. The probability of a
specific value s to occur is thus P (s) = 0.5 · pstate1(s) + 0.5 · pstate2(s). This calculation indicates that
the switching process is indeed stationary and has finite memory. It therefore fulfills the assumptions of
our correlation theory. In Fig. 5A below we show an example of voltage trajectory and spikes in a leaky
integrate and fire neuron driven by such a switching process. Fig. 5 B-E demonstrate that the spiking
statistics in this model exhibit all signatures of a complex Gaussian predicted by our correlation theory,
including the Gaussianity (Fig. 5 B), Rayleigh distribution of Fourier amplitudes (Fig. 5 C), independence
of real and imaginary parts (Fig. 5 D) and independence across Fourier modes (Fig. 5 E). Additionally,
we can confirm that the direct method by Strong, Koberle et al. [17] and our correlation theory yield
equivalent results (Fig. 5F). For completeness, let us state the parameters we used in Fig. 5: Voltage
threshold Vth = 3 mV, reset Vreset = −2 mV, stimulus correlation time τstim = 9 ms; input variances
σX,1 = 2.3 mV and σX,2 = 3 mV and stimulus-to-noise ratios SNR1 = 0.1 and SNR2 = 0.8.
Next, we consider a similar switching process but now replace the state 2 with a sinusoid. We consider
a leaky integrate-and-fire neuron driven by an input current consisting of a stimulus and noise process
(stimulus-to-noise ratio 0.6), each of which is a switching process which alternates stochastically between
two states, state 1 and state 2. The current state 1 is an Ornstein-Uhlenbeck process and state 2 is a
sinusoid. The life times of state 1 and state 2 follow the same exponential distribution and the switching
times are Poissonian with a constant rate r. For concreteness we choose r = 10 Hz which results in an
average state duration of 100 ms. State 1 is an Ornstein-Uhlenbeck process with a correlation time τstim =
10 ms and an amplitude σ = 1.46 ms. State 2 is a sinusoid of the form Isin(t) = Asin cos (2πf · t+ φ),
where the amplitude is Asin = 12.5 mV and frequency f = 50 Hz. As the processes switches from state
1 to state 2 the phase φ is randomly drawn at each onset from a uniform distribution, φ ∈ [−π, π].
For concreteness we chose the following parameters for the leaky integrate and fire model. We set the
threshold Vth = 1 mV, reset at −1 mV and membrane time constant at τmem = 25 ms in 6 and 8.
Now, lets address the stationarity and finite memory aspects of this stimulus process. Stationarity is
met because the probability to be in state 1 or state 2 is constant across time and equal to 50%. The
probability to obtain a given value s(t) at a time t is given by the sum of probabilities describing each
of the two states, each weighted by one half. The finite memory property is guaranteed by the random
phase resets and the finite memory of state 1, the average time the system spends in state 2 introduces
a periodic correlation structure lasting approximately 100 ms. We note that changing the average time
the process spends in each of the two states or changing the statistics of segment lengths for each state
will result in the same stationarity and finite memory outcome, as long as the phase coherence across
periodic segments is lost after some finite amount of time.
Fig. 6 shows the resulting Gaussian statistics of the Fourier coefficients cR and cR|s. Fig. 6A demonstrates
the variability across stimuli and three corresponding input currents (top,left) and a repeating stimulus
(bottom, left) along side the corresponding spikes trains (right). In Fig. 6 B we confirm that the real
parts of the Fourier coefficients are normal distributed. Fig. 6 C demonstrates that the amplitudes of
cR(ω) and cR|s(ω) follow a Rayleigh distribution while their respective phases are uniform (inset). Also in
Fig. 6, D we can confirm a lack of correlation between the real and imaginary parts of each Fourier coeffi-
cient and as well as across frequencies ranging from 1 Hz to 500 Hz. Small residual non-zero correlations
remained due to finite size effects but these decreased with increasing recording time. These findings
indicate that the statistics of the spike trains we considered show all signatures predicted for stationary
and finite memory spikes, such that we can expect the correlation theory to be valid and correctly predict
the neural information content. Indeed we confirm in Fig. 7 B that the information content predicted by
our correlation theory closely matched the results of the direct method across multiple values of mem-
brane time constants. In Figs. 7 A,C we show the expected decay of the spike auto and cross correlation
functions for time delays beyond 100 ms and the corresponding decay of information as a function of
frequency.
To further leave the validity regime of our correlation theory where stationarity and finite memory char-
acterize the spike trains, we modified the input statistics to longer maintain phase coherence across all
segments of state 2. We now select the phase φ at the transition point to state 2 such that the end of
the previous state 2 segment and the beginning of the new state 2 segment maintain phase coherence. In
other words, the phase φ is randomly selected at the beginning of each trial and remains constant such

23



that the same sinusoid Isin(t) = Asin cos (2πf · t+ φ) describes all state 2 segments within a recording. By
opting for an infinitely long phase coherence across state 2, we mathematically break the assumption of
finite memory and stationarity. Finite memory condition is broken due to infinitely long phase coherence
and stationarity is broken because the probability of obtaining a specific value s in state 2 is now time
dependent. This means that any information estimation procedure that assumes stationary spike distri-
butions, such as the direct method or our correlation theory is no longer valid. However, in practice the
spiking process still spends significant amount of time in the finite memory state 1 such that the finite
and the infinite memory processes compete and both contribute to information coding. This means that
both the direct method and our correlation theory are no longer exactly valid, and depending on how each
one deals with the non-stationary contribution decides on how the information content will be altered. In
the example we consider in Fig. 7 this could mean that the information values determined by the direct
method and the correlation theory may coincide in some regimes while differ in others. We also note that
the information content predicted by the correlation theory is largely unaffected by the non-stationary
contribution (compare blue lines in Fig. 9 B and Fig. 9 B) while the information estimate provided by
the direct method is strongly modified, particularly for short membrane time constants. Studying the
statistics of the Fourier coefficients resulting from these stimuli in Fig. 8 A, we indeed obtain distributions
that closely resemble Gaussian and Rayleigh statistics, see Fig. 8 B,C. However, the distribution of the
correlation coefficients across frequencies in Fig. 8 D is still centered around zero, but its width is broader
for trials with repeating stimuli. Furthermore, the Fourier statistics of this process indicate that in the
regime of long time constants the amplitude of the coherent oscillations is much smaller than the peak
of the cross correlation function, because the effect of the finite memory state 1 dominates (see Fig. 9).
As a result we obtain a good correspondence between the direct method and our correlation theory. For
smaller time constants, on the other hand, the amplitude of the periodic state 2 dominates and results
in an increased periodic contribution to the cross correlation function (see Fig. 9 A).
We now transition to a counter example with infinitely long memory and non-stationary spike trains.
In this counter example the periodic phase is infinitely long and is no longer interrupted by segments
with finite memory processes (see Fig. 10 A-C). Therefore, the spike train is periodic with an infinitely
long coherence function (see Fig. 10 A). As a result, the Fourier coefficients in Fig. 10 D-F are no longer
Gaussian and their phases are no longer uniformly distributed (black solid lines serve as reference) but
have a multimodal distribution that reflects the periodicity of the process (blue, red histograms). For
concreteness, we chose in this example a mixture of periodic signals and noise processes, each described
by Isin(t) = Asin cos (2πf · t+ φ), where Asin = 45 ms, frequency f = 50 Hz and a signal-to-noise ratio
of 0.6. The spiking threshold of the leaky integrate-and-fire model was set to Vth = 3mV and reset at
Vreset = −10mV and membrane time constant was τmem = 15 ms.

In summary, we have shown that the assumptions of our correlation theory gradually loose their validity
as the input segments with an infinite memory gain prominence. In regimes where the finite memory
contribution remains dominant the approximation provided by our correlation theory can remain accurate
and provide an important reference (see Fig. 7). Delimiting the range of validity of our correlation
theory can therefore be practically accomplished by studying the structure of the spike cross correlation
function and its temporal extend and investigating the Fourier statistics with regard to independence and
Gaussianity. Considering the fact that any biological process has finite life time and many intrinsic noise
sources, it is plausible to assume that the finite memory property is met by a large class of recorded spike
trains. Considering the fact that the global time evolution of sensory statistics and neural states can take
place on a longer time scale than the intrinsic fine structure of the spikes, it is plausible to assume that
stationarity can be a good approximation for time periods shorter than the global changes in sensory
statistics.
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