

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Standard values of the upper body posture in female adults

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022236
Article Type:	Research
Date Submitted by the Author:	08-Feb-2018
Complete List of Authors:	Ohlendorf, Daniela; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine; Fisch, Vanessa; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine Doerry, Charlotte; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine Schamberger, Sebastian; School of dentistry, Department of Orthodontocs Oremek, Gerhard; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine Ackermann, Hanns; Goethe University Hospital, Institute of Biostatistics and Mathematical Modeling Schulze, Johannes; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine
Keywords:	body posture, back scan, standard value, female subjects
	·

SCHOLARONE[™] Manuscripts

1		
2		
3	1	Standard values of the upper body posture in female adults
4		
5	2	
6		
7	3	Ohlendorf D ¹ *, Fisch V ¹ , Doerry C ¹ , Schamberger S ² , Oremek G ¹ , Ackermann H ³ , Schulze J ¹
8	5	Omendon D ⁻ , Fisch V, Doeny C, Schamberger S, Oremek O, Ackenhami H, Schuize J
9	4	
9 10		1
10	5	¹ Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-
12	6	University Frankfurt/Main, Theodor-Stern-Kai 7, Building 9A, 60590 Frankfurt/Main,
12	7	Germany
13	8	
14	9	² School of dentistry, Department of Orthodontics, Goethe-University Frankfurt/Main,
	10	Theodor-Stern-Kai 7, Building 29, 60596 Frankfurt/Main, Germany
16	11	Theodor Stern Rul 7, Bunding 25, 000500 Prankful Main, Sermany
17	11	³ Institute of Biostatistics and Mathematical Modeling, Goethe-University, Frankfurt/Main,
18		
19	13	Theodor-Stern-Kai 7, Building 11A, 60596 Frankfurt/Main, Germany
20	14	
21	15	
22	16	* Corresponding author
23	10	
24	17	
25	17	E-mail: ohlendorf@med.uni-frankfurt.de
26		
27	18	
28		
29	19	
30		
31	20	
32		
33	21	
34	21	
35	22	
36		
37	22	
38	23	
39	• •	
40	24	
41		
42	25	
43		
44	26	
45		
46	27	
47	_,	
48	28	
49	20	
50	29	
51	29	
52	20	
53	30	
54		
55	31	
56		
57	32	
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		
		1

33 Abstract

Objective: Classifications of posture deviations are possible when compared to standard 35 values. Standard values have been published for healthy male adults but are not known for 36 female adults.

Design: Observational study.

38 Setting: Institute of Occupational Medicine, Social Medicine and Environmental Medicine,
39 Goethe-University Frankfurt/Main.

Participants: 106 female healthy volunteers (21 - 30 years old; 25.1 ± 2.7 years) were 41 included. Their body weight ranged from 46-106 kg (\emptyset 60.3 \pm 7.9 kg), the heights from 1.53 42 to 1.82 m (1.69 \pm 0.06 m), and the body mass index ranged from 16.9 kg/m² to 37.6 kg/m² 43 (21.1 \pm 2.6 kg/m²).

44 Outcome measures: A three-dimensional back scan was performed to quantify the upper 45 back posture while habitual standing. The tolerance regions and the confidence interval were 46 calculated. Group differences were tested by using the Wilcoxon-Mann-Whitney-U-test.

Results: The spinal column was marginally twisted to the left. The angle in the thoracic spine 48 area is larger than that in the lumbar region. Consequently, a more kyphotic posture can be 49 observed in the sagittal plane. The habitual posture is slightly scoliotic with a rotational 50 component (scapular depression right, right scapula marginally more dorsally, high state of 51 pelvic right, iliac right further rotated anteriorly).

Conclusions: Healthy young women have an almost ideally balanced posture with minimal 53 ventral body inclination and a marginal scoliotic deviation. The comparison to equivalent data 54 of young males shows only marginal differences in the upper body posture. These values 55 allow a comparison of other studies for control and patient data, and may serve as orientation 56 in both clinical practice and scientific studies.

- - 58 Key words: body posture, back scan, standard value, female subjects

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20 21	
21 22 23	
22 73	
23 24	
25	
25 26 27	
20	
28	
28 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
56 57	
57 58	
58 59	
59 60	
00	

59 Strengths and limitations of this study

- 60 One strength of this study is the large number of only female participants of the same age (21-30 years).
 - Quantitative analysis of the upper back by using a videorasterstereografic approach. •
 - One limitation of the study is the measuring of the upper body posture only in • habitual standing position and not while moving.
 - Furthermore, external influences of the occupational environment were not assessed • which might influence the body posture.
- 67

61

62

63

64

65

66

68 Introduction

69 Various subjective and objective methods quantify and analyze the body posture, especially 70 the spinal posture. All methods aim to evaluate the degree of deformity in the diagnosis and treatment of spinal deformities like scoliosis ¹⁻⁴. 71

72 Quantitative analytical methods enable the diagnosis of spinal curvature deviations and/or 73 control the therapeutical effects. The methods vary by their technical complexity and clinical 74 applicability. Roentgenograms or computed tomography scans are frequently used for the 75 diagnosis of bone structure deformities, while ultrasound, inclinometer, thermal infared 76 imaging, scoliometer or video raster stereography more often establish postural measurements ⁵⁻¹⁰. X-ray based methods rarely may cause cancer or sperm cell mutations after repeated 77 78 exposure but still are the gold standard in diagnosis and follow-up of body posture deviations 11-14 79

80 Video raster stereography has recently been evaluated as an alternative method to measure and quantify vertebral column posture and its deformities ^{7 8 15-18}. Guidelines of orthopedic 81 82 rehabilitation in Germany also recommended a follow-up check but do not specify the

methods¹⁹. The three-dimensional back scan measures the body geometry between the 7th cervical vertebrum and the gluteal cleft, it has high intraclass correlation coefficients for its measurements and good Cronbach's Alpha values for intra- and interday reliability for all spine parameters ^{17 18 20 21}. Furthermore, inter tester reliability is high ¹⁷. A three-dimensional surface contour image of the back appears suitable to determine vertebral column deformities, but also to quantify the effect of e.g. orthopedic shoe insoles on the body posture ^{22 23}. In addition, 3D images are used to give an insight into muscular imbalances (kyphotic / lordotic deviations, differences in waist contours, rotation in the shoulder or pelvis) and to control the effects and therapeutic success of muscle training in primary, secondary and tertiary prevention ^{24 25}. Due to the changing workplace environment with its increase in digital work, ever more employees work in a sitting position. Both in the workplace and in the household, this leads to a steady decrease in physical stress on the body. This lack of exercise consequently results in the fast development of muscular imbalances as well as an increase in the number of persons with back pain, as estimated for Germany at 20 million people 20 . Back pain complaints can also lead to disability or early retirement due to musculoskeletal disorders. Even more frequently, rehabilitation is required to restore the capacity to work in their original occupation.

Early signs of postural disorder e.g. musculoskeletal disorders should be detected after the development of subjective symptoms, and treated appropriately; in order to assess both diagnosis and treatment effects, quantitative classification criteria are necessary for normal posture and deviations hereof. These "deviations" should be quantified, e.g. in the form of (parametric or non-parametric) percentiles, similar to the Z- or T-scores of bone density ²⁶. However, standard or reference values of body posture currently are lacking for healthy female subjects; reference values of the upper body posture for healthy men are published

BMJ Open

recently ²⁷. Also, classifications of the severity of posture deviations are only possible with quantifiable deviations from standard or reference values.

Since standard values for the posture of healthy persons are lacking, this study aims to define reference values for the upper body posture in healthy women aged 21 - 30 years measured by a three dimensional back scan. These values and their variances define tolerance ranges of upper body posture and can be used to categorize the results of other (orthopaedic) studies. Investigating a homogeneous group of subjects eliminate constitutional, habitual and degenerative changes that could increase both tolerance range and confidence interval ²⁸⁻³¹.

Methods

Subjects

eer (e 106 female volunteers between 21 and 30 years old (25.1 ± 2.7 years) participated in this study. Their body weight ranged from 46-106 kg (60.3 ± 7.9 kg), the height from 1.53 to 1.82 m (1.69 \pm 0.06 m), and the body mass index ranged from 16.9 kg/m² to 37.6 kg/m² (21.1 \pm 2.6 kg/m²). According to the WHO weight classification 32 6.6% of the participants were underweight (BMI < 18.5 kg/m²), 87.8% of the participants had a normal BMI (18.5 to 24.9) kg/m²), 4.7% were overweight (BMI 25 to 29.9 kg/m²) and 0.9% had obesity I° (BMI 30 - 34.9 kg/m^2).

All subjects were healthy and free of musculoskeletal complaints. With the help of a questionnaire temporomandibular system disorders were excluded ³³ 95.3% of the subjects reported to be right-handed and 4.7% were left-handed. 72.6% of the participants were students, 27.4% were employees in different occupations (dentists, physicians, teachers, office workers).

133 All subjects were informed about the study design before giving written informed consent.

134 The study was approved by the local medical ethics committee of the medical faculty135 (Goethe-University Frankfurt; No. 303/16).

137 Measurement system

A three-dimensional back scan was performed to quantify the upper back posture while
standing, using the back scan system "MiniRot Kombi" (ABW GmbH,
Frickenhausen/Germany).

In this system a projector forms a stripe pattern on the persons bare back; this stripe pattern was captured by a LCD camera from a defined angle. In this way the back surface was represented as a phase picture which was analyzed by an integrated software program reconstructing the 3D image. For calibration of the phase pictures all test persons were marked at six defined, standardized anatomical locations (Fig. 1) indicating underlying bone structures. One measurement lasts approx. 2 seconds. Artifacts may be caused by different patient placements or movements during the scan, i.e. the projection of the stripe pattern on the back, and thus have to be avoided. To measure the body posture, three repeat measurements were taken within 2 minutes.

151 Fig. 1

The six anatomical landmarks allow the calculation of three-dimensional parameters (Fig. 1)
which include information about rotational movements in the shoulder and pelvic area and the
shape of the spine (lordotic, kyphotic and/or scoliotic posture).

156 During a movement sequence 15 photos were taken. The maximum picture frequency of the 157 MiniRot Kombi system is more than 50 frames/sec with a spatial resolution of 1/100 mm. The 158 calculation of the three-dimensional coordinates of the back surface is performed by

BMJ Open

4	
5	
5 6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
24 25	
25 26	
20 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
40 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

triangulation. The system error is specified as <1 mm (manufacturer information), the reproducibility is limited by the calculations of the upper body posture defined by markers directly on the skin (<0.5 mm).

162

163 Body scans

164 The subjects stood barefoot in their habitual body and jaw posture about 90 cm in front of the 165 back scan apparatus. The arms were hanging loosely; the subjects looked horizontally fixing 166 the opposite wall.

167

168 Evaluation Parameter

The three-dimensional back scan was split into three components to quantify the following parameters: spinal area (markers on C7 and L3), shoulder area (markers at the top of the left/right scapula) and pelvis area (markers on the left/right spina iliaca posterior superior [SIPS]). The marker positions are shown in Figure 1 and a list and the appropriate explanation of the spine parameters are shown in ²⁷.

174

175 Statistical evaluation

176 The data evaluation was carried out using BIAS (Version 11.0) (Epsilon Verlag, Darmstadt, 177 Germany). With the initial Kolmogorov-Smirnov-Test the normal distribution can only partly 178 rejected, so that either parametrical tolerance regions or non-parametrical tolerance regions 179 were calculated which were defined by the upper and lower limit for 95% of all values 180 (approximately corresponding with +-2s values). These values have been found in about 95% 181 of the examined subjects. Within this tolerance range all values are considered as normal so 182 that the tolerance ranges estimate the central part of 95% of the value of the measured subject 183 population.

Furthermore, the two-sided 95% confidence interval was calculated and indicated the range of the mean or median value – depending on the distribution quality – and showed the "accuracy" of these values. For testing group differences, the t-test or the Wilcoxon-Mann-Whitney-U-test was used.

190 <u>Results</u>

The constitutional parameters "body weight" and "BMI" were not normally distributed, only the constitutional parameter "body height" was normally distributed. The median of the body weight was 60 kg (tolerance range 49.0 to 77.28 kg; confidence interval 57 to 62 kg). For the BMI a median of 20.7 kg/m² was calculated, with a corresponding tolerance range from 17.99 to 27.2 kg/m² and a confidence interval from 20.3 to 21.3 kg/m². For the body height a mean value of 1.69 m was calculated with a tolerance range between 1.57 and 1.82 m and a confidence interval of 1.68 to 1.70 m.

198The lack of handedness as a relevant parameter has been tested in advance by the t-test and199the Wilcoxon-Mann-Whitney-U-test. All parameters were not significantly different ($p \ge$ 2000.05).

From the back scan values the posture of an average healthy female person was calculated (tab. 1). On average the subjects are standing slightly inclined in the anterior line of 3.31° (tolerance range 8.12° ventrally to 1.5° dorsally; confidence range 3.78° to the left to 2.85° to the right).

Laterally, a minimal deviation of the frontal trunk of 0.43° to the left was seen, the confidence interval (0.18° right – 0.67° left) included the perpendicular position, the tolerance interval ranged from 2.91° to the left and to 2.06° to the right. Compensatory, the axial deviation (as inclination between upper body and pelvis) was slightly tilted to the right (0.21°) with a

BMJ Open

tolerance range of approx. $\pm 4.5^{\circ}$ and a confidence interval of $<1^{\circ}$ (0.25° left and 0.66° right).

This implied that there are no obvious differences in the inclination between the upper and lower body.

The angle of the thoracic bend was calculated from the distance between the vertebra prominens and the kyphosis apex and indicated the deviation from the perpendicular line. The median angle was 13.9° confirming the expected thoracic kyphosis. Here, wider variations were indicated by the tolerance range of 6.49° or 21.31°, and a confidence interval varying from 13.19° to 14.62° . The lumbar bending angle describes the deviation of the distance between the lordosis- and kyphosis apex. As compared to the thoracic bend, similar variations of the tolerance value and the confidence intervals were seen in the lumbar region, with a bending angle of 13.17° (tolerance value 7.83° to 23.06°; confidence interval 11.90° to 14.25°).

Measurement of the lateral deviation showed a right-sided inclination of the median line by 3.92° when connecting the points VP and the center of the pelvic markers. Both the tolerance range (0.50° respectively 7.33°) as well as the confidence interval (3.59°/4.25°) indicated a right-sided deviation.

The rotation of the spinal column is a torsion marker of the spinal column and can be measured from the spinous processes of the vertebrae. In our analysis, a negative value indicates a rotation to the left and a positive value to the right. The median rotation was 4.66°, with a tolerance range between 2.04° and 12.92°, and a confidence interval between 4.18° and 5.29°. Consequently, on average a right sided spinal rotation was found.

The next two parameters, the kyphosis and lordosis angle have a mean or a median of 51.66° and 46.29° , with a substantial tolerance range of approximately $\pm 25^{\circ}$ and a confidence interval of about $\pm 2^{\circ}$.

Shoulder parameters are valid indicators for upper body posture (tab. 1), too. The lowerscapula spinae were measured from the fixed markers; the scapula distance values as indicator

of the variability of the upper body was 150.56 mm, with a tolerance range of 110.51 - 190.60mm, and a confidence limit of 146.68 - 154.43 mm. The scapular height (deviation from the horizontal line) refers to a slightly lower left shoulder blade (by 1.28°), whereas the upper and lower limit of the range markers were -22.36° and 19.81° , so that the left shoulder blade is more caudally in the lower limit and more cranially in the upper limit. The same variation is shown by the data of the confidence interval, with values of -3.32 (left scapula higher) -0.76° (right scapula higher).

The shoulder markers illustrated a right shoulder being slightly further dorsal by 3.06°, with a tolerance range of -3.26° to 9.37° and a confidence interval of 2.44° to 3.67°. Only minor differences between the left and right shoulder blade angle were seen, with the right shoulder 2.6° (median) more caudally.

Table 1 compiles the pelvis parameters. The distance for the spina iliaca posterior superior markers refers to the pelvic width, which on average is 99.56 mm (tolerance range 74.76 to 122.37 mm, confidence interval 97.17 and 101.96 mm).

The deviation of the pelvic height (in degrees) from the horizontal plane is very low. Both differences in pelvic height (in mm) and deviations from the horizontal line (in degrees) indicate a slightly higher position of the right pelvic side of approx. 1° or 1 mm (Tab. 4). The same applies to the pelvis torsion and rotation, so that the right iliac marker is rotated posteriorly and simultaneously tilted further ventral (mean pelvis torsion: 0.24 °; mean pelvic rotation: 2.2°).

257 Tab. 1

259 Discussion

260 This paper presents normal values and normal ranges (tolerance and confidence interval) for261 the body posture of healthy young females from different occupations. Height, weight and

BMJ Open

body mass index (BMI) of the participants are comparable to average young German female persons ^{34 35}. These parameters were measured by Mensink et al. ³⁴ in over 7000 adults from the general German population. The age-matched female group was 3.20 cm smaller, 4.92 kg heavier and thus also had a BMI 2.58 kg/m² higher in comparison to our values. Similar findings have been reported by the German Federal Statistical Office in 2011 for the survey year of 2009³⁵, which correlate even better to our results than the findings of Mensink et al.³⁴. Data for height, weight and BMI, obtained to assess the prevalence of obesity in Germany between 1985 and 2002³⁶ in 1504 female volunteers (25-29 years) show that the subjects in our study are marginal taller, lighter and have a lower BMI.

87.8% of the participants in this study have a normal BMI, 22.3% more than Mensink et al.³⁴ found for 18-29 year old women. The relation of overweight with social status is well known; this confounder of obesity is seen by the data from Mensink et al.³⁴ who proved that 36.9% women with a high social status suffered from overweight and 16.4% from obesity. Helmert et al. ³⁶ calculated similar data with the equivalent household income; 31.8% of the people in the 4th and 5th quintile (low income) suffer from overweight and 7.8% from obesity. Thus the different BMI values likely are explained by the selection of many participants from the students of the School of Dentistry in our university, with a high social status (72.6%).

The back scan values indicate a characteristic posture of young females. Only small deviations from an ideal perpendicular position are noted; the marginally ventral tilt of the trunk, the lateral deviation and rotation of the spine, shoulder and pelvis were very small. The posture is marginally scoliotic (the ventral trunk tilts marginally to the left side, the scapula is higher on the left side, the pelvis is slightly elevated on the right side) with an expected rotatory component (a lumbar right tilt to compensate for the left tilted ventral trunk, a slight twist of the processus spinosus to the right, the right scapula marginally more dorsal, the SIPS of the right iliac bone rotated anteriorly) (Tab. 1). The spinal curve, defined by the thoracic and lumbar bending angle and the kyphosis and lordosis angle, indicates that the angle in the

thoracic spine area is marginally larger than that in the lumbar region (Tab. 1), andconsequently a slight kyphotic posture in the sagittal plane can be observed.

Handedness has no influence on these parameters, which should be expected from the observed symmetry. However, since 95.3% of the participants were right-handed no firm conclusions can be drawn for left handed people. Also, whether an influence of the dominated leg ³⁷ exists on the posture of the present investigation can't be answered. Appropriate test methods for the determination of these components should be used in further studies.

A gender comparison for young healthy women and men ²⁷ shows only marginal differences in the upper body posture. Both studies used the same measuring system and data evaluation and thus allow a direct comparison of the values. Although the female upper body appears narrower and more delicate due to the weaker muscular shoulder girdle and the smaller chest, the ratio between chest and shoulder width is the same ³⁸.

The anatomical and constitutional differences are confirmed by the present data. In terms of the width of the shoulders, the fixed scapular landmarks indicate a larger distance of 2.9 cm in men than in women (Table 1). In contrast, men have a smaller pelvis calculated from the SIPS markers (6 mm difference). This results in a wider shoulder than pelvis distance by 8.5 cm in men, but only 5.0 cm in women, confirming and quantifying the well-known gender-specific anatomical differences.

In addition to these constitutional differences, differences in the lordotic and kyphotic angles are calculated from the spinal column parameters. Thus, women have an average kyphotic angle of 52°, men of 46°; the lordosis angle is 46° for women and 31° for men. Thus, the spinal curvature in the thoracic and lumbar spine area is more pronounced in women than in men. The difference in the lordosis angle is about 15° greater than in the case of the kyphotic angle with approximately 6°, however, men have an approximately 15° greater thoracic kyphosis angle than lumbar lordosis angle in contrast to a 6° difference of women.

BMJ Open

Consequently, men have a larger kyphosis in the thoracic spine, with a corresponding lowerlumbar lordosis.

Liu et al.³⁹ tried to define standard parameters of cervical spine alignment and range of motion related to age, sex, and cervical disc. These results underline the more pronounced thoracal kyphosis in women. The greater lumbar lordosis of the females can be traced back to sex differences in the pelvic shape. The wider female pelvic basin requires a larger angle between the pelvic bones and a larger and lower pelvic transverse diameter. Thus, the pronounced female pelvic tilt leads to a larger lumbar lordosis, which consequently causes a compensatory thoracal hyperkyphosis; these (different) compensations are seen above the pelvic position in both sexes ³⁸. This different position of the lumbar spine also affects the extent of the movement in the flexion-extension testing of the trunk. The total task-specific hip motion ranges, as measured from erect standing to the maximum flection, were higher in females than in males 40 .

Furthermore, the same authors report that female chronic low back pain patients had higher regional hip and trunk motion ranges than male patients 41 . The question, why women have a larger lordosis angle currently is unanswered. An extensive literature search in PubMED and other data bases did not retrieve a published hypothesis. An explanation of physiological differences, however, has been forwarded to comparable sex differences in pelvic anatomy for rodents, and has been related to sexual behavior in these animals. Guinea pigs show hormonally controlled, gender related reproductive behaviour: male guinea pigs show a distinct sexual approach consisting of body raising, intromission and ejaculation, and female guinea pigs respond with a corresponding conceiving position of a predominantly lordotic lumbar posture ^{42 43}. At least for this species the observed anatomical differences may translate directly into an apt reproductive behaviour. The pelvis itself has the same position in both sexes in a relaxed posture, and is positioned almost horizontally.

No similar explanation exists for differences in the shoulder region parameters; the right shoulder is positioned more caudal in both sexes, but women have "deeper" shoulders (increased scapular angle right/left).

All other parameters are nearly identical between men and women, with the differences smaller than the margin of error of our measurement, and thus have no clinical relevance.

The three-dimensional back scan is a fast, non-contact method to quantitate the body posture, and is suitable for measuring body postures in healthy persons and patients. It can quantify pathologic positions like scoliosis, kyphosis, leg length differences and functional movement disorders, as well as improvements obtained by medical treatments. The chances and limitations of the measurement system and procedure ⁴⁴⁻⁵⁰ has already been discussed by Ohlendorf et al. ^{27 51}. In the future, this method may allow to grade postural deviances, e.g. by a grading system using the tolerance ranges for men and women, as has been done for bone densitometry in the t- and z-scales²⁶.

Conclusion

Video raster stereography is a method to quantitatively measure the human three-dimensional back surface. Healthy young women have an almost ideally balanced posture with minimal ventral body inclination and a marginal scoliotic deviation. In comparison to age-matched men women have only small differences in upper body posture, with nearly identical normal values. These values allow a comparison of other studies for control and patient data, and may serve as orientation in both clinical practice and scientific studies. Further studies should expand this method to quantify age-related changes in body posture, as well as quantitative assessments of postural changes in relevant orthopedic diseases, and improvements by therapeutic interventions.

Acknowledgements

BMJ Open

1		
2	264	This article contains norts of the destard thesis of Mrs. V. Fisch
3 4	364	This article contains parts of the doctoral thesis of Mrs. V. Fisch.
5	365	
6 7	366	a. contributorship statement
8 9	367	DO, FV, DC, SS, OG and SJ made substantial contributions to the conception and design of
10	368	the manuscript, DO, FV and DC made substantial contributions to the construction of the
11 12	369	measurement protocol and AH and DO has been involved in the statistical data analysis. All
12		
14	370	authors have read and approved the final manuscript.
15 16	371	
17	372	b. competing interests
18 19	373	The authors declare that they have no conflict of interest.
20	374	
21	375	c. funding
22 23		There is no funding of the project.
24	376	There is no funding of the project.
25 26	377	
20	378	d. data sharing statement
28	379	No additional data available.
29 30	380	
31	• • •	
32 33	381	References
34	382	
35		
36 37	383	1. Corona J, Sanders JO, Luhmann SJ, et al. Reliability of radiographic measures for infantile
38	384 385	idiopathic scoliosis. <i>The Journal of bone and joint surgery American volume</i> 2012;94(12):e86. doi: 10.2106/jbjs.k.00311 [published Online First: 2012/06/22]
39	386	2. Langensiepen S, Semler O, Sobottke R, et al. Measuring procedures to determine the Cobb
40	387	angle in idiopathic scoliosis: a systematic review. European spine journal : official
41	388	publication of the European Spine Society, the European Spinal Deformity Society,
42 43	389	and the European Section of the Cervical Spine Research Society 2013;22(11):2360-
44	390	71. doi: 10.1007/s00586-013-2693-9 [published Online First: 2013/02/28]
45	391	3. Prowse A, Pope R, Gerdhem P, et al. Reliability and validity of inexpensive and easily
46	392	administered anthropometric clinical evaluation methods of postural asymmetry
47	393	measurement in adolescent idiopathic scoliosis: a systematic review. European spine
48	394	journal : official publication of the European Spine Society, the European Spinal
49	395	Deformity Society, and the European Section of the Cervical Spine Research Society
50	396	2016;25(2):450-66. doi: 10.1007/s00586-015-3961-7 [published Online First:
51	397	2015/04/29]
52	398	4. Prowse A, Aslaksen B, Kierkegaard M, et al. Reliability and concurrent validity of postural
53 54	399	asymmetry measurement in adolescent idiopathic scoliosis. World journal of
55	400	orthopedics 2017;8(1):68-76. doi: 10.5312/wjo.v8.i1.68 [published Online First:
56	401	2017/02/02]
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	402	5. Kuklo TR, Potter BK, Schroeder TM, et al. Comparison of manual and digital
4	403	measurements in adolescent idiopathic scoliosis. Spine 2006;31(11):1240-6. doi:
5	404	10.1097/01.brs.0000217774.13433.a7 [published Online First: 2006/05/12]
6	405	6. Zheng YP, Lee TT, Lai KK, et al. A reliability and validity study for Scolioscan: a
7	406	radiation-free scoliosis assessment system using 3D ultrasound imaging. Scoliosis and
8	407	spinal disorders 2016;11:13. doi: 10.1186/s13013-016-0074-y [published Online
9	408	First: 2016/06/15]
10	409	7. Betsch M, Rapp W, Przibylla A, et al. Determination of the amount of leg length inequality
11	410	that alters spinal posture in healthy subjects using rasterstereography. <i>European spine</i>
12	411	journal : official publication of the European Spine Society, the European Spinal
13	412	Deformity Society, and the European Section of the Cervical Spine Research Society
14		
15	413	2013;22(6):1354-61. doi: 10.1007/s00586-013-2720-x [published Online First: 2012/02/12]
16	414	2013/03/13]
17	415	8. Drerup B. Rasterstereographic measurement of scoliotic deformity. <i>Scoliosis</i> 2014;9(1):22.
18	416	doi: 10.1186/s13013-014-0022-7 [published Online First: 2014/12/19]
19	417	9. Abate M, Carlo LD, Romualdo SD, et al. Postural adjustment in experimental leg length
20	418	difference evaluated by means of thermal infrared imaging. Physiological
21	419	measurement 2010;31(1):35-43. doi: 10.1088/0967-3334/31/1/003 [published Online
22	420	First: 2009/11/27]
23	421	10. Coelho DM, Bonagamba GH, Oliveira AS. Scoliometer measurements of patients with
24 25	422	idiopathic scoliosis. Brazilian journal of physical therapy 2013;17(2):179-84. doi:
25	423	10.1590/s1413-35552012005000081 [published Online First: 2013/06/20]
20	424	11. Ronckers CM, Land CE, Miller JS, et al. Cancer mortality among women frequently
28	425	exposed to radiographic examinations for spinal disorders. Radiation research
29	426	2010;174(1):83-90. doi: 10.1667/rr2022.1 [published Online First: 2010/08/05]
30	427	12. Levy AR, Goldberg MS, Hanley JA, et al. Projecting the lifetime risk of cancer from
31	428	exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. Health
32	429	<i>physics</i> 1994;66(6):621-33. [published Online First: 1994/06/01]
33	430	13. Nash CL, Jr., Gregg EC, Brown RH, et al. Risks of exposure to X-rays in patients
34	431	undergoing long-term treatment for scoliosis. The Journal of bone and joint surgery
35	432	American volume 1979;61(3):371-4. [published Online First: 1979/04/01]
36	433	14. Goldberg MS, Mayo NE, Levy AR, et al. Adverse reproductive outcomes among women
37	434	exposed to low levels of ionizing radiation from diagnostic radiography for adolescent
38	435	
39	436	idiopathic scoliosis. <i>Epidemiology (Cambridge, Mass)</i> 1998;9(3):271-8. [published Online First: 1998/05/16]
40	437	15. Betsch M, Wild M, Grosse B, et al. The effect of simulating leg length inequality on
41		spinal posture and pelvic position: a dynamic rasterstereographic analysis. <i>European</i>
42	438	
43	439	spine journal : official publication of the European Spine Society, the European
44	440	Spinal Deformity Society, and the European Section of the Cervical Spine Research
45	441	Society 2012;21(4):691-7. doi: 10.1007/s00586-011-1912-5 [published Online First:
46	442	2011/07/20]
47	443	16. Wild M, Kuhlmann B, Stauffenberg A, et al. Does age affect the response of pelvis and
48	444	spine to simulated leg length discrepancies? A rasterstereographic pilot study.
49 50	445	European spine journal : official publication of the European Spine Society, the
50 51	446	European Spinal Deformity Society, and the European Section of the Cervical Spine
52	447	Research Society 2014;23(7):1449-56. doi: 10.1007/s00586-013-3152-3 [published
53	448	Online First: 2014/01/18]
55 54	449	17. Mohokum M, Mendoza S, Udo W, et al. Reproducibility of rasterstereography for
55	450	kyphotic and lordotic angles, trunk length, and trunk inclination: a reliability study.
56	451	Spine 2010;35(14):1353-8. doi: 10.1097/BRS.0b013e3181cbc157 [published Online
57	452	First: 2010/05/28]
58		-
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3	453	18. Mohokum M, Schülein S, Skwara A. The Validity of Rasterstereography: A Systematic
4	454	Review. Orthopedic Reviews 2015;7(3):5899. doi: 10.4081/or.2015.5899
5	455	19. Kladny B, Santos Leal E, Schneider L, et al. Spezielles Rehabilitationskonzept
6	456	Wirbelsäulendeformitäten. Eine Leitlinie der Sektion Rehabilitation und Physikalische
7	457	Medizin der DGOOC von Orthopäden für Orthopäden AWMF online 2012
8	458	20. Guidetti L, Bonavolonta V, Tito A, et al. Intra- and interday reliability of spine
9	459	rasterstereography. <i>BioMed research international</i> 2013;2013:745480. doi:
10	460	10.1155/2013/745480 [published Online First: 2013/07/03]
11	461	21. Schroeder J, Reer R, Braumann KM. Video raster stereography back shape reconstruction:
12	462	
13		a reliability study for sagittal, frontal, and transversal plane parameters. <i>European</i>
14	463	spine journal : official publication of the European Spine Society, the European
15	464	Spinal Deformity Society, and the European Section of the Cervical Spine Research
16	465	Society 2015;24(2):262-9. doi: 10.1007/s00586-014-3664-5 [published Online First:
17	466	2014/11/27]
18	467	22. Park SM, Ahn SH, Lee AY, et al. Raster-stereographic evaluation of the effects of
19	468	biomechanical foot orthoses in patients with scoliosis. Journal of physical therapy
20	469	science 2016;28(7):1968-71. doi: 10.1589/jpts.28.1968 [published Online First:
21	470	2016/08/12]
22	471	23. Ohlendorf D. Mit Einlegesohlen die Körperstatik verbessern. Extracta Orthopaedica
23	472	2010;1(8-10)
24	473	24. Ohlendorf D. Methoden und Mittel zur Verbesserung des statischen und dynamischen
25	474	Muskelverhaltens bei haltungsbedingten Beschwerden - ein trainings- und
26	475	bewegungswissenschaftlicher Vergleich zwischen sensomotorischen,
27		
28	476	haltungsverbessernden Einlegesohlen und gesundheitsorientiertem, rehabilitativem
29	477	Muskel-aufbautraining. Göttingen: Dissertation 2008.
30	478	25. Anwer S, Alghadir A, Abu Shaphe M, et al. Effects of Exercise on Spinal Deformities and
31	479	Quality of Life in Patients with Adolescent Idiopathic Scoliosis. BioMed research
32	480	international 2015;2015:123848. doi: 10.1155/2015/123848 [published Online First:
33	481	2015/11/20]
34	482	26. Bazzocchi A, Ponti F, Diano D, et al. Trabecular bone score in healthy ageing. The British
35	483	journal of radiology 2015;88(1052):20140865. doi: 10.1259/bjr.20140865 [published
36	484	Online First: 2015/07/08]
37	485	27. Ohlendorf D, Adjami F, Scharnweber B, et al. Standard values of the upper body posture
38	486	in male adults. Advances in Clinical and Experimental Medicine 2017; accepted for
39	487	publication
40	488	28. Abubaker AO, Raslan WF, Sotereanos GC. Estrogen and progesterone receptors in
41	489	temporomandibular joint discs of symptomatic and asymptomatic persons: a
42	490	preliminary study. Journal of oral and maxillofacial surgery : official journal of the
43		
44	491	American Association of Oral and Maxillofacial Surgeons 1993;51(10):1096-100.
45	492	[published Online First: 1993/10/01]
46	493	29. Bush FM, Harkins SW, Harrington WG, et al. Analysis of gender effects on pain
47	494	perception and symptom presentation in temporomandibular pain. Pain
48	495	1993;53(1):73-80. [published Online First: 1993/04/01]
49 50	496	30. Conti PC, Ferreira PM, Pegoraro LF, et al. A cross-sectional study of prevalence and
50	497	etiology of signs and symptoms of temporomandibular disorders in high school and
51 52	498	university students. Journal of orofacial pain 1996;10(3):254-62. [published Online
52	499	First: 1996/07/01]
53 54	500	31. Nordstrom G, Eriksson S. Longitudinal changes in craniomandibular dysfunction in an
54 55	501	elderly population in northern Sweden. Acta odontologica Scandinavica
55 56	502	1994;52(5):271-9. [published Online First: 1994/10/01]
50 57		
58		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	503	32. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO
4	504	consultation. , 2000:894: p. i-xii, 1-253.
5	505	33. Kopp S. Okklusale und klinisch funktionelle Befunde im cranio- mandibulären System bei
6	506	Kindern und Jugendlichen. Jena: Medizinische Habilitation 2005.
7	507	34. Mensink GBM, Schienkewitz A, Haftenberger M, et al. Übergewicht und Adipositas in
8	508	Deutschland. Bundesgesundheitsblatt 2013;56:786-94.
9	509	35. Bundesamt S. Mikrozensus - Fragen zur Gesundheit - Körpermaße der Bevölkerung
10	510	Wiesbaden2011 [cited 2015 12.11.]. Available from:
11	510	https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustan
12	512	d/Koerpermasse5239003099004.pdf? blob=publicationFile.
13	512	36. Helmert U, Strube H. Die Entwicklung der Adipositas in Deutschland im Zeitraum von
14	515	1985 bis 2002. <i>Gesundheitswesen</i> 2004;66(07):409-15. doi: 10.1055/s-2004-813324
15		
16	515	37. Fischer K. Rechts-Links-Probleme in Sport und Training. Studien zur angewandten
17	516	Lateralitätsforschung. Schorndorf: Hofmann Verlag. 1988.
18	517	38. Weineck J. Sportbiologie: Spitta 2004.
19	518	39. Liu B, Wu B, Van Hoof T, et al. Are the standard parameters of cervical spine alignment
20	519	and range of motion related to age, sex, and cervical disc degeneration? Journal of
21	520	neurosurgery Spine 2015;23(3):274-9. doi: 10.3171/2015.1.spine14489 [published
22 23	521	Online First: 2015/06/20]
23	522	40. Kienbacher T, Paul B, Habenicht R, et al. Age and gender related neuromuscular changes
25	523	in trunk flexion-extension. <i>Journal of neuroengineering and rehabilitation</i> 2015;12:3.
26	524	doi: 10.1186/1743-0003-12-3 [published Online First: 2015/01/09]
27	525	41. Kienbacher T, Fehrmann E, Habenicht R, et al. Age and gender related neuromuscular
28	526	pattern during trunk flexion-extension in chronic low back pain patients. Journal of
29	527	neuroengineering and rehabilitation 2016;13:16. doi: 10.1186/s12984-016-0121-1
30	528	[published Online First: 2016/02/21]
31	529	42. Kudwa AE, Bodo C, Gustafsson JA, et al. A previously uncharacterized role for estrogen
32	530	receptor beta: defeminization of male brain and behavior. Proceedings of the National
33	531	Academy of Sciences of the United States of America 2005;102(12):4608-12. doi:
34	532	10.1073/pnas.0500752102 [published Online First: 2005/03/12]
35	533	43. Phoenix CH, Goy RW, Gerall AA, et al. Organizing action of prenatally administered
36	534	testosterone propionate on the tissues mediating mating behavior in the female guinea
37	535	pig. Endocrinology 1959;65:369-82. doi: 10.1210/endo-65-3-369 [published Online
38	536	First: 1959/09/01]
39	537	44. Asamoah V, Mellerowicz H, Venus J, et al. [Measuring the surface of the back. Value in
40 41	538	diagnosis of spinal diseases]. Der Orthopade 2000;29(6):480-9. [published Online
41	539	First: 2000/08/10]
43	540	45. Diers H. Optische Wirbelsäulen- und Haltungsvermessung. Orthopädietechnik
44	541	2008;38:479-84.
45	542	46. Drerup B. Improvements in measuring vertebral rotation from the projections of the
46	543	pedicles. Journal of biomechanics 1985;18(5):369-78. [published Online First:
47	544	1985/01/01]
48	545	47. Drerup B, Hierholzer E. Objective determination of anatomical landmarks on the body
49	546	surface: measurement of the vertebra prominens from surface curvature. Journal of
50	547	<i>biomechanics</i> 1985;18(6):467-74. [published Online First: 1985/01/01]
51	548	48. Drerup B, Hierholzer E. Automatic localization of anatomical landmarks on the back
52	548 549	surface and construction of a body-fixed coordinate system. <i>Journal of biomechanics</i>
53	550	1987;20(10):961-70. [published Online First: 1987/01/01]
54	550 551	49. Hierholzer E. Objektive Analyse der Rückenform von Skoliosepatienten. Stuttgart: Gustav
55	551 552	Fischer Verlag 1993.
56		
57	553	50. Hübner J. Handbook Formetric III. Schlangenbad: Diers International GmbH 2007.
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

51. Ohlendorf D, Mickel C, Filmann N, et al. Standard values of the upper body posture and postural control: a study protocol. J Occup Med Toxicol 2016;11(34) doi: doi: 10.1186/s12995-016-0122-9

Tables

Tab. 1 Spine, shoulder and pelvis parameter: mean value, median, tolerance regions (upper and lower limit), confidence interval (left and right limit). Italic data are non-parametrical values

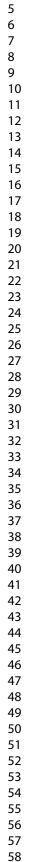

	Mean value/	tolerance range	tolerance range	confidence interval	confidence interva
	median	lower limit	upper limit	left limit	right limit
	1	Spine paramet			1
Trunk length D (mm)	461.31	412.95	509.67	456.64	465.99
Trunk length S (mm)	509.52	458.88	560.15	504.62	514.41
Sagittal trunk decline (°)	-3.31	-8.12	1.5	-3.78	-2.85
Frontal trunk decline (°)	-0.43	-2.91	2.06	-0.67	-0.18
Axis decline (°)	0.21	-4.45	4.86	-0.25	0.66
Thoracic bending angle (°)	13.9	6.49	21.31	13.19	14.62
Lumbar bending angle (°)	13.17	7.83	23.06	11.9	14.25
Standard deviation lateral deviation					
(mm)	3.92	0.5	7.33	3.59	4.25
Maximal lateral deviation (mm)	-5.35	-12.8	12.38	-5.76	-0.89
Standard deviation rotation (°)	4.66	2.04	12.92	4.18	5.29
Maximal rotation (°)	9.2	-9	37.48	8	10.76
Kyphosis angle (°)	51.66	27.91	74.42	49.37	53.96
Lordosis angle (°)	46.29	21.66	70.92	43.91	48.67
		Shoulder parame	eter		
Scapular distance (mm)	150.56	110.51	190.6	146.68	154.43
Scapular height (°)	-1.28	-22.36	19.81	-3.32	0.76
Scapular rotation (°)	3.06	-3.26	9.37	2.44	3.67
Scapular angle left (°)	28.54	16.49	62.74	27.36	30.74
Scapula angle right (°)	31.17	10.61	73	27.2	34.62
		Pelvis paramet	er		
Pelvis distance (mm)	99.56	74.76	124.37	97.17	101.96
Pelvis height (°)	0.76	-4.29	5.81	0.28	1.25
Pelvis height (mm)	1.34	-7.33	10.01	0.5	2.18
Pelvis torsion (°)	0.24	-6.89	7.36	-0.45	0.93
Pelvis rotation (°)	2.2	-5.72	7.34	1.49	2.76
			•	1	

Figure legend

Fig. 1: a) back scanner MiniRot Combi (ABW GmbH, Frickenhausen / Germany), b) three-dimensional phase picture of the back c) marker position on the back: A: Vertebra prominens (7th cervical vertebra), B: Lower scapular angle left, C : Lower Lower scapular angle right, D: Spina Iliaca Posterior Superior (SIPS) left, e: Spina Iliaca Posterior Superior (SIPS) right, F: Sacrum-point (cranial beginning of the gluteal cleft).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 575 4 5 576 6 7 577 8 9 578 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	
52 53	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

60

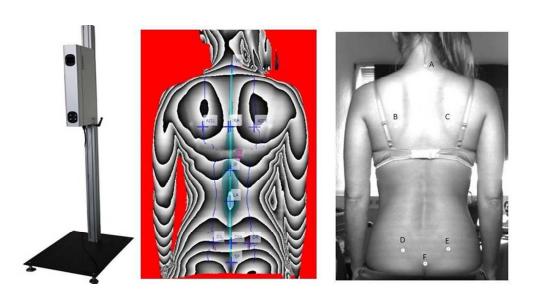


Fig. 1: a) back scanner MiniRot Combi (ABW GmbH, Frickenhausen / Germany), b) three-dimensional phase picture of the back c) marker position on the back: A: Vertebra prominens (7th cervical vertebra), B: Lower scapular angle left, C : Lower Lower scapular angle right, D: Spina Iliaca Posterior Superior (SIPS) left , e: Spina Iliaca Posterior Superior (SIPS) right, F: Sacrum-point (cranial beginning of the gluteal cleft).

248x128mm (96 x 96 DPI)

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation	Page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	4,6-
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-	6-8
		up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe	6
		methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and unexposed	n/a
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give	7-8
		diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	6-8
measurement		Describe comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	n/a
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which	7-8
		groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	n/a
		(c) Explain how missing data were addressed	n/a
		(d) If applicable, explain how loss to follow-up was addressed	n/a
		(e) Describe any sensitivity analyses	n/a
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for	n/a
		eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	n/a
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	8-9
		exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	n/a
		(c) Summarise follow-up time (eg, average and total amount)	n/a
Outcome data	15*	Report numbers of outcome events or summary measures over time	9-1
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg,	9-1
		95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9-1
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	n/a
		period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	14
		both direction and magnitude of any potential bias	
			1

BMJ Open

		analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14-15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	2
		original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

n/a = not applicable

Since the study investigated healthy young women in an observational study these parts of the STROBE-criteria are not applicable.

BMJ Open

Standard values of the upper body posture in healthy young female adults, reference values for pathological changes

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022236.R1
Article Type:	Research
Date Submitted by the Author:	17-Apr-2018
Complete List of Authors:	Ohlendorf, Daniela; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine; Fisch, Vanessa; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine Doerry, Charlotte; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine Schamberger, Sebastian; School of dentistry, Department of Orthodontocs Oremek, Gerhard; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine Ackermann, Hanns; Goethe Universität Frankfurt am Main, Institute of Biostatistics and Mathematical Modeling Schulze, Johannes; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Rehabilitation medicine
Keywords:	body posture, back scan, standard value, female subjects

SCHOLARONE[™] Manuscripts

1

1		
2	1	
3	1	Standard values of the upper body posture in healthy young female adults, reference values
4		
5	2	for pathological changes
6		
7	3	
8		
9	4	Ohlendorf D ¹ *, Fisch V ¹ , Doerry C ¹ , Schamberger S ² , Oremek G ¹ , Ackermann H ³ , Schulze J ¹
10		
11	5	
12	6	¹ Institute of Occurrentianal Madiaina Social Madiaina and Environmental Madiaina Castha
13	6	¹ Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-
14	7	University Frankfurt/Main, Theodor-Stern-Kai 7, Building 9A, 60590 Frankfurt/Main,
15	8	Germany
16	9	
17	10	² School of dentistry, Department of Orthodontics, Goethe-University Frankfurt/Main,
18	11	Theodor-Stern-Kai 7, Building 29, 60596 Frankfurt/Main, Germany
19	12	
20	13	³ Institute of Biostatistics and Mathematical Modeling, Goethe-University, Frankfurt/Main,
21	14	Theodor-Stern-Kai 7, Building 11A, 60596 Frankfurt/Main, Germany
22	15	Theodor Stern Rul 7, Building TTR, 00090 Fluikturt Huni, Germany
23		
24	16	
25	17	* Corresponding author
26		
27	18	E-mail: ohlendorf@med.uni-frankfurt.de
28	10	
29	19	
30	19	
31	•	
32	20	
33		
34	21	
35		
36	22	
37		
38	23	
39		
40	24	
41	27	
42	25	
43	23	
44	26	
45	26	
46		
47	27	
48		
49	28	
50		
51	29	
52		
53	30	
54	50	
55	21	
56	31	
57	22	
58	32	
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
		1

33	
34	Abstract
35	Objective: Classifications of posture deviations are only possible compared to standard
36	values. However, standard values have been published for healthy male adults but not for
37	female adults.
38	Design: Observational study.
39	Setting: Institute of Occupational Medicine, Social Medicine and Environmental Medicine,
40	Goethe-University Frankfurt/Main.
41	Participants : 106 female healthy volunteers (21 - 30 years old; 25.1 ± 2.7 years) were
42	included. Their body weight ranged from 46-106 kg (60.3 ± 7.9 kg), the heights from 1.53 to
43	1.82 m (1.69 \pm 0.06 m), and the body mass index from 16.9 kg/m ² to 37.6 kg/m ² (21.1 \pm 2.6
44	kg/m²).
45	Outcome measures: A three-dimensional back scan was performed to measure the upper
46	back posture in habitual standing. The tolerance ranges and confidence interval were
47	calculated. Group differences were tested by the Wilcoxon-Mann-Whitney-U-test.
48	Results: In normal posture the spinal column was marginally twisted to the left and the
49	vertebrae were marginally rotated to the right. The kyphosis angle is larger than the lumbar
50	angle. Consequently, a more kyphotic posture is observed in the sagittal plane. The habitual
51	posture is slightly scoliotic with a rotational component (scapular depression right, right
52	scapula marginally more dorsally, high state of pelvic right, iliac right further rotated
53	anteriorly).
54	Conclusions: Healthy young women have an almost ideally balanced posture with minimal
55	ventral body inclination and a marginal scoliotic deviation. Compared to young males,
56	women show only marginal differences in the upper body posture. These values allow a
57	comparison to other studies, both for control and patient data, and may serve as guideline in
58	both clinical practice and scientific studies.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

58 59

60

BMJ Open

2 3	59	
4 5 6	60	Key words: body posture, back scan, standard value, female subjects
7 8 9	61	Strengths and limitations of this study
10 11	62	• Strength: large number of healthy young female participants aged 21-30 years.
12 13	63	• Strength: Videoraster-stereografic quantitative analysis of the upper back posture.
14 15	64	• Limitation: measurement of the upper body posture only in habitual standing position,
16 17 18	65	not while moving.
19 20	66	• Limitation: external influences (occupational environment) were not assessed which
21 22	67	might influence the body posture.
23 24	68	
25 26	69	Introduction
27 28	70	Various subjective and objective methods to quantify and analyze the body posture have been
29 30 31	71	used, especially for the spinal posture. All prior methods tried to evaluate deformity in the
32 33	72	diagnosis and treatment of spinal diseases like scoliosis ¹⁻⁴ .
34 35	73	Quantitative analytical methods enable the diagnosis of spinal curvature deviations and/or
36 37	74	control the therapeutic effects. The methods vary by their technical complexity and clinical
38 39	75	applicability. Roentgenograms or computed tomography scans are frequently used for bone
40 41	76	structure deformities, while ultrasound, inclinometer, thermal infared imaging, scoliometer or
42 43 44	77	video raster stereography are established postural measurement methods ⁵⁻¹⁰ . X-ray based
44 45 46	78	methods despite their mutagenic potential still are the gold standard in diagnosis and follow-
47 48	79	up of body posture deviations ¹¹⁻¹⁴ .
49 50	80	Video raster stereography has recently been evaluated as an alternative method to quantify
51 52	81	vertebral column posture and its deformities 7 8 15-18. Guidelines for orthopedic rehabilitation
53 54	82	in Germany also recommend a follow-up check but do not specify the methods ¹⁹ . The three-
55 56 57	83	dimensional back scan measures the body geometry between the 7th cervical vertebrum and

the gluteal cleft, it has high intraclass correlation coefficients and good Cronbach's Alpha
values for intra- and interday reliability for all spine parameters ^{17 18 20 21}. Furthermore, inter
tester reliability is high ¹⁷.

A three-dimensional surface contour image of the back appears suitable to determine vertebral column deformities, but also to quantify the effect of e.g. orthopedic shoe insoles on the body posture ^{22 23}. In addition, 3D images can quantify muscular imbalances (kyphotic / lordotic deviations, differences in waist contours, rotation in the shoulder or pelvis) and control the therapeutic success of muscle training in primary, secondary and tertiary prevention ^{24 25}.

Due to the changing workplace environment with its increase in digital work, ever more employees work in a sitting position. Both in the workplace and in the household, this leads to a steady decrease of physical stress on the body. This lack of exercise may result in the development of muscular imbalances and increasing numbers of persons with back pain, currently estimated at 20 million people for Germany $\frac{20}{20}$. Back pain complaints due to musculoskeletal disorders can lead to disability or early retirement. Even more frequently, rehabilitation is required to restore the capacity to work in their original occupation.

Early signs of postural disorder e.g. musculoskeletal imbalances should be detected when subjective symptoms have developed, and treated appropriately; in order to assess both diagnosis and treatment effects, quantitative classification criteria are necessary for deviations from normal posture. These deviations should be quantified, e.g. in the form of (parametric or non-parametric) percentiles, similar to the Z- or T-scores of bone density ²⁶. However, no standard or reference values for body posture currently are published for healthy female subjects; reference values of the upper body posture for healthy men have been published only recently ²⁷. Also, classifications of the severity of posture deviations are only possible when deviations from standard or reference values are quantified.

BMJ Open

This study measures the upper body posture in healthy women aged 21 - 30 years by a three dimensional back scan to provide standard values for the posture of young healthy women. These values and their variances define the normal upper body posture and its variability and may be used to categorize the results of other (orthopaedic) studies. Investigating a homogeneous group of subjects eliminate constitutional, habitual and degenerative changes that could increase both tolerance ranges and confidence intervals ²⁸⁻³¹.

117 Methods

118 Subjects

119 106 female volunteers between 21 and 30 years (25.1 ± 2.7 years) participated in this study. 120 Their body weight ranged from 46-106 kg (60.3 ± 7.9 kg), the height from 1.53 to 1.82 m 121 (1.69 ± 0.06 m), and the body mass index ranged from 16.9 kg/m² to 37.6 kg/m² (21.1 ± 2.6 122 kg/m²). 6% of the participants were underweight (BMI < 18.5 kg/m²), 87.8% of the 123 participants had a normal BMI (18.5 to 24.9 kg/m²), 4.7% were overweight (BMI 25 to 29.9 124 kg/m²) and 0.9% had obesity I° (BMI 30 - 34.9 kg/m²) according to the WHO weight 125 classification ³².

All subjects were healthy and free of musculoskeletal complaints and therefore no patient were involved. Using a questionnaire temporomandibular system disorders were excluded ³³; 95.3% of the subjects reported to be right-handed and 4.7% were left-handed. 72.6% of the participants were students, 27.4% employees in different occupations (dentists, physicians, teachers, office workers).

All volunteers were informed about the study design before giving written informed consent.
The study was approved by the local medical ethics committee of the medical faculty
(Goethe-University Frankfurt; No. 303/16).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

135 Measurement system

A three-dimensional back scan was performed to quantify the upper back posture while
standing, using the back scan system "MiniRot Kombi" (ABW GmbH,
Frickenhausen/Germany).

In this system a projector forms a stripe pattern on the persons bare back; this stripe pattern is captured by a LCD camera from a defined angle. One measurement lasts approx. 2 seconds. In this way the back surface is represented as a phase picture which is analyzed by an integrated software program reconstructing the 3D image. For calibration of the phase pictures all test persons are marked at six defined, standardized anatomical locations (Fig. 1) indicating underlying bone structures. These allow the calculation of three-dimensional parameters (Fig. 1) with information about rotational movements in the shoulder and pelvic area and the shape of the spine (lordotic, kyphotic and/or scoliotic posture). Artifacts may be caused by different marker placements or movements during the scan, i.e. the projection of the stripe pattern on the back, and thus have to be avoided. To measure the body posture, three repeat measurements are taken within 2 minutes.

151 Fig. 1

During a movement sequence 15 photos were taken. The maximum picture frequency of the MiniRot Kombi system is more than 50 frames/sec with a spatial resolution of 1/100 mm. The calculation of the three-dimensional coordinates of the back surface is performed by triangulation. The system error is specified as <1 mm (manufacturer information), the reproducibility is limited by the calculations of the upper body posture defined by markers directly on the skin (<0.5 mm).

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21 22	
22	
23 24	
24 25	
25 26	
20 27	
27 28	
20 29	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

161 Body scans

162 The subjects stood barefoot in their habitual body and jaw posture about 90 cm in front of the 163 back scan apparatus. The arms were hanging loosely; the subjects looked horizontally fixing 164 the opposite wall.

165

166 Evaluation Parameter

From the three-dimensional back scan three components were quantified: spinal area (markers on C7 and L5), shoulder area (markers at the top of the left/right scapula) and pelvis area (markers on the left/right spina iliaca posterior superior [SIPS]). The marker positions are shown in Figure 1, the spine parameters are selected and calculated as described in ²⁷.

171

172 Statistical evaluation

All calculations were carried out using BIAS (Version 11.0) (Epsilon Verlag, Darmstadt,
Germany). Parameter distribution was tested by the Kolmogorov-Smirnov-Test indicating
only partially normal distribution; parametrical or non-parametrical tolerance regions were
calculated as defined by the upper and lower limit for 95% of all values (+-2 SD values),
being found in > 95% of the examined subjects. Values within this range are considered
"normal".

Furthermore, the two-sided 95% confidence interval was calculated and indicated the range of the mean or median value – depending on the distribution quality – and showed the "accuracy" of these values. For group differences, the t-test or the Wilcoxon-Mann-Whitney-U-test was used.

183

184

60

185 <u>Results</u>

Only the constitutional parameter "body height" was normally distributed, whereas "body weight" and "BMI" were not. The median body weight was 60 kg (tolerance range 49.0 to 77.28 kg; confidence interval 57 to 62 kg). For the BMI a median of 20.7 kg/m² was calculated, with a corresponding tolerance range from 17.99 to 27.2 kg/m^2 and a confidence interval from 20.3 to 21.3 kg/m². For the body height a mean value of 1.69 m was calculated with a tolerance range between 1.57 and 1.82 m and a confidence interval of 1.68 to 1.70 m. Handedness as a relevant parameter had been refused in advance by the t-test and the Wilcoxon-Mann-Whitney-U-test. All parameters were not significantly different ($p \ge 0.05$). From the back scan values the posture of an average healthy female person was calculated (tab. 1). On average the subjects are standing slightly inclined in the anterior line of 3.31° (tolerance range 8.12° ventrally to 1.50° dorsally; confidence range 3.78° to the left to 2.85° to the right). Laterally, a minimal deviation of the frontal trunk of 0.43° to the left was seen, the confidence

198 Laterally, a minimal deviation of the frontal trunk of 0.43° to the left was seen, the confidence 199 interval (0.18° right – 0.67° left) included the perpendicular position; the tolerance interval 200 ranged from 2.91° to the left to 2.06° to the right. In compensation the axial deviation 201 (inclination between upper body and pelvis) was slightly tilted to the right (0.21°) with a 202 tolerance range of $\pm 4.5^{\circ}$ and a confidence interval of <1° (0.25° left and 0.66° right). This 203 implied that there are no obvious differences in the inclination between the upper and lower 204 body.

The angle of the thoracic bend was calculated from the distance between the vertebra prominens (VP) and the kyphosis apex and indicated the deviation from the perpendicular line. The median angle was 13.9° confirming the expected thoracic kyphosis. Here, wider variations were seen with a tolerance range from 6.49° to 21.31°, and a confidence interval varying from 13.19° to 14.62°. The lumbar bending angle describes the deviation of the distance between the lordosis and kyphosis apex. As compared to the thoracic bend, similar variations of the tolerance value and the confidence intervals were seen in the lumbar region,

BMJ Open

2			
3			
4			
5			
6			
7			
8			
9			
1	0		
1	1		
1	2		
1	3		
1	4		
1	5		
1	6		
1	7		
1	8		
1	9		
2			
2			
2	2		
2			
2			
2			
2			
2			
2			
2			
3			
3			
3			
3			
3			
3			
3			
3			
3			
3			
5 4			
4 4			
4 4			
4			
4			
4			
4			
4			
5			
5	1		
5			
5			
5			
5			
5	6		
5			
5	8		
5	9		

60

with a bending angle of 13.17° (tolerance value 7.83° to 23.06°; confidence interval 11.90° to
14.25°).

Measurement of the lateral deviation showed a right-sided inclination of the median line by 3.92° when connecting the points VP and the center of the pelvic markers. Both the tolerance range (0.50° and 7.33° respectively), as well as the confidence interval ($3.59^{\circ}/4.25^{\circ}$) indicated a right-sided deviation.

The rotation of the spinal column is a marker of the spinal column torsion and can be measured from the spinal processes. In our analysis, a negative value indicates a rotation to the left and a positive value to the right. The median rotation was 4.66°, with a tolerance range between 2.04° and 12.92°, and a confidence interval between 4.18° and 5.29°. Consequently, on average a right sided spinal rotation was found.

The kyphosis and lordosis angle have a mean or a median of 51.66° and 46.29° , with a substantial tolerance range of approximately $\pm 25^{\circ}$ and a confidence interval of about $\pm 2^{\circ}$.

225 Shoulder parameters are valid indicators for upper body posture (tab. 1), too. The lower 226 scapular spinae were measured by fixed markers; the interscapular distance as indicator of the 227 variability of the upper body was 150.56 mm, with a tolerance range of 110.51 – 190.60 mm, 228 and a confidence limit of 146.68 - 154.43 mm. The scapular height (deviation from the 229 horizontal line) refers to a slightly lower left shoulder blade (by 1.28°), whereas the upper and 230 lower limit of the range markers were -22.36° and 19.81°, so that the left shoulder blade is 231 more caudally in the lower limit and more cranially in the upper limit. The same variation is 232 shown by the data of the confidence interval, with values of -3.32 (left scapula higher) -0.76233 ° (right scapula higher).

The shoulder markers illustrated a right shoulder being slightly further dorsal by 3.06°, with a tolerance range of -3.26° to 9.37° and a confidence interval of 2.44° to 3.67°. Only minor differences were seen between the left and right shoulder blade angles, with the right shoulder 2.6° (median) more caudally.

Table 1 also compiles the pelvic parameters. The distance for the spina iliaca posterior superior markers refers to the pelvic width, which on average is 99.56 mm (tolerance range 74.76 to 122.37 mm, confidence interval 97.17 and 101.96 mm).

The deviation of the pelvic height (in degrees) from the horizontal plane is very low. Both differences in pelvic height (in mm) and deviations from the horizontal line (in degrees) indicate a slightly higher position of the right pelvis by approx. 1° or 1 mm (Tab. 4). The same applies to the pelvic torsion and rotation, so that the right iliac marker is rotated posteriorly and simultaneously tilted further ventral (mean pelvis torsion: 0.24°; mean pelvic

rotation: 2.2°).

Tab. 1

Discussion

This paper presents normal values and normal ranges including tolerance and confidence intervals for the body posture of healthy young females. Height, weight and body mass index (BMI) of the participants are comparable to average young German female persons ^{34 35}. as measured by Mensink et al.³⁴ in over 7000 adults from the general German population. The age-matched female group from Mensink et al. ³⁴ was 3.20 cm smaller, 4.92 kg heavier and thus also had a slightly higher BMI by 2.58 kg/m² as compared to our values. Similar findings have been reported by the German Federal Statistical Office in 2011 for 2009³⁵, which correlate even better to our results.³⁴. Data for height, weight and BMI, obtained to assess the prevalence of obesity in Germany between 1985 and 2002³⁶ in 1504 female volunteers (25-29 years) show that the subjects in our study are marginal taller, lighter and have a lower BMI.

Page 11 of 22

BMJ Open

In this context, however, it should be borne in mind that this study mainly involved students and university employees with the same lifestyle, with values slightly differing from the general population, and a likely overrepresentation of participants with a high social status. 87.8% of the participants in this study have a normal BMI, 22.3% more than Mensink et al.³⁴ found for 18-29 year old women. The relation of overweight with social status is well known; this confounder is also seen by the data from Mensink et al. 34 : 36.9% of women with a low social status were overweight, 16.4% obese as compared to 18.7% overweight and 4.4% obese women with a high social status. Helmert et al.³⁶ calculated similar data using the equivalent household income; thus the different BMI values likely are explained by the participant selection preferentially from the students of the School of Dentistry in our university, with a high social status.

The back scan values indicate a characteristic posture of young females. Only small deviations from an ideal perpendicular position are noted; the ventral tilt of the trunk, the lateral deviation and rotation of the spine, shoulder and pelvis were very small. The posture is marginally scoliotic (the ventral trunk tilts marginally to the left side, the scapula is higher on the left side, the pelvis slightly elevated on the right side) with an expected rotatory component (a lumbar right tilt to compensate for the left tilted ventral trunk, a slight twist of the processus spinosus to the right, the right scapula marginally more dorsal, the SIPS of the right iliac bone rotated anteriorly) (Tab. 1). The spinal curve, defined by the thoracic and lumbar bending angle and the kyphosis and lordosis angle, indicates that the angle in the thoracic spine area is marginally larger than that in the lumbar region (Tab. 1), and a slightly kyphotic posture in the sagittal plane can be observed.

Handedness has no influence on these parameters, which should be expected from the observed symmetry. However, since 95.3% of the participants were right-handed no firm conclusions can be drawn for left handed people. Also, whether an influence of the dominant leg $\frac{37}{28}$ exists on the posture cannot be answered by our results. Appropriate test methods for the determination of these components should be used in further studies.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

A gender comparison ²⁷ shows only marginal differences in the upper body posture. Both studies used the same measurement system and data evaluation and thus allow a direct comparison of the values. Although the female upper body appears narrower and more delicate due to the weaker muscular shoulder girdle and the smaller chest, the ratio between chest and shoulder width is the same ³⁸.

The anatomical and constitutional differences are confirmed by the present data. In terms of the shoulder width, the fixed scapular landmarks indicate a larger distance of 2.9 cm in men than in women (Table 1). In contrast, men have a smaller pelvis calculated from the SIPS markers (6 mm difference) which results in a wider shoulder than pelvis distance by 8.5 cm in men, but only 5.0 cm in women, confirming and quantifying the well-known gender-specific anatomical differences.

In addition to these constitutional differences, differences in the lordotic and kyphotic angles are calculated from the spinal column parameters. Thus, women have an average kyphotic angle of 52°, men of 46°; the lordosis angle is 46° for women and 31° for men. Thus, the spinal curvature in the thoracic and lumbar spine area is more pronounced in women than in men. The difference in the lordosis angle between the sexes is about 15° and in the case of the kyphotic angle with approximately 6°, however, men have an approximately 15° greater thoracic kyphosis angle than lumbar lordosis angle in contrast to a 6° difference of women. Consequently, the kyphosis angle is larger than the lordosis angle in both sexes, women are in a more balanced posture due to the smaller difference between the two angles.

Liu et al. ³⁹ tried to define standard parameters of cervical spine alignment and range of motion related to age, sex, and cervical disc. These results underline the more pronounced thoracal kyphosis in women. The greater lumbar lordosis of the females can be traced back to sex differences in the pelvic shape: The wider pelvic blades of the female pelvis have a larger angle between the pubic branches, a larger transverse pelvic diameter and are lower. Thus, the pronounced female pelvic tilt leads to a larger lumbar lordosis. Consequently, a larger lumbar

BMJ Open

lordosis causes a thoracal hyperkyphosis. These (different) compensations are seen in the pelvic position in both sexes 38 . This position of the lumbar spine also affects the extent of the movement in the flexion-extension testing of the trunk. The total task-specific hip motion ranges as measured from erect standing to the maximum flection were higher in females than in males 40 .

Furthermore, the same authors report that female chronic low back pain patients had higher regional hip and trunk motion ranges than male patients ⁴¹. Why women have a larger lordosis angle currently is unknown. An extensive literature search in PubMED and other data bases did not retrieve any published hypothesis. An explanation of physiological differences, however, has been forwarded to comparable sex differences in the pelvic anatomy for rodents and has been related to sexual behavior in these animals. Guinea pigs show hormonally controlled, gender related reproductive behaviour: male guinea pigs show a distinct sexual approach consisting of body raising, intromission and ejaculation, and female guinea pigs respond with a corresponding conceiving position of a predominantly lordotic lumbar posture ^{42 43}. At least for this species the observed anatomical differences may translate directly into an apt reproductive behaviour. In both species, the pelvis itself has the same position in both sexes in a relaxed posture, and is positioned almost horizontally.

No similar explanation exists for differences in the shoulder region parameters either; the
right shoulder is positioned more caudal in both sexes, but women have "deeper" shoulders
(increased scapular angle right/left).

All other positional parameters are nearly identical between men and women, with thedifferences being smaller than the margin of error, and likely have no clinical relevance.

The three-dimensional back scan is a fast, non-contact method to quantify the body posture and is suitable for measuring body postures in both healthy persons and patients. It can quantify pathologic positions like scoliosis, kyphosis, leg length differences and functional movement disorders, as well as improvements by medical treatment. The chances and

limitations of the measurement system and procedure 44-50 has already been discussed by Ohlendorf et al. ^{27 51}. In the future, this method may allow to grade postural deviations, e.g. by a grading system using the tolerance ranges for men and women, as has been done for bone densitometry in the t- and z-scales 26 .

Conclusion

Video raster stereography is a method to quantitatively measure the human three-dimensional back surface. Healthy young women have an almost ideally balanced posture with minimal ventral body inclination and a marginal scoliotic deviation. In comparison to men women have only small differences in upper body posture, with nearly identical normal values. These values allow a quantitative comparison with other studies for control and patient data, and may serve as an orientation in both clinical practice and scientific studies. Further studies could expand this method to age-related changes in body posture, quantitative assessments of postural changes in relevant diseases, and improvements by therapeutic interventions.

Acknowledgements

- This article contains parts of the doctoral thesis of Mrs. V. Fisch. 3/

a. contributorship statement

DO, VF, CD, SS, GO and JS made substantial contributions to the conception and design of the manuscript, DO, VF and CD made substantial contributions to the construction of the measurement protocol and HA and DO have been involved in the statistical data analysis. All authors have read and approved the final manuscript.

- - b. competing interests
 - The authors declare that they have no conflict of interest.
- c. funding

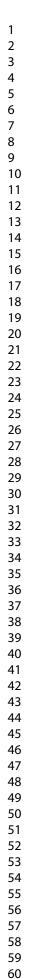
1		
2 3	369	There is no external funding of the project.
4	370	
5 6	371	d. data sharing statement
7	372	No additional data available.
8 9		
10	373	
11 12	374	References
13 14	375	
15	276	
16	376	1. Corona J, Sanders JO, Luhmann SJ, et al. Reliability of radiographic measures for infantile
17	377	idiopathic scoliosis. The Journal of bone and joint surgery American volume
18	378	2012;94(12):e86. doi: 10.2106/jbjs.k.00311 [published Online First: 2012/06/22]
19	379	2. Langensiepen S, Semler O, Sobottke R, et al. Measuring procedures to determine the Cobb
20	380	angle in idiopathic scoliosis: a systematic review. European spine journal : official
21	381	publication of the European Spine Society, the European Spinal Deformity Society,
22 23	382	and the European Section of the Cervical Spine Research Society 2013;22(11):2360-
23 24	383	71. doi: 10.1007/s00586-013-2693-9 [published Online First: 2013/02/28]
24	384	3. Prowse A, Pope R, Gerdhem P, et al. Reliability and validity of inexpensive and easily
26	385	administered anthropometric clinical evaluation methods of postural asymmetry
27	386	measurement in adolescent idiopathic scoliosis: a systematic review. European spine
28	387	journal : official publication of the European Spine Society, the European Spinal
29	388	Deformity Society, and the European Section of the Cervical Spine Research Society
30	389	2016;25(2):450-66. doi: 10.1007/s00586-015-3961-7 [published Online First:
31	390	2015/04/29]
32	391	4. Prowse A, Aslaksen B, Kierkegaard M, et al. Reliability and concurrent validity of postural
33	392	asymmetry measurement in adolescent idiopathic scoliosis. World journal of
34	393	orthopedics 2017;8(1):68-76. doi: 10.5312/wjo.v8.i1.68 [published Online First:
35	394	2017/02/02]
36	395	5. Kuklo TR, Potter BK, Schroeder TM, et al. Comparison of manual and digital
37	396	measurements in adolescent idiopathic scoliosis. Spine 2006;31(11):1240-6. doi:
38	397	10.1097/01.brs.0000217774.13433.a7 [published Online First: 2006/05/12]
39 40	398	6. Zheng YP, Lee TT, Lai KK, et al. A reliability and validity study for Scolioscan: a
40 41	399	radiation-free scoliosis assessment system using 3D ultrasound imaging. Scoliosis and
41	400	spinal disorders 2016;11:13. doi: 10.1186/s13013-016-0074-y [published Online
43	401	First: 2016/06/15]
44	402	7. Betsch M, Rapp W, Przibylla A, et al. Determination of the amount of leg length inequality
45	403	that alters spinal posture in healthy subjects using rasterstereography. European spine
46	404	journal : official publication of the European Spine Society, the European Spinal
47	405	Deformity Society, and the European Section of the Cervical Spine Research Society
48	406	2013;22(6):1354-61. doi: 10.1007/s00586-013-2720-x [published Online First:
49	407	2013/03/13]
50	408	8. Drerup B. Rasterstereographic measurement of scoliotic deformity. <i>Scoliosis</i> 2014;9(1):22.
51	409	doi: 10.1186/s13013-014-0022-7 [published Online First: 2014/12/19]
52	410	9. Abate M, Carlo LD, Romualdo SD, et al. Postural adjustment in experimental leg length
53 54	411	difference evaluated by means of thermal infrared imaging. Physiological
54 55	412	measurement 2010;31(1):35-43. doi: 10.1088/0967-3334/31/1/003 [published Online
55 56	413	First: 2009/11/27]
57		-
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	414	10. Coelho DM, Bonagamba GH, Oliveira AS. Scoliometer measurements of patients with
4	415	idiopathic scoliosis. Brazilian journal of physical therapy 2013;17(2):179-84. doi:
5	416	10.1590/s1413-35552012005000081 [published Online First: 2013/06/20]
6	417	11. Ronckers CM, Land CE, Miller JS, et al. Cancer mortality among women frequently
7	418	exposed to radiographic examinations for spinal disorders. Radiation research
8	419	2010;174(1):83-90. doi: 10.1667/rr2022.1 [published Online First: 2010/08/05]
9	420	12. Levy AR, Goldberg MS, Hanley JA, et al. Projecting the lifetime risk of cancer from
10	421	exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. Health
11	422	physics 1994;66(6):621-33. [published Online First: 1994/06/01]
12	423	13. Nash CL, Jr., Gregg EC, Brown RH, et al. Risks of exposure to X-rays in patients
13	424	undergoing long-term treatment for scoliosis. The Journal of bone and joint surgery
14 15	425	American volume 1979;61(3):371-4. [published Online First: 1979/04/01]
16	426	14. Goldberg MS, Mayo NE, Levy AR, et al. Adverse reproductive outcomes among women
17	427	exposed to low levels of ionizing radiation from diagnostic radiography for adolescent
18	428	idiopathic scoliosis. <i>Epidemiology (Cambridge, Mass)</i> 1998;9(3):271-8. [published
19	429	Online First: 1998/05/16]
20	430	15. Betsch M, Wild M, Grosse B, et al. The effect of simulating leg length inequality on
21	431	spinal posture and pelvic position: a dynamic rasterstereographic analysis. <i>European</i>
22	432	spine journal : official publication of the European Spine Society, the European
23	433	Spinel Deformity Society, and the European Section of the Cervical Spine Research
24	434	Society 2012;21(4):691-7. doi: 10.1007/s00586-011-1912-5 [published Online First:
25	435	2011/07/20]
26	435	16. Wild M, Kuhlmann B, Stauffenberg A, et al. Does age affect the response of pelvis and
27	430	spine to simulated leg length discrepancies? A rasterstereographic pilot study.
28	437	
29		European spine journal : official publication of the European Spine Society, the
30	439	European Spinal Deformity Society, and the European Section of the Cervical Spine
31	440	Research Society 2014;23(7):1449-56. doi: 10.1007/s00586-013-3152-3 [published
32	441	Online First: 2014/01/18]
33 34	442	17. Mohokum M, Mendoza S, Udo W, et al. Reproducibility of rasterstereography for
35	443	kyphotic and lordotic angles, trunk length, and trunk inclination: a reliability study.
36	444	Spine 2010;35(14):1353-8. doi: 10.1097/BRS.0b013e3181cbc157 [published Online
37	445	First: 2010/05/28]
38	446	18. Mohokum M, Schülein S, Skwara A. The Validity of Rasterstereography: A Systematic
39	447	Review. Orthopedic Reviews 2015;7(3):5899. doi: 10.4081/or.2015.5899
40	448	19. Kladny B, Santos Leal E, Schneider L, et al. Spezielles Rehabilitationskonzept
41	449	Wirbelsäulendeformitäten. Eine Leitlinie der Sektion Rehabilitation und Physikalische
42	450	Medizin der DGOOC von Orthopäden für Orthopäden AWMF online 2012
43	451	20. Guidetti L, Bonavolonta V, Tito A, et al. Intra- and interday reliability of spine
44	452	rasterstereography. BioMed research international 2013;2013:745480. doi:
45	453	10.1155/2013/745480 [published Online First: 2013/07/03]
46	454	21. Schroeder J, Reer R, Braumann KM. Video raster stereography back shape reconstruction:
47	455	a reliability study for sagittal, frontal, and transversal plane parameters. European
48	456	spine journal : official publication of the European Spine Society, the European
49	457	Spinal Deformity Society, and the European Section of the Cervical Spine Research
50 51	458	Society 2015;24(2):262-9. doi: 10.1007/s00586-014-3664-5 [published Online First:
51 52	459	2014/11/27]
52 53	460	22. Park SM, Ahn SH, Lee AY, et al. Raster-stereographic evaluation of the effects of
55	461	biomechanical foot orthoses in patients with scoliosis. Journal of physical therapy
55	462	science 2016;28(7):1968-71. doi: 10.1589/jpts.28.1968 [published Online First:
56	463	2016/08/12]
57		
58		
59		

1		
2	161	22 Oblandarf D. Mit Einlagaachlan die Kömenstetilt vanhaaren Eutwarte Outbangedien
3	464	23. Ohlendorf D. Mit Einlegesohlen die Körperstatik verbessern. <i>Extracta Orthopaedica</i>
4	465	2010;1(8-10) 24. Ohlenderf D. Methoden und Mittel zur Verbessemme des statischen und demonischen
5 6	466 467	24. Ohlendorf D. Methoden und Mittel zur Verbesserung des statischen und dynamischen
0 7		Muskelverhaltens bei haltungsbedingten Beschwerden - ein trainings- und
8	468	bewegungswissenschaftlicher Vergleich zwischen sensomotorischen,
9	469	haltungsverbessernden Einlegesohlen und gesundheitsorientiertem, rehabilitativem
10	470	Muskel-aufbautraining. Göttingen: Dissertation 2008.
11	471	25. Anwer S, Alghadir A, Abu Shaphe M, et al. Effects of Exercise on Spinal Deformities and
12	472	Quality of Life in Patients with Adolescent Idiopathic Scoliosis. BioMed research
13	473	international 2015;2015:123848. doi: 10.1155/2015/123848 [published Online First:
14	474	2015/11/20]
15	475	26. Bazzocchi A, Ponti F, Diano D, et al. Trabecular bone score in healthy ageing. The British
16	476	journal of radiology 2015;88(1052):20140865. doi: 10.1259/bjr.20140865 [published
17	477	Online First: 2015/07/08]
18	478	27. Ohlendorf D, Adjami F, Scharnweber B, et al. Standard values of the upper body posture
19	479	in male adults. Advances in Clinical and Experimental Medicine 2017; accepted for
20	480	publication
21	481	28. Abubaker AO, Raslan WF, Sotereanos GC. Estrogen and progesterone receptors in
22	482	temporomandibular joint discs of symptomatic and asymptomatic persons: a
23	483	preliminary study. Journal of oral and maxillofacial surgery : official journal of the
24 25	484	American Association of Oral and Maxillofacial Surgeons 1993;51(10):1096-100.
25	485	[published Online First: 1993/10/01]
20	486	29. Bush FM, Harkins SW, Harrington WG, et al. Analysis of gender effects on pain
28	487	perception and symptom presentation in temporomandibular pain. Pain
29	488	1993;53(1):73-80. [published Online First: 1993/04/01]
30	489	30. Conti PC, Ferreira PM, Pegoraro LF, et al. A cross-sectional study of prevalence and
31	490	etiology of signs and symptoms of temporomandibular disorders in high school and
32	491	university students. Journal of orofacial pain 1996;10(3):254-62. [published Online
33	492	First: 1996/07/01]
34	493	31. Nordstrom G, Eriksson S. Longitudinal changes in craniomandibular dysfunction in an
35	494	elderly population in northern Sweden. Acta odontologica Scandinavica
36	495	1994;52(5):271-9. [published Online First: 1994/10/01]
37	496	32. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO
38	497	consultation. , 2000:894: p. i-xii, 1-253.
39	498	33. Kopp S. Okklusale und klinisch funktionelle Befunde im cranio- mandibulären System bei
40	499	Kindern und Jugendlichen. Jena: Medizinische Habilitation 2005.
41 42	500	34. Mensink GBM, Schienkewitz A, Haftenberger M, et al. Übergewicht und Adipositas in
42 43	501	Deutschland. Bundesgesundheitsblatt 2013;56:786-94.
44	502	35. Bundesamt S. Mikrozensus - Fragen zur Gesundheit - Körpermaße der Bevölkerung
45	503	Wiesbaden2011 [cited 2015 12.11.]. Available from:
46	504	https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustan
47	505	d/Koerpermasse5239003099004.pdf? blob=publicationFile.
48	506	36. Helmert U, Strube H. Die Entwicklung der Adipositas in Deutschland im Zeitraum von
49	507	1985 bis 2002. <i>Gesundheitswesen</i> 2004;66(07):409-15. doi: 10.1055/s-2004-813324
50	508	37. Fischer K. Rechts-Links-Probleme in Sport und Training. Studien zur angewandten
51	509	Lateralitätsforschung. Schorndorf: Hofmann Verlag. 1988.
52	510	38. Weineck J. Sportbiologie: Spitta 2004.
53	511	39. Liu B, Wu B, Van Hoof T, et al. Are the standard parameters of cervical spine alignment
54	512	and range of motion related to age, sex, and cervical disc degeneration? <i>Journal of</i>
55	512	neurosurgery Spine 2015;23(3):274-9. doi: 10.3171/2015.1.spine14489 [published
56 57	513	Online First: 2015/06/20]
57 58	514	Omme i not. 2010/00/20]
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2								
3	515	40. Kienbacher T, Paul B, Habenicht R, et al. Age and gender related neuromuscular changes						
4	516	in trunk flexion-extension. Journal of neuroengineering and rehabilitation 2015;12:3.						
5	517	doi: 10.1186/1743-0003-12-3 [published Online First: 2015/01/09]						
6	518	41. Kienbacher T, Fehrmann E, Habenicht R, et al. Age and gender related neuromuscular						
7	519	pattern during trunk flexion-extension in chronic low back pain patients. <i>Journal of</i>						
8								
9	520	neuroengineering and rehabilitation 2016;13:16. doi: 10.1186/s12984-016-0121-1						
9 10	521	[published Online First: 2016/02/21]						
10	522	42. Kudwa AE, Bodo C, Gustafsson JA, et al. A previously uncharacterized role for estrogen						
12	523	receptor beta: defeminization of male brain and behavior. Proceedings of the National						
	524	Academy of Sciences of the United States of America 2005;102(12):4608-12. doi:						
13	525	10.1073/pnas.0500752102 [published Online First: 2005/03/12]						
14	526	43. Phoenix CH, Goy RW, Gerall AA, et al. Organizing action of prenatally administered						
15	520 527	testosterone propionate on the tissues mediating mating behavior in the female guinea						
16		pig. <i>Endocrinology</i> 1959;65:369-82. doi: 10.1210/endo-65-3-369 [published Online						
17	528							
18	529	First: 1959/09/01]						
19	530	44. Asamoah V, Mellerowicz H, Venus J, et al. [Measuring the surface of the back. Value in						
20	531	diagnosis of spinal diseases]. Der Orthopade 2000;29(6):480-9. [published Online						
21	532	First: 2000/08/10]						
22	533	45. Diers H. Optische Wirbelsäulen- und Haltungsvermessung. Orthopädietechnik						
23	534	2008;38:479-84.						
24	535	46. Drerup B. Improvements in measuring vertebral rotation from the projections of the						
25	536	pedicles. Journal of biomechanics 1985;18(5):369-78. [published Online First:						
26	537	1985/01/01]						
27								
28	538	47. Drerup B, Hierholzer E. Objective determination of anatomical landmarks on the body						
29	539	surface: measurement of the vertebra prominens from surface curvature. Journal of						
30	540	biomechanics 1985;18(6):467-74. [published Online First: 1985/01/01]						
31	541	48. Drerup B, Hierholzer E. Automatic localization of anatomical landmarks on the back						
32	542	surface and construction of a body-fixed coordinate system. Journal of biomechanics						
33	543	1987;20(10):961-70. [published Online First: 1987/01/01]						
34	544	49. Hierholzer E. Objektive Analyse der Rückenform von Skoliosepatienten. Stuttgart: Gustav						
35	545	Fischer Verlag 1993.						
36	546	50. Hübner J. Handbook Formetric III. Schlangenbad: Diers International GmbH 2007.						
37	547	51. Ohlendorf D, Mickel C, Filmann N, et al. Standard values of the upper body posture and						
38								
39	548	postural control: a study protocol. J Occup Med Toxicol 2016;11(34) doi: doi:						
40	549	10.1186/s12995-016-0122-9						
41	550							
42								
43	551							
44								
45	552	Tables						
46								
47								
48	552							
49	553							
50								
51	554	Tab. 1 Spine, shoulder and pelvis parameter: mean value, median, tolerance regions (upper and lower limit),						
52	555	confidence interval (left and right limit). Italic data are non-parametrical values.						
53		Mean value/ tolerance range tolerance range confidence interval confidence interval						
55 54		median lower limit upper limit left limit right limit						
54 55		Spine parameter Trunk length D (mm) 461.31 412.95 509.67 456.64 465.99						
		Trunk length S (mm) 509.52 458.88 560.15 504.62 514.41						
56 57		Sagittal trunk decline (°) -3.31 -8.12 1.5 -3.78 -2.85 Exercisit terral decline (°) -0.42 -0.42 -0.67 -0.67						
57 59		Frontal trunk decline (°) -0.43 -2.91 2.06 -0.67 -0.18						
58								

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	
21 22 23	556 557
24 25	558
26 27	559
28 29 30	560
31 32 33 34 35 36 37 38 39 40 41	561 562 563 564 565 566 567 568
42 43	569
44 45	570
46 47 48	571
49 50	572
51 52 53 54 55	573


60

Axis decline (°)	0.21	-4.45	4.86	-0.25	0.66
Thoracic bending angle (°)	13.9	6.49	21.31	13.19	14.62
Lumbar bending angle (°)	13.17	7.83	23.06	11.9	14.25
Standard deviation lateral deviation					
(mm)	3.92	0.5	7.33	3.59	4.25
Maximal lateral deviation (mm)	-5.35	-12.8	12.38	-5.76	-0.89
Standard deviation rotation (°)	4.66	2.04	12.92	4.18	5.29
Maximal rotation (°)	9.2	-9	37.48	8	10.76
Kyphosis angle (°)	51.66	27.91	74.42	49.37	53.96
Lordosis angle (°)	46.29	21.66	70.92	43.91	48.67
		Shoulder pa	arameter		
Scapular distance (mm)	150.56	110.51	190.6	146.68	154.43
Scapular height (°)	-1.28	-22.36	19.81	-3.32	0.76
Scapular rotation (°)	3.06	-3.26	9.37	2.44	3.67
Scapular angle left (°)	28.54	16.49	62.74	27.36	30.74
Scapula angle right (°)	31.17	10.61	73	27.2	34.62
	•	Pelvis par	ameter	•	
Pelvis distance (mm)	99.56	74.76	124.37	97.17	101.96
Pelvis height (°)	0.76	-4.29	5.81	0.28	1.25
Pelvis height (mm)	1.34	-7.33	10.01	0.5	2.18
Pelvis torsion (°)	0.24	-6.89	7.36	-0.45	0.93
Pelvis rotation (°)	2.2	-5.72	7.34	1.49	2.76
		2			
igure legend					

Figure legend

Fig. 1: a) back scanner MiniRot Combi (ABW GmbH, Frickenhausen / Germany), b) threedimensional phase picture of the back c) marker position on the back: A: Vertebra prominens (7th cervical vertebra), B: Lower scapular angle left, C: Lower Lower scapular angle right, D: Spina Iliaca Posterior Superior (SIPS) left, e: Spina Iliaca Posterior Superior (SIPS) right, F: Sacrum-point (cranial beginning of the gluteal cleft).

56	7		
56	8		
56	9		
57)		
57	1		
57	2		
57	3		

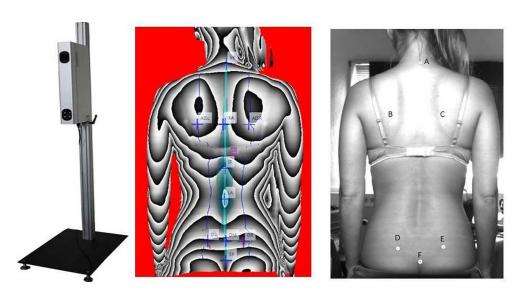


Fig. 1: a) back scanner MiniRot Combi (ABW GmbH, Frickenhausen / Germany), b) three-dimensional phase picture of the back c) marker position on the back: A: Vertebra prominens (7th cervical vertebra), B: Lower scapular angle left, C : Lower Lower scapular angle right, D: Spina Iliaca Posterior Superior (SIPS) left, e: Spina Iliaca Posterior Superior (SIPS) right, F: Sacrum-point (cranial beginning of the gluteal cleft).

199x103mm (300 x 300 DPI)

BMJ Open

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation	Pag
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	4,6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-	6-8
		up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe	6
		methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and unexposed	n/a
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give	7-8
		diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	6-8
measurement		Describe comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	n/a
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which	7-8
(groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	n/a
		(c) Explain how missing data were addressed	n/a
		(d) If applicable, explain how loss to follow-up was addressed	n/a
		(e) Describe any sensitivity analyses	n/a
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for	n/a
		eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	n/a
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	8-9
Descriptive data	11	exposures and potential confounders	0)
		(b) Indicate number of participants with missing data for each variable of interest	n/a
		(c) Summarise follow-up time (eg, average and total amount)	n/a
Outcome data	15*	Report numbers of outcome events or summary measures over time	9-1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg,	9-1 9-1
Main results	10	(a) Give unadjusted estimates and, if appreadic, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-1
			0.1
		(b) Report category boundaries when continuous variables were categorized	9-1
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	n/a
041	17	period	0
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	9
Discussion	10		1.1
Key results	18	Summarise key results with reference to study objectives	11-
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	14
		both direction and magnitude of any potential bias	

		analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14-15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	2
		original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

n/a = not applicable

Since the study investigated healthy young women in an observational study these parts of the STROBE-criteria are not applicable.

BMJ Open

Standard reference values of the upper body posture in healthy young female adults in Germany: an observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022236.R2
Article Type:	Research
Date Submitted by the Author:	12-Jun-2018
Complete List of Authors:	Ohlendorf, Daniela; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine; Fisch, Vanessa; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine Doerry, Charlotte; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine Schamberger, Sebastian; School of dentistry, Department of Orthodontocs Oremek, Gerhard; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine Ackermann, Hanns; Goethe University Hospital, Institute of Biostatistics and Mathematical Modeling Schulze, Johannes; Goethe Universität Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Rehabilitation medicine
Keywords:	body posture, back scan, standard value, female subjects

SCHOLARONE[™] Manuscripts

1		
2	1	Standard reference values of the unner hade negture in healthy young famale edults in
3	1	Standard reference values of the upper body posture in healthy young female adults in
4	r	Cormony: on observational study
5	2	Germany: an observational study
6	2	
7	3	
8 9		
9 10	4	Ohlendorf D ¹ *, Fisch V ¹ , Doerry C ¹ , Schamberger S ² , Oremek G ¹ , Ackermann H ³ , Schulze J ¹
10	5	
12		1
13	6	¹ Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-
14	7	University Frankfurt/Main, Theodor-Stern-Kai 7, Building 9A, 60590 Frankfurt/Main,
15	8	Germany
16	9	
17	10	² School of dentistry, Department of Orthodontics, Goethe-University Frankfurt/Main,
18	11	Theodor-Stern-Kai 7, Building 29, 60596 Frankfurt/Main, Germany
19	12	
20	13	³ Institute of Biostatistics and Mathematical Modeling, Goethe-University, Frankfurt/Main,
21	14	Theodor-Stern-Kai 7, Building 11A, 60596 Frankfurt/Main, Germany
22	15	
23	16	
24		
25	17	* Corresponding author
26		
27	18	E-mail: ohlendorf@med.uni-frankfurt.de
28		
29 30	19	
30		
32	20	
33		
34	21	
35		
36	22	
37		
38	23	
39		
40	24	
41		
42	25	
43		
44	26	
45		
46 47	27	
47		
49	28	
50		
51	29	
52		
53	30	
54		
55	31	
56		
57	32	
58		
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		i or peer review only intep.//onljopen.onlj.com/site/about/guidennes.xittim

33	
34	Abstract
35	Objective: Classifications of posture deviations are only possible compared to standard
36	values. However, standard values have been published for healthy male adults but not for
37	female adults.
38	Design: Observational study.
39	Setting: Institute of Occupational Medicine, Social Medicine and Environmental Medicine,
40	Goethe-University Frankfurt/Main.
41	Participants : 106 female healthy volunteers (21 - 30 years old; 25.1 ± 2.7 years) were
42	included. Their body weight ranged from 46-106 kg (60.3 ± 7.9 kg), the heights from 1.53 to
43	1.82 m (1.69 \pm 0.06 m), and the body mass index from 16.9 kg/m ² to 37.6 kg/m ² (21.1 \pm 2.6
44	kg/m²).
45	Outcome measures: A three-dimensional back scan was performed to measure the upper
46	back posture in habitual standing. The tolerance ranges and confidence interval were
47	calculated. Group differences were tested by the Wilcoxon-Mann-Whitney-U-test.
48	Results: In normal posture the spinal column was marginally twisted to the left and the
49	vertebrae were marginally rotated to the right. The kyphosis angle is larger than the lumbar
50	angle. Consequently, a more kyphotic posture is observed in the sagittal plane. The habitual
51	posture is slightly scoliotic with a rotational component (scapular depression right, right
52	scapula marginally more dorsally, high state of pelvic right, iliac right further rotated
53	anteriorly).
54	Conclusions: Healthy young women have an almost ideally balanced posture with minimal
55	ventral body inclination and a marginal scoliotic deviation. Compared to young males,
56	women show only marginal differences in the upper body posture. These values allow a
57	comparison to other studies, both for control and patient data, and may serve as guideline in
58	both clinical practice and scientific studies.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

58 59

60

BMJ Open

2 3	59	
4 5 6	60	Key words: body posture, back scan, standard value, female subjects
7 8 9	61	Strengths and limitations of this study
10 11	62	• Strength: large number of healthy young female participants aged 21-30 years.
12 13	63	• Strength: Videoraster-stereografic quantitative analysis of the upper back posture.
14 15	64	• Limitation: measurement of the upper body posture only in habitual standing position,
16 17 18	65	not while moving.
19 20	66	• Limitation: external influences (occupational environment) were not assessed which
21 22	67	might influence the body posture.
23 24	68	
25 26	69	Introduction
27 28	70	Various subjective and objective methods to quantify and analyze the body posture have been
29 30 31	71	used, especially for the spinal posture. All prior methods tried to evaluate deformity in the
32 33	72	diagnosis and treatment of spinal diseases like scoliosis ¹⁻⁴ .
34 35	73	Quantitative analytical methods enable the diagnosis of spinal curvature deviations and/or
36 37	74	control the therapeutic effects. The methods vary by their technical complexity and clinical
38 39	75	applicability. Roentgenograms or computed tomography scans are frequently used for bone
40 41	76	structure deformities, while ultrasound, inclinometer, thermal infared imaging, scoliometer or
42 43	77	video raster stereography are established postural measurement methods ⁵⁻¹⁰ . X-ray based
44 45 46	78	methods despite their mutagenic potential still are the gold standard in diagnosis and follow-
47 48	79	up of body posture deviations ¹¹⁻¹⁴ .
49 50	80	Video raster stereography has recently been evaluated as an alternative method to quantify
51 52	81	vertebral column posture and its deformities 7 8 15-18. Guidelines for orthopedic rehabilitation
53 54	82	in Germany also recommend a follow-up check but do not specify the methods ¹⁹ . The three-
55 56 57	83	dimensional back scan measures the body geometry between the 7th cervical vertebrum and
-		

the gluteal cleft, it has high intraclass correlation coefficients and good Cronbach's Alpha
values for intra- and interday reliability for all spine parameters ^{17 18 20 21}. Furthermore, inter
tester reliability is high ¹⁷.

A three-dimensional surface contour image of the back appears suitable to determine vertebral column deformities, but also to quantify the effect of e.g. orthopedic shoe insoles on the body posture ^{22 23}. In addition, 3D images can quantify muscular imbalances (kyphotic / lordotic deviations, differences in waist contours, rotation in the shoulder or pelvis) and control the therapeutic success of muscle training in primary, secondary and tertiary prevention ^{24 25}.

Due to the changing workplace environment with its increase in digital work, ever more employees work in a sitting position. Both in the workplace and in the household, this leads to a steady decrease of physical stress on the body. This lack of exercise may result in the development of muscular imbalances and increasing numbers of persons with back pain, currently estimated at 20 million people for Germany ²⁰. Back pain complaints due to musculoskeletal disorders can lead to disability or early retirement. Even more frequently, rehabilitation is required to restore the capacity to work in their original occupation.

Early signs of postural disorder e.g. musculoskeletal imbalances should be detected when subjective symptoms have developed, and treated appropriately; in order to assess both diagnosis and treatment effects, quantitative classification criteria are necessary for deviations from normal posture. These deviations should be quantified, e.g. in the form of (parametric or non-parametric) percentiles, similar to the Z- or T-scores of bone density ²⁶. However, no standard or reference values for body posture currently are published for healthy female subjects; reference values of the upper body posture for healthy men have been published only recently ²⁷. Also, classifications of the severity of posture deviations are only possible when deviations from standard or reference values are quantified.

BMJ Open

This study measures the upper body posture in healthy women aged 21 - 30 years by a three dimensional back scan to provide standard values for the posture of young healthy women. These values and their variances define the normal upper body posture and its variability and may be used to categorize the results of other (orthopaedic) studies. Investigating a homogeneous group of subjects eliminate constitutional, habitual and degenerative changes that could increase both tolerance ranges and confidence intervals ²⁸⁻³¹.

117 Methods

118 Subjects and Public Involvement

119 106 female volunteers between 21 and 30 years (25.1 ± 2.7 years) participated in this study. 120 Their body weight ranged from 46-106 kg (60.3 ± 7.9 kg), the height from 1.53 to 1.82 m 121 (1.69 ± 0.06 m), and the body mass index ranged from 16.9 kg/m² to 37.6 kg/m² (21.1 ± 2.6 122 kg/m²). 6% of the participants were underweight (BMI < 18.5 kg/m²), 87.8% of the 123 participants had a normal BMI (18.5 to 24.9 kg/m²), 4.7% were overweight (BMI 25 to 29.9 124 kg/m²) and 0.9% had obesity I° (BMI 30 - 34.9 kg/m²) according to the WHO weight 125 classification ³².

All subjects were healthy and free of musculoskeletal complaints and therefore no patient were involved. Using a questionnaire temporomandibular system disorders were excluded ³³; 95.3% of the subjects reported to be right-handed and 4.7% were left-handed. 72.6% of the participants were students, 27.4% employees in different occupations (dentists, physicians, teachers, office workers).

No patients were involved. All volunteers were healthy (no patients involved) and informed
about the study design before giving written informed consent. The study was approved by
the local medical ethics committee of the medical faculty (Goethe-University Frankfurt; No.
303/16).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

125	
135	
136	Measurement system
137	A three-dimensional back scan was performed to quantify the upper back posture while
138	standing, using the back scan system "MiniRot Kombi" (ABW GmbH,
139	Frickenhausen/Germany).
140	In this system a projector forms a stripe pattern on the persons bare back; this stripe pattern is
141	captured by a LCD camera from a defined angle. One measurement lasts approx. 2 seconds.
142	In this way the back surface is represented as a phase picture which is analyzed by an
143	integrated software program reconstructing the 3D image. For calibration of the phase
144	pictures all test persons are marked at six defined, standardized anatomical locations (Fig. 1)
145	indicating underlying bone structures. These allow the calculation of three-dimensional
146	parameters (Fig. 1) with information about rotational movements in the shoulder and pelvic
147	area and the shape of the spine (lordotic, kyphotic and/or scoliotic posture). Artifacts may be
148	caused by different marker placements or movements during the scan, i.e. the projection of
149	the stripe pattern on the back, and thus have to be avoided. To measure the body posture,
150	three repeat measurements are taken within 2 minutes.
151	
152	Fig. 1
153	
154	
155	During a movement sequence 15 photos were taken. The maximum picture frequency of the
156	MiniRot Kombi system is more than 50 frames/sec with a spatial resolution of 1/100 mm. The
157	calculation of the three-dimensional coordinates of the back surface is performed by
158	triangulation. The system error is specified as <1 mm (manufacturer information), the
159	reproducibility is limited by the calculations of the upper body posture defined by markers
160	directly on the skin (<0.5 mm).

2 3	161	
4 5	162	Body scans
6 7	163	The subjects stood barefoot in their habitual body and jaw posture about 90 cm in front of the
8 9 10	164	back scan apparatus. The arms were hanging loosely; the subjects looked horizontally fixing
11 12	165	the opposite wall.
13 14	166	
15 16	167	Evaluation Parameter
17 18	168	From the three-dimensional back scan three components were quantified: spinal area (markers
19 20	169	on C7 and L5), shoulder area (markers at the top of the left/right scapula) and pelvis area
21 22 23	170	(markers on the left/right spina iliaca posterior superior [SIPS]). The marker positions are
23 24 25	171	shown in Figure 1, the spine parameters are selected and calculated as described in ²⁷ .
26 27	172	
28 29	173	Statistical evaluation
30 31	174	All calculations were carried out using BIAS (Version 11.0) (Epsilon Verlag, Darmstadt,
32 33	175	Germany). Parameter distribution was tested by the Kolmogorov-Smirnov-Test indicating
34 35 36	176	only partially normal distribution; parametrical or non-parametrical tolerance regions were
37 38	177	calculated as defined by the upper and lower limit for 95% of all values (+-2 SD values),
39 40	178	being found in $> 95\%$ of the examined subjects. Values within this range are considered
41 42	179	"normal".
43 44	180	Furthermore, the two-sided 95% confidence interval was calculated and indicated the range of
45 46	181	the mean or median value - depending on the distribution quality - and showed the
47 48 40	182	"accuracy" of these values. For group differences, the t-test or the Wilcoxon-Mann-Whitney-
49 50 51	183	U-test was used.
52 53	184	
54 55	185	
56 57	186	Results
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Only the constitutional parameter "body height" was normally distributed, whereas "body weight" and "BMI" were not. The median body weight was 60 kg (tolerance range 49.0 to 77.28 kg; confidence interval 57 to 62 kg). For the BMI a median of 20.7 kg/m² was calculated, with a corresponding tolerance range from 17.99 to 27.2 kg/m^2 and a confidence interval from 20.3 to 21.3 kg/m². For the body height a mean value of 1.69 m was calculated with a tolerance range between 1.57 and 1.82 m and a confidence interval of 1.68 to 1.70 m. Handedness as a relevant parameter had been refused in advance by the t-test and the Wilcoxon-Mann-Whitney-U-test. All parameters were not significantly different ($p \ge 0.05$). From the back scan values the posture of an average healthy female person was calculated (tab. 1). On average the subjects are standing slightly inclined in the anterior line of 3.31° (tolerance range 8.12° ventrally to 1.50° dorsally; confidence range 3.78° to the left to 2.85° to the right).

Laterally, a minimal deviation of the frontal trunk of 0.43° to the left was seen, the confidence interval (0.18° right – 0.67° left) included the perpendicular position; the tolerance interval ranged from 2.91° to the left to 2.06° to the right. In compensation the axial deviation (inclination between upper body and pelvis) was slightly tilted to the right (0.21°) with a tolerance range of ±4.5° and a confidence interval of <1° (0.25° left and 0.66° right). This implied that there are no obvious differences in the inclination between the upper and lower body.

The angle of the thoracic bend was calculated from the distance between the vertebra prominens (VP) and the kyphosis apex and indicated the deviation from the perpendicular line. The median angle was 13.9° confirming the expected thoracic kyphosis. Here, wider variations were seen with a tolerance range from 6.49° to 21.31°, and a confidence interval varying from 13.19° to 14.62°. The lumbar bending angle describes the deviation of the distance between the lordosis and kyphosis apex. As compared to the thoracic bend, similar variations of the tolerance value and the confidence intervals were seen in the lumbar region,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	
60	

with a bending angle of 13.17° (tolerance value 7.83° to 23.06°; confidence interval 11.90° to
14.25°).

Measurement of the lateral deviation showed a right-sided inclination of the median line by 3.92° when connecting the points VP and the center of the pelvic markers. Both the tolerance range (0.50° and 7.33° respectively), as well as the confidence interval (3.59°/4.25°) indicated a right-sided deviation.

The rotation of the spinal column is a marker of the spinal column torsion and can be measured from the spinal processes. In our analysis, a negative value indicates a rotation to the left and a positive value to the right. The median rotation was 4.66°, with a tolerance range between 2.04° and 12.92°, and a confidence interval between 4.18° and 5.29°. Consequently, on average a right sided spinal rotation was found.

The kyphosis and lordosis angle have a mean or a median of 51.66° and 46.29° , with a substantial tolerance range of approximately $\pm 25^{\circ}$ and a confidence interval of about $\pm 2^{\circ}$.

226 Shoulder parameters are valid indicators for upper body posture (tab. 1), too. The lower 227 scapular spinae were measured by fixed markers; the interscapular distance as indicator of the 228 variability of the upper body was 150.56 mm, with a tolerance range of 110.51 – 190.60 mm, 229 and a confidence limit of 146.68 - 154.43 mm. The scapular height (deviation from the 230 horizontal line) refers to a slightly lower left shoulder blade (by 1.28°), whereas the upper and lower limit of the range markers were -22.36° and 19.81°, so that the left shoulder blade is 231 232 more caudally in the lower limit and more cranially in the upper limit. The same variation is 233 shown by the data of the confidence interval, with values of -3.32 (left scapula higher) -0.76234 ° (right scapula higher).

The shoulder markers illustrated a right shoulder being slightly further dorsal by 3.06°, with a tolerance range of -3.26° to 9.37° and a confidence interval of 2.44° to 3.67°. Only minor differences were seen between the left and right shoulder blade angles, with the right shoulder 2.6° (median) more caudally.

Table 1 also compiles the pelvic parameters. The distance for the spina iliaca posterior superior markers refers to the pelvic width, which on average is 99.56 mm (tolerance range 74.76 to 122.37 mm, confidence interval 97.17 and 101.96 mm).

The deviation of the pelvic height (in degrees) from the horizontal plane is very low. Both differences in pelvic height (in mm) and deviations from the horizontal line (in degrees) indicate a slightly higher position of the right pelvis by approx. 1° or 1 mm (Tab. 4). The same applies to the pelvic torsion and rotation, so that the right iliac marker is rotated posteriorly and simultaneously tilted further ventral (mean pelvis torsion: 0.24°; mean pelvic

rotation: 2.2°).

Tab. 1

Discussion

This paper presents normal values and normal ranges including tolerance and confidence intervals for the body posture of healthy young females. Height, weight and body mass index (BMI) of the participants are comparable to average young German female persons ^{34 35}. as measured by Mensink et al.³⁴ in over 7000 adults from the general German population. The age-matched female group from Mensink et al. ³⁴ was 3.20 cm smaller, 4.92 kg heavier and thus also had a slightly higher BMI by 2.58 kg/m² as compared to our values. Similar findings have been reported by the German Federal Statistical Office in 2011 for 2009³⁵, which correlate even better to our results.³⁴. Data for height, weight and BMI, obtained to assess the prevalence of obesity in Germany between 1985 and 2002³⁶ in 1504 female volunteers (25-29 years) show that the subjects in our study are marginal taller, lighter and have a lower BMI.

Page 11 of 22

BMJ Open

In this context, however, it should be borne in mind that this study mainly involved students and university employees with the same lifestyle, with values slightly differing from the general population, and a likely overrepresentation of participants with a high social status. 87.8% of the participants in this study have a normal BMI, 22.3% more than Mensink et al.³⁴ found for 18-29 year old women. The relation of overweight with social status is well known; this confounder is also seen by the data from Mensink et al. 34 : 36.9% of women with a low social status were overweight, 16.4% obese as compared to 18.7% overweight and 4.4% obese women with a high social status. Helmert et al.³⁶ calculated similar data using the equivalent household income; thus the different BMI values likely are explained by the participant selection preferentially from the students of the School of Dentistry in our university, with a high social status.

The back scan values indicate a characteristic posture of young females. Only small deviations from an ideal perpendicular position are noted; the ventral tilt of the trunk, the lateral deviation and rotation of the spine, shoulder and pelvis were very small. The posture is marginally scoliotic (the ventral trunk tilts marginally to the left side, the scapula is higher on the left side, the pelvis slightly elevated on the right side) with an expected rotatory component (a lumbar right tilt to compensate for the left tilted ventral trunk, a slight twist of the processus spinosus to the right, the right scapula marginally more dorsal, the SIPS of the right iliac bone rotated anteriorly) (Tab. 1). The spinal curve, defined by the thoracic and lumbar bending angle and the kyphosis and lordosis angle, indicates that the angle in the thoracic spine area is marginally larger than that in the lumbar region (Tab. 1), and a slightly kyphotic posture in the sagittal plane can be observed.

Handedness has no influence on these parameters, which should be expected from the observed symmetry. However, since 95.3% of the participants were right-handed no firm conclusions can be drawn for left handed people. Also, whether an influence of the dominant leg $\frac{37}{28}$ exists on the posture cannot be answered by our results. Appropriate test methods for the determination of these components should be used in further studies.

A gender comparison ²⁷ shows only marginal differences in the upper body posture. Both studies used the same measurement system and data evaluation and thus allow a direct comparison of the values. Although the female upper body appears narrower and more delicate due to the weaker muscular shoulder girdle and the smaller chest, the ratio between chest and shoulder width is the same ³⁸.

The anatomical and constitutional differences are confirmed by the present data. In terms of the shoulder width, the fixed scapular landmarks indicate a larger distance of 2.9 cm in men than in women (Table 1). In contrast, men have a smaller pelvis calculated from the SIPS markers (6 mm difference) which results in a wider shoulder than pelvis distance by 8.5 cm in men, but only 5.0 cm in women, confirming and quantifying the well-known gender-specific anatomical differences.

In addition to these constitutional differences, differences in the lordotic and kyphotic angles are calculated from the spinal column parameters. Thus, women have an average kyphotic angle of 52°, men of 46°; the lordosis angle is 46° for women and 31° for men. Thus, the spinal curvature in the thoracic and lumbar spine area is more pronounced in women than in men. The difference in the lordosis angle between the sexes is about 15° and in the case of the kyphotic angle with approximately 6°, however, men have an approximately 15° greater thoracic kyphosis angle than lumbar lordosis angle in contrast to a 6° difference of women. Consequently, the kyphosis angle is larger than the lordosis angle in both sexes, women are in a more balanced posture due to the smaller difference between the two angles.

Liu et al. ³⁹ tried to define standard parameters of cervical spine alignment and range of motion related to age, sex, and cervical disc. These results underline the more pronounced thoracal kyphosis in women. The greater lumbar lordosis of the females can be traced back to sex differences in the pelvic shape: The wider pelvic blades of the female pelvis have a larger angle between the pubic branches, a larger transverse pelvic diameter and are lower. Thus, the pronounced female pelvic tilt leads to a larger lumbar lordosis. Consequently, a larger lumbar

BMJ Open

lordosis causes a thoracal hyperkyphosis. These (different) compensations are seen in the pelvic position in both sexes 38 . This position of the lumbar spine also affects the extent of the movement in the flexion-extension testing of the trunk. The total task-specific hip motion ranges as measured from erect standing to the maximum flection were higher in females than in males 40 .

Furthermore, the same authors report that female chronic low back pain patients had higher regional hip and trunk motion ranges than male patients ⁴¹. Why women have a larger lordosis angle currently is unknown. An extensive literature search in PubMED and other data bases did not retrieve any published hypothesis. An explanation of physiological differences, however, has been forwarded to comparable sex differences in the pelvic anatomy for rodents and has been related to sexual behavior in these animals. Guinea pigs show hormonally controlled, gender related reproductive behaviour: male guinea pigs show a distinct sexual approach consisting of body raising, intromission and ejaculation, and female guinea pigs respond with a corresponding conceiving position of a predominantly lordotic lumbar posture ^{42 43}. At least for this species the observed anatomical differences may translate directly into an apt reproductive behaviour. In both species, the pelvis itself has the same position in both sexes in a relaxed posture, and is positioned almost horizontally.

No similar explanation exists for differences in the shoulder region parameters either; the
right shoulder is positioned more caudal in both sexes, but women have "deeper" shoulders
(increased scapular angle right/left).

All other positional parameters are nearly identical between men and women, with thedifferences being smaller than the margin of error, and likely have no clinical relevance.

The three-dimensional back scan is a fast, non-contact method to quantify the body posture and is suitable for measuring body postures in both healthy persons and patients. It can quantify pathologic positions like scoliosis, kyphosis, leg length differences and functional movement disorders, as well as improvements by medical treatment. The chances and

limitations of the measurement system and procedure 44-50 has already been discussed by Ohlendorf et al. ^{27 51}. In the future, this method may allow to grade postural deviations, e.g. by a grading system using the tolerance ranges for men and women, as has been done for bone densitometry in the t- and z-scales 26 .

Conclusion

Video raster stereography is a method to quantitatively measure the human three-dimensional back surface. Healthy young women have an almost ideally balanced posture with minimal ventral body inclination and a marginal scoliotic deviation. In comparison to men women have only small differences in upper body posture, with nearly identical normal values. These values allow a quantitative comparison with other studies for control and patient data, and may serve as an orientation in both clinical practice and scientific studies. Further studies could expand this method to age-related changes in body posture, quantitative assessments of postural changes in relevant diseases, and improvements by therapeutic interventions.

Acknowledgements

- This article contains parts of the doctoral thesis of Mrs. V. Fisch. 3/

a. contributorship statement

DO, VF, CD, SS, GO and JS made substantial contributions to the conception and design of the manuscript, DO, VF and CD made substantial contributions to the construction of the measurement protocol and HA and DO have been involved in the statistical data analysis. All authors have read and approved the final manuscript.

- b. competing interests
- The authors declare that they have no conflict of interest.
- c. funding

1		
2	370	There is no external funding of the project.
3 4	371	There is no external funding of the project.
5 6	372	d. data sharing statement
7		
8	373	No additional data available.
9 10	374	
11 12	375	References
13 14	376	
15	377	1. Corona J, Sanders JO, Luhmann SJ, et al. Reliability of radiographic measures for infantile
16	378	idiopathic scoliosis. The Journal of bone and joint surgery American volume
17	378	2012;94(12):e86. doi: 10.2106/jbjs.k.00311 [published Online First: 2012/06/22]
18		
19 20	380	2. Langensiepen S, Semler O, Sobottke R, et al. Measuring procedures to determine the Cobb
20	381	angle in idiopathic scoliosis: a systematic review. European spine journal : official
21	382	publication of the European Spine Society, the European Spinal Deformity Society,
22	383	and the European Section of the Cervical Spine Research Society 2013;22(11):2360-
23	384	71. doi: 10.1007/s00586-013-2693-9 [published Online First: 2013/02/28]
24	385	3. Prowse A, Pope R, Gerdhem P, et al. Reliability and validity of inexpensive and easily
25	386	administered anthropometric clinical evaluation methods of postural asymmetry
26	387	measurement in adolescent idiopathic scoliosis: a systematic review. European spine
27	388	journal : official publication of the European Spine Society, the European Spinal
28	389	Deformity Society, and the European Section of the Cervical Spine Research Society
29	390	2016;25(2):450-66. doi: 10.1007/s00586-015-3961-7 [published Online First:
30	391	2015/04/29]
31		
32	392	4. Prowse A, Aslaksen B, Kierkegaard M, et al. Reliability and concurrent validity of postural
33	393	asymmetry measurement in adolescent idiopathic scoliosis. World journal of
34	394	orthopedics 2017;8(1):68-76. doi: 10.5312/wjo.v8.i1.68 [published Online First:
35	395	2017/02/02]
36	396	5. Kuklo TR, Potter BK, Schroeder TM, et al. Comparison of manual and digital
37	397	measurements in adolescent idiopathic scoliosis. Spine 2006;31(11):1240-6. doi:
38	398	10.1097/01.brs.0000217774.13433.a7 [published Online First: 2006/05/12]
39	399	6. Zheng YP, Lee TT, Lai KK, et al. A reliability and validity study for Scolioscan: a
40	400	radiation-free scoliosis assessment system using 3D ultrasound imaging. Scoliosis and
41	401	spinal disorders 2016;11:13. doi: 10.1186/s13013-016-0074-y [published Online
42	402	First: 2016/06/15]
43		
44	403	7. Betsch M, Rapp W, Przibylla A, et al. Determination of the amount of leg length inequality
45	404	that alters spinal posture in healthy subjects using rasterstereography. European spine
46	405	journal : official publication of the European Spine Society, the European Spinal
47	406	Deformity Society, and the European Section of the Cervical Spine Research Society
48	407	2013;22(6):1354-61. doi: 10.1007/s00586-013-2720-x [published Online First:
49	408	2013/03/13]
50	409	8. Drerup B. Rasterstereographic measurement of scoliotic deformity. Scoliosis 2014;9(1):22.
51	410	doi: 10.1186/s13013-014-0022-7 [published Online First: 2014/12/19]
52	411	9. Abate M, Carlo LD, Romualdo SD, et al. Postural adjustment in experimental leg length
53	412	difference evaluated by means of thermal infrared imaging. <i>Physiological</i>
54	413	measurement 2010;31(1):35-43. doi: 10.1088/0967-3334/31/1/003 [published Online
55	413	
56	414	First: 2009/11/27]
57		
58		
59		For poor roution, only, http://hysionen.husi.com/site/shere/suid-live-subtral
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	415	10. Coelho DM, Bonagamba GH, Oliveira AS. Scoliometer measurements of patients with
4	416	idiopathic scoliosis. Brazilian journal of physical therapy 2013;17(2):179-84. doi:
5	417	10.1590/s1413-35552012005000081 [published Online First: 2013/06/20]
6	418	11. Ronckers CM, Land CE, Miller JS, et al. Cancer mortality among women frequently
7	419	exposed to radiographic examinations for spinal disorders. Radiation research
8	420	2010;174(1):83-90. doi: 10.1667/rr2022.1 [published Online First: 2010/08/05]
9	421	12. Levy AR, Goldberg MS, Hanley JA, et al. Projecting the lifetime risk of cancer from
10	422	exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. <i>Health</i>
11	423	<i>physics</i> 1994;66(6):621-33. [published Online First: 1994/06/01]
12	424	13. Nash CL, Jr., Gregg EC, Brown RH, et al. Risks of exposure to X-rays in patients
13	425	undergoing long-term treatment for scoliosis. The Journal of bone and joint surgery
14	426	American volume 1979;61(3):371-4. [published Online First: 1979/04/01]
15	427	14. Goldberg MS, Mayo NE, Levy AR, et al. Adverse reproductive outcomes among women
16	428	exposed to low levels of ionizing radiation from diagnostic radiography for adolescent
17	428 429	
18 19		idiopathic scoliosis. <i>Epidemiology (Cambridge, Mass)</i> 1998;9(3):271-8. [published Online First: 1008/05/16]
20	430	Online First: 1998/05/16]
20	431	15. Betsch M, Wild M, Grosse B, et al. The effect of simulating leg length inequality on
22	432	spinal posture and pelvic position: a dynamic rasterstereographic analysis. European
23	433	spine journal : official publication of the European Spine Society, the European
24	434	Spinal Deformity Society, and the European Section of the Cervical Spine Research
25	435	Society 2012;21(4):691-7. doi: 10.1007/s00586-011-1912-5 [published Online First:
26	436	2011/07/20]
27	437	16. Wild M, Kuhlmann B, Stauffenberg A, et al. Does age affect the response of pelvis and
28	438	spine to simulated leg length discrepancies? A rasterstereographic pilot study.
29	439	European spine journal : official publication of the European Spine Society, the
30	440	European Spinal Deformity Society, and the European Section of the Cervical Spine
31	441	Research Society 2014;23(7):1449-56. doi: 10.1007/s00586-013-3152-3 [published
32	442	Online First: 2014/01/18]
33	443	17. Mohokum M, Mendoza S, Udo W, et al. Reproducibility of rasterstereography for
34	444	kyphotic and lordotic angles, trunk length, and trunk inclination: a reliability study.
35	445	Spine 2010;35(14):1353-8. doi: 10.1097/BRS.0b013e3181cbc157 [published Online
36	446	First: 2010/05/28]
37	447	18. Mohokum M, Schülein S, Skwara A. The Validity of Rasterstereography: A Systematic
38	448	Review. Orthopedic Reviews 2015;7(3):5899. doi: 10.4081/or.2015.5899
39	449	19. Kladny B, Santos Leal E, Schneider L, et al. Spezielles Rehabilitationskonzept
40	450	Wirbelsäulendeformitäten. Eine Leitlinie der Sektion Rehabilitation und Physikalische
41	451	Medizin der DGOOC von Orthopäden für Orthopäden AWMF online 2012
42 43	452	20. Guidetti L, Bonavolonta V, Tito A, et al. Intra- and interday reliability of spine
43 44	453	rasterstereography. <i>BioMed research international</i> 2013;2013:745480. doi:
44	454	10.1155/2013/745480 [published Online First: 2013/07/03]
46	455	21. Schroeder J, Reer R, Braumann KM. Video raster stereography back shape reconstruction:
47	456	a reliability study for sagittal, frontal, and transversal plane parameters. <i>European</i>
48	457	spine journal : official publication of the European Spine Society, the European
49	458	Spinel Deformity Society, and the European Section of the Cervical Spine Research
50	438 459	
51		<i>Society</i> 2015;24(2):262-9. doi: 10.1007/s00586-014-3664-5 [published Online First: 2014/11/07]
52	460	2014/11/27] 22 Dark SM Ahr SH Lee AV et al Degter stores graphic evolution of the effects of
53	461	22. Park SM, Ahn SH, Lee AY, et al. Raster-stereographic evaluation of the effects of
54	462	biomechanical foot orthoses in patients with scoliosis. Journal of physical therapy
55	463	<i>science</i> 2016;28(7):1968-71. doi: 10.1589/jpts.28.1968 [published Online First:
56	464	2016/08/12]
57		
58		
59		

1		
2	165	22 Oblandarf D. Mit Einlagaachlan die Kömenstetile vanhaaren Eutwarte Outbangedien
3	465	23. Ohlendorf D. Mit Einlegesohlen die Körperstatik verbessern. <i>Extracta Orthopaedica</i>
4	466	2010;1(8-10)
5 6	467 468	24. Ohlendorf D. Methoden und Mittel zur Verbesserung des statischen und dynamischen
0 7		Muskelverhaltens bei haltungsbedingten Beschwerden - ein trainings- und
8	469	bewegungswissenschaftlicher Vergleich zwischen sensomotorischen,
9	470	haltungsverbessernden Einlegesohlen und gesundheitsorientiertem, rehabilitativem
10	471	Muskel-aufbautraining. Göttingen: Dissertation 2008.
11	472	25. Anwer S, Alghadir A, Abu Shaphe M, et al. Effects of Exercise on Spinal Deformities and
12	473	Quality of Life in Patients with Adolescent Idiopathic Scoliosis. BioMed research
13	474	international 2015;2015:123848. doi: 10.1155/2015/123848 [published Online First:
14	475	2015/11/20]
15	476	26. Bazzocchi A, Ponti F, Diano D, et al. Trabecular bone score in healthy ageing. The British
16	477	journal of radiology 2015;88(1052):20140865. doi: 10.1259/bjr.20140865 [published
17	478	Online First: 2015/07/08]
18	479	27. Ohlendorf D, Adjami F, Scharnweber B, et al. Standard values of the upper body posture
19	480	in male adults. Advances in Clinical and Experimental Medicine 2017; accepted for
20	481	publication
21	482	28. Abubaker AO, Raslan WF, Sotereanos GC. Estrogen and progesterone receptors in
22	483	temporomandibular joint discs of symptomatic and asymptomatic persons: a
23	484	preliminary study. Journal of oral and maxillofacial surgery : official journal of the
24 25	485	American Association of Oral and Maxillofacial Surgeons 1993;51(10):1096-100.
25	486	[published Online First: 1993/10/01]
20	487	29. Bush FM, Harkins SW, Harrington WG, et al. Analysis of gender effects on pain
28	488	perception and symptom presentation in temporomandibular pain. Pain
29	489	1993;53(1):73-80. [published Online First: 1993/04/01]
30	490	30. Conti PC, Ferreira PM, Pegoraro LF, et al. A cross-sectional study of prevalence and
31	491	etiology of signs and symptoms of temporomandibular disorders in high school and
32	492	university students. Journal of orofacial pain 1996;10(3):254-62. [published Online
33	493	First: 1996/07/01]
34	494	31. Nordstrom G, Eriksson S. Longitudinal changes in craniomandibular dysfunction in an
35	495	elderly population in northern Sweden. Acta odontologica Scandinavica
36	496	1994;52(5):271-9. [published Online First: 1994/10/01]
37	497	32. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO
38	498	consultation. , 2000:894: p. i-xii, 1-253.
39	499	33. Kopp S. Okklusale und klinisch funktionelle Befunde im cranio- mandibulären System bei
40	500	Kindern und Jugendlichen. Jena: Medizinische Habilitation 2005.
41 42	501	34. Mensink GBM, Schienkewitz A, Haftenberger M, et al. Übergewicht und Adipositas in
42 43	502	Deutschland. Bundesgesundheitsblatt 2013;56:786-94.
44	503	35. Bundesamt S. Mikrozensus - Fragen zur Gesundheit - Körpermaße der Bevölkerung
45	504	Wiesbaden2011 [cited 2015 12.11.]. Available from:
46	505	https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustan
47	506	d/Koerpermasse5239003099004.pdf? blob=publicationFile.
48	507	36. Helmert U, Strube H. Die Entwicklung der Adipositas in Deutschland im Zeitraum von
49	508	1985 bis 2002. <i>Gesundheitswesen</i> 2004;66(07):409-15. doi: 10.1055/s-2004-813324
50	509	37. Fischer K. Rechts-Links-Probleme in Sport und Training. Studien zur angewandten
51	510	Lateralitätsforschung. Schorndorf: Hofmann Verlag. 1988.
52	511	38. Weineck J. Sportbiologie: Spitta 2004.
53	512	39. Liu B, Wu B, Van Hoof T, et al. Are the standard parameters of cervical spine alignment
54	512	and range of motion related to age, sex, and cervical disc degeneration? <i>Journal of</i>
55	515 514	neurosurgery Spine 2015;23(3):274-9. doi: 10.3171/2015.1.spine14489 [published
56	514 515	
57	515	Online First: 2015/06/20]
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~~		

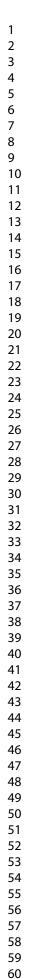
1							
2				. .		_	
3	516	40. Kienbacher T, Paul B, H					
4	517	in trunk flexion-exten	nsion. <i>Jour</i>	nal of neuroe	ngineering a	nd rehabilitatio	on 2015;12:3.
5	518	doi: 10.1186/1743-00)03-12-3 [p	oublished Onli	ne First: 201:	5/01/09]	
6	519	41. Kienbacher T, Fehrman	n E, Haber	nicht R, et al.	Age and ge	ender related ne	euromuscular
7	520	pattern during trunk					
8	521	neuroengineering ar					
9	522	[published Online Fin			4011	1011100,012,0	
10	523	42. Kudwa AE, Bodo C, Gu			viously unch	aracterized role	for estrogen
11	524	receptor beta: defemi					
12		1				0 1	
13	525 526	Academy of Science	0		0	, , ,	008-12. dol.
14	526	10.1073/pnas.050075					
15	527	43. Phoenix CH, Goy RW,					
16	528	testosterone propiona					
17	529	pig. Endocrinology	1959;65:36	59-82. doi: 10	0.1210/endo-6	65-3-369 [publ	ished Online
18	530	First: 1959/09/01]					
19	531	44. Asamoah V, Mellerowic	z H, Venu	s J, et al. [Me	asuring the s	urface of the ba	ack. Value in
20	532	diagnosis of spinal	diseases].	Der Orthopad	de 2000;29(6	6):480-9. [publ	ished Online
21	533	First: 2000/08/10]	-	1			
22	534	45. Diers H. Optische	Wirbelsäu	len- und H	altungsverme	essung. Ortho	pädietechnik
23	535	2008;38:479-84.					r
24	536	46. Drerup B. Improvemen	ts in meas	suring vertehr	al rotation f	from the project	ctions of the
25	537	pedicles. Journal of		•		1 0	
26		1	j biomech	<i>iunics</i> 1965,1	10(3).309-70.	[published C	Jinne Fiist.
27	538	1985/01/01]	01	1	C		
28	539	47. Drerup B, Hierholzer E					
29	540	surface: measuremen					e. Journal of
30	541	biomechanics 1985;1	· /			-	
31	542	48. Drerup B, Hierholzer E					
32	543	surface and construct	tion of a b	ody-fixed coo	rdinate system	m. <i>Journal of b</i>	viomechanics
33	544	1987;20(10):961-70.	[published	Online First:	1987/01/01]		
34	545	49. Hierholzer E. Objektive	Analyse de	r Rückenform	von Skolios	epatienten. Stut	tgart: Gustav
35	546	Fischer Verlag 1993.					
36	547	50. Hübner J. Handbook For	metric III.	Schlangenbad	: Diers Intern	ational GmbH	2007.
37	548	51. Ohlendorf D, Mickel C,					
38	549	postural control: a					
39	550	10.1186/s12995-016-			ip mea row	2010,11(3	i) uon uon
40	551	10.1100/312995 010	0122)				
41	551						
42	552						
43	552						
44	<i></i>	T 11					
45	553	Tables					
46							
47							
48	554						
49 50							
50 51	555	Tab. 1 Spine, shoulder and pelvis	narameter: m	ean value media	n tolerance reg	ions (unper and lo	wer limit)
51 52	556	confidence interval (left and right					wor minit),
52		letter in the first of the light	Mean value/	tolerance range	tolerance range	confidence interval	confidence interval
53 54			median	lower limit	upper limit	left limit	right limit
54 55		Trunk length D (mm)	461.31	Spine paramete 412.95	er 509.67	456.64	465.99
55 56		Trunk length S (mm)	509.52	458.88	560.15	504.62	514.41
56 57		Sagittal trunk decline (°)	-3.31	-8.12	1.5	-3.78	-2.85
58		Frontal trunk decline (°)	-0.43	-2.91	2.06	-0.67	-0.18

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
20 21	557
22 23 24	558
25	559
26 27	560
28 29	561
30 31 32 33 34 35 36 37	562 563 564 565 566 567
38 39	568
40 41	569
42 43 44	570
44 45 46	571
47 48	572
49 50	573
51 52 53 54 55 56	574

57 58 59


60

Axis decline (°)	0.21	-4.45	4.86	-0.25	0.66
Thoracic bending angle (°)	13.9	6.49	21.31	13.19	14.62
Lumbar bending angle (°)	13.17	7.83	23.06	11.9	14.25
Standard deviation lateral deviation (mm)	3.92	0.5	7.33	3.59	4.25
Maximal lateral deviation (mm)	-5.35	-12.8	12.38	-5.76	-0.89
Standard deviation rotation (°)	4.66	2.04	12.92	4.18	5.29
Maximal rotation (°)	9.2	-9	37.48	8	10.76
Kyphosis angle (°)	51.66	27.91	74.42	49.37	53.96
Lordosis angle (°)	46.29	21.66	70.92	43.91	48.67
	-	Shoulder pa	rameter		·
Scapular distance (mm)	150.56	110.51	190.6	146.68	154.43
Scapular height (°)	-1.28	-22.36	19.81	-3.32	0.76
Scapular rotation (°)	3.06	-3.26	9.37	2.44	3.67
Scapular angle left (°)	28.54	16.49	62.74	27.36	30.74
Scapula angle right (°)	31.17	10.61	73	27.2	34.62
		Pelvis para	ameter		
Pelvis distance (mm)	99.56	74.76	124.37	97.17	101.96
Pelvis height (°)	0.76	-4.29	5.81	0.28	1.25
Pelvis height (mm)	1.34	-7.33	10.01	0.5	2.18
Pelvis torsion (°)	0.24	-6.89	7.36	-0.45	0.93
Pelvis rotation (°)	2.2	-5.72	7.34	1.49	2.76

561 Figure legend

Fig. 1: a) back scanner MiniRot Combi (ABW GmbH, Frickenhausen / Germany), b) threedimensional phase picture of the back c) marker position on the back: A: Vertebra prominens
(7th cervical vertebra), B: Lower scapular angle left, C : Lower Lower scapular angle right,
D: Spina Iliaca Posterior Superior (SIPS) left , e: Spina Iliaca Posterior Superior (SIPS)
right, F: Sacrum-point (cranial beginning of the gluteal cleft).

568			
569			
570			
571			
572			
573			
574			

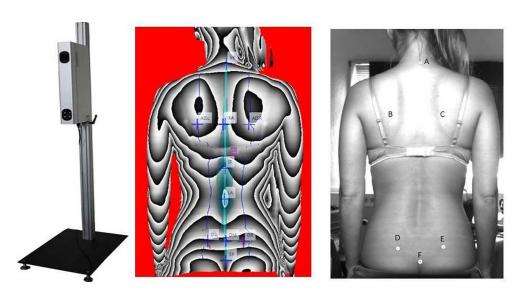


Fig. 1: a) back scanner MiniRot Combi (ABW GmbH, Frickenhausen / Germany), b) three-dimensional phase picture of the back c) marker position on the back: A: Vertebra prominens (7th cervical vertebra), B: Lower scapular angle left, C : Lower Lower scapular angle right, D: Spina Iliaca Posterior Superior (SIPS) left, e: Spina Iliaca Posterior Superior (SIPS) right, F: Sacrum-point (cranial beginning of the gluteal cleft).

199x103mm (300 x 300 DPI)

BMJ Open

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation	Pag
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	4,6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-	6-8
		up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe	6
		methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and unexposed	n/a
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give	7-8
		diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	6-8
measurement		Describe comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	n/a
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which	7-8
(groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	n/a
		(c) Explain how missing data were addressed	n/a
		(d) If applicable, explain how loss to follow-up was addressed	n/a
		(e) Describe any sensitivity analyses	n/a
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for	n/a
		eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	n/a
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	8-9
Descriptive data	11	exposures and potential confounders	0)
		(b) Indicate number of participants with missing data for each variable of interest	n/a
		(c) Summarise follow-up time (eg, average and total amount)	n/a
Outcome data	15*	Report numbers of outcome events or summary measures over time	9-1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg,	9-1 9-1
Main results	10	(a) Give unadjusted estimates and, if appreadic, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-1
			0.1
		(b) Report category boundaries when continuous variables were categorized	9-1
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	n/a
041	17	period	0
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	9
Discussion	10		1.1
Key results	18	Summarise key results with reference to study objectives	11-
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	14
		both direction and magnitude of any potential bias	

		analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14-15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	2
		original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

n/a = not applicable

Since the study investigated healthy young women in an observational study these parts of the STROBE-criteria are not applicable.