
Detlef Krömker und Ulrik Schroeder (Hrsg.): Die 16. E-Learning Fachtagung Informatik,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 195

Learning Analytics Bundle

Learning Analytics Data in a Single Transparent Hierarchical Container File for
Analysis and Exchange

Daniel Schiffner1, Marcel Ritter2 and Florian Horn1

Abstract: We propose and create a new data model for learning specific environments and learning
analytics applications. This is motivated from the experience in the Fiber Bundle Data Model used
for large - time and space dependent - data. Our proposed data model integrates file or stream-based
data structures from capturing devices more easily. Learning analytics algorithms are added directly
to the data, and formulation of queries and analytics is done in Python. It is designed to improve
collaboration in the field of learning analytics. We leverage a hierarchical data structure, where
varying data is located near the leaves. Abstract data types are identified in four distinct pathways,
which allow storing most diverse data sources. We compare different implementations regarding its
memory footprint and performance. Our tests indicate that LeAn Bundles can be smaller than a naïve
xAPI export. The benchmarks show that the performance is comparable to a MongoDB, while
having the benefit of being portable and extensible.

Keywords: Fiber Bundles, Exchange Format, Learning Analytics, Python, xAPI

1 Introduction

Gathering learning data has become a growing challenge with the uprising of learning
analytics and educational data mining technologies. Nowadays, many researchers store
their data in a xAPI confirmative way and create custom analytic tools. The data is usually
stored as facts in a Learning Record Store (LRS), and the xAPI provides a common
language, on which many researchers agree. Many visualization and data mining tools rely
on xAPI datasets and provide insights into the data gathered within an authority or
university. However, these individual implementations suit a specific scenario and are
rarely exchangeable. The Advanced Distributed Learning Initiative (ADL) with their
Experience API (xAPI) acknowledges this problem by introducing the so-called recipes
[Be16, Ru18]. These only describe how the verbs are used and can be hard to transfer.

In addition, the current standards are not well suited for stream-based data, as they are
very verbose and contain a large amount of noise and redundancy. The latter arises because
the standards aim to be self-describing. While the memory impact is addressable by using
a smarter backend, there is no way of efficiently share this data. The xAPI is too verbose

1 Goethe-Universität Frankfurt, studiumdigitale, Robert-Mayer-Str. 10, 60325 Frankfurt am Main
{schiffner|horn}@studiumdigitale.uni-frankfurt.de

2 Universität Innsbruck, Technikerstr., 6020 Insbruck, marcel.ritter@student.uibk.at



196 Daniel Schiffner et al.

for many scenarios and it is not standardized, for example, where information about a
capturing device should be stored. Many researchers define custom extensions, especially
for stream-based data. Typically, the original data sources are only referenced and not
included in a data export.

We propose a data structure designed for both xAPI conformance, to support existing
tools, and streaming data. It stores measurements, related data – such as web sites – and
analytic scripts together. As these bundles target learning analytics, we call them Learning
Analytics Bundles or in short LeAn Bundles. It utilizes a simple hierarchy and is shareable
as a single file. We present an implementation in Python and compare it against pure data
exports and data mining methods based on a MongoDB.

2 Background

Storing data from Learning Management Systems is no new topic. The Shareable Content
Object Reference Model (SCORM) describes a widely supported data storage and content
organization method [Fu06, AD09]. While being well prepared for many learning
scenarios, technical limitations have led to the definition of a new standard, xAPI. This is
a statement-based description language [KR16]. Rustici Software has published several
studies, where custom tailored xAPI data-providers help to create new insights and tools
[Du15, Lo16].

IMS provides a similar approach with Caliper taking measurements of learner activities.
A comparison between both statement-based approaches is discussed in [GH16]. A
software implementation exists, which is able to create xAPI and Caliper statements from
the same source dataset [Ma16]. However, this source dataset has no real specification.

To exchange data between authorities/researchers, one must perform a harvest of the data.
In addition, this data is immutable and analytics are usually limited to their own data
structures. For exchange, mainly the JavaScript object notation (JSON) [Cr06] is used.
Often MongoDB [Mo09] is used by a LRS, e.g. the LearningLocker [HT14].

In data science, Python has become one of the most used programming languages for
analytic tools [Mc11, Co13, Jo01]. Together with a portable data storage, researchers share
insights and results. One of these is the Hierarchical Data Format v5 (HDF5), which is
under active development since about 20 years by the HDF Group [HD97, Sp14, Se17].
Originating from the high performance computing community, it is cross platform and for
large datasets, which are commonly found in fields such as meteorology, engineering, or
astrophysics. The main API is written in C and high level APIs for most common
programming languages exist, including C++ or Python. HDF5 organizes the data using
groups, fields, and attributes, see Fig.. In analogy to a file system, a group relates to a
directory, a dataset is a file and attributes can be attached to both. Additionally, links can
be created to groups or fields, which even allow cyclic graphs.



Learning Analytics Bundle 197

While HDF5 is optimized for large datasets, it does not provide ready-to-use structures,
or schemes for specific kinds of data. A data layout especially suited for scientific data has
been addressed with the Fiber Bundle Data Layout F5 [Be04, Ri09], which extends HDF5.
Groups describe data properties and store the actual data arrays in the leaves of the
hierarchy. Hierarchal layers encode information about time, geometry, topology, and
coordinate representations. In F5, data is always bound to a geometry. The data in a
tangential space at one location on the geometry is called a fiber. Thus, a clear distinction
between data describing the geometry itself – the base space – and the data on the geometry
– the fibers – exist. Every dataset contains at least a point topology, holding a vertex
representation at its leaf. For example, a triangle geometry is created by adding a topology
group ’triangles’. It holds the connectivity information using indices and other data stored
per triangle at its leaf. The triangle-based data is independent of the point coordinate
representation. This triangle group form a fiber and share transformation properties.

Fig. 1: Illustration of the main building blocks inside a HDF5 file: datasets, groups, attributes, and
links. Left: HDF5 organization. Right: Example file. Datasets are multidimensional arrays of

arbitrary data type (checkered). Groups compare to folders in a file system and may contain groups
and datasets (orange). Groups and dataset can be enriched by attributes (green) holding small key
value pairs. Links to groups or dataset enable to build graphs in the data structure (grey arrows)

3 Concept

Our main contribution is a data storage format that allows the exchange of learning specific
data between researchers. Furthermore, it addresses streaming of non-xAPI data, that
otherwise need to be mapped. The LeAn Bundle format focuses on learning analytics and
bundles the required information. The concepts of HDF5 and the Fiber Bundle Data
Models are applied and transferred. Typically, scientific data consists of large and
homogenous datasets and only a few groups. Learning data needs a representation with a
large number of small, varying datasets, and a larger number of groups.

The LeAn Bundle is structured in a human readable way. A researcher should understand
the logging process behind the stored data by investigating the data layout. As a secondary
goal, we aim to minimize redundancy. Entries are not self-explanatory, which is a design
goal of the xAPI. However, we aim for xAPI compatibility, to allow a smooth transition
between the formats and re-usage of tools.

HDF5-File

Group1 Group2 Group3

Group4

Age = 0

Link

Image2D
PixelSize = 0.02

Vertices1D

Faces1D
Type = ‘CCW’

Group

Dataset
Attribute

* *

Attribute
*

*

*

*
Link



198 Daniel Schiffner et al.

Static data is located close to the root level of the hierarchy and varying or frequently
added data is found near the leaves. This keeps the hierarchy small and avoids duplication
of groups or use of complexly linked structures. We identify four distinct main groups of
data – pathways. We re-use similar concepts in the pathways, e.g. ‘TimeSeries’ can
represent the time of an interaction or a versioning.

Several data sources can be used and are not limited to xAPI. Exchange of data between
researchers is simplified with the single file representation that also allows in-place
modifications. Links allow the creation of additional structures and relations later on.

Fig 2: The basic structure of a LeAn Bundle based on four main pathways. The User pathway
contains user related information, including tracking data. Learning Object stores all available data

regarding content and Interaction describes possible actions. The Script pathway gathers
exchangeable scripts that directly work on a LeAn Bundle

3.1 Basic Structure

The basic structure of a LeAn Bundle – shown in Fig 2 – consist of four pathways: User,
Learning Object, Interaction, and Script. Each pathway is described on detail within its
respective subsection. We also provide a mapping to the xAPI standard, if applicable. We
use the notions used by HDF5 to describe the entries.

The first pathway User describes the individual actions registered for a single user. The
second pathway Learning Object identifies all objects that users have interacted with, such
as LMS, websites, videos, and similar. The third pathway Interaction includes all known
interaction patterns, including visiting a website/LMS, or answering a question. The fourth
pathway Script bundles tools for data mining and analytics that are usable with the current
bundle or have been applied to generate the current data.

3.2 User Pathway

This pathway gathers information on individual persons or groups of persons. An
overview of the entries as well as a mapping to xAPI is given in table 1.
The first sub-level is the authority, as it is the most static information within the group.



Learning Analytics Bundle 199

It describes the institution running the LMS, e.g. the University of Frankfurt. If no
authority is known, the data should be placed within an “anon” group.

Name Description xAPI Sources

Authority Who reports the current the data authority

User Id of the user w.r.t. to the authority actor.account

Configuration The identified setup for the user context / actor

TimeSeries Measurement based on timestamps timestamp

Fibers
Mutating/changing data, such as
interactions or results

context, actor, verb, object

Tab. 1: The structure for the User pathway in a LeAn Bundle

The User group, identified by the parent authority, stores information about a person, such
as user names or study related data, which is not part of the interactions.

The Configuration identifies a common setup, such as a browser or a device that influences
how a student has perceived a learning object. This is stored to discriminate tracking tools,
such as browsers or system logs. The TimeSeries represent the actually measured
interactions from the user that have been registered. The interpretation of a label is stored
in the Configuration as an attribute. Per default, UNIX timestamps in milliseconds are
assumed. Timestamps gather a session or a measurement based on a single configuration.

The leaves in the hierarchy are the Fibers that encode information regarding the current
path. Only links to an object and an interaction are required to describe an actor-verb-
object triplet. Additional data, such as results if a test has been concluded, is stored as a
dataset or links. Note that in most cases only links to other entries are required.

The presented layout is especially well suited for privacy concerns, as the user’s personal
information is stored only within the User group as datasets or attributes. An
anonymization process only needs to modify a single entry. In addition, to collate users in
a new group, only links into individual User groups are needed.

3.3 Learning Object Pathway

We use the notion of learning object for logical units of content being learned, but do not
impose restrictions on the definition or structure of a learning object. The Learning Object
pathway gathers data related to content users are interacting with. The proposed structure
is shown in table 2.



200 Daniel Schiffner et al.

The LearningObject contains information similar to other metadata standards, such as the
Dublin Core [We97]. The versioning of a learning object is handled in the TimeSeries
group. The format is described in the attributes of the parent and defaults to UNIX
timestamps in milliseconds.

Name Description xAPI Source

LearningObject
Unique id of a learning object within the
LeAn Bundle

object, context

TimeSeries
Individual groups for different versions
of a learning object

timestamp of the first
statement with the
object.id

Fibers
Data such as snapshots or further
references

context, grouping,
object

Tab. 2: Data layout for the Learning Object pathway in a LeAn Bundle

The leaf groups are the Fibers, which represent the actual content of the learning object.
It is also possible to reference other learning objects, similar to a SCORM sequencing. A
new timestamp must be created when the learning object has changed. IRIs are used, if the
content is not bundled for any reasons.

3.4 Interaction Pathway

To connect users and learning objects, interactions are defined. In most terms, it is similar
to the xAPI verbs, but includes sequences of actions. Table 3 shows the structure of the
Interaction pathway.

Name Description xAPI Source

Publisher
The creator of the interaction – for further
reference and metadata

verb.id

Name
The id of the interaction – must be unique
w.r.t. the publisher

verb.id

Fibers
Metadata, e.g. descriptions, alias and scripts
used for generation, etc.

verb, context

Tab. 3: The structure of the Interaction pathway in a LeAn Bundle



Learning Analytics Bundle 201

The first level represents the Publisher of the interaction. It contains metadata and further
information on the interactions. For example, the xAPI verbs are gathered in an adlnet.gov
group, with a link to the verb registry. The next level provides a Name for an individual
interaction, which must be unique for a publisher. This allows re-usage of interactions,
similar to xAPI recipes [Ru18]. The Fibers include raw data, translations or links to other
LeAn groups that reference this interaction.

3.5 Scripts Pathway

The Scripts pathway gathers all bundled scripts that operate on the LeAn Bundle. This
increases transparency in the research process, as both data and analytics tools are
contained within a bundle. The layout is presented in the table 4. There is no equivalent to
xAPI, thus we omit the mapping in the table.

Name Description

Publisher The name of the group defining/providing the scripts

Name An id for a script within a LeAn Bundle, unique w.r.t. the publisher

Fibers
Metadata and source code using the LeAn API. Must contain a
dataset named code

Tab. 4: Script pathway structure used in a LeAn Bundle

The Publisher group is an authority or a publisher of data mining scripts. Information
about the publisher and other metadata is stored there. The Name group gathers individual
fibers and acts as a reference. The Fibers include metadata, a description, a license of the
source code, and author specific information. There must exist a fiber named code, which
holds a string representation of the source, if the API is being used.

4 Implementation

To test the LeAn Bundle concept, several implementations have been created and
compared to a MongoDB storage. A prototype3 has been developed in Python using both
the h5py [Co08] HDF5 wrapper and shelve4 as a backend. Both store all data within a
single file and are, with some additional considerations regarding shelve, cross platform
compatible. Tools to convert xAPI data or run custom scripts are included as well.

3 https:/github.com/d-schiffner/lean-bundle/
4 A default Python package for persisting objects.



202 Daniel Schiffner et al.

The API for the embedded scripts is straight forward, as it uses the Python package and
executes given code. The LeAn Bundle is provided as input and computed data can be
written back to the bundle. In the following listing, a simple example is shown:

from lean_bundle.backend import *
#Main entry point for scripts get the LeAnFile as input
def main(bundle):

#Example: Print all userids
print(bundle['/user'].keys())

5 Evaluation

We tested our implementation using several configurations on an Intel i5 3450 3.1 GHz,
8 GB RAM, HDD, Windows 10. The Python scripts were executed within the WSL Bash.
We used Python 3.5.2 and MongoDB in version 3.0.

As several storage methods are available, the following tests are made to compare these
against a raw data format. We also want to investigate the performance when using queries
directly on the LeAn Bundle.

We use a dataset that stems from a running single project LRS based on LearningLocker.
Data is created by an eLearning tool as well as the LogStore API of moodle. The xAPI
statements are exported directly from the MongoDB backend. The dump size is 1.9 GB
using mongoexport. It contains 627k xAPI statements with additional metadata created
by the LRS software.

5.1 Comparison of Storage Methods based on Conversion from xAPI

To identify which storage method should be used when creating a LeAn Bundle, we
convert the sample dataset using different backends. For this test, we limit the used data
to the xAPI main fields, i.e. we strip extensions. The resulting dump is compared without
compression to the other LeAn implementations as shown in Fig. 3.



Learning Analytics Bundle 203

Fig. 3: Resulting file sizes in MB after converting the raw 1.9 GB dataset. The x-axis shows the
number of statements during conversion. JSON represents the conversion of the export keeping the
format. Shelve Highest Pickle is the implementation with shelve using the newest pickle protocol

We reach a conversion rate of approximately 1.9k statements / second. With few
statements, the resulting data size is larger than the plain JSON. With increasing statement
count, our layout performs better, as users repeatedly interact with the system using the
same learning objects and interactions.

As HDF5 provides a large variety of storage methods, we have checked several variants
for storing datasets. Attribute based storage performs best while the usage of groups within
the Fibers yield the worst results (blowup 1.75). The Empty Dataset – a special HDF5
dataset for attributes – is slightly better (blowup 1.33) than Compressed and Normal
datasets (both blowup 1.34).

The results indicate, that the Python implementation of shelve yields the best memory
footprint. While not well suited for learning data, HDF5 is still a valid option due to the
large support in the scientific community.

5.2 Bundling Data Mining Tools

To compare our implementation against known learning analytics methods, we imported
the converted data into a pristine MongoDB database and ran comparable analytics in both
the MongoDB and the LeAn Bundle using the shelve implementation. No indexing is used
in both cases. The results are shown in table 5.

The performance of the memory mapped LeAn Bundle cannot compete against
a highly optimized database. The measurements still show a good performance, especially
when queries match the data structure. Note that the scripts in case of the LeAn Bundle
are compiled as well.



204 Daniel Schiffner et al.

Method
MongoDB LeAn

100k 628k 100k 628k

Count answered 0.07s
± 0.01s

0.44s
± 0.01s

4.93s
± 0.04s

28.81s
± 0.40s

Count distinct users
1.14s
± 0.01s

7.54s
± 0.23s

0.15s
± 0.01s

0.16s
± 0.01s

List of distinct LOs
with creation date

1.52s
± 0.04s

9.83s
± 0.31s

1.34s
± 0.07s

6.45s
± 0.07s

Tab. 5: Comparison of data mining tools run time using 100k and 628k statements. The queries for
distinct users and distinct list of LOs require the aggregate API in case of the MongoDB. All

measurements show the mean of several runs

6 Conclusion and Future Work

We propose a novel data structure for learning analytics that allows sharing and executing
analytics tool thereon. The LeAn Bundle uses common data formats known in the data
science community to enable cross platform usage. To incorporate analytics tools, a simple
API is defined in Python. It leverages the hierarchical data structure and simplifies queries,
which are not easily representable in statement-based representations.

The results show, that the data format can be more compact than other raw data formats,
while still providing the necessary information required exporting xAPI statements. The
bundled scripts show good performance. By using a different backend, such as MongoDB,
a better execution time of queries could be possible.

The LeAn Bundles allow combination of several data sources. We plan to verify this by
using different sources, such as raw server logs or files in a file system. The layout needs
evaluation, whether the hierarchy must be revised and if it actually provides the promised
clarity. For the latter, a simple IDE could assist researchers, when creating analytics tools.

Furthermore, we want to develop complex queries that involve different data sources. One
idea is to use an aggregate pipeline, similar to the one specified by MongoDB, which
would allow to transfer existing tools into a LeAn Bundle. We also intend to create live
adapters, especially for webcams, eye trackers, and VR headsets. This information is
characterized by high velocity and variability.



Learning Analytics Bundle 205

References

[AD09] ADL: Shareable Content Object Reference Model 4th Edition.
http://adlnet.gov/research/scorm/scorm-2004-4th-edition/, 2009. [Online, accessed
April 2018].

[Be04] Benger, Werner: Visualization of General Relativistic Tensor Fields via a Fiber Bundle
Data Model. PhD thesis, FU Berlin, 2004.

[Be16] Berg, Alan; Scheffel, Maren; Drachsler, Hendrik; Ternier, Stefaan; Specht, Marcus:
Dutch Cooking with xAPI Recipes: The Good, the Bad, and the Consistent. In:
Advanced Learning Technologies (ICALT), 2016 IEEE 16th International Conference
on. IEEE, pp. 234–236, 2016.

[Co08] Collette, Andrew: H5PY. https://www.h5py.org/, 2008. [Online, accessed April 2018].

[Co13] Collette, Andrew: Python and HDF5: Unlocking Scientific Data. O’Reilly Media Inc.
2013.

[Cr06] Crockford, Douglas: The application/json media type for javascript object notation
(json). https://tools.ietf.org/html/rfc4627, 2006. [Online, accessed April 2018].

[Fu05] Furht, Borko: Sharable Content Object Reference Model (SCORM). In: Encyclopedia
of Multimedia. Springer US, Boston, MA, pp. 816–818, 2006.

[GH16] Griffiths, D; Hoel, T: Comparing xAPI and Caliper. Learning Analytics Review, 7,
2016.

[HD97] HDF Group: Hierarchical Data Format, version 5. http://www.hdfgroup.org/HDF5/,
1997. [Online, accessed April 2018].

[HT14] HT2 Limited: Learning Locker. http://learninglocker.net, 2014. [Online, accessed April
2018].

[Jo01] Jones, Eric; Oliphant, Travis; Peterson, Pearu et al.: SciPy: Open source scientific tools
for Python. http://www.scipy.org/, 2001. [Online; accessed April 2018].

[KR16] Kevan, Jonathan M; Ryan, Paul R: Experience API: Flexible, decentralized and activity-
centric data collection. Technology, knowledge and learning, 21(1):143–149, 2016.

[Lo16] Long, Rodney; Smith, Mike; Dass, Sue; Dillon, Clarence; Silverman, Julie: Intelligent
Tutoring Authoring Tools to Assess Training Effectiveness. The Interservice/Industry
Training, Simulation & Education Conference, At Orlando, FL, Volume: 2016.

[Ma16] Matthijs, Nicolaas: xAPI-IMS Caliper utility.
https://github.com/nicolaasmatthijs/xapicaliper, 2016. [Online, accessed April 2018].

[Mc11] McKinney, Wes: pandas: a Foundational Python library for data analysis and statistics.
Python for High Performance and Scientific Computing, pp. 1–9, 2011.

[Mo09] MongoDB Inc.: MongoDB. http://www.mongodb.com, 2009. [Online, accessed April
2018].



206 Daniel Schiffner et al.

[Ri09] Ritter, Marcel: Introduction to HDF5 and F5. Technical Report CCT-TR-2009-13,
Center for Computation and Technology, Louisiana State University, 2009.
https://www.cct.lsu.edu/cct-trs/download.php?file=CCT-TR-2009-13/CCT-TR-2009-
13.pdf

[Ru18] RusticiSoftware: Experience API - Recipes. https://xapi.com/recipes/, 2018. [Online,
accessed April 2018].

[Se17] Sehrish S., Kowalkowski J., Paterno M., and Green C.: Python and HPC for High Energy
Physics Data Analyses. In Proceedings of the 7th Workshop on Python for High-
Performance and Scientific Computing (PyHPC'17). ACM, New York, NY, USA,
Article 8, 2017. DOI: https://doi.org/10.1145/3149869.3149877

[Sp14] Spyros Blanas, Kesheng Wu, Surendra Byna, Bin Dong, and Arie Shoshani: Parallel
data analysis directly on scientific file formats. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data (SIGMOD '14). ACM,
New York, NY, USA, 385-396, 2014, DOI: https://doi.org/10.1145/2588555.2612185

[We97] Weibel, Stuart: The Dublin Core: A Simple Content Description Model for Electronic
Resources. Bulletin of the American Society for Information Science and Technology,
24(1):9–11, 1997.




