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Abstract

Background: Long non-coding RNAs (lncRNAs) represent a novel class of non-coding RNAs having a crucial role in
many biological processes. The identification of long non-coding homologs among different species is essential to
investigate such roles in model organisms as homologous genes tend to retain similar molecular and biological
functions. Alignment–based metrics are able to effectively capture the conservation of transcribed coding sequences
and then the homology of protein coding genes. However, unlike protein coding genes the poor sequence
conservation of long non-coding genes makes the identification of their homologs a challenging task.

Results: In this study we compare alignment–based and alignment–free string similarity metrics and look at
promoter regions as a possible source of conserved information. We show that promoter regions encode relevant
information for the conservation of long non-coding genes across species and that such information is better captured
by alignment–free metrics. We perform a genome wide test of this hypothesis in human, mouse, and zebrafish.

Conclusions: The obtained results persuaded us to postulate the new hypothesis that, unlike protein coding genes,
long non-coding genes tend to preserve their regulatory machinery rather than their transcribed sequence. All
datasets, scripts, and the prediction tools adopted in this study are available at https://github.com/bioinformatics-
sannio/lncrna-homologs.
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Background
Recent advances in high-throughput sequencing have led
to the discovery of a substantial transcriptome portion,
across different species, that does not show encoding
potential [1]. Long non-coding RNAs (lncRNAs) have
emerged as important players in different biological pro-
cesses, from development and differentiation tomultilevel
regulation and tumor progression [2]. The rapidly increas-
ing number of evidence relating lncRNAs to important
biological roles and diseases [3, 4] increased the interest in
developing advanced computational approaches for their
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identification and annotation [5–7]. However, despite
their abundance and importance, their evolutionary his-
tory still remain unclear. As observed in many studies, the
sequence conservation of lncRNAs is lower than protein
coding genes, especially among distant species, and higher
when compared to random or intronic sequences [8–10].
It has also been argued that conservation should be

more preserved on RNA secondary structure functional
sites than on nucleotide sequences [11]. However, as
claimed recently by Rivas et al. [12], in several cases no
evidence for selection on preservation of specific sec-
ondary structure has been reported till now. Conversely,
promoter regions of lncRNAs appear to be generally
more conserved than protein-coding genome counter-
parts, especially inmammalian species [1, 13]. In addition,
lncRNA promoters show the presence of common binding
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sites for known transcription factors [14, 15], indicat-
ing that although the genomic sequences might not be
highly conserved, their transcriptional machinery could
be. These findings underpin the opportunity to inves-
tigate for a sequence similarity measure that is able to
capture such kind of conservation, especially in promoter
regions, and is computationally efficient for the detec-
tion of lncRNA homologs at genomic scale level among
different species.
Current homology detection approaches, mainly based

on alignment algorithms like Blast, assume the equiva-
lence between homology and nucleotide sequence similar-
ity. Among them, BlastR, a method that uses di-nucleotide
conservation in association with BlastP to discover dis-
tantly related protein coding homologs [16], has been
applied also for lncRNA homology prediction between
human and other mammals [17, 18]. Approaches based
on Blast–like algorithms are also the basis of lncRNA
homology databases pipelines, such as NONCODE1 and
ZFLNC2. However, such sets of homologs certainly rep-
resent a fraction of the whole set of conserved functions
because Blast–like algorithms are designed subsuming
the evolution model of proteins that could not work for
lncRNAs. So, new algorithms able to capture lncRNA
conservation patterns are demanded to solve this gap.
In this study, we investigate whether other kind of

sequence similarity metrics, not necessarily based on
sequence alignment, can achieve such a task. Our inves-
tigation spans from alignment–based metrics, widely
used for searching protein coding homologs, to a rep-
resentative sample of alignment–free metrics, based on
information theory, frequency analysis, and data compres-
sion. Specifically we consider two alignment–based met-
rics, Smith–Waterman (SW) and Damerau–Levenshtein
(DLevDist) distance (Table 1); and 8 alignment-free met-
rics (Table 2), including: n-gram distance (qgram), Cosine
similarity (cosine), Jaccard similarity (jaccard), Base–Base
Correlation distance (BBC), Average Common Substring

distance (ACS), Lempel–Ziv complexity distance (LZ),
Jensen–Shannon distance (JSD), and Hamming distance
(HDist). Alignment–free metrics have been chosen by
their popularity in other disciplines and because in our
knowledge have never been adopted for homology identi-
fication.
We evaluate the metrics in three different species,

human (hg38), mouse (mm10), and zebrafish (dan-
Rer10), against a manually curated gold–standard,
originated from experimentally validated lncRNA
homologs collected from the literature with the sup-
port of public lncRNA databases, such as lncRNAdb
[19], LNCipedia [20, 21], and lncRNome [22]. We
show that some alignment–free metrics provide a bet-
ter alternative to pairwise-alignment metrics, such
as Smith–Waterman, especially between phylogenet-
ically distant species. Surprisingly, in contrast with
protein coding genes, lncRNA homologs exhibit higher
alignment–free scores in promoter regions corrob-
orating the hypothesis that lncRNA genes tend to
preserve their regulatory machinery rather than their
transcribed sequence.

Results
Given two species S1 and S2, Tables 1 and 2 report
the set of metrics, we analyze, to detect whether two
genes X ∈ S1 and Y ∈ S2 are homologs or not.
For discussion purposes we consider three main fac-
tors that, as expected, could affect homology predic-
tion: i) phylogenetic distance (close or distant), assuming
human–mouse as close species, while mouse–zebrafish
and human–zebrafish as distant species; ii) kind of tran-
script (protein coding or long non-coding); and iii)
sequence region (promoter or transcript). In the follow-
ing we report the results obtained with three empiri-
cal experiments aimed at evaluating the effectivenes of
the proposed metrics: i) evaluation against a manually
curated gold–standard originated from experimentally

Table 1 Definition of the adopted homology metrics (Alignment–based)

Metric Definition Description

Smith–Waterman
similarity

SW(X , Y) = max
x∈seq(X)
y∈seq(Y)

(
sw(x,y)

len(x)+len(y)

)
The Smith–Waterman similarity sw(x, y) is given by maximizing a score
computed over a number of operations needed to transform one string
into the other, where an operation is defined as an insertion, deletion,
or substitution of a single character [46]. Deletions/insertions (gaps) are
penalized with a zero score, matches are rewarded with +5, and
substitutions are penalized with -4 (NUC 4.4 substitution matrix). The
time complexity is O(len(x) · len(y)).

Damerau–Levenshtein
distance

DLevDist(X , Y) = min
x∈seq(X)
y∈seq(Y)

(
dl(x,y)

len(x)+len(y)

)
The Damerau–Levenshtein distance dl(x, y) is given by counting the
minimum number of operations needed to transform one string into
the other, where an operation is defined as an insertion, deletion, or
substitution of a single character, or a transposition of two adjacent
characters [47]. The time complexity is O(len(x) · len(y)).

X and Y are two candidate long non coding genes, seq(X) and seq(Y) are the sets of representative sequences of X and Y respectively (promoter or transcript), len(x) and
len(y) are the lengths of sequences x and y respectively. Where applicable a metric is normalized with respect to the sum of sequence length [42] and is minimized
(maximized) for distance (similarity) metrics among all couple of transcript sequences x ∈ seq(X), y ∈ seq(Y)
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Table 2 Definition of the adopted homology metrics (Alignment–free)

Metric Definition Description

n-gram distance qgramn(X , Y) = min
x∈seq(X)
y∈seq(Y)

( ∑
i |qxi −qyi |

len(x)+len(y)

)
A n-gram is a subsequence of n consecutive
characters of a string [48]. If qx = (

qx1, q
x
2, . . . , q

x
K

)
is the n-gram vector of counts of n-gram
occurrences in the sequence x the n-gram
distance is given by the sum over the absolute
differences |qxi − qyi |, where qxi and qyi are the i-th
unique n-grams of x and y respectively obtained
by sliding a window of n characters wide over x
and y and registering the occurring n-grams. The
time complexity is O(len(x) · len(y)).

Cosine similarity cosinen(X , Y) = max
x∈seq(X)
y∈seq(Y)

qx ·qy
‖qx‖‖qy‖ The cosine similarity is the cosine of the angle

between the two n-gram vectors qx and qy [40].
The time complexity is O(len(x) + len(y)).

Jaccard similarity jaccardn(X , Y) = max
x∈seq(X)
y∈seq(Y)

⎛
⎝

∑
i

(
1qxi >0+1

q
y
i >0

)

∑
i 1qxi >0·1q

y
i >0

− 1

⎞
⎠ The Jaccard coefficient measures the similarity

between two finite sets, and is defined as the
size of the intersection divided by the size of the
union of the sample sets [49]. The size is
computed from the set of unique n-grams by
means of 1qxi >0, the indicator function having
the value 1 if the i-th n-gram is present in x, 0
otherwise. The time complexity is
O(len(x) + len(y)).

Base–base correlation
distance

BBC(X , Y) = min
x∈seq(X)
y∈seq(Y)

√∑16
i=1(Vxi − Vyi )2 The Base–base correlation measures the

sequence similarity by computing the euclidean
distance between two 16-dimensional feature
vectors, Vx and Vy , which contain all base pair
mutual information [50]. The time complexity is
O(len(x) · len(y)).

Average common
substring distance

ACS(X , Y) = min
x∈seq(X)
y∈seq(Y)

1
2

(∑len(x)
i=1

lcs(x(i),y)
len(x) + ∑len(y)

i=1
lcs(y(i),x)
len(y)

)
The average common substring is the average
lengths of maximum common substrings for
constructing phylogenetic trees [51]. Specifically,
the lcs(x(i), y) (lcs(y(i), x)) is the length of the
longest common substring of x (y) starting at
each position i of x (y) and exactly matching
some substring in y (x). The time complexity is
O(len(x) + len(y)).

Lempel–Ziv
complexity distance

LZ(X , Y) = min
x∈seq(X)
y∈seq(Y)

c(x,y)−c(x)+c(yx)−c(y)
1
2 [c(xy)+c(yx)]

The Lempel–Ziv complexity distance is defined
by considering the minimum number of
components over all production histories of x
and y, c(x) and c(y) and their concatenations,
c(xy) and c(yx) [52] . The time complexity is
O(len(x) · len(y)).

Jensen–Shannon
distance

JSD(X , Y) = min
x∈seq(X)
y∈seq(Y)

1
2 KL(Vx , VM) + 1

2 KL(Vy , VM) The Jensen–Shannon distance is computed by
averaging the Kullback–Leibler Divergence (KL)
of Vx with respect to VM and Vy with respect to
VM , where Vx and Vy are the same 16-dimensional

feature vectors defined for BBC, and VM = Vx+Vy
2

[41]. The time complexity is O(len(x) + len(y)).

Hamming distance HDist(X , Y) = min
x∈seq(X)
y∈seq(Y)

hd(r(x), r(y)) The Hamming distance is defined between two
strings of the same length as the number of
positions in which corresponding values are
different. We adopt two bit strings of length n,
namely r(x) and r(y), representing the regulatory
transcriptional machinery of x and y respectively,
and n is the number of all transcription factors
available in JASPAR [24]. Each position i of such
bit strings is equal to 1 if the i-th transcription
factor binds the promoter while 0 otherwise. The
time complexity is O(n).

X and Y are two candidate long non coding genes, seq(X) and seq(Y) are the sets of representative sequences of X and Y respectively (promoter or transcript), len(x) and
len(y) are the lengths of sequences x and y respectively. Where applicable a metric is normalized with respect to the sum of sequence length [42] and is minimized
(maximized) for distance (similarity) metrics among all couple of transcript sequences x ∈ seq(X), y ∈ seq(Y)
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validated lncRNA homologs (Additional file 4: Table S1),
ii) evaluation agaist NONCODE and ZFLNC public anno-
tation databases providing lncRNA homologous associa-
tions among different species detected with a Blast like
pipeline, and iii) evaluation of functional concordance that
looks at protein coding genes localized in the proxim-
ity of lncRNAs and measures their Gene Ontology term
enrichment.

Metrics evaluation onmanually curated gold-standard
Figures 1, 2 and 3 show, respectively for human–
mouse, mouse–zebrafish, and human–zebrafish, the
−log(pvalue) for each considered metric (Tables 1 and 2)
estimated by permutation test over a null distribution of
non–homologous pairs randomly selected. The aim is
to estimate to which extend a candidate metric is able
to separate the true homologous pair from a huge set of
random selected non-homologous pairs (permutation
test). The set of non-homologous pairs are constructed
by fixing a lncRNA candidate in a species and selecting
a random set of sequences, approximately of the same
length, in the other species known to be not homolo-
gous. Metrics depending on parameters were customized
accordingly to obtain the best possible results. Specif-
ically, for SW, we estimated the best levels of match

gain and gap/missmatch penalty with a grid searching
procedure and for HDist, we adopted the MEME FIMO
tool [23] with JASPAR positional frequency matrices
(PFMs) [24]. The set of non-homologous pairs is ranked
according to the best prediction computed on promoter
sequences among metrics.
In closer related species (human–mouse), no distinc-

tion can be observed between alignment–based and
alignment–free metrics. Figure 1 shows more than 23
out of 36 true homologous pairs with a p-value ≤ 0.01
in both alignment–based and almost all alignment–free
metrics. Conversely, alignment–free metrics, especially
jaccard and qgram, are more suitable among phylogenet-
ically distant species. Jaccard exhibits a p-value ≤ 0.01 in
3 out of 6 true homologous pairs (Figs. 2 and 3). Instead,
some metrics, such as DLevDist, BBC and JSD, are less
powerful to detect homologous lncRNAs.
Moreover some couples failed to be detected regard-

less to the used metrics or sequence region. For example,
for ZFHX2-AS1–Zfhx2os (Fig. 1) the literatrure suggests
that a conservation of transcriptional profiles could be
observed and that only a small genomic region, which
perhaps contains important signals for the antisense tran-
scription, could be considered conserved between human
and mouse [25]. Similarly, the conservation of TUNAR

Fig. 1 P-value barplot for permutation test in Human-Mouse. -log10(p-values) estimated by permutation test over a null distribution of random
non–homologous pairs in Human-Mouse on promoter (blue bars) and transcript sequences (red bars) for each considered metric. Homologous
lncRNA couples are ranked according to the best prediction computed on promoter sequences among metrics. The x-axis reports true homologous
pairs for the two species
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SW DLevDist qgram cosine jaccard BBC ACS LZ JSD HDist
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1700020I14Rik si:dkey 71p21.9

Tunar si:dkey 11a7.3

Gm26749 si:dkey 11a7.3

Gas5 gas5

Dlx6os1 si:ch73 351f10.4

Sox2ot si:ch73 334e23.1

log(p value)

Transcript

Promoter

Fig. 2 P-value barplot for permutation test in Mouse-Zebrafish. -log10(p-values) estimated by permutation test over a null distribution of random
non–homologous pairs in Mouse-Zebrafish on promoter (blue bars) and transcript sequences (red bars) for each considered metric. Homologous
lncRNA couples are ranked according to the best prediction computed on promoter sequences among metrics. The x-axis reports true homologous
pairs for the two species

involves only a small transcript region (about the 8% of
the entire human sequence) that interacts with several
RNA–binding proteins (as PTBP1 and hnRNP-K) respon-
sible of functional conservation in all the considered
species [26].
The sequence region (transcript vs. promoter) seems

to play an important role only in phylogenetically distant
species, with the exception of few cases. In Fig. 1 the num-
ber of significant true homologous pairs detected by each
metric is higher for promoters in 5 cases out of 10 in
human-zebrafish (Fig. 2), while such cases are 8 out of 10
in mouse-zebrafish (Fig. 3).
In phylogenetically close species (human–mouse), only

few cases are affected by sequence region. For example,
promoter sequence seems to be crucial for the func-
tional maintenance of JPX (XIST Activator) in mammal
species, differently from TSIX (XIST Antisense RNA),
where the transcript provides uniquely the information of
conservation. According to the corresponding literature,
the promoter of JPX has been shown to interact with the
Xist promoter in undifferentiated embryonic stem cells
[27], while TSIX seems to be involved in the modulation
of chromatin modification status of Xist promoter, sug-
gesting a conserved function in mammals carried by the
transcript structure [28].
In distant species, alignment–based metrics are able

to detect a lower number of homologous lncRNAs. This
is probably related to the regulatory machinery that
alignment–based metrics are less prone to detect.

Consensus with NONCODE and ZFLNC pipelines
Figures 4 and 5 show the prediction performances, in
terms of AUPR (Area under the Precision–Recall curve)
plots, obtained by each metric with two database anno-
tations, respectively NONCODE and ZFLNC. The x-axis
reports the number n of consecutive characters consid-
ered for gram–based metrics. This means that remain-
ing metrics are shown as horizontal lines since they do
not depend on n. As baseline comparison, we computed
AUPR also for a random set of protein coding genes
(Additional file 1: Figure S1). Additional files 2: Figure S2
and 3: Figure S3 show also the ROC curves obtained
respectively in NONCODE and ZFLNC.
SW, jaccard and cosine with n greater than 10 per-

form well when applied to protein coding transcript
sequences, confirming that those metrics, in particu-
lar SW, are suitable for identifying homologous coding
gene in both phylogenetically close and distant species.
An opposite behaviour can be observed when compar-
ing promoter sequences. In both phylogenetically close
and distant species, the similarity of promoter regions
seems to predict better the homology of lncRNAs rather
than protein coding genes. In particular, HDist results to
be the best predictor in ZFLNC (Fig. 2), reflecting the
evidences regarding regulatory programs [29] and conser-
vation status [1, 30] of lncRNAs with respect to protein
coding genes. Furthermore, according to the manually
curated gold-standard results, somemetrics, such as BBC,
JSD and LZ, seem to be not suitable for the detection of

SW DLevDist qgram cosine jaccard BBC ACS LZ JSD HDist
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TUNAR si:dkey 11a7.3
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Fig. 3 P-value barplot for permutation test in Human-Zebrafish. -log10(p-values) estimated by permutation test over a null distribution of random
non–homologous pairs in Human-Zebrafish on promoter (blue bars) and transcript sequences (red bars) for each considered metric. Homologous
lncRNA couples are ranked according to the best prediction computed on promoter sequences among metrics. The x-axis reports true homologous
pairs for the two species



Noviello et al. BMC Bioinformatics          (2018) 19:407 Page 6 of 12

Fig. 4 NONCODE AUPR plots. Metric prediction performance computed on promoter and transcript sequences for NONCODE lncRNA homologs
(AUPR on y-axis and n, the number of consecutive nucleotides in n-gram metrics, on x-axis)
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Fig. 5 ZFLNC AUPR plots. Metric prediction performance computed on promoter and transcript sequences for ZFLNC lncRNA homologs (AUPR on
y-axis and n, the number of consecutive nucleotides in n-gram metrics, on x-axis)
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homology, both in protein coding genes and in lncRNAs
(AUPR less than 0.5 in mouse–zebrafish and less than 0.4
in human–zebrafish).
The conservation degree of lncRNA homologs is mainly

affected by evolution distance, reflecting the evidences,
shown also in the manually curated gold-standard, that
lncRNAs evolve more rapidly. It is possible to observe
that AUPR decreases with the increase of species distance
for almost all metrics. For example, the AUPR of SW in
NONCODE decreases from a 0.55 in human–mouse to
0.45 in mouse–zebrafish and to 0.33 in human–zebrafish
(Fig. 1). While, the AUPR of jaccard and cosine in ZFLNC
decrease from a 0.78 and 0.77 in human–mouse to 0.64
and 0.61 in mouse–zebrafish and to 0.59 and 0.50 in
human–zebrafish, respectively.
Although semi–automatic generated gold-standards

present major biases related to underlying automatic
pipelines based on BLAST, some of conclusions, drawn
with the manually curated gold-standard, are still
supported, making the empirical evidence reinforced by a
more representative statistical population.

Genome functional concordance analysis
In order to assess the ability of alignment–free met-
rics to predict conservation of lncRNAs also regarding
to their known and preserved biological functionality,
we performed a GO enrichment analysis considering the
nearest protein coding genes flanking the sets of zebrafish
lncRNAs predicted to be orthologs in human and mouse
(using jaccard with n = 12).We adopted jaccard similarity
as predictor since this metric in the previous empiri-
cal analyses showed in average a good prediction per-
formance, but similar results can be obtained also with
other alignment–free metrics (data not shown). As base-
line, we considered the protein coding genes flanking the
lncRNAs that overlap the most significantly conserved
elements produced by the phastCons program [31] from
zebrafish genome. Significantly enriched GO Biological
Process (BP) terms (p-value ≤ 0.01) were obtained using
DAVID functional annotation tool [32] and redundant
enriched GO terms were removed using Revigo [33]
(Additional file 5: Table S2). For each enriched GO cat-
egory, the percentages of genes overlapping the most
significantly conserved elements are also shown. Figure 6
shows the grouped BP terms that resulted to be enriched
in all three considered sets: the jaccard predicted zebrafish
lncRNA orthologs in human and mouse, and the phast-
Cons conserved lncRNAs. As expected and in accord-
ing to several studies describing lncRNA functional roles
shared by different species [34–37], the enriched cate-
gories include development at several stages, regulation
of transcription, and metabolic processes. On average,
it can be observed an increment in terms of enrich-
ment of the ultra–conserved GO terms considering the

sets of zebrafish lncRNAs predicted to be orthologs in
human and mouse. However, it is not surprising that in
few cases the GO term enrichment related to the ultra–
conserved set is higher that the ones predicted using
jaccard similarity. For example, it is known that lncRNAs
play critical roles in the development of nervous system
(neurogenesis) and that approximately 40% of lncRNAs
are expressed in the brain in a tissue specific manner[17].
Moreover, these brain–specific lncRNAs show the high-
est signals of evolutionary conservation in comparison
with those expressed in other tissues [38]. Figure 7 shows
the percentages of predicted zebrafish lncRNA orthologs
in human and mouse conserved or not with a zebrafish
phastCons element and the corresponding percentages
of flanking coding genes overlapping or not the same
regions of conservation. The observed similarity at func-
tional level in both species given by the GO enrich-
ment analysis is not due to an over-representation of
conserved lncRNA ortologs (35% in Human and 36%
in Mouse). As expected, the high number of flanking
coding genes within the zebrafish phastCons elements
reflect the general feature of lncRNAs to be involved
in vertebrate shared functional processes through in
cis expression regulation of nearby conserved genes.
This result constitutes a further proof that alignment-
free metrics, such as Jaccard similarity, work alongside
typical approaches based on pure conservation among
species, and are able to identify additional orthologs
not included in the typical multi–alignment conservation
track.

Discussion
In this study, we provide a systematic assessment of
alignment-based and alignment-free metrics to inves-
tigate the conservation of lncRNAs looking at both
promoter and transcript sequences in human, mouse
and zebrafish. We evaluate the metrics against a manu-
ally curated gold-standard of validated lncRNA homologs
available in literature. We show how alignment-free met-
rics could represent a powerful alternative to alignment
metrics to detect lncRNA homology, especially in phylo-
genetically distant species and promoter regions. Despite
the under-representation of considered gold-standard,
alignment–free metrics, and in particular jaccard, could
represent an optimal tradeoff between efficiency and effi-
cacy for large scale genome annotation.
These findings are also supported by an extended

empirical evaluation on two semi-automatic gener-
ated gold-standard, collected from lncRNA annotation
databases as NONCODE and ZFLNC. It is important
to specify that, although the necessity of retrieving an
increased number of homologous lncRNA couples than
that collected in the manually curated gold-standards, the
semi-automatic generated gold-standard present several
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Fig. 6 Functional concordance plots. GO Biological Process (BP) terms enrichment of flanking protein coding genes of lncRNAs overlapping the
conserved elements in Zebrafish (green bars) and predicted to be homologs according to Jaccard similarity with n = 12 (red bars) in Human and
Mouse. Blue bars indicate the percentages from the entire transcriptome of the specific specie of the BP terms

weaknesses, due to the massive automatic Blast based
pipeline biases.
Our results reflect the rapid evolution of lncRNAs,

divergent even between closely related species, confirmed
by the fact that 81% of lncRNA families are only pri-
mate specific [17]. The promoter regions of lncRNA
genes are generally more conserved than promoters of
protein-coding genes [1] and encode crucial information
that is better detected with alignment-free metrics, such
as jaccard, suggesting a sustained selective pressure act-
ing on these sequences. The evolution of transcription
factor binding sites follow usually patterns marked by
relocations and transpositions inside the promoter region.
This preserves the regulatory machinery but limit sub-
sequence similarity. Alignment–based metrics in pre-
serving the relative order of common sub-sequences are
able to detect point mutations, deletion, and insertion of
small sequences but are not able to detect re-locations,
crossovers, and/or transpositions as alignment–free met-
rics can do. Genome functional concordance analysis

confirm that conservation captured at promoter level
by alignment–free metrics is highly consistent with the
preservation of their biological functionality between
species carried by coding genomic neighbourhood. This
make us to suppose that lncRNA homologs tend to
preserve their regulatory relationships more than their
transcribed sequence.

Conclusions
We proposed the use of alignment–free metrics to inves-
tigate the mechanism of conservation of long non-
coding RNAs in three different species. To some extent,
we found that n-gram metrics, when applied to pro-
moter regions, are able to capture lncRNA homology
associations between close and distant species. The
obtained results persuaded us to formulate a hypothesis of
conservation schema that impacts the promoter regions
of lncRNAs. This mechanism suggests that lncRNAs
tend to preserve the regulatory relationship with tran-
scription factors rather than the information encoded in
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Fig. 7 Distribution of conserved and non conserved flanking genes

their sequence. As our results are limited to the three
species, human, mouse, and zebrafish, it is unquestion-
able that more data on different species and a larger
manually curated gold-standard are crucial to generalize
the mechanism of conservation governing the evolution
of lncRNAs.

Methods
Sequence similarity metrics
Given two species S1 and S2, Tables 1 and 2 report the
set of metrics, we analyze, to detect whether two genes
X ∈ S1 and Y ∈ S2 are homologs or not. We consider
two alignment-based metrics, Smith–Waterman similar-
ity and Damerau–Levenshtein distance (Table 1), widely
adopted to detect protein coding homology [39], and
several alignment-free metrics (Table 2), including: n-
gram and common substring based distances, adopted
in text mining and information retrieval [40]; two factor
frequencies distances, Base–base correlation and Jensen–
Shannon Divergence test, adopted in genome comparison
[41]; Lempel–Ziv complexity distance based on data com-
pression; and Hamming distance adapted to compute the
concordance between regulatory transcriptional machin-
ery of promoter sites. To make a measure comparable
among sequences with different lengths, where applica-
ble, a metric is normalized with respect to the sum of
sequence lengths [42]. A gene X is modeled as a set of
sequences seq(X) extracted from a genome. In particular,
we consider two types of sequence sets: the set of tran-
scribed sequences and the set of promoter regions. A
transcribed sequence is constructed by merging all exons

belonging to that transcript, while a promoter region is
built by considering the conventionally 2000 bp up and
1000 bp down stream from the transcription starting site.
A metric is computed for all possible pairs of sequences
belonging to the two sets representing the two candidate
genes. Among all measures the minimum is considered if
the metric is defined as a distance, instead the maximum
if the metric is defined as a similarity.

Metrics evaluation onmanually curated gold-standard
We evaluate the metrics in three different species, human
(hg38), mouse (mm10), and zebrafish (danRer10), against
a manually curated gold–standard, originated from exper-
imentally validated lncRNA homologs (Additional file 4:
Table S1). It has been collected from the literature
with the support of: lncRNAdb [19], a database that
provides annotations of eukaryotic lncRNAs; LNCi-
pedia [20, 21]; and lncRNome [22], a knowledge-base
compendiums of human lncRNAs. Table 3 reports
the number of collected lncRNA homologs between
human and mouse, mouse and zebrafish, and human
and zebrafish.
Due to the limited number of collected homologous

pairs, we report to which extend (p-value) a candidate
metric is able to separate the true homologous pair from
a huge set of random selected non-homologous pairs
(permutation test). The set of non-homologous pairs are
constructed by fixing a lncRNA candidate in a species
and selecting a random set of sequences, approximately
of the same length, in the other species known to be not
homologous.
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Table 3 Annotated homologous genes between species in
manual curated gold-standard

Gene class Gene class Human Human Mouse
Specie1 Specie2 Mouse Zebrafish Zebrafish

Antisense Antisense 12 2 1

Antisense lincRNA 8 2 0

lincRNA Antisense 1 1 2

lincRNA lincRNA 20 2 2

Overlapping Overlapping 1 1 1

Total lncRNAs 42 8 6

Protein coding Protein coding 12998 10209 10126

Consensus with NONCODE and ZFLNC pipelines
NONCODE and ZFLNC are public annotation databases
providing lncRNA homologous associations among dif-
ferent species. Such associations are detected by classical
sequence homology pipelines based on multi alignment
metrics such as those adopted to identify protein cod-
ing homologs. Specifically, NONCODE provides con-
servative and evolutionary status of stored lncRNAs
through a genome comparison conservation analysis
based on UCSC LiftOver tool; while, ZFLNC provides
zebrafish lncRNA functions and homologs identified
through a pipeline based on: BLASTn, collinearity with
conserved coding gene, and overlap with multi-species
ultra-conserved non-coding elements.
Although such databases cannot be adopted as a typical

gold–standard because the sample is biased on the simi-
larity metric used in the original discovery pipelines, we
still perform an evaluation against database annotations.
The aim is to show to which extend alignment–free met-
rics reproduces the state of art of lncRNA homologs anno-
tated with pipelines based essentially on alignment–based
metrics.
From NONCODE we selected 882 human lncRNA

sequences having 44 homologous counterparts in
zebrafish and 523 in mouse. From ZFLNC we selected
676 zebrafish lncRNA sequences presenting a counter-
part both in human and mouse. Prediction accuracy is
evaluated with area under the Precision and Recall curve
(AUPR), since it gives more information when dealing
with highly skewed datasets [43, 44]. Specifically, we
provide a normalized version of AUPR that takes into
account the unachievable region in PR space, as proposed
in Kendrick et al. [44], that allows to compare perfor-
mances estimated on datasets with different class skews.
In additional data we provide also ROC plots.

Genome functional concordance analysis
It is generally assumed that homologous genes play sim-
ilar biological roles in different species [45]. Since Gene

Ontology (GO) analysis can be considered as a good
in-silico indicator of biological function, we provide an
alternative assessment strategy that evaluates the func-
tional concordance of lncRNA homologs candidates. This
strategy, adopted similarly in Basu et al. [18], looks at
protein coding genes localized in the proximity of lncR-
NAs (within a window of 1 mb) and measures their GO
term enrichment in Biological Processes (BP) with DAVID
tool [32].
As case study we evaluate the functional concor-

dance on a set of lncRNA zebrafish homologous candi-
dates predicted from a sample of 1000 random lncRNAs
belonging to human and mouse. As baseline, we con-
sider zebrafish lncRNAs belonging to ultra–conserved
regions obtained with UCSC phastConsElements6way
tracks. This provided us a set of enriched GO terms
that can be assumed to be the most conserved bio-
logical function among the considered species [34–37].
The idea is to compare the baseline enrichment with
the enrichment of predicted lncRNAs flanking protein
coding genes. An increment of the latter enrichment
means that predicted lncRNAs are able to capture addi-
tional flanking proteins not revealed in canonical phast-
ConsElements6way tracks, corroborating the hypothe-
sis that such lncRNAs, in controlling such flanking
genes, should contribute to the ultra-conserved biological
function.

Endnotes
1 http://www.noncode.org
2 http://www.zflnc.org
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