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Summary

Precise timing of spikes between different neurons has been found to convey reliable information
beyond the spike count. In contrast, the role of small phase delays with high temporal variability,
as reported for example in oscillatory activity in the visual cortex, remains largely unclear.
This issue becomes particularly important considering the high speed of neuronal information
processing, which is assumed to be based on only a few milliseconds, or oscillation cycles
within each processing step.
We investigate the role of small and imprecise phase delays with a stochastic spiking model
that is strongly motivated by experimental observations. Within individual oscillation cycles
the model contains only two signal parameters describing directly the rate and the phase. We
specifically investigate two quantities, the probability of correct stimulus detection and the
probability of correct change point detection, as a function of these signal parameters and
within short periods of time such as individual oscillation cycles.
Optimal combinations of the signal parameters are derived that maximize these probabilities
and enable comparison of pure rate, pure phase and combined codes. In particular, the gain
in detection probability when adding imprecise phases to pure rate coding increases with the
number of stimuli. More interestingly, imprecise phase delays can considerably improve the
process of detecting changes in the stimulus, while also decreasing the probability of false
alarms and thus, increasing robustness and speed of change point detection.
The results are applied to parameters extracted from empirical spike train recordings of
neurons in the visual cortex in response to a number of visual stimuli. The results suggest that
near-optimal combinations of rate and phase parameters can be implemented in the brain,
and that phase parameters could particularly increase the quality of change point detection in
cases of highly similar stimuli.
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Chapter 1

Introduction

Information processing in the neural cortex is based on electronic discharges, called spikes,
which are emitted by neurons. To investigate the response to an input, called stimulus, the
emitted spikes are measured over a time interval [0, T ]. The output is called spike train and

is denoted by S (m) = (t
(m)
1 , . . . , t

(m)
n1 ) with 0 ≤ t(m)

1 ≤ · · · ≤ t(m)
nm ≤ T , where the superscript

m indicates that this spike train belongs to neuron m. So for each neuron we obtain a time
series of spike responses, cf. Figure 1.1 red bars for two neurons.

time [ms]

ne
ur

on

0 100 200 300

1
2

Figure 1.1: Spike trains of two parallel neurons with a recording time of [0, 300 ms]. Each
spike is represented as a red bar.

In experiments it was observed that dependent on the stimulus neurons tend to fire with
some time delay, called phase delay. We are especially interested in empirical neurons as
reported in Havenith et al. (2011). The authors recorded eight neurons in response to 12
stimuli, which were drifting sinusoidal gratings of which the drifting direction rotated in steps
of 30◦. They observed that besides the number of spikes, called rate, also the phase delays
vary systematically with the stimulus. So for each neuron m ∈ {1, . . . ,M}, M = 8, they
measured a stimulus specific rate λs and phase ϕs, s ∈ {1, . . . , S}, S = 12. However, the phase
delays can be measured with high precision only if we have a long recording interval [0, T ], but
cannot be identified in short time periods such as individual oscillation cycles (Schneider et al.,
2006). Therefore, we call these phase delays small or imprecise. The role of such imprecise
phase delays in information processing is largely unclear and it remains unclear whether and
to which extent such imprecise phases can contain information in addition to the number of
spikes. This question becomes particularly important considering the high speed of neuronal
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CHAPTER 1. INTRODUCTION

information processing. As reaction times in behavioral experiments are often too short to
allow long temporal averaging, information processing is assumed to take place in only a few
milliseconds, or oscillation cycles within each processing step (Osram et al., 1999; Gautrais
and Thorpe, 1998; Abeles, 1994).
It is the aim of the thesis to investigate whether and to which extent imprecise spiking phases
can contribute to information processing within short periods of time, such as individual
oscillation cycles. Furthermore, we aim at investigating parameter combinations of rate and
phase that can optimize information processing, in order to enable comparison to empirical
observations.

Modeling of spiking activity We use a modified version of a stochastic spike train model,
the GLO (Gaussian Locking to a free Oscillator, (Bingmer, 2012)), that was able to precisely
describe a variety of temporal properties related to spike timing inherent in individual spike
trains (Bingmer et al., 2011; Schiemann et al., 2012) and their temporal interactions (Schneider
and Nikolić, 2008). We generalize the original GLO to M neurons, which share the same
background oscillation.
The GLO model is a doubly stochastic mechanism that includes the three stimulus properties
rate, phase and synchronous oscillation. Figure 1.2 shows a visualization of the GLO assump-
tions for M = 2 neurons. Synchronous oscillation across multiple units can in this model for
example be specified by assuming that two units share the same background oscillation (see
Figure 1.2 dashed lines), which can be used to measure the degree of utilized synchrony to
which they share the same background oscillation (Schneider, 2008; Schneider and Nikolić,
2006). Experimental recordings of the visual cortex of the cat have shown that the rate and
phase parameters can differ across units. In particular, they can also show systematic stimulus
dependence for individual neurons.
Synchronous oscillation. The GLO model assumes an unobservable background oscillation
B, which is a random walk with independent and normally distributed increments with mean
µB > 0 and variance σ2

B ≥ 0, cf. Figure 1.2 black dashed lines, i.e.,

B = . . . , B−2, B−1, B0, B1, B2, . . . ; (Bi −Bi−1) ∼ N
(
µB, σ

2
B

)
∀i ∈ Z.

Rate or number of spikes. Consider neuron m ∈ {1, . . . ,M} and stimulus s ∈ {1, . . . , S},
each beat Bb is assumed to give rise to an independent Poisson number of spikes N

(m)
s with

parameter λ
(m)
s ≥ 0, cf. Figure 1.2 number of red bars.

Phase or spike timing. In the second stage, the random spike times X
(m)
is , i = 1, . . . , N

(m)
s ,

are placed independent around the beat Bb, b ∈ Z, according to a normal distribution with

expectation ϕ
(m)
s ∈ R and variance σ2 ≥ 0, cf. Figure 1.2 timing of red bars. So we assume

that the precision of the spike timing is equal for all stimuli and neurons.
The spiking response of neuron m within an oscillation cycle can be described by an inhomo-
geneous Poisson process with intensity (see Proposition 1.1.17)

ρ(m)
s (t) =

λ
(m)
s√
2π

exp

(
−(ϕ

(m)
s − t)2

2

)
, s ∈ {1, . . . , S}.

If we talk about disjoint oscillation cycles, we assume the maximal phase parameter ϕM :=

maxs,m |ϕ(m)
s | is small in respect to µB, i.e., µB � (σ2

B + σ2) + ϕM , resulting in almost no
overlap between adjacent firing intensities.

2
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B0 B1 B2 B3 (µB, σB)


λs

(1), ϕs
(1), σ




λs

(2), ϕs
(2), σ


ϕ
Pois (λ)

Figure 1.2: GLO-model for two neurons responding to stimulus s. The background oscillation
(dotted line) is a stationary point process with independent and normally distributed intervals
with parameter (µB, σB). The red bars in the first row are the spikes generated by neuron
1, in the second row of neuron 2. The number of spikes of neuron m reacting to stimulus s

at each beat Bi is Pois(λ
(m)
s ), cf. pink circle. Every spike is placed around its birth beat

according to N (ϕ
(m)
s , σ2), cf. pink arrow. The corresponding firing intensity is shown in green

(neuron 1) and in blue (neuron 2). Neuron 1 (2) has rate λ
(1)
s (λ

(2)
s ) and phase ϕ

(1)
s (ϕ

(2)
s ) for

the presented stimulus s. Neuron 2 has lower rate, but higher phase.

Quantify information The perspective of the work is to analyze if small phases can contain
additional information compared to only the number of spikes (rate code), what is commonly
accepted as relevant signal component. Therefore, we focus on two different approaches:
The first one accounts for the necessity to recognize the correct stimulus out of the set
of {1, . . . , S} stimuli, especially in a short time period, see Section 2. The basic concept is
illustrated in Figure 1.3 for S = 2 stimuli, M = 1 neuron and one cycle with known background
beat. We observe a sequence of spikes (red bars) and we know the theoretic firing intensity
for each stimulus (blue for stimulus 1 and green for stimulus 2). With that knowledge we
would decide for stimulus 1, as it is more likely to produce such a spike sequence. For this
decision the number of spikes, represented by the rate λ, and the spike times, represented
by the phase, are crucial. However, the information contained in the spike times decreases
if we decrease the shift between the two spiking intensities. The objective is to quantify the
additional information contained in such small phases dependent on the parameter ranges
observed in experiments (λ ∈ [0, 4] and ϕ ∈ [0, 0.75] for σ = 1, see Appendix A) and the
number of stimuli. This requires knowledge about optimal coding, separately for only using
the spike numbers, only the spike times or both simultaneously. In Section 5 we compare our
theoretic results to empirical neurons reported by Havenith et al. (2011).

The second approach accounts for the necessity to recognize when the stimulus changes, see
Section 4. Here we assume we observe a sequence of cycles (observation as illustrated in Figure
1.3) and want to detect the change in the stimulus correctly. Therefore, we assume we start
with a general idea (continuous prior information) about the rate and phase parameters and
want to detect the change points, where the rate and phase parameters change according to

3



CHAPTER 1. INTRODUCTION

S2

S1

Spiking intensity

Observation Decision

(λ2, ϕ2)

(λ1, ϕ1)

Figure 1.3: Decision task S = 2 stimuli and M = 1 neuron. The red bars illustrate the
observed spikes. The theoretic firing intensity corresponding to stimulus 1 is shown in blue
(stimulus 2 in green). For the presented observation we would decide for stimulus 1 (solid
arrow).

the prior information. In Section 5 we consider the M = 8 empirical neurons of Havenith et al.
(2011) corresponding to S = 12 stimuli, where it is appropriate to consider the explicit discrete
prior information. However, in both cases our objective is to quantify, if the simultaneous
analysis of rate and phase improves the change point detection compared to a pure rate
analysis. Improvement is quantified by the increase in the number of correctly detected change
points and by the decrease of falsely detected change points.

Overview of the thesis After a short introduction to the theory of point processes we
formally introduce the GLO, see Section 1.1. In Section 1.2 we illustrate how small phase
delays can be measured in empirical spike trains using the cross correlation histogram (CCH)
and calculate the theoretic cross correlation function (CCF) of two GLO spike trains with the
same background beat. We finish the introduction by discussing neurophysiological aspects in
Section 1.3.

In Section 2 we consider the task of neurons to identify the correct stimulus out of S possible
stimuli. Therefore, in Section 2.1 we focus on one neuron and investigate the probability of
correct stimulus detection, pD, first within a single oscillation cycle, as a function of rate,
λ, and phase, ϕ (Section 2.1.1). In particular in Section 2.1.2, we investigate the maximal
possible increase in this probability when including phase in addition to rate parameters. To
this end, we first optimize pD only on the basis of rate and of phase individually and then
investigate pD for the optimal combination of rate and phase parameters. Our results suggest
that a rate and phase code can increase pD compared to a pure rate code, particularly in cases
with many stimuli. Second, optimal parameter combinations can be pure rate codes, pure
phase codes or mixed codes, depending on the parameter range allowed for rate and phase
parameters. In the case of high (also called precise) phases for example, phase coding would be
preferred to rate coding. No specific correlation between the size of rate and phase parameters
was observed in an optimal parameter set. In Section 2.1.3 we introduce a circular order of
the stimuli, based on the empirical data, and focus on the probability to misclassify stimuli
with a fixed distance. Thereby our aim of maximizing pD shifts to minimizing the distance
weighted detection error eD. Even if this increases the computational cost, the structure of
the optimal rate and phase parameters simplifies, as it is no more optimal to code a stimulus
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CHAPTER 1. INTRODUCTION

with medium rate and medium phase. In Section 2.1.4 we compare our approach applying
the Bayesian decision rule with a well known classification technique, the Linear Discriminant
Analysis (LDA). Interestingly even if some assumptions of LDA are crucially violated, the
results of both approaches are comparable, especially for a high number of stimuli. In Section
2.1.5 we explore the effect of observing two oscillation cycles on the optimal phase parameters
and if a rate and phase code can still increase the detection probability compared to a pure
rate code. Basically the optimal coding properties found in Section 2.1.2 continue to hold,
but due to the additional uncertainty of the spike allocation to the correct oscillation cycle,
the ability of a rate and phase code to increase the detection probability decreases compared
to one cycle. Finally in Section 2.2 we generalize our procedure to M neurons, whereby we
determine the detection probability in case of more than two stimuli by simulations. Here our
results suggest that imprecise phases can increase the detection probability only for S ≥ 2M

stimuli.
In Section 3 we give a short introduction to Bayesian inference and an overview of general known
results we draw on in Section 4. First we give general notations (Section 3.1) and an illustrative
presentation of the Bayesian procedure, where we motivate the main theoretic results with
a basic example (Section 3.2). Basic results about an appropriate prior distribution, which
ensures posterior consistency, can be found in Section 3.2.4. To detect changes in the stimulus
we are especially interested in the application of a Bayesian change point algorithm, where
a computational efficient access to the posterior and predictive distribution is necessary. In
Section 3.4 we formalize the concept of conjugacy and see that in case of an exponential family
distribution a standard conjugate prior distribution exists and the predictive distribution can
be determined analytically. Also the useful property of posterior linearity in the expectation of
the sufficient statistic holds in general for the exponential family distribution and its standard
conjugate prior.
In Section 4 we investigate the performance of pure rate and combined analyses with respect to
the detection of changes in the stimulus. Thus, we analyze whether changes in the phase that
may occur simultaneously to changes in the rate may improve the probability of correct change
point detection, while reducing the probability of falsely detecting a change. For this purpose
we extend a Bayesian change point detection algorithm (Adams and MacKay, 2007; Wilson
et al., 2010) to the bivariate case and investigate its improved performance in the bivariate
case over the univariate rate case when applying a newly proposed fast online decision process
(Section 4.2). Our results in Section 4.3 suggest that a pure rate analysis shows a high number
of falsely detected change points. In contrast, the bivariate analysis using rate and phase can
considerably enhance robustness, i.e., decrease the number of falsely detected changes, while
also increasing the number of correctly detected change points. In Section 4.4 we present an
approach to account for special knowledge about the stimuli structure, while still providing a
computationally efficient change point detection. Here we observe that a pure phase analysis
can show comparable results in the change point detection as a pure rate analysis, if we have
very precise prior information. Again the bivariate analysis significantly increases the number
of correctly detected change points and decreases the number of falsely detected change points
compared to a pure rate or phase analysis. In Section 4.5 we extend our change point model
by an unknown and random spike time precision, which changes simultaneously with rate and
phase. Our results suggest that a pure phase analysis can not work reliably in this setting and
overestimates structural the number of change points. Taking changes in the spike precision
into consideration, the trivariate analysis, compared to a pure rate analysis, can increase
the number of correctly detected change point and significantly decrease the number of false
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CHAPTER 1. INTRODUCTION

detections, especially for high spike numbers.

In Section 5 we apply our theoretical results on the detection probability and our algorithms for
change point detection to a setting of empirical neurons reported in Havenith et al. (2011). The
analyses of individual empirical neurons support the theoretical considerations. Concerning
the detection probability, the results suggest that near-optimal parameter combinations of
rate and phase do exist in empirically recorded neurons. Regarding the detection of changes
in the stimulus, the bivariate analysis using rate and phase parameters can increase the
number of correctly detected change points as well as increase robustness by decreasing the
number of falsely detected changes in the stimulus. Further, a simultaneous consideration
of multiple empirical neurons suggests that a single oscillation cycle theoretically allows the
correct identification of a stimulus, except for highly similar stimuli. This holds already for rate
coding alone, where the bivariate analysis shows little improvement. However, the bivariate
analysis can increase the probability of change point detection particularly for similar stimuli,
while also decreasing the probability of falsely detecting change points for all pairs of stimuli.

In Appendix A we explain the parameter range for rate and phase parameters extracted from
experimental data. Basic definitions and properties of distributions we draw on in the thesis,
are summarized in Appendix B. A collection of the most important R-Codes can be found in
Appendix C to allow a reproduction of the results in this thesis.

1.1 Spike train model

In the following we give a formal introduction to the GLO. As already mentioned we slightly
modify the GLO of Bingmer et al. (2011) to capture M neurons. Nevertheless, the basic
properties remain and we mainly follow Bingmer (2012): Section 1.1.1 covers a short overview
of the theoretic point process setting and summarizes Section 1.2 of Bingmer (2012). This
allows a formal definition of the GLO using its representation as a random counting measure,
see Section 1.1.2. Basic properties of the GLO are summarized from Section 2.2 of Bingmer
(2012).

More details on the theory of point processes can be found in Daley and Vere-Jones (1988);
Cox and Isham (1980); Thompson (1988). For a thorough introduction to random walks see
Spitzer (1976), for Poisson processes see Kingman (1993) and for renewal processes see Cox
(1962).

1.1.1 Basic definitions

Let E be a complete separable metric space (c.s.m.s) and A a σ-Algebra on E. The tuple
(E,A) is called a measurable space. Further let B(E) be the smallest σ-Algebra which contains
the open sets of E, called a Borel σ-Algebra, and the elements of B(E) are called Borel sets.
Any measure ν defined on the Borel sets is called a Borel measure and is boundedly finite
if ν(A) < ∞ for every bounded Borel set A. The support of the measure ν is defined as
the set Rν := {x ∈ E : ν({x}) > 0}. The space of all boundedly finite Borel measures ν
on E is denoted by ME . The set of counting measures Mc consists of all boundedly finite,
integer-valued measures ν defined on the Borel subsets B(E). Thus, Mc contains the subsets
of simple counting measures

Me := {ν ∈Mc : ν({x}) ≤ 1 ∀x ∈ E}.
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For any Borel set A ∈ B(E), we define the indicator function 1A : E → {0, 1} via

1A(x) :=

{
1, if x ∈ A,
0, else.

Definition 1.1.1. A point process H is a measurable mapping from a probability space (Ω,A,P)
into the measurable space (Mc,Me). The point process is simple when P(H ∈Me) = 1.

We are interested in spike trains, which are sequences of recorded times at which a neuron
fired an action potential. The recorded times can be regarded as part of a realization of a
point process on the real line, thus we restrict to the measurable space (R,B) with B = B(R)
denoting the Borel σ-Algebra on R.
We write a point process H on the line as a sequence of events

· · · < T−1 < T0 < 0 ≤ T1 < T2 < · · · ,

where {Ti}i∈Z denotes the occurrence times. A realization h of H is represented by a sequence
of deterministic points

· · · < t−1 < t0 < 0 ≤ t1 < t2 < · · · .

Alternatively, H is determined by its intervals together with the first occurrence time, i.e.,

{Wi}i∈Z ∪ {T1}, where Wi := Ti+1 − Ti for all i ∈ Z,

or by the counting measure

H(A) = #{i ∈ Z : Ti ∈ A} =
∑
i∈Z

1A(Ti), ∀A ∈ B.

Definition 1.1.2. A spike train S is the restriction of the realization h of a simple point
process H to the recording interval [0, T ], i.e.,

S := (t1, . . . , tn) = {ti ∈ Rh : i ∈ Z} ∩ [0, T ]

with t1 < t2 · · · < tn and n = #{{ti ∈ Rh : i ∈ Z} ∩ [0, T ]}.

Definition 1.1.3. Let r(·) be a non-negative real valued measurable function and for a < b

let R(a, b) =
∫ b
a r(t)dt. Then a point process H is called an inhomogeneous Poisson process, if

P(H((ai, bi]) = ni, i = 1, . . . k) =

k∏
i=1

(R(ai, bi))
ni

ni!
e−R(ai,bi)

for ai < bi < ai+1. If r(·) is constant, we call H a homogeneous Poisson process.

Remark 1.1.4. R(a, b) can be replaced by a boundedly finite Borel measure R(·) which is
called the intensity measure.

Definition 1.1.5. A point process H is stationary when for every r ∈ N and all bounded
Borel subsets A1, . . . , Ar of R the joint distribution of {H(A1 + t), . . . ,H(Ar + t)} does not
depend on t ∈ (−∞,∞).

7
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Remark 1.1.6. If H is a homogeneous Poisson process, it is stationary. In general a Poisson
process is not stationary.

Proposition 1.1.7. Let H1,H2 . . . be a countable collection of independent Poisson processes
with Rn the intensity measure of Hn for each n. Then the superposition

H =

∞⋃
n=1

Hn

is a Poisson process with intensity measure R =
∑∞

n=1Rn.

Proof. Superposition Theorem, (Kingman, 1993), p.16.

Definition 1.1.8. Let X1, X2, . . . be independent identically distributed (i.i.d.) random
variables on R and for n ≥ 0 let Kn = X1 + · · ·+Xn with K0 = 0. The sequence (Kn)n∈N is
called a random walk on R. If X1 is nonnegative, (Kn)n∈N is called a renewal process.

So, every random walk is a point process with not necessarily ordered time pointsK0,K1,K2, . . . .
The following Remark, cf. Bingmer (2012) p.17, tells us, how to generalize a random walk to
a stationary point process. This is used for the construction of the GLO spike train model.

Remark 1.1.9. Let Xi, i ∈ Z be i.i.d random variables with E[X1] = µ ∈ (0,∞) and with a
distribution not concentrated on {0,±d,±2d, . . . }, d > 0. We define the random walk starting
at zero and evolving to the left and to the right as

Kn := X1 + · · ·+Xn and K−n := −(X0 +X−1 + · · · , X−n+1) with K0 := 0.

The random walk represents a point process H on R by setting

H(A) := #{n ∈ Z : Kn ∈ A}.

To obtain a stationary point process, the origin at the time axis needs to be random. Therefore
we take a large boundary representing the new origin and rename the indices of the random
walk by

. . . ,K ′−1 := Kτa−2, K
′
0 := Kτa−1, K

′
1 := Kτa , K

′
2 := Kτa+1, . . . ,

where τa := inf{n ∈ N : Kn > a}. With that the steps of the shifted random walk are given by

K ′n := lim
a→∞

Kn+τa−1 − a, n ∈ Z,

where the existence of the limit can be seen in Woodroofe (1982), p.18. Then H(A) := #{i ∈
Z : K ′i ∈ A} is a stationary point process and (Ki)i∈Z is called a stationary random walk.

1.1.2 The GLO

On page 2 we have already mentioned the construction of the GLO. Here we summarize the
GLO model in a more compact form using its representation as a counting measure. Therefore,
we modify the definition of a GLO process of Bingmer (2012) to our setting of M simultaneous
neurons. Afterwards we summarize some basic properties about the GLO, see (Bingmer, 2012)
Section 2.2.
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We will use different simplifications of this generalized spike train model in the thesis: In
Chapter 2 in Section 2.1 we analyze rate and phase parameters of one neuron in one oscillation
cycle, cf. Figure 1.2 orange box, to obtain a basic understanding of optimal coding structures.
Furthermore, we give a short outlook, how a sequence of oscillation cycles will influence the
optimal parameter choice, cf. Section 2.1.5. In Section 2.2 we consider two neurons and one
oscillation cycle and derive general effects of the number of neurons and stimuli to optimal
rate and phase parameters and evaluate the increase in the detection probability by small
phases for multiple neurons.
In Chapter 4 we consider one neuron and multiple oscillation cycles, where the reference
time of an oscillation cycle is known as well as the assignment of each spike to its respective
oscillation cycle, to analyze the ability to detect changes in the rate and phase parameter.
Using experimental data, Chapter 5, we consider M = 8 neurons simultaneously and analysis
on the one hand the ability to decide for the correct stimulus in one oscillation cycle and on
the other hand detect changes in the stimulus.

Definition 1.1.10 (GLO processM neurons). Let λs =
(
λ

(1)
s , . . . , λ

(M)
s

)
and ϕs =

(
ϕ

(1)
s , . . . , ϕ

(M)
s

)
be rate and phase parameters with λ

(m)
s ≥ 0 and ϕ

(m)
s ∈ R for all m = 1, . . . ,M . The index s

indicates that these are rate and phase parameters of neurons responding to stimulus s, but
the index is omitted in N and X. Furthermore let σ ∈ [0,∞) be the spike time precision and
µB ∈ (0,∞) and σB ∈ [0,∞) the parameters of the background oscillation.

Then a process G = (G(1), . . . ,G(M)) is a GLO process with parameters (λs,ϕs, σ, µB, σB), if
the counting measure representation of each G(m), m = 1, . . . ,M , is of the form

G(m) =
∑
i∈Z

N
(m)
i∑
j=1

1
Bi+X

(m)
i,j

, with

1. a stationary walk B = (Bi)i∈Z with Bi+1 −Bi i.i.d. N (µB, σ
2
B) ∀ i ∈ N,

2. spike numbers N
(m)
i ∼ Pois

(
λ

(m)
s

)
∀ i ∈ Z,

3. spike times
(
X

(m)
i,j

)
, where X

(m)
i,j are i.i.d. N

(
ϕ

(m)
s , σ2

)
∀ i ∈ Z and ∀ j ∈ N,

4. all variables X
(k)
i1,i2

, N
(k)
i3

are independent ∀ i1, i3 ∈ Z, ∀ i2 ∈ N and ∀m = 1, . . . ,M and
independent of (Bi)i∈Z.

We obtain temporally ordered spike times · · · < T
(m)
−1 < T

(m)
0 < 0 ≤ T

(m)
1 < T

(m)
2 < · · · ,

m ∈ {1, . . . ,M} of the GLO process, if we choose

T
(m)
k :=

{
inf{t ≥ 0 : G(m)([0, t]) = k}, k > 0,

sup{t < 0 : G(m)([t, 0]) = |k|+ 1}, k ≤ 0,
∀m ∈ 1, . . . ,M.

Lemma 1.1.11. B is a simple point process.

Proof. B is a simple point process, if P(B ∈Me) = 1. This is equivalent to the condition that
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all beats Bi are different from each other with probability one, which holds as

P({Bi 6= Bj ∀i 6= j}) = 1− P

⋃
i 6=j
{Bi = Bj}


≥ 1−

∑
i 6=j

P({Bi = Bj}) = 1.

Lemma 1.1.12. B is a stationary point process.

Proof. Follows directly from the construction of B in Remark 1.1.9.

Proposition 1.1.13. G(m), m ∈ {1, . . . ,M}, is a simple and stationary point process.

Proof. See Bingmer (2012), p.31 and p.32.

Definition 1.1.14. H is a cluster process on the c.s.m.s. E1 with center process Hc on the
c.s.m.s. E2 and component processes given by the family of point processes {H(· | y) : y ∈ E2},
when for every bounded A ∈ B(E1)

H(A) =

∫
E2

H(A | y)Hc(dy) =
∑

yi∈Hc(·)

H(A | yi) <∞ a.s.

H is called an independent cluster process, if the component processes are independent.

Lemma 1.1.15. G(m), m ∈ {1, . . . ,M}, is a stationary cluster process.

Proof. We have E1 = E2 = R and Hc = B stationary. The component processes are given by

H(· | yi) =

N
(m)
i∑
j=1

1
yi+X

(m)
i,j

,

with yi ∈ B(·) and it holds

H(A) =
∑

yi∈B(·)

H(A | yi) <∞ a.s.

Definition 1.1.16. Let R be a random measure on E. A point process H on E is a Cox
process directed by R if, conditional on R, H is a Poisson process H(· |R) on E with intensity
measure R, cf. Definition 1.1.3 and Remark 1.1.4.

Proposition 1.1.17. G(m) is a Cox process with random intensity

ρB(t) = λ(m)
s

∑
j∈Z

φ
Bj+ϕ

(m)
s ,σ2(t)

with φµ,σ2(·) denoting the normal density with expectation µ and variance σ2 and random
intensity measure

R(A) =

∫
A
ρB(t)dt, A ∈ B.

10
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Proof. See Bingmer (2012) p.34.

From Proposition 1.1.17 we know that the spiking response of neuron m within a fixed cycle
(the beat is known) can be described by an inhomogeneous Poisson process with intensity

ρ(m)
s (t) =

λ
(m)
s√
2π

exp

(
−(ϕ

(m)
s − t)2

2

)
.

1.2 Small phase delays in empirical spike trains

To quantify the temporal correlation between two spike trains S (1) and S (2) measured
simultaneously of two neurons, often the cross correlation histogram (CCH) is used in practice
(Moore et al., 1966; Perkel et al., 1967). The CCH is an empirical estimate of the cross
correlation function (CCF), which is basically an intensity which measures the occurrence of
spikes per time unit in process H2, conditional on a spike at a particular time point in process
H1.

Definition 1.2.1. Let H1 and H2 be stationary point processes. The cross correlation function
(CCF) of H1 and H2 is defined for lags ` > 0 as

f(`) := lim
∆1,∆2→0+

E [H2(`, `+ ∆2) |H1(−∆1, 0] > 0]

∆2
.

Proposition 1.2.2. Let G ∼ GLO
(
(λ(1), λ(2)), (ϕ(1), ϕ(2)), σ, µB, σB

)
, the CCF of G1 and G2

is

f(`) = λ(2)
∑
i∈Z

φiµb+ϕ(2)−ϕ(1),|i|σ2
B+2σ2(`).

Proof. The proof is based on Proposition 4.3 in Bingmer (2012), which calculates the auto
correlation function.
According to the random counting measure representation in Definition 1.1.10 we can write

f(`) = lim
∆1,∆2→0+

E [G2(`, `+ ∆2) | G1(−∆1, 0] > 0]

∆2

= lim
∆1,∆2→0+

E
[∑

i∈Z
∑N

(2)
i

j=1 1
Bi+X

(2)
i,j

(`, `+ ∆2) | G1(−∆1, 0] > 0

]
∆2

. (1.1)

The event {G1(−∆1, 0] > 0} with ∆1 → 0 basically means that there is a spike at time zero in
process G1. We assume that this spike comes from beat B0, otherwise we can simply rename

the beats. As all N
(2)
i are independent and independent of all N

(1)
i , of all Bj and all X

(m)
k1,k2
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(∀i, j, k1 ∈ Z and ∀k2 ∈ N) we can write Equation 1.1 as

f(`) = lim
∆1,∆2→0+

E
[
N

(2)
i

]
E
[∑

i∈Z 1Bi+X
(2)
i,j

(`, `+ ∆2) | G1(−∆1, 0] > 0

]
∆2

= lim
∆1,∆2→0+

λ(2)
∑

i∈Z E
[
1
Bi+X

(2)
i,j

(`, `+ ∆2) | G1(−∆1, 0] > 0

]
∆2

= lim
∆1,∆2→0+

λ(2)
∑
i∈Z

P
(
Bi +X

(2)
i,j ∈ (`, `+ ∆2) | G1(−∆1, 0] > 0

)
∆2

. (1.2)

Basically Equation 1.2 is the probability that in process G2 a spike from Beat Bi falls into the
interval (`, `+ ∆2), given a spike at time zero in process G1, which comes from Beat B0. So
we want to determine

lim
∆1→0+

P
(
Bi +X

(2)
i,j ∈ (`, `+ ∆2) | G1(−∆1, 0] > 0

)
. (1.3)

We notice that

Bi −B0 +X
(2)
i,j −X

(1)
0,1 ∼ N (iµB + ϕ(2) − ϕ(1), |i|σ2

B + 2σ2),

since for i > 0 (analog for i < 0)

Bi −B0 = (Bi −Bi−1) + (Bi−1 −Bi−2) + · · ·+ (B1 −B0) ∼ N (iµB, |i|σ2
B)

and X
(2)
i,j −X

(1)
0,1 ∼ N (ϕ(2)−ϕ(1), 2σ2) are all independent. Then, cf. Formula 1.9.1 of Liemant

et al. (1988), the probability 1.3 can be written in terms of Fµ,σ(·) the c.d.f. of a normal
distribution with mean µ and variance σ2 as

FiµB+ϕ(2)−ϕ(1),|i|σ2
B+2σ2(`+ ∆2)− FiµB+ϕ(2)−ϕ(1),|i|σ2

B+2σ2(`).

From Equation 1.1 we obtain

f(`) = lim
∆2→0

λ(2)
∑
i∈Z

FiµB+ϕ(2)−ϕ(1),|i|σ2
B+2σ2(`+ ∆2)− FiµB+ϕ(2)−ϕ(1),|i|σ2

B+2σ2(`)

∆2

= λ(2)
∑
i∈Z

φiµB+ϕ(2)−ϕ(1),|i|σ2
B+2σ2(`).

We can easily check that the CCF in case of two GLO processes has its maximum at the phase
difference ϕ(2) − ϕ(1). In GLO spike trains we can observe the phase difference by calculating
the CCH. The CCH uses a discrete binning for the time axis, see Figure 1.4 A and basically
counts the number of spike pairs having a particular difference according to this difference,
see Figure 1.4 B and C. So the CCH obviously depends on the chosen discretization.
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Let S (1) = (t
(1)
1 , . . . , t

(1)
n1 ) and S (2) = (t

(2)
1 , . . . , t

(2)
n2 ) denote the empirical spike times in a

recording interval [0, T ]. The recorded spike times are transformed in binary time series S̃ (1)

and S̃ (2) with time resolution ∆, cf. Figure 1.4 A ’0’ and ’1’, i.e.,

S̃ (m)(j∆) =

{
1, if at least one spike was recorded in [j∆, (j + 1)∆]

0, otherwise.

for j = 0, 2, . . . , T /∆ − 1 and m ∈ {1, 2}. We describe how to build the CCH between the
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Figure 1.4: Schematic representation of a CCH. A. Recorded spike times (red) are transformed
with time resolution ∆ into a binary time series (0− 1). B. Schematic representation of the
computation of Equation (1.4) for a maximal delay of L = 2∆. C. The resulting CCH of unit
1 and unit 2 in B.

pair S̃ (1) and S̃ (2). The CCH between the pair S̃ (2) and S̃ (1) is a mirror image of the CCH
between S̃ (1) and S̃ (2). First we choose a maximal delay L > 0 and define a set of lags

L∆ := {j∆ : j ∈ Z, |j∆| ≤ L}.

Second for every ` ∈ L the number of spikes in S̃ (2) is counted that occur ` time units after a
spike in S̃ (1), i.e., ∑

j

S̃ (1)(j∆)S̃ (2)(j∆ + `). (1.4)

For example in Figure 1.4 B all delays with L ≤ 2 (green) are determined and the resulting
CCH is shown in Figure 1.4 C. Due to the noise in the counts of a CCH and the interest in
particular parameters, the counts are often smoothed with a suitable function, cf. Figure
1.5 B with raw counts in gray and in blue the counts smoothed with a Gaussian kernel. As
illustration, we simulate two spike trains with a phase delay of 2 ms using the GLO. The
smoothed CCH is shown in Figure 1.5 A for a maximal delay of L = 80 ms. If we zoom into
the main peak of the CCH, cf. Figure 1.5 B, we observe the near-zero phase delay of 2 ms,
green dashed line. That phase delay can be measured with high precision in case of long
spike trains, here 25 s, but can be invisible in a sector of the raw spike train, cf. Figure 1.5
C, 100 ms. Experimental studies have shown that these near-zero phase delays are stimulus
specific (Havenith et al., 2011), but it remains a matter of debate if these small delays can be
used to improve the information processing, as the information processing is usually very fast
and only few spikes can be observed. Thus, the perspective of this work is to analyze if such
small phases can contain additional information compared to only the number of spikes (rate
code), what is commonly accepted as relevant signal component.
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Figure 1.5: We simulate two spike trains of 1000 oscillation cycles (≈ 25 s) using the GLO
model, described in Section 1.1. For M = 2 neurons we create a background oscillation of
µB = 25 and σB = 6. The overall spiking precision is σ = 4. The first neuron has a higher
rate of λ(1) = 4 expected spikes per cycle, the second neuron emits on average λ(2) = 2 spikes.
The phase of neuron 1 is ϕ(1) = 2, the phase of neuron 2 is ϕ(2) = 0. A. CCH computed for
the two simulated GLO spike trains with a maximal delay L = 80 ms and smoothed with a
Gaussian kernel, sd=1 ms. B. Main CCH peak: In gray the raw counts, in blue the counts
smoothed with a Gaussian kernel. The existing delay of 2 ms can be measured for the whole
spike trains (25 s), green dashed line. C. A sector of 100 ms of the spike trains.

1.3 Neurophysiological background

In the context of neuronal coding, the identification and evaluation of different signal com-
ponents has been a matter of ongoing debate. In particular, two components have been
identified. First, the idea of coding by the number of action potentials, or the firing rate, dates
back many decades (Adrian, 1928; Sherrington, 1933), showing for example high precision
when accumulated in large populations (Softky and Koch, 1993; Shadlen and Newsome, 1998;
Pouget et al., 2000). Second, also the precise timing of action potentials, called here the
phase, has been found an important signal component in various cases. It has been reported
across different brain structures and across sensory modalities that precise spike times can
carry sensory information beyond the information contained in spike counts and can increase
robustness when sensory noise is added to a stimulus (Nelken et al., 2005; Montemurro et al.,
2008; Kayser et al., 2009; Cattani et al., 2015; Bieler et al., 2017).

However, neuronal firing often exhibits a high degree of variability, or noise, yielding mean
phases that can be measured in the long run but not in short time scales. In the thesis we
focus on one particular kind of such imprecise phases observed in synchronously oscillating
neuronal populations. Synchronized oscillations are a fundamental mechanism for enabling
coordinated activity (Fries, 2009; Buzsáki and Draguhn, 2004) and play a crucial role in the
self-organization of developing networks (Uhlhaas. et al., 2009; Khazipov and Luhmann, 2006;
Singer, 1995). The corresponding synchronized neurons have been observed to exhibit small
phase delays of only a few milliseconds (Buzsáki and Chrobak, 1995; König. et al., 1995;
Roelfsema et al., 1997; Schneider and Nikolić, 2006).

The role of such imprecise phase delays in information processing is largely unclear. On the
one hand, these delays have been considered to reflect imprecise locking of spiking activity to
the oscillation cycle (Buzsáki and Chrobak, 1995; Roelfsema et al., 1997), and they cannot be
identified in short time periods such as individual oscillation cycles (Schneider et al., 2006). On
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the other hand, pure random variability would not explain that these phases can be measured
with high precision when using accumulated data (Schneider and Nikolić, 2006), and that they
can vary systematically with the stimulus (Havenith et al., 2011) or with the level of activation
(Vinck et al., 2010). It therefore remains unclear whether and to which extent such imprecise
phases can contain information in addition to the number of spikes. This question becomes
particularly important considering the high speed of neuronal information processing. As
reaction times in behavioral experiments are often too short to allow long temporal averaging,
information processing is assumed to take place in only a few milliseconds, or oscillation cycles
within each processing step (Osram et al., 1999; Gautrais and Thorpe, 1998; Abeles, 1994).
It is the aim of the thesis to investigate whether and to which extent imprecise spiking phases
can contribute to information processing within short periods of time, such as individual
oscillation cycles. Furthermore, we aim at investigating parameter combinations of rate and
phase that can optimize information processing, in order to enable comparison to empirical
observations.
Available approaches that investigate the information encoded in the timing of spikes often
investigate situations with highly precise spike timing (Srivastava et al., 2017; Kayser et al.,
2009; Nemenman et al., 2008; Thorpe et al., 2001). Theoretically, an arbitrarily large amount
of information can be encoded by precise spiking in very short periods of time. In a similar
way, also imprecise spike timing can convey information when averaged across large time
intervals (Havenith et al., 2011; Bizley et al., 2010; Lorenzo et al., 2009; Nelken et al., 2005).
However, these approaches cannot address the question as to which extent imprecise spike
timing contributes to fast information processing within short time intervals. When analyzing
spike timing within small temporal windows, some approaches focus on mutual information
(Kayser et al., 2009; Montemurro et al., 2008, 2007). These introduce a discretized temporal
binning structure and identify binary words. The difference between the estimated probability
distributions on these words is then used to quantify the information. Such model free
approaches have the advantage of operating on arbitrary empirical spike trains, requiring only
few theoretical assumptions. However, the results crucially depend on the bin size chosen
for the temporal discretization, and because potential similarities between words cannot
be represented, long recordings are necessary for a good representation of the probability
space, particularly for small bin sizes, which may be necessary to investigate the precise
timing of spikes. In addition, quantification of the information in binary words only implicitly
investigates the timing of spikes: It is possible to compare information inherent only in rate by
ignoring the precise spike numbers with information inherent in rate and spike timing. However,
the approach does not assign similarities to spiking patterns with similar spike timing, nor does
it identify a specific parameter for the phase. It is therefore also impossible to theoretically
identify optimal parameter combinations for rate and phase that are neurophysiologically
plausible.
Here we present a theoretical approach that investigates the contribution of imprecise spike
timing to stimulus encoding within short time intervals. In particular, we use a stochastic
spiking model presented earlier (Schneider, 2008; Bingmer et al., 2011), which had been
developed on a data set of spike train recordings showing small and imprecise but stimulus
specific phases (Schneider and Nikolić, 2006; Schneider et al., 2006; Havenith et al., 2011).
Interestingly, the model could precisely capture a variety of temporal properties related to
spike timing inherent in individual spike trains (Bingmer et al., 2011; Schiemann et al., 2012)
and their temporal interactions (Schneider and Nikolić, 2008).
The main part of the thesis considers only the dynamic within one oscillation cycle of the

15



CHAPTER 1. INTRODUCTION

stochastic spiking model with the following assumptions. The spiking activity of a neuron
within an oscillation cycle is assumed to follow an inhomogeneous Poisson process. The number
of spikes within a cycle is assumed Poisson distributed with parameter λ, while the timing
of every spike is independent and normally distributed with unit variance and mean (i.e.,
phase) ϕ. This simple model has the following advantages. First, it characterizes the two
signal components rate and phase with two interpretable parameters and therefore allows the
investigation of optimal parameter combinations. Second, it avoids the problem of choosing a
bin size for temporal discretization because the phase parameter can be estimated from the
mean of the raw spike times. Third, it reproduces the signal properties observed empirically,
where the average phase can be measured precisely in the long run, while spike timing is
highly variable across individual cycles. Fourth, it allows the theoretical investigation of
the difference between pure phase, pure rate and combined rate and phase coding. To this
end, we investigate two physiologically relevant quantities, namely the probability of correct
stimulus detection and the probability of correct detection of a change in the stimulus. Our
considerations focus on fast information processing within one or a small number of oscillation
cycles. In the theoretical investigation of basic principles, we concentrate on the parameters
of individual or groups of similarly activated neurons (cmp. Havenith et al., 2011; Kayser
et al., 2009; Montemurro et al., 2008) throughout the thesis, which considerably reduces
computational complexity. We also apply our theoretical results to parameter sets extracted
from empirical recordings derived from simultaneously recorded neurons.
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Chapter 2

Stimulus encoding

Here we consider the task of neurons to identify the correct stimulus out of S possible stimuli.
Therefore in Section 2.1 we focus on one neuron and show in Section 2.1.1 how to determine
the probability of correct stimulus detection, pD, first within a single oscillation cycle, as a
function of rate and phase parameters, cf. Lemma 2.1.3. In particular in Section 2.1.2, we
investigate optimal rate and phase parameters for a given parameter range. It turns out that the
parameters that maximize the detection probability always include a minimal rate parameter
of zero (Lemma 2.1.2). In case of a pure rate code we show an asymptotic representation of the
optimal rate parameters (Lemma 2.1.5), present an algorithmic determination of the optimal
parameters in general and give the optimal parameters for the case of small rates and many
stimuli (Equation 2.13). In case of a pure phase code the optimal parameters are obvious due
to the symmetry of the normal distribution and equal variances. In case of a combination of
rate and phase we investigate the optimal parameters numerically. Our results suggest that
the phase parameter can increase pD, particularly in cases with many stimuli. Second, optimal
parameter combinations can be pure rate codes, pure phase codes or mixed codes, depending
on the parameter range allowed for rate and phase parameters. In the case of precise phases
for example, phase coding would be preferred to rate coding. No specific correlation between
the size of rate and phase parameters was observed in an optimal parameter set.

In Section 2.1.3 we introduce a circular order of the stimuli, based on empirical data, and focus
on the probability to misclassify stimuli with a fixed distance, which is closely connected to pD
(Claim 2.1.8). Thereby our aim of maximizing pD shifts to minimizing the distance weighted
detection error eD (Definition 2.1.9). Referring to empirical data we consider S = 12 stimuli
and compare different sets of rate and phase parameters. Even if minimizing eD increases the
computational cost, the structure of the optimal rate and phase parameters simplifies, as it
is no more optimal to code a stimulus with medium rate and medium phase. This enables
a natural recognition of the circular order of the stimuli in the optimal rate and and phase
parameters.

In Section 2.1.4 we compare our approach applying the Bayesian decision rule with a well-
known classification technique, the Linear Discriminant Analysis (LDA). First we summarize
the main results about LDA, see Claim 2.1.14 and Lemma 2.1.16. Second we transfer the
approach to our spiking model (Claim 2.1.20 and 2.1.22) and apply LDA to S = 2 and S = 7
stimuli. Interestingly even if some assumptions of LDA are crucially violated, the detection
probability of both approaches are comparable, especially for a high number of stimuli. In
case of S = 2 stimuli without nullstimulus even the acceptance regions are almost identical, if
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we parametrize with the sum of spike times.
In Section 2.1.5 we explore the effect of two oscillation cycles on the phase and its ability to
increase the detection probability. In case of a pure rate code the calculation of the detection
probability can be done analogous to one cycle, as only the overall number of spikes in both
cycles counts. In case of a pure phase code or a rate and phase code the calculation can be
done according to Claim 2.1.25. Basically the optimal coding properties found in Section
2.1.2 continue to hold, but due to the additional uncertainty of the spike allocation to the
correct oscillation cycle, the ability of the phase to increase the detection probability decreases
compared to one cycle.
Finally in Section 2.2 we generalize our procedure to M neurons, whereby we determine the
detection probability by simulations for more than two stimuli (Lemma 2.2.2 and Remark
2.2.4). Again we observe that pD is maximized if both neurons have a minimal rate parameter
of zero for the same stimulus (Lemma 2.2.5). Here our results suggests that two optimal
neurons have a significantly higher detection probability compared to one neuron with the
same overall number of spikes. However, in case of two neurons imprecise phases can increase
the detection probability only for S ≥ 2M stimuli.

2.1 A single neuron

Here we investigate the probability of correct stimulus detection, pD, for a single neuron within
a single oscillation cycle, as a function of the spiking parameters rate λ and phase ϕ. To this
end we restrict to one cycle of our GLO-Model (Figure 1.2 orange box) and assume we know
the start time of the cycle.
Formally, we consider a set {1, . . . , S} of S ∈ N stimuli and rate parameters λ1, . . . , λS , with
λs ≥ 0 ∀s and phase parameters ϕ1, . . . , ϕS , with ϕs ∈ R ∀s. Note that we omit the superscript
index (m) in case of one neuron. We assume that the spiking response of a neuron within an
oscillation cycle is described by an inhomogeneous Poisson process with intensity (cf. Section
1.1)

ρs(t) =
λs√
2π

exp

(
−(ϕs − t)2

2σ2

)
, s ∈ {1, . . . , S}. (2.1)

This means, for stimulus s we assume a Pois(λs)-distributed number Ns of spikes, where the
spike times Xis, i = 1, . . . , Ns are independent and normally distributed with mean ϕs and
variance 1, i.e., N (ϕs, 1). The imprecision of spikes, σ2, can be set to 1 because only the
relation of ϕ and σ is relevant, assuming that σ2 is equal for all stimuli.
We derive the probability pD to detect the correct stimulus in Section 2.1.1, assuming that all
stimuli are equally likely. This probability pD is used in Section 2.1.2 to determine the optimal
rate and phase parameters that maximize the detection probability for a given parameter
range and to compare the increase in the detection probability when using rate and phase to
the case of pure rate or pure phase analysis.
Note that this approach investigates the theoretically optimal detection probability under
the assumption that the assignment of spikes to a particular oscillation cycle is known, also
implying that spiking variability is smaller than the distance between oscillation cycles. These
conditions, although similar in neurophysiological recordings, do not hold perfectly in practice.
However, this assumption is used here to investigate the theoretically optimal capacity of spike
timing in this context.
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2.1.1 The detection probability

In order to derive the probability to detect the correct stimulus among S stimuli, we assume
for simplicity that all stimuli are equally likely. This assumption reduces the parameter space
as the detection probability depends on the probability weights of the stimuli. However, all
techniques can be applied analogously in the general case, in which detection probability will
tend to increase with the inequality of stimulus weights.
We use the following notation. A realization of the random vector Bs = (Ns, X̄s), where
Ns denotes the number of spikes and X̄s := 1

n

∑n
i=1Xis the mean spike time, is denoted by

b = (n, x̄) ∈ N× R. For convenience, we often disregard the subscript s. Note that the mean
spike time X̄ is sufficient for the parameter ϕ, and n is sufficient for λ.
Given {Ns = n} we find X̄s ∼ N (ϕs, σ

2/n). We define for a realization b = (n, x̄)

Ps(b) :=

{
P(Ns = n)φϕs,σ2/n(x̄), if n > 0,

P(Ns = n), if n = 0,
(2.2)

where φϕs,σ2/n denotes the density of the normal distribution with mean ϕs and variance σ2/n
at its argument. For given rate and phase parameters λ1, . . . , λS and ϕ1, . . . , ϕS we divide
the observation space N × R into S acceptance regions A1, . . . , AS for the different stimuli
that are chosen such as to maximize the detection probability pD, i.e., the probability that the
correct stimulus is identified,

pD :=
1

S

S∑
s=1

Ps(B ∈ As),

where Ps(B ∈ As) := P(Bs ∈ As) for s = 1, . . . , S, and {Bs ∈ As} denotes the event that
the random observation Bs falls into the acceptance region of stimulus s, i.e., stimulus s is
detected.
For S = 2 stimuli, the optimal acceptance regions are described in Remark 2.1.1, for examples
see Figure 2.1. In Lemma 2.1.3, this result is generalized to an arbitrary number S of stimuli.
The idea is that according to the Bayesian decision rule (e.g., Camastra and Vinciarelli,
2015), the optimal set of acceptance regions assigns an observation b to stimulus s if Ps(b) >
Ps′(b) ∀ s′ 6= s under the assumption that all stimuli are equally likely. For observations b for
which multiple stimuli yield the same maximal Ps(b), i.e., ∃ S̃ ⊂ {1, . . . , S} with |S̃| ≥ 2 and
Ps̃(b) = Ps̃′(b) ∀ s̃, s̃′ ∈ S̃ and Ps̃(b) > Ps(b) ∀s̃ ∈ S̃, s /∈ S̃, assigning b to any of the stimuli
s̃ ∈ S̃ maximizes the detection probability. In the present setting, the latter case can be
neglected when all phase parameters are different as it occurs with probability zero. If not all
phase parameters are different, only specific and rare combinations of rate parameters can
result in identical probability weight on specific observed spike numbers. In these cases, if
two stimuli yield the same, maximal, probability for an observed number of spikes n ∈ N, we
assign this observation to the stimulus with the smaller rate parameter. If two or more stimuli
have identical rate and phase parameters, one of these stimuli is selected uniformly.

Remark 2.1.1. Acceptance regions for two stimuli with different phase parameters. Let
(λ1, λ2) and (ϕ1, ϕ2) be rate and phase parameters for S = 2 stimuli and let ϕ1 6= ϕ2. Let
N = n be the number of spikes and X̄ = x̄ be the mean observed spike time. W.l.o.g. we only
consider A1, as A2 can be derived analogously. The acceptance region of stimulus 1 is given by

A1 :=

{
(n, x̄)

∣∣∣∣n log
λ1

λ2
−
√
n

σ
(ϕ2 − ϕ1)

(
x̄− ϕ1

σ/
√
n

+

√
n

σ

ϕ1 − ϕ2

2

)
> λ1 − λ2

}
. (2.3)
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Proof. For two stimuli with ϕ1 6= ϕ2, acceptance region A1 is defined by the set of all b such
that P1(b) > P2(b), or the set of all (n, x̄) with(

λ1

λ2

)n
eλ2−λ1e−

n
2σ2 ((x̄−ϕ1)2−(x̄−ϕ2)2) > 1.

Applying the natural logarithm yields the inequality in Equation 2.3.
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Figure 2.1: Acceptance regions A1 and A2 for S = 2 stimuli, border indicated in red. A. Phase
parameters ϕ1 = ϕ2, border derived based only on the number of spikes n; λ1 = 2, λ2 = 4.
B. Additional phase parameters ϕ1 = 0, ϕ2 = 1, acceptance regions derived on the basis
of number of spikes n and mean spike time x̄. Points indicate random realizations (n, x̄)
simulated with (λ1, ϕ1) (blue) and (λ2, ϕ2) (green).

Figure 2.1 illustrates the acceptance regions for two stimuli with different rate and equal (A)
or different (B) phase parameters.
In Remark 2.1.2 we derive the detection probability for two stimuli as a function of the
parameters. The general case of S stimuli, which is somewhat more technical, is given in
Lemma 2.1.3..

Remark 2.1.2. Let (λ1, λ2) and (ϕ1, ϕ2) be rate and phase parameters for S = 2 stimuli.
From the acceptance regions (cf. Equation 2.3), the probability p1 to correctly detect stimulus
1 is given by

p1 := P1

(
N log

λ1

λ2
−
√
N

σ
(ϕ2 − ϕ1)

(
Z +

√
N

σ

ϕ1 − ϕ2

2

)
> λ1 − λ2

)
, (2.4)

where N ∼ Pois(λ1) and Z ∼ N (0, 1). In detail, this probability p1 can be written as follows.

(i) For ϕ1 > ϕ2 we obtain

p1 =

∞∑
n=0

λn1
n!
e−λ1 · P

(
Z >

λ1 − λ2 − n log λ1
λ2√

nϕ1−ϕ2

σ

−
√
n

2

ϕ1 − ϕ2

σ

)
,

and analogously for ϕ1 < ϕ2. Again one can see that the detection probability only
depends on the quotient ϕ/σ.
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(ii) For ϕ1 = ϕ2 and λ1 < λ2, (Figure 2.1 A), we get

p1 = P1

(
N ≤ λ1 − λ2

log(λ1/λ2)

)
,

which results from Equation (2.4) and the fact that if there are two stimuli with the same
maximal probability weight, the stimulus with the smaller rate is assigned.

(iii) For λ1 = λ2 and ϕ1 = ϕ2, we select each stimulus with probability 1/2.

Lemma 2.1.3. Given S stimuli with rate parameters λ1, . . . , λS ≥ 0 and phase parameters
ϕ1, . . . , ϕS ∈ R. Let

Gs := {i ∈ {1, . . . , S} |ϕi = ϕs ∧ λi 6= λs}

denote the set of stimuli with identical phase, but different rate parameter as stimulus s, and
let

Rs := {i ∈ {1, . . . , S} |ϕi = ϕs ∧ λi = λs}

denote the set of stimuli with identical rate and identical phase parameters as stimulus s.
Let A1, . . . , AS denote the acceptance regions that maximize the detection probability and let
ps := Ps(B ∈ As) denote the probability to correctly detect stimulus s if it is present. If λs > 0,
then ps is given by

ps =
1

|Rs|

busc∑
n=ls

λs
n!
e−λs · Ps

(
max
ϕr<ϕs

f (n,σ)
s,r < Z < min

ϕr>ϕs
f (n,σ)
s,r

)
(2.5)

where

f (n,σ)
s,r := f(λs, λr, ϕs, ϕr, n, σ) :=

λr − λs − n log λs
λr√

nϕr−ϕsσ

−
√
n

2

ϕs − ϕr
σ

and Z ∼ N (0, 1). The lower summation index ls of a stimulus s with non-minimal rate, i.e.,
if ∃ r ∈ Gs : λr < λs, is given by

ls := min
k>l̃s, k∈N

k, where l̃s := max
λr<λs,r∈Gs

(
λs − λr

log(λs/λr)

)
. (2.6)

For a stimulus s with minimal rate, i.e., λs ≤ λs′ ∀s′ ∈ Gs or Gs = ∅, we set ls = 0 if
∀r : λr > 0 and ls = 1 otherwise. Further

us := min
λr>λs,r∈Gs

(
λs − λr

log(λs/λr)

)
if ∃ r ∈ Gs : λr > λs,

and us =∞ otherwise. If λs = 0, then ps = 1/|Rs|. The detection probability can be calculated
as

pD =
1

S

S∑
s=1

ps.
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Proof. We only consider p1, all other probabilities can be derived analogously.
In the first step we consider the case that λs > 0 ∀s = 1, . . . , S and the subcase that
∃ r 6= 1 : ϕr = ϕ1. In this case we can only use the number of spikes N to distinguish between
such stimuli with ϕr = ϕ1. Consider first the subset of stimuli with identical phase but
different rate parameter as stimulus 1, i.e.,

G1 := {i ∈ {2, . . . , S} |ϕi = ϕ1 ∧ λi 6= λ1}.

Using the results of Remark 2.1.2 ii), we find the acceptance regions for stimulus 1 if only
stimuli of G1 were to be distinguished as

N > max
λr∈G1,λr<λ1

(
λ1 − λr

log(λ1/λr)

)
=: l̃1 and N ≤ min

λr∈G1,λr>λ1

(
λ1 − λr

log(λ1/λr)

)
=: u1.

Thus, if only stimuli of the set G1 were to be distinguished, we would get

p1 =

bu1c∑
n=l1

P1(N = n) =

bu1c∑
n=l1

λ1

n!
e−λ1 ,

where the lower bound l1 := minj>l̃1, j∈N j accounts for the fact that l̃1 might or might not be
integer valued. If stimulus 1 has minimal rate, i.e., @ r ∈ G1 : λr < λ1, we set l1 = 0 and if
stimulus 1 has maximal rate, i.e., @ r ∈ G1 : λr > λ1, we set u1 =∞ and define b∞c :=∞.
In the second step we still assume λs > 0 ∀s = 1, . . . , S and consider the case in which there
are stimuli whose phase parameters differ from ϕ1. Note that these additional stimuli can only
decrease the acceptance region of stimulus 1. Therefore, it is sufficient to consider only the case
l1 < N ≤ bu1c. Within this range, stimulus 1 is selected if and only if P1(B) > Pr(B) ∀ r 6= 1
with ϕr 6= ϕ1, i.e., if

P1(B)

Pr(B)
=

λn1
n! e
−λ1 · exp

(
− n

2σ2 (x̄− ϕ1)2
)

λnr
n! e
−λr · exp

(
− n

2σ2 (x̄− ϕr)2
) =

(
λ1

λr

)n
eλr−λ1e−

n
2σ2 ((x̄−ϕ1)2+(x̄−ϕr)2) > 1,

which is equivalent to

n log
λ1

λr
− n(ϕr − ϕ1)

σ2

(
x̄− ϕ1 + ϕr

2

)
> λ1 − λr ∀ r 6= 1 with ϕr 6= ϕ1.

Combining the results of Equation (2.3) for all stimuli r with ϕr < ϕ1 and all stimuli r with
ϕr > ϕ1 and applying the bounds l1 and u1, we get

p1 =

bu1c∑
n=l1

λ1

n!
e−λ1 · P1

(
max
ϕr<ϕ1

f(λ1, λr, ϕ1, ϕr, n, σ) < Z < min
ϕr>ϕ1

f(λ1, λr, ϕ1, ϕr, n, σ)

)
,

where Z ∼ N (0, 1). Finally, if there are stimuli with the same ϕ and λ, i.e., |R1| > 1, we
uniformly choose one of these, which yields the factor 1/|R1| in equation (2.5).
In the third step, we consider the case that there exists one stimulus s with rate λs = 0. This
stimulus is detected if and only if N = 0, as

Ps(N = 0) > Pr(N = 0) and Ps(N = i) < Pr(N = i) ∀ r 6= s and i ≥ 1.

In that case we observe ps = 1/|Rs| because a stimulus with λs = 0 will always show N = 0. So
if λ1 = 0 we have p1 = 1/|Rs|. If λ1 > 0 we follow the arguments of the case when λs > 0 ∀s,
except for the subcase when stimulus 1 has minimal rate in G1, i.e., @ r ∈ G1 : λr < λ1. In
this case we set l1 = 1 instead of l1 = 0, which finishes the proof.
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2.1.2 Optimal parameter choices

After deriving the global detection probability pD for given rate and phase parameters, we
now investigate how these parameters should be chosen in order to maximize pD. First, we
note that pD is not affected by a shift of the phase parameter and we can therefore assume
a minimal phase parameter of zero. Then, we observe that pD can always be increased by
increasing the maximal rate λM := maxs λs and the maximal phase ϕM := maxs ϕs. Therefore,
we keep λM and ϕM fixed and derive the results as a function of these restrictions.
A further observation is that the parameters that maximize pD also include a minimal rate
parameter of zero. In the case of a pure rate code, pD can obviously be increased by letting
mins λs decrease to zero. Also for a combined code of rate and phase parameters, with given
λM and ϕM , pD is maximized by letting mins λs decrease to zero (Lemma 2.1.4).

Lemma 2.1.4. Given S stimuli with rate parameters λ = (λ1, . . . , λS) with 0 < λ1 ≤ λ2 ≤
· · · ≤ λS and phase parameters ϕ = (ϕ1,ϕ2, . . . , ϕS), and let λ̃ = (0, λ2, . . . , λS), i.e., λ1 in
the parameter vector λ is replaced by 0. Then it holds

pD(λ̃,ϕ) ≥ pD(λ,ϕ).

Proof. Let A1, . . . , AS denote the disjoint acceptance regions for the stimuli 1, . . . , S of pa-
rameters (λ,ϕ), and let Ã1, . . . , ÃS denote the acceptance regions for parameters (λ̃,ϕ).
Recall that A1, . . . , AS and Ã1, . . . , ÃS are chosen such as to optimize pD(λ,ϕ) and pD(λ̃,ϕ),
respectively. We now investigate the difference between A1, . . . , AS and Ã1, . . . , ÃS . By setting
λ1 to zero, only the decision bounds between stimulus 1 and the other stimuli are affected,
leaving the decision bounds between all other pairs of stimuli unaffected (eq. (2.3)). We can
therefore divide A1 into disjoint subsets

A1 = A11 ∪A12 ∪ · · · ∪A1S ,

where A1s denotes the part which is allocated to region Ãs, s = 1, . . . , S, such that

Ãs =

{
A11 = {0} for s = 1,

As ∪A1s for s = 2, . . . , S.

Let again B = (N, X̄) denote the random vector containing the spike number and mean spike
time. We split up the detection probability pD(λ,ϕ) =

∑
s Ps(B ∈ As), and analogously for

pD(λ̃,ϕ). Then we find for stimulus 1

P1(B̃ ∈ Ã1) = 1 ≥ P1(B ∈ A1)

and for all stimuli s = 2, . . . , k

Ps(B̃ ∈ Ãs) = Ps(B ∈ As) + Ps(B ∈ A1s) ≥ Ps(B ∈ As).

2.1.2.1 Discrimination only on the basis of λ

Here we identify the optimal rate parameters for a given parameter range and number of
stimuli for a pure rate code. To that end we assume that all phases are identical ϕ1 = · · · = ϕS ,
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and λ0 = 0 ≤ λ1 ≤ . . . ≤ λS = λM . First, we show that the optimal rate parameters are
asymptotically (λM →∞) given by a linear relation, i.e.,

λs =
( s
S

)2
λM , s = 1, . . . , S. (2.7)

Second, to evaluate the asymptotic solution in case of medium rates, we develop an algorithmic
approach that calculates the exact optimal rate parameters numerically. The algorithm makes
use of the discrete structure of the Poisson distribution, using a connection between decision
bounds and optimal rate parameters (Lemma 2.1.6). Already for small rates, the detection
probability of the asymptotically optimal solution corresponds closely to the exact numerical
solution (Figure 2.2 A).
Third, we consider the case where the maximal rate is small relative to the number of stimuli,
i.e., λM ≤ S, and show (Lemma 2.1.7) that the detection probability is maximized by λ0 = 0,
λS = λM and

λs =

{
s, if s < λM ,

0, else,
for s = 1, . . . , S − 1.

Asymptotic solution
To derive the asymptotic solution we recall that in case of identical phase parameters ϕ1 =
· · · = ϕS , the detection probability simplifies to (cf. Remark 2.1.2 and Lemma 2.1.3)

pD(λ,ϕ) =
1

S + 1

(
1 +

S−1∑
s=1

Ps(`s−1 < N ≤ `s) + PS(N > `S−1)

)
,

where the decision bound between stimulus s and s+ 1 is given by

`s :=
λs+1 − λs

log (λs+1/λs)
for s = 1, . . . , S − 1, `0 := 0.

If λM is asymptotically large, also the rate parameters λ1, . . . , λS are large (as they are
all positive and λ0 = 0), such that each Poisson distribution with parameter λs can be
approximated by a normal distribution with mean λs and variance λs. In Lemma 2.1.5, we
use this property to show relation (2.7). Using the asymptotic distribution requires new
asymptotically optimal decision bounds and detection probability, which are denoted by ˜̀ and
p̃D, respectively.

Lemma 2.1.5. Consider rate parameters λ = (λ1, . . . , λS) with λ0 = 0 < λ1 < · · · < λS ≤ λM ,
and let Z1, . . . , ZS be independent with Zs ∼ N (λs, λs) for all s = 1, . . . , S. Let Z0 = 0 a.s. (the
nullstimulus). Accordingly, A0 = {0} and P0(Z0 ∈ A0) = 1. First, for given λ, the probability

p̃D(λ, ˜̀) =
1

S + 1

(
1 +

S−1∑
s=1

P(˜̀
s−1 < Zs ≤ ˜̀

s) + P(ZS > ˜̀
S−1)

)
,

with ˜̀
0 := 0 and ˜̀= (˜̀

1, . . . , ˜̀
S−1), is maximized by decision bounds

˜̀∗
s(λ) =

√
log(λs+1)− log(λs) + λs+1 − λs

1/λs − 1/λs+1
for s = 1, . . . , S − 1. (2.8)
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Second, if λ is not given, the vector of rates λ∗ := (λ∗1, . . . , λ
∗
S) which maximizes the detection

probability is asymptotically given by

λ∗ := arg max
λ

p̃D(λ, ˜̀
∗
(λ))→

((
1

S

)2

λM ,

(
2

S

)2

λM , . . . ,

(
S

S

)2

λM

)
, (2.9)

as λM →∞.

Proof. Equation (2.8) results by solving fλs(
˜̀
s) = fλs+1(˜̀

s), where fλs(·) denotes the density
of the N (λs, λs)-distribution, i.e., solving

1√
2πλs

exp

(
−(˜̀

s − λs)2

2λs

)
=

1√
2πλs+1

exp

(
−(˜̀

s − λs+1)2

2λs+1

)
for ˜̀

s.
In order to show equation (2.9), note that λM →∞ implies λ∗s →∞ and also (λ∗s−λ∗s−1)→∞
for s = 1, . . . , S, because this reduces the probability of Zs < 0, s = 1, . . . , S and the overlap
of adjacent densities fλs and fλs+1 . Asymptotically, we thus approximate the relation between

the optimal decision bounds ˜̀∗
s and the optimal rate parameters λ∗s

˜̀∗
s√

λ∗sλ
∗
s+1

=

√
log(λ∗s+1)−log(λ∗s)+λ∗s+1−λ∗s

λ∗s+1−λ
∗
s

λ∗sλ∗s+1√
λ∗sλ

∗
s+1

−→

√
1

1/(λ∗sλ
∗
s+1)√

λ∗sλ
∗
s+1

= 1. (2.10)

For the case S = 2, we have λ∗1 = c1λ
∗
2 and recall ˜̀

0 = 0 for the nullstimulus. Due to the
symmetry of the normal distribution, the optimal λ∗1 must be the mean λ∗1 = 0.5(˜̀

0 + ˜̀∗
1) = ˜̀∗

1/2
between the two decision bounds. Using the asymptotic representation of ˜̀∗

1 (2.10), we require

2λ∗1√
λ∗1λ

∗
2

= 2
√
c1 −→ 1,

which yields c1 → 1/4 = (1/S)2.
The induction from S to S + 1 stimuli uses the fact that for a given optimal λ∗S , the optimal
relation for all λ∗s with s ≤ S persists, which is denoted by cs = λ∗s/λ

∗
s+1 ∀ s = 1, . . . , S − 1.

Thus it is sufficient to determine the optimal relation between λ∗S and λ∗S+1.

Again due to the symmetry of the normal distribution it holds λ∗S =
(

˜̀∗
S−1 + ˜̀∗

S

)
/2, which

yields

√
cS =

λ∗S√
λ∗Sλ

∗
S+1

=
˜̀∗
S−1 + ˜̀∗

S

2
√
λ∗Sλ

∗
S+1

=
1

2

(
˜̀∗
S−1√
λ∗S−1λ

∗
S

√
cS−1cS +

˜̀∗
S√

λ∗Sλ
∗
S+1

)
.

Solving the expression for
√
cS and applying the induction cS−1 →

(
S−1
S

)2
and (2.10) yields

√
cS =

˜̀∗
S/
√
λ∗Sλ

∗
S+1

2− (
√
cS−1

˜̀∗
S−1/

√
λ∗S−1λ

∗
S)
−→ 1

2− S−1
S

=
S

S + 1
.

Overall the induction yields

λ∗s
λ∗S+1

=
λ∗s
λ∗S
cS →

( s
S

)2
(

S

S + 1

)2

=

(
s

S + 1

)2

.
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Algorithmic determination
The basic idea of the algorithmic determination is to derive the optimal decision bounds
instead of the optimal rate parameters (Lemma 2.1.6).

Lemma 2.1.6. For fixed decision bounds L = {0, `1, . . . , `S−1} with 0 < `1 < `2 < · · · < `S−1,
`i ∈ N, and fixed λS = λM the optimal rate parameters are

λs =

(
`s!

`s−1!

)1/(`s−`s−1)

, s = 1, . . . , S − 1. (2.11)

Proof. Stimulus s is detected if N ∈ [`s−1 + 1, `s]. We therefore need to maximize the
probability

p`s−1,`s
s (λs) :=

`s∑
i=`s−1+1

λis
i!
e−λs .

The derivative with respect to λs is

∂p
`s,`s−1
s (λs)

∂λs
=

`s∑
i=`s−1+1

(
iλi−1
s

i!
e−λs − λis

i!
e−λs

)
= e−λsλ`s−1

s

(
1

`s−1!
− λ

`s−`s−1
s

`s!

)
,

which vanishes for the term given in Equation (2.11). As the gradient changes from positive
to negative and there are no extremes at the margins, this is a maximum.

We now derive the set of decision bounds L. For S = 2, L = {0, `1}, with `1 ∈ N because
N ∈ N. Recall that the optimal λ1 is a function of `1. Therefore, we only need to determine
the optimal `1 as a function of λ2. To that end, we determine the value λ̃2 of λ2 for which

p
(`)
D = p

(`+1)
D because for reasons of monotonicity, the optimal `1 ≥ `+ 1 for λ2 > λ̃2, and the

optimal `1 ≤ ` for λ2 < λ̃2. The respective solution for `1 can be derived numerically (Figure
2.2 C).
In case of S > 2 stimuli, the optimal set of bounds L can be derived with dynamic programming,
by determining the optimal lower decision bounds as a function of higher decision bounds,
starting with the smallest bounds. Knowing the optimal combinations of the decision bounds,
we only need to determine for which value λ̃S of λS the decision bound with the next higher
`S−1 is chosen. The optimal rate parameters are then given in Lemma 2.1.6 and are illustrated
for S = 5 in Figure 2.2 B.

A note on the case of small rates and many stimuli, i.e., when λM ≤ S
While the asymptotic case treated above considers the case of large λM , the case of small λM
will be particularly important in the data analysis in Section 5. Therefore, we discuss this case
in more detail here. In this case, one combination of rate parameters that maximizes detection
probability is given by λS = λM , λs = s for s < bλMc and λs = 0 else. Thus, the rate of 0 is
taken several times, implying that the corresponding stimuli cannot be distinguished. The
main idea is that the discreteness of the Poisson distribution allows for only λM + 1 different
decision areas if λM ∈ N, given by

A0 = {0}, A1 = {1}, . . . , AλM = {λM , λM + 1, . . .} (2.12)
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Figure 2.2: A and B. Maximal detection probability and optimal rate parameters for S = 5
stimuli. A. Detection probability pD derived with the optimal numeric solution (Lemma 2.1.6)
(black line). The red curve indicates the approximate asymptotic solution according to Lemma
2.1.5. B. Optimal rate parameters derived asymptotically according to Lemma 2.1.5 (straight
lines) and derived numerically according to Lemma 2.1.6 (black step functions). C. Optimal
rate parameters for case with S ≥ λM , i.e., S = 3 stimuli and λM = 2.5.

and for bλMc+ 2 areas if λM /∈ N given by

A0 = {0}, A1 = {1}, . . . , AbλM c = bλMc, AbλM c+1 = {bλMc+ 1, bλMc+ 2, . . .} (Fig. 2.2 C).

(2.13)

Optimal separation between these areas is obtained by choosing the rate parameters identical
to the decision areas for s ≤ λM . Thus, for λM /∈ N and S = bλMc+ 1 stimuli, the optimal
rate parameters are {0, 1, 2, . . . , bλMc, λM} (where S = bλMc and bλMc = λM in case of λM
integer). This is because for a fixed j ∈ N the rate parameter λ0 that maximizes the Poisson
weight on j is λ0 = j, which maximizes the weights on each decision area. For a proof see
Lemma 2.1.7.

If the number of stimuli is larger than λM , the choice of the rate parameters in the additional
stimuli does not affect the detection probability. This is because an additional stimulus must
necessarily share an already defined acceptance region with a given stimulus, while a gain in
detection probability for the additional stimulus corresponds to a loss of equal size in detection
probability for a given stimulus, and a stimulus with a non-integer rate parameter will never
be detected.

Lemma 2.1.7. Let Nλ ∼ Pois(λ) with λ ≥ 0 and Nj ∼ Pois(j) for a fixed j ∈ N. Then

P(Nj = j) ≥ P(Nλ = j).

Proof. For λ := j + ε, ε ∈ R, we show

(j)j

k!
e−j ≥ (j + ε)j

j!
e−(j+ε), which is equivalent to

(
j

j + ε

)j
≥ e−ε. (2.14)

For ε = 0, equality holds. For ε 6= 0 we use the bounds of the logarithm

1− 1

x
< log(x) < x− 1 ∀x > 1. (2.15)
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If ε < 0, (2.14) follows with the first part of (2.15), as(
j

j + ε

)j
= exp

(
j log

(
j

j + ε

))
(2.15)
> exp

(
j

(
1− j + ε

j

))
= exp

(
−j ε

j

)
= e−ε.

If ε > 0, (2.14) follows with the second part of (2.15), as(
j

j + ε

)j
= exp

(
−j log

(
j + ε

j

))
(2.15)
> exp

(
−j · ε

j

)
= e−ε.

2.1.2.2 Discrimination only on the basis of ϕ

Here we consider a pure phase code and identify the optimal phase parameters for a given
parameter range and number of stimuli. Note that for reasons of comparability we always
assume a nullstimulus with rate zero, for which we decide if no spike is observed, where the phase
is naturally irrelevant. The notion of ’phase code’ therefore refers here to the situation in which
the parameters of all stimuli except the nullstimulus may differ only in the phase parameter
and have the same, positive rates, i.e., 0 < λ1 = · · · = λS and 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕS .
Searching for the optimal vector of phase parameters corresponds to positioning the means of
S normal distributions with the same variance on the interval [0, ϕM ] with minimal overlap.
Due to the symmetry of the normal distribution, the phase parameters need to be chosen
equidistantly in order to maximize the detection probability, i.e.,

ϕ2 − ϕ1 = ϕ3 − ϕ2 = ϕ4 − ϕ3 = · · · = ϕS − ϕS−1,

which yields

ϕs =
s− 1

S − 1
· ϕM , s = 1, . . . , S.

This solution holds for any fixed spike number N = n, where the variances of the respective
normal distributions scale with 1/n. Thus the solution holds also for a random number of
spikes N ∼ Pois(λ).

2.1.2.3 Optimal combination of λ and ϕ

Here we investigate how to combine rate and phase parameters in order to optimize the
detection probability. To that end we consider the discrimination based simultaneously on
λ and ϕ. W.l.o.g. we assume λ0 = 0 ≤ λ1 ≤, . . . ≤ λS = λM , we set the minimum phase
to zero and investigate the relations as a function of λM and ϕM . As the values of λM and
ϕM crucially determine the detection probability, we focus on biologically plausible values of
λM ≈ 4 and ϕM ≈ 0.75 derived in correspondence with the rate and phase parameters given
in (Schneider and Nikolić, 2008) (see Materials and Methods Section A).
Assignment of rate to phase parameters under optimally: For symmetry reasons, no particular
assignment between rate and phase parameters can be considered optimal. For S = 2, two
parameter cases need to be considered, where C1 assigns the minimal phase to the minimal
rate, while C2 assigns the minimal phase to the maximal rate (Figure 2.3). Both cases have
identical detection probability, which can be seen as follows. We focus on the case λ1 > 0
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because otherwise the value of the phase parameter is irrelevant. Rearranging the acceptance
regions in Remark 2.1.1 yields that in C1 we decide for stimulus 1 if

x̄ <
λ1 − λ2 − n log λ1

λ2
n
σ2 (ϕ1 − ϕ2)

+
ϕ1 + ϕ2

2
,

and vice versa for C2. Thus the borders of the acceptance regions of the two cases are
symmetric to (ϕ1 + ϕ2)/2 = ϕM/2. Due to the symmetry of the normal distribution, both
cases result in the same detection probability.
Also for more than two stimuli, the optimal parameter vectors do not show specific relations
between the rate and phase parameters, i.e., high rates are combined both with large and
small phases (Figure 2.4 C).

0 2 4 6 8 10

n

x
0

ϕ M
2

ϕ M

S1
S2 C1

C2

C1 C2

Stimulus λ ϕ ϕ

0 0 − −
1 λ1 0 ϕM
2 λM ϕM 0

Figure 2.3: Two combinations of rate and phase parameters for two stimuli (stimulus 1,
triangle, and stimulus 2, square). In case C1 (blue), the smaller rate is combined with the
smaller phase, and vise versa in C2 (green). Borders of acceptance regions indicated by colored
curves, which are symmetric to ϕM/2 (black dotted line).

Phase, rate and combined coding
Pure rate codes, pure phase codes or combined codes can be optimal depending on the allowed
parameter ranges, i.e., on the values of ϕM and λM . This is illustrated in Figure 2.4 A for
the case of two stimuli with λ2 = λM = 4, ϕ1 = 0, ϕ2 = ϕM (i.e., the case C1). The blue
curve indicates the optimal value of λ1 determined numerically as a function of the maximal
phase ϕM , where the grey lines indicate the detection probability surface. For ϕM = 0, the
rate parameters are used for stimulus detection, and we find λ0 < λ1 < λ2, which we call a
pure rate code. With increasing ϕM , the optimal value of λ1 increases, and we find λ1 < λ2

and ϕ1 < ϕ2, which we call a combined code. For large ϕM , we find λ1 = λM , which we call
a pure phase code. The analogous evolution can be found for S = 7 stimuli (Figure 2.4 C).
Starting with a pure rate code for ϕM = 0, more and more stimuli are coded with maximal
rate by increasing ϕM , ending up in a pure phase-code.
Increase in detection probability by adding phase parameters: Interestingly, even small phases
can increase the detection probability compared to a pure rate code. The increase in the
optimal detection probability as a function of ϕM is depicted in Figure 2.4 B and D for two
and seven stimuli, respectively. Already for two stimuli, a maximum phase of ϕM = 0.5 results
in a higher detection probability of a phase code over a pure rate code. For more stimuli, the
combined use of rate and phase parameters can considerably increase the detection probability
(Figure 2.4 D).
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Figure 2.4: Optimal rate and phase parameters for S = 2 (A) and S = 7 (C) stimuli and
corresponding detection probabilities (B,D). A. Value of λ1 that maximizes pD for λM = 4
in the case C1, i.e., ϕ1 = 0 and ϕ2 = ϕM as a function of ϕM . For ϕM = 0, we observe a
pure rate code. For small ϕM , the optimal λ1 remains constant as the phase is too small to
contribute to stimulus detection. As ϕM increases, the optimal intermediate rate λ1 increases
and eventually takes the maximal rate. At this point, both stimuli are encoded with the same
rate, resulting in a pure phase code. B. Maximal detection probability on basis of λ and ϕ
(black) in comparison to a pure rate (red) and pure phase code (blue) for two stimuli. C.
General optimal coding schemes for seven stimuli as a function of ϕM , indicated by colors.
D. Maximal detection probability for seven stimuli for a pure rate (red) or pure phase (blue)
code and a combination (black) of rate and phase.
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Generally speaking, phase parameters can be advantageous for small and medium rates if the
detection probability remains suboptimal for a pure rate code, which is particularly relevant
for high numbers of stimuli. In addition, phase parameters can be even more advantageous in
cases of high rates because in these cases, the mean spike time will be rather precise.

2.1.3 Similarity relations

In this section instead of maximizing the detection probability we want to minimize the
weighted probabilities of false decision dependent on the distance of stimuli. In other words
we want to maximize the probability making ’more or less’ a correct decision. In Section 5
we observe in a setting of eight empirical neurons and 12 stimuli that these eight neurons
confuse almost never stimuli, which are very different, cf. Figure 5.14 B. So besides a high
detection probability it seems to be of extreme interest to minimize false decisions between
stimuli, which are not close. Therefore, we introduce a linear error function, see Definition
2.1.9, and investigate how minimizing the linear error function changes the optimal parameters.

Again we assume a maximal rate λM and a maximal phase ϕM , i.e., 0 ≤ λs ≤ λM and
0 ≤ ϕs ≤ ϕM for all s ∈ {1, . . . , S}. From now on stimuli are not ordered according to λ,
but they are arranged uniformly on a circle, so that stimuli 1 and S have distance one, cf.
Figure 5.14 A. Thus we assume a circular order with equal distances between stimuli, i.e, for
S stimuli the distance between stimulus s1 and s2 is defined as

hS(s1, s2) :=

{
|s1 − s2| for |s1 − s2| ≤ S

2 ,

S − |s1 − s2| else.
(2.16)

To keep notation compact we assume an even number S of stimuli.

Connection of misclassification and detection probability.
The probability of falsely detecting stimulus s2 instead of the correct stimulus s1 is denoted
by ps1s2 , i.e.,

ps1s2 := Ps1(B ∈ As2),

where B = (N, X̄) and As2 is the acceptance region of stimulus s2. Furthermore, let p(δ)

denote the average probability to misclassify two stimuli with a distance of δ, i.e.,

p(δ) :=
1

S

∑
s,s′:hS(s,s′)=δ

pss′ ,

where hS(s, s′) denotes the distance between stimuli s and s′, cf. Equation 2.16. Considering a
circular order of S stimuli with S even and equal distances between stimuli as shown in Figure
5.14 A, the overall detection probability pD can also be obtained by a transformation using
p(δ), cf. Claim 2.1.8. Note that this connection only exists if either no nullstimulus exists or
the nullstimulus is also part of the circular order.

Claim 2.1.8. Assume an even number of stimuli and given rate parameters λ1, . . . , λS and
phase parameters ϕ1, . . . , ϕS and that there is no additional nullstimulus. Then the detection
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probability pD can be expressed as

pD = 1−
S/2∑
δ=1

p(δ).

Proof. Let ps denote the detection probability of stimulus s, i.e., the probability to decide for
stimulus s if it is present. Then we obtain

pD =
1

S

S∑
s=1

ps =
1

S

S − S∑
s 6=s′

pss′

 = 1−
S/2∑
δ=1

p(δ).

Linear detection error and its impact on optimal parameters.
Here we introduce the term detection error corresponding to the detection probability, which we
want to minimize in this section. Thereby we naturally weight a misclassification dependent on
the distance of the stimuli, but theoretically we have the problem of an additional nullstimulus.
Here it is not obvious how to define the distance between stimulus s and the nullstimulus.
Therefore, we weight a misclassification with the nullstimulus equally for every stimulus with
maximal weight, cf. Definition 2.1.9.

Definition 2.1.9. Given rate parameters λ = (λ1, . . . , λS) and phase parameters ϕ =
(ϕ1, . . . , ϕS) and an additional nullstimulus, the linear detection error eD is defined as

eD (λ, ϕ) :=
S∑

s1,s2=1

wS(s1, s2) · ps1s2 +
S∑
s=1

ps10,

where wS(·) is a linear weight function, i.e.,

wS(s1, s2) :=
2

S
· hS(s1, s2) ∀s1, s2 ∈ {1, . . . , S}.

Remark 2.1.10. The detection error eD can be also written in terms of p(δ), the average
probability to misclassify two stimuli with a distance of δ, as

eD (λ, ϕ) =
S∑

s1,s2=1

wS(s1, s2) · ps1s2 +
S∑
s=1

ps10

=
S∑

s1,s2=1

2

S
· hS(s1, s2) · ps1s2 +

S∑
s=1

ps10

=

S/2∑
δ=1

2 · δ · p(δ) +
S∑
s=1

ps10.

Furthermore, note that we punish a false decision between stimuli with maximal distance
of S/2 equally to a false decision for the nullstimulus, since wS(s1, s2) = 1 if and only if
hS(s1, s2) = S/2. In case that the nullstimulus is present we never make a bad decision, as
p0 = 1.
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Minimizing the linear detection error increases computational cost considerably, as every
pairwise bad decision needs to be considered separately. Furthermore, for a decent number
of stimuli, i.e., we are interested in 12 stimuli to obtain results comparable to the empirical
neurons, the differences in detection probability or linear detection error of very different rate
and phase parameter sets are quite small, whereby it is uncertain if an optimization algorithm
will find the global maximum or minimum.
Therefore we first generate general insights how the optimal parameter set that minimizes the
linear detection error will differ from the optimal parameter set that maximizes the detection
probability. Second we test our results in case of 12 stimuli and rational choices of parameter
sets according to Section 2.1.2.

In Figure 2.5 two parameter sets are illustrated, where the coordinates of the triangles
represent the rate and phase parameter of a stimulus. The decision areas are drawn as black
lines. Note that only integer spike numbers n can appear, but the grid points are linearly
connected. As the number of spikes N and mean spike time X̄ are sufficient for λ and ϕ, so far
has only counted if the points (realizations) with the coordinates (n, x̄) generated by stimulus
s landed in the decision area of stimulus s or not. Now considering similarity relations it also
counts, in which decision area the realization falls, if it misses the correct area.
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Figure 2.5: Acceptance regions for eight stimuli shown as black lines. The coordinates of the
triangles represent the chosen rate and phase parameters in the λ-ϕ-plane. Each blue dot
represents a realization according to the rate and phase parameters of the blue triangle. For
better discrimination we use jitter for the observed spike numbers, as only discrete values
occur. A realization is correctly assigned to the blue stimulus, if the blue dot is in the area of
the blue triangle. A. Rectangular parameter structure, all stimuli are at the outer limit. B.
Central parameter structure, one stimulus is in the mid of the other stimuli.

Basically to maximize the detection probability the parameters are chosen according to the
following scheme: For small λ the deviation in direction of N is relatively small, but the
deviation in direction of X̄ is high. Equally for large λ the deviation in direction of N is
relatively high, but the deviation in direction of X̄ is small. So the points of the parameter
set can be placed close to one another in direction of λ for small rates, and equally for high
rates in direction of ϕ, cf. Figure 2.5.
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Concerning the linear detection error the parameter set should be influenced in such a way,
that bad decisions occur mostly to neighbored stimuli. So of special interest is, how minimizing
the linear detection error effects the position of points, placed in the mid of many stimuli.
This stimulus can not be obviously assigned to two neighbors. In Figure 2.5 A a parameter
set of S = 8 stimuli is shown with no stimulus in the mid of the other stimuli. According
to the rate and phase parameters of the blue triangle, random realizations (blue dots) are
generated. Most of the dots, which are not in the acceptance region of the blue stimulus, fall
into acceptance regions of direct neighbors. In Figure 2.5 B there is one stimulus with a middle
rate parameter and a middle phase parameter (blue triangle). Misclassification of random
realizations generated according to the middle stimulus is for the most part not restricted to
direct neighbors, but occurs for almost all the other stimuli. Thus, as false decisions to close
neighbors are less punished in case of the linear detection error, we would rather expect no
mid stimulus in a parameter set that minimizes the linear detection error.

The illustration of Figure 2.5 can be confirmed in Figure 2.6. We consider S = 12 stimuli and
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Figure 2.6: Detection probability and detection error for different parameter sets of S = 12
stimuli and λM = 6 and ϕM = 1. Each blue dot represents the rate and phase parameter of
one stimulus. The green dotted line represents the circular order of the stimuli and connects
adjacent stimuli. In black the detection probability is given, in green the detection error of
the presented parameters. A. Optimal rate parameters in case of a pure rate code supported
by the phase. The detection probability without the phase, i.e., ϕM = 0, is shown in the

upper line indicated by p
(λ)
D . B (C). Parameter set that maximizes (minimizes) the detection

probability (detection error) under the restriction of three different rate parameters. D (F).
Parameter set that maximizes (minimizes) the detection probability (detection error) under
the restriction of four different rate parameters. E. Slightly modified the parameter set of D,
such that the stimulus with middle rate and phase is shifted to the maximal rate parameter
and all six stimuli with λM are placed equidistant in ϕ from 0 to ϕM .
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three basic different parameter sets. First in Figure 2.6 A we consider rate parameters, which
maximize the detection probability in case of a pure rate code. As λM = 6 ≤ S we know
according to Section 2.1.2.1 the optimal rate parameters are 1, . . . , 6 and we can distinguish
only six stimuli. A pure rate code yields a detection probability of 0.214 and an detection error
of 5.109. If we consider the same rate parameters, but use the phase (ϕM = 1) to distinguish
respectively two stimuli in the same rate parameter, we can increase the detection probability
by 41.1% to 0.302 and decrease the detection error by 24.9% to 3.836. In Figure 2.6 B we
consider the parameter set that maximizes the detection probability under the restriction that
only three different rate parameters are possible. Interestingly it is optimal to choose the rate
parameters, which are optimal in case of pure rate code and three stimuli. Furthermore, every
shift of a single rate or phase parameter decreases the detection probability. However, the
increase in the detection probability compared to Figure 2.6 A is very small. Also the decrease
in the detection error is quite small, but the shown parameter set should not be optimal in
case of the detection error, as there exist two mid stimuli causing a higher error. If we place
these stimuli at maximal rate we can decrease the detection error, cf. Figure 2.6 C. Shifting
the not maximal rate parameters further to the maximal rate even decreases the detection
error further, as this reduces the probability to falsely decide for the nullstimulus, which is
punished with maximal weight. The loss in overall detection probability is negligible, i.e., 1%,
but the decrease in the detection error is clearer, i.e., 10%

In Figure 2.6 D we consider the parameter set that maximizes the detection probability under
the restriction that only four different rate parameters are possible. Interestingly, again it is
optimal to choose the rate parameters, which are optimal in case of pure rate code and four
stimuli. The increase in the detection probability compared to Figure 2.6 A is about 3.6%
and there is no decrease in the detection error. There is one stimulus with middle rate and
middle phase parameter. If we place this stimulus at maximal rate, the detection probability
remains almost the same, but we can decrease the detection error by 5.5% to 3.685. If we also
shift all parameters that are not maximal towards the maximal rate we can further decrease
the detection error to 3.361 (8.8%), while the detection probability decreases only by 3.7%.

In summary maximizing the detection probability leads to stimuli with medium λ and
medium ϕ, see Figure 2.6 B and D. Minimizing the linear error function leads to no stimulus
with medium λ and medium ϕ and increases the not maximal rate parameters to avoid a
misclassification with the nullstimulus, cf. 2.5 C and F. This effect is stable towards variations
in the weight function, e.g. the square root of a linear weight function or similar weaker
weighting with the same increasing weighting structure.

2.1.4 Linear discriminant analysis

In this section we give a short introduction to a well-known classification technique, the Linear
Discriminant Analysis (LDA), apply it to our stimulus classification task and compare the
result to the Bayesian decision rule. The primary purpose of LDA is to separate a sample of
distinct groups by transforming the data to a different space that is optimal for distinguishing
between the classes in the sense of the F-statistic.

We start with a short example how to distinguish between two multivariate normal dis-
tributions, if we use the Bayesian decision rule. Subsequently, we state the general assumptions
of LDA and its optimization criteria. In Claim 2.1.14 we observe for S = 2 groups, that the
solution of LDA equals the Bayesian decision rule in case of multivariate normal distribu-
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tions, cf. Example 2.1.11. The general solution for S ≥ 2 groups can be found in Lemma 2.1.16.

Afterwards we apply LDA to our stimulus classification task, where we observe the number of
spikes and their spiketimes. Interestingly even if the assumption of equal covariance matrices
is crucially violated, the decision bound for S = 2 stimuli using the Bayesian decision rule or
LDA is almost the same (using the sum of spiketimes). However, introducing the nullstimulus
shows that the classification with LDA is quite different from the Bayesian decision rule in
some parameter cases. Increasing the number of stimuli seems to reduce the difference of both
approaches.
However, LDA is no solution to easily find optimal parameters, since the optimization criterion
is more difficult to handle and using only the first discriminant component loses a lot of
information.

2.1.4.1 Introduction LDA

Example 2.1.11. Consider two d-dimensional normally distributed random variables X1 and
X2 with different means µ1 6= µ2, but identical covariance matrices Σ1 = Σ2 = Σ, i.e.,

X1 ∼ N (µ1,Σ) and X2 ∼ N (µ2,Σ).

Again we think of X1 as response to stimulus 1 and X2 as response to stimulus 2. Equally, to
Section 2.1.1 we assume that each stimulus is equally likely and our aim is to maximize the
detection probability pD. From Section 2.1.1, we already know that pD is maximized by the
Bayesian decision rule, i.e., we choose stimulus 1 if (with fs(·) density of stimulus s)

f1(x) > f2(x).

Equating the normal densities with the assumption of equal covariance matrices yields

exp

(
−1

2
(x− µ1)TΣ−1(x− µ1)

)
= exp

(
−1

2
(x− µ2)TΣ−1(x− µ2)

)
⇐⇒ (x− µ1)TΣ−1(x− µ1) = (x− µ2)TΣ−1(x− µ2)

⇐⇒ d(x) := xΣ−1(µ1 − µ2)− 1

2
(µ1 + µ2)TΣ−1(µ1 − µ2) = 0. (2.17)

Thus the solution of all x, for which f1(x) = f2(x), is a hyperplane.

Remark 2.1.12. The hyperplane passes through the point 1/2(µ1 + µ2), since

d

(
1

2
(µ1 + µ2)

)
= 0.

Remark 2.1.13. Defining aopt := Σ−1(µ1 − µ2), Equation 2.17 equals

aToptx = aTopt
1

2
(µ1 + µ2).

The classical LDA by Fisher (Fisher, 1936) does not demand any distribution assumptions.
LDA seeks to reduce dimensions, while preserving as much of the class discriminatory infor-
mation as possible. However, if we desist from reducing dimensions, LDA provides in case of
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normal distributions the same result as using the Bayesian decision rule, see Example 2.1.11
and Claim 2.1.14.

LDA assumes a set of independent samples

{X11, . . . , Xu11, X12, . . . , Xu22, . . . , X1S , . . . , XuSS} ,

where us realizations belong to class s and it is known which class each realization belongs to.
First we consider the case of only two groups:

Claim 2.1.14. Let x11, . . . , xu11 be independent realizations of a random variable X1 ∈ Rd,
d ≥ 1, and independent of X1 let x12, . . . , xu22 be independent realizations of a random
variable X2 ∈ Rd, d ≥ 1. We assume, the covariance matrix is identical for both groups, i.e.
Cov[X1] = Cov[X2]. Furthermore, let

x̄s :=
1

us

us∑
i=1

xis, for s = 1, 2,

and define the between-class scatter matrix as

B = (x̄1 − x̄2) (x̄1 − x̄2)T

and the within-class scatter matrix

Σ̂ = Σ̂1 + Σ̂2

with

Σ̂s =

us∑
i=1

(xis − x̄s) (xis − x̄s)T , for s = 1, 2.

Then for a ∈ Rd the Fisher criterion

F (a) =
aTBa

aT Σ̂a

is maximized by

aopt = Σ̂−1 (x̄1 − x̄2) .

Proof. The first derivative of F (a) yields

∂

∂a
F (a) =

aT Σ̂a∂a
TBa
∂a − aTBa∂aT Σ̂a

∂a(
aT Σ̂a

)2

=
aT Σ̂aaT

(
B +BT

)
− aTBaaT

(
Σ̂ + Σ̂T

)
(
aT Σ̂a

)2

=
aT Σ̂a2aTB − aTBa2aT Σ̂(

aT Σ̂a
)2 ,
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since B and Σ̂ are symmetric matrices. Equating to zero and dividing by aT Σ̂a yields

2aTB − aTBa

aT Σ̂a
2aT Σ̂ = 0

=⇒ aTB − F (a)aT Σ̂ = 0

⇐⇒ Ba− F (a)Σ̂a = 0

=⇒ Σ̂−1Ba− F (a)a = 0.

Solving the generalized eigenvalue problem yields

arg max
a

aTBa

aT Σ̂a
= Σ̂−1 (x̄1 − x̄2) .

Remark 2.1.15. In LDA we maximize the difference between the projected means aT x̄1 and
aT x̄2 normalized by a measure of the within-class scatter, since the difference between the
projected means can be expressed as(

aT x̄1 − aT x̄2

)2
= aT (x̄1 − x̄2) (x̄1 − x̄2)T a = aTBa

and the scatter of the projections as

us∑
i=1

(
aTxis − aT x̄s

)2
=

us∑
i=1

aT (xis − x̄s) (xis − x̄s)T a = aT Σ̂sa.

Let us now consider the general setting of S > 2 groups with total U =
∑S

s=1 us observations.
As in Claim 2.1.14 we define the between-class scatter matrix

B :=
1

S

S∑
s=1

(x̄s − x̄) (x̄s − x̄)T ,

where x̄ := 1
U

∑us
s=1 usx̄s. The within-class scatter matrix generalizes as

Σ̂ :=
1

U − S

S∑
s=1

Σ̂s with Σ̂s =

us∑
i=1

(xis − x̄s) (xis − x̄s)T .

Again the Fisher criterion is

F (a) =
aTBa

aT Σ̂a

and as the following Lemma tells us, is maximized by the eigenvector of Σ̂−1B corresponding
to the largest eigenvalue.

Lemma 2.1.16. Let B and Σ̂ be symmetric d× d matrices and Σ̂ be positive semi definite.
Then aTBa is maximized by the eigenvector of Σ̂−1B corresponding to the largest eigenvalue β1

of Σ̂−1B under the restriction aT Σ̂a = 1. This direction is called first discriminant component.
Furthermore, maxa a

TBa = β1.
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Proof. See Mardia et al. (1979)

Remark 2.1.17. Further discriminant components are given by the eigenvectors of the next
lower eigenvalues and maximize F (a) under the restriction that the projections of the data are
uncorrelated.

Remark 2.1.18. Maximum m = min{S − 1, d} discriminant components can be determined,
as B has maximum rank S − 1 and Σ̂ has maximum rank d.

Remark 2.1.19. Classification: Consider r ≤ m discriminant components a1, . . . , ar. Then
a datum x is arranged in class c if

r∑
i=1

(
aTi (x− x̄c)

)2
= min

s=1,...,S

r∑
i=1

(
aTi (x− x̄s)

)2
.

2.1.4.2 Application of LDA

Now our aim is to apply the LDA to our spiketrain setting where a stimulus specific Poisson
distributed number of spikes and normally distributed spike times are used to distinguish
between S stimuli and compare the detection probability resulting from LDA to the Bayesian
decision rule.
In the LDA approach normally the matrices B and Σ̂ are estimated. However, we know the
real parameters λs and ϕs in our setting, so we do not need to estimate the mean or covariance
matrices. To compare the outcome of LDA and Bayesian decision rule, it is also cleaner
to use in both cases the known parameters, instead of estimating them only in the LDA scenario.

We recall, that we observe for stimulus s

Zs =

(
Ns

Xs

)
,

where Ns ∼ Pois(λs) is the number of spikes and given {Ns = ns}

Xs :=

ns∑
i=1

Xis ∼ N (nsϕs, ns),

as Xis ∼ N (ϕs, 1), is the sum of independent spike times. We will also consider X̄s := 1
ns
Xs,

where we define X̄s := 0 if ns = 0. Notice that this choice does not change the decision criteria
of the Bayesian decision rule and simplifies the application of LDA.

S = 2 stimuli
In the following we consider S = 2 stimuli (without the nullstimulus) and use Claim 2.1.14 to
determine the decision rule. Therefore we first calculate the covariance matrix Σs separately
for each group s (cf. Claim 2.1.20), which helps us to determine the pooled covariance matrix
Σ, which is needed for the application of LDA, see Claim 2.1.22.

Claim 2.1.20. Let Zs = (Ns, Xs)
T where Ns ∼ Pois(λs) and given {Ns = ns}, we choose

Xs ∼ N (nsϕs, ns). Then the covariance matrix of Zs is given by

Σs =

(
λs λsϕs
λsϕs λs

(
1 + ϕ2

s

)) .
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Proof. It is well-known that

Var[Ns] = λs

and the law of total variance yields

Var[Xs] = E[Var[Xs |Ns]] + Var[E[Xs |Ns]]

= E[Ns] + Var[ϕsNs]

= λs + ϕ2
sλs = λs

(
1 + ϕ2

s

)
.

As

E[X1] = E[E[X1 |N1]] = E[ϕ1N1] = ϕ1λ1,

we again obtain with the law of total variance

Cov[Ns, Xs] = E[NsXs]− E[Ns]E[Xs]

= E[E[NsXs |Ns]]− λsϕsλs
= E[NsE[X |Ns]]− λ2

sϕs

= E[N2
sϕs]− λ2

sϕs

= ϕs
(
Var[Ns] + E[Ns]

2 − λ2
s

)
= λsϕs.

Remark 2.1.21. If we do not consider the sum of spike times, but the mean spike time, i.e.,
given {Ns = ns}, we choose X̄s ∼ N (ϕs, 1/ns), the variables Ns and X̄s are uncorrelated, as

E[NsX̄s] = E[E[NsX̄s |Ns]] = E[NsE[X̄s |Ns]] = E[Nsϕs] = λsϕs

and

E[Ns]E[X̄s] = λsϕs.

But a problem concerning the mean spike time is, that we can not explicitly determine Var[X̄s],
which is needed for the covariance matrix, i.e.,

Var[X̄s] = E[Var[X̄s |Ns]] + Var[E[X̄s |Ns]]

= E
[

1

Ns
1{Ns>0} + 0 · 1{Ns=0}

]
+ Var[ϕs1{Ns>0} + 0 · 1{Ns=0}]

=

∞∑
i=1

1

i

λis
i!
`−λs + ϕ2

se
−λs

(
1− e−λs

)
.

However, in the pooled version, the covariance of N and X̄ is not zero, cf. Remark 2.1.23.

Claim 2.1.22. Let G ∼ Unif{1, 2} and given {G = s}, s = 1, 2, we choose

Z = (N,X)T ,
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where N ∼ Pois(λs) and given {N = n}, we choose X ∼ N (nϕs, n). Then the covariance
matrix of Z is given by

Σ =

(1
2(λ1 + λ2) + 1

4(λ1 − λ2)2 Cov[X,N ]

Cov[X,N ] 1
2

(
λ1

(
1 + ϕ2

1

)
+ λ2

(
1 + ϕ2

2

))
+ 1

4 (λ1ϕ1 − λ2ϕ2)2

)
,

where

Cov[X,N ] =
1

2

(
ϕ1

(
λ1 + λ2

1

)
+ ϕ2

(
λ2 + λ2

2

))
− 1

4
(λ1 + λ2)(ϕ1 + λ1 + ϕ2λ2).

Proof. Using the results of Claim 2.1.20 for both stimuli yields

Var[N ] = E[Var[N |G]] + Var[E[N |G]]

= E
[
1{G=1} · λ1 + 1{G=2} · λ2

]
+

1

2

(
λ1 −

1

2
(λ1 + λ2)

)2

+
1

2

(
λ2 −

1

2
(λ1 + λ2)

)2

=
1

2
λ1 +

1

2
λ2 +

1

2

(
1

2
λ1 −

1

2
λ2

)2

+
1

2

(
1

2
λ2 −

1

2
λ1

)2

=
1

2
(λ1 + λ2) +

1

4
(λ1 − λ2)2

and

Var[X] = E[Var[X |G]] + Var[E[X |G]]

= E
[
1{G=1} · λ1

(
1 + ϕ2

1

)
+ 1{G=2} · λ2

(
1 + ϕ2

2

)]
+ Var[1{G=1} · λ1ϕ1 + 1{G=2} · λ2ϕ2]

=
1

2

(
λ1

(
1 + ϕ2

1

)
+ λ2

(
1 + ϕ2

2

))
+

1

4
(λ1ϕ1 − λ2ϕ2)2

and

Cov[X,N ] = E[NX]− E[N ]

= E[E[NX |G]]− 1

2
(λ1 + λ2)

1

2
(ϕ1λ1 + ϕ2λ2)

=
1

2
ϕ1

(
λ1 + λ2

1

)
+

1

2
ϕ2

(
λ2 + λ2

2

)
− 1

4
(λ1 + λ2)(ϕ1λ1 + ϕ2λ2).

Remark 2.1.23. As mentioned in Remark 2.1.21, if we consider the mean spike time, the
covariance of N and X is zero treating each group separately. However, if we consider the
setting of Claim 2.1.22 and determine the pooled covariance matrix, we obtain a covariance of
N and X unequal zero, as

E[NX] = E[E[NX |G]] =
1

2
λ1ϕ1 +

1

2
λ2ϕ2

and

E[N ]E[X] =
1

2
(λ2 + λ2)

1

2
(ϕ1 + ϕ2),

thus in general

Cov[N,X] = E[NX]− E[N ]E[X] 6= 0.
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Example 2.1.24. Using Claim 2.1.14 and Claim 2.1.22 we are able to determine the LDA
decision rule for the example parameter set (λ1, ϕ1) = (2, 0) and (λ2, ϕ2) = (4, 0.75). Claim
2.1.22 yields

Σ =

(
4 3
3 6.375

)
.

With Claim 2.1.14 we can determine

aopt = Σ−1

((
λ1

λ1ϕ1

)
−
(
λ2

λ2ϕ2

))
=

1

16.5

(
−3.75
−6

)
.

As E[Z] =

(
3

1.5

)
=: z̄, we obtain for the projected mean

aToptz̄ = −20.25

16.5
≈ −1.23.

Overall this yields for the LDA decision line

x =
a

(1)
opt

a
(2)
opt

n+
aToptz̄

a
(2)
opt

= −0.625n+ 3.375.

The comparison of the Bayesian decision rule with the LDA decision rule for S = 2 stimuli
with parameter set of Example 2.1.24 can be found in Figure 2.7 B. The LDA decison rule is
a straight line. Interestingly considering the sum of the spike times the Bayesian decision rule
is also a straight line (red dashed) and is almost identical to the LDA decision rule. So in
the setting of two stimuli (without the nullstimulus) we can use LDA instead of the Bayesian
decision rule to maximize the detection probability, even if the assumption of equal covariance
matrices is crucially violated. Only for a maximal phase larger than 1, the detection proba-
bility based on LDA is slightly lower than based on the Bayesian decision rule, cf. Figure 2.7 D.

Using Remark 2.1.21 we can analogously (numerically with R) to Example 2.1.24 calcu-
late the LDA decision line, if we consider the mean spike time, see Figure 2.7 A. Here the
Bayesian decision line looks quite different from the LDA decision line. However, both decision
lines distinguish the two stimuli almost the same. Furthermore, the detection probability of
applying LDA to the sum of spike times or the mean spike time results in almost the same
detection probability.

An important intuition when applying LDA is, that we project the data to a subspace,
which is optimal (in sense of the Fisher criterion) to distinguish between the stimuli. In case
of S = 2 stimuli and the parameter set of Example 2.1.24 the projections are illustrated in
Figure 2.7 C. If the projected data is to the left of the projected expected value aToptz̄ we
decide for the green stimulus, otherwise we decide for the blue stimulus.

S > 2 stimuli
In the following we consider S > 2 stimuli and use Lemma 2.1.16 to determine the detection
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Figure 2.7: A and B. We consider the parameter set of Example 2.1.24 with (λ1, ϕ1) = (2, 0)
and (λ2, ϕ2) = (4, 0.75) and apply LDA to distinguish between the two stimuli. The red
dashed line represents the Bayesian decision rule, which gives the position of both densities
equal. In dark red the decision line resulting of LDA is drawn. A. We consider the mean
spiketime. B. We consider the sum of spike times. C. Visualization of the projections in LDA,
cf. Claim 2.1.14. D. Detection probability resulting of the Bayesian decision rule compare to
the detection probability resulting from the LDA.

probability resulting from LDA. Therefore, we recall the results of the case S = 2 stimuli and
determine the required matrices

B =
1

S

S∑
s=1

((
λs
λsϕs

)
− z̄
)((

λs
λsϕs

)
− z̄
)T

,

with

z̄ =
1

S

S∑
s=1

(
λs
λsϕs

)
and according to Claim 2.1.20

Σ =
1

S

S∑
s=1

Σs
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with

Σs =

(
λs λsϕs
λsϕs λs

(
1 + ϕ2

s

)) .
With Lemma 2.1.16 and Remark 2.1.17 we are able to determine the discriminant components.
As d = 2 we have in case of S > 2 stimuli two discriminant components, cf. Remark 2.1.18.
Using the classification rule of Remark 2.1.19 we can compare using both discriminant compo-
nents with only the first component.

In Figure 2.8 we calculate the detection probability resulting from the Bayesian decision
rule (black line) compared to resulting from the use of LDA dependent on the maximum
phase. The detection probability based on both discriminant components is shown in blue,
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Figure 2.8: Detection probability resulting from the Bayesian decision rule (black line)
compared to using classification by LDA dependent on the maximum phase. We use 1000
simulations per each phase value and choose the optimal parameter set. The detection
probability based on both discriminant components (’LDA-2’) is shown in blue, based on only
the first component (’LDA-1’) in green. A. S = 2 stimuli plus nullstimulus. B. S = 7 stimuli
plus nullstimulus.

based on only the first component in green. We use the optimal parameter set, which we have
determined in Section 2.1.2.3.

In Figure 2.8 A we consider S = 2 stimuli plus nullstimulus. For small phases up to ϕM = 0.4
LDA and Bayesian decision rule yield almost the same detection probability. In this range the
first discriminant component is even enough, as the coding is mainly based on the rate. For
larger phases the detection probability based on the Bayesian decision rule significantly differs
from the detection probability based on LDA (two components). The difference increases
if the maximum phase increases. Using only the first discriminant component we observe a
significant drop in the detection probability at ϕM ≈ 0.6. Here the coding structure changes
from a rate and phase code to a pure phase code. As we use the rate to detect the nullstimulus,
we still need both discriminant components. The first discriminant component detection rate
recovers at ϕM ≈ 1.5, but remains below the rate for LDA based on both components.
In Figure 2.8 A we consider S = 7 stimuli plus nullstimulus. Here Bayesian decision rule and
LDA (both components) yields almost the same detection probability, differing slightly for
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large phases. Already for small phases the second discriminant component carries important
information. The difference of LDA using both components compared to only first component
increases with increasing the maximum phase.
However, LDA is no solution to easily find optimal parameters, since the optimization criterion
is more difficult to handle and using only the first discriminant component loses a lot of
information.

2.1.5 Two Oscillation Cycles

For the previous results we have considered only one oscillation cycle in our GLO-Model (Figure
1.2 orange box) and asked for the optimal parameter set to maximize the detection probability
or minimize the detection error. Now we want to explore in which manner two oscillation
cycles in our GLO-Model affect the previous results. Again we assume we know the start time
of each cycle (deterministic background beat), but now we have an additional uncertainty
which cycle each spike belongs to. In case of one cycle we had to bound the maximal phase ϕM .
Considering multiple oscillation cycles the maximal phase should adjust by itself for a given
period µB, as otherwise it is hard to match the spikes to the correct oscillation cycle and the
phase is of no use. If the phase is restricted and ϕM � µB, we know for sure which oscillation
cycle each spike belongs to. Thus to determine the rate and phase parameters that maximize
the detection probability we can be draw from the results of Section 2.1.2, i.e., in case of two
cycles and a maximal rate of λM it its equivalent to consider one cyle with maximal rate
2λM , as the two independent inhomogeneous Poisson processes, with identical parameters,
add to one inhomogeneous Poisson process with double maximal rate. So here it is of spe-
cial interest that the maximal phase ϕM adjust itself to ensure a maximal detection probability.

It turns out that the detection probability is constant for µB/σ and (ϕM − ϕmin)/σ con-
stant, see Figure 2.9 A and Lemma 2.1.26. Therefore, in this section we do not assume
σ = 1, but consider the rate and phase parameters that maximize the detection probability
dependent on σ ∈ R+, as it seems more natural to let µB fixed. Naturally the detection
probability remains shift-invariant, so w.l.o.g ϕmin = mins ϕs = 0. For calculations, we assume
a deterministic and known oscillation length µB and two oscillation cycles. Of particular
interest is the influence of µB/σ on the maximal detection probability. Analogous to one
oscillation cycle and one neuron the optimal phase parameters in a pure phase code are chosen
equidistant, but here ϕM = (S − 1)/SµB, S the number of stimuli, as the distance to the
following oscillation cycle need to be considered. So as the oscillation length µB is assumed
to be fixed, the precision of the spike timing σ is the crucial parameter (in addition to the
maximal rate).

Due to additional uncertainty which spike belongs to which oscillation cycle, the impact
of the phase decreases compared to one oscillation cycle and one neuron with double maximal
rate. Extending the model to stochastic oscillation would further decrease the impact of the
phase. In addition, if the background oscillation is not observable the phase can only be used
for at least two neurons. In practice, we do not know the starting point of each oscillation
cycle, but with multiple neurons we are able to use the information of the phase difference of
the spike times among the neurons.

Formally we consider two oscillation cycles in our GLO-model with equal deterministic
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length µB, i.e., σB = 0, cf. Definition 1.1.10 for one neuron. Thus w.l.o.g. the first cycle starts
at time t = 0 and the second cycle at t = µB. Analog to Section 2.1.1 we now consider two
inhomogeneous Poisson processes, the first one with intensity

ρ1s(t) =
λs√
2π

exp

(
−(ϕs − t)2

2σ2

)
, s ∈ {1, . . . , S},

and the second with intensity

ρ2s(t) =
λs√
2π

exp

(
−(ϕs − t− µB)2

2σ2

)
, s ∈ {1, . . . , S}.

Our decision task remains almost the same as in Section 2.1.1: Now we just observe two
oscillation cycles, but we do not know which spike belongs to which cycle. Again we want
to decide for the stimulus, which is most likely for the observed realization to maximize the
detection probability pD = 1/S

∑S
s=1 Ps(B ∈ As), as we still assume that all stimuli are equally

likely. Now it is more complicated to determine the optimal acceptance regions A1, . . . , AS .
Still we want to apply the Bayesian decision rule and assume for simplicity that the spikes
before the first cycle and after the second cycle are still observable. In Claim 2.1.25 we state
when we choose stimulus 1 according to the Bayesian decision rule for a given observation of
n spikes and spike times x1, . . . , xn.

Claim 2.1.25. Given S stimuli and rate parameters λ1, . . . , λS and phase parameters ϕ1, . . . , ϕS
and assuming two oscillation cycles with deterministic length µB. According to the Bayesian
decision rule for an observation of n spikes and spike times x1, . . . , xn we decide for stimulus
1 if

Lmax
1 > Lmax

s ∀s ∈ {2, . . . , S},

with

Lmax
s =

(
1√

2πσ2

)n
max

j=0,...,n

λns
j!(n− j)!

e−2λse−
1

2σ2

∑j
i=1(xi−ϕs)2

· e−
1

2σ2

∑n
i=j+1(xi−µB−ϕs)2

.

(2.18)

Proof. According to the Bayesian decision rule and equally likely stimuli we choose the stimulus,
which is most likely for the observed spike sequence. Therefore, we need to decide for each
spike which oscillation cycle it is belonging to, separately for each stimulus. So w.l.o.g. the
maximum likelihood of stimulus 1 for a given realization n, x1, . . . , xn is

Lmax
1 =

(
1√

2πσ2

)n
max
u∈Ω

λ
|u|
1

|u|!
e−λ1e−

1
2σ2

∑
i∈u(xi−ϕ1)2

· λ
|uc|
1

|uc|!
e−λ1e−

1
2σ2

∑
i∈uc (xi−µB−ϕ1)2

,

where Ω := ℘({1, . . . , n}), with ℘() the power set, and uc := {i ∈ {1, . . . , n} : i /∈ u}. However,
the subset u yielding the maximal likelihood must be in the form of {1, . . . , j}, j ≤ N ,
otherwise we could increase the likelihood by choosing u′ = {1, . . . , |u|}. So Equation (2.18)
holds for Lmax

s .

For simplicity, we assumed that the spikes before the first oscillation and after the second
oscillation are still observable. This assumption leads to a shift of the optimal maximal
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phase off the equidistant choice, as beyond the oscillation cycle is enough space and the
allocation of every spike is reliable, cf. Figure 2.9 B. For this purpose we calculated the
detection probability using Claim 2.1.25 for S = 2 stimuli and λ1 = λ2, σ = 1 and µB = 2.
Additionally we assumed a nullstimulus. As ϕmin = 0 the optimal phase parameters should be
ϕ1 = 0 and ϕ2 = ϕM/2 = 1 or vice versa, if we would observe a infinite sequence of cycles.
However, in case of two cycles and the assumption that outer spikes are still observable, the
optimal ϕM within the cycle is close to 1.4. Actually an infinite value of ϕM would be op-
timal, but to get convincing results we set ϕM := µB/2 in further calculations for S = 2 stimuli.

A ϕ2 − ϕ1

σ

0 µB 2 µB
µB

σ 0 1 2 3 4

0.
5

0.
7

0.
9

ϕM

p D

B
Max

µB = 2

Figure 2.9: A. Considering S = 2 stimuli, spike time distribution of stimulus 1 in blue, of
stimulus 2 in green, the detection probability is constant for µB/σ fixed (the relative space
in each oscillation cycle) and (ϕ2 − ϕ1)/σ fixed (the relative distance of the two stimuli
distributions). For a calculation see Lemma 2.1.26. B. The optimal maximal phase ϕM for 2
stimuli and pure phase code for λ = 2, µB = 2 and σ = 1 (ϕmin = 0). The optimal ϕM only
depends on µB and should adjust itself at ϕM = µB/2. The shift of the phase results of the
assumption, that the spikes beyond the two considered oscillation cycle are still observable.
However, to get convincing results we set ϕM = µB/2 in further calculations.

The following lemma states that the detection probability is constant for µB/σ and (ϕ2−ϕ1)/σ
fixed as is illustrated in Figure 2.9 A.

Lemma 2.1.26. Given S stimuli with rate parameters λ = (λ1, . . . , λS) and phase parameters
ϕ = (ϕ1, . . . , ϕS), the detection probability is constant for µB/σ and (ϕM −ϕmin)/σ fixed, i.e.,

pD(λ,ϕ, µB, σ) = pD(λ, c ·ϕ, c · µB, c · σ), ∀ c ∈ R.

Proof. Scaling ϕ, µB and σ with a constant 1
c only leads to multiplying all likelihoods by c,

i.e., with Claim 2.1.25 the likelihood of stimulus 1 is given by

Lmax
1 =

(
1√

2πσ2

)n
max

j=0,...,n

λn1
j!(n− j)!

e−2λ1e−
1

2σ2 (
∑j
i=1(xi−ϕ1)2+

∑n
i=j+1(xi−µB−ϕ1)2)

= c

(
1√

2π(cσ)2

)n
max

j=0,...,n

λn1
j!(n− j)!

e−2λ1e
− 1

2(cσ)2
(
∑j
i=1(cxi−cϕ1)2+

∑n
i=j+1(cxi−cµB−cϕ1)2)

.

47



CHAPTER 2. STIMULUS ENCODING

As we detect the stimulus with maximal likelihood, the scaling does not effect the detection
probability.

In Figure 2.10 we determine the parameters that maximize the detection probability for one
neuron and two stimuli for two oscillation cycles by simulations. Since the optimal phase
parameters are fixed for constant µB and naturally one stimulus is chosen with maximal rate,
we only have to determine the lower rate λmin dependent on the spike timing precision σ, i.e.,
w.l.o.g. λ1 = λmin, λ2 = λM , ϕ1 = 0 and ϕ2 = ϕM = µB/2. The optimal rate parameters in
case of a pure rate code can be obtained easily based on the results of one oscillation cycle,
see Remark 2.1.27.

Remark 2.1.27. Assume a pure rate code, i.e., ϕ1 = · · · = ϕS, and a given maximal rate λM .
Furthermore let λ1 ≤ · · · ≤ λS = λM denote the rate parameters that maximize the detection
probability in case of two cycles and λ̃1 ≤ · · · ≤ λ̃S = 2λM denote the rate parameters that
maximize the detection probability in case of one cycle. Then it holds that

pD(λ1, . . . , λS) = pD(λ̃1/2, . . . , λ̃S/2) considering two cycles.

In case of two cycles we observe in each cycle an independent Pois(λs)-distributed random
number, where the optimal allocation of the spikes to the cycle only depends on n and not on
λs and is thus equal for all stimuli, cf. Equation (2.18). So we can sum both Poisson numbers
and obtain one Pois(2λs)-distributed random number and draw on the optimal solution in case
of one cycle and a maximal rate of 2λM .
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Figure 2.10: A. The optimal minimal rate parameter λ1 (green line) dependent on the spike
timing precision σ for 2 stimuli and two oscillation cycles and λM = 2, µB = 2 and ϕM = µ/2.
In case of a small σ, i.e., the spikes are placed with a high precision, it is optimal to choose
λ1 = λM and exploit the strong separation in the phase. Increasing σ results in a degradation
of the discrimination in the phase and the minimal rate decreases for σ ∈ [1, 1.2] very fast to
the minimal rate of λ1 =

√
2/2, already known from a optimal pure rate code in one oscillation

cycle (λ = (
√

2, 4), cf. Remark 2.1.27). B. Maximal detection probability dependent on the
spike timing precision σ for the optimal λ1 (green line). In red the detection probability which
results from an optimal pure rate code.

Figure A shows the impact of σ on the choice of the optimal minimal rate λ1. The result is
almost the same compared to one oscillation cycle. If σ is small, which corresponds to highly
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precise phases, we start with a pure phase code, i.e., λ1 = λM = 2. Increasing σ, which is
equivalent to decreasing the precision of ϕM , results for σ = 1 virtually in a jump in a minimal
rate of λ1 =

√
2/2, which maximizes the detection probability in case of a pure rate code, cf.

Remark 2.1.27 and Section 2.1.2.1. Interestingly at a rate of λ1 = 1, which is the optimal rate
parameter in case of a pure rate code (λM = 2) and one oscillation cycle, the jump in the rate
is interrupted and the rate decreases more slowly to the optimal minimal rate in case of a
pure rate code (and two cycles).

Figure B illustrates the influence of the precision of the spike timing σ on the maximal
detection probability pD. We start with a detection probability of nearly one, as stimulus 1
and 2 can be distinguished almost always with highly precise phases. Only if there is no spike
in both cycles for stimulus 1 or 2, we obtain a misclassification with the nullstimulus, i.e.,
pD = 1/3(1 + 2 · (1− (e−2)

2
) ≈ 0.988. Increasing σ decreases the detection probability up to

the detection probability of an optimal rate code.

Since ϕM = µB/2 = 1, we need a sigma of 4/3 to compare the results to Section 2.1.2.3, where
we analyzed one cycle and were interested in phases up to ϕM = 0.75 (σ = 1). However with a
σ of 4/3 the optimal rate and phase code has almost the same rate parameters that are optimal
for a pure rate code. In case of two cycle the optimal rate and phase code (λ1 ≈ 0.89, λ2 =
2, ϕ1 = 0, ϕ2 = 1, σ = 4/3 yielding pD ≈ 0.796) increases the detection probability only by
1.7% compared to a pure rate code (λ1 =

√
2/2, λ2 = 2, ϕ1 = 0, ϕ2 = 0, σ = 4/3 yielding

pD ≈ 0.783). In one cycle the optimal rate and phase code (λ1 = 4, λ2 = 4, ϕ1 = 0, ϕ2 = 0.75
yielding pD ≈ 0.834) increases the detection probability by 6.51% compared to a pure rate
code (λ1 =

√
2, λ2 = 4, ϕ1 = 0, ϕ2 = 0 yielding pD ≈ 0.783).

In summary already for two deterministic oscillation cycles the ability of phase to increase
the detection probability decreases compared to one cycle. Due to the additional uncertainty
of the spike allocation to the correct oscillation cycle, the precision of the phase needs to
be higher to increase the detection probability comparable to one cycle. However, the basic
coding properties remain: Starting with a pure phase code in case of highly precise phases,
the optimal minimal rate parameter decreases with decreasing precision of the phase up to
the optimal pure rate code.

2.2 Two neurons

Here we investigate the probability of correct stimulus detection, pD, for two neurons within a
single oscillation cycle, as a function of the spiking parameters rate λ and phase ϕ. To this
end we restrict to one cycle of our GLO-Model (Figure 1.2 extended orange box, green and
blue firing intensity) and again assume we know the start time of the cycle. An illustration
of the decision task in case of two stimuli can be found in Figure 2.11 A: For each neuron
we observe the number and timing of spikes (red (dashed) bars) and need to decide, which
stimulus caused the spiking output. Therefore, we assume we know the spiking intensity of
each neuron and each stimulus. The spiking intensity of each stimulus and neuron directly
corresponds to a rate and a phase parameter, which is shown in Figure 2.11 B. So our main
objective is to analyze which rate and phase parameters maximize the detection probability
pD. Already for two neurons and two stimuli we have four rate and four phase parameters,
which results in an expensive optimization especially for a high number of stimuli. However,
we want to get a basic idea, if and for which numbers of stimuli and neurons imprecise phases
can considerably increase the detection probability.
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Figure 2.11: Decision Task for two stimuli and two neurons. A. For each neuron we observe
the number and timing of spikes, the spikes of neuron 1 are illustrated as red bars and of
neuron 2 as red dashed bars. The spiking intensity corresponding to stimulus 1 is shown in
blue, to stimulus 2 in green. The spiking intensity belonging to neuron 2 is shown in dashed
lines. In case of the shown observation we would decide for stimulus 1 (blue). B. According to
our spiking model, cf. Equation (2.19), the spiking intensity results from a rate and a phase

parameter, which are illustrated as four dots in the λ-ϕ-plane. Thereby M
(m)
s denotes the

rate and phase parameters of neuron m responding to stimulus s.

Formally, we consider a set {1, . . . , S} of S ∈ N stimuli and for each neuron m ∈ {1, . . . ,M} of

M ∈ N rate parameters λ(m) =
(
λ

(m)
1 , . . . , λ

(m)
S

)
, with λ

(m)
s ≥ 0 ∀s,m and phase parameters

ϕ(m) =
(
ϕ

(m)
1 , . . . , ϕ

(m)
S

)
, with ϕ

(m)
s ∈ R ∀s,m. We assume that the spiking response of each

neuron m ∈ {1, . . . ,M} within an oscillation cycle can be described by an inhomogeneous
Poisson process with intensity

ρ(m)
s (t) =

λ
(m)
s√
2π

exp

(
−(ϕ

(m)
s − t)2

2

)
, s ∈ {1, . . . , S}. (2.19)

Thus we assume each neuron responses to stimulus s with an independent Pois(λ
(m)
s )-

distributed number N
(m)
s of spikes, where the spike times X

(m)
is , i = 1, . . . , N

(m)
s are in-

dependent and N (ϕ
(m)
s , 1)-distributed. Again the imprecision of spikes, σ2, is set to 1 because

only the relation of ϕ and σ is relevant, assuming that σ2 is equal for all stimuli and neurons.

For S = 2 stimuli the acceptance regions are described in Claim 2.2.1. In the general case of
S > 2 stimuli a numeric calculation has a high computational cost, cf. Remark 2.2.4, thus we
determine the detection probability with Lemma 2.2.2 by simulations. In case of a pure rate
code, i.e., all phases are equal, Corollary 2.2.3 states how to calculate the detection probability
numerically. In the special case of S = 2 stimuli plus a nullstimulus, such a stimulus always
exists in an optimal parameter set, cf. Lemma 2.2.5, we can use Claim 2.2.1 to calculate the
detection probability numerically efficient, see Paragraph ’Special case of M = 2 neurons and
S = 2 stimuli’ in Section 2.2.1.
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In Section 2.2.2 we explore the optimal rate and phase parameters in case of two neurons,
starting with the insight that an optimal parameter set always contains a nullstimulus, see
Section 2.2.2.1. With the numerically calculation for two stimuli (plus nullstimulus) we
determine the optimal rate and phase parameters in Section 2.2.2.2. In Section 2.2.2.3 we use
simulations to analyze, if small phases can increase the detection probability in case of three
and four stimuli.

2.2.1 The detection probability

In order to derive the probability to detect the correct stimulus among S stimuli, we extend

the notation of Section 2.1.1 to M neurons. A realization of the random vector B
(m)
s =(

N
(m)
s , X̄

(m)
s

)
, where N

(m)
s denotes the number of spikes and X̄

(m)
s := 1

n(m)

∑n(m)

i=1 X
(m)
is the

mean spike time of neuron m, is denoted by

b(m) :=
(
n(m), x̄(m)

)
∈ N× R.

As X̄s ∼ N (ϕ
(m)
s , σ2/n(m)) given {N (m)

s = n(m)}, we define for a realization b(m)

Ps

(
b(m)

)
:= P

(
N (m)
s = n(m)

)
φ
ϕ

(m)
s ,σ2/n(m)

(
x̄(m)

)
,

where φ
ϕ

(m)
s ,σ2/n(m) denotes the density of the normal distribution with mean ϕ

(m)
s and variance

σ2/n(m) at its argument.

For each neuron m ∈ {1, . . . ,M} we have an observation space N × R. Now the decision
which stimulus is present depends on M > 1 neurons. Thus, the whole observation space is
(N× R)M , which we divide into S acceptance regions A1, . . . , AS such that we maximize the
detection probability, i.e.,

pD :=
1

S

S∑
s=1

Ps(B ∈ As),

where Ps(B ∈ As) := P(Bs ∈ As) and Bs :=
(
B

(1)
s , . . . , B

(M)
s

)
for s = 1, . . . , S.

Again according to the Bayesian decision rule (e.g., Camastra and Vinciarelli, 2015), the
optimal set of acceptance regions assigns an observation b =

(
b(1), . . . , b(M)

)
to stimulus s if

M∏
m=1

P (m)
s

(
b(m)

)
>

M∏
m=1

P
(m)
s′

(
b(m)

)
∀s′ 6= s, (2.20)

or in short Ps(b) > Ps′(b) ∀s′ 6= s, under the assumption that all stimuli are equally likely.

If all neurons have the same phase parameters for more than one stimulus, i.e., ∃ s 6= s′ ∈
{1, . . . , S} with ϕ

(1)
s = · · · = ϕ

(M)
s = ϕ

(1)
s′ = · · · = ϕ

(M)
s′ , it is possible due to the discreteness

of the Poisson distribution that for an observation b multiple stimuli yield the same maximal
Ps(b), i.e., ∃ S̃ ⊂ {1, . . . , S} with |S̃| ≥ 2 and Ps̃(b) = Ps̃′(b) ∀ s̃, s̃′ ∈ S̃ and Ps̃(b) > Ps(b)
∀s̃ ∈ S̃, s /∈ S̃. In this cases we assign this observation to the stimulus with the smaller sum of
rate parameters, as assigning b to any of the stimuli s̃ ∈ S̃ maximizes the detection probability.
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Claim 2.2.1. Let λ(1), . . . ,λ(M), λ
(m)
s ≥ 0 for all m ∈ {1, . . . ,M}, s ∈ {1, . . . ,M} and

ϕ(1), . . . ,ϕ(M), ϕ
(m)
s ∈ R for all m ∈ {1, . . . ,M}, s ∈ {1, . . . ,M} be rate and phase parameters

for S = 2 stimuli and M neurons and let
∣∣∣{ϕ(1)

1 , . . . , ϕ
(1)
S , . . . , ϕ

(M)
1 , . . . , ϕ

(M)
S )

}∣∣∣ > 1. Let

N (m) = n(m) be the number of spikes and X̄(m) = x̄(m) be the mean observed spike time of
neuron m = 1, . . . ,M . W.l.o.g. the acceptance region of stimulus 1 is given by the set

A1 :=

{(
(n(1), x̄(1)), . . . , (n(M), x̄(M))

) ∣∣∣∣∣
M∑
m=1

[
n(m) log

λ
(m)
1

λ
(m)
2

−
√
n(m)

σ
(ϕ

(m)
2 − ϕ(m)

1 )

(
x̄(m) − ϕ(m)

1

σ/
√
n(m)

+

√
n(m)

σ

ϕ
(m)
1 − ϕ(m)

2

2

)]
>

M∑
m=1

λ
(m)
1 − λ(m)

2

}
.

(2.21)

Proof. For two stimuli, acceptance region A1 is defined by the set of all b such that P1(b) >
P2(b), or the set of all (n(1), x̄(1)), . . . , (n(M), x̄(M)) with

M∏
m=1

(
λ

(m)
1

λ
(m)
2

)n(m)

eλ
(m)
2 −λ(m)

1 e
−n

(m)

2σ2

((
x̄(m)−ϕ(m)

1

)2
−
(
x̄(m)−ϕ(m)

2

)2
)
> 1.

Applying the natural logarithm yields

M∑
m=1

n log
λ

(m)
1

λ
(m)
2

− n(m)(ϕ
(m)
2 − ϕ(m)

1 )

σ2

(
x̄(m) − ϕ

(m)
1 + ϕ

(m)
2

2

)
> λ

(m)
1 − λ(m)

2

⇐⇒
M∑
m=1

n log
λ

(m)
1

λ
(m)
2

−
√
n(m)

σ
(ϕ

(m)
2 − ϕ(m)

1 )

(
x̄(m) − ϕ(m)

1

σ/
√
n(m)

+

√
n(m)

σ

ϕ
(m)
1 − ϕ(m)

2

2

)
> λ

(m)
1 − λ(m)

2 .

General case of M neurons and S stimuli
With Claim 2.2.1 we basically have the information to calculate the detection probability: For
S ≥ 2 stimuli we need to consider the acceptance regions of all S stimuli simultaneously, cf.
Equation (2.21). The calculation formula of the detection probability is given in Lemma 2.2.2.

Lemma 2.2.2. Given S stimuli and M neurons with rate parameters λ(1), . . . ,λ(M), λ
(m)
s ≥ 0

for all m ∈ {1, . . . ,M}, s ∈ {1, . . . , S} and phase parameters ϕ(1), . . . ,ϕ(M), ϕ
(m)
s ∈ R for

all m ∈ {1, . . . ,M}, s ∈ {1, . . . , S}. Let ps := Ps(B ∈ As) denote the probability to detect
stimulus s correctly, thus the detection probability is pD = 1/S(p1 + · · ·+ pS). Then ps is given
by

ps = Ps (Gsr > 0 ∀r 6= s, r ∈ {1, . . . , S}) ,

where

Gsr :=

M∑
m=1

[
N (m) log

λ
(m)
s

λ
(m)
r

−
√
N (m)

σ
(ϕ(m)

r − ϕ(m)
s )

(
Z(m) +

√
N (m)

σ

ϕ
(m)
s − ϕ(m)

r

2

)
− λ(m)

s + λ(m)
r

]
,

with Z(m) ∼ N (0, 1) and N (m) ∼ Pois
(
λ

(m)
s

)
for all m ∈ {1, . . . ,M} and independent.
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Proof. We recall that the probability to detect stimulus s if it is present (ps) is the same
as the probability that Equation (2.21) from Claim 2.2.1 is met for all r 6= s. Furthermore

we recognize that
x̄(m)−ϕ(m)

1

σ/
√
n(m)

∼ N (0, 1) and that X̄(1), . . . , X̄(M) and N̄ (1), . . . , N̄ (M) are all

independent.

For an arbitrary number of stimuli S > 2 and not all phase parameters equal we determine
the detection probability by simulation, as we can not calculate the detection probability

numerically efficient, cf. Remark 2.2.4. In the special case of a pure rate code, i.e., ϕ
(m)
s =

0 ∀ s,m, the detection probability can be computed numerically efficient for any number of
stimuli, cf. the following corollary.

Corollary 2.2.3. Given S stimuli and M neurons with rate parameters λ(1), . . . ,λ(M),

λ
(m)
s ≥ 0 for all m ∈ {1, . . . ,M}, s ∈ {1, . . . ,M} and let all phase parameters equal, i.e.,∣∣∣{ϕ(1)

1 , . . . , ϕ
(1)
S , . . . , ϕ

(M)
1 , . . . , ϕ

(M)
S )

}∣∣∣ = 1. Then the detection probability is given by

pD =
1

S

∞∑
n(1),...,n(M)=0

1

n(1)! · · ·n(M)!
max

s∈{1,...,S}

(
M∏
m=1

(
λ(m)
s

)n(m)

e−λ
(m)
s

)
.

Proof. For a given realization B we choose the stimulus which is most likely for this event.
As in case of a pure rate code only the spike numbers count, we need to sum up the maximal
stimulus specific weights for all spike number combinations.

Remark 2.2.4. In case of S > 2 stimuli and M > 1 neurons we cannot determine the
detection probability numerically efficient and need to use simulations: Analogous to the case
of one neuron we need to determine the optimal decision areas by calculating a maximum or
minimum over all stimuli, cf. Equation (2.6) in Lemma 2.1.3. But here we have a sum of
multiple normal distributions, which we can not combine to one normal distribution due to the
maximum or minimum, i.e.: Let us consider the clearer case of all stimuli having the same
rate λ > 0. Then Equation (2.21) simplifies to (σ = 1)

M∑
m=1

[
n(m)

2

(
ϕ(m)
s − ϕ(m)

1

)2
−
√
n(m)

(
ϕ(m)
s − ϕ(m)

1

)
z(m)

]
> 0 ∀ s 6= 1,

with z(m) :=
x̄(m)−ϕ(m)

1

1/
√
n(m)

, which is equivalent to

min
s 6=1

(
M∑
m=1

[
n(m)

2

(
ϕ(m)
s − ϕ(m)

1

)2
−
√
n(m)

(
ϕ(m)
s − ϕ(m)

1

)
z(m)

])
> 0.

In order to calculate the probability to detect stimulus 1 correctly, i.e.,

p1 = P

(
min
s 6=1

(
M∑
m=1

[
n(m)

2

(
ϕ(m)
s − ϕ(m)

1

)2
−
√
n(m)

(
ϕ(m)
s − ϕ(m)

1

)
Z(m)

])
> 0

)
,

with Z(1), . . . , Z(M) ∼ N (0, 1) and independent, we can not combine the normal distributions,
i.e.,

p1 6= P

min
s 6=1


√√√√ M∑

m=1

n(m)
(
ϕ

(m)
s − ϕ(m)

1

)2
Z +

M∑
m=1

n(m)

2

(
ϕ(m)
s − ϕ(m)

1

)2

 > 0

 ,
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with Z ∼ N (0, 1), as in general for Z1, Z2, Z ∼ N (0, 1) and independent it holds

min
m∈{1,2}

(
a

(m)
1 Z1 + a

(m)
2 Z2

) d
6= min

m∈{1,2}

(
b(m)Z

)
.

In example we consider the case a
(1)
1 = a

(1)
2 = a

(2)
1 = 1/

√
2 and a

(2)
2 = −1/

√
2. Since both

1/
√

2(Z1 +Z2) and 1/
√

2(Z1−Z2) are standard normal distributed and independent, we obtain

P(Z1 + Z2 > 0 ∧ Z1 − Z2 > 0) =
1

4
, but P(Z > 0) =

1

2
.

In case of S = 2 stimuli, the detection probability can be calculated numerically efficient, for
further information see the following paragraph. Otherwise we use simulations and Lemma
2.2.2.

Special case of M = 2 neurons and S = 2 stimuli
In the following we detail how to derive the detection probability numerically for two neurons
and two stimuli. Similar to the case of one neuron the detection probability is maximized, if
there exists one stimulus no neuron emits any spike, cf. Section 2.2.2.1. This stimulus is called
nullstimulus and we do not count the nullstimulus as real stimulus. Thus we have as input a

nullstimulus with rates λ
(1)
0 , λ

(2)
0 = 0 and two ’real’ stimuli with rate parameters λ

(1)
1 , λ

(2)
1 and

λ
(1)
2 , λ

(2)
2 and phase parameters ϕ

(1)
1 , ϕ

(2)
1 and ϕ

(1)
2 , ϕ

(2)
2 .

At first, we assume that λ
(m)
s > 0 for all m, s ∈ {1, 2}, and ϕ

(m)
1 6= ϕ

(m)
2 for all m ∈ {1, 2}. If

one neuron has equal phases for both stimuli, i.e., ∃m ∈ {1, 2} with ϕ
(m)
1 = ϕ

(m)
2 , Equation

(2.21) can be easily calculated, as X̄(m) does not matter and the calculation is mostly identical
to the one neuron case. However this case will not occur in an optimal parameter set, since
there will be chosen the maximal and minimal phase in every neuron.
Rearranging Equation (2.21) for S = 2 stimuli, the probability to detect stimulus 1 when it is
present can be calculated by

p1 =

P1

 2∑
m=1

g (N (m), λ
(m)
1 , λ

(m)
2

)
−
√
N (m)

(
ϕ

(m)
2 − ϕ(m)

1

)
Z(m) +N (m)

(
ϕ

(m)
1 + ϕ

(m)
2

)2

2

 > 0

 ,

(2.22)

where Z(m) ∼ N (0, 1) and Z(1), Z(2) are independent and

g
(
N (m), λ

(m)
1 , λ

(m)
2

)
:= N (m) log

(
λ

(m)
1

λ
(m)
2

)
−
(
λ

(m)
1 − λ(m)

2

)
.

Combining both variables leads to

p1 = P1

(
Z < f

(
λ,ϕ, N (1), N (2)

))
, (2.23)

where Z ∼ N (0, 1) and

f
(
λ,ϕ, N (1), N (2)

)
:=

∑2
m=1

(
λ

(m)
2 − λ(m)

1 +N (m) log

(
λ

(m)
1

λ
(m)
2

)
+ 1

2N
(m)
(
ϕ

(m)
1 + ϕ

(m)
2

)2
)

√
N (1)

(
ϕ

(1)
1 + ϕ

(1)
2

)2
+N (2)

(
ϕ

(2)
1 + ϕ

(2)
2

)2
.
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Case 1: λ
(m)
s > 0 for all s,m ∈ {1, 2}. Here we can directly apply Equation (2.23) and sum

up the possible values of the Poisson distribution

p1 =
∞∑

n(1),n(2)=0
n(1)+n(2)>0

(
λ

(1)
1

)n(1)

n(1)!
e−λ

(1)
1

(
λ

(2)
1

)n(2)

n(2)!
e−λ

(2)
1 P

(
Z < f

(
λ,ϕ, n(1), n(2)

))

and analog for p2 = P2(B ∈ A2). The lower summation bound regards that in case of
n(1) = n(2) = 0 we choose the nullstimulus, which yields p0 = 1.

Case 2: Exactly one λ
(m)
s = 0 for s,m ∈ {1, 2}, w.l.o.g. λ

(1)
1 = 0. From Equation (2.22) and

the consideration that decision for stimulus 1 is only possible, if neuron 1 produced no spikes,
i.e., n(1) = 0, we get

p1 =

∞∑
n(2)>0

(
λ

(2)
1

)n(2)

n(2)!
e−λ

(2)
1 P

Z >

λ
(1)
2 + n(2) log

(
λ

(2)
1

λ
(2)
2

)
−
(
λ

(2)
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(2)
2

)
+ i2

(
ϕ

(2)
1 −ϕ

(2)
2

)2

2

√
n(2)

(
ϕ

(2)
2 − ϕ

(2)
1

)


for ϕ
(2)
1 > ϕ

(2)
2 , otherwise replace ”Z <”. As we always decide for stimulus 2, if neuron 1 emits

a spike, Equation (2.22) yields

p2 = 1− e−λ
(1)
2 +

∞∑
n(2)>0

e−λ
(1)
2

(
λ

(2)
1

)n(2)

i2!
e−λ

(2)
2 P

Z <

λ
(1)
2 + n(2) log

(
λ

(2)
1

λ
(2)
2

)
−
(
λ

(2)
1 − λ

(2)
2

)
− n(2)

(
ϕ

(2)
1 −ϕ

(2)
2

)2

2

√
n(2)

(
ϕ

(2)
2 − ϕ

(2)
1

)
 .

Case 3: Phase worthless, i.e., w.l.o.g. λ
(1)
1 = 0 and λ

(2)
2 = 0. There are only 3 possibilities, as

both neurons do not spike for the same stimulus:

• N (1) = 0 ∧ N (2) = 0 =⇒ decision for nullstimulus

• N (1) > 0 ∧ N (2) = 0 =⇒ decision for stimulus 2

• N (1) = 0 ∧ N (2) > 0 =⇒ decision for stimulus 1.

So we can calculate

p1 = P
(
N

(2)
1 > 0

)
= 1− e−λ

(2)
1 and p2 = P

(
N

(1)
2 > 0

)
= 1− e−λ

(1)
2 .

Case 4: One neuron case:

• i.e., w.l.o.g. λ
(1)
1 = 0 and λ

(1)
2 = 0. The detection probability can be calculated by

Lemma 2.1.3, using only λ(2) and ϕ(2).
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• i.e., w.l.o.g. λ
(1)
1 = 0 and λ

(2)
1 = 0. Here it is not possible to distinguish if stimulus 1 or

the nullstimulus is present. The detection probability can be calculated by Lemma 2.1.3

using λ =
{

0, 0, λ
(1)
2 + λ

(2)
2

}
, since the phase is of no use, as we only distinguish one

stimulus from two nullstimuli. Thus to detect stimulus 2 requires N
(1)
2 > 0 or N

(2)
2 > 0.

Since N
(1)
2 and N

(2)
2 are independent, we know that N

(1)
2 +N

(2)
2 ∼ Pois

(
λ

(1)
2 + λ

(2)
2

)
.

2.2.2 Optimal parameter choices

In this section we investigate how rate and phase parameters should be chosen in order
to maximize the detection probability in case of 2 neurons and various numbers of stimuli.
Thereby our main goal is to quantify the increase in the detection probability of a rate and
phase code compared to a pure rate code. Equivalent to Section 2.1.2 we note that pD is
not affected by a shift of the phase parameter and we can therefore assume a minimal phase
parameter of zero. We also notice that pD can always be increased by increasing the maximal

rate λM := maxs,m λ
(m)
s and the maximal phase ϕM := maxs,m ϕ

(m)
s . Therefore, we keep λM

and ϕM fixed and assume each neuron can choose the same maximal rate and phase parameter,

i.e., 0 ≤ λ(m)
s ≤ λM and 0 ≤ ϕ(m)

s ≤ ϕM for all s = 1, . . . , S and m ∈ {1, 2}. The results are
derived as a function of these restrictions.

Similar to Section 2.1.2 we observe that pD is maximized if both neurons have a minimal rate
parameter of zero for the same stimulus, called nullstimulus, cf. Lemma 2.2.5. However the
statement slightly differs from Lemma 2.1.4, as for given arbitrary parameters, it is not always
optimal to decrease the rates of one stimulus to zero, see Section 2.2.2.1.

In Section 2.2.2.2 we consider S = 2 stimuli (plus nullstimulus) and discuss optimal pa-
rameters. Using two neurons one might ask, if more information per spike can be transmitted
as in the one neuron case. Therefore, we compare a single neuron with maximal rate 2λM and
two neurons with maximal rate λM . The outcome is that two neurons have a higher detection
probability even for a less expected number of spikes in comparison to the one neuron case.

Another question is, if it is possible to use the optimal one dimensional solution to form the
optimal or almost optimal coding in case of two neurons. Therefore, we need to calculate
the optimal combination of two one dimensional optimal neurons, i.e., which parameter of
the first and second neuron should be assigned to the same stimulus. However, this optimal
combination has even lowered detection probability than using a single neuron with double
maximal rate, see Section 2.2.2.2.

In Section 2.1.2 we found that the phase considerably increases the detection probability
compared to a pure rate code, already for S = 2 stimuli. In case of 2 neurons and less than 4
stimuli quite large phases are needed to increase the detection probability clearly, see Section
2.2.2.2 and Section 2.2.2.3. Rate coding dominates for less than 2M stimuli, M number of
neurons, due to the stability of a binary code, cf. Figure 2.12 B. Only for a high number of
stimuli already small phases increase the detection probability explicitly and thus provides
additional information in a realistic parameter range (Section 2.2.2.3).
Fitting the GLO to real data out of the visual cortex of an anesthetized cat under visual
stimulation, we observe phase parameters up to ϕM = 0.75 (Schneider and Nikolić, 2006),
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cf. Appendix A. Choosing small rate parameters of maximal one spike per oscillation cycle
for one neuron, like most stimuli are coded in the data, emphasizes another importance of
the phase: For small rates (λM ≤ 1) only the phase is able to distinguish more than 2M − 1
stimuli, see Section 2.2.2.3.

2.2.2.1 Nullstimulus

In case of one neuron Lemma 2.1.4 tells us that we can increase the detection probability for
arbitrary parameters, if we set the minimum rate to zero. In case of two neurons we have two
rate parameter vectors and in general not both neurons have their minimal rate parameter in
the same stimulus. So which stimulus should be transformed in a nullstimulus and how does
this choice affects the detection probability? Let us consider S = 3 stimuli with

λ(1) = (0, 2, 1) and ϕ(1) = (0, 0, 10)

λ(2) = (2, 0, 1) and ϕ(2) = (0, 0, 10),

which yields a detection probability of pD ≈ 0.932. One might set λ
(2)
1 = 0 (which is equivalent

to λ
(1)
2 = 0) to create a nullstimulus, which yields pD ≈ 0.911. Similar, setting λ

(1)
3 = 0 and

λ
(2)
3 = 0 yields pD ≈ 0.91. Thus we can not optimize these parameter vector by setting two

rate parameters to zero. However, if we create the nullstimulus by rotating the rate parameters
of neuron 2, i.e.,

λ(1) = (0, 2, 1) and ϕ(1) = (0, 0, 10)

λ(2) = (0, 2, 1) and ϕ(2) = (0, 0, 10),

we can increase the detection probability and obtain pD ≈ 0.948. In general, we will see in
Lemma 2.2.5, that parameter vectors, which maximize the detection probability, always have
a nullstimulus. The basic idea is shown in Figure 2.12 A.

Lemma 2.2.5. Consider S stimuli and M neurons and given maximal rate λM ≥ 0 and max-
imal phase ϕM ≥ 0. We can find parameters λ = (λ(1), . . . ,λ(M)) and ϕ = (ϕ(1), . . . ,ϕ(M))

with ∃ s ∈ {1, . . . , S} : λ
(m)
s = 0∀m ∈ {1, . . . ,M} that are optimal, i.e.,

pD(λ,ϕ) = max
λ̃,ϕ̃

pD(λ̃, ϕ̃).

Proof. We recall that pD = 1/S(p1 + · · · + pS), with ps denoting the detection probability

of stimulus s. Let w.l.o.g. stimulus 1 be the nullstimulus, i.e., λ
(m)
1 = 0 ∀m ∈ {1, . . . ,M},

and there exists no other nullstimulus. According to Corollary 2.2.3 we decide for stimulus
1 only if N (1) = · · · = N (M) = 0, thus p1 = 1. We use only one possible realization to
decide for stimulus 1 and get the maximal possible detection probability in that realization
(P1(N (1) = · · · = N (M) = 0) = 1). All other realizations remain for the other stimuli, cf.
Figure 2.12 for S = 2 stimuli and M = 2 neurons, what maximizes the detection probabilities
for the other stimuli.

Since the phase is of no use if N (1) = · · · = N (M) = 0, the possible ϕM does not affect the
optimality of a nullstimulus.
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Figure 2.12: Pure rate coding for M = 2 neurons and S = 2 (A) and S = 4 (B) stimuli. The
red dots represent all possible realizations. The dotted lines demonstrate, that the decision
areas continue in this direction. A. Illustration of the optimality of a nullstimulus (S1, blue).
We only decide for S1 if both neurons emit no spike (blue rectangle). All other possible
numbers of spikes (green box) remain for stimulus 2. B. Illustration of the binary coding: We
have a nullstimulus (blue), we decide in case of no spikes, a stimulus only neuron 1 emits
spikes (pink), a stimulus only neuron 2 emits spikes (red) and a stimulus both neurons emit
spikes (green). The decision areas are shown as rectangles.

2.2.2.2 Two stimuli

Here we consider two stimuli and discuss optimal rate and phase parameters. For S = 2 stimuli
we need to choose 8 parameters. Using the results of Paragraph ’Special case of M = 2 neurons
and S = 2 stimuli’ we can numerically optimize the detection probability. The structure of
the optimal coding pattern can be written as

rate: λ(1) =
(
λ

(1)
1 , λM

)
and λ(2) =

(
λM , λ

(2)
2

)
for λ

(1)
1 , λ

(2)
2 ∈ [0, λM ],

phase: ϕ
(m)
1 − ϕ(m)

2 = ϕM for m ∈ {1, 2}.

where the values of λ
(1)
1 and λ

(2)
2 depend on ϕM . The precise mapping of the phase parameters

does not affect the detection probability, only the maximum phase difference has to be chosen
in each neuron. The minimal rate parameters are not assigned to the same stimulus, as
otherwise it is more likely to falsely decide for the nullstimulus.

The exact progress of the rate parameters is shown in Figure 2.13 A for λM = 1 and B for
λM = 2. In both cases it is optimal that there exists a stimulus both neurons are responding
with spikes, green line. Due to the small rate parameters, the probability to emit no spike
is not negligible. So this coding pattern minimizes false decisions for the nullstimulus. For
λM = 2 and small phases it is even better to distinguish in the rate parameter and choose a
medium rate of 1 for this stimulus, Figure 2.13 B green line.

For a wide parameter range a binary coding pattern is optimal, i.e., either only one neuron or
both neurons react. So here the phase only supports the rate decision. For this coding pattern
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the phase can not increase the detection probability significantly, see Figure 2.13 C and D,
blue line compared to red dotted line. In case of quite high phases, ϕM ≥ 1 (A) or ϕM ≥ 1.4
(B) a pure phase is optimal and the detection probability is significantly increased compared
to a pure rate code (Figure 2.13 C and D).

However, in case of a pure phase code two neurons have the same detection probability as a
single neuron with double maximal rate ((Figure 2.13 C and D, blue and green line): As both
neurons react independent to stimulus s and the mapping of ϕ does not affect the detection

probability (w.l.o.g. ϕ
(1)
s = ϕ

(2)
s ), both neurons follow an independent inhomogeneous Poisson

processes with intensity function λMφϕ(m)
s ,σ2/n(m)(t), where φ

ϕ
(m)
s ,σ2/n(m) is the density of the

normal distribution with mean ϕ
(m)
s and variance σ2/n(m). So both processes can be combined

to one inhomogeneous Poisson processes with intensity function 2λMφϕ(m)
s ,σ2/n(m)(t), the single

neuron case.

In Section 2.1.2.3 the optimal rate and phase parameters are computed for two stimuli and a
single neuron. Now we want to compare two neurons which are optimal for the setting of a
single neuron with the optimal solution of two neurons. Therefore we need to specify how to
combine both single neurons. Again the minimal rate parameters are not assigned to the same
stimulus, so this case is labeled ”2 cross neurons” (Figure 2.13 C and D, purple line). Two
one dimensional optimal neurons code even less information as a single neuron with double
maximal rate. Thus the one dimensional solution can not be used to create an acceptable
two-dimensional solution.

In the previous analyses the two neuron case is compared to one neuron with double maximal
rate. To assess whether the two-dimensional solution codes information more efficiently,
the mean firing rate is compared in Figure 2.13 E and F. Except the case of λM = 2 and
ϕM ≥ 0.5 (Figure 2.13 F) two optimal neurons need significantly less spikes to code even more
information.

2.2.2.3 Three and four stimuli

In this section we want to evaluate if the phase can provide additional information in case
of M = 2 neurons and S = 3 or S = 4 stimuli. Therefore we first determine numerically the
optimal rate code, using Corollary 2.2.3. As in case of a rate and phase code the detection
probability can be calculated only by simulation for S ≥ 3 stimuli, see Lemma 2.2.2, and the
optimization is quite expensive due to the high number of parameters (2S rate and 2S phase
parameters), we investigate parameter combinations, which are plausible according to our
results of a pure rate code and the one neuron case.

So the following analyzed coding patterns should be rather considered as option to quantify
the impact of the phase on correct detection. However, the presented coding patterns are
confirmed by simulations and coincide with our findings so far.

Simulations have shown that a binary coding dominates especially for small phases. Why
we use the term binary code is illustrated in Figure 2.12 B. Three stimuli (plus nullstimulus)
can be coded quite efficiently with a pure rate code. If we simultaneously consider different
phases in a binary code, the phase can only support a more precise stimulus decision within
the colored decision areas. For example let us consider the rate parameters λ(1) = (λM , 0, λM )
and λ(2) = (0, λM , λM ), where stimulus 3 corresponds to the green area and stimulus 1 to
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Figure 2.13: A and B. Optimal rate parameters for two stimuli and 2 neurons. The optimal

coding pattern is (λ(1),ϕ(1)) = (λ
(1)
1 , λM , 0, ϕM ) and (λ(2),ϕ(2)) = (λM , λ

(2)
2 , 0, ϕM ) (the

phase mapping does not matter). The optimal λ
(1)
1 and λ

(2)
2 is shown as a function of ϕM

for λM = 1 (A) and λM = 2 (B). C (λM = 1) and D (λM = 2). Detection probability as a
function of ϕM for three cases: 1) Optimal solution for two neuron (”2 dim. opt.”), 2) a single
neuron with double maximal rate (”1 neuron”), 3) optimal combination of one dimensional
optimal neurons (”2 cross neurons”). The decrease of the detection probability in the case of
”2 cross neurons” for λM = 2 is due to the jump in a pure phase code in the one dimensional
case. The optimal rate code in case of two neurons is shown as red dotted line. E and F. Mean
firing rate for the three cases. For almost all phases two neurons code information verifiably
more efficient.

the purple area, cf. Figure 2.12 B. Assume stimulus 3 is present, but we observe the unlikely
event N (2) = 0. If N (1) > 0 we would decide falsely for stimulus 1 (purple), if N (1) = 0 we
would decide falsely for the nullstimulus (blue). Let us assume N (1) > 0. If we can additional

use the phase to distinguish stimulus 1 and 3 in neuron 1, i.e., ϕ
(1)
1 = 0 and ϕ

(3)
1 = ϕM , it is

possible that we decide correctly for stimulus 3, for example if x̄(1) is quite large. However,
our phases are to small to correct a false decision due to the rate in many simulations.
For S = 3 stimuli we compare the following three coding patterns:

rate based: λ(1) = (λM , 0, λM ) ϕ(1) = (0, 0, ϕM )

λ(2) = (0, λM , λM ) ϕ(2) = (0, 0, ϕM )

rate and phase based: λ(1) = (λM , λM , λM ) ϕ(1) = (0, ϕM/2, ϕM )

λ(2) = (λM , 0, λM ) ϕ(2) = (0, 0, ϕM )

only phase: λ(1) = (λM , λM , λM ) ϕ(1) = (0, ϕM/2, ϕM )

λ(2) = (λM , λM , λM ) ϕ(2) = (ϕM/2, 0, ϕM ).

The ’rate based’ code corresponds to a binary code, but is supported by the phase. Stimuli with
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the same rate parameters (within one neuron) are distinguished by maximal phase difference.
Only rate (the optimal rate code) is the ’rate based’ code, but ϕM = 0.
In case of a ’rate and phase based’ code two stimuli exist which both neurons have maximal
firing rate and the phase is needed to distinguish these two stimuli. In case of a ’only phase’
code, both neurons code with a pure phase code. The parameters are connected such that
stimuli, which are difficult to distinguish in one neuron, are separated more strictly in the
second neuron.
In Figure 2.14 A (C) the detection probability of the three cases is compared for λM = 1
(λM = 2). We need quite large phases to increase the detection probability compared to a
pure rate code (red dotted line). Even for relative high phases the rate based coding pattern
(red line) maximizes the detection probability among the other patterns (blue and green).
However, in most part of the considered parameter range the rate code dominates obviously
and the phase can increase the detection probability only a little.

Different for S = 4 stimuli: Here the rate is not able to distinguish all stimuli for maximal
rate λM ≤ 1, as with λM ≤ 1 we can only construct the 3 decision areas (plus nullstimulus),
which are shown in Figure 2.13 B. An additional stimulus with rate 0 < λ < λM will never be
detected as it has never maximal weight, cf. Corollary 2.2.3. In Figure 2.14 B (green line) we
compare the following coding pattern

rate-3-phase-2: λ(1) = (0, λM , λM , λM ) ϕ(1) = (0, 0, 0, ϕM )

λ(2) = (λM , 0, λM , λM ) ϕ(2) = (0, 0, 0, ϕM )

to a pure rate code (optimal rate code), i.e., the same rate parameters, but ϕM = 0. Here a
phase of ϕM = 0.75 increases the detection probability evidently (green line vs red dotted line)
and provides additional information, as the rate can not distinguish stimulus 3 and 4. The
purple line indicates again that one neuron with a maximal rate of λM = 2 is no alternative
to two neurons with λM = 1.

But also in case of a higher rate λM = 2, where a pure rate code can distinguish all stimuli, only
small phase are needed (green or blue line) to significantly increase the detection probability
in comparison to an optimal rate code (red dotted line), see Figure 2.14 D. For S = 4 stimuli
the detection probability is further increased by the phase for an increasing maximal rate λM
due to the higher accuracy of the mean spike time, cf. Figure 2.14 B and D.
For S = 4 stimuli and maximal rate λM = 2 we compare the following four coding patterns

rate-4-phase-2: λ(1) = (λM , 0, λ, λM ) ϕ(1) = (0, 0, 0, ϕM )

λ(2) = (0, λM , λ, λM ) ϕ(2) = (0, 0, 0, ϕM )

rate-4-phase-3: λ(1) = (λM , 0, λ, λM ) ϕ(1) = (0, 0, ϕM/2, ϕM )

λ(2) = (0, λM , λ, λM ) ϕ(2) = (0, 0, ϕM/2, ϕM )

rate-3-phase-2: λ(1) = (0, λM , λM , λM ) ϕ(1) = (0, 0, 0, ϕM )

λ(2) = (λM , 0, λM , λM ) ϕ(2) = (0, 0, 0, ϕM )

rate-3-phase-3: λ(1) = (0, λM , λM , λM ) ϕ(1) = (0, ϕM/2, 0, ϕM )

λ(2) = (λM , 0, λM , λM ) ϕ(2) = (ϕM/2, 0, 0, ϕM ).
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For λM = 2 the optimal rate code in ’rate-4-phase-2’ or ’rate-4-phase-3’ is given by λ = 1.
It should be noted that for large phases (ϕM ≈ 2), the detection probability is increased
(a little) by switching the rate parameter λ and λM in one neuron (in ’rate-4-phase-2’ and
’rate-4-phase-3’).
Naturally we would expect that the parameter set ’rate-4-phase-2’ dominates for small phases,
but already for a maximal phase ϕ ≈ 0.2 parameter set ’rate-3-phase-2’ yields a higher
detection probability, cf. Figure 2.14 D, red line vs green line. Larger phases result in a more
detailed phase code, i.e., it is advantageous to implement a middle phase value (’rate-3-phase-3’,
blue line).
To summarize, due to the stability of a binary rate code, small phases can increase the detection
probability compared to a pure rate code only for S ≥ 2M Stimuli (M number of neurons) or
quite large phases are needed.
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Figure 2.14: A and C. Detection probability of different coding patterns as a
function of ϕM for three stimuli and λM = 1 (A) and λM = 2 (C): ’rate based’
(λ(1),ϕ(1)) = ((λM , 0, λM ), (0, 0, ϕM )) and (λ(2),ϕ(2)) = ((0, λM , λM )), (0, 0, ϕM )),
’rate and phase based’ (λ(1),ϕ(1)) = ((λM , λM , λM ), (0, ϕM/2, ϕM )) and (λ(2),ϕ(2)) =
((λM , 0, λM )), (0, 0, ϕM )), ’only phase’ (λ(1),ϕ(1)) = ((λM , λM , λM ), (0, ϕM/2, ϕM )) and
(λ(2),ϕ(2)) = ((λM , λM , λM )), (ϕM/2, 0, ϕM )). B and D. Detection probability of dif-
ferent coding patterns as a function of ϕM for four stimuli and λM = 1 (B) and
λM = 2 (D). B. We consider ’rate-3-phase-2’ (λ(1),ϕ(1)) = ((0, λM , λM , λM ), (0, 0, 0, ϕM ))
and (λ(2),Φ2) = ((λM , 0, λM , λM ), (0, 0, 0, ϕM )). ’1 neuron’ illustrates the maximal
detection probability using only one neuron but double maximal rate. D. We con-
sider ’rate-4-phase-2’ (λ(1),ϕ(1)) = ((λM , 0, λ, λM ), (0, 0, 0, ϕM )) and (λ(2),ϕ(2)) =
((0, λM , λ, λM ), (0, 0, 0, ϕM )), ’rate-4-phase-3’ (λ(1),ϕ(1)) = ((λM , 0, λ, λM ), (0, 0, ϕM/2, ϕM ))
and (λ(2),ϕ(2)) = ((0, λM , λ, λM ), (0, 0, ϕM/2, ϕM )), ’rate-3-phase-2’ (λ(1),ϕ(1)) =
((0, λM , λM , λM ), (0, 0, 0, ϕM )) and (λ(2),ϕ(2)) = ((λM , 0, λM , λM ), (0, 0, 0, ϕM )),
’rate-3-phase-3’ (λ(1),ϕ(1)) = ((0, λM , λM , λM ), (0, ϕM/2, 0, ϕM )) and (λ(2),ϕ(2)) =
((λM , 0, λM , λM ), (ϕM/2, 0, 0, ϕM )). A, B, C and D. The optimal rate code is shown as red
dashed line.
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Chapter 3

Overview Bayesian Inference

In the following sections we give a short introduction to Bayesian inference and an overview
of general known results, which we later make use of in application of the Bayesian Online
Change Point Detection Algorithm (BOCD). Therefore, we mainly follow the book of Gelman
et al. (2013), but give a more in-depth insight, especially in exponential family distributions
(Brown, 1986; Consonni and Veronese, 1992; Gutiérrez-Pena and Smith, 1995, 2003) and
conjugate prior distributions (Diaconis and Ylvisaker, 1979, 1985). Further references for the
theory of Bayesian inference are Ghosh and Ramamoorthi (2003); Schervish (1995).
We start with a short formalization of Bayesian Inference in Section 3.1 and an interpretation
of Bayes formula in a discrete or continuous or mixed distribution setting, see Section 3.1.1.
Afterwards in Section 3.2 we practical introduce to Bayesian inference by the example of a coin
toss with random success probability and motivate the main theoretic results about posterior
prediction.
One important theoretic result is that as long as the prior distribution assigns some weight
to the true parameter value, we have posterior consistency, see Section 3.3. Under some
regulatory conditions the posterior distribution even satisfies asymptotic normality with the
maximum likelihood estimator as expectation.
Later we are especially interested in the application of a Bayesian Online Change point
algorithm, where a computationally efficient computation of the posterior and predictive
distribution is necessary. In Section 3.4 we formalize the concept of conjugacy and see that
in case of an exponential family distribution a standard conjugate prior distribution exists
and the predictive distribution can be determined analytically. Also, the useful property of
posterior linearity in the expectation of the sufficient statistic holds in general for exponential
family distribution and its standard conjugate prior.

3.1 Bayesian model

Contrary to the classical statistic in the Bayesian statistic the unknown parameter θ of a
distribution Pθ of a data set is understood itself as a realization of a random variable Θ. Thus
it is reasonable to express our belief about Θ with probabilities. Before observing the data,
we start with a prior distribution of θ, which represents our start knowledge. After observing
the data, we use Bayes rule to update our belief about Θ in light of new information and call
the outcome posterior distribution. This process is basically referred to as Bayesian inference.
In the following we formalize the Bayesian approach and introduce the used notations.
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Definition 3.1.1. Let P = {Pθ : θ ∈ Ωθ} be a family of probability distributions, where Ωθ

denotes the parameter space. In a Bayesian model B(Π,P) the parameter Θ is drawn randomly,
i.e.,

Θ ∼ Π,

where Π denotes the distribution of Θ, and

X1, . . . , Xk | {Θ = θ} ∼ Pθ, k ≥ 1,

where given {Θ = θ} X1, . . . , Xk are independent and have conditional distribution Pθ. In
short we notate X1 ∼ PΘ.

Remark 3.1.2. Pθ is called sample distribution and the conditional weights or the conditional
density of X are denoted by pθ(·). We consider only the case Ωθ ⊆ Rd.

Definition 3.1.3. In a Bayesian model B(Π,P) the distribution Π of Θ is called prior
distribution.

Remark 3.1.4. We always assume that the prior distribution Π has a continuous density
function π(·), which should be called prior density function. However, in Bayesian inference
the terms ’distribution’ and ’ density’ are used interchangeably. To keep notation compact we
partly follow the Bayesian language.

In Bayesian inference we want to use the information of realization x of X to create a more
precise knowledge about the realization of the unknown parameter θ. Thus we are interested
in the conditional distribution of Θ given {X = x}.

Definition 3.1.5. In a Bayesian model B(Π,P) the conditional distribution of Θ given
{X = x}, denoted as Π | {X = x}, is called posterior distribution. Analogously the posterior
density is denoted by π(· |X = x).

Definition 3.1.6. In a Bayesian model B(Π,P) the unconditional distribution of X, denoted
by p(·), is called prior predictive distribution.

Definition 3.1.7. In a Bayesian model B(Π,P) the conditional distribution of Xk+1 given
{X1 = x1, . . . , Xk = xk}, denoted by p(· |X1:k = x1:k), is called predictive distribution.

3.1.1 Bayes formula

To calculate the posterior distribution, we use Bayes formula. As we consider both cases: X
is a discrete random variable with conditional weights pθ(·) and X is a continuous random
variable with conditional density pθ(·), we review Bayes formula for the possible combinations
of Θ and X in Sections 3.1.1.1 to 3.1.1.3.

3.1.1.1 The discrete case

Here we consider the case that both X and Θ are discrete random variables, to motivate Bayes
formula in the originally setting.
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Definition 3.1.8 (Conditional probability). Let X and Θ be discrete random variables. Then
the conditional probability of {Θ = θ} given {X = x} is defined as

P(Θ = θ |X = x) :=
P(Θ = θ,X = x)

P(X = x)
.

If P(X = x) = 0, then P(Θ = θ |X = x) := 0.

Lemma 3.1.9 (Law of total probability). Let X and Θ be discrete random variables with
P(Θ ∈ Ωθ) = 1. Then

P(X = x) =
∑
θ∈Ωθ

P(X = x |Θ = θ) · P(Θ = θ).

Proof. Reverting the definition of conditional probability yields

P(X = x) = P(X = x,Θ ∈ Ωθ)

=
∑
θ∈Ωθ

P(X = x,Θ = θ) =
∑
θ∈Ωθ

P(X = x |Θ = θ)P(Θ = θ).

Lemma 3.1.10 (Bayes formula - discrete). Let X and Θ be discrete random variables with
P(Θ ∈ Ωθ) = 1. Then the conditional probability of {Θ = θ} given {X = x} can be calculated
by

P(Θ = θ |X = x) =
P(X = x |Θ = θ) · P(Θ = θ)∑
θ̃∈Ωθ

P(X = x |Θ = θ̃) · P(Θ = θ̃)
.

Proof. Applying the definition of conditional probability to the numerator backwards and the
law of total probability to the denominator yields the statement.

3.1.1.2 The continuous case

Here we consider the case that both X and Θ are continuous random variables with densities
pθ(·) and π(·).

Definition 3.1.11 (Conditional density). Let f(·, ·) be the joint density of Θ and X and p(·)
the density of X. Then the conditional density of Θ given {X = x} is defined as

π(θ |X = x) :=
f(θ, x)

p(x)
.

If p(x) = 0, then π(θ |X = x) := 0.

Remark 3.1.12. In a Bayesian model B(Π,P) with prior density π(·) and conditional density
pθ(·) there exist a joint density and is given by

fθ,x(x, θ) = pθ(x)π(θ),

as ∫
θ

∫
x
pθ(x)π(θ) dx dθ =

∫
θ
π(θ)

∫
x
pθ(x) dx dθ =

∫
θ
π(θ)1 dθ = 1.
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Claim 3.1.13. Consider a Bayesian model B(Π,P) with prior density π(·) and conditional
density pθ(·). The prior predicitive distribution p(·) is given by

p(x) =

∫
θ
pθ(x)π(θ) dθ.

Proof. The Claim follows directly from Remark 3.1.12 and the law of total probability.

Lemma 3.1.14 (Bayes formula - continuous). Let X be a random variable with conditional
density pθ(·) and Θ a random variable with density π(·). Then the conditional density of Θ
given {X = x} can be calculated by

π(θ |X = x) =
pθ(x) · π(θ)∫
θ̃ pθ̃(x) · π(θ̃)

.

Proof. Applying the definition of conditional density to the numerator backwards and Claim
3.1.13 to the denominator yields the statement.

Claim 3.1.15. In a Bayesian model B(Π,P) with prior density π(·) and conditional density
pθ(·) the predictive density of X2 given {X1 = x1} can be calculated by

p(x2 |x1) =

∫
θ
pθ(x2)

π(θ)pθ(x1)

p(x1)
dθ.

Proof. The Claim follows directly from the Law of total probability and Lemma 3.1.14.

3.1.1.3 The mixed case

Here we consider the case that X is a discrete random variable with conditional weights pθ(·),
but Θ is a continuous random variable with density π(·). Thereby we have the problem, that
no well-defined joint density of X and Θ exists and we can not define the conditional density
of Θ given X as above. Thus we consider the conditional distribution function:

Definition 3.1.16. Let X be a discrete and Θ be a continuous random variable. Then the
conditional cumulative distribution function is of the form

FΘ |X(θ |X = x) := P(Θ ≤ θ |X = x)

and the conditional probability density function is of the form

π(θ |X = x) :=
dFΘ |X(θ |X = x)

dθ
.

Claim 3.1.17. In a Bayesian model B(Π,P) with prior density π(·) and conditional weights
pθ(·) the conditional cumulative distribution function can be calculated by

FΘ |X(θ |X = x) =

∫ θ
−∞ π(θ̃)pθ̃(x) dθ̃

P(X = x)
,

with

P(X = x) =

∫
θ̃
π(θ̃)pθ̃(x) dθ̃.
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Proof. The Law of total expectation yields

P(X = x) =E[1{X=x}] = E
[
E[1{X=x} |Θ]

]
=

∫
θ
π(θ)pθ(x) dθ

and analogous for P(Θ ≤ θ,X = x).

Remark 3.1.18. As the conditional distribution function is obtained by integrating π(θ)pθ(x)
(and p(x) = P(X = x) is a constant), the conditional density π(θ |X = x) exists and is
proportional to π(θ)pθ(x). However, some could have the idea to call π(θ)pθ(x) the joint
density of X and Θ, even it is not well-defined, but it fulfills the property

P(Θ ∈ A,X ∈ B) =

∫
θ∈A

(∑
x∈B

π(θ)pθ(x)

)
dθ.

To illustrate this approach, we give the example of a coin toss with uniform distributed success
probability:

Example 3.1.19. Consider a Bayesian model with Θ ∼ Unif(0, 1) and X ∼ Ber(Θ). The
marginal distribution can be calculated by

P(X = 1) =

∫
θ
pθ(1)π(θ) dθ =

∫ 1

0
θ dθ = 1/2.

With that we can determine the conditional distribution function

FΘ |X(θ |X = x) =

{
θ2, for x = 1

1− (1− θ)2, for x = 0,

as

P(Θ ≤ θ |X = 1) = 2

∫ θ

0
θ̃ dθ̃ = θ2

and

P(Θ ≤ θ |X = 0) = 2

∫ θ

0
(1− θ̃) dθ̃ = 1− (1− θ)2.

The conditional density of Θ given {X = x} can be obtained by derivation

π(θ |X = x) =

{
2θ, for x = 1

2(1− θ), for x = 0,

and is as mentioned in Remark 3.1.18 proportional to π(θ)pθ(x) = pθ(x). Informally we can
call

π(θ)pθ(x) =

{
θ, for x = 1

(1− θ), for x = 0

the ’joint density’ of Θ and X.
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With Claim 3.1.17 and Remark 3.1.18 we can state Bayes formula in the mixed case:

Lemma 3.1.20 (Bayes formula - mixed). Let X be a discrete random variable with weights
p(·) and Θ a random variable with density π(·). Then the conditional density of Θ given
{X = x} can be calculated by

π(θ |X = x) =
pθ(x) · π(θ)∫
θ̃ pθ̃(x) · π(θ̃)

.

Remark 3.1.21. Bayes formula is mostly written as a statement of densities, but as original
stated, it is beneficial to think about Bayes as a statement of probabilities.In case of a discrete
sampling distribution and continuous prior distribution we define

B :={Θ is in an interval of width dθ around the value θ},
A :={X = x},

which yields

π(θ |X = x) dθ = P(B |A) =
P(A |B)P(B)

P(A)
=
pθ(x) · π(θ) dθ

p(x)
.

However, as dθ is in both numerators, it is usually omitted.

Remark 3.1.22. Bayes formula is often notated as

π(θ |X = x) ∼ pθ(x)π(θ),

which in words mean: the posterior distribution is proportional to the product of the prior
distribution and the likelihood. So the above terms are equal up to a constant, which does not
depend on θ. We will often use this proportional notation, i.e., if we explicitly calculate the
posterior or predictive distribution.

Remark 3.1.23. A general measure-theoretic version of Bayes formula can be found in
Schervish (1995), which take-away message is: Given prior distribution Π and conditional
weights or density pθ one can construct a posterior distribution Π | {X = x} and if Π has a
density, the posterior distribution also has a density.

3.2 Introductory example in Bayesian inference

In this section we choose the easy example of a coin toss with random success probability
to introduce to Bayesian inference and motivate the main theoretic results about posterior
prediction. Therefore, we start in Section 3.2.1 with the prior choice and demonstrate the
advantage of a conjugate prior distribution. Furthermore, we illustrate the posterior update
procedure and how to interpret this with probability statements. In Section 3.2.2 we explicitly
check the posterior consistency for the chosen prior distribution. Afterwards in Section 3.2.3
we compare the Bayesian approach to classical statistic and highlight the advantage but also
difficulty of Bayesian inference in case of a small sample size. If the sample size is large,
we show that both approaches yield almost the same result. However, if we choose a bad
prior distribution, which has no mass on the true value of θ, the posterior distribution is not
consistent and does not equal the maximum likelihood estimator asymptotically, see Section
3.2.4.
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3.2.1 Prior choice and posterior distribution

Imagine you are a gambler and you have a lot of biased coins. Assume you know that half of
your coins are very unfair with a success probability ranges between 0.01 to 0.2 and the other
half is unfair with a success probability ranges between 0.2 to 0.4. Furthermore, you know
that in average the success probability is around 0.2. Unfortunately you put all your coins in
one basket and can not distinguish the two types of coins. However, there is a person waiting
to gamble against you, whereby you absolutely need to know if you choose a very unfair or an
unfair coin. As the other person is very impatient, you only have time to do 10 coin tosses.
How would you proceed?

Let us first mention that we are in a Bayesian model B(Π,P) with Pθ = Ber(θ), i.e., given
the success probability {Θ = θ} each coin toss Xi is independent and

Xi =

{
1, with P(Xi = 1) = θ,

0, with P(Xi = 0) = 1− θ,
∀ i = 1, . . . , 10.

For the number of successes Y =
∑10

i=1Xi it holds Y | {Θ = θ} ∼ Binom(10, θ). According to
our prior information we should choose a prior distribution, which assigns substantial mass to
the interval [0.01, 0.4], has an expectation of nearly 0.2 and assigns half of the mass to the
area left of θ = 0.2. However, there are infinitely many probability distributions that satisfy
these conditions and according to the prior information there is no reasonable issue, why to
choose a special one.
But we have a very impatient opponent, thus we choose a prior information, which has the
required features and is very easy to handle. Here in case of a binomial sample distribution a
Beta prior distribution is very suitable (for more details see Section 3.4):
As the Beta distribution has probability density function

π(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1, θ ∈ [0, 1],

where Γ(·) donates the Gamma function (Definition B.1), we obtain with Bayes formula for
the posterior distribution:

π(θ |Y = y) =
π(θ)pθ(y)

p(y)
∼ π(θ)pθ(y)

∼ θa−1(1− θ)b−1θy(1− θ10−y)

∼ θa+y−1(1− θ)b+ 10− y − 1 ∼ Beta(a+ y, b+ 10− y),

thus again a Beta distribution. The pleasant part of so-called conjugate prior distribution is,
that we only need to change the parameters of the prior distribution to involve the information,
we obtained by observing a realization Y = y.
To involve our prior information, we notice that if Θ ∼ Beta(a, b) then E[Θ] = a/(a + b),
cf. Remark B.3. If we choose a = 4 and b = 15, the expectation is around 0.2 and it holds
P(Θ ≤ 0.2) ≈ 0.5, cf. Figure 3.1 A.
Assume we observe no success, i.e., Y = 0. Then the posterior distribution of Θ is

Θ | {Y = 0} ∼ Beta(4, 25),
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Figure 3.1: A. We choose a Beta(4, 15) prior distribution, which has half of the mass left to
θ = 0.2 and expectation of almost 0.2. B. After observing 10 coin tosses with no success, our
posterior belief changes into a Beta(4, 25) distribution. Now 84% of the mass is left to θ = 0.2.

which is shown in Figure 3.1 B. The posterior distribution is further to the left and more
peaked. The shift to the left is due to the observation Y = 0, as this provides an evidence
for a lower value of Θ. It is more peaked, because we have additional information due to the
observed coin tosses. The prior expectation of Θ was about 0.2, the posterior expectation is
about 0.14.
Determining the posterior distribution yields a learning model, which combines the prior
information of Θ with the information we obtain from the sample. If we start with a prior
belief of a Beta(4, 15) distribution, we have now faith in a Beta(4, 25) distribution. With that
we are able to determine magnitudes like P(Θ ≤ 0.2 |Y = 0) ≈ 0.84, which convinces us that
we have drawn a very unfair coin.

3.2.2 Posterior consistency

In the coin toss example with a beta prior distribution Π we can easily check the consistency
of the posterior distribution Π |X1, . . . , Xk, which roughly spoken means: If θtrue is the true
value of the parameter, then the posterior distribution Π |X1, . . . , Xk will degenerate at θtrue
with probability 1 for k →∞. In Section 3.3.2 we will see that the consistency holds in general
as long as the prior distribution assigns some weight to θtrue, what a Beta distribution fulfills
for all θ ∈ (0, 1).
Let us define Yk := X1 + · · · , Xk. Then we know for the posterior distribution, that Θ |Yk ∼
Beta(a+ Yk, b+ 10− Yk, ), so we get

E[Θ |Yk] =
Yk + a

k + a+ b
and Var[Θ |Yk] =

(Yk + a)(k − Yk + b)

(k + a+ b)2(k + a+ b+ 1)
.

Defining Ȳk := 1
kYk and rewriting the formula of the expectation and the variance yields

E[Θ |Yk] =
kȲk + a

k + a+ b
and Var[Θ |Yk] =

k2(Ȳk + a/k)(1− Ȳk + b/k)

n3(1 + (a+ b)/k)2(1 + (a+ b+ 1)/k)
.
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Due to the law of large number Ȳk
k→∞−→ θtrue a.s. and hence

E[Θ |Yk]
k→∞−→ θtrue a.s. and Var[Θ |Yk]

k→∞−→ 0 a.s.,

so the posterior distribution collapses at θ0.

3.2.3 Comparison to classical statistic

In the classical statistic we would consider the likelihood function

fyk(θ) =

(
k

yk

)
θyk(1− θ)k−yk .

Following the maximum likelihood approach, we calculate

`(θ) := − log(fyk(θ)) = log

((
k

yk

))
+ yk log(θ) + (k − yk) log(1− θ).

By differentiating and setting to zero, we can determine the value of θ, which maximizes the
likelihood:

∂`(θ)

∂θ
=
yk
θ
− k − yk

1− θ
!

= 0

(1− θ)yn = (k − yk)θ

⇒ θ̂ML =
yk
k

=: ȳk.

Back to our coin toss example, where we observe no success in 10 rounds, we would estimate
θ̂ML = 0/10 = 0, which even does not fit to our prior information (we know, there is at least a
success probability of 0.01). However, a point-wise estimator is quite implausible for the small
sample size, but even the use of a standard confidence interval by the normal approximation
does not yield a usefulness description of θ̂, as

ȳk ± 1.96
√
ȳk(1− ȳk)/k = 0.

However, using the ClopperPearson interval would be a way out here.

Maximum a posterior (MAP) estimation
Following Bayes inference we get a posterior distribution, which reflects our opinion and
combines the prior information and the observed sample. If we are interested in just one ’best’
value of θ, instead of finding θ, that maximizes the likelihood function fyk(·), we could search
for θ, which maximizes the posterior density π(· |Yk = yk). So we would choose

θ̂MAP ∈ argmax
θ
π(θ |Yk = yk) = argmax

θ

pθ(yk)π(θ)∫ 1
0 pθ̃(yk)π(θ̃) dθ̃

.

As the integral does not depend on the value of θ, we can simplify

θ̂MAP ∈ argmax
θ
pθ(yk)π(θ) = argmax

θ
(log(pθ(yk)) + log(π(θ))). (3.1)
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Thus if the prior distribution π(·) is uniform on [0, 1], the MAP estimator θ̂MAP is identical
to the maximum likelihood estimator θ̂ML.
Based on Equation (3.1) we can obviously see, that the chosen prior distribution π(·) has a
strong impact on the MAP estimator θ̂MAP , especially in case of a small sample size. However,
as long as we start with a prior distribution, that assigns non-zero probability to the true
value θtrue, the MAP estimator is consistent and the maximum likelihood and MAP-estimator
are asymptotically identical.

In our example we choose a prior belief of Θ ∼ Beta(a, b), which yields a nice formula
for the MAP estimator: Using Equation (3.1) and plugging in the likelihood of our sampling
model and the density of the Beta distribution, we get

θ̂MAP ∈ argmax
θ

(yk log(θ) + (k − yk) log(1− θ) + (a− 1) log(θ) + (b− 1) log(1− θ)) .

Differentiating and setting to zero yields

yk
θ
− k − y

1− θ
+
a− 1

θ
− b− 1

1− θ
!

= 0

yk + a− 1

θ
=
k − yk + b− 1

1− θ
(yk + a− 1)(1− θ) = (k − yk + b− 1)θ

θ(k + a− 1 + b− 1) = yk + a− 1

⇒ θ̂MAP =
yk + a− 1

(k + b− 1) + a− 1
.

Comparing this to the maximum likelihood estimator θ̂ML = yk/k shows: The MAP estimator
is equal to a maximum likelihood estimator of a coin toss with additional a− 1 + b− 1 throws,
whereby we observe a− 1 successes and b− 1 failures.
Furthermore, we can recognize directly, the MAP estimator equals the maximum likelihood
estimator asymptotically, as an additional finite number a and b do not destroy the convergence.
However, in case of a small sample size a thoughtful choice of a and b helps to generate a
plausible estimator of Θ.

Posterior expectation
The involvement of Bayesian inference and maximum likelihood estimation can be also found,
rewriting the posterior expectation, starting with a prior distribution Θ ∼ Beta(a, b):

E[Θ |Yk = yk] =
a+ yk
a+ b+ k

=
n

a+ b+ k

yk
k

+
a+ b

a+ b+ k

a

a+ b

=
k

ω + k
θ̂ML +

ω

ω + k
θ0

k→∞−→ θ̂ML,

where ω := a + b and θ0 := E[Θ] the prior expectation. Hereby ω can be interpreted as
confidence in the prior distribution. If we have a higher confidence in the prior distribution
and the prior is well-chosen, we will get even for small n a reasonable and stable estimation of
Θ. Otherwise, if we have a high confidence in the prior distribution, but the prior information
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is bad, we need a large sample size to counter the bias and the maximum likelihood estimating
would be more appropriate.

In Section 3.4.4 we will see, that in case of an exponential family distribution (what a Binomial
distribution is), there exists a standard conjugate prior distribution form, and if we choose this
prior, we always have posterior linearity in the sufficient statistic of the canonical parameter,
see also Example 3.4.6 and 3.4.15. Under some weak regulatory conditions the inversion is
also true, that if we have the posterior linearity in the sufficient statistic, the prior distribution
of the canonical parameter must be of the standard conjugate prior form, cf. Theorem 3.4.24.

3.2.4 Bad prior choice

We have already mentioned, that it is crucial for posterior consistency to choose a prior which
assigns some mass to the true value of θ. Here we will show on basis of the coin toss example,
what happens if we choose a bad prior distribution: Assume our prior information is bad and
the true success probability of the chosen coin is θtrue = 0.5. If we had not chosen a Beta prior,
but a uniform distribution, i.e π(θ) = 2.5 for θ ∈ [0, 0.4], we need to calculate the posterior
distribution numerically by

π(θ |Yk = yk) =
θyk(1− θ)k−yk · 2.5∫ 0.4

0 θ̃yk(1− θ̃)k−yk · 2.5 dθ̃
, for θ ∈ [0, 0.4].

In Figure 3.2 the posterior distributions can be found for n = 10, 100, 200 and realizations
yn = 5, 48, 96. Since the prior distributions only assigns weight to values in [0, 0.4], the
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Figure 3.2: Consider a coin toss Yk ∼ Binom(n,Θ) and choose a uniform prior distribution
π(θ) = 2.5 for θ ∈ [0, 0.4] (light gray). Assume we have bad prior information and the true
parameter of the coin toss is θtrue = 0.5 (blue). The corresponding posterior distributions for
k = 10, 100, 200 and yk = 5, 48, 96 are shown in darker and darker tones.

posterior distributions can not left this area. However, the posterior distributions shifts on
and on to the right border 0.4. In Section 3.3.2 we will see, that the posterior distribution
asymptotically concentrates on the value, for which the likelihood function is closest to the
true generating distribution in sense of the KullbackLeibler divergence. Here the sampling
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model is specified correctly, so the posterior distribution concentrates on the value, which is
closest to the true value θtrue.

3.3 How to choose a proper prior distribution?

A proper prior distribution should at least asymptotically yield a posterior distribution that
degenerates at the true parameter value, which is meant by posterior consistency. But what
if the Bayesian model B(Π,P) is not correct and the observed samples X1, X2 . . . arise from
a distribution Q with Q 6= Pθ for all θ? Which value of θ will we observe? Or, if the
sample distribution is chosen correctly, which technical requirements do we need for the prior
distribution to obtain posterior consistency?
To answer these questions asymptotically we use the Kullback-Leibler divergence, which is a
measure of the difference between two probability distributions, see Section 3.3.1.
In Section 3.3.2 we show that we will end in the value θ∗, for which the wrong sample model
is ’closest’ to the true generating distribution Q in sense of the Kullback-Leibler divergence. If
the sample distribution is correct, than we will have posterior consistency as long as the prior
distribution assigns some weight to the true value θtrue.
Under some regulatory assumptions a stronger result can be proved, cf. Section 3.3.3: The
posterior distribution is asymptotic normally distributed with mean the maximum likelihood
estimator and variance the inverse Fisher-information declining with the sample size. As
the proof of the general version is quite technical, we motivate the result by two examples,
whereby the first is fairly obvious.

3.3.1 Some properties of the Kullback-Leibler divergence

Definition 3.3.1 (Absolute continuous). Let Q and P be two probability distributions with
densities q(·) and p(·) or discrete weights q(·) and p(·). Q is absolute continuous with respect
to P , if p(x) = 0 implies q(x) = 0 ∀x ∈ R.

Definition 3.3.2 (Kullback-Leibler divergence). Let Q and P be two probability distributions
and Q be absolute continuous with respect to P . Furthermore let X ∼ Q. For discrete
probability distributions with weights q(·) and p(·), the Kullback-Leibler divergence is defined as

DKL(Q||P ) := EQ
[
log

q(X)

p(X)

]
=
∑
x

q(x) log
q(x)

p(x)
.

For continuous distributions with densities q(·) and p(·), the Kullback-Leibler divergence is
defined as

DKL(Q||P ) := EQ
[
log

q(X)

p(X)

]
=

∫ ∞
−∞

q(x) log
q(x)

p(x)
dx.

Remark 3.3.3. Sometimes the Kullback-Leibler divergence is called a distance, but in general
the requested property of symmetry does not hold, as in general DKL(Q||P ) 6= DKL(P ||Q).

As average of the logarithmic difference between probability distributions Q and P , where the
average is taken with respect to Q, the Kullback-Leibler divergence is non-negative. To proof
this statement we use Jensen’s inequality:
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Lemma 3.3.4 (Jensen inequality). For every convex function K : R→ R and every random
variable X with finite expectation it holds

E[K(X)] ≥ K (E[X]) .

Proof. See Kersting and Wakolbinger (2010). A convex function K(·) has the property that
for every d ∈ R there exists a linear function g(x) = K(d) + c(x− d) with

g(a) ≤ K(a) for all a ∈ R and g(d) = K(d).

Replacing a by the random variable X and taking the expectation yields

K(d) + c(E[X]− d) ≤ E[K(X)],

due to the linearity and monotony of the expectation. Choosing d = E[X] gives the statement.

Remark 3.3.5. If K(·) is a strictly convex function, the equality in Lemma 3.3.4 holds if
and only if X is constant. In that case E[X] = X and E[K(X)] = K(X), which yields equality
for X constant.

Lemma 3.3.6. Let Q and P be two probability distributions with densities q(·) and p(·) and
let Q be absolute continuous with respect to P . The Kullback-Leibler divergence is non-negative,
i.e.,

DKL(Q||P ) ≥ 0,

with DKL(Q||P ) = 0 if and only if Q = P almost everywhere.

Proof. Let Y be a random variable with distribution Q. We define the random variable
X := p(Y )

q(Y ) . Furthermore, we define K(·) := − log(·), a strictly convex function. Applying

Jensen’s inequality (Lemma 3.3.4) yields

EQ[K(X)] ≥K(E[X])

=⇒ −
∫ ∞
−∞

q(y) log
p(y)

q(y)
dy ≥− log

(∫ ∞
−∞

q(y)
p(y)

q(y)
dy

)
=⇒

∫ ∞
−∞

q(y) log
q(y)

p(y)
dy ≥− log

(∫ ∞
−∞

p(y) dy

)
=⇒

∫ ∞
−∞

q(y) log
q(y)

p(y)
dy ≥− log(1) = 0.

According to Remark 3.3.5 the equality holds if and only if X is constant, so p(y) = q(y)
almost everywhere.

Remark 3.3.7. Lemma 3.3.6 holds obviously also for discrete probability distribution Q and
P .
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Remark 3.3.8. The Kullback-Leibler divergence is invariant under parameter transformation:
Therefore we consider a transformation from variable X to variable t(X) = Y and rewrite the
Kullback-Leibler divergence

DKL(Qx||Px) =

∫ xb

xa

q(x) log
q(x)

p(x)
dx

=

∫ t(xb)

t(xa)
q(y) log

q(y)dy/dx

p(y)dy/dx
dy =

∫ t(xb)

t(xa)
q(y) log

q(y)

p(y)
dy = DKL(Qy||Py.)

Remark 3.3.9. The Kullback-Leibler divergence is additive for independent distributions:
If Q1, Q2 are independent distributions with joint distribution Q(x, y) = Q1(x) · Q2(y) and
P, P1, P2 likewise, then

DKL(Q||P ) =

∫ ∞
−∞

q(x, y) log
q(x, y)

p(x, y)
d(x, y)

=

∫ ∞
−∞

q1(x)q2(y) log

(
q1(x)

p1(x)

q2(y)

p1(y)

)
d(x, y)

=

∫ ∞
−∞

q1(x)q2(y) log

(
q1(x)

p1(x)

)
dy dx+

∫ ∞
−∞

q1(x)q2(y) log

(
q2(y)

p2(y)

)
dx dy

=

∫ ∞
−∞

q1(x) log

(
q1(x)

p1(x)

)
dx+

∫ ∞
−∞

q2(y) log

(
q2(y)

p2(y)

)
dy

= DKL(Q1||P1) +DKL(Q2||P2).

3.3.2 Consistency of the posterior distribution

Definition 3.3.10. A sequence X1, X2, . . . of random variables converges in probability to a
random variable X, if for all ε > 0

lim
k→∞

P(|Xk −X| ≥ ε) = 0.

We denote this convergence as Xk
P→ X.

Definition 3.3.11 (Posterior consistency). Consider a sequence of independent random
variables X1, . . . , Xk from a sample distribution Pθtrue . Further, let Π be the prior distribution
of a Bayesian model B(Π,P). The posterior distribution Π | {X1 = x1, . . . , Xk = xk} is named
to be consistent, if for every ε > 0

Π ({θ : ‖θ − θtrue‖ > ε} |x1, . . . , xk)
k→∞−→ 0.

Considering posterior consistency raises two natural questions: First how does a bad specified
sample distribution influence posterior consistency and second to what extend does a bad
specified prior distribution threatens posterior consistency? To answer the first question we
assume we observe an independent sample from an arbitrary distribution Q, but we believe
in a Bayesian model B(Π,P). Then Theorem 3.3.12 tells us that we will end in the value θ∗

for which the wrong sample model is ’closest’ to the true generating distribution Q in sense
of the Kullback-Leibler divergence. Therefore, its crucial that the prior distribution assigns
some mass to the value θ∗, which leads us to the answer of the second question: If the sample
distribution is chosen correctly and as long as the prior distribution assigns some weight to
the true value θtrue, we will have posterior consistency.
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Theorem 3.3.12 (Posterior consistency). Let X1, . . . , Xk be a sequence of independent samples
from an arbitrary distribution Q. Erroneously we think the sample arises from a Bayesian
model B(Π,P). We define

θ∗ := argmin
θ
DKL(Q||Pθ)

the parameter of the sample model P, for which it is ’closest’ to the true generating distribution
Q and we assume there exist a unique minimizer. If for every ε > 0

Π ({θ : ‖θ − θ∗‖ ≤ ε}) > 0,

then

Π ({θ : ‖θ − θ∗‖ > ε} |X1:k = x1:k)
k→∞−→ 0.

Proof. We will prove Theorem 3.3.12 only for the case of a finite parameter space. An outline
of proofs for discrete or continuous parameter space can be found in Gelman et al. (2013).

For any θ 6= θ∗ we show that π(θ |X1:k = x1:k) → 0 for a large sample set. Therefore we
consider the logarithm of the posterior quotient of θ and θ∗:

log
π(θ |X1:k = x1:k)

π(θ∗ |X1:k = x1:k)
= log

pθ(x1, . . . , xk)π(θ)

pθ∗(x1, . . . , xk)π(θ∗)
= log

(
π(θ)

π(θ∗)

)
+

k∑
i=1

log
pθ(xi)

pθ∗(xi)
. (3.2)

By the law of large numbers we get

1

k

k∑
i=1

log
pθ(xi)

pθ∗(xi)

P−→
k→∞

EQ
[
log

pθ(X)

pθ∗(X)

]
. (3.3)

The expectation can be transformed to two Kullback-Leibler divergences

EQ
[
log

pθ(X)

pθ∗(X)

]
= EQ

[
log

pθ(X)q(X)

pθ∗(X)q(X)

]
= EQ

[
log

q(X)

pθ∗(X)
− log

q(X)

pθ(X)

]
= DKL(Q||Pθ∗)−DKL(Q||Pθ)
< 0, (3.4)

as according to Lemma 3.3.6 the Kullback-Leibler divergence is non-negative and we assumed
that θ∗ is a unique minimizer.
Due to Equation (3.3) and 3.4 we obtain

k∑
i=1

log
pθ(xi)

pθ∗(xi)

P−→
k→∞

k · EQ
[
log

pθ(X)

pθ∗(X)

]
= −∞.

As the prior distribution does not depend on k and we assumed π(θ∗) > 0, Equation (3.2) can
be determined

log
π(θ |X1:k = x1:k)

π(θ∗ |X1:k = x1:k)
= log

(
π(θ)

π(θ∗)

)
+

k∑
i=1

log
pθ(xi)

pθ∗(xi)

P−→
k→∞

−∞
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and

log
π(θ |X1:k = x1:k)

π(θ∗ |X1:k = x1:k)

P−→
k→∞

−∞ implies
π(θ |X1:k = x1:k)

π(θ∗ |X1:k = x1:k)

P−→
k→∞

0,

which implies π(θ |X1:k = x1:k)
P−→

k→∞
0 for every θ 6= θ∗ .

Remark 3.3.13. In Theorem 3.3.12 we assumed there exists a unique minimizer θ∗ of the
Kullback-Leibler divergence to the true generating distribution Q. Assume we choose the
sampling model P correctly, i.e there exists a θtrue such that q(x) = pθtrue(x) for all x ∈ R.
Then we know from Lemma 3.3.6, that θ∗ = θtrue, as θtrue minimizes the Kullback-Leibler
divergence (DKL(Q||Pθ∗) = 0). If there exists a θ1 with DKL(Q||Pθ1) = 0, then Pθtrue = Pθ1
almost everywhere, thus θtrue is a unique minimizer cf. Lemma 3.3.6.

Even with the knowledge that as long as the prior distribution assigns some mass to the
true value θtrue, we will end at the true parameter, this can be a difficult task: If we do
not have specific prior information, we must assign some mass to every plausible value of
θ. To get around we could choose a very broad prior distribution. Then we will very likely
end in the true value of θ, but we should recall, that Theorem 3.3.12 is only an asymptotic
statement. But the strength of Bayesian inference is just to integrate prior information in the
parameter estimation to get qualified estimations, even for small sample sizes. With a broad
prior distribution we can not benefit from Bayesian inference in that way. However one should
bear in mind that in case of a small sample sizes, poor choices of the prior distribution or the
sample model we will probably get poor results and we must be cautious.

3.3.3 Asymptotic normality of the posterior distribution

In the following we assume that the Bayesian model B(Π,P) is chosen correctly, thus there
exists a value θtrue of the parameter space, such that Pθtrue is the true sample distribution.
Under some regulatory assumptions a stronger result than Theorem 3.3.12 can be proved:

If θ̂
(k)
ML is the maximum likelihood estimator based on the sample X1, . . . , Xk with distribution

Pθtrue , then the posterior distribution is asymptotically equal to a normal distribution with

mean θ̂
(k)
ML and variance I−1(θ̂

(k)
ML)/k, where I(·) denotes the Fisher-information.

This result dates back to Laplace, who proved the posterior normality for the special case of a
constant prior distribution. Richard von Mises proved the posterior normality, if the prior
distribution has a continuous and restricted density. Similar considerations were made by the
Russian analyst S. N. Bernstein. Finally, L. Le Cam extended the proof under more general
assumptions. The result is known as Bernstein-von Mises theorem or Bayesian central limit
theorem.

Example 3.3.14. Consider a Bayesian model B(Π,P) with Π a standard normal distribution,
i.e.,

Θ ∼ N (0, 1),

and P a family of normal distribution with variance 1, i.e., given {Θ = θ}

Xi ∼ N (θ, 1) i = 1, 2, . . . .
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Later in Lemma 4.3.1 we will see, that the posterior distribution is given bv

Θ | {X1:k = x1:k} ∼ N

(∑k
i=1 xi
k + 1

,
1

k + 1

)
.

Calculating the Fisher-information for X ∼ N (θ, σ2) yields

I(θ) :=E
[
−∂

2

∂θ
log(pθ(x))

]
=E

[
− ∂

∂θ

x− θ
σ2

]
=E

[
1

σ2

]
=

1

σ2

and as the maximum likelihood estimator of θ is equal to the mean x̄ := 1/k
∑
xi, according

to the Bernstein-von Mises theorem, see Theorem 3.3.16, the posterior distribution should be
asymptotically

Θ | {X1:k = x1:k}
a∼ N

(∑k
i=1 xi
k

,
1

k

)
,

which is true according to Lemma 4.3.1.

Example 3.3.15. Returning to the introductory example we consider a Bayesian model
B(Π,P) with Θ ∼ Beta(a, b) and given {Θ = θ} we choose Yk ∼ Binom(k, θ). We have
already seen, that the posterior distribution is Θ | {Yk = yk} ∼ Beta(a+ yk, b+ k − yk). Let

θ̂
(k)
ML = yk/k denote the maximum likelihood estimator of θ.

For large k we can approximate the posterior distribution by

Θ | {Yk = yk} ∼ Beta(kθ̂
(k)
ML, k(1− θ̂(k)

ML)).

Using the connecting to the Gamma distribution (see Remark B.8), that if X ∼ Gamma(p1,m)
and Z ∼ Gamma(p2,m) and both independent, than

X

X + Z
∼ Beta(p1, p2)

and the property (see Remark B.7), that if E1, . . . , Ek ∼ Exp(1) and independent, than

k∑
i=1

Ei ∼ Gamma(k, 1),

yield

Θ | {Yk = yk} ∼
X

X + Z
∼

∑kθ̂
(k)
ML

i=1 Ei∑kθ̂
(k)
ML

i=1 Ei +
∑k+1

i=kθ̂
(k)
ML+1

Ei

,
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where X ∼ Gamma(kθ̂
(k)
ML, 1), Z ∼ Gamma(k(1− θ̂(k)

ML), 1) and Ei ∼ Exp(1), i = 1, . . . , k + 1
and independent. Some algebra gives us

√
k

 ∑kθ̂
(k)
ML

i=1 Ei∑kθ̂
(k)
ML

i=1 Ei +
∑k+1

i=kθ̂
(k)
ML

Ei

− θ̂(k)
ML



=

1√
k

(
(1− θ̂(k)

ML)

(∑kθ̂
(k)
ML

i=1 Ei − kθ̂(k)
ML

)
− θ̂(k)

ML

(∑k+1

i=kθ̂
(k)
ML+1

Ei − (k − kθ̂(k)
ML + 1)

))
∑k+1

i=1 Ei/k

+

1√
k

(
(1− θ̂(k)

ML)kθ̂
(k)
ML − θ̂

(k)
ML(k − kθ̂(k)

ML + 1)
)

∑k+1
i=1 Ei/k

and we observe for the third part

(1− θ̂(k)
ML)kθ̂

(k)
ML − θ̂

(k)
ML(k − kθ̂(k)

ML + 1)√
k

=
θ̂

(k)
ML√
k

k→∞−→ 0.

Since E[Ei] = 1 and Var[Ei] = 1 and the Ei’s are i.i.d., it follows from the central limit
theorem that∑kθ̂

(k)
ML

i=1 Ei − kθ̂(k)
ML√

kθ̂
(k)
ML

a∼ N (0, 1), thus

∑kθ̂
(k)
ML

i=1 Ei − kθ̂(k)
ML√

k

a∼ N (0, θ̂
(k)
ML)

and analogously that ∑k+1

i=kθ̂
(k)
ML+1

Ei − (k − kθ̂(k)
ML + 1)

√
k

a∼ N (0, 1− θ̂(k)
ML).

As
∑kθ̂

(k)
ML

i=1 Ei and
∑kθ̂

(k)
ML

i=1 Ei are independent for all k and(
1− θ̂(k)

ML

)2
θ̂

(k)
ML + (θ̂

(k)
ML)2

(
1− θ̂(k)

ML

)
= θ̂

(k)
ML

(
1− θ̂(k)

ML

)
,

we get

(
1− θ̂(k)

ML

) ∑kθ̂
(k)
ML

i=1 Ei − kθ̂(k)
ML√

k
− θ̂(k)

ML

∑k+1

i=kθ̂
(k)
ML+1

Ei − (k − kθ̂(k)
ML + 1)

√
k

a∼ N
(

0, θ̂
(k)
ML

(
1− θ̂(k)

ML

))
.

With law of large numbers we obtain for the denominator

k+1∑
i=1

Ei
P−→ 1.

Applying Slutsky’s theorem, which states for sequences of random variables Xk and Zk, where
Xk converges in distribution to a random variable X and Zk converges in probability to a

constant c, then ZkXk
P−→ cX, we overall obtain

Θ | {Yk = yk}
P−→ N

(
θ̂

(k)
ML,

1

k
θ̂

(k)
ML

(
1− θ̂(k)

ML

))
. (3.5)
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We can verify this expression with Theorem 3.3.16 by calculating the Fisher-information

I(θ) = E
[
−∂

2

∂θ
(y log(θ) + (1− y) log(1− θ))

]
= E

[
− ∂

∂θ

(
y

θ
+

1− y
1− θ

)]
= E

[
y

θ2
+

1− y
(1− θ)2

]
=

1

θ
+

1

1− θ
=

1

θ(1− θ)
,

which confirms Equation (3.5).

To proof Theorem 3.3.16 some regulatory conditions are needed. Basically these assumptions
are identically to those, which are needed to prove the asymptotically normality of the
maximum likelihood estimator. For the Bernstein-von Mises Theorem we require additional,
that the prior density π(·) is continuous and θtrue is not on the boundary. Furthermore, we
need some mass at the true value θtrue, which is already needed for posterior consistency. The
regulatory conditions can be found in Ghosh and Ramamoorthi (2003).

Theorem 3.3.16 (Bernstein-von Mises Theorem). Consider a Bayesian model B(Π,P) and let

X1, . . . , Xk be an i.i.d. sample with distribution Pθtrue . Further, let θ̂
(k)
ML denote the maximum

likelihood estimator. Then under some regulatory conditions, see (Ghosh and Ramamoorthi,
2003), the posterior distribution of Θ is asymptotically normally distributed, i.e.,

Θ | {Yk = yk}
P−→ N

(
θ̂

(k)
ML,

1

k
I−1

(
θ̂

(k)
ML

))
,

where I(·)−1 denotes the inverse Fisher-information, i.e.,

I(θ) = E
[
∂2

∂θ2
log pθ(x)

]
.

Proof. A proof sketch can be found in Gelman et al. (2013), a more technical version in Ghosh
and Ramamoorthi (2003).

3.4 Conjugate priors and the general case of an exponential
family distribution

To use Bayesian inference to search for change points, cf. Section 4.2, we need access to the
predictive distribution p(xk+1 |X1:k = x1:k). In general, we need to evaluate the integral

p(xk+1 |X1:k = x1:k) =

∫
pθ(xk+1) · π(θ |X1:k = x1:k)dθ

=

∫
pθ(xk+1) · πθ(θ)pθ(x1, . . . , xk)

p(x1, . . . , xk)
dθ,

which can be very difficult or even impossible. In that case Markov Chain Monte Carlo steps
can be used, resulting in high computational cost.
If we only consider sampling models belonging to the exponential family distribution, we can
choose a prior distribution πθ(·) on θ, such that the posterior distribution πθ(· |X1:k = x1:k)
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is in the same distribution family as the prior. Such prior is called conjugate. In case of an
exponential family sampling model even the predictive distribution p(xk+1 |x1, . . . , xk) can be
determined analytically.
In Section 3.4.1 we formalize the concept of conjugacy, introduce the exponential family
distribution and give two basic examples.
In Section 3.4.2 we show some basic properties of exponential family distributions, which we
need in Section 3.4.4.
The existence and formula of a conjugate prior distribution in case of exponential family
distributions is shown in Section 3.4.3. Furthermore, it is shown that also the predictive
distribution can be determined analytically.
In case of an exponential family distribution and its standard conjugate prior, cf. Section
3.4.3, we have posterior linearity in the expectation of the sufficient statistic, see Section
3.4.4. Furthermore, under some regulatory conditions also the opposite holds for exponential
family distributions: If we have posterior linearity in the sufficient statistic, then the prior
distribution must be the standard conjugate prior (up to a reparameterization).

3.4.1 Exponential family distribution

Definition 3.4.1. Consider a Bayesian model B(Π,P). A family G of prior distributions
Π(·) is called conjugate for a sampling model P = {Pθ : θ ∈ Ωθ}, if for any prior distribution
Π ∈ G and any θ ∈ Ωθ the corresponding posterior distribution Π(· |X = x), for X ∼ Pθ, is in
the same class G , i.e.,

Π(·) ∈ G ⇒ Π(θ |X = x) ∈ G.

Definition 3.4.2. A family E of probability distributions is a d-dimensional exponential family,
if the density (or probability mass function) of any member of E has the general form

pθ(x) = h(x) · exp
(
θT t(x)−A(θ)

)
,

for a parameter vector θ = (θ1, . . . , θd)
T ∈ Rd, the canonical parameter, a non-negative function

h : Rk → R and a function t : Rk → Rd. Furthermore, the function A(θ), denoted as the
cumulant function, is given by

A(θ) = log

∫
h(x) exp

(
θT t(x)

)
dx

and can be viewed as the logarithm of a normalization factor.
The set of parameters θ for which the integral is finite is referred to as the natural parameter
space

N :=

{
θ :

∫
h(x) exp

(
θT t(x)

)
dx <∞

}
.

If the natural parameter space is a non-empty open set, the family E is called regular.

Remark 3.4.3. According to the Fisher-Neyman factorization theorem, which states that if
the likelihood function is pθ(·), then t(·) is sufficient for θ if and only if non-negative functions
g(·) and h(·) can be found such that

pθ(x) = h(x)gθ(t(x)),

we obtain for exponential family distributions, that t(x) := (t1(x), . . . , td(x))T is a sufficient
statistic for θ.
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Remark 3.4.4. A(θ) is not a degree of freedom in the specification of an exponential family
density, it is determined once t(x) and h(x) are determined.

Remark 3.4.5. We will restrict only on regular exponential families.

Example 3.4.6. Let X ∼ Ber(η). Then we rewrite the probability weights by

pη(x) = ηx(1− η)1−x

= exp(x log η + (1− x) log(1− η))

= exp

(
log

(
η

1− η

)
x+ log(1− η)

)
,

thus the Bernoulli distribution is an exponential family distribution with

θ = log
η

1− η
; h(x) = 1; t(x) = x; A(θ) = − log(1− η) = log

(
1 + eθ

)
.

Example 3.4.7. Let N ∼ Pois(λ). Rewriting the probability mass function we obtain

pλ(x) =
λn

n!
exp(−λ)

=
1

n!
exp(n log λ− λ),

thus the Poisson distribution is an exponential family distribution with

θ = log λ; h(n) =
1

n!
; t(n) = n; A(θ) = λ = eθ.

3.4.2 Mean and variance of the sufficient statistic

In Definition 3.4.2 we have already denoted A(θ) as the cumulant function. We will first
motivate this identification with an example of the Bernoulli distribution and afterwards we
will show that for exponential family distributions cumulants can be determined by calculating
derivatives of A(θ).

Example 3.4.8. Let X ∼ Ber(η) as in Example 3.4.6. We have already seen, that A(θ) =
log
(
1 + eθ

)
with θ = log η

1−η . Taking a first derivative yields

∂A(θ)

∂θ
=

eθ

1 + eθ
=

1

1 + e−θ
=

1
1−η
η

= η,

which is the mean of the Bernoulli distribution or in other words the mean of the sufficient
statistic t(x) = x.
Taking a second derivative yields

∂2A(θ)

∂θ2
=

∂

∂θ

1

1 + e−θ
=

1

(1 + e−θ)2
e−θ

= η2 1− η
η

= η(1− η),

which is the variance of the Bernoulli distribution or again the variance of the sufficient
statistic.
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To verify the results of example 3.4.8 in the general setting of an exponential family distributions,
we need the following technical Lemma:

Lemma 3.4.9. As in Definition 3.4.2 let h(·) be a non-negative function and let Nf be the
set of values of θ ∈ Rd where∫

|f(x)|h(x) exp
(
θT t(x)

)
dx <∞.

Then the function

g(θ) =

∫
f(x)h(x) exp

(
θT t(x)

)
dx

is continuous and has continuous partial derivatives of all orders of θ in the interior of Nf .
Furthermore, these derivatives can be computed by differentiation under the integral sign.

Proof. See Brown (1986). Basically the proof relies on the dominated convergence theorem.

Lemma 3.4.10. Let E be a regular exponential family distribution and

A(θ) = log

∫
h(x) exp

(
θT t(x)

)
dx.

Then the mean of the sufficient statistic can be obtained by computing a first derivative of the
cumulant function A(θ) and the variance by the second derivative of A(θ), i.e.,

∂A(θ)

∂θ
= E[t(X)] and

∂2A(θ)

∂θ2
= Var[t(X)].

Proof. According to Lemma 3.4.9 with f = 1 and the assumption of a regular family, we can
calculate the derivatives of A(θ) by differentiation under the integral sign. Thus, we obtain
for the first derivative of A(θ)

∂A(θ)

∂θ
=

∂

∂θ
log

∫
h(x) exp

(
θT t(x)

)
dx

=

∫
∂
∂θh(x) exp

(
θT t(x)

)
dx∫

h(x) exp (θT t(x)) dx

=

∫
t(x)h(x) exp

(
θT t(x)

)
dx exp(−A(θ))

=

∫
t(x)h(x) exp

(
θT t(x)−A(θ)

)
dx

= E[t(X)].

Similarly calculating the second derivative yields

∂2A(θ)

∂θ2
=

∫
t(x)

(
t(x)− ∂A(θ)

∂θ

)T
h(x) exp

(
θT t(x)−A(θ)

)
dx

=

∫
t(x) (t(x)− E[t(X)])T h(x) exp

(
θT t(x)−A(θ)

)
dx

= E[t(X)t(X)T ]− E[t(X)]E[t(X)]T

= Var[t(X)].
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Remark 3.4.11. If the exponential family distribution is presented in its so called mean
parametrization, i.e., t(x) = x, cf. Example 3.4.8, then the first derivative of A(θ) yields the
expectation of the distribution and the second derivative yields the variance.

Remark 3.4.12. For samples of sizes k ∈ N the sufficient statistic

tn(x) =
k∑
i=1

t(xi)

is a sum of independent random variables, so by the Central Limit Theorem we have approxi-
mately

tn(X) ∼ N
(
k
∂A(θ)

∂θ
, k
∂2A(θ)

∂θ2

)
.

3.4.3 Existence of conjugate prior distribution and posterior updating

In case of an exponential family distribution there exists a conjugate prior distribution and
its structure can be easy obtained by mimicking the likelihood of the sample distribution,
cf. Lemma 3.4.13. By the example of the Bernoulli distribution, we use Lemma 3.4.13 to
determine a conjugate prior distribution and illustrate the prior parameters, which in general
can interpreted as prior sample size and prior belief. If we choose appropriate prior parameters,
see Lemma 3.4.16, the prior distribution is normalizable and also the predictive distribution
can be determined analytically, see Lemma 3.4.17.

Lemma 3.4.13. If the sampling model is a regular d-dimensional exponential family with
density (or probability mass function)

pθ(x) = h(x) · exp
(
θT t(x)−A(θ)

)
,

then there exists a conjugate prior distribution πθ(·) and can be obtained by mimicking the
likelihood

π(θ) ∼ exp(θT (k0t0)− k0A(θ)), (3.6)

where k0 > 0 and t0 ∈ Rd. This prior distribution is called the standard conjugate prior. The
posterior distribution is of the form

π(θ |X1:k = x1:k) ∼ exp(θT (k0t0 +

k∑
i=1

t(xi))− (k0 + k)A(θ)).

Proof. Consider the likelihood of an i.i.d. sample x1, . . . , xk

pθ(x1, . . . , xk) =

k∏
i=1

pθ(xi) =

k∏
i=1

h(xi) exp
(
θT t(xi)−A(θ)

)
=

(
k∏
i=1

h(xi)

)
exp

(
θT

(
k∑
i=1

t(xi)

)
− kA(θ)

)
.
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To see, that Equation (3.6) is a conjugate prior, we determine the posterior density

π(θ |X1:k = x1:k) ∼ π(θ) · pθ(x1, . . . , xk)

∼ exp(θT (k0t0)− k0A(θ)) · exp

(
θT

(
k∑
i=1

t(xi)

)
− kA(θ)

)

∼ exp(θT (k0t0 +
k∑
i=1

t(xi))− (k0 + k)A(θ)),

which retains the form of Equation (3.6) and thus is in the same family as the prior.

Remark 3.4.14. The prior to posterior conversion can be summarized with the following
update rules:

k0 → k0 + k

k0t0 → k0t0 +
k∑
i=1

t(xi),

where k0 can be interpreted as prior sample size and t0 as prior belief. If we have a strong
opinion t0 about the real value of the unknown θ, we choose k0 large. If we are wrong, a
large sample size k is needed to correct our wrong prior belief by the observed information∑k

i=1 t(xi).

Example 3.4.15. Using the results of Example 3.4.6, we obtain from Lemma 3.4.13 for the
conjugate prior distribution

π(θ) ∼ exp
(
θ(k0t0)− k0 log

(
1 + eθ

))
.

Transforming back to the usual parametrization η we write

θ = log
η

1− η
=: g−1(η).

To transform the prior distribution we use the change of variable formula

π(θ) =

∣∣∣∣∂g−1(η)

∂η

∣∣∣∣π(g−1(η)).

Calculating the first derivative of g−1(·) yields

∂g−1(η)

∂η
=

1− η
η

(1− η) + η

(1− η)2
=

1

η(1− η)
.

Thus, we get for the variable transformation

π(θ) ∼ 1

η(1− η)
exp

(
log

(
η

1− η

)
(k0t0)− k0 log

(
1 +

η

1− η

))
=

1

η(1− η)

(
η

1− η

)k0t0 (
1 +

η

1− η

)−k0

=
1

η(1− η)

(
η

1− η

)k0t0

(1− η)k0

= ηk0t0−1(1− η)k0(1−t0)−1 ∼ Beta(k0t0, k0(1− t0)),
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what we have already seen in Section 3.2.1. In Figure 3.3 we can nicely observe the interpre-
tation of the prior parameters k0 and t0: Thereby k0 can be interpreted as prior sample size
and represents our confidence in the prior belief t0, which equals the prior belief about η, as
t(x) = x is a sufficient statistic for η.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

η

π(
η)

A
t0 = 0.5
k0 = 1

t0 = 0.5
k0 = 10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

η
π(

η)

B
t0 = 0.3
k0 = 1

t0 = 0.3
k0 = 10

Figure 3.3: Interpretation of the prior parameters k0 and t0 by the example of a Bernoulli
sample distribution, cf. Example 3.4.15. A. We choose a prior belief of t0 = 0.5. B. We choose
a prior belief of t0 = 0.3. The black line represents a small prior sample size of k0 = 1, the
blue line a prior sample size of k0 = 10, where the density peaks clearly at the prior belief t0.

Even if Lemma 3.4.13 shows us the structure of a conjugate prior, this can not always help us
in practice. We need to be able to calculate the normalization factor, which is not possible in
general. However in case of the usual distributions, it helps to determine appropriate prior
distributions with a definite procedure, see Section 4.5. The following Lemma states in which
cases Equation (3.6) yields a normalizable distribution:

Lemma 3.4.16. The conjugate prior distribution 3.6 is normalizable if and only if k0 > 0
and t0 lies in the interior of the convex hull of the support of the measure µ(dx) = h(x)dx.

Proof. See Diaconis and Ylvisaker (1985).

Another useful property of an exponential family distribution marginalized over its standard
conjugate prior distribution is, that if the prior distribution is normalizable and we know
the explicit expression, the probability density function of the predictive distribution can be
determined analytically, see the following lemma:

Lemma 3.4.17. Let us consider a regular d-dimensional exponential family model with density

pθ(x) = h(x) · exp
(
θT t(x)−A(θ)

)
,

and a conjugate prior distribution which is normalizable, i.e.,

π(θ) = g(k0, t0) exp(θT (k0t0)− k0A(θ)).

Then the predictive distribution can be determined analytically by

pθ(xk+1 |X1:k = x1:k) = h(xk+1)
g
(
k̃, t̃
)

g
(
k̃ + 1,

k̃t̃+t(xk+1)

k̃+1

) ,
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where

k̃ := k0 + k and t̃ :=
k0t0 +

∑k
i=1 t(xi)

k0 + k
.

Proof. Out of Lemma 3.4.13 we know how to get the posterior distribution by simply updating
the parameters of the prior distribution. Thus also for the predictive distribution it holds

pθ(xk+1 |X1:k = x1:k) = pθ

(
xk+1 | k̃, t̃

)
,

so if we know the structure of the distribution, we only need to update the parameters k0 and
t0. Hence

pθ(xk+1 |X1:k = x1:k) =

∫
pθ(x)π(θ | k̃, t̃)dθ

=

∫
h(xk+1) · exp

(
θT t(xk+1)−A(θ)

)
g(k̃, t̃) exp

(
θT (k̃t̃)− k̃A(θ)

)
= h(xk+1)g(k̃, t̃)

∫
exp

(
θT (t(xk+1) + k̃t̃)− (k̃ + 1)A(θ)

)
= h(xk+1)

g
(
k̃, t̃
)

g
(
k̃ + 1,

k̃t̃+t(xk+1)

k̃+1

)

3.4.4 Posterior linearity

In Section 3.2.3 we have seen that in case of a Bernoulli distribution the posterior expectation
of Θ is a convex combination of the prior parameter θ0 and the maximum likelihood estimator
θ̂ML. Here we will see, cf. Theorem 3.4.20, that in case of an exponential family distribution
and its standard conjugate prior distribution, cf. Lemma 3.4.13, posterior linearity holds for
the sufficient statistic t(X) in general. As in case of a Bernoulli distribution t(X) = X, cf.
Example 3.4.6, and

E[X] = E[E[X |Θ]] = E[Θ]

and the Beta prior distribution can be obtained by variable transformation from the standard
prior, see Example 3.4.15, its just a special case of Theorem 3.4.20.
Under some regulatory conditions also the opposite holds for exponential family distributions:
If we have posterior linearity in the sufficient statistic, then the prior distribution of the
canonical parameter must be the standard conjugate prior.

Lemma 3.4.18. Consider a Bayesian model B(Π,P) with Pθ an exponential family distribution
and let Π its normalizable standard prior distribution, i.e.,

π(θ) = g(k0, t0) exp
(
θT (k0t0)− k0A(θ)

)
.

Then it holds for Θ ∼ Π

E
[
∂A(Θ)

∂Θ

]
= t0.
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Proof. First we observe that

∂π(θ)

dθ
= k0

(
t0 −

∂A(θ)

dθ

)
π(θ).

According to Lemma 3.4.9 ∫
∂π(θ)

∂θ
dθ =

∂

dθ

∫
π(θ) dθ = 0

and as

t0

∫
π(θ) dθ = t0,

we obtain overall

E
[
∂A(Θ)

∂Θ

]
=

∫
∂A(θ)

∂θ
π(θ) dθ

= t0 −
∫ (

t0 −
∂A(θ)

∂θ

)
π(θ) dθ

= t0 −
1

k0

∫
∂π(θ)

∂θ
dθ

= t0.

Lemma 3.4.19. Consider a Bayesian model B(Π,P) with Pθ an exponential family distribu-
tion, i.e.,

pθ(x) = h(x) · exp
(
θT t(x)−A(θ)

)
,

and let Π its normalizable standard prior distribution. Let X be generated by B(Π,P), then it
holds

E [t(X)] = t0.

Proof. Combining Lemma 3.4.10 and Lemma 3.4.18 yields

E [t(X)] = E [E [t(X) |Θ]] = E
[
∂A(Θ)

∂Θ

]
= t0

Theorem 3.4.20. Consider a Bayesian model B(Π,P) with Pθ an exponential family distri-
bution and let Π its normalizable standard prior distribution. Let X1, . . . , Xk be generated by
B(Π,P), then for the posterior expectation of the sufficient statistic holds

E [t(X) |X1:k = x1:k] =
k0t0 + k0t̄(x)

k0 + k
,

with t̄(x) := 1/k
∑k

i=1 t(xi).
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Proof. According to Lemma 3.4.13 the posterior distribution of Θ is

π(θ |X1:k = x1:k) ∼ exp(θT (k0t0 +

k∑
i=1

t(xi))− (k0 + k)A(θ)).

Applying Lemma 3.4.19 on the posterior distribution gives the statement.

Remark 3.4.21. The posterior expectation of the sufficient statistic of θ can be written as

E [t(X) |X1:k = x1:k] = ct0 + (1− c)t̄(x), c :=
k0

k0 + k
,

which is a convex combination of the prior expectation t0 and mean observation t̄(x). The
weights are proportional to k0 and the sample size k, so we see again the interpretation of k0

as prior sample size.

Remark 3.4.22. The posterior expectation can be also described as a convex combination of
the prior expectation t0 and the maximum likelihood estimator θ̂ML, since

`(θ |x1, . . . , xk) := log(pθ(X1:k = x1:k)) ∼ θT
∑

t(xi)− kA(θ).

Taking the derivative with respect to θ yields

∂`(θ |X1:k = x1:k)

∂θ
=

k∑
i=1

t(xi)− k
∂A(θ)

∂θ

and setting to zero gives

∂A(θ)

∂θ
=

1

k

k∑
i=1

t(xi)

=⇒ θ̂ML =
∂A(θ)−1

∂θ

(
k∑
i=1

t(xi)

)
,

which exists as, recall Lemma 3.4.10, E[t(X)] = ∂A(θ)
∂θ is a strictly monotone increasing function(

∂2A(θ)
∂θ = Var[t(X)] > 0

)
.

In case of an exponential family distribution given in its canonical parametrization and if
we choose the standard conjugate prior distribution, we know according to Theorem 3.4.20,
that posterior linearity in the expectation of the sufficient statistic always holds. But often
the standard exponential families are parameterized in other terms, i.e., the parametrization
involving the success probability η for the binomial distribution.
In the introductory example we have seen that posterior linearity even holds for this para-
metrization. The reason can be recognized in Example 3.4.15: The transformation of the
standard conjugate prior in its canonical parametrization to the usual parametrization can be
obtained by using the change-of-variable formula, i.e for θ = g−1(η)

π(η) =

∣∣∣∣∂g−1(η)

∂η

∣∣∣∣π (g−1(η)
)

∼
∣∣∣∣∂g−1(η)

∂η

∣∣∣∣ exp
(
g−1(η)T (k0t0)− k0A

(
g−1(η)

))
.
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As we simply change variables, we still get posterior linearity. Descriptive spoken the Jacobian
factor simply ensures the additional property of posterior linearity, as the following remark
addresses.

Remark 3.4.23. Another family of conjugate prior is given by

π(η) = exp
(
g−1(η)T (k0t0)− k0A

(
g−1(η)

))
,

without the Jacobian factor. In general these two families of conjugate priors are not identical.
But in case of natural exponential families (t(x) = x) the two families are identical (up to
a reparameterization) if and only if the exponential family is quadratic (the variance of the
distribution is a quadratic polynomial in the mean), i.e., for µ := E[X]

Var[X] = ν0 + ν1µ+ ν2µ
2, ν0, ν1, ν2 ∈ R.

Examples for natural exponential families with quadratic variance function are the Normal
distribution, Poisson, Gamma, Binomial and Negative Binomial distribution. Further infor-
mation can be found in Consonni and Veronese (1992); Gutiérrez-Pena and Smith (2003,
1995).

Theorem 3.4.24. Consider a Bayesian model B(Π,P) with Pθ a continuous exponential
family distribution. Let X1, X2 be generated by B(Π,P) and suppose the support of the
measure µ(dx) = h(x)dx contains an open interval in Rd. If Θ has a prior distribution Π,
which is not concentrated at a single point and if

E[t(X2) |X1] = a · t(X1) + b,

for some constant a ∈ R and b ∈ Rd, then a 6= 0 and the prior density π(·) is given by

π(θ) ∼ exp
(
a−1θT b− a−1(1− a)A(θ)

)
.

Proof. See Diaconis and Ylvisaker (1979).

Remark 3.4.25. The result above even holds for any usual discrete family and a version of
Theorem 3.4.24 appropriate for discrete data is also given in Diaconis and Ylvisaker (1979).

Remark 3.4.26. We can easily transfer the form of the prior distribution in Theorem 3.4.24
to the standard conjugate prior: We can find k0, t0 such that

E[t(X2) |X1] =
1

k0 + 1︸ ︷︷ ︸
a

·t(X1) +
k0

k0 + 1︸ ︷︷ ︸
b

t0,

which yields

a−1b =

(
1

k0 + 1

)−1 k0

k0 + 1
t0 = k0t0

and

a−1(1− a) = (k0 + 1)(1− 1/(k0 + 1)) = k0.

Thus we obtain the standard exponential conjugate prior

π(θ) ∼ exp
(
θT (k0t0)− k0A(θ)

)
.
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Chapter 4

Detection of changes in the stimulus

In this section we investigate whether imprecise phases can improve the detection of changes
in the stimulus. Results are obtained on basis of one neuron, for multiple neurons see Section
5.3.3. To this end, we extend a simplified version of our GLO-model (Section 1.1) for M = 1
neuron by assuming a sequence of oscillation cycles with deterministic and known length
and assuming that the assignment of spikes to a particular oscillation cycle is known, where
the rate and phase parameters can change between cycles (Section 4.1). We particularly
investigate the number of correctly (the distance to a true change point is at most three) and
of falsely detected change points in the bivariate analysis in which rate and phase parameters
are assumed to change simultaneously, as compared to the approach in which changes in rate
or phase parameters are analyzed individually.

Change point detection is performed using a Bayesian online change point detection algorithm
(BOCD) (Adams and MacKay, 2007) (Section 4.2), which includes the estimation of the
change point rate (Wilson et al., 2010) (Section 4.2.2). This algorithm directly matches the
assumptions of the change point model. Given the model assumptions, the BOCD derives
exactly the probability of a change point for a given oscillation cycle. The algorithm includes
prior information on neurophysiologically plausible parameter ranges as well as information
about distributional assumptions. As a consequence, it can operate on small time scales such
as a few oscillation cycles, in contrast to asymptotic methods. In addition, the BOCD is
capable of estimating the rate with which change points are observed, and computational
speed is increased by constant online updating of the derived probabilities.

The BOCD assumes a prior distribution for rate and phase parameters, for which we choose
conjugate prior distributions for convenience (phase in Section 4.3.1 and rate in Section 4.3.2).
As the BOCD crucially depends on the choice of the prior parameters, we discuss parameter
choice for the relevant parameter range, see Sections 4.3.1.2 (phase and change point prior)
and 4.3.2.2 (rate) and 4.3.3.2 (rate and phase choice in bivariate analysis).

Section 4.3.3 then investigates the number of correctly and falsely detected change points
for a pure rate or pure phase code and the improvement in the bivariate analysis when rate
and phase parameters are assumed to change simultaneously. While the BOCD evaluates the
occurrence of change points at the end of the time series, we investigate in Section 4.2.4 an
extension which works literally ’on-line’, in which decisions about a change need to be made
ad hoc or after a very small number of oscillation cycles, and investigate its improvement in
the bivariate case.

Afterwards in Section 4.4 we discuss an approach which allows to consider changes in rate and
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phase as dependent but still provides an efficient calculation by conjugate distributions. Thus
we are able to consider special information about stimuli properties: For example we have
special knowledge about the stimuli structure and know that stimuli are coded either by small
rates or by high rates, but not by middle rates. Or we know that in a stimulus only small
rates are connected with small phases or high rates with high phases.

In the thesis we mostly assume σ (the precision of the spike timing) is fixed and known. In
Section 4.5 we extend this assumption by an unknown and random spike time precision ς,
which is locked to the global change point process, i.e., we assume changes in rate, phase and
precision occur simultaneously according to the prior distribution. Our aim is to explore, how
a change in the spiking precision impacts the change point detection in case of a pure phase
analysis. Therefore we first investigate how changes in the spiking precision affect the ability
of the phase to detect change points, if we erroneously assume a constant spiking precision
σ2. Second, we consider changes in the precision, phase and rate occur simultaneously and
consider the benefit of a simultaneous analysis of a change in the precision, phase and rate
compared to a pure rate analysis.

4.1 Change point model

We assume the following change point model: First we assume that change points occur
independently and with equal probability η for every oscillation cycle. Formally, let Y1, Y2, . . .
denote a sequence of independent Bernoulli random variables with P(Y1 = 1) = η, where
Yk = 1 indicates that a change point occurs at cycle k. Second, let Λ0,Λ1, . . . be a sequence
of i.i.d. rate parameters with prior distribution πλ(·) and λ0, λ1, . . . a random realization.
Similarly, let Φ0,Φ1, . . . be a sequence of i.i.d. phase parameters with prior distribution πϕ(·)
and ϕ0, ϕ1, . . . a random realization. At every change point, a new realization of Λ,Φ is
drawn. As a consequence, let Ak :=

∑k
i=1 Yi denote the number of change points up to time

k, where we set A0 := 0. Then in cycle k, overall Nk ∼ Pois(λAk) spikes are chosen and are
placed independently according to a N (ϕAk , σ

2)-distribution (the spike times are denoted by

X
(k)
1 , . . . , X

(k)
Nk

), where we assume the precision of the spike timing σ to be fixed and known.
Again we set σ = 1 and scale the phase range accordingly.

A graphical description of the change point model is shown in Figure 4.1. We use the same
spike generating process as in Section 2.1, but now we observe a sequence of oscillation cycles.
Again, we artificially assume that the reference time of an oscillation cycle is known as well as
the assignment of each spike to its respective oscillation cycle.

Note that we first assume that rate and phase parameters change independently at a change
point, so it would be appropriate to write πλ × πϕ in Figure 4.1, but later we will discuss a
procedure to consider dependencies between rate and phase, see Section 4.4.

4.2 Bayesian Online Change Point Detection Algorithm

Here we summarize the BOCD proposed in (Adams and MacKay, 2007), including an extension
(Wilson et al., 2010) (Section 4.2.2) in which the change point probability η of the change
point process is estimated. We first use a general notation with general parameters θ, before
replacing this notation by the specific rate and phase parameters in Section 4.3.
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Figure 4.1: Change point model: The activity in every oscillation cycle is assumed to follow
an inhomogeneous Poisson process as in Section 2.1, i.e., the number of spikes per cycle is
assumed Poisson distributed with the respective rate parameter, and the spike time is assumed
independent and normally distributed with variance 1 and mean given by the respective phase
parameter. Rate and phase parameters can change in time as follows. For each oscillation
cycle an independent Bernoulli random variable Yk ∼ Ber(η) indicates whether a change point
occurs. If no change point occurs (Yk = 0), the rate λ and phase ϕ remain identical to the
previous oscillation cycle (k − 1). If a change point occurs (Yk = 1), new parameters for rate
λ and phase ϕ are chosen independently according to the prior distributions πλ and πϕ.

Let Θ0,Θ1, . . . be a sequence of i.i.d parameters and let θ0, θ1, . . . be a random realization. In
cycle k we observe a random variable Xk, whose distribution pθ(·) depends on the parameter
θ . The distribution of X0:k := (X0, . . . , Xk) can be expressed as

p(x0:k | (A1 = a1, . . . , Ak = ak), (Θ0 = θ0, . . . ,Θk = θk)) = pθ0(x0)
k∏
i=1

pθai (xi).

This representation makes use of the fact that the sequence of observations up to time k
can be divided into Ak + 1 segments, where each segment i contains i.i.d. observations with
parameter θai .

4.2.1 The BOCD: Change points encoded in run length

The BOCD is based on the run length rk, which represents the time since the last change
point and is a direct function of the set of change points and the cycle k (Figure 4.2 A). If no
change point occurs at cycle k, the run length increases by 1 at cycle k, otherwise it drops to
0. Formally, the run length Rk at time k is a random variable given by

Rk :=

{
min(i ≥ 0 : Ak −Ak−1−i = 1), if Ak > 0,

k, else.

If we know all run lengths up to time K, we know the positions of all change points. The
objective of the BOCD is therefore to estimate the run length at every cycle k. Therefore we
need to consider all possible run length paths, cf. Figure 4.2 B. This is done recursively (see
Figure 4.2 C gray dots). At the last cycle K, the most likely run length is chosen and used to
estimate the change points backwards in time. In Figure 4.2 C this results in two detected
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Figure 4.2: A. An example sequence of random variables with two change points in the mean
and the corresponding theoretical run lengths rk. B. All possible run length paths up to time
K = 10. C. The same sequence of random variables as in A and the estimated distributions
of run lengths, cf. Equation (4.1), for every cycle k, illustrated with a color code. The
estimated change points are shown by the vertical dashed green lines, which result of the path
with maximal posterior probability at time K = 50. D. Illustration of the predictive change
point probability cpprob = P(Yk = 1 |Ak−1 = ak−1) for the change point path estimated in C
(Equation (4.2)) (solid), converging to the real change point probability (dashed).

change points (green dashed lines). Note that because the algorithm first evaluates the run
lengths at time K, it cannot be interpreted rigorously as an ’online’ procedure. A modified
algorithm that uses only information up to the current cycle or only a few cycles in the future
is investigated in Section 4.2.4.
In detail, in order to estimate the run lengths, one needs to derive

P(Rk = rk |X0:k = x0:k) =
p(x0:k |Rk = rk)P(Rk = rk)

p(x0:k)
∀ rk ∈ 0, . . . , k, (4.1)

where the denominator is a normalization factor that can be neglected. The numerator can be
calculated recursively. For better reading we introduce the notation x(rk) := (xk−1, . . . , xk−rk)
indicating the set of observations associated with the run length rk (note that this set can be
empty):

P(Rk = rk) p(x0:k |Rk = rk)

=
k−1∑
i=0

P(Rk = rk, Rk−1 = i) p(x0:k |Rk = rk, Rk−1 = i)

=
k−1∑
i=0

P(Rk = rk |Rk−1 = i)P(Rk−1 = i) p(xk |Rk = rk, Rk−1 = i, x0:k−1) p(x0:k−1 |Rk−1 = i)

=
k−1∑
i=0

P(Rk = rk |Rk−1 = i) p(xk |x(rk)) p(x0:k−1 |Rk−1 = i)P(Rk−1 = i).

This sum reduces to one summand i = rk−1 if rk > 0. The conditional distribution of X1:(k−1)

given Rk−1 and the distribution of Rk−1 only depend on observations up to time k − 1 and
are given by the recursion. The predictive distribution p(xk |x(rk)) only depends on xk and
on the recent observations x(rk), which enables a recursive algorithm. The calculation of the
predictive distribution depends on the chosen model, which will be discussed in Section 4.3.
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If we know the change point probability η, the term P(Rk = rk |Rk−1 = rk−1) can be easily
determined by

P(Rk = rk |Rk−1 = rk−1) =


1− η for rk = rk−1 + 1

η for rk = 0

0 otherwise.

If the change point probability η is unknown, it needs to be estimated as explained in the
following (see also Wilson et al., 2010).

4.2.2 Estimation of the change point probability η

If the change point probability η is unknown, we assume a hierarchical Bayesian model in
which η is assumed a realization of the random change point probability H. For convenience
we use a conjugate prior distribution and thus assume that H is Beta(a0, b0)-distributed.
Given {H = η}, we assume Y1, Y2, . . . to be independent and Bernoulli(η)-distributed. Due to
conjugacy of the distributions, the posterior distribution of H is again a Beta-distribution, cf.
Claim 4.2.1 or (Gelman et al., 2013).

Claim 4.2.1. Let Ak, k ≥ 1, be Binomial-distributed with parameter (k,H), where H is a
random variable, which is Beta-distributed with parameter a0 and b0. Then the posterior
distribution of H given {Ak = ak} is again a Beta-distribution, i.e.,

H | {Ak = ak} ∼ Beta(a0 + ak, b0 + k − ak).

Proof. As we choose a Beta(a0, b0) prior distribution on H, the density function is

πη(η) =
Γ(a0 + b0)

Γ(a0) + Γ(b0)
ηa0−1(1− η)b0−1.

Thus we get with Bayes’ theorem

πη(η |Ak = ak) ∼ πη(η) · P(Ak = ak |H = η)

∼ ηa0−1(1− η)b0−1 · ηak(1− η)k−ak

∼ ηa0+ak−1(1− η)b0+k−ak ,

which is a Beta(a0 + ak, b0 + k − ak)-distribution.

In order to determine the posterior run length distribution, cf. Equation (4.1), we sum over
all possible numbers of change points Ak up to time k, i.e.,

P(Rk = rk |X0:k = x0:k) =
k∑

ak=0

P(Rk = rk, Ak = ak |X0:k = x0:k)

=
k∑

ak=0

p(x0:k |Rk = rk, Ak = ak)P(Rk = rk, Ak = ak)/p(x0:k).
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The numerator of every summand can be calculated recursively by

p(x0:k |Rk = rk,Ak = ak)P(Rk = rk, Ak = ak)

=
∑
rk−1

∑
ak−1

P(Rk = rk, Ak = ak |Rk−1 = rk−1, Ak−1 = ak−1) p(xk |x(rk))

· p(x0:k−1 |Rk−1 = rk−1, Ak−1 = ak−1)P(Rk−1 = rk−1, Ak−1 = ak−1).

The third row is again given by the recursion, and the calculation of the predictive distribution
will be discussed in Section 4.3.1.1 (phase) and Section 4.3.2.1 (rate). In order to determine
P(Rk = rk, Ak = ak |Rk−1 = rk−1, Ak−1 = ak−1), we observe that this term is positive only in
two cases; first, if a change point occurs at time k, i.e., if yk = 1 and {rk = 0∧ ak = ak−1 + 1},
and second, if no change point occurs at time k and the run length increases by one, i.e.,
yk = 0 and {rk = rk−1 + 1 ∧ ak = ak−1}. With Claim 4.2.2 we calculate for the first case, if
0 ≤ ak−1 ≤ k − rk−1, a probability of

P(Rk = 0, Ak = ak−1 + 1 |Rk−1 = rk−1, Ak−1 = ak−1) = P(Yk = 1 |Ak−1 = ak−1)

=

∫ 1

0
P(Yk = 1 |H = η) · πη(η |Ak−1 = ak−1) dη =

a0 + ak−1

a0 + ak−1 + b0 + bk−1
, (4.2)

where πη(η |Ak−1 = ak−1) denotes the posterior Beta(a0 +ak−1, b0 +k−1−ak−1) distribution,
and 0 otherwise. For the second case, we obtain the counter-probability

P(Rk = rk−1 + 1, Ak = ak−1 |Rk−1 = rk−1, Ak−1 = ak−1) =
b0 + bk−1

a0 + ak−1 + b0 + bk−1
.

The predictive change point probability (Equation (4.2)) is illustrated in Figure 4.2 D for the
path with maximal posterior probability at time K = 50.

Claim 4.2.2. Let Y1, . . . , Yk, k > 1, be independent and Bernoulli(H)-distributed, where H is
a random variable, which is Beta(a0, b0)-distributed. Furthermore, let Ak−1 :=

∑k−1
i=1 Yi denote

the number of successes up to k − 1. Then the predictive distribution is given by

P(Yk = yk |Ak−1 = ak−1) =


a0+ak−1

a0+ak−1+b0+bk−1
, if yk = 1,

b0+bk−1

a0+ak−1+b0+bk−1
, if yk = 0,

0, else,

with bk−1 := k − 1− ak−1.

Proof. First we note that Ak−1 is Binomial(k − 1, H)-distributed and Yk | {H = η} and
Ak−1 | {H = η} are independent. Let p̃k := P(Yk = 1 |Ak−1 = ak−1) denote the prediction
of the change point probability using the information up to time k − 1. The law of total
probability yields

p̃k =

∫ 1

0
P(Yk = 1 |H = η,Ak−1 = ak−1) · πη(η |Ak−1 = ak−1)dη

=

∫ 1

0
P(Yk = 1 |H = η) · πη(η |Ak−1 = ak−1)dη.
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As P(Yk = 1 |H = η) = η and using Claim 4.2.1, we get

p̃k =

∫ 1

0
η · Γ(a0 + ak−1 + b0 + bk−1)

Γ(a0 + ak−1)Γ(b0 + bk−1)
ηa0+ak−1−1(1− η)b0+bk−1−1dη

=
Γ(a0 + ak−1 + b0 + bk−1)

Γ(a0 + ak−1)Γ(b0 + bk−1)

∫ 1

0
ηa0+ak−1(1− η)b0+bk−1−1dη

=
Γ(a0 + ak−1 + b0 + bk−1)

Γ(a0 + ak−1)Γ(b0 + bk−1)

Γ(a0 + ak−1 + 1)Γ(b0 + bk−1)

Γ(a0 + ak−1 + 1 + b0 + bk−1)

=
a0 + ak−1

a0 + ak−1 + b0 + bk−1

and notice P(Yk = 0 |Ak−1 = ak−1) = 1− p̃k.

4.2.3 Algorithmic implementation

Assuming an exponential family sampling model, cf. Section 3.4.1, and a normalizable prior
distribution, cf. Section 3.4.3, we can calculate the run length distribution by the following
algorithm. Due to computational reasons we do not calculate the value of p(x0:k |Rk =
rk, Ak = ak)P(Rk = rk, Ak = ak) in the recursion, but the unscaled value P(Rk = rk, Ak =
ak |X0:k = x0:k). In the algorithm this term is abbreviated as f̃(rk, ak, x0:k), and is passed
in the recursive calculation. To compute the run length distribution afterwards, we need to
normalize the computation, cf. step 6. Furthermore, let t(·) denote the sufficient statistic of
X for θ, cf. Section 3.4.1.

1. Initialize (choose prior parameters of Θ and change point probability H)

P(R0 = 0) := 1; n
(0)
0 := n0; t

(0)
0 := t0; a0 := a0; b0 := b0.

2. Observe new realization xk

3. Evaluate Predictive Probability

ψ
(j)
k := p

(
xk |n

(j)
k , t

(j)
k

)
for j = 0, . . . , k.

4. Calculate Growth Probabilities (for j = 1, . . . , k and i = a0, . . . , k − j)

f̃(rk = j, ak = i, x0:k) =P(Rk = j, Ak = i |Rk−1 = j − 1, Ak−1 = i) · ψ(j)
k ·

f̃(rk−1 = j − 1, ak−1 = i, x0:(k−1))

5. Calculate change point probabilities (for i = 1, . . . , k)

f̃(rk = 0, ak = i, x0:k) =

k−1∑
j=0

P(Rk = 0, Ak = i |Rk−1 = j, Ak−1 = i− 1) · ψ(0)
k ·

f̃(rk−1 = j, ak−1 = i− 1, x0:(k−1))
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6. Calculate run length distribution (for j = 0, . . . , k)

f̃(rk = j, x0:k) =

k−j∑
i=1

f̃(rk = j, ak = i, x0:k),

and normalize

P(Rk = j |x0:k) =
f̃(rk = j, x0:k)∑k
i=0 f̃(rk = i, x0:k)

.

7. Update sufficient statistics (for j = 1, . . . , k)

n
(0)
k+1 = n0 and n

(j)
k+1 = n

(j−1)
k + 1

t
(0)
k+1 = n0t0 and t

(j)
k+1 = t

(j−1)
k + t(xk).

8. Return to step 2.

4.2.4 Extension: BOCD with online decision

As described above, the BOCD estimates the change points only after observing the complete
spike train. However, the brain decides only with minimal delay, and we therefore propose
here a modified, ’ad hoc’-algorithm called BOCD with online decision which estimates change
points directly after a small delay d. Our modified algorithm will help to investigate whether
phase parameters can improve this fast decision processes.
The BOCD with online decision is illustrated in Figure 4.3. At cycle k = 2 we use only
information available up to time k + d and decide in the same way as if the time series ended
at time k + d. Thus, we detect a change point at cycle k if and only if the most likely run
length at time k + d is d, i.e.,

arg max
rk+d

P(Rk+d = rk+d |X0:(k+d) = x0:(k+d)) = d. (4.3)

After cycle k + d it is not possible to estimate a change point at time k. Then we proceed to
cycle k + 1, taking information up to time k + 1 + d, and only consider those possible run
lengths that agree with the decision made at cycle k and previous cycles. That means, if a
change point was detected at cycle k, only run lengths taking into account that change point
are considered. If no change point was detected, only run lengths without such a change point
are considered. This considerably reduces the computational effort, but requires that decisions
are made almost instantaneously.
To draw on the algorithmic representation of the BOCD in Section 4.2.3 we apply the algorithm
to sequences from k to k + d and if Equation (4.3) is fulfilled, we apply the algorithm to
sequence k + 1 to k + d+ 1 with prior parameters a0 := a0 + 1 and b0 := b0, otherwise with
prior parameters a0 := a0 and b0 := b0 + 1, cf. ’1. Initialize’ in the algorithm.

4.3 Application within the change point model

Here we transfer the BOCD, which was described in a general setting using parameter notation
θ, to the change point model for rate and phase parameters described in Section 4.1 and Figure
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Figure 4.3: Online decision process with delay d = 3. The gray scales indicate the probability
weight for every possible run length at every time k, i.e., P(Rk = rk |X0:k = x0:k). At time
k̃ = 2 we use all information up to time k̃ + d = 5 and thus decide for the run length which is
most likely at time k̃ + d = 5. (darkest point for k = 5 for a run length of 4, implying r̂2 = 1,
i.e., no change is detected at k̃ = 2). Without delay, i.e., with d = 0, the maximal weight (the
darkest point at k = 2) would imply an estimated change point at k̃ = 2.

4.1. To apply the BOCD we require the predictive distribution p(xk |x(rk)). Here we choose
conjugate prior distributions πθ(·) for θ for convenience, such that the prior and posterior
distributions belong to the same distribution family, and even the predictive distribution
p(xk |x(rk)) can be determined analytically.

We first recall the parameter setting, then specify the prior and predictive distributions, and
finally perform simulations to identify useful parameter choices for the prior distributions.
This procedure is done separately for three cases: (1) for the phases, i.e., θ = ϕ, (2) for the
rates, i.e., θ = λ, (3) for the bivariate case θ = (ϕ, λ). Thus, we always assume that rate and
phase parameters change simultaneously, but in our BOCD analysis, we incorporate either
only the rate or the phase or the two parameters, and then investigate the advantages of the
bivariate change point analysis over univariate analysis.

Note that we now count the cycles from 1 to k as it simplifies the posterior parameter notations.
In the notation of the BOCD it was beneficial to count from 0 to k as it simplifies the notation
of the recursive update of the change point probability.

In Section 4.3.1 we start with a pure phase analysis and evaluate the performance of the
BOCD for different prior parameters and changes in the phase parameter. Thereby we give a
short insight to the impact of the prior change point parameters a0 and b0, but during the
further procedure for generality we decide on an uniform change point prior of a0 = b0 = 1.

In Section 4.3.2 we focus on a pure rate analysis and investigate the impact of different rate
prior parameters. With that we motivate in Section 4.3.3 appropriate and comparable prior
parameters for rate and phase in the bivariate analysis and quantify the advantage in the
change point detection of the bivariate analysis compared to a pure rate analysis applying the
BOCD and the BOCD with online decision.

4.3.1 Pure phase analysis

In the following sections we analyze the ability of the phase by its own detect changes in the
timing of the spikes. First we assume that exactly one spike in each oscillation cycle occurs,
i.e., nk = 1 ∀k ≥ 1. To apply the BOCD we need to calculate the predictive distribution of

101



CHAPTER 4. DETECTION OF CHANGES IN THE STIMULUS

Xk+1 |X1:k. Therefore, we determine in Section 4.3.1.1 a conjugate prior distribution and its
posterior update process and calculate finally the predictive distribution, cf. Gelman et al.
(2013). Afterwards we apply the BOCD to the setting of one spike per oscillation cycle and
consider the two cases no and one change point, see Section 4.3.1.2. Thereby we give a deeper
understanding of the impact of the chosen prior change point parameters a0, b0 and prior
parameters of the phase and how they influence the change point detection.
In Section 4.3.1.3 we extend the results of Section 4.3.1.1 to an arbitrary spike number nk in
each oscillation cycle and state how the predictive distribution can be calculated if we observe
multiple random number of spikes in each cycle. With that we are able to search for change
points in the phase in our change point model and analyze the impact of the spike rate in the
change detection based on a pure phase analysis.

4.3.1.1 One spike

We assume we observe one spike in each oscillation cycle, i.e., nk = 1 ∀ k ≥ 1. Recall that
in our change point model in each cycle k, given the phase parameter ϕ := ϕAk , we observe

Xk := X
(k)
1 ∼ N (ϕ, σ2). Our aim is to correctly detect the positions, where a change in the

mean parameter of the normal distribution occurs. To use the BOCD to detect change point
in the phase, we need to determine the predictive distribution. Therefore let us first specify a
conjugate prior distribution of Φ and determine the posterior distribution of Φ |X1:k.

Lemma 4.3.1. Let Φ ∼ N (µ0, τ
2
0 ) be the prior distribution and X1, . . . , Xk a sequence of

i.i.d. random variable with X1 | {Φ = ϕ} ∼ N (ϕ, σ2), where σ2 is known. Then the posterior
distribution Φ | {X1:k = x1:k} is again a normal distribution, i.e.,

Φ | {X1:k = x1:k} ∼ N (µk, τ
2
k ),

where

τ2
k :=

1
1
τ2
0

+ k
σ2

and µk :=

µ0

τ2
0

+
∑k
i=1 xi
σ2

1
τ2
0

+ k
σ2

.

Proof. Let πϕ(·) denote the prior distribution of Φ and p(·) the distribution of X1:k and
φϕ,σ2(·) the density of the normal distribution with mean ϕ and variance σ2. As X1, . . . , Xk

are conditional independent, we obtain p(x1:k |Φ = ϕ) =
∏k
i=1 φϕ,σ2(xi).

As X̄ :=
∑k

i=1Xi/k is sufficient for ϕ, we will reduce the problem to the univariate case by
reverting to the sample mean X̄, which notoriously has distribution X̄ | {Φ = ϕ} ∼ N (ϕ, σ2/k),
i.e.,

p(x1, . . . , xk |Φ = ϕ) ∼ exp

(
−1/(2σ2)

k∑
i=1

(xi − ϕ)2

)
∼ exp

(
−1/(2σ2)

(∑
x2
i − 2ϕ

∑
xi + kϕ2

))
∼ exp

(
−k/(2σ2)

(
−2ϕx̄+ ϕ2

))
∼ exp

(
−k/(2σ2) (x̄− ϕ)2

)
,
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which is a N (ϕ, σ2/k)-distribution. Using Bayes Rule yields

πϕ(ϕ |X1:k = x1:k) ∼ πϕ(ϕ) · p(x1:k |Φ = ϕ)

∼ exp(−1/(2τ2
0 )(ϕ− ϕ0)2) · exp

(
−k/(2σ2) (x̄− ϕ)2

)
∼ exp

1

2

(
1

τ2
0

+
k

σ2

)
(
ϕ
τ0
− µ0

τ0

)2
+ k

σ2 (ϕ− x̄)2

1/τ2
0 + nσ2




∼ exp

 1

2τ2
k

 ϕ2

τ2
0
− 2ϕϕ0

τ2
0

+
µ2

0

τ2
0

+ ϕ k
σ2 − 2ϕ k

σ2 x̄+ k
σ2 x̄

2

1/τ2
0 + kσ2


∼ exp

 1

2τ2
k

ϕ2
(

1
τ2
0

+ k
σ2

)
− 2ϕ

(
µ2

0

τ2
0

+ k x̄
σ2

)
+

µ2
0

τ2
0

+ k
σ2 x̄

2

1/τ2
0 + kσ2


∼ exp

 1

2τ2
k

ϕ− 2ϕ

µ0

τ2
0

+
∑k
i=1 xi
σ2

1/τ2
0 + k/σ2




∼ exp

(
1

2τ2
k

(ϕ− µk)2

)
.

Remark 1: In Algorithm 4.2.3 the sufficient statistic can be updated recursively by

µ
(0)
k+1 = µ0 and µ

(j)
k+1 =

µ
(j−1)
k

τ
(j−1)
k

+ xk
σ2

1/τ
(j−1)
k + 1/σ2

τ
(0)
k+1 = τ2

0 and τ
(j)
k+1 =

1

1/τ
(j−1)
k + 1/σ2

,

as according to Lemma 4.3.1

τ2
k+1 =

1

1/τ2
0 + (k + 1)σ2

=
1

1/τ2
0 + k/σ2 + 1/σ2

=
1

τ2
k + 1/σ2

and

µk+1 =

µ0

τ2
0

+
∑k+1
i=1 xi
σ2

1/τ2
0 + (k + 1)/σ2

=

µ0

τ2
0

+
∑k
i=1 xi
σ2 +

xk+1

σ2

1/τ2
0 + k/σ2 + 1/σ2

=

µk
τ2
k

+
xk+1

σ2

1/τ2
k + 1/σ2

.
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Remark 2: The posterior parameters τ2
k and µk have a nice interpretation:

The equation

1

τ2
k

=
1

τ2
0

+
1

σ2/k

can be interpreted as

posterior precision = prior precision+ sampling precision.

The location parameter µk is just the weighted average of the prior mean parameter and the
sample mean.
The update process of the posterior parameters for k = 1, 5, 10 observations is illustrated
in Figure 4.4 A. The corresponding update of the predictive distribution is in Figure 4.4 B
and is calculated according to Lemma 4.3.2, which says: The predictive distribution of a
normal distribution on basis of k observations is again a normal distribution with posterior
expectation µk and variance the uncertainty about Φ, which is τ2

k , plus the uncertainty about
a random realization, which is σ2.
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Figure 4.4: A. Update process of the posterior parameters µk and τk of the phase variable
Φ for k = 1, 5, 10 observations. The true (unknown) phase parameter is ϕtrue = 0.5. The
known variance is σ2 = 1. As prior parameters we choose µ0 = 0 and τ2

0 = 4. Thus starting
with a broad N (0, 4)-prior-distribution, we get closer to the true phase parameter ϕtrue by
updating the posterior parameters µk and τk according to Lemma 4.3.1. B. The predictive
distribution of Xk+1 | {X1:k} for the same parameters and observations as in A. Thus starting
with N (0, 5)-prior-predictive-distribution the posterior predictive distribution converges to a
N (0.5, 1)-distribution for a increasing number of observations k.

Lemma 4.3.2. Let Φ ∼ N (µ0, τ
2
0 ) and X1, . . . , Xk be a sequence of i.i.d. random variable with

X1 | {Φ = ϕ} ∼ N (ϕ, σ2), where σ2 is known. Then the predictive distribution Xk+1 | {X1:k =
x1:k} is again normally distributed, i.e.,

Xk+1 | {X1:k = x1:k} ∼ N (µk, τ
2
k + σ2),

where µk and τk are defined as in Lemma 4.3.1.
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Proof. As Xk+1 arises through a hierarchical model, where we first draw a normally distributed
variable Φ and given {Φ = ϕ} we choose Xk+1 according to a N (ϕ, σ)-distribution, we know
Xk+1 ∼ N (µ0, τ

2
0 + σ2) and can fragment

Xk+1 = Φ + Z,

where Z ∼ N (0, σ2) and independent of Φ. Out of Lemma 4.3.1 we know Φ | {X1:k = x1:k} ∼
N (µk, τ

2
k ). Furthermore, Z | {X1:k = x1:k} ∼ Z ∼ N (0, σ2), so Xk+1 | {X1:k = x1:k} is also

normally distributed. In the following we determine the parameters of the normal distribution:

E[Xk+1 |X1:k = x1:k] = E[Φ + Z |X1:k = x1:k]

= E[Φ |X1:k = x1:k] + E[Z |X1:k = x1:k]︸ ︷︷ ︸
=0

= µk

and

Var[Xk+1 |X1:k = x1:k] = Var[Φ |X1:k = x1:k] + Var[Z |X1:k = x1:k]

= τ2
k + σ2.

Remark 4.3.3. The variance equation also follows directly from the law of total variance,
which says for X ∼ N (Φ, σ2)

Var[X] = Var [EΦ[X]] + E [VarΦ[X]]

= Var [Φ] + σ2.

4.3.1.2 Application of BOCD (1 Spike)

With the preceding section we know the predictive distribution and can use the BOCD, cf.
Section 4.2.3 to search for change points. Therefore, we consider the two cases no change
point or one change point occur and analyze the impact of the number of observed cycles, the
prior change point parameters a0 and b0 and the prior precision τ2

0 .

No change point: Here we study the scenario that no change point occurs and we want to
test how the prior change point parameters a0 and b0 and the number of cycles K influence
the ability of the BOCD to correctly detect no change point. So we just observe N (0, 1)-
random-variables. As prior location parameter we choose µ0 = 0 and as prior precision τ0 = 1.
In Figure 4.5 A we observed K = 100 random realization and applied the BOCD with a0 = 1
and different b0.
If we do not have any special information about the change point frequency, we may choose
a0 = 1 and b0 = 1, which is the uniform distribution. If we expect rather less change points,
we would choose b0 > 1, since the expectation of a Beta(a0, b0)-distribution is a0/(a0 + b0). In
some simulations starting with an uniform change point prior results in many detected change
points. Choosing b0 < 1 increases the number of wrong detection. Increasing b0 up to K/2
results in almost no false detections, cf. Figure 4.5 A.
Increasing the number of cycles up to K = 500 provides enough information to remove almost
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Figure 4.5: We consider K independent observations from a standard normal distribution and
analyze the number of detected change points applying the BOCD with µ0 = 0 and τ0 = 1.
A. Here we consider K = 100 observations and choose a0 = 1. A strong concern of a small
change point probability (b0 � 1) is needed for a small number of detected change points. B.
For K = 500 observations even an excessive change point prior yields almost no change point
detection (Beta(1, 1/6)), thus only some chance for a small change point probability is needed
(the density of a Beta(6, 1 distribution) equals zero at zero).

all falsely detected change points, even for a change point prior with a high expected number
of changes, cf. Figure 4.5 B (red dots). But even in case of many cycles, there is some caution
needed in the choice of the change point prior. For example, if there is almost no chance for a
small change point probability in the prior distribution (blue dots), even a large time horizon
can not fix the overestimation, for explanation check Figure 4.6.

One change point: Here we study the scenario that exactly one change point occurs at
K/2 for K = 100 observations. Again a higher number of cycles improves the detection ability.
We observe K/2 N (0, 1)-random-variables and K/2 N (ϕc, 1)-random-variables. Thereby we
analyze different changes in the location parameter ϕc. Once more we choose µ0 = 0. But
this time we analyze the impact of prior precision τ0. In Figure 4.7 A. we choose τ0 = 1.

A Beta(1,K/2)-prior-change point distribution detect changes in ϕ starting from ϕc = 0.5 and
almost make no false detections. If we start with a uniform change point prior distribution
(a0 = b0 = 1), there are many falsely detected change points. But if we decrease our prior
precision and choose τ0 = 2 , also a uniform change point prior yields a few false detections,
cf. Figure 4.7 B.
The majority of falsely detected change points in case of τ0 = 1 and a uniform change point
prior results from simulations, where the algorithm detect changes at every fourth observation,
cf. Figure 4.8 A. For a prior precision τ0 = 2 the BOCD detects for almost all simulations
less than 6 change points, cf. Figure 4.8 B. Thus the divergence (K not to large) in some
simulations results from a bad prior choice, which can be seen heuristically in the following
way:
In general a high prior precision (τ0 is small) causes an overestimation of the change point
number (see also subsection 4.3.1.3), if we start in a broad change point prior distribution

106



CHAPTER 4. DETECTION OF CHANGES IN THE STIMULUS

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

η

de
ns

ity

Beta(6, 1)
Beta(1, 1 6)

Figure 4.6: Comparison of a Beta(6, 1)-
and Beta(1, 1/6)-density.

Both change point priors Beta(6, 1) and
Beta(1, 1/6) have the same expectation 6/7,
but only Beta(1, 1/6) results in almost no
detected change point for a high number of
K = 500 cycles. This is due to the struc-
ture of the densities: Beta(6, 1) is more flat
and equals zero at 0. Thus small change
point probabilities are not only unlikely, but
almost impossible. This results in a struc-
tural overestimation of the change point
number. In case of a Beta(1, 1/6), small
values for p are unlikely, but not impossible,
thus K = 500 cycles can fix the misinfor-
mation.

(e.g. uniform distribution) and consider a limited time horizon, as:
Let us assume we observed k realizations, where we decided, not to detect a change point.
Then at time k + 1 we balance the two possibilities

1) Xk+1 ∼ N (µ0, τ
2
0 + σ2)

2) Xk+1 ∼ N (µk, τ
2
k + σ2).

If E[Xi] = µ0 (as in the simulations), we know according to the law of large numbers:

µk =

µ0

τ2
0

+
∑
Xi
σ2

1/τ2
0 + k/σ2

k→∞−−−→ µ0.

Furthermore we have τk < τ0 ∀ k ≥ 1, since

τ2
k =

1

1/τ2
0 + k/σ2

= τ2
0

(
1

1 + k
τ2
0
σ2

)
.

Additionally the larger τ0/σ is, the smaller τk/τ0 gets and vice versa, i.e.,

τ0

σ
↗ =⇒ τk

τ0
↘ .

Thus if we choose a higher prior precision, which is equivalent to decrease τ0/σ, the difference
of the two possibilities N (µ0, τ

2
0 + σ2) or N (µk, τ

2
k + σ2) decreases. Thereby the high change

point prior influences the change point detection essentially.

4.3.1.3 Arbitrary spike number

In the following section we extend the results of Section 4.3.1.1 to an arbitrary spike number.
Recall that in our change point model, in each cycle k, given the phase parameter ϕ := ϕAk
and the spike number nk, we observe independent random variables X

(k)
1 , . . . , X

(k)
nk with

X
(k)
j ∼ N (ϕ, σ2). As the mean spike time X̄k := 1/nk

∑nk
j=1X

(k)
j is sufficient for ϕ, we
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Figure 4.7: We consider K = 100 independent observations, where the first K/2 follow a
N (0, 1)-distribution and the other half a N (ϕc, 1)-distribution. Dependent on the change in
the location parameter the overall number and the correct number of change points is shown.
A change point is correct detected, if the distance to the true change point is less than 3. A.
We choose a prior precision τ0 = 1. In that case we detect a high number of false change
points with an uniform change point prior. B. We choose a prior precision τ0 = 2. Here we
obtain plausible results for both change point priors.

consider only X̄k ∼ N (ϕ, σ2/nk) for the posterior distribution if we observe at least one spike.
Empty cycles with nk = 0 are skipped.

The conjugate prior distribution of the phase parameter is then a normal distribution, i.e.,
Φ0 ∼ N (µ0, τ

2
0 ), and the posterior distribution Φ0 | {X̄1:k = x̄1:k} after k + 1 cycles without a

change point is, cf. Lemma 4.3.1,

Φ0 | {X̄1:k = x̄1:k} ∼ N (µk, τ
2
k ), where τ2

k :=
1

1
τ2
0

+
∑k
i=1 ni
σ2

and µk :=

µ0

τ2
0

+
∑k
i=1 nix̄i
σ2

1
τ2
0

+
∑k
i=1 ni
σ2

.

To calculate the predictive distribution for cycle k + 1, we update the distribution of ϕ
successively in the cycle, i.e.,

p
(
X

(k+1)
1:nk+1

= x
(k+1)
1:nk+1

| X̄1:k = x̄1:k

)
= p

(
X

(k+1)
1 | X̄1:k = x̄1:k

)
· . . . · p

(
X(k+1)
nk+1

|X(k+1)
1:nk+1−1 = x

(k+1)
1:nk+1−1, X̄1:k = x̄1:k

)
.

On the right-hand side, the predictive distribution of X
(k+1)
i+1 | {X(k+1)

1:i = x
(k+1)
1:i , X̄1:k = x̄1:k},

i = 0, . . . , k, is a normal distribution with mean µki and variance τ2
ki + σ2 given by, cf. Lemma

4.3.2,

τ2
ki :=

1
1
τ2
k

+ i
σ2

and µki :=

µk
τ2
k

+
∑i
j=1 x

(k+1)
j

σ2

1
τ2
k

+ i
σ2

. (4.4)
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Figure 4.8: We consider K = 100 independent observations, where the first K/2 follow
a N (0, 1)-distribution and the other half a N (ϕc, 1)-distribution, with ϕc = 1. In 10000
simulations we choose a uniform change point prior (a0 = b0 = 1) and determine the number
of detected change points for two different priors. A. With a prior precision τ0 = 1 we detect
a huge number of change points in several simulations. B. Reducing the prior precision to
τ0 = 2 yields almost no falsely detected change points.

The successive update to calculate the predictive distribution is crucially, and we can not
combine the observations in one cycle to the mean spike time and use p(x̄k+1 | X̄1:k = x̄1:k) in
the BOCD. We will discuss the difference and its impact on the change point detection in
Section 4.3.3.4.

4.3.1.4 Application of BOCD (arbitrary spike number)

Now we are able to apply the BOCD to detect changes in the phase parameter if we have an
arbitrary (fixed or random) spike number per oscillation cycle.
First we consider a no change point scenario and compare the robustness of the phase for 1,
2 or 4 spikes per oscillation cycle. Thereby we vary the prior precision τ0 of the phase and
examine how a miss-specification in the prior belief µ0 influence the change point detection.
Second we consider an one change point scenario and analyze how the change detection with a
random number of spikes (N ∼ Pois(λ)) differs from a fixed number of spikes (N = λ, λ ∈ N).
Third we consider various sizes of the change in an one change point scenario and compare
one spike with two spikes per oscillation cycle, but we consider twice as much cycles in the
one spike setting.
In each scenario we start with an uniform change point prior (a0 = b0 = 1).

No change point We consider various numbers of cycles K = 10, 20, . . . , 200 containing
no change point and three scenarios of nk = 1, 2, 4 spikes per oscillation cycle (∀k), i.e., for
k = 1, . . . ,K we observe

X
(k)
1 , . . . , X(k)

nk
, where X

(k)
j ∼ N (0, 1) ∀k, j and independent,

see Figure 4.9. Thereby we examine three types of prior belief:
In Figure 4.9 A and B we have a correct prior expectation µ0 = 0, but in Figure 4.9 A we
have a very strong opinion τ0 = 0.5 and in Figure 4.9 B we choose a wide prior distribution
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Figure 4.9: No change point scenario: We observe a sequence of K = 10, 20, . . . , 200 oscillation
cycles, where in each cycle the spike times are independent and standard normally distributed.
We consider 1 (green), 2 (blue) or 4 (red) spikes per oscillation cycle and determine the number
of detected change points. A. Precise prior belief: We have prior expectation µ0 = 0 and
precision τ0 = 0.5. B. Imprecise prior belief: We have prior expectation µ0 = 0 and precision
τ0 = 2. C. Miss-specified prior belief: We have prior expectation µ0 = 2 and precision τ0 = 2.

with τ0 = 2. If we have a very precise prior opinion we detect many change points and need a
long time horizon (K large) to reduce the number of detected change points. This issue is
connected to the uniform change point prior, which is to broad to start which such precise
prior information about Φ, cf. Section 4.3.1.2. However, the higher the number of spikes per
oscillation cycle, the lower the number of detected change points and the faster an increased
number of cycles can fix the problem of the change point prior. A broad prior belief (Figure
4.9 B) results in a robust change detection and only for one spike per oscillation cycle (green
dots) we observe a considerable number of detected change points, which reduces to zero
almost completely for K > 80.
In Figure 4.9 C we start with a wrong prior expectation µ0 = 2. The result is a very robust
change detection (for all number of spikes and observed oscillation cycles), which might seem
surprising at first sight. But the miss specification leads to low prior density for the relevant
parameter range and already after one observation the posterior distribution fits much better
than the prior distribution, which compensates the difficulty of an uniform change point prior
directly. However, it is difficult to detect a small change, for example ϕ : 0→ 0.5, if we have
such a wrong prior expectation, as we would again prefer the posterior distribution, due to
the low prior density.

One change point In Figure 4.10 A and B we compare a random spike number (N ∼
Pois(λ), Figure 4.10 A) with a fixed spike number (N = λ, λ ∈ N Figure 4.10 B). Therefore
we consider various numbers of cycles K = 10, 20, . . . , 100 with exactly one change point in
the mid at K/2, i.e., for all k = 1, . . . ,K/2 we observe given {Nk = nk}

X
(k)
1 , . . . , X(k)

nk
, where ∀ j = 1, . . . , nk X

(k)
j are i.i.d. with X

(k)
1 ∼ N (0, 1)

and for all k = K/2 + 1, . . . ,K given {Nk = nk}

X
(k)
1 , . . . , X(k)

nk
, where ∀ j = 1, . . . , nk X

(k)
j are i.i.d. with X

(k)
1 ∼ N (0.5, 1).

Whether the spike number is fixed or random, the performance of the change detection is quite
similar, i.e.: The number of correctly detected change point (circles) and the number of all
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Figure 4.10: One change point scenario with prior parameters µ0 = 0 and τ0 = 2. In the first
K/2 cycles we observe standard normally distributed spike times. We distinguish the number
of all detected change points (dots) and only the number of correct detected change points
(triangles). A. and B. Exactly one change point at cycle K/2 for K = 10, 20, . . . , 100 cycles.
The phase jumps from 0 to 1/2. A. Fixed spike number 2 (blue) and 4 (green) per oscillation
cycle. B. Poisson(λ) distributed spike number λ = 2 (blue) and λ = 4 (green). C. We consider
K = 50 cycles, green, (K = 100, blue) with 2 spikes (1 spike) each cycle and exactly one
change point at cycle K/2, where the phase jumps from 0 to ϕc = 2−3, 2−2, . . . , 21.

detected change points, falsely plus correctly, (triangles) are almost identical. At the very most
in case of a spike rate λ = 2 (blue) and few cycles (K ≤ 30), a random spike number results
in a higher number of falsely detected change points (blue dots): A Poisson(2)-distribution
creates with about 27% one spike in an oscillation cycle, which significantly increases the
variance of the mean spike time in the first cycles.

In Figure 4.10 C we question whether there is an advantage to observe two spikes in each
cycle and K = 50 cycles (green) or instead observe only one spike in each cycle, but 2K = 100
cycles (blue). Therefore, we use a wide prior distribution τ0 = 2 with a prior expectation
µ0 = 0 and consider changes in the mid at K/2 of 0→ ϕc, with ϕc = 2−3, 2−2, . . . , 21. Both
settings perform almost identical, however 2 spikes have a small advantage for a change of
size 2−1 and 20. Maybe one would have expected that, as in the case of 2 spikes we know for
certain, that these two spikes have the same phase, on the contrary in case of 1 spike, two
adjacent spikes can have a different phase parameter, because they belong to different cycles.
Thus observing more spikes per cycle should be an advantage, but is rather decisive for few
cycles.

4.3.2 Pure rate analysis

In the following section we analyze the ability of the rate to detect changes in the number of
spikes. In each cycle we observe a Poisson distributed number of spikes, where the parameter
of the Poisson distribution is random and can change between two cycles. Our aim is to detect
such changes in the parameter.
To be able to apply the BOCD we need access to the predictive distribution Nk+1 |N1:k.
Therefore, in Section 4.3.2.1 we specify a conjugate prior distribution for Λ, determine the
posterior update process of Λ |N1:k and finally calculate the predictive distribution, cf. Gelman
et al. (2013).
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In Section 4.3.2.2 we first apply the BOCD to a no change point scenario and compare
different rate parameters with various prior distributions. Afterwards we consider those prior
distributions in an one change point scenario with two different rate changes.

4.3.2.1 Predictive distribution

First we give a short overview of the prior, posterior and predictive distribution for the rate
parameter. In each cycle k, given the realization of the rate parameter λ := λAk , we observe a
Poisson distributed number of spikes Nk ∼ Pois(λ). We choose the conjugate distribution
Λ0 ∼ Gamma(α0, β0) as a prior distribution. After k + 1 cycles without change point, the
posterior distribution is again a Gamma distribution, cf. Lemma 4.3.4, i.e.,

Λ0 | {N1:k = n1:k} ∼ Gamma(αk, βk),

with αk := α0 +
∑k

i=1 ni and βk := β0 + k. The predictive distribution of Nk+1 | {N1:k = n1:k}
is a negative binomial distribution, cf. Lemma 4.3.5, i.e.,

Nk+1 | {N1:k = n1:k} ∼ NB
(
αk,

βk
βk + 1

)
. (4.5)

In Figure 4.11 an illustration of the posterior update process and of the predictive distribution
can be found.

Lemma 4.3.4. Let Λ ∼ Gamma(α0, β0) be the prior distribution and N1, . . . , Nk a sequence
of i.i.d. random variable with N1 | {Λ = λ} ∼ Pois(λ). Then the posterior distribution
Λ | {N1:k = n1:k} is again a Gamma distribution, i.e.,

Λ | {N1:k = n1:k} ∼ Gamma(αk, βk),

where

αk := α0 +
k∑
i=1

ni and βk := β0 + k.

Proof. Let πλ(·) denote the prior distribution of Λ, i.e.,

πλ(λ) =
βα0

0

Γ(α0)
λα0−1e−β0λ (λ > 0),

where Γ(·) denotes the gamma function (see Definition B.1). As N1, . . . , Nk are conditional
independent, i.e., P(N1:k = n1:k |Λ = λ) =

∏k
i=1 P(Ni = ni |Λ = λ), Bayes Rule yields

πλ(λ |N1:k = n1:k) ∼ πλ(λ) · P(N1:k = n1:k |Λ = λ)

∼ βα0
0

Γ(α0)
λα0−1e−β0λ · λ

∑k
i=1 ni∏k

i=1 ni!
e−λk

∼ λα0+
∑k
i=1 ni−1e−(β0+k)λ,

which is a Gamma distribution with parameters α0 +
∑k

i=1 ni and β0 + k.
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Remark 1: In Algorithm 4.2.3 the sufficient statistic can be updated recursively by

α
(0)
k+1 = α0 and α

(j)
k+1 = αj−1

k + nk

β
(0)
k+1 = β0 and β

(j)
k+1 = βj−1

k + 1.

Remark 2: As the mean of the gamma distribution is (Remark B.5)

E[Λ] =
α0

β0
,

the posterior mean has the linear form

E[Λ | {N1:k = n1:k}] = c
α0

β0
+ (1− c) 1

k

k∑
i=1

ni,

where c = β0

k+β0
. The higher the value of β0 the more the posterior distribution is influenced

by the prior expectation. That is not such surprising if we make us aware of the variance of
the Gamma distribution (Remark B.5), which is

Var[Λ] =
α0

β2
0

.

A high value of β0 implies a high prior precision about possible values of Λ, thus a large sample
size is needed to influence that belief.
The update process of the posterior parameters for k = 1, 5, 10 observations is illustrated in
Figure 4.11 A. The corresponding update of the predictive distribution is in Figure 4.11 B
and is calculated according Lemma 4.3.5, which says: The predictive distribution of a Poisson
distribution on basis of k observations is a negative binomial distribution with αk successes
and success probability βk/(βk + 1).

Lemma 4.3.5. Let Λ ∼ Gamma(α0, β0) be the prior distribution and N1, . . . , Nk a sequence
of i.i.d. random variable with N1 | {Λ = λ} ∼ Pois(λ). Then the predictive distribution
Nk+1 | {N1:k = n1:k} is a negative binomial distribution, i.e.,

Nk+1 | {N1:k = n1:k} ∼ NB
(
αk,

βk
βk + 1

)
,

where αk and βk are defined as in Lemma 4.3.4.

Proof. Let πλ(·) denote the prior distribution of Λ. To determine the predictive distribution
we use the law of total probability, which yields, cf. Lemma 4.3.4,

P(Nk+1 = nk+1 | {N1:k = n1:k}) =

∫ ∞
0

P(Nk+1 = nk+1 |λ)πλ(λ | {N1:k = n1:k})dλ

=

∫ ∞
0

λnk+1

nk+1!
e−λ

βαkk
Γ(αk)

λαk−1e−βkλdλ

=
βαkk

nk+1! Γ(αk)

∫ ∞
0

λαk+nk+1−1e−(βk+1)λdλ

=
βαkk

nk+1! Γ(αk)

Γ(αk + nk+1)

(βk + 1)αk+nk+1

=
Γ(αk + nk+1)

nk+1! Γ(αk)

(
βk

βk + 1

)αk ( 1

βk + 1

)nk+1

, (4.6)
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Figure 4.11: A. Update process of the posterior parameters αk and βk of the rate variable Λ for
k = 1, 5, 10 observations. The true (unknown) rate parameter is λtrue = 1. As prior parameters
we choose α0 = 3 and β0 = 1. Thus starting with a broad Gamma(3, 1)-prior-distribution,
we get closer to the true rate parameter λtrue by updating the posterior parameters αk
and βk according to Lemma 4.3.4. B. The predictive distribution of Nk+1 | {N1:k} for the
same parameters and observations as in A. Thus starting with NB(3, 1/2) prior predictive
distribution the posterior predictive distribution converges to a Pois(1)-distribution for a
increasing number of observations k.

which is the probability mass function of a negative-binomial distribution with parameters αk
and βk/(βk + 1), cf. Definition B.9.

Remark 1: If we start with α0 integer, the normalization factor in Equation (4.6) can be
replaced by the binomial coefficient

(
αk+nk+1−1

nk+1

)
, which is a more common representation of

the negative binomial distribution with the interpretation: We encounter exactly nk+1 failures,
before we encounter αk successes, see also Remark B.10.

Remark 2: For a parametric model we know in general that the Bayesian updating yields
asymptotically the true parameter, if the prior distribution does not exclude the true value.
Here we can easily verify, that the predictive distribution converges to a Pois(λ) distribution:
With the law of large numbers we know

αk
βk

k→∞−−−→ λ

4.3.2.2 Application of BOCD

With the knowledge about the predictive distribution we are able to apply the BOCD to
detect changes in the rate parameter.
First we consider a no change point scenario and compare the robustness of the rate for various
expected number of spikes per oscillation cycle. Thereby we vary the prior parameter α0

(β0 = 1) of the gamma distribution to compare a low, mid and high prior belief about the rate.
Second we consider those prior beliefs in an one change point scenario and analyze the change
detection for a jump in the rate from 1 to 2 or from 1 to 4.
In each scenario we start with an uniform change point prior (a0 = b0 = 1).
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No change point We consider various number of cycles K = 10, 20, . . . , 500 containing no
change point and and various fixed rate parameters λ = 1, 2, 4, i.e., in each oscillation cycle k
we observe

Nk ∼ Pois(λ), and Nk, Nk′ independent ∀ k 6= k′.

In Figure 4.12 the number of detected change points is shown dependent on the number
of observed cycles K. In Figure 4.12 A we choose a Gamma(2, 1) prior distribution, which
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Figure 4.12: No change point scenario: We consider K = 10, 20, . . . , 500 independent Poisson(λ)
distributed numbers and apply the BOCD with an uniform change point prior. We analyze
three different rates λ = 1 (green), λ = 2 (blau) and λ = 4 (red) and three different prior
beliefs. A. Small rate prior: α0 = 2 and β0 = 1. B. Middle rate prior: α0 = 3 and β0 = 1. C.
High rate prior: α0 = 5 and β0 = 1.

represents a small rate prior belief (expectation equals 2); in Figure 4.12 B we choose a
Gamma(3, 1) prior distribution, which represents a middle rate prior belief (expectation equals
3); in Figure 4.12 C we choose a Gamma(5, 1) prior distribution, which represents a high rate
prior belief (expectation equals 5).
Interestingly the small rate prior works well for a high rate (red), but bad for a small rate of
2 (blue), which equals the expectation. Equally, a high rate prior works well for small rates
(green and blue), but bad for a high rate of 5 (red), which equals the expectation. In both
cases we need at least K = 200 oscillation cycles to have a robust detection for all rates. A
middle rate prior works adequate for all rates and with K = 100 oscillation cycles we have
almost no false detections.
For example, a high rate prior detects many false change points in case of a high rate (at least
in the short run), as it has high and not flat prior density in the true rate range and since we
start with an uniform change point prior, there is some chance for many small changes, c.f.
Section 4.3.3.2.

One change point We consider various numbers K = 10, 20, . . . , 100 of cycles containing
exactly one change point in the mid of the sequence, i.e.,

N1, . . . , NK/2 ∼ Pois(1) and NK/2+1, . . . , NK ∼ Pois(λ), and N1, . . . , NK independent,

where we analyze the two cases λ = 2 (green) and λ = 4 (blue). In Figure 4.13 the number of
all detected change points (dots) and the number of correctly detected change points (triangles)
are shown dependent on the number of observed oscillation cycles K. Again in Figure 4.13 A
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Figure 4.13: One change point scenario: We observe K = 10, 20, . . . , 100 cycles, where in the
first K/2 cycles we draw independent Poisson(1) distributed numbers and in the second K/2
cycles we draw independent Poisson(λ) distributed numbers, where we consider the two cases
λ = 2 (green) and λ = 4 (blue). We apply the BOCD with an uniform change point prior and
distinguish the number of all detected change points (dots) and only the number of correct
detected change points (triangles). A. Small rate prior: α0 = 2 and β0 = 1. B. Middle rate
prior: α0 = 3 and β0 = 1. C. High rate prior: α0 = 5 and β0 = 1.

we choose a Gamma(2, 1) prior distribution, in Figure 4.13 B we choose a Gamma(3, 1) prior
distribution and in Figure 4.13 C we choose a Gamma(5, 1) prior distribution. Using a small
rate prior we almost ever detect the true change point, but we make many false detections,
even for K = 100 oscillation cycles (cf. Figure 4.13 A). A mid rate prior detects almost all
changes from 1 to 4 (blue) and also robust for K = 100. Changes from 1 to 2 (green) can be
detected appropriately for at least K = 60 and robust for K = 100. With a high rate prior a
change detection operates very well for a change from 1 to 4 (blue) and is robust also for a
change from 1 to 2 (green), but detects less true change points than a mid rate prior.
In summary with respect to the results of the no and one change point scenario and as the
relevant rate parameters in the data set are in the range of 1 to 4, α0 = 3 seems an appropriate
choice for the prior distribution of the rate, see also Section 4.3.3.2.

4.3.3 Rate and phase analysis

In this section we consider change points in the rate and phase simultaneously and question if
the bivariate analysis can improve the change point detection compared to a pure rate analysis.
In general, the change point detection should improve as only common change points in rate
and phase are assumed (Zimek et al., 2012; Alippi et al., 2016). Nevertheless, if an additional
change point in the phase can clearly improve the change detection, is an interesting question,
as the changes are so small relative to its precision.

To apply the BOCD we need to determine a conjugate prior distribution on rate and phase.
That can be done straightforward by combining the single prior distribution of rate and phase
as we assumed independence, see Section 4.3.3.1.

Furthermore, to apply the BOCD we have to choose prior parameters for the change point
probability and the rate and phase. In Section 4.3.3.2 we connect to the results of Section
4.3.1.2 and Section 4.3.2.2 and justify the prior choice of rate and phase for the ongoing
studies. For a preferably broad view, we choose a uniform prior distribution on the change
point probability (i.e. a0 = b0 = 1).

116



CHAPTER 4. DETECTION OF CHANGES IN THE STIMULUS

Afterwards we compare a bivariate rate and phase analysis with a pure rate analysis and a
pure phase analysis. Therefore, in Section 4.3.3.3 we consider an one change point scenario
and apply the BOCD and the BOCD with online decision (Section 4.2.4).

4.3.3.1 Conjugate prior and predictive distribution

For technical reasons we choose the same prior distribution for rate and phase as in a pure
rate or phase code and assume independence of Λ and Φ, i.e.,

π(λ, ϕ) = πα0,β0(λ)πµ0,τ0(ϕ),

where πα0,β0(·) is the density of a Gamma(α0, β0)-distribution and πµ0,τ0(·) the density of a
N (µ0, τ

2
0 )-distribution. With that choice the choice of the prior parameters for rate and phase

is the same in the bivariate and in the univariate case.
As according to our sampling model, the spike times and spike numbers are drawn independently,
i.e.,

p(n, x̄ |Φ = ϕ,Λ = λ) =

λn

n! e
−λ 1√

2π/n
e
− (x̄−ϕ)2

2/n , if n > 0,

λn

n! e
−λ, if n = 0.

also the posterior distributions of rate and phase are conditionally independent, i.e.,

π(λ, ϕ |N = n, X̄ = x̄) = πα0,β0(λ |N = n)πµ0,τ0(ϕ |N = n, X̄ = x̄).

Hence in the bivariate case we get the same posterior distributions for each component and
obviously the same predictive distributions. With Equation (4.4) we can update the prior
distribution of the phase, and with Equation (4.5) we can update the prior distribution of the
rate, which yields also in the bivariate case an efficient application of the BOCD by updating
conjugate prior distributions.

4.3.3.2 Prior parameter choice and behavior without change points

Here we motivate our choice of prior parameters of the BOCD in the change point model
(Section 4.1) using the conjugate prior distributions from Section 4.3.3.1. We draw on the
insights about prior parameters for the phase (Section 4.3.1.2 and 4.3.1.4) and the rate (Section
4.3.2.2) and compare our choices. Specifically, we illustrate that the choice of a relatively
uninformative prior can reduce the probability of falsely estimating change points, which is
crucial for the performance of the algorithm. For the change point probability η itself we
choose a non-informative uniform prior, i.e., a0 = b0 = 1.
The parameters for the conjugate prior distributions are chosen such that the prior distributions
carry relatively little information, i.e., that the parameters are approximately uniformly
distributed in the range found in the experimental data (cmp. Section A, ϕ ∈ [0, 0.75], λ ≤ 4),
while having less mass outside this range. For the mean and variance of the phase parameter
we choose µ0 = 0 and τ2

0 = 4 (Figure 4.14 B, green). The phase parameter is set to ϕ = 0 in
the simulations as the results are shift invariant and the prior density hardly depends on ϕ
for ϕ ∈ [0, 0.75]. Figure 4.14 A-E shows that a more informative prior with smaller variance
τ2

0 = 1 (blue) can sometimes massively overestimate the change point probability, while this is
not the case for the prior with higher variance (panel E). For the rate prior, we choose α0 = 3
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Figure 4.14: Illustration of performance of BOCD in the setting of no change points, for
two different prior distributions of the phase (A-E, prior of the phase is normal N (0, τ2

0 ))
and the rate (F-J, prior of the rate is Gamma(α0, 1)). First row (A,F): Example sequence
of observed spike times (Xi ∼ N (0, 1), A) or observed numbers of spikes (Ni ∼ Pois(1), B)
and the detected change points (circles) as a function of the observed cycle k. The blue prior
distributions (with τ0 = 1 on the left and α0 = 2 on the right) falsely detect change points
(blue circles), while the green prior distributions (with τ0 = 2 on the left and α0 = 2 on the
right) do not falsely detect change points. The red dotted line indicates the true phase (A) or
rate (F) parameter. Second line indicates prior (k = 0) and posterior distributions for phase
(B-D) and rate (G-I) parameters. Third row: The resulting predictive distribution that a
change point occurs for the different priors, indicated by colors. For the blue prior, the change
point probability is increased abruptly after the first detection and grows steadily.

and β0 = 1 (Figure 4.14 F-J, green). Again, a more informative prior, e.g., with parameter
α0 = 2 (blue) can sometimes lead to a strong overestimation of the change point probability.

The examples shown in Figure 4.14 are supported in systematic simulations shown in Figure
4.15 in a setting without change points. For the phase parameter, the smaller variance τ2

0 = 1
(panel A, circles) yielded a strongly increased number of falsely detected change points, while
this was not the case for the less informative prior τ2

0 = 4 (triangles). We therefore consider
the case τ2

0 = 4 for the bivariate analysis. For the rate parameter, the choice of α0 = 2 yielded
an increased number of falsely detected change points for small and medium rates (panel B,
circles) as compared to α0 = 3 (triangles). In case of high rates (λ = 4) the choice α0 = 2
can increase the number of detected change points, and we therefore consider α0 ∈ {2, 3} in
the bivariate analysis, in which rate and phase parameters are considered for change point
detection (panel C). For α0 = 3 (triangles) we observe almost no falsely detected change
points even for a small number of cycles. Even for α0 = 2 (circles), the number of falsely
detected change points is only slightly increased. This suggests that the bivariate change point
detection is highly robust against random deviations within the time series, which may in the
univariate case evoke falsely detected change points.
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Figure 4.15: Number of detected change points as a function of the total number K of
oscillation cycles (1000 simulations per data point). A. Pure phase code for 1, 2 or 4 spikes
per oscillation cycle. Dots represent a N (0, 1) prior distribution, triangles a N (0, 4) prior
distribution for the phase parameter ϕ. B. Pure rate code for the rates λ ∈ {1, 2, 4} indicated
by colors and for the prior distribution Gamma(2, 1) (dots) and Gamma(3, 1) (triangles). C.
Bivariate analysis with rate and phase parameters and the prior parameters τ2

0 = 4 and α0 = 3
(dots) and α0 = 2 (triangles).

4.3.3.3 Behavior with one change in rate and phase

The simulation results of Figure 4.14 and 4.15 suggest that the use of bivariate information
can decrease the number of falsely detected change points. Now we investigate the behavior
in a setting with exactly one change point. Specifically, we compare the univariate and
bivariate analysis both in the BOCD and in its extended version with online decision. As both
the rate and the phase parameter carry information about the change point, we expect an
improved change point detection in the bivariate analysis (Zimek et al., 2012; Alippi et al.,
2016). However, as changes in the phase parameter are relatively small as compared to its
precision, we are specifically interested in quantifying the amount of improvement by the phase
parameter in comparison to a pure rate analysis. Therefore, we consider the scenario of one
change point of a fixed magnitude occurring in both parameters exactly in the middle of the
time horizon. We choose parameter settings corresponding to plausible neuronal parameter
ranges, letting the rate increase from 1 to 2 or from 1 to 4 and the phase increase from 0 to
0.5.

BOCD
Figures 4.16 A and B show two examples of BOCD analysis applied to spike trains consisting
of K = 50 cycles with a phase change from 0 to 0.5 and a rate change from 1 to 2 (A) and 1 to
4 (B) at time K/2. The detected change points of the BOCD analysis are shown as red dashed
vertical lines, using only the rate parameter (first row), only the phase parameter (second row)
and the bivariate analysis (third row). In panel A, the BOCD based on either rate or phase
alone could not locate the true change point. The rate-BOCD even falsely detected a change
point at the end of the sequence. In panel B, again the phase-BOCD did not detect any
change point, and the rate-BOCD detected four change points of which only one is close to
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Figure 4.16: Example sequences of observed cycles, with a change point in the middle (green).
The phase changes from 0 to 0.5, the rate changes from 1 to 2 (A) or from 1 to 4 (B). We
apply the BOCD with univariate analyses using only rate (first row, black), only phase (second
row, mean spike time shown in black) and the bivariate analysis (third row, spike time shown
in gray, spike numbers in black). True rate or phase is shown in blue, estimated change points
as red dashed lines.

the true change point. In both examples, the bivariate analysis estimated exactly one change
point, which was very close to the true change point.

These results are supported in systematic simulations shown in Figure 4.17, where we investigate
the number of correctly and of falsely detected change points for different time horizons K = 10
to K = 100 and the scenario of exactly one change point at K/2. A change point is called

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K 

co
rr

. d
et

.

A

Only λ

Only ϕ

λ + ϕ
λ: 1 → 2
ϕ: 0 → 0.5

20 40 60 80 100

0
1

2
3

4
5

6
7

K 

fa
ls

e 
de

t.

B

Only λ
Only ϕ
λ + ϕ

λ: 1 → 2
ϕ: 0 → 0.5

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K 

co
rr

. d
et

.

C
Only λ

Only ϕ

λ + ϕ

λ: 1 → 4
ϕ: 0 → 0.5

20 40 60 80 100

0
1

2
3

4
5

6
7

K

fa
ls

e 
de

t.

D

Only λ
Only ϕ
λ + ϕ

λ: 1 → 4
ϕ: 0 → 0.5

Figure 4.17: Evaluation of BOCD using bivariate analysis in the one change point setting
with a change point in the middle. The phase changes from 0 to 0.5, the rate changes from 1
to 2 (A,B) or from 1 to 4 (C,D). Average fraction of correctly detected change points (A,C)
and average number of falsely detected change points (B,D) for sequences of length K = 10
to K = 100, 1000 simulations per data point. Pure rate analysis is shown in red, pure phase
analysis in blue, and bivariate analysis in green.

correctly detected here if its distance to the estimated change point is less than 3. Otherwise it
is called falsely detected. Similar to the examples in Figure 4.16, Figure 4.17 shows that the
rate-BOCD (red) shows high detection rates for the true change points, but is however likely
to strongly overestimate the number of falsely detected change points, specifically for small
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time horizons. While the BOCD based on phase alone (blue) shows only a low percentage of
correctly detected change points and also increased numbers of falsely detected change points,
the BOCD based on rate and phase parameters (green) shows both high sensitivity to true
change points and robustness against random fluctuations in the time series.

BOCD with online decision
In order to apply the BOCD with online decision, cf. Section 4.2.4, we consider spike trains of
length K = 100 with exactly one change point in the middle and consider different decision
delays d (Figure 4.18). Concerning correctly detected change points (Figure 4.18 A and C),
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Figure 4.18: Evaluation of BOCD with online decision using bivariate analysis in the one
change point setting with a change point in the middle. The phase changes from 0 to 0.5, the
rate changes from 1 to 2 (A,B) or from 1 to 4 (C,D). Average fraction of correctly detected
change points (A,C) and average number of falsely detected change points (C,D) for sequences
with length K = 100, 1000 simulations per data point. Pure rate analysis is shown in red,
pure phase analysis in blue, and bivariate analysis in green.

we find that the detection probability with online decision is considerably smaller than when
using the whole spike train, and the number of correctly detected change points increases
with the delay. Concerning falsely detected change points (Figure 4.18 B and D), a univariate
analysis using rate shows the largest number of false alarms. The bivariate analysis shows a
higher amount of correctly detected change points and a smaller amount of falsely detected
change points than the univariate analysis, particularly for small delays.

These results suggest that imprecise phases can increase the number of correctly detected
change points, while considerably decreasing the number of falsely detected change points as
well as decreasing the delay required for correct change point detection and thus, increasing
the speed and robustness of change point detection.

4.3.3.4 X̄ is not appropriate for change point detection

In Section 4.3.1.3 to calculate the predictive distribution, we update the posterior distribution
of Φ successively in the cycle, i.e.,

p
(
X

(k+1)
1:nk+1

= x
(k+1)
1:nk+1

| X̄1:k = x̄1:k

)
= p

(
X

(k+1)
1 | X̄1:k = x̄1:k

)
· . . . · p

(
X(k+1)
nk+1

|X(k+1)
1:nk+1−1 = x

(k+1)
1:nk+1−1, X̄1:k = x̄1:k

)
.
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First we motivate, why this is necessary, and we can not only consider the mean spike time
in each cycle. Second we analyze, how not successive updating or only using the mean spike
time affects the change point detection. For better readability we consider the first and second
cycle starting with prior parameters µ0, τ2

0 and assume one spike in the first cycle (x1) and
two spikes x2 = (z1, z2) in the second cycle.
Note that the successive update only concerns the predictive distribution and not the posterior
distribution, since the mean spike time is sufficient for ϕ, i.e.,

Φ | {Z1 = z1, . . . , Zn = zn}
d
= Φ | {Z̄ = z̄, N = n},

where Z̄ := 1/n
∑n

i=1 Zi. Furthermore, note that the order of the successive update does not
affect the predictive distribution p(z1, z2 |X1 = x1), i.e.,

p(z2 |Z1 = z1, X1 = x1) · p(z1 |X1 = x1) = p(z1 |Z2 = z2, X1 = x1) · p(z2 |X1 = x1).

Let us first recall the BOCD and its basic concept of determining the distribution of the run
length. According to Equation (4.1) the BOCD (for simplification with a known change point
probability η) calculates at cycle k = 2 (note here we start with cycle k = 1 instead of k = 0)

P(R2 = 1 |X1:2 = x1:2) =

η︷ ︸︸ ︷
P(R2 = 1 |R1 = 0) p(x2 |X1 = x1)p(x1)

1︷ ︸︸ ︷
P(R1 = 0)

p(x1:2)

and

P(R2 = 0 |X1:2 = x1:2) =

1−η︷ ︸︸ ︷
P(R2 = 0 |R1 = 0) p(x2 |X1 = x1)p(x0)

1︷ ︸︸ ︷
P(R1 = 0)

p(x1:2)
.

The quotient of both run lengths yields

P(R2 = 1 |X1:2 = x1:2)

P(R2 = 0 |X1:2 = x1:2)
=

η

1− η
p(x2 |X1 = x1)

p(x2)
. (4.7)

Thus if the quotient with the predictive distributions in Equation (4.7) is different for the
raw spike times x2 = (z1, z2) and the mean spike time x̄2 := 1/2(z1 + z2), the BOCD does
not calculates the same distribution of the run lengths in both cases and thus detects not the
same change points in general.
So now we want to explore that in general

p(x2 |X1 = x1)

p(x2)
6= p(x̄2 |X1 = x1)

p(x̄2)
. (4.8)

Let us first consider the raw spike times. With Section 4.3.1.3 we write

Z1 | {X1 = x1} ∼ N (µ1,

σ2
1︷ ︸︸ ︷

τ2
1 + σ2) and Z2 | {Z1 = z1, X1 = x1} ∼ N (µ11,

σ2
11︷ ︸︸ ︷

τ2
11 + σ2)

and

Z1 ∼ N (µ0,

σ2
0︷ ︸︸ ︷

τ2
0 + σ2) and Z2 | {Z1 = z1} ∼ N (µ01,

σ2
01︷ ︸︸ ︷

τ2
01 + σ2).
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With that we write the left quotient of Equation (4.8) as

p(z1, z2 |X1 = x1)

p(z1, z2)

=
p(z2 |Z1 = z1, X0 = x0)p(z1 |X1 = x1)

p(z2 |Z1 = z1)p(z1)
=

1
2πσ11σ1

exp
(
− 1

2σ2
11

(z2 − µ11)2 − 1
2σ2

1
(z1 − µ1)2

)
1

2πσ01σ0
exp

(
− 1

2σ2
01

(z2 − µ01)2 − 1
2σ2

0
(z1 − µ0)2

)
=
σ01σ0

σ11σ1
exp

(
− 1

2σ2
11

(z2 − µ11)2 +
1

2σ2
01

(z2 − µ01)2 − 1

2σ2
1

(z1 − µ1)2 +
1

2σ2
0

(z1 − µ0)2

)
.

Let us now consider the mean spike time (n = 2). Here we obtain with the above notations

X̄2 | {X1 = x1} ∼ N (µ1, σ
2
1/n) and X̄2 ∼ N (µ0, σ

2
0/n)

and for the right quotient of Equation (4.8)

p(x̄2 |X1 = x1)

p(x̄2)
=

1√
2πσ2

1/n
exp

(
− n

2σ2
1
(x̄2 − µ1)2

)
1√

2πσ2
0/n

exp
(
− n

2σ2
0
(x̄2 − µ0)2

)
=
σ0

σ1
exp

(
− n

2σ2
1

(x̄2 − µ1)2 +
n

2σ2
0

(x̄2 − µ0)2

)
,

where we can already see due to the different quotients in front of the exponential function
that the case of raw spikes and the mean spike time have different quotients of predictive
distributions and thus different run length distributions. For sure, we give a short example.
Let x1 = 1 and z1 = 0 and z2 = 5.4. Furthermore, let µ0 = 0 and τ2

0 = 4 (and σ2 = 1). This
yields

µ1 =
1

1/4 + 1
=

4

5
and τ2

1 =
1

1/4 + 1
=

4

5

µ11 =
1

1/4 + 2
=

4

9
and τ2

11 =
1

1/4 + 2
=

4

9

µ01 = 0 and τ2
01 =

1

1/4 + 1
=

4

5

and overall

p(x2 |X1 = x1)

p(x2)
≈ 1.043 6= 0.964 ≈ p(x̄2 |X1 = x1)

p(x̄2)
.

With a change point probability η = 1/2 we would decide at cycle k = 2 for a change point in
case of the mean spike time, but not in case of the raw spike times. The mean spike time is
more vulnerable to unlikely events than the raw spike times, as the difference in the quotients
increases for unlikely events, i.e., for z2 = 10 (all other equal) we obtain

p(x2 |X1 = x1)

p(x2)
≈ 0.034 6= 0.014 ≈ p(x̄2 |X1 = x1)

p(x̄2)
,

which is a difference of factor 2.43. Figure 4.19 confirms our expectation that the mean spike
time will detect falsely (and correctly) more change points. We consider K = 10, 20, . . . , 100
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Figure 4.19: Comparison of BOCD using raw spike times (line) to the BOCD using the mean
spike times (dashed lines) in the one change point setting with a change point in the middle.
The phase changes from 0 to 0.5, the rate changes from 2 to 4. Average fraction of correctly
detected change points (A) and average number of falsely detected change points (B) for
sequences of length K = 10 to K = 100, 1000 simulations per data point. Pure phase analysis
is shown in blue, and bivariate analysis in green. The dashed lines represent the BOCD using
raw spike times but without successive update in each cycle.

cycles with one change point at K/2, where the rate jumps from 2 to 4 and the phase from 0 to
0.5. We choose our usual prior parameters of α0 = 3, β0 = 1, µ0 = 0, τ2

0 = 4 and a0 = b0 = 1.
If we apply the BOCD to the mean spike time (dotted line), the number of correctly detected
change points is higher (Figure 4.19 A), but only due to the excessive higher number of falsely
detected change points (Figure 4.19 B). This holds for a pure phase analysis (blue) and the
bivariate analysis (green). Interestingly, if we do not successively update the parameters in
one cycle and falsely calculate p(z1, . . . , zn |X1 = x1) = p(z1 |X1 = x1) · · · p(zn |X1 = x1), we
obtain almost the same number of correctly and falsely detected change points (dashed lines).

4.4 Mixture of conjugate prior distributions

In this section we discuss an approach to consider special information about the stimulus
specific rate and phase parameters. Yet we assumed a wide prior distribution, both for rate
and phase, and search for any changes in rate or phase without any dependence up to a
simultaneous appearance. But what if we have special knowledge about the stimuli structure?
For example, we know stimuli are either coded by small rates or by high rates, but not by
middle rates. Or we know that small rates are only connected with small phases and high
rates with high phases.

We can not implement such information with a wide conjugate prior distribution. Nevertheless,
due to computational cost we need an easy posterior update process, comparable with conjugate
distributions. A solution is a mixture distribution of conjugate prior distributions (Diaconis
and Ylvisaker, 1985). The clue is that the posterior distribution of a mixture of conjugate
distributions is again a mixture of conjugate distributions, see Section 4.4.1. So we can draw
on the results of the conjugate distributions of rate and phase and use the same formulas to
update the posterior and predictive distributions, cf. Section 4.3.1 and 4.3.2. Additionally,
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we need to determine the posterior weights of the mixture, which can be done efficiently.
Furthermore, in Section 4.4.1 we present the coin toss example, for which it is plausible that
any prior information can be represented with conjugate prior distributions. In general this
result holds for exponential family sample distributions, see Proposition 4.4.6.

To apply the BOCD we notice in Section 4.4.2 that the predictive distribution based on
the mixture distribution is just a mixture of the single weighted predictive distributions.
Furthermore, we specify how to adjust the BOCD in context of a mixture distribution.

In Section 4.4.3 we apply the setting of a mixture distribution to rate and phase and S = 2
types of stimuli. Due to the specialized information for the ranges of the rate or phase
parameter, we need to adjust the change point prior parameters in the BOCD, otherwise
an overestimation of change points in the short run occurs. However also in case of specific
information about stimuli properties the phase contains additional information compared to a
pure rate analysis and improves the change point detection.

4.4.1 Update process mixture distributions

In this section we take up the concept of mixtures of conjugate distribution (Diaconis and
Ylvisaker, 1985). To motivate the use of mixture distributions in general, we start with a coin
toss example. Afterwards we define a mixture distribution in general (Definition 4.4.2). With
Lemma 4.4.3 we have a guidance how to calculate the posterior mixture distribution efficiently,
if we start with a mixture of conjugate prior distributions. Subsequently we apply that to the
coin toss example and calculate the posterior mixture distribution. In the coin toss example
it is plausible, that if we mixture many specialized prior distributions, any distribution on
(0, 1) can be approximated with any precision. In general this holds for any exponential family
sample distribution, see Proposition 4.4.6.

Example 4.4.1. Let us consider a coin toss Y with k throws and random probability of success
H, i.e., given {H = η} is

Y ∼ Bin(k, η).

Assume we know that the coin is biased, but we do not know in which direction. So we are sure
that either H is small or H is large. We have the option to throw the coin k times. Our task is
now, how to choose the prior distribution to get an appropriate posterior belief about H? With
Claim 4.2.1 we already know that H ∼ Beta(a0, b0) is a conjugate prior distribution. If we
believe H is rather small, we would maybe choose H ∼ Beta(10, 30) (see Figure 4.20 A, blue
dashed line), if we believe H is rather large, we would maybe choose H ∼ Beta(30, 10) (see
Figure 4.20 A, green dashed line). As both are equal likely for us, we just mix both distributions,
each with weight 1/2 (see Figure 4.20 A, black line), i.e.,

πη(·) =
1

2
β(·, 10, 30) +

1

2
β(·, 30, 10),

where β(·, a0, b0) is the density of a beta-distribution with parameter (a0, b0).

The posterior update of a mixture of conjugate prior distributions of Example 4.4.1 continues
in Example 4.4.5.
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Figure 4.20: Coin toss example. A. The blue dashed line represents the prior belief of a small
success probability, the green dashed line the prior belief of a high success probability. If both
possibilities are equally likely, we mix both distributions with probability 1/2. The result is
the black line. B. The updated posterior mixture distribution after observing only 4 successes
in 10 throws.

Definition 4.4.2. A mixture distribution π(·) is any convex combination of other distributions
πs(·), i.e.,

π(·) :=

S∑
s=1

ωsπs(·), with

S∑
s=1

ωs = 1, ωs ≥ 0, S > 1.

The following Lemma states that the posterior distribution of a mixture of conjugate prior
distributions is again a mixture of conjugate distributions.

Lemma 4.4.3. Consider a realization X = x of a Bayesian Model B(Π,P) with π(0)(·) :=

π(·) =
∑S

s=1 ω
(0)
s π

(0)
s (·) a mixture of conjugate prior distributions π

(0)
s (·), s = 1, . . . , S. Furt-

hermore let π
(1)
s (·) := π

(0)
s (· |X = x) be the single posterior distributions of a Bayesian Model

B(Πs,P). Then the posterior mixture distribution is given by

π(1)(θ) := π(0)(θ |X = x) =
S∑
s=1

ω(1)
s π(1)

s (θ),

where

ω(1)
s :=

ω
(0)
s cs∑S

s=1 ω
(0)
s cs

with cs :=

∫ ∞
−∞

pθ̃(x)π(0)
s (θ̃) dθ̃.

Proof. Let pθ(·) be the sampling distribution and π
(0)
s (·), s = 1, . . . , S, conjugate prior

distributions. Consider the update process using Bayes’ rule: Given an observation x, the

posterior distribution π
(1)
s (·) is given by

π(1)
s (θ) := π(0)

s (θ |x) =
π

(0)
s (θ)pθ(x)

cs
, s = 1, . . . , S,
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with

cs :=

∫ ∞
−∞

pθ̃(x)π(0)
s (θ̃) dθ̃.

Now let us consider a mixture of conjugate distributions

π0(θ) =

S∑
s=1

ω(0)
s π(0)

s (θ).

The posterior distribution π(1)(·) of this mixture distribution is

π(1)(θ) := π(0)(θ |x) =
π(0)(θ)pθ(x)∫∞

−∞ pθ̃(x)π(0)(θ̃) dθ̃

=

∑S
s=1 ω

(0)
s π

(0)
s (θ)pθ(x)∫∞

−∞ pθ̃(x)
∑S

s=1 ω
(0)
s π

(0)
s (θ) dθ̃

=

∑S
s=1 ω

(0)
s csπ

(1)
s (θ)∑S

s=1 ω
(0)
s cs

=
S∑
s=1

ω(1)
s π(1)

s (θ),

where

ω(1)
s =

ω
(0)
s cs∑S

s=1 ω
(0)
s cs

with

S∑
s=1

ω(1)
s = 1.

Hence the posterior distribution is again a mixture of conjugate distribution, only the weights
changed.

Remark 4.4.4. As we know the explicit form of the posterior distributions π
(1)
s (·) we can

determine the constants cs without integrating by reverting Bayes’ rule, i.e.,

cs =
π

(0)
s (θ)

π
(1)
s (θ)

pθ(x),

for a θ with π
(0)
s (θ) > 0, π

(1)
s (θ) > 0 and pθ(x) > 0.

With Lemma 4.4.3 and Remark 4.4.4 we are able to calculate the posterior distribution of a
mixture of conjugate distributions computationally efficient and nevertheless are very flexible
to represent our prior information. For clarification, we continue with Example 4.4.1.

Example 4.4.5. Let us follow the setting of Example 4.4.1, so we choose the conjugate prior
distributions

π
(0)
1 (·) = β(·, 10, 30) and π

(0)
2 (·) = β(·, 30, 10),
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where β(·, a0, b0) is the density of a beta-distribution with parameter (a0, b0) and the weights

ω
(0)
1 =

1

2
and ω

(0)
2 =

1

2
.

Assume we throw the coin 10 times and observe only 4 times success. Thus the single posterior
distributions are

π
(1)
1 (·) = β(·, 10 + 4, 30 + 6) and π

(1)
2 (·) = β(·, 30 + 4, 10 + 6)

and with η = 1/2 the constants can be calculated as (Remark 4.4.4)

c1 =
π

(0)
1 (η)

π
(1)
1 (η)

P(Y = 4) ≈ 0.14 and c1 =
π

(0)
2 (η)

π
(1)
2 (η)

P(Y = 4) ≈ 0.02,

where Y ∼ Binom(10, η). Finally the new weights are

ω
(1)
1 =

ω
(0)
1 c1

ω
(0)
1 c1 + ω

(0)
2 c2

≈ 0.85 and ω
(1)
2 =

ω
(0)
2 c2

ω
(0)
1 c1 + ω

(0)
2 c2

≈ 0.15.

Thus the posterior mixture distribution is

π(1) = 0.85 · β(·, 10 + 4, 30 + 6) + 0.15 · β(·, 30 + 4, 10 + 6),

which reflect our strong concern that the success probability is rather small. An graphical
illustration of the posterior distribution can be found in Figure 4.20 B.

The mixture of conjugate prior distributions has especially its charm, if we think of S stimuli
types and one randomly chosen stimulus. For each stimulus type s we have some prior
information about the distribution of Θs and we roughly know the probability of each stimulus

type (so we can set the weights ω
(0)
s ). By mixture, we can construct an appropriate prior

distribution, which moreover can be calculated efficiently.
In general mixture of conjugate prior distributions are useful, if we have very specialized prior
information, which can not be represented by a conjugate prior distribution. In the light of
the beta distribution it is plausible, that any distribution on (0, 1) can be approximated by
mixture of beta distributions: If we choose the parameters a and b of a beta distribution large
enough, the density is close to a point mass at a/(a+ b) and with many beta distributions, we
can approximate any distribution on (0, 1).
More general in case of an exponential family distribution any prior distribution can be well
approximated by a finite mixture of conjugate prior distributions, cf. Proposition 4.4.6.

Proposition 4.4.6. Let Ωθ be the natural parameter space of a d-dimensional exponential
family distribution. For any probability distribution π(·) on Ωθ and any ε > 0 there are weights
ωs and (ks, ts), ks > 0 and ts lies in the interior of the convex hull of the support of the
measure µ, and m <∞ such that if

π̃(θ) =

S∑
s=1

ωsc(ks, ts)exp
(
θT (ksts)− ksA(θ)

)
then

d(π, π̃) < ε,

where d is the Lévy-Prokhorov metric.
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Proof. See (Diaconis and Ylvisaker, 1985).

Remark 4.4.7. In a separable metric space convergence of measures in the Lévy-Prokhorov
metric is equivalent to weak convergences of measures.

Remark 4.4.8. Again the intuition of Proposition 4.4.6 is that we choose ks very large to
have the single conjugate priors concentrate at its mean and the mixture of point masses
converge to the prior distribution π(·).

4.4.2 Predictive distribution and adjustment of BOCD

To apply the BOCD we also need the predictive distribution: Based on each conjugate prior
distribution itself we know the predictive distribution. To determine the predictive distribution
of the mixture, we just need to weight the single predictive distributions by the posterior
weights ωs, cf. Lemma 4.4.9. Afterwards we specify, how to adjust the BOCD in context of a
mixture distribution.

Lemma 4.4.9. Consider a Bayesian Model B(Π,P) with a mixture of conjugate prior dis-

tributions π(0)(·) := π(·) =
∑S

s=1 ω
(0)
s π

(0)
s (·). Furthermore, let given {Θ = θ} be X,X ′ ∼ Pθ

and independent and let ρs(·), s = 1, . . . , S, denote the single predictive distribution of the
Bayesian Model B(Πs,P).
Then the predictive distribution ρ(·) := p(· |X ′ = x′) is given by

ρ(x) =
S∑
s=1

ω(1)
s ρs(x),

where

ω(1)
s :=

ω
(0)
s cs∑S

s=1 ω
(0)
s cs

with cs :=

∫ ∞
−∞

pθ̃(x)π(0)
s (θ̃) dθ̃.

Proof. As

ρ(x) =

∫ ∞
−∞

pθ(x)π(0)(θ | {X ′ = x′}) dθ

and from Lemma 4.4.3 we know that π(0)(θ | {X ′ = x′}) =
∑S

s=1 ω
(1)
s π

(0)
s (θ | {X ′ = x′}), thus

ρ(x) =

∫ ∞
−∞

pθ(x)
S∑
s=1

ω(1)
s π(0)

s (θ | {X ′ = x′}) dθ

=

S∑
s=1

ω(1)
s

∫ ∞
−∞

pθ(x)π(0)
s (θ | {X ′ = x′}) dθ

=
S∑
s=1

ω(1)
s ρs(x).
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Algorithm. Basically to adjust the BOCD to the setting of a mixture distribution, the
determination of the predictive distribution is more complicated: We need to introduce weights
ωs, which need to be updated for each possible path. Thus step 1, 3 and 7 of the algorithm need
to be adjusted. Let π1(·), . . . , πS(·) denote the conjugate prior distributions and p1(·), . . . , pS(·)
the predictive distributions.

1. Initialize (choose prior parameters of Θ and change point probability H)

P(R0 = 0) := 1; a0 := a0; b0 := b0

n
(0)
0 :=

(
n

(0,1)
0 , . . . , n

(0,S)
0

)
; t

(0)
0 :=

(
t
(0,1)
0 , . . . , t

(0,S)
0

)
; ω

(0)
0 :=

(
ω

(0,1)
0 , . . . , ω

(0,S)
0

)
.

3. Evaluate Predictive Probability (for j = 0, . . . , k)

ψ
(j)
k := ω

(j,1)
k p1

(
xk |n

(j,1)
k , t

(j,1)
k

)
+ · · ·+ ω

(j,S)
k pS

(
xk |n

(j,S)
k , t

(j,S)
k

)
.

7. Update sufficient statistics (for j = 1, . . . , k and s = 1, . . . , S)

n
(0,s)
k+1 = n

(0,i)
0 and n

(j,s)
k+1 = n

(j−1,s)
k + 1

t
(0,s)
k+1 = n

(0,s)
0 t

(0,s)
0 and t

(j,s)
k+1 = t

(j−1,s)
k + t(xk)

ω
(0,s)
k+1 = ω

(0,s)
0 and ω

(j,s)
k+1 =

c
(j−1,s)
k ω

(j−1,s)
k∑S

s̃=1 c
(j−1,s̃)
k ω

(j−1,s̃)
k

where

c
(j−1,s)
k =

∫ ∞
−∞

pθ(xk)πs

(
θ |n(j−1,s)

k , t
(j−1,s)
k

)
dθ.

4.4.3 Application BOCD - special rate and phase information

First we discuss how to choose a mixture of prior distributions for rate and phase, if we have
specific prior information. Afterwards we apply the BOCD with various prior parameters.
Assume we have specific prior information, and we know, there are only small rates or high
rates and equally there are only small phases or high phases. Additional we know there are
only two cases, how stimuli are coded:

1. small rate ←→ small phase

2. high rate ←→ high phase.

To create a corresponding mixture of conjugate prior distributions, we draw on the results of
Section 4.3.1 and 4.3.2:
For Ni ∼ Pois(Λ), i = 1, . . . k,

if Λ ∼ Gamma(α0, β0), then Λ | {N1:k = n1:k} ∼ Gamma

(
α0 +

k∑
i=1

ni, β0 + k

)

and for Xi ∼ N (Φ, 1), i = 1, . . . k,

if Φ ∼ N
(
µ0, τ

2
0

)
, then Φ | {X1:k = x1:k} ∼ N

(
µk, τ

2
k

)
,
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where

ϕk :=

µ0

τ2
0

+
∑k
i=1 xi
σ2

1
τ2
0

+ k
σ2

and τ2
k :=

1
1
τ2
0

+ k
σ2

.

Let φµ0,τ0(·) denote the density of a normal distribution with mean µ0 and standard deviation
τ0 and gα0,β0(·) the density of a gamma distribution with parameter α0 and β0. To consider
the prior information of only small or high rates or phases, we could choose a mixture of two
conjugate priors, i.e.,

π(0)
ϕ (·) =

1

2
φµ01,τ01(·) +

1

2
φµ02,τ02(·)

and

π
(0)
λ (·) =

1

2
gα01,β01(·) +

1

2
gα02,β02(·)

For µ01 = 0, τ01 = 0.1 and ϕ02 = 0.5, τ02 = 0.1 the update process of phase mixture is
illustrated in Figure 4.21 A, the update process of rate mixture for α01 = 8, β01 = 4 (E[Λ] = 2)
and α02 = 32, β02 = 8 (E[Λ] = 4) in Figure 4.21 B.

−0.5 0.0 0.5 1.0

0
1

2
3

4
5

6

ϕ

de
ns

ity

A ϕtrue

prior
k = 5

k = 10

k = 20

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

λ

de
ns

ity

B λtrue

prior
k = 2
k = 5
k = 10

Figure 4.21: A. Update process of a phase mixture. As prior distribution we choose a mixture
(weights equal 0.5) of two normal distributions with mean 0 and 0.5 and both with standard
deviation 0.1. The posterior distributions after observing k = 5, 10, 20 realizations shifts more
and more to the true phase of 0.1. B. Update process of a rate mixture. As prior distribution
we choose a mixture (weights equal 0.5) of two gamma distributions with shape 8 and 32 and
rate 4 and 8. The posterior distributions after observing k = 2, 5, 10 realizations shifts more
and more to the true rate of 2.

To consider the prior information of the connection between rate and phase (small with small,
high with high), we choose the following joint mixture distribution

π
(0)
λ,ϕ(·) =

1

2
φµ01,τ01(·)gα01,β01(·) +

1

2
φµ02,τ02(·)gα02,β02(·).

Each component is a conjugate distribution (cf. Section 4.3.3.1), thus with Lemma 4.4.3
we can determine the posterior mixture distribution and with Lemma 4.4.9 the predictive
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distribution. Thus we can apply the BOCD efficiently. Again we consider the following change
point setting:
Let a change point in rate and phase occur exactly at the mid of the sequence K/2 (K even),
i.e

Nk ∼ Pois(2), k = 1, . . . ,K/2

and

Nk ∼ Pois(4), k = K/2 + 1, . . . ,K

and for each j = 1, . . . , Nk

X
(k)
j ∼ N (0, 1), k = 1, . . . ,K/2

and

X
(k)
j ∼ N (0.75, 1) , k = K/2 + 1, . . . ,K.

We consider two prior cases: Either we are sure that there are no mid rates or phases, we call
this precise prior information, i.e.,

α0 = (64, 256) and β0 = (32, 64)

µ0 = (0, 0.75) and τ0 = (0.1, 0.1),

see Figure 4.22 A and B (purple line) or we have imprecise prior information

α0 = (16, 64) and β0 = (8, 16)

µ0 = (0, 0.75) and τ0 = (0.2, 0.2),

see Figure 4.22 A and B (orange line). In both cases the mixture prior information is to
specialized compared to a wide prior choice (cf. Section 4.3.3.2) that an uniform change point
prior (a0 := b0 := 1) results in a strong overestimation of the number of change points in the
short run. So here we start with the expectation of one change point within the sequence
(a0 := 1; b0 := K).
Again we compare the three variants of a pure rate, a pure phase or the bivariate analysis.

Results - Figure 4.23:
First we notice that the more precise prior information (Figure 4.23 C and D) only slightly
differs from a less precise prior information (Figure 4.23 A and B). However the precise prior
information results in a higher number of correctly detected change points and does less false
detections, especially in the short run (K < 50).
Here in the setting of specialized prior information a pure rate (red) and a pure phase (blue)
analysis basically show the same change detection ability: Both types of analysis have almost
the same number of correctly detected change points and the same number of falsely detected
change points. But that is no surprise if we look at both prior distributions (Figure 4.22).
The change from rate 2 to 4 is separated in the rate prior the same as a change from 0 to 0.75
in the phase prior. So we should also see the same ability in the change point detection, if we
observe such changes. So the question, if small changes in the phase can help to improve the
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Figure 4.22: Precise and imprecise mixture prior information for rate and phase. A. Mixture of
two gamma distributions, precise (purple line) α0 = (64, 256), β0 = (32, 64), imprecise (orange
line) α0 = (16, 64), β0 = (8, 16). B. Mixture of two normal distributions, precise (purple line)
µ0 = (0, 0.75), τ0 = (0.1, 0.1), imprecise (orange line) µ0 = (0, 0.75), τ0 = (0.2, 0.2)

.

detection ability of the rate, depends in addition to the phase change crucial on the precision
of our prior information.
However, using rate and phase (green line) simultaneously results again in an improved change
point detection: We detect a higher number of change points correctly, and we do less false
detections. Thus the phase can improve the change detection based on a pure rate analysis
also in case of precise prior information.
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Figure 4.23: Evaluation of BOCD using prior mixture distributions in the one change point
setting with a change point in the middle. The phase changes from 0 to 0.75, the rate changes
from 2 to 4. Average fraction of correctly detected change points (A,C) and average number
of falsely detected change points (B,D) for sequences of length K = 10 to K = 100, 1000
simulations per data point. A and B. Precise prior information of α0 = (64, 256), β0 = (32, 64)
and µ0 = (0, 0.75), τ0 = (0.1, 0.1). C and D. Imprecise prior information of α0 = (16, 64), β0 =
(8, 16) and µ0 = (0, 0.75), τ0 = (0.2, 0.2). Pure rate analysis is shown in red, pure phase
analysis in blue, and bivariate analysis in green.
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4.5 Unknown spike precision and changes in σ2

Up to this point we assumed that we know the precision σ2 of the spike times X
(k)
j , i.e., given

{Ak = ak} change points up to time k we have Φak ∼ N (µ0, τ
2
0 ) and given {Φak = ϕak} we

choose

X
(k)
1 , . . . , X(k)

nk
∼ N (ϕak , σ

2) independently,

where σ2 is fixed and known. In short we write X
(k)
1 , . . . , X

(k)
nk ∼ N (ΦAk , σ

2). As the distinction
of two phase parameters ϕ1 and ϕ2 only depends on the quotients ϕ1/σ and ϕ2/σ, we chose
w.l.o.g. σ = 1. But what if σ is unknown and can even change at some points?
So we assume in this section, we observe in one oscillation cycle

X
(k)
1 , . . . , X(k)

nk
∼ N (ΦAk , ς

2
Ak

),

where ΦAk and ς2
Ak

are random variables. Or more formally we extend the change point model

(Section 4.1) by an sequence (Φ0, ς
2
0 ), (Φ1, ς

2
1 ), . . . of phase and precision parameters with prior

distribution πϕ,σ2(·) and (ϕ0, σ̃
2
0), (ϕ1, σ̃

2
1), . . . a random realization. At every change point now

a new realization of Λ, Φ and ς2 is drawn. As a consequence in cycle k overall Nk ∼ Pois(λAk)
spikes are chosen and are placed independently according to a N (ϕAk , σ̃

2
Ak

)-distribution. So
now the precision of the spike times is unknown and locked to the change point process. We
use the joint notation of phase and precision (πϕ,σ2(·)) due to technical reasons, see Section
4.5.1 for a conjugate prior distribution.

k
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Figure 4.24: Change point model with random spike precision. We extend the model of
Section 4.1: Now rate, phase and precision parameters can change in time as follows. For each
oscillation cycle an independent Bernoulli random variable Yk ∼ Ber(η) indicates whether a
change point occurs. If no change point occurs (Yk = 0), the rate λ, phase ϕ and precision σ2

remain identical to the previous oscillation cycle (k−1). If a change point occurs (Yk = 1), new
parameters for rate λ, phase ϕ and precision σ2 are chosen according to the prior distributions
πλ and πϕ,σ2(·).

Our aim is to explore how an additional change in ς2 impacts the change point detection on
basis of a pure phase or a rate and phase analysis, see Section 4.5.5. Therefore we first research
how changes in the spike precision affect the ability of the phase to detect change points, if
we erroneously assume a constant spike precision σ2. Second off we assume changes in rate,
phase and spike precision occur simultaneously and consider the benefit of a simultaneous
analysis of rate, phase and precision compared to a pure rate analysis.
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Following the Bayesian procedure we need to specify a prior distribution πϕ,σ2(·) on (Φ, ς2).
To apply the BOCD to the setting of an unknown spike precision with a numeric practical
implementation, we need to determine a conjugate prior distribution on (Φ, ς2). The conjugate
prior distribution of a Normal distribution with random expectation and variance parameter
is well known, i.e., see Gelman et al. (2013), but we show how the general results of Section
3.4.3 can be used to obtain the conjugate prior with a schematic workaround. Beneficial of
this procedure is that we can transfer the general interpretation of the prior parameters k0

(number of prior observations) and t0 (prior belief of the sufficient statistic) to the specific
prior distribution. Therefore, we notice in Section 4.5.1 that the sampling distribution is a
2-dimensional exponential family distribution and use the general result of Lemma 3.4.13 to
construct a conjugate prior distribution by mimicking the likelihood.
In Section 4.5.2 we show how to set the prior parameters if we have prior expectation µ0 for
the phase parameter and σ2

0 for the spike precision.
For a descriptive understanding of the posterior update process we determine in Section 4.5.3
the marginal distributions of Φ and ς2.
To apply the BOCD to the setting of unknown phase and unknown precision, we determine
the predictive distribution of Xk+1 | {X1:k = x1:k} in Section 4.5.4.

4.5.1 The exponential family approach

In Claim 4.5.1 we verify that the normal distribution is a 2-dimensional exponential family
distribution. With that we can apply Lemma 3.4.13 to obtain a conjugate prior distribution
by mimicking the likelihood, cf. Lemma 4.5.2. Equally, with Lemma 3.4.13 we are able to
determine the posterior distribution, see Lemma 4.5.3.

Claim 4.5.1. The normal distibution is a 2-dimensional exponential family distribution, i.e.,
for X ∼ N (ϕ, σ) the density can be written as

φϕ,σ2(x) =
1√
π︸︷︷︸

h(x)

exp


(
θ1

θ2

)T (
x
x2

)
︸ ︷︷ ︸
t(x)

+
1

2
log |θ2|+

θ2
1

4θ2︸ ︷︷ ︸
−A(θ)

 ,

where θ1 := ϕ/σ2 and θ2 := −(2σ2)−1.

Proof. According to Definition 3.4.1 we verify, if the density of the normal distribution can be
written as

φϕ,σ2(x) = h(x) · exp(θT t(x)−A(θ)).
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So we rewrite

φϕ,σ2(x) =
1√

2πσ2
exp

(
−(x− ϕ)2

2σ2

)
=

1√
π

√
(2σ2)−1 exp

(
−(2σ))−1x2 +

ϕ

σ2
x− ϕ2

2σ2

)
=

1√
π
|θ2|1/2 exp

((
θ1

θ2

)T (
x
x2

)
+

θ2
1

4θ2

)

=
1√
π

exp

((
θ1

θ2

)T (
x
x2

)
+

1

2
log |θ2|+

θ2
1

4θ2

)
,

where θ1 := ϕ/σ2 and θ2 := −(2σ2)−1.

Lemma 4.5.2. Consider a Bayesian model with X | {Φ = ϕ, ς2 = σ2} ∼ N (ϕ, σ2). We obtain
a conjugate prior distribution, if we choose

ς2 ∼ IG(1/2(k0 + 3), k0(t02 − t201)/2)

and given {ς2 = σ2}

Φ ∼ N (t01, σ
2/k0),

with k0 > 0 and t02 − t201 > 0.

Proof. As we are in the setting of a 2-dimensional exponential family model (Claim 4.5.1),
according to Lemma 3.4.13 we obtain a conjugate prior distribution π(θ) if we mimic the
likelihood, i.e.,

π(θ) ∼ exp(θTk0t0 − k0A(θ)),

with A(θ) := 1
2 log |θ2|+

θ2
1

4θ2
. To parametrise in terms of (ϕ, σ2) we use the changes of variables

formula, where

(θ1, θ2) = g−1(ϕ, σ2) :=
( ϕ
σ2
,
(
−2σ2

))
.

The Jacobi matrix is given by

J g−1(ϕ, σ2) =

(
1/σ2 −ϕ/σ4

0 (2σ2)−1

)
and the determinant of the Jacobi matrix is

det J g−1(ϕ, σ2) =
1

4σ6
.
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Overall the change of variables formula yields

π(ϕ, σ2) = det J g−1(ϕ, σ2) · π
(
g−1(ϕ, σ2)

)
∼ 1

4σ6
exp

(
k0

(
ϕ/σ2

(−2σ2)−1

)T (
t01

t02

)
+
k0

2
log
(
(2σ2)−1

)
+ k0

ϕ2/σ4

4(−2σ2)−1

)

∼ 1

σ6
(σ2)−k0/2 exp

(
k0
ϕ

σ2
t01 − k0

t02

2σ2
− k0

2

ϕ2

σ2

)
∼
(
σ2
)−1/2

exp

(
−k0ϕ

2 − 2k0ϕt01 + k0t
2
01

2σ2

)(
σ2
)−(k0+5)/2

exp

(
k0t

2
01 − k0t02

2σ2

)
∼
(
σ2
)−1/2

exp

(
− k0

2σ2
(ϕ− t01)2

)
︸ ︷︷ ︸

∼ N (t01,σ2/k0)

(
σ2
)−(k0+5)/2

exp

(
−k0(t02 − t201)

2σ2

)
︸ ︷︷ ︸

∼ IG((k0+3)/2,k0(t02−t201)/2

,

which is proportional to the product of aN (t01, σ
2/k0)-distribution and an IG((k0+3)/2, k0(t02−

t201)/2)-distribution, cf. Definition B.11.

Lemma 4.5.3. Consider a Bayesian model with Xj | {Φ = ϕ, ς2 = σ2} ∼ N (ϕ, σ2) ∀ j =
1, . . . , k and X1, . . . , Xk conditional independent. Furthermore, let

ς2 ∼ IG(1/2(k0 + 3), k0(t02 − t201)/2)

and given {ς2 = σ2}

Φ ∼ N (t01, σ
2/k0).

Then the posterior distributions are

ς2 | {X1:k = x1:k} ∼ IG
(
k0 + k + 3

2
,
1

2

(
k0t02 + kx̄2 − 1

k0 + k
(k0t01 + kx̄)2

))
,

and

Φ | {X1:k = x1:k, ς
2 = σ2} ∼ N

(
k0

k0 + k
t01 +

k

k0 + k
x̄,

σ2

k0 + k

)
,

with x̄ := 1/k
∑k

i=1 xi and x̄2 := 1/k
∑k

i=1 x
2
i .

Proof. According to Lemma 3.4.13 the posterior distribution is given by

π(θ |X1:k = x1:k) ∼ exp

(
θT (k0t0 +

k∑
i=1

t(xi))− (k0 + k)A(θ)

)
,

where t(xi) = (xi, x
2
i )
T , (θ1, θ2) =

( ϕ
σ2 ,
(
−2σ2

))
and A(θ) = −1/2 log |θ2| − θ2

1/(4θ2).
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Parametrization in terms of ϕ and σ yields

π(ϕ, σ |X1:k = x1:k)

= det J g−1(ϕ, σ2) · π
(
g−1(ϕ, σ2) |x1, . . . , xk

)
∼ 1

σ6
exp

((
ϕ/σ2

(−2σ2)−1

)T (
k0t01 + kx̄

k0t02 + kx̄2

)
+
k0 + k

2
log
(
(2σ2)−1

)
− k0 + k

2

ϕ2

σ2

)

∼ 1

σ6
(σ2)−(k0+k)/2 exp

(
ϕ

σ2
(k0t01 + kx̄)− k0t02 + kx̄2

2σ2
− k0 + k

2

ϕ2

σ2

)

∼
(
σ2
)−1/2

exp

−(k0 + k)

(
ϕ2 − 2ϕ

(
k0

k0+k t01 + k
k0+k x̄

)
+
(

k0
k0+k t01 + k

k0+k x̄
)2
)

2σ2


·
(
σ2
)−(k0+k+5)/2

exp

(k0 + k)
(

k0
k0+k t01 + k

k0+k x̄
)2
− k0t02 − kx̄2

2σ2


∼
(
σ2
)−1/2

exp

(
−k0 + k

2σ2

(
ϕ−

(
k0

k0 + k
t01 +

k

k0 + k
x̄

))2
)

︸ ︷︷ ︸
∼ N (k0/(k0+k)t01+k/(k0+k)x̄,σ2/(k0+k))

·
(
σ2
)−(k0+k+5)/2

exp

−(k0 + k)

(
k0

k0+k t02 + k
k0+k x̄

2 −
(

k0
k0+k t01 + k

k0+k x̄
)2
)

2σ2


︸ ︷︷ ︸

∼ IG((k0+k+3)/2,1/2(k0t02+kx̄2−1/(k0+k)(k0t01+kx̄)2))

,

cf. Definition B.11.

4.5.2 Appropriate prior parameters

From Lemma 4.5.2 and 4.5.3 we know a conjugate prior and posterior distribution of (Φ, ς2),
but we still need a guidance to choose the prior parameters k0 and t0 appropriate. The
variable k0 can be interpreted as prior sample size and determines the precision of our prior
belief. How to choose t0, if we have prior expectation µ0 for the phase parameter and σ2

0 for
the spike precision is stated in Lemma 4.5.4. How this choice affects the parameters of the
posterior distribution is declared in Corollary 4.5.5. An illustration of the prior and posterior
distribution of (Φ, ς2) is shown in Figure 4.25.

Lemma 4.5.4. Consider a Bayesian model with X | {Φ = ϕ, ς2 = σ2} ∼ N (ϕ, σ2). We obtain
a conjugate prior distribution with

E[Φ] = µ0 and E[ς2] = σ2
0

if we choose

ς2 ∼ IG
(
γ0, (γ0 − 1)σ2

0

)
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with γ0 := (k0 + 3)/2 and given {ς2 = σ2}

Φ ∼ N
(
µ0,

σ2

k0

)
,

with k0 > 0.

Proof. According to Fisher-Neyman factorization theorem and Claim 4.5.1 t(x) = (x, x2) is
a sufficient statistic for θ = (θ1, θ2) and due to the simple variable transformation it is also
sufficient for ϕ and σ2. So regarding Lemma 4.5.2 and as

E[X] = E [E [X |Φ]] = E[Φ] = µ0,

we choose

t01 = E[X] = µ0.

Furthermore we note

E
[
Var

[
X |Φ, ς2

]]
= E

[
ς2
]

= σ2
0

and using the variance decomposition formula yields

t02 = E
[
X2
]

= Var[X] + E[X]2

= E
[
Var

[
X |Φ, ς2

]]
+ Var

[
E
[
X |Φ, ς2

]]
+ E[X]2

= σ2
0 + Var[Φ] + µ2

0

= σ2
0 +

σ2
0

k0
+ µ2

0

=
k0 + 1

k0
σ2

0 + µ2
0.

So the second parameter of the inverse-gamma distribution is

k0 (t02 − t01)2 /2 = σ2
0(k0 + 1)/2 = σ2

0(γ0 − 1).

Corollary 4.5.5. Consider a Bayesian model with Xj | {Φ = ϕ, ς2 = σ2} ∼ N (ϕ, σ2) ∀ j =
1, . . . , k and X1, . . . , Xk conditional independent. Furthermore let

ς2 ∼ IG
(
γ0, (γ0 − 1)σ2

0

)
with γ0 := (k0 + 3)/2 and given {ς2 = σ2}

Φ ∼ N
(
µ0,

σ2

k0

)
.

Then the posterior distributions are

ς | {X1:k = x1:k} ∼ IG (γk, δk) ,
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with

γk =
k0 + k + 3

2
and δk =

1

2

(
(k0 + 1)σ2

0 + (k − 1)s2 +
kk0

k0 + k
(µ0 − x̄)2

)
,

where x̄ := 1/k
∑k

i=1 xi and s2 := 1/(k − 1)
∑k

i=1 (xi − x̄)2 and

Φ | {X1:k = x1:k, ς
2 = σ2} ∼ N

(
µk, σ

2
k

)
,

with

µk =
k0

k0 + k
µ0 +

k

k0 + k
x̄ and σ2

k =
σ2

k0 + k
.

Proof. From Lemma 4.5.3 and Lemma 4.5.4 we directly get the parameters µk, σ
2
k and γk.

The parameter δk can be verified by the following calculation:
According to Lemma 4.5.3

δk =
1

2

(
k0t02 + kx̄2 − 1

k0 + k
(k0t01 + kx̄)2

)
.

Regarding Lemma 4.5.4 and t01 = µ0 and t02 = (k0 + 1)/k0 · σ2
0 + µ0, we obtain

δk =
1

2

(
(k0 + 1)σ2

0 + k0µ
2
0 −

k2
0

k0 + k
ϕ2

0 − 2
kk0

k0 + k
µ0x̄−

k2

k0 + k
x̄2 + kx̄2

)
=

1

2

(
(k0 + 1)σ2

0 +
kk0

k0 + k
(µ0 − x̄)2 − kk0

k0 + k
x̄2 − k2

k0 + k
x̄2 + kx̄2

)
=

1

2

(
(k0 + 1)σ2

0 +
kk0

k0 + k
(µ0 − x̄)2 − kx̄2 + kx̄2

)
=

1

2

(
(k0 + 1)σ2

0 +
kk0

k0 + k
(µ0 − x̄)2 +

k∑
i=1

(xi − x̄)2

)
,

as

k∑
i=1

(xi − x̄)2 =

k∑
i=1

(
x2
i − 2xix̄+ x̄2

)2
= kx̄2 − 2kx̄x̄+ kx̄2

= kx̄2 − kx̄2.

Remark 4.5.6. The posterior updating of the inverse gamma distribution can be interpreted
nicely in the following manner. As the mean of ς2 ∼ IG(γk, δk)-distribution, γk > 1, is
(Remark B.12)

E
[
ς2
]

=
δk

γk − 1
,
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the estimation of ς2 is basically determined by δk (γk is just a scale factor). The update formula
for δk is made of three terms, i.e.,

δk =
1

2

(
(k0 + 1)σ2

0 + (k − 1)s2 +
kk0

k0 + k
(µ0 − x̄)2

)
.

The first term (k0 + 1)σ2
0 is just the weighted prior variance. The second term (k − 1)s2 is the

weighted observed sample variance. To interpret the last term kk0/(k0 + k)(µ0 − x̄)2 we think
about µ0 as the mean of k0 prior observations. A large deviation from the next k observations
is indicative for a high variance and should increase the posterior probability of a large σ2.
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Figure 4.25: We choose prior parameter µ0 = 0 for the expected phase, σ0 = 1 for the expected
prior precision and k0 = 1 as prior sample size. A. Joint prior distribution of (Φ, ς2) for the
chosen prior parameters. B. After observing X1, . . . , X10 with Xi ∼ N (0.5, 1), we update our
prior belief. As the true phase parameter is 0.5, the posterior distribution shifts to the right.
Since we have additional information of k = 10 realizations, the distribution tightens in all
directions.

4.5.3 Marginal distributions of Φ and ς2

As ς2 does not depend on Φ we directly see the marginal distribution of ς2 in the joint
distribution of ς2 and Φ. An illustration of the updating process of the marginal distribution
of ς2 can be found in Figure 4.26 A.
Vice versa this is not as simple, as Φ depends on the value of ς2. In Lemma 4.5.7 the marginal
distribution of Φ is determined. Basically to get from Φ | ς2 to Φ we only change the normal
distribution to a t-distribution, taking the expectation of ς2 into consideration. An illustration
of the updating process of the marginal distribution of Φ can be found in Figure 4.27 A.

Lemma 4.5.7. Let ς2 ∼ IG (γk, δk) and given {ς2 = σ2} let Φ ∼ N
(
µk,

σ2

k0+k

)
with γk, δk,

µk as in Corollary 4.5.5 and k ∈ N. Then the marginal distribution of Φ is

Φ ∼ T2γk

(
µk,

δk/γk
k0 + k

)
,

where T2γk is a t-distribution with 2γk degrees of freedom, cf. Definition B.13.
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Figure 4.26: We start with prior phase parameter ϕ0 = 0 and prior precision σ0 = 1 and
prior sample size k0 = 1. A. Marginal update process of ς2. According to the prior parameter
choice the prior distribution is ς ∼ IG(2, 1) (black line). After observing X1, . . . , Xk i.i.d. with
X1 ∼ N (0.5, 1) for k = 1, 5, 10 the posterior distributions concentrate more and more at
the true precision σ = 1 (blue dashed line). B. Predictive distribution. According to the
prior parameters the prior distribution of X0 is X0 ∼ T4(0, 0.5) (black line), cf. Proposition
4.5.10. After observing X1, . . . , Xk, i.i.d. with X1 ∼ N (0.5, 1) for k = 1, 5, 10 the predictive
distribution of Xk+1 | {X1:k = x1:k} gets closer to the true distribution Xk+1 ∼ N (0.5, 1) (blue
dashed line).

Proof. Let πϕ,σ2(·, ·) denote the joint prior distribution of Φ and ς. Integrating over σ2 yields
for the marginal distribution πϕ(·)

πϕ(ϕ) =

∫ ∞
0

πϕ,σ2(ϕ, σ2) dσ2

∼
∫ ∞

0

(
σ2
)−1/2

exp

(
− (ϕ− µk)2

2σ2/(k0 + k)

)(
σ2
)−(γk+1)

exp

(
− δk
σ2

)
dσ2

∼
∫ ∞

0

(
σ2
)−(γk+3/2)

exp

(
−(k0 + k)(ϕ− µk)2 + 2δk

2σ2

)
dσ2,

which corresponds to an unnormalized IG(γk + 1/2, 1/2((k0 + k)(ϕ−µk)2 + 2δk))-distribution.
As the integral equals the inverse normalization factor of the inverse-gamma distribution, the
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marginal distribution of ϕ is proportional to the inverse normalization factor, i.e.,

πϕ(ϕ) ∼ Γ (γk + 1/2)(
(k0+k)(ϕ−µk)2+2δk

2

)γk+1/2

∼
(

(k0 + k)(ϕ− µk)2 + 2δk
2

)−(γk+1/2)

∼
(

1 +
(k0 + k)(ϕ− µk)2

2δk

)−(γk+1/2)

∼

(
1 +

1

2γk

(ϕ− µk)2

δk
γk(k0+k)

)−(2γk+1)/2

,

which corresponds to a T2γk

(
µk,

δk/γk
k0+k

)
-distribution, cf. Definition B.13.

Remark 4.5.8. Since the variance of X ∼ Tν(µ, σ2) is (Remark B.15)

Var[X] =
ν

ν − 2
σ2,

we obtain according to Lemma 4.5.7

Var[Φ |X1:k = x1:k] =
2γk

2(γk − 1)

δk/γk
k0 + k

=
δk/(γk − 1)

k0 + k
.

As one might expect, regarding

E[ς |X1:k = x1:k] =
δk

γk − 1
,

the variance parameter of the t-distribution is chosen such

Var[Φ |X1:k = x1:k] =
E[ς2 |X1:k = x1:k]

k0 + k
.

Remark 4.5.9. The difference of

N
(
µk.

δk/(γk − 1)

k0 + k

)
and T2γk

(
µk,

δk/γk
k0 + k

)
is negligible even for the first update process, see Figure 4.27 B. The prior distributions differ
slightly.

4.5.4 Predictive distribution

To apply the BOCD to the setting of unknown phase and unknown precision, we still need
to determine the predictive distribution of Xk+1 | {X1:k = x1:k}, which is determined in
Proposition 4.5.10. An illustration of the updating process of the predictive distribution can
be found in Figure 4.26 B.
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Figure 4.27: We start with prior phase parameter ϕ0 = 0 and prior precision σ0 = 1 and prior
sample size k0 = 1. A. Marginal update process of Φ2. According to the prior parameter choice
the prior distribution is Φ ∼ T (0, 1/4) (black line). After observing X1, . . . , Xk, i.i.d. with
X1 ∼ N (0.5, 1) for k = 1, 5, 10, the posterior distributions concentrate more and more at the
true phase parameter ϕ = 0.5 (blue dashed line). B. Consider the same prior parameters and
we observe the same realization X1, . . . , Xk. What if we exchange the t-distribution (orange),
by a normal distribution (green) for an approximate solution, see Remark 4.5.9? The prior
distributions (dashed lines) differ slightly, even they have the same variance. But already after
one realization, both posterior distributions are almost the same.

Proposition 4.5.10. Consider a Bayesian model with Xj | {Φ = ϕ, ς2 = σ2} ∼ N (ϕ, σ2)
∀ j = 1, . . . , k and X1, . . . , Xk conditional independent. Furthermore, let

ς2 ∼ IG
(
γ0, (γ0 − 1)σ2

0

)
with γ0 := (k0 + 3)/2 and σ0, k0 > 0. Given {ς2 = σ2} let

Φ ∼ N
(
µ0,

σ2

k0

)
.

Then the predictive distribution of Xk+1 | {X1:k = x1:k} is

Xk+1 | {X1:k = x1:k} ∼ T2γk

(
µk,

k0 + k + 1

k0 + k

δk
γk

)
,

with

γk =
k0 + k + 3

2
and δk =

1

2

(
(k0 + 1)σ2

0 + (k − 1)s2 +
kk0

k0 + k
(µ0 − x̄)2

)
and

µk =
k0

k0 + k
µ0 +

k

k0 + k
x̄ and σ2

k =
σ2

k0 + k
,

where x̄ := 1/k
∑k

i=1 xi and s2 := 1/(k − 1)
∑k

i=1 (xi − x̄)2.
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Proof. With Corollary 4.5.5 we know the posterior distribution πϕ,σ2(· |X1:k = x1:k). In-
tegrating over the possible values of ϕ and σ2 and plugging in the posterior distribution
πϕ,σ2(· |X1:k = x1:k) yields for the predictive distribution p(· |X1:k = x1:k)

p (xk+1 |X1:k = x1:k) =

∫ ∞
0

∫ ∞
−∞

p
(
xk+1 |Φ = ϕ, ς2 = σ2

)
πϕ,σ2(ϕ, σ2 |X1:k = x1:k) dϕ dσ

2

=

∫ ∞
0

∫ ∞
−∞

1√
2πσ2

exp

(
−(xk+1 − ϕ)2

2σ2

)
·
√
k0 + k

2πσ2
exp

(
− (µk − ϕ)2

2σ2/(k0 + k)

)
δγkk

Γ(γk)

(
σ2
)−γk−1

exp

(
− δk
σ2

)
dϕ dσ2

∼
∫ ∞

0

∫ ∞
−∞

1

σ2
exp

−1

2

(σ2
)−1

(xk+1 − ϕ)2 +
k0 + k

σ2
(µk − ϕ)2︸ ︷︷ ︸

?


 dϕ

·
(
σ2
)−γk−1

exp

(
− δk
σ2

)
dσ2,

where we rewrite ? as

? =

(
ϕ−

(
xk+1

k0 + k + 1
+

k0 + k

k0 + k + 1
µk

))2 k0 + k + 1

σ2
+ (xk+1 − µk)2 k0 + k

k0 + k + 1
σ−2

Using this identity we recognize that the inner integral is just an integrating over an unnorma-
lized normal density and reduces to∫ ∞

−∞

1

σ2
exp

(
−1

2
(?)

)
dϕ =

√
2π

(k0 + k + 1)σ2
exp

(
1

2

k0 + k

k0 + k + 1
σ−2(xk+1 − µk)2

)
.

Overall this yields for the predictive distribution

p (xk+1 |X1:k = x1:k) ∼
∫ ∞

0

(
σ2
)−γk−3/2

exp

(
−
δk + 1

2
k0+k
k0+k+1(xk+1 − µk)2

σ2

)
dσ2,

which is an unnormalized inverse-gamma distribution, thus

p (xk+1 |X1:k = x1:k) ∼
(
δk +

1

2

k0 + k

k0 + k + 1
(xk+1 − µk)2

)−(γk+1/2)

∼
(

1 +
1

2

k0 + k

k0 + k + 1

1

δk
(xk+1 − µk)2

)− 2γk+1

2

∼
(

1 +
1

2γk

γk(k0 + k)

k0 + k + 1

1

δk
(xk+1 − µk)2

)− 2γk+1

2

,

corresponding to a t-distribution with 2γk degrees of freedom, location parameter µk and scale
parameter k0+k+1

k0+k
δk
γk

.

Remark 4.5.11. The predictive distribution of Xk+1 | {X1:k = x1:k} (Proposition 4.5.10) and
the marginal posterior distribution of Φ | {X1:k = x1:k} (Lemma 4.5.7) are both t-distributions
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with 2γk degrees of freedom and mean µk, but the variance of the predictive distributions is
δk/(γk − 1) higher, i.e.,

Var[Xk+1 |X1:k = x1:k] =
2γk

2γk − 2

k0 + k + 1

k0 + k

δk
γk

=
k0 + k + 1

k0 + k

δk
γk − 1

=
1

k0 + k

δk
γk − 1

+
δk

γk − 1

= Var[Φ |X1:k = x1:k] + E[ς2 |X1:k = x1:k].

This equation also follows directly from the law of total variance, which says for X ∼ N (Φ, ς2)

Var[X] = Var
[
E{Φ,ς2}[X]

]
+ E

[
Var{Φ,ς2}[X]

]
= Var [Φ] + E

[
ς2
]
.

Remark 4.5.12. Applying Theorem 3.4.20 we directly know the posterior expectation of
the sufficient statistic t(X), since we have an exponential family distribution and a standard
conjugate prior, thus posterior linearity holds. As we chose

t01 = µ0 and t02 =
k0 + 1

k0
σ2

0 + µ2
0,

we obtain for t(x) =
(
x, x2

)
E [t(Xk+1) |X1:k = x1:k] =

(
k0µ0+kx̄
k0+k

(k0+1)σ2
0+k0µ2

0+kx̄2

k0+k

)
.

That can be also verified by Proposition 4.5.10, where E [Xk+1 |X1:k = x1:k] is obvious identi-
cally. Since

Xk+1 | {X1:k = x1:k} ∼ T2γk

(
µk,

k0 + k + 1

k0 + k

δk
γk

)
,

and thus

Var [Xk+1 | {X1:k = x1:k}]) =
2γk

2γk − 2

k0 + k + 1

k0 + k

δk
γk
,

we obtain for the second part

E
[
X2
k+1 |X1:k = x1:k

]
= Var [Xk+1 |X1:k = x1:k] + (E [Xk+1 |X1:k = x1:k])

2

=
(k0 + 1)σ2

0 + (k − 1)s2 + kk0
k0+k (µ0 − x̄)2

k0 + k
+

(
k0

k0 + k
µ0 +

k

k0 + k
x̄

)2

=
(k0 + 1)σ2

0 + kx̄2 − kx̄2 + k0k
k0+k (µ0 − x̄)2 +

k2
0

k0+kµ
2
0 + 2 k0k

k0+kµ0x̄+ k2

k0+k x̄
2

k0 + k

=
(k0 + 1)σ2

0 + kx̄2 − kx̄2 + k0(k+k0)
k0+k µ2

0 + k(k+k0)
k0+k x̄2

k0 + k

=
(k0 + 1)σ2

0 + k0µ
2
0 + kx̄2

k0 + k
.
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4.5.5 Application of BOCD

With the results of the previous sections we are able to apply the BOCD to the case that rate
Λ, phase Φ and spike precision ς2 can change at some point in time. The change point model
assumes that in oscillation cycle k

Nk ∼ Pois(ΛAk)

spikes occur and given {Nk = nk} we choose spike times

X
(k)
1 , . . . , X(k)

nk
∼ N (ΦAk , ς

2
Ak

),

where rate, phase and precision parameter can not change in an oscillation cycle, but between
adjacent cycles.
We observe a sequence of cycles and need to decide for change points, i.e., we want to find
the time points, where the parameters Λ, Φ and ς2 change. Again we assume that changes in
the variables occur simultaneously (cf. Section 4.1). As theoretically the new parameters are
chosen according to their prior distribution, it is possible that for example the rate before and
after the change point remains almost the same.
By applying the BOCD we assume that if a change point occurs, the new parameters are
chosen according to our prior distributions, i.e.,

Λ ∼ Gamma(α0, β0) and ς2 ∼ IG(γ0, (γ0 − 1)σ2
0)

and given {ς2 = σ2}

Φ ∼ N
(
µ0,

σ2

k0

)
.

In the following simulations we use the same prior parameters as in Section 4.3.3

α0 = 3, β0 = 1; k0 = 1 (⇒ γ0 = 2), σ0 = 1; µ0 = 0.

We apply the BOCD and assume that change points occur with a constant but unknown
probability H, cf. Section 4.2.2, and use an uniform change point prior (a0 = b0 = 1).
To explore how changes in the precision ς2 affects the change detection in Φ, we additional
consider an reduced model (pure phase analysis), where we only consider changes in Φ and
view ς2 = σ2 as fixed, i.e., given {Nk = nk} we assume in oscillation cycle k

X
(k)
1 , . . . , X(k)

nk
∼ N (Φ, σ2).

Again we apply the BOCD to search for change points, but here only for changes in rate Λ
and phase Φ. Here we choose the prior parameter τ0 = 2 (see Section 4.3.3.2).
For the various types of analysis we use the following short cuts:

1. Only λ: Pure rate analysis. We only use the number of spikes in each oscillation cycle,
so we apply the BOCD on Λ.

2. Only ϕ: Pure phase analysis. We consider σ2 = 1 as fixed and only use the spike times

X
(k)
j in each oscillation cycle and do not consider the different spike numbers. So we

apply the BOCD on Φ.
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3. ϕ+σ: Phase and precision analysis. We only use the spike times X
(k)
j in each oscillation

cycle, but consider simultaneous changes in phase and precision. So we apply the BOCD
on Φ and ς2.

4. λ + ϕ + σ: Rate, phase and precision analysis. We use the number of spikes and the

spike times X
(k)
j in each oscillation cycle and apply the BOCD on Λ, Φ and ς2.

First change point setting Changes only in the precision ς2, see Figure 4.28 A and B.
Here we consider spike trains consisting of K = 10, 20, . . . , 100 cycles, where no rate and phase
change occur, but the spike precision changes, i.e.,

Nk ∼ Pois(4), k = 1, . . . ,K

and for each j = 1, . . . , Nk

X
(k)
j ∼ N (0, 1), k = 1, . . . ,K/2

and

X
(k)
j ∼ N

(
0, 22

)
, k = K/2 + 1, . . . ,K.
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Figure 4.28: Evaluation of BOCD using pure phase analysis or phase and precision analysis
in the one change point setting with a change point in the middle. We choose prior parameters
k0 = 1, σ0 = 1, µ0 = 0 and τ0 = 2. The precision changes from σ = 1 to σ = 2, the phase
remains constant (first change point setting)(A,B) or changes from 0 to 0.5 (second change
point setting) (C,D). Average number of correctly detected change points (A,C) and average
number of falsely detected change points (B,D) for sequences of length K = 10 to K = 100,
1000 simulations per data point. Pure phase analysis (σ = 1) is shown in blue and phase and
precision analysis in red.

If we apply the BOCD with a pure phase analysis, so we consider the spike precision as fixed
with σ = 1 and only look for changes in phase Φ, we detect the correct change point at K/2
in some simulations, but the number of correctly detected change points decreases with the
number of cycles K, see blue line in Figure 4.28 A. More interestingly the number of falsely
detected change points increases with the number of cycles (Figure 4.28 B, blue line). In
case of a phase and precision analysis, so we regard also changes in the spike precision ς2, we
detect the correct change point more often (Figure 4.28 A, red line) and more importantly the
number of false detections decreases with an increasing number of cycles K (Figure 4.28 B,
red line).
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Second change point setting Changes in phase Φ and precision ς2 (Figure 4.28 C, D).
Here we consider spike trains consisting of K = 10, 20, . . . , 100 cycles, where no rate change
occurs, but phase and spike precision change, i.e.,

Nk ∼ Pois(4), k = 1, . . . ,K

and for each j = 1, . . . , Nk

X
(k)
j ∼ N (0, 1), k = 1, . . . ,K/2

and

X
(k)
j ∼ N

(
0.5, 22

)
, k = K/2 + 1, . . . ,K.

In case of a pure phase analysis, i.e., we consider the spike precision as fixed with σ = 1, we
detect the correct change point at K/2 only in about 2/3 of cases, see blue line in Figure 4.28
C. But again the number of falsely detected change points increases with the number of cycles
(Figure 4.28 D, blue line).

However in case of a phase and precision analysis, we almost ever detect the change point
correctly (Figure 4.28 C, red line) and simultaneously the number of false detections decreases
with an increasing number of cycles K (Figure 4.28 D, red line).

In summary, it is very important to consider the spike precision as variable, if we have the
opinion that the spike precision can change. Otherwise, the change detection in the phase can
not work reliable.

Third change point setting Changes in rate Λ, phase Φ and precision ς2 (Figure 4.29).
Here we consider spike trains consisting of K = 10, 20, . . . , 200 cycles, where rate, phase and
spike precision change simultaneously, i.e.,

Nk ∼ Pois(λ), k = 1, . . . ,K/2

and

Nk ∼ Pois(2λ), k = K/2 + 1, . . . ,K

and for each j = 1, . . . , Nk

X
(k)
j ∼ N (0, 1), k = 1, . . . ,K/2

and

X
(k)
j ∼ N

(
0.5, 22

)
, k = K/2 + 1, . . . ,K.

The case of a low spike number (λ = 1) is shown in Figure 4.29 A and B, for a high spike
number (λ = 2) see Figure 4.29 C and D.
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Figure 4.29: Evaluation of BOCD using pure rate or phase and precision or rate, phase and
precision analysis in the one change point setting with a change point in the middle (third
change point setting). We choose prior parameters α0 = 3, β0 = 1, k0 = 1, σ0 = 1, µ0 = 0 and
τ0 = 2. The precision changes from 1 to 2, the phase changes from 0 to 0.5, the rate changes
from 1 to 2 (low spike number) (A,B) or changes from 2 to 4 (high spike number) (C,D).
Average number of correctly detected change points (A,C) and average number of falsely
detected change points (B,D) for sequences of length K = 10 to K = 200, 1000 simulations
per data point. Pure rate analysis is shown in red, phase and precision analysis in blue and a
rate, phase and precision analysis is shown in green.

Results - Low Spike number, Figure 4.29 A and B:

In case of a low spike number a pure rate analysis (red line) needs at least K = 100 cycles to
detect in about 50% of cases the change point correctly (panel A). Due to the small variance
of the Poisson distribution the change detection is quite robust and only some false detections
arise (panel B).

Using phase and spike precision (ϕ+ σ) analysis results in a high number of falsely detected
change points (panel B, the blue line lies beyond the plot window and is not shown). Due to
the high number of false detections also the correct change point is detected (panel A), but
the number of correctly detected change point decreases with the number of cycles (K = 200),
as also the number of false detections reduces. Due to the low spike number the detection
ability of phase and precision worsens compared to Figure 4.28 (λ = 4), as the mean spike
time is less accurate.

Nevertheless, the pure rate analysis can be improved by also using the information contained
in the phase and spike precision. The λ + ϕ + σ analysis (green line) results in a higher
number of correctly detected change points (panel A) and the number of false detections is
only increased for K < 50 cycles (panel B).

Results - High Spike number 4.29 C and D:

In case of a high spike number a pure rate analysis (red line) detects the correct change point
almost always, independent of the number of cycles K (panel C). Due to the higher variance
of the Poisson distribution (compared to the case of low spike number) the change detection
is less robust and a high number of cycles (K ≈ 200) is needed for a small number of falsely
detected change points (panel D).

Here a phase and spike precision analysis (ϕ+ σ) results in an increased number of correctly
detected change points (panel C, blue line) compared to the case of low spike number (panel
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A, blue line) and the number of fales detections is significantly increased and similar to a pure
rate analysis (panel D). A higher spike number increases the validity of the mean spike time.
More interestingly, if we combine the information contained in the number of spikes, the phase
and spike precision (green line), the number of correctly detected change points is almost
identical to a pure rate analysis (panel C). But a λ+ ϕ+ σ analysis reduces the number of
false detections strikingly, and almost no false detections occur for at least K = 100 cycles
(panel D) and the result is a very robust change detection.

In summary also in case of an unknown spike precision imprecise phases, compared to a
pure rate analysis, can increase the number of correctly detected change points and more
importantly decrease the number of false detections especially in case of high spike numbers.
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Chapter 5

Empirical neurons

In this section we apply our theoretical results on the detection probability and our algorithms
for change point detection to a setting of empirical neurons as reported in Havenith et al.
(2011). The authors recorded eight neurons in response to 12 stimuli, which were drifting
sinusoidal gratings of which the drifting direction rotated in steps of 30◦ (Figure 5.14 A).

First we present the rate and phase parameters of each empirical neuron, see Section 5.1. In
Section 5.2 we concentrate on the stimulus encoding. We consider the detection probability of
each stimulus and each neuron individually and observe that more than half of the neurons are
’rate neurons’ that decide mostly for one stimulus, if a spike occurs, cf. Section 5.2.1. Based
on the results of Section 2.1.2.3 we determine parameters of theoretical neurons that maximize
the detection probability for the same rate and phase parameter ranges. Dependent on the
parameter range of each empirical neuron the detection probability can be increased up to a
third, but some neurons encode stimuli near optimal. However, the increase in the detection
probability by using rate and phase compared to a pure rate analysis is quite small, for most
of the single empirical neurons and the consideration of all empirical neurons simultaneously.

In Section 5.2.2 we draw on the results of Section 2.1.3 and determine theoretical neurons
that minimize the detection error. Similar to the detection probability the detection error
can be decreased up to a third. However, even if the theoretical neurons with maximal
detection probability and the theoretical neurons with minimal detection error can have quite
different parameter structure, the resulting detection probability and detection error are almost
identical, which motivates not too focus to much on these optimizations. Therefore, we focus
on the empirical neurons and the probability p(δ) of falsely detecting an incorrect stimulus as
a function of the distance δ between the correct and incorrect stimulus. Already considering
the single neurons we observe that false decisions rather occur between stimuli with small
distances. More interestingly considering all empirical neurons simultaneously yields almost
only false decisions between stimuli with a distance of δ = 1.

In Section 5.3 we concentrate on the change point detection (a detected change point is correct,
if the distance to a true change point is at most three). First we explain, how we determine
the predictive distribution, as we are now in a discrete change point setting with discrete rate
and phase priors, cf. Section 5.3.1. Furthermore, we note that the parameters of a theoretic
neuron that maximizes the detection probability is not necessarily optimal with respect to the
change point detection.

In Section 5.3.2 we compare one empirical neuron and its theoretical optimal neuron with
respect to the performance in the change point detection. Further we quantify the improvement
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in the change point detection by the bivariate analysis compared to a pure rate analysis. The
improvement is clearer in the theoretical neuron and increases with higher rate parameters,
for example all rate parameters multiplied by four, which is equivalent to four times the same
responding neuron.
In Section 5.3.3 we consider all empirical neurons simultaneously to detect change points. We
consider the change point detection dependent on the distance of changed stimuli, as most
changes between stimuli can be detected very surely and change detection is only difficult
for stimuli with a distance of δ = 1. We observe that the phase increases the probability of
correctly detecting a change point especially in case of highly similar stimuli and reduces the
probability of falsely detecting a change point.

5.1 Rate and phase parameters of the empirical neurons

As described in Appendix A we use Figure 5 of Havenith et al. (2011) to roughly read off the
measured number of spikes and the relative firing times:(

λ(1)

ϕ(1)

)
=

(
7.5 5 0 5 12.5 7.5 7.5 9 7.5 5 5 5
2 2 2 0 -1 1 -2 -2 -2 -1 1 -2

)
(
λ(2)

ϕ(2)

)
=

(
12.5 0 0 0 0 8 42 42 17 8 17 25
-2 -4 -2 -2 -3 -3 -5 -7 -6 -4 -3 -2

)
(
λ(3)

ϕ(3)

)
=

(
4 4 17 25 8 4 4 4 8 12 8 4
-3 0 0 1 0 -3 1 3 3 1 -3 -1

)
(
λ(4)

ϕ(4)

)
=

(
0 4 8 0 0 0 4 12 25 4 4 0
-2 -2.5 -3 -1.5 0 -1 1 -2 -2 -1 -2 0

)
(
λ(5)

ϕ(5)

)
=

(
13 33 33 7 0 0 7 14 7 0 0 7
3 2 3.5 6 6 4 2 1 1 3 1 0

)
(
λ(6)

ϕ(6)

)
=

(
0 0 0 0 20 40 60 60 40 10 0 0
0 2 2 -1 0 0 2 2 2 3 3 2

)
(
λ(7)

ϕ(7)

)
=

(
7.5 10 5 2.5 2.5 2.5 7.5 12.5 7 2.5 2.5 2.5
3 1 2 2 -2 -2 -2.5 -3.5 -2 1 2 2

)
(
λ(8)

ϕ(8)

)
=

(
7.5 2.5 2.5 2.5 5 5 2.5 2.5 5 7.5 10 10
0 0 -3 -3 0 3 3 3 2 -2 0 3

)

For comparison with the theoretical results, the rate parameters of the empirical neuron are
rescaled to measure the number of spikes per oscillation cycle, and the phase parameters are
divided by σ̂ ≈ 6 to obtain an approximate standard deviation of 1 as used in the theoretical
considerations (for details see Appendix A).
The notation of rate and phase parameters of each neurons is analogous to Section 2.2.

Additionally, let λ
(m)
M denote the maximal rate parameter and ϕ

(m)
M the maximal phase

difference of neuron m = 1, . . . , 8.
The observed rate and phase parameters of each stimulus individually for every neuron are
illustrated in Figure 5.1. Note that we now have negative phase values as the firing times
between neurons matter. The maximal phase difference within a single neuron is approximately
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between 0.6 and 1, the maximal rate is between 0.6 and 3.5. In Figure 5.1 we also show the
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Figure 5.1: Scaled rate and phase parameters of the eight empirical neurons reported in
Havenith et al. (2011). The number in each dot represents the stimulus in the circular order,
cf. Figure 5.8 A, i.e., stimulus 5 has neighbors 4 and 6. The dashed line connects neighbored
stimuli.

detection probability pD calculated for each neuron separately that ranges between 0.12 and
0.207. If we would randomly decide for a stimulus, we would obtain a detection probability of
1/12 ≈ 0.08, what questions, if we should take neurons 1, 3, 4, 7 and 8 seriously. Further only
neuron 2 and 6 (maybe 5) have considerable ’high’ rate parameters (above 1) in more than
one stimulus to distinguish more than one stimulus with the rate. For more details see the
next section.

5.2 Stimulus encoding

In the following sections we draw on results obtained of Section 2. Especially to calculate
the detection probability for one neuron we use Lemma 2.1.3 and for multiple neurons we
determine the detection probability by simulations with Lemma 2.2.2. Explanations concerning
the detection error or the average probability to misclassify two stimuli with a distance of δ
can be found in Section 2.1.3.

5.2.1 Analysis of the detection probability

The main take away of this Section is that the empirical neurons code information close to
optimal based on only rate, but only neuron 2 is close to an optimal rate and phase code.
Considering all neurons simultaneously a rate and phase analysis can not increase the detection
probability strikingly compared to a pure rate analysis.

In Figure 4.2 we plug in the rate and phase parameters of Figure 5.1 and determine the detection

probability p
(m)
s for each stimulus s = 1, . . . , 12 separately for each neuron m = 1, . . . , 8.

Thereby we distinguish if we only use the rate (red), only the phase (blue) or rate and phase
(green). First, we notice that ’only rate’ and ’rate and phase’ results in similar detection
probabilities. Second, ’only phase’ results in almost the same detection probabilities for all
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stimuli. Third, neurons 1, 3, 4, 7, 8 are basically binary in the rate, as either stimuli with
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Figure 5.2: Detection probabilities p
(m)
s for all s = 1, . . . , 12 stimuli and m = 1, . . . , 8 empirical

neurons. A pure rate analysis is shown in red, pure phase analysis in blue and a rate and
phase analysis in green.

minimal rate parameters are detected if no spike occurs or otherwise stimuli with maximal
rate parameters are detected. For example let us consider neuron 1: The minimal rate of zero

is assigned to stimulus 3, thus this stimulus is detected correctly with p
(1)
3 = 1. The maximal

rate is assigned to stimulus 5 and is less than one, stimulus 5 is always detected, if a spike
occurs. All other stimuli are never detected in case of pure rate analysis. The same can be
seen for neuron 8, where stimuli 2, 3, 4, 7, 8 have the same minimal rate and stimuli 11 and 12
have the same maximal rate. All other stimuli are again never detected.

In Figure 5.3 we illustrate the rate and phase parameters that maximize the detection

probability using the same maximal rate λ
(m)
M and maximal phase range ϕ

(m)
M as the empirical

neuron m = 1, . . . , 8. In black we note the detection probabilities of the theoretical neurons
and in green the percentage, the theoretical neurons increase the detection probability in
comparison to the empirical neurons. The maximal increase is about one third. Of special
interest is neuron 2, which shows a relatively large range of rate and phase parameters across
stimuli and shows a close-to-optimal behavior (increase only about 8.5, even we consider all
stimuli. For more details to neuron 2 see Section 5.3.2.)

In Figure 5.4 A we can observe that the empirical neurons (except neuron 3) have at least the
same detection probability (green dots, rate and phase) as a theoretic optimal neuron using
only rate (red dots, note that this is also the optimal rate code due to the small rates). The
detection probability of a theoretic optimal neuron using rate and phase is shown in black,
which demonstrates that for theoretic neurons the detection probability can be strikingly
increased by rate and phase analysis compared to a pure rate analysis.

However, for the empirical neurons only in case of neuron 2 the detection probability is
strikingly increased by the rate and phase analysis (green) compared to only rate (violet,
Figure 5.4 B). Interestingly, in case of pure rate analysis the empirical neurons (violet) have
almost the same detection probability as a theoretic optimal neuron (red).

But Figure 5.4 C points up that this is no big deal, as neurons that only emit spikes for
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Figure 5.3: Theoretical optimal (detection probability) rate and phase parameters for the

rate (λ
(m)
M ) and phase (ϕ

(m)
M ) parameter range of each empirical neuron m = 1, . . . , 8. The

detection probability of the theoretical neuron is shown in black and the increase compared to
the empirical neuron is written in green.
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Figure 5.4: A-C. Detection probability pD separately for single neurons. A and B. Theoretical
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M for one stimulus and zero rate else. D. We consider all

empirical neurons simultaneously and determine the detection probability separately for each
stimulus. A pure rate analysis is shown in violet, pure phase analysis in blue and rate and
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one stimulus (red) are comparable to the empirical neurons considering only the rate (violet)
(except neuron 6).

Finally, we consider all neurons simultaneously and determine the detection probabilities
ps of each stimulus s = 1, . . . , 12 by simulation, cf. Lemma 2.2.2. First we note that the
global detection probability using ’rate and phase’ is about pD ≈ 0.56, while only rate yields
pD ≈ 0.54. This is supported by Figure 5.4, where only in case of stimulus 10 and 12 the
detection probabilities using rate and phase (green) are increased compared to a pure rate
analysis (violet). This is not surprising, as we have already seen theoretically in Section 2.2
that due to the efficient binary coding imprecise phases only provide additional information
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for S > 2M stimuli.

5.2.2 Distance of stimuli and false decisions

Here we apply our insights of Section 2.1.3 and compare the empirical neurons to theoretic
neurons that minimize the detection error eD. The main outcome is that the empirical neurons
try to avoid false decisions to very different stimuli, already on a single neuron basis and
more interestingly the set of eight neurons can correctly identify the correct stimulus with a
precision of about ±30◦.
In Figure 5.5 we present the rate and phase parameters which we obtained numerically by
minimizing the detection error eD. Analog to the detection probability the detection error
can be decreased theoretically up to one third.
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Figure 5.5: Theoretical optimal (detection error) rate and phase parameters for the rate (λ
(m)
M )

and phase (ϕ
(m)
M ) parameter range of each empirical neuron m = 1, . . . , 8. The detection error

of the empirical neurons is denoted by eD, of the theoretical optimal neurons by eopt. The
decrease compared to the empirical neuron is written in green.

However, as Figure 5.6 suggests it seems not very plausible to distinguish between the
theoretically optimal parameter set that maximizes the detection probability (red) and the
optimal parameter set that minimizes the detection error (black), as both result in almost the
same detection probability (panel B) or detection error (panel A).
Therefore, we further consider the empirical neurons and investigate those cases with incorrect
detections and show the results as a function of the ’distance’ between stimuli as follows. The
stimuli in Havenith et al. (2011) were gratings drifting in twelve different directions, such that
the distance δ between two stimuli can be determined naturally as a function of the drifting
angle (step size 30◦, see Figure 5.8 A).

Figure 5.7 shows the probability p
(δ)
D of falsely detecting an incorrect stimulus within one

single oscillation cycle as a function of the distance δ between the correct stimulus and the
falsely detected stimulus for each empirical neuron (for details see Section 2.1.3).
These probabilities are almost identical for the pure rate (red) and the combined phase and rate
analysis (green) for the given empirical parameter set. Interestingly for almost all empirical
neurons the probability of falsely detecting a stimulus with higher distance from the correct
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Figure 5.6: Comparison of the theoretically optimal neurons that maximize the detection
probability (red) and the theoretically optimal neurons that minimize the detection error
(black). A. Detection error. B. Detection probability.

0.
00

0.
10

0.
20

0.
30

distance δ

fa
ls

e 
de

ci
si

on

A

1 2 3 4 5 6

Only λ Only ϕ

λ + ϕneuron 1

0.
00

0.
10

0.
20

0.
30

distance δ

fa
ls

e 
de

ci
si

on

B

1 2 3 4 5 6

Only λ Only ϕ

λ + ϕneuron 2

0.
00

0.
10

0.
20

0.
30

distance δ

fa
ls

e 
de

ci
si

on

C

1 2 3 4 5 6

Only λ Only ϕ

λ + ϕneuron 3

0.
00

0.
10

0.
20

0.
30

distance δ

fa
ls

e 
de

ci
si

on

D

1 2 3 4 5 6

Only λ Only ϕ

λ + ϕneuron 4

0.
00

0.
10

0.
20

0.
30

distance δ

fa
ls

e 
de

ci
si

on

E

1 2 3 4 5 6

Only λ Only ϕ

λ + ϕneuron 5

0.
00

0.
10

0.
20

0.
30

distance δ

fa
ls

e 
de

ci
si

on

F

1 2 3 4 5 6

Only λ Only ϕ

λ + ϕneuron 6

0.
00

0.
10

0.
20

0.
30

distance δ

fa
ls

e 
de

ci
si

on

G

1 2 3 4 5 6

Only λ Only ϕ

λ + ϕneuron 7

0.
00

0.
10

0.
20

0.
30

distance δ

fa
ls

e 
de

ci
si

on

H

1 2 3 4 5 6

Only λ Only ϕ

λ + ϕneuron 8

Figure 5.7: Average probability p(δ) of falsely detecting a stimulus with the indicated distance
δ after observing one cycle separately for each empirical neuron (10000 simulations per data
point). Pure rate analysis shown in red, pure phase analysis in blue, bivariate analysis in
green.

one decreases with the distance for a pure rate or a rate and phase analysis, especially for the
interesting neuron 2 and 6. A pure phase analysis results in an almost flat curve, besides of
distance six. However, considering the set of eights neurons simultaneously (Figure 5.8 B) the
probability of falsely detecting a stimulus with higher distance from the correct one decreases
rapidly with the distance (pure rate and bivariate analysis), implying that this set of eight
neurons can already correctly identify the correct stimulus with a precision of about ±30◦

within one single oscillation cycle. A pure phase analysis results again in an almost flat curve.

5.3 Change point detection

In the following sections we analyze the performance of the empirical neurons in the change
point detection. First we explain the procedure in a discrete change point setting, see Section
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Figure 5.8: A. Illustration of the distance of the twelve measured stimuli. B. Average
probability p(δ) of falsely detecting a stimulus with the indicated distance δ after observing
one cycle for the set of eight empirical neurons (10000 simulations per data point). Pure rate
analysis shown in red, bivariate analysis in green.

5.3.1. Thereby we draw attention to the fact that a theoretical neuron which is optimal with
respect to the detection probability is not necessarily optimal with respect to the change
point detection. This especially concerns the optimal parameters of a pure rate code (Section
2.1.2.1). Therefore, we compare the empirical neurons only to a theoretic optimal neuron
using rate and phase, and in case of a pure rate analysis, we consider the rate parameters of
the optimal rate and phase neuron (which is not necessarily an optimal rate code).

In Section 5.3.2 we choose neuron 2 and compare its ability in the change point detection
to a theoretic optimal rate and phase neuron. The improvement by the bivariate analysis
compared to a pure rate analysis is more striking for the theoretic neuron and increases with
higher firing rates.

As the set of eight neurons can already correctly identify the correct stimulus with a precision
of about ±30◦ within one oscillation cycle, the detection ability of all neurons is very precise
already for a pure rate analysis and the bivariate analysis improves the change point detection
only in case of a small number of cycles or a short decision delay, cf. Section 5.3.3. Therefore,
we consider the number of correct and of false detections dependent on the distance of stimuli
and observe that imprecise phases can increase the probability of correctly detecting a change
point especially in case of highly similar stimuli.

5.3.1 BOCD with a discrete uniform prior

In Section 5.3.2 we consider a discrete change point setting given by an empirical and a
theoretical set of rate and phase parameters. Therefore, we need to extend the theoretical
considerations of Section 4, where we used a normal prior distribution for the phase and a
gamma prior distribution for the rate, cf. Section 4.3.1.3 and 4.3.2.1, to a discrete uniform
prior distribution on the set of parameters. Here we describe how the predictive distribution
can be derived required in the BOCD, see Equation (4.1) in Section 4.2.

In cycle k we observe the random vector Zk = (Nk, X
(k)
1:Nk

), where Nk denotes the number

of spikes and X
(k)
1:Nk

the spike times. Again we use the BOCD to detect changes in the
stimulus. To calculate the crucial run length distribution, we need to determine the predictive
distribution. As prior distribution we assume now a discrete uniform distribution on the set
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{(λ1, ϕ1), · · · , (λS , ϕS)}, i.e.,

Θ0 := (Λ0,Φ0) ∼ Unif ({(λ1, ϕ1), · · · , (λS , ϕS)}) .

Let π(·) denote the prior distribution of Θ0 and θs := (λs, ϕs), and suppose that we observe
k + 1 cycles without a change point. Then the predictive distribution is given by

p(Zk+1 = zk+1 |Z1:k = z1:k) =
S∑
s=1

p (Zk+1 = zk+1 |Θ0 = θs)P (Θ0 = θs |Z1:k = z1:k) .

The posterior distribution can be determined by

P (Θ0 = θs |Z1:k = z1:k) =
p(Z1:k = z1:k |Θ0 = θs)P(Θ0 = θs)

p(Z1:k = z1:k)

=
p(Z1:k = z1:k |Θ0 = θs)∑S
s̃=1 p(Z1:k = z1:k |Θ0 = θs̃)

.

Since the BOCD is a recursive algorithm, the posterior distribution can also be determined
recursively, i.e.,

P (Θ0 = θs |Z1:k = z1:k) =
p(Zk = zk |Θ0 = θs)P

(
Θ0 = θs |Z1:(k−1) = z1:(k−1)

)
p(Z1:(k−1) = z1:(k−1))

,

where the first term of the numerator is given by the sampling model, the second term by the
recursion and the denominator is just a normalization factor.

2 stimuli Here we apply the BOCD (a0 = b0 = 1) to the discrete change point setting of
S = 2 stimuli. In Figure 5.9 A and B we consider λ = (1, 4), in Figure 5.9 C and D λ = (2, 4).
In both cases we consider ϕ = (0, 0.75), whereas the order does not affect the change point
detection.
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Figure 5.9: Discrete change point detection for 2 stimuli. Results of the BOCD considering
spike trains of length K = 10, . . . , 100 with one change point at K/2. In half of the simulations
(1000 per data point) we consider a change of stimulus 1 to stimulus 2 and vice versa. A and
B. λ = (1, 4) and ϕ = (0, 0.75). C and D. λ = (2, 4) and ϕ = (0, 0.75). A,C (B,D). Average
number of correctly (falsely) detected change points as a function of the length K. Pure rate
analysis shown in red, pure phase analysis in blue and bivariate analysis in green.

Basically the use of a discrete prior distribution on the rate and phase parameters give
comparable results to the use of continuous prior distributions on rate and phase (Section
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4.3.3): The bivariate analysis increases the number of correctly detected change points and
decreases the number of falsely detected change points compared to a pure rate or pure phase
analysis. However, the discrete setting reduces the number of false detections in case of
a pure rate code (red) for a change λ : 1 → 4 (Figure 5.9 B), but still does a lot of false
detections for a change λ : 2→ 4 (Figure 5.9 D). In general the number of correctly detected
change points (Figure 5.9 A and C) is strikingly increased compared to the use of continuous
prior distributions, as we now know the magnitude of possible changes. This is consistent
to our results about mixtures of conjugate prior distributions (Section 4.4.2), which almost
corresponds to a discrete prior distribution if we choose very precise prior distributions. But
note there we need to adjust the prior parameters of the change point probability (b0 large),
as theoretical many small changes are possible.

Problems of rate coding In the change point setting we compare for S = 3 and S = 7
stimuli different parameter sets (optimal rate code, optimal rate and phase code) that maximize
the detection probability, cf. Section 2.1.2. In Figure 5.10 A and B we consider S = 3 stimuli,
with λM = 4 and ϕM = 0.75, and the optimal rate code (red dotted line)

Opt λ: λ = (1, 2, 4), pD = 0.6,

the optimal rate and phase code (green line)

λ+ ϕ: λ = (
√

2, 4, 4), ϕ = (0, ϕM , 0), pD = 0.707,

and the pure rate analysis of the optimal rate and phase code (red line)

Only λ: λ = (
√

2, 4, 4), pD = 0.587.

For the parameters of the optimal rate and phase code the BOCD detects almost every change
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Figure 5.10: Discrete change point detection for S = 3 (λM = 4 and ϕM = 0.75) and
S=7 (λM = 7 and ϕM = 0.75) stimuli. Results of the BOCD considering spike trains of
length K = 10, . . . , 100 with one change point at K/2. In each simulation (10000 per data
point) we uniformly choose two stimuli s1 and s2 without replacement and consider a change
of stimulus s1 to stimulus s2. A and B. S = 3 stimuli: Opt. λ: λ = (1, 2, 4); λ + ϕ:
λ = (

√
2, 4, 4) and ϕ = (0, ϕM , 0); only λ: λ = (

√
2, 4, 4). C and D. S = 7 stimuli: Opt. λ:

λ = (1, 2, . . . , 7); λ+ϕ: λ = (1.44, 1.44, 3.48, 3.48, 7, 7, 7) and ϕ = (0, ϕM , 0, ϕM , 0, ϕM/2, ϕM );
only λ: λ = (1.44, 1.44, 3.48, 3.48, 7, 7, 7). A,C (B,D). Average number of correctly (falsely)
detected change points as a function of the length K. Pure rate analysis shown in red, pure
phase analysis in blue and bivariate analysis in green.

point correctly and in case of at least K ≈ 60 cycles does almost no false detections. Not
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surprisingly in case of the optimal rate code (dotted line) the BOCD detects more change
points correctly compared to the pure rate analysis of the optimal rate and phase code (red
line), but does a lot more false detections. More convincing for S = 7 stimuli and λM = 7 and
ϕM = 0.75 (Figure 5.10 C and D). The optimal rate code (dotted line, cf. Section 2.1.2.1) is

Opt λ: λ = (1, 2, . . . , 7), pD = 0.368,

the optimal rate and phase code (green line)

λ+ ϕ: λ = (1.44, 1.44, 3.48, 3.48, 7, 7, 7), ϕ = (0, ϕM , 0, ϕM , 0, ϕM/2, ϕM ), pD = 0.485,

and the pure rate analysis of the optimal rate and phase code (red line)

Only λ: λ = (1.44, 1.44, 3.48, 3.48, 7, 7, 7), pD = 0.353.

Here in case of the optimal rate code and in case of a pure rate analysis of the optimal rate
and phase code, we observe almost the same number of correctly detected change points, but
in case of the optimal rate code we have a much higher number of falsely detected change
points. This is due to the similar rate parameters between neighbored stimuli. In case of an
optimal rate and phase code a change between stimulus 3 and 4 can not be detected with a
pure rate analysis, but therefore a change between stimulus 4 and 5 can be detected clearly.
Instead, in case of an optimal rate code a change between stimulus 3 and 4 is possible to
detect, but it is quite difficult with a moderate number of cycles and also a change between
stimulus 4 and 5 is difficult to detect.
Therefore, in change point detection an optimal rate and phase code is more appropriate if we
restrict to only rate, as we automatically have pairs of stimuli with the same rate parameters.
Thus this emphasizes again the importance of imprecise phases, i.e., imprecise phases increase
the detection probability while simultaneously enable an improved and more considerably
robust change point detection.

5.3.2 One representative empirical neuron

Here we consider neuron 2 and compare its ability in the change point detection to a theoretic

neuron that maximizes the detection probability (with the same λ
(2)
M and ϕ

(2)
M as the empirical

neuron). Neuron 2 is chosen here as it shows a relatively large range of rate and phase
parameters across stimuli, providing the possibility of stimulus encoding by rate and phase
parameters. Among the eight reported neurons, neuron 5 and 6 showed similar parameter
structures and yielded comparable results (data not shown). The remaining five neurons
showed too small firing rates to be suitable for consideration in a single neuron context, cf.
Section 5.2.1.
For convenience, we restrict the analysis to those eight out of 12 stimuli to which this neuron
showed firing rates of at least 0.5 spikes per oscillation cycle. The reduction to eight stimuli
also allows a comparison of this empirical neuron with the optimal combination of rate and
phase parameters in the given parameter range derived according to Section 2.1.2.3 (see Figure
5.11 B).
Because of the high number of stimuli in combination with relatively small numbers of spikes
and moderate phase differences, we focus on the comparison of the analysis based on rate
alone with the bivariate analysis based on rate and phase, and do not consider the analysis
based on phase alone.
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Figure 5.11: A. Observed parameters of empirical neuron 2 reported in (Havenith et al., 2011).
B. The parameters optimizing detection probability for the given parameter range.

Detection probability If we plug in the phase and rate parameters of Figure 5.11 to derive
the probability to detect the correct stimulus, the empirical neuron shows almost the same
detection probability (pD = 0.305) as the optimal parameter set (pD = 0.329). This close-to-
optimal behavior of the empirical neuron in the sense of rate and phase coding is particularly
interesting considering that the theoretical neuron even uses the complete parameter range,
including also a nullstimulus, which necessarily increases detection probability.

Furthermore, note that the rate parameters that maximize the probability of correct stimulus
detection within the given parameter range when ignoring phase is identical to the rate
parameters shown in Figure 5.11 B (see ’A note on the case of small rate and many stimuli
when λM ≤ S’, page 26, and Figure 2.2 C). Based only on rate, the optimal detection
probability is pD = 0.262 (theoretical neuron) and pD = 0.251 (empirical neuron). Hence the
additional phase parameter increases the detection probability by similar amounts, i.e., 25.4%
for the theoretical neuron and 21.5% for the empirical neuron.

Change point detection Here we compare the empirical and theoretical parameter sets in
Figure 5.11 with respect to the performance in the change point detection task. Note that the
parameter combination of the theoretical neuron is only optimal with respect to the detection
probability and not necessarily with respect to change point detection. However, we consider
this neuron a suitable candidate for comparison as pure change point detection will in practice
be important only if it is accompanied by correct stimulus detection.

In order to apply the change point detection methods to the example data set of eight phase
and rate parameters, we extend our techniques for application to a discrete set of stimuli.
We assume now that at a change point a new stimulus and its underlying rate and phase
parameters are chosen uniformly at random from the set of eight parameter combinations. In
the algorithm, we then use a discrete uniform prior distribution on this set, and derive the
predictive distribution accordingly (for details see Section 5.3.1).

Figures 5.12 A and B show the results of the BOCD (circles) and of the BOCD with online
decision (curves) as a function of the decision delay for the empirical neuron (solid) and for
the theoretical neuron (dashed). We simulated spike trains of length K = 100 with exactly
one change point at K/2. In each of 10000 simulations two stimuli were drawn randomly from
the set of eight stimuli, where the first and second part of the spike train corresponded to the
parameters of the first and second stimulus, respectively.
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The bivariate analysis based on rate and phase (green) showed a higher number of correctly
detected change points than the analysis based on rate alone (red, panel A), while the number
of falsely detected change points was reduced as compared to the pure rate analysis (panel B).
As these parameter sets showed a relatively high number of falsely detected change points
due to the small spike numbers and the high number of stimuli, we also performed analogous
simulations in which we multiplied all rate parameters by four (panels C and D) to illustrate
the effect of a number of neurons with similar response characteristic. In that case, the
improvement in the number of correctly detected change points was even stronger (panel C),
while also the number of falsely detected change points decreased (panel D). Almost no change
points were falsely detected for decision delays of at least five.

Thus, the bivariate analysis using rate and phase parameters could increase the number of
correctly detected change points as well as increase robustness by decreasing the number of
falsely detected change points in the stimulus.
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Figure 5.12: Fraction of correctly detected change points (A,C) and number of falsely detected
change points (B,D) resulting from application of the BOCD (circles) and the BOCD with
online decision (curves) to simulated sequences of length K = 100 with exactly one change
point at K/2 = 50 (10000 simulations per data point). X-axis indicates duration of decision
delay for BOCD with online decision. Pure rate analysis shown in red, bivariate analysis in
green. In each simulation, the parameters of two stimuli before and after the change point
were drawn randomly out of the set of all considered eight stimuli, using in A and B the
empirical (solid lines) and the theoretical (dashed lines) neuronal parameter combinations in
Figure 5.11. C and D. Analogous simulations, where the rate parameters of the empirical and
theoretical neuron were multiplied by 4.

5.3.3 Change point detection dependent on distance

Here we consider the set of eight neurons simultaneously and analyze its ability in the discrete
change point detection (all S = 12 stimuli). In Section 5.2.2 we have already seen that all
neurons simultaneously can distinguish stimuli with a distance of δ > 1 quite safe in only
one cycle. Therefore, it is not surprising that a change between two randomly chosen stimuli
(11 · 12 = 132 possible stimuli combinations and only 2 · 12 = 24 with a distance of δ = 1) can
be detected almost ever, even for a small number of cycles (Figure 5.13 A) or online with a
small delay (Figure 5.13 C) and with only few falsely detected change points (Figure 5.13 C
and D). Therefore we further investigated the detection of change points in the spike train
caused by changes in the stimulus as a function of the distance between the stimuli before
and after the change. To that end we applied the BOCD with online decision with a fixed
decision delay of d = 5 to spike trains of length K = 100 cycles with exactly one change point
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Figure 5.13: Discrete change detection using the set of eight empirical neurons. A change
between two randomly chosen stimuli occurs at K/2 (10000 simulations per data point). A
and B. Results of the BOCD considering spike trains of length K = 10, . . . , 100. C and D.
Results of the BOCD with online decision considering spike trains of length K = 100. A and
C (B and D). Average number of correctly (falsely) detected change points.

in the middle of the spike train. Again, change points between stimuli with a distance δ of
at least three (corresponding to 90◦) could be detected almost with probability 1. However,
stimuli with smaller distances showed considerably smaller probabilities of correct change
point detection (Figure 5.14 A). This applied both for the pure rate (red) and the combined
rate and phase analysis (green). However, the bivariate analysis could increase the probability
of change point detection particularly for small distances, and it reduced the probability of
falsely detecting a change point and thus increased robustness for all stimulus distances (panel
B).
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Figure 5.14: Change point detection as a function of stimulus distance. Results of BOCD
with online decision and a fixed decision delay of d = 5, considering spike trains of length
K = 100 with one change point at K/2 = 50. A. (B.). Average number of correctly (falsely)
detected change points as a function of the distance between the stimuli before and after the
change (10000 simulations per data point). Pure rate analysis shown in red, bivariate analysis
in green.

Taken together, the results of Section 5 suggest that near-optimal parameter combinations of
rate and phase do exist in the brain, and that therefore, the contribution of imprecise phases
to information processing as investigated theoretically in Sections 2.1.2 and 4.3.3 can also be
observed empirically. Particularly, imprecise phases can increase the probability of correctly
detecting a change point especially in case of high firing rates or highly similar stimuli, and
they can reduce the probability of falsely detecting a change point.
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Conclusion

Precise phase of spiking can carry sensory information beyond the information contained in
the spike count (Srivastava et al., 2017; Kayser et al., 2009; Nemenman et al., 2008; Thorpe
et al., 2001). This is theoretically clear if an accurate measurement of the spike position is
possible. However, neuronal firing often exhibits a high degree of variability, or noise, yielding
mean phases that can be measured in the long run but not in short time scales, such as in
individual oscillation cycles (Havenith et al., 2011; Bizley et al., 2010; Lorenzo et al., 2009;
Nelken et al., 2005). It is unclear to which degree noisy, or imprecise phases may be important
for neuronal information processing in addition to or as compared to the signal component
of firing rate. This question becomes particularly important considering the high speed of
neuronal information processing, which is assumed to be based on only a few milliseconds, or
oscillation cycles within each processing step (Osram et al., 1999; Gautrais and Thorpe, 1998;
Abeles, 1994).

We have used a parsimonious stochastic spiking model, which in a single oscillation cycle is
reduced to only two parameters corresponding to the signal components of rate λ and phase
ϕ. Thereby the number of spikes is assumed Poisson distributed with parameter λ, while the
position of each spike is placed independently according to a normal distribution with mean ϕ
and unit variance.

The present approach based on the simple stochastic model has a number of advantages. First,
the model contains exactly two signal parameters describing directly the rate and the phase,
and it describes the properties of individual oscillation cycles. This allows the investigation of
two quantities, the probability of correct stimulus detection, and the probability of correct
change point detection, as a function of these signal parameters and within short periods
of time such as individual oscillation cycles. Second, this allows optimization of the signal
parameters with respect to these quantities and comparison of pure rate, pure phase and
combined codes. Third, parameter estimation is simple and straightforward, where spiking
patterns with similar number and phase of spikes are automatically assigned similar estimators.
The procedure also works without artificial introduction of a temporal binning structure which
might affect the results.

Within this model, we have investigated optimal combinations of rate and/or phase parameters
that maximize the probability of correct stimulus detection, pD (Section 2), more in detail
for the case of a single neuron and a single oscillation cycle (Section 2.1). Depending on the
parameter range of rate and phase parameters, the resulting optimal parameter combinations
comprised pure rate codes in cases with highly imprecise phases and high rate differences, pure
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phase codes in cases with highly precise phases and moderate or large rates, and combined
codes. In general, the increase in pD when adding imprecise phase coding to pure rate coding
increases with the number of stimuli. In a case of eight stimuli, this increase ranged up to
30% in the neurophysiologically plausible parameter ranges considered here.
Note that we therefore considered a single oscillation cycle. If the information processing allows
enough time to use for example two oscillation cycles, the optimal parameter combinations
change, but they are roughly based on single cycles with twice as high rate parameters (Section
2.1.5). Due to the additional uncertainty of the spike allocation to the correct oscillation
cycle, the increase in pD when adding imprecise phase coding to pure rate coding decreases
compared to a single cycle.
Another restraint of the present methods is that they focus on the coding structure of a single
neuron for a relatively large number of stimuli. This is because the theoretically optimal
parameter combination needs to be derived numerically and comprises as many as 2S pa-
rameters for a single neuron. In this respect, deriving the optimal parameter combination
for only two neurons is already a numerically difficult task, where the computational cost is
heavily increasing in the number of stimuli and the number of neurons (Section 2.2). Basic
considerations however suggest that coding can be optimized easily when combining several
neurons. For example, for two neurons and two stimuli, each neuron can increase its rate for
another stimulus, which results in a highly robust coding based on rate alone. However, in
cases of high numbers of stimuli (S ≥ 2M ), the phase parameter still show increasing relevance.

In addition, we found that imprecise phases can improve the process of detecting changes in
the stimulus (Section 4). In particular, including the phase parameter in the change point
analysis in addition to the rate parameter increases the probability of correct change point
detection. More importantly, it considerably decreases the probability of false alarms, thereby
massively increasing robustness of change point detection. This holds for both, offline and
fast online decision processes with only a short decision delay investigated in Section 4.3. To
obtain a robust change point detection in the phase it is crucial to incorporate changes in
the spike precision if they occur (Section 4.5). But even with an unknown and random spike
precision, imprecise phases can improve the change point detection. Furthermore, change
point detection based on pure rate or pure phase analysis can perform very similar in case of
highly precise prior information (Section 4.4)
Note that we assume that all spikes can be assigned to the correct oscillation cycle, and
that the temporal delay with respect to a theoretical onset of this cycle is known or can be
measured precisely. Considering noisy processes in empirical recordings, these assumptions
must be considered artificial, but they were used in order to investigate theoretical optimality.
In addition, information about the theoretical onset of a cycle may be unnecessary in practice
in the presence of multiple active neurons. In this case, only the delay of spikes of different
neurons will be of practical relevance, which may be more easily tractable in a neurophysiolo-
gical way.

Our theoretical results suggest that including imprecise phases can not increase the detection
probability for many neurons and relative small number of stimuli. The importance of
imprecise phases in such a setting is explored in Section 5, where we have applied our methods
to parameters extracted from empirical spike train recordings of eight neurons with respect to
12 stimuli. The results suggest that near-optimal combinations of rate and phase parameters
may be implemented in the brain, and that phase parameters can particularly increase the
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sensitivity and robustness of change point detection in cases of highly similar stimuli.
In summary, the simple stochastic model with a rate and a phase parameter suggests that the
use of imprecise spike timing can not only increase the probability of correct stimulus detection,
but also increase the number of correctly detected changes in the stimulus. More importantly,
adding a phase parameter can increase robustness, i.e., decrease the number of false alarms
in the detection of changes in the signal. In addition, the model allows the investigation
of basic coding principles on the level of empirical recordings. In the empirical parameters
extracted from Havenith et al. (2011) for example, stimuli of sufficiently large difference could
be correctly distinguished almost with probability one within only a single oscillation cycle
- even only on the basis of rate parameters. In this setting, changes between highly similar
stimuli could be detected more reliably by the additional consideration of phase parameters.
These results suggest that small and imprecise phases can contribute to information processing,
increasing the probability and precision of correct stimulus detection as well as enabling robust
detection of changes in the input signal.
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Additional information

A Parameter range in data

Here we explain the choice of the parameter range for the rate and phase parameters throughout
the thesis, which is λ ∈ [0, 4] and ϕ ∈ [0, 0.75] (cmp. Sections 2 and 4). We focus on the
parameters in the specific context of small imprecise phases, reported in (Havenith et al., 2011;
Schneider, 2008; Schneider and Nikolić, 2006).

Concerning the rate parameter, (Havenith et al., 2011) report single unit activity with a mean
rate of 18± 15 Hz and an average length of an oscillation cycle of about 60 ms, resulting in an
approximate maximal rate parameter of about 3 spikes per cycle or slightly more (see also
Figure 5C in (Havenith et al., 2011)). The firing rates reported in (Schneider, 2008) (Figure
3) ranged up to 3.7 spikes per cycle.

Phase parameters in the used range of about ϕ ∈ [0, 0.75] have been extracted previously
by fitting a similar stochastic model reported in (Schneider, 2008) to neuronal firing activity
recorded in parallel in cat primary visual cortex under visual stimulation (Schneider and
Nikolić, 2006). Instead of the normal distribution of spike times, an exponential distribution
with temporal parameter τ was used, which was estimated in the range of 3.5− 8 ms. If we
consider Y1 ∼ exp(τmin) and Y2 ∼ exp(τM ) the spike times corresponding to the maximal phase
difference using exponential distributions and analogously X1 ∼ N (0, 1) and X2 ∼ N (ϕM , 1)
for normal distributions, we observe

E[Y2 − Y1] = τM − τmin and E[X2 −X1] = ϕM − 0,

Var[Y2 − Y1] = τ2
M + τ2

min and Var[X2 −X1] = 2.

We then approximate the maximal standardized phase by

ϕM =
E[X2 −X1]√

Var[X2 −X1]/2
≈ E[Y2 − Y1]√

Var[Y2 − Y1]/2
=

τM − τmin√
(τ2
M + τ2

min)/2
≈ 0.73.

A similar result is obtained by setting the detection probability, cf. Section 2.1.1, equal for the
two models in case of two stimuli and identical rates. In this case, in both models we have two
decision areas, where we decide for stimulus 1, if we observe a spike time less than the optimal
decision bound c. In case of normally distributed spike times the optimal decision bound is
c = ϕM/2. In case of exponentially distributed spike times the optimal decision bound c can
be determined by solving τMe

−τM c = τmine
−τminc, i.e.,

c =
log(τM/τmin)

1/τmin − 1/τM
.
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With that choice equating the detection probabilities for both models, i.e.,

P(Y1 ≤ c) + P(Y2 > c) = P(X1 ≤ ϕM/2) + P(X2 > ϕM/2),

yields a maximal phase difference ϕM ≈ 0.76.

Similarly, the phases of individual neurons reported in (Havenith et al., 2011, Figure 5B) show
ranges of about 6 ms, where the standard deviation σ is estimated roughly as σ̂ = 6 from
Figure S4 in (Havenith et al., 2011), yielding an approximate maximal range of about ϕM = 1
or slightly less.

Note that these choices clearly refer to the respective experimental context, where however
generalized results concerning smaller or larger phases can also be found in Section 2.1.2.

B Basic definitions and properties

Here we summarize some basic definitions and properties of distributions, which we draw on in
the thesis. We do not check that the probability density or mass functions are well-defined and
integrate to one. Further we restrain on the less commonly used distributions, the notations
of all relevant distributions can be found in the list of abbreviations (page 197).

Definition B.1. A continuous random variable X is said to have a Beta distribution with
shape parameters a, b > 0, denoted as X ∼ Beta(a, b), if its probability density function is
given by

f(x) =

{
Γ(a+b)

Γ(a)Γ(b)x
a−1(1− x)b−1, if x ∈ [0, 1],

0, otherwise,

where Γ(z) :=
∫∞

0 yz−1e−ydy, z > 0, is the gamma function.

Remark B.2. Let z > 0, then it holds for the gamma function

Γ(z + 1) = zΓ(z).

Proof.

Γ(z + 1) =

∫ ∞
0

yze−ydy =
[
−yze−y

]∞
0

+

∫ ∞
0

zyz−1e−ydy

= lim
y→∞

(
−yze−y

)
+ z

∫ ∞
0

yz−1e−ydy

= zΓ(z).

As Γ(1) = 1, we know with Remark B.2 that Γ(k + 1) = k! for k ∈ N.

Remark B.3. The expected value of X ∼ Beta(a, b) is

E[X] =
a

a+ b
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Proof. Applying Remark B.2 it can be derived as follows

E[X] =

∫ 1

0
x

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0
xa(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ 1 + b)

=
Γ(a+ b)

Γ(a+ b+ 1)

Γ(a+ 1)

Γ(a)
=

a

a+ b
.

Definition B.4. A continuous random variable X is said to have a Gamma distribution
with shape parameter α > 0 and rate parameter β > 0, denoted as X ∼ Gamma(α, β), if its
probability density function is given by

f(x) =

{
βα

Γ(α)x
α−1e−βx, if x > 0,

0, otherwise.

Remark B.5. The expected value of X ∼ Gamma(α, β) is

E[X] =
α

β

and the variance is

Var[X] =
α

β2
.

Proof. First we calculate the k-th moment

E[Xk] =

∫ ∞
0

xk
βα

Γ(α)
xα−1e−βxdx =

βα

Γ(α)

∫ ∞
0

xα+k−1e−βxdx

=
βα

Γ(α)

Γ(α+ k)

βα+k
=

(α+ k − 1)(α+ k − 2) · · ·α
βk

.

With that we directly obtain the mean. The variance is

Var[X] = E
[
X2
]
− E[X]2 =

α(α+ 1)

β2
− α2

β2
=

α

β2
.

Remark B.6. If we let α = 1 in Definition B.4, we obtain

f(x) =

{
βe−βx, if x > 0,

0, otherwise,

which is an Exponential distribution with rate β and denoted as Exp(β).
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Remark B.7. Let E1, . . . , Ek ∼ Exp(β) and independent. Then

k∑
i=1

Ei ∼ Gamma(k, β).

Proof. This can be easily seen by induction. The initial step is noticed in Remark B.6. Consider
Y :=

∑k−1
i=1 Ei and Z := Y +Ek. According to the induction hypothesis Y ∼ Gamma(k − 1, β).

The probability density function of Z is

fZ(z) =

∫ z

0
fY (y)fEk(z − y)dy =

∫ z

0

βα

Γ(k − 1)
yk−2e−βye−β(z−y)dy

=
βα

Γ(k − 1)
e−βz

∫ z

0
yk−2dy =

βα

Γ(k − 1)
e−βz

zk−1

k − 1
=

βα

Γ(k)
zk−1e−βz.

Remark B.8. Let X1 ∼ Gamma(p1,m) and X2 ∼ Gamma(p2,m), p1, p2,m > 0 and inde-
pendent. Then

X1

X1 +X2
∼ Beta(p1, p2).

Proof. First note that the joint probability density function f of (X1, X2) is given by

f(x1, x2) =
mp1+p2

Γ(p1)Γ(p2)
xp1−1

1 xp2−1
2 e−m(x1+x2), x1, x2 ∈ (0,∞).

Now we do the transformation U := X1
X1+X2

and V := X1 + X2 with inverse g−1(U, V ) =
(UV, V (1− U)). As the Jacobi matrix is given by

J g−1(u, v) =

(
v u
−v 1− u

)
the determinant of the Jacobi matrix is

det J g−1(u, v) = v(1− u) + uv = v.

Hence by the change of variables formula the probability density function h of the transforma-
tion is given by

h(u, v) = det J g−1f
(
g−1(u, v)

)
= vf(uv, v(1− u))

= v
mp1+p2

Γ(p1)Γ(p2)
(uv)p1−1(v(1− u))p2−1e−m(uv+v(1−u))

=
mp1+p2

Γ(p1 + p2)
vp1+p2−1 Γ(p1 + p2)

Γ(p1)Γ(p2)
up1−1(1− u)p2−1, u ∈ (0,∞), v ∈ (0, 1),

where the factor in v is the density function of a Gamma(p1 + p2,m)-distribution and the
factor in u is the density of a Beta(p1, p2)-distribution. Moreover, X1 +X2 and X1

X1+X2
are

independent.
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Definition B.9. A discrete random variable X is said to have a negative binomial distribution
with parameters k ∈ R and η ∈ (0, 1), denoted as X ∼ NB(k, η), if its probability mass function
is given by

P(X = r) =
Γ(k + r)

r!Γ(k)
ηk(1− η)r, r ∈ N.

Remark B.10. For X ∼ NB(k, η) and k ∈ N we obtain

Γ(k + r)

r!Γ(k)
=

(k + r − 1)!

r!(k − 1)!
=

(
k + r − 1

r

)
with the interpretation, that X is counting the number of failures r in a coin toss experiment
with success probability η and k successes.

Definition B.11. A continuous random variable X is said to have a Inverse-Gamma distri-
bution with shape parameter γ > 0 and scale parameter δ > 0, denoted as X ∼ IG(γ, δ), if its
probability density function is given by

f(x) =

{
δγ

Γ(δ)x
γ−1e−δ/x, if x > 0,

0, otherwise.

Remark B.12. The expected value of X ∼ IG(γ, δ) is

E[X] =
δ

γ − 1
.

Proof.

E[X] =

∫ ∞
0

x
δγ

Γ(δ)
xγ−1e−δ/xdx

=
δ

γ − 1

∫ ∞
0

δγ−1

Γ(δ − 1)
x(γ−1)−1e−δ/xdx =

δ

γ − 1
.

Definition B.13. A continuous random variable X is said to have a Student’s t-distribution
with location parameter µ ∈ R, scale parameter ψ > 0 and ν > 0 number of degrees of freedom,
denoted as X ∼ Tν(µ, ψ2), if its probability density function is given by

f(x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
πνψ

(
1 +

1

ν

(
x− µ
ψ

)2
)− ν+1

2

, x ∈ R.

Remark B.14. Let X ∼ Tν(µ, ψ2), than X−µ
ψ ∼ Tν(0, 1), which is called standardized student’s

t-distribution.

Remark B.15. The variance of X ∼ Tν(0, 1), ν > 2, is

Var[X] =
ν

ν − 2
.
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Proof. Since the probability density function is symmetric to zero, we have Var[X] = E[X2] and
calculate with integration by parts and integration by substitution (cν := Γ

(
ν+1

2

)
/(Γ

(
ν
2

)√
πν))

E[X2] = cν

∫ ∞
−∞

x2

(
1 +

x2

ν

)− ν+1
2

dx

= cν

[
x

(
− ν

ν − 1

)(
1 +

x2

ν

)− ν−1
2

]∞
−∞

+ cν

∫ ∞
−∞

ν

ν − 1

(
1 +

x2

ν

)− ν−1
2

dx

= 0 + cν

∫ ∞
−∞

ν

ν − 1

√
ν√

ν − 2

(
1 +

t2

ν − 2

)− (ν−2)+1
2

dt

=
ν−1

2 Γ
(
ν−1

2

)
ν−2

2 Γ
(
ν−2

2

)√
πν

∫ ∞
−∞

ν

ν − 1

√
ν√

ν − 2

(
1 +

t2

ν − 2

)− (ν−2)+1
2

dt

=
ν−1

2
ν−2

2

ν
√
ν

(ν − 1)
√
ν
·

Γ
(
ν−1

2

)
Γ
(
ν−2

2

)√
π(ν − 2)

∫ ∞
−∞

(
1 +

t2

ν − 2

)− (ν−2)+1
2

dt

=
ν

ν − 2
· 1 =

ν

ν − 2
.

C R-Codes

Here a collection of the most important R-Codes can be found to allow a reproduction of
the results in this thesis. Our results about the optimal parameter in the stimulus encoding
(Section 2) are mainly based on determination of the detection probability, see Function 1 for
one neuron and Function 2 for M neurons. The exploration in the change point detection
(Section 4) is realized with the BOCD (Section 4.2) and BOCD with online decision (Section
4.2.4), the implementation for the bivariate analysis can be found in Function 3 and Function
4. In Section 4.4 we apply the BOCD in context of mixtures of conjugate prior distributions.
The calculation of the posterior weights, which need to be transmitted to the BOCD, can be
found in Function 5. In Section 5 we consider a discrete prior distribution on the stimulus
specific rate and phase parameters, which were found in empirical neurons. The adjustment
of the BOCD to discrete weights can be found in Function 6.

1 pd_1_neur <-function(lamvec ,phivec ,sigma ,maxspike){

2 # Input:

3 # lamvec ... Vector of rates.

4 # phivec ... Vector of phases.

5 # sigma ... Standard deviation of the spike times.

6 # maxspike ... Maximum considered spike number for the summation.

7 # Output:

8 # pd... Calculated detection probability

9 lam <-lamvec[which(lamvec >0)]

10 phi <-phivec[which(lamvec >0)]

11 if (min(lamvec) <0){

12 return (0)

13 break

14 }

15 if (min(lamvec) >=0){

16 p<-rep(0,length(lam))

17 for (i in 1: length(p)){

176



APPENDIX

18 l<-1

19 u<-maxspike

20 if (length(which(phi==phi[i])) >1){

21 ur<-which(phi==phi[i])[which(lam[which(phi==phi[i])]>lam[i])]

22 if (length(ur) >0){

23 u<-max(0,floor(min((lam[i]-lam[ur])/log(lam[i]/lam[ur]))))

24 }

25 lr<-which(phi==phi[i])[which(lam[which(phi==phi[i])]<lam[i])]

26 if (length(lr) >0){

27 l<-max(1,ceiling(max((lam[i]-lam[lr])/log(lam[i]/lam[lr]))))

28 }

29 }

30 if (u>=l){

31 minmu <-which(phi >phi[i])

32 maxmu <-which(phi <phi[i])

33 for (j in l:u){

34 if (length(minphi) >=1 & length(maxphi) >=1){

35 p[i]<-p[i]+ dpois(j,lam[i])*max(0,( pnorm(min((-lam[i]+lam[minphi]

36 +j*log(lam[i]/(lam[minphi ])))/((sqrt(j)/sigma)*(phi[minphi]-phi[i]))

37 -(sqrt(j)/sigma)*(phi[i]-phi[minphi ])/2) ,0,1)

38 -pnorm(max((-lam[i]+lam[maxphi ]+j*log(lam[i]/(lam[maxphi ])))

39 /(sqrt(j)/sigma*(mu[maxphi]-phi[i]))

40 -sqrt(j)/sigma*(phi[i]-phi[maxphi ])/2) ,0,1)))

41 }

42 if (length(minphi)==0 & length(maxphi) >0){

43 p[i]<-p[i]+ dpois(j,lam[i])*(1

44 -pnorm(max((-lam[i]+lam[maxphi ]+j*log(lam[i]/(lam[maxphi ])))

45 /(sqrt(j)/sigma*(phi[maxphi]-phi[i]))

46 -sqrt(j)/sigma*(phi[i]-phi[maxphi ])/2) ,0,1))

47 }

48 if (length(maxphi)==0 & length(minphi) >0){

49 p[i]<-p[i]+ dpois(j,lam[i])

50 *(pnorm(min((-lam[i]+lam[minphi ]+j*log(lam[i]/(lam[minphi ])))

51 /(sqrt(j)/sigma*(phi[minphi]-phi[i]))

52 -sqrt(j)/sigma*(phi[i]-phi[minphi ])/2) ,0,1))

53 }

54 if (length(maxphi)==0 & length(minphi)==0){

55 p[i]<-p[i]+ dpois(j,lam[i])

56 }

57 }

58 p[i]<-p[i]/length(which(abs(lam -lam[i]) <10^(-5) & abs(phi -phi[i]) <10^(-5)))

59 }

60 }

61 pd<-1/(length(lam)+1+ length(which(lamvec ==0)))*(sum(p)+1)

62 return(pd)

63 }

64 }

Listing 1: Function to determine the detection probability for M = 1 neuron and and arbitrary
number S of stimuli, cf. Lemma 2.1.3. The nullstimulus is already included.

1 pd_M_neur_simu <-function(lammatr ,phimatr ,simula){

2 # Input:

3 # lammatr ... Matrix of rates: row i represents the rate profil of neuron i,

4 # column j the rate profil of stimulus j.

5 # phimatr ... Matrix of phases.

6 # simula ... Number of simulations.

7 # Output:

8 # pd... Simulated detection probability

9 pd<-0

10 for (i in 1: length(lammatr [1,])){

11 n<-list()

12 Z<-list()

13 for (k in 1: length(lammatr [,1])){

14 n[[k]]<-rpois(simula ,lammatr[k,i])

15 Z[[k]]<-rnorm(simula ,0,1)
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16 }

17 for (j in 1: simula){

18 left <-1

19 right <-1

20 for (k in 1: length(lammatr [,1])){

21 left <-left*lammatr[k,i]^(n[[k]][j])*exp(-lammatr[k,i])*

22 exp(-(phimatr[k,-i]-phimatr[k,i])*

23 (sqrt(n[[k]][j])*Z[[k]][j])+n[[k]][j]*(phimatr[k,i]-phimatr[k,-i])^2/2)

24 right <-right*(lammatr[k,-i])^(n[[k]][j])*exp(-lammatr[k,-i])

25 }

26 error <-left -right

27 if (min(error) >=0){

28 same <-length(which(error ==0))

29 pd<-pd+1/(same +1)

30 }

31 }

32 }

33 return ((pd)/(( length(lammatr [1,]))*simula))

34 }

Listing 2: Function to determine the detection probability for an arbitrary number M of
neurons and S stimuli by simulations, cf. Lemma 2.2.2.

1 BOCD_rate_plus_phase <-function(X,mu0 ,tau0 ,alpha ,beta ,a0,b0 ,sigma){

2 # Input:

3 # X... List of spike times: Each element of the list is a vector.

4 # Element k corresponds to spike times of cycle k.

5 # mu0... Expectation of the normal prior distribution of the phase.

6 # tau0 ... Standard deviation of the normal prior distribution of the phase.

7 # alpha ... Shape parameter of the gamma prior distribution of the rate.

8 # beta ... Rate parameter of the gamma prior distribution of the rate.

9 # a0... First shape parameter of the beta prior distr. for cp-probability.

10 # b0... Second shape parameter of the beta prior distr. for cp -probability.

11 # sigma ... Standard deviation of the spike times.

12 # Output:

13 # cp_pos... Detected changepoint positions.

14 T<-length(X)

15 spikes <-unlist(lapply(X,length))

16 runandX <-list() # P(r_t=i | X_(1:t))

17 runandX [[1]] <-1

18 rundandXandat <-list() # P(r_t=i , a_t=j | X_(1:t))

19 rundandXandat [[1]] <-matrix (1,1,1)

20 mu_t_j<-list() # update mu

21 mu_t_j[[1]] <-mu0

22 tau_t_j<-list() # update tau

23 tau_t_j[[1]] <-tau0^2

24 alpha_t_j<-list() # update alpha

25 alpha_t_j[[1]] <-alpha

26 beta_t_j<-list() # update beta

27 beta_t_j[[1]] <-beta

28 for (t in 2:T){

29 # Update of the posterior distribution

30 if (spikes[t-1]>0){

31 mu_t_j[[t]]<-c(mu0 ,(mu_t_j[[t-1]]/tau_t_j[[t-1]]+ sum(X[[t-1]])/sigma ^2)

32 /(1/tau_t_j[[t-1]]+ spikes[t-1]/sigma ^2))

33 tau_t_j[[t]]<-c(tau0^2,1/(1/tau_t_j[[t-1]]+ spikes[t-1]/sigma ^2))

34 }

35 if (spikes[t -1]==0){

36 mu_t_j[[t]]<-c(mu0 ,mu_t_j[[t -1]])

37 tau_t_j[[t]]<-c(tau0^2,tau_t_j[[t-1]])

38 }

39
40 alpha_t_j[[t]]<-c(alpha ,alpha_t_j[[t -1]]+ spikes[t-1])

41 beta_t_j[[t]]<-c(beta ,beta_t_j[[t -1]]+1)

42
43 # Calculate changepoint probability
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44 rtat <-matrix(0,nrow=t,ncol=t)

45 if (spikes[t]>0){

46 densnorm <-1

47 M<-mu_0

48 Ta<-tau_0^2

49 for (i in 1: spikes[t]){

50 densnorm <-densnorm*dnorm(X[[t]][i],mean =M,sd = sqrt(Ta+sigma ^2))

51 M<-(M/Ta+X[[t]][i]/sigma ^2)/(1/Ta+1/sigma ^2)

52 Ta<-1/(1/Ta+1/sigma ^2)

53 }

54 rtat[1,]<-c(0,colSums(rundandXandat [[t -1]])

55 *dnbinom(spikes[t], size=alpha , prob=1-1/(beta +1))

56 *densnorm*(seq(2,t,1) -1+a0 -1)/(t+a0+b0 -2))

57 }

58 if (spikes[t]==0){

59 rtat[1,]<-c(0,colSums(rundandXandat [[t -1]])

60 *dnbinom(spikes[t], size=alpha , prob=1-1/(beta +1))

61 *(seq(2,t,1) -1+a0 -1)/(t+a0+b0 -2))

62 }

63 # Calculate growth probabilities

64 if (spikes[t]>0){

65 densnorm <-1

66 M<- mu_t_j[[t]][-1]

67 Ta<-tau_t_j[[t]][-1]

68 for (i in 1: spikes[t]){

69 densnorm <-densnorm*dnorm(X[[t]][i],mean =M,sd = sqrt(Ta+sigma ^2))

70 M<-(M/Ta+X[[t]][i]/sigma ^2)/(1/Ta+1/sigma ^2)

71 Ta<-1/(1/Ta+1/sigma ^2)

72 }

73 densnorm <-densnorm*dnbinom(spikes[t], size=alpha_t_j[[t]][-1],

74 prob=1-1/(beta_t_j[[t]][ -1]+1))

75 }

76 if (spikes[t]==0){

77 densnorm <-dnbinom(spikes[t], size=alpha_t_j[[t]][-1],

78 prob=1-1/(beta_t_j[[t]][ -1]+1))

79 }

80 rtat [2:t,-t]<-rundandXandat [[t-1]]

81 *(matrix(t-seq(2,t,1)+b0,nrow=t-1,ncol=t-1,byrow=T))

82 /(t+a0+b0 -2)*matrix(densnorm ,nrow=t-1,ncol=t-1,byrow=F)

83
84 # Scaling for a robust calculation

85 rundandXandat [[t]]<-rtat/sum(rtat)

86 }

87
88 rundandX <-lapply(rundandXandat ,function(x){rowSums(x)})

89 rundandX <-lapply(rundandX ,unlist)

90 # Determine changepoints (take the most likely runlength at the last cycle)

91 cp_pos <-c()

92 rt<-max(which(rundandX [[T]]== max(rundandX [[T]])))

93 cp_pos <-c(T-rt+1,cp_pos)

94 t<-T-rt

95 while (t>0){

96 rt<-max(which(rundandX [[t]]== max(rundandX [[t]])))

97 cp_pos <-c(t-rt+1,cp_pos)

98 t<-t-rt

99 }

100 cp_pos <-cp_pos[-1]

101 return(cp_pos)

102 }

Listing 3: BOCD (Adams and MacKay, 2007; Wilson et al., 2010) (Section 4.2), adjusted to
our change point model, assuming a change in rate and phase simultaneously.

1 BOCD_online_decision_rate_plus_phase <-function(X,mu0 ,tau0 ,alpha ,beta ,a0,b0,sigma ,delay

){

2 # Input:
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3 # X... List of spike times: Each element of the list is a vector.

4 # Element k corresponds to spike times of cycle k.

5 # mu0... Expectation of the normal prior distribution of the phase.

6 # tau0 ... Standard deviation of the normal prior distribution of the phase.

7 # alpha ... Shape parameter of the gamma prior distribution of the rate.

8 # beta ... Rate parameter of the gamma prior distribution of the rate.

9 # a0... First shape parameter of the beta prior distr. for cp-probability.

10 # b0... Second shape parameter of the beta prior distr. for cp -probability.

11 # sigma ... Standard deviation of the spike times.

12 # delay ... Decision delay of the changepoint detection

13 # Output:

14 # cp_pos... Detected changepoint positions.

15 cp_pos <-c()

16 Mu_0<-mu0

17 Tau_0<-tau0

18 A0<-a0

19 B0<-b0

20 Alpha <-alpha

21 Beta <-beta

22 for (i in 1:( length(X)-1-delay)){

23 z<-BOCD_rate_plus_phase(X[i:(i+delay +1)],Mu_0,Tau_0,Alpha ,Beta ,A0,B0 ,sigma)

24 # No changepoint in the delay horizon

25 if (length(z)==0){

26 Mu_0<-(Mu_0/Tau_0^2+ sum(X[[i]])/sigma ^2)/(1/Tau_0^2+ length(X[[i]])/sigma ^2)

27 Tau_0<-sqrt(1/(1/Tau_0^2+ length(X[[i]])/sigma ^2))

28 Alpha <-Alpha+length(X[[i]])

29 Beta <-Beta+1

30 A0<-A0

31 B0<-B0+1

32 }

33 # At least one changepoint in the delay horizon

34 if(length(z) >0){

35 # Change detection at the current position

36 if (z[1]==2){

37 cp_pos <-c(cp_pos ,i+1)

38 Mu_0<-mu0

39 Tau_0<-tau0

40 Alpha <-alpha

41 Beta <-beta

42 A0<-A0+1

43 }

44 # Changepoint not at the current position

45 if (z[1]!=2){

46 Mu_0<-(Mu_0/Tau_0^2+ sum(X[[i]])/sigma ^2)/(1/Tau_0^2+ length(X[[i]])/sigma ^2)

47 Tau_0<-sqrt(1/(1/Tau_0^2+ length(X[[i]])/sigma ^2))

48 Alpha <-Alpha+length(X[[i]])

49 Beta <-Beta+1

50 A0<-A0

51 B0<-B0+1

52 }

53 }

54 }

55 return(cp_pos)

56 }

Listing 4: BOCD with online decision (Section 4.2.4), assuming a change in rate and phase
simultaneously. This function access Function 3.

1 weights_stimuli_mixture_distribution <-function(X,mu0 ,tau0 ,alpha ,beta ,a0,b0,sigma){

2 # Input:

3 # X... List of spike times: Each element of the list is a vector.

4 # Element k corresponds to spike times of cycle k.

5 # mu0... Vector of expectations of the normal prior of the phase mixture.

6 # tau0 ... Vector of standard deviations of the normal prior of the phase mixture

.

7 # alpha ... Vector of shape parameters of the gamma prior of the rate mixture.
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8 # beta ... Vector of rate parameters of the gamma prior of the rate mixture.

9 # a0... First shape parameter of the beta prior distr. for cp-probability.

10 # b0... Second shape parameter of the beta prior distr. for cp -probability.

11 # sigma ... Standard deviation of the spike times.

12 # Output:

13 # w_t_j... Weights of the priors for each cycle k and possible run length.

14 # (starting with an uniform prior)

15 T<-length(X)

16 k<-length(mu0) # number of stimuli

17 spikes <-unlist(lapply(X,length))

18 mu_t_j<-list() # update mu

19 mu_t_j[[1]] <-mu0

20 tau_t_j<-list() # update tau

21 tau_t_j[[1]] <-tau0^2

22 alpha_t_j<-list(list()) # update alpha

23 alpha_t_j[[1]] <-as.list(alpha)

24 beta_t_j<-list() # update beta

25 beta_t_j[[1]] <-as.list(beta)

26 w_t_j<-list(list()) # update weights

27 w_t_j[[1]] <-as.list(rep(1/k,k))

28 c_t_j<-list(list())

29 c_t_j[[1]] <-as.list(rep(1/k,k))

30 for (t in 2:T){

31 # Update of the posterior weights

32 mu_t_j[[t]]<-list()

33 tau_t_j[[t]]<-list()

34 alpha_t_j[[t]]<-list()

35 beta_t_j[[t]]<-list()

36 c_t_j[[t]]<-list()

37 w_t_j[[t]]<-list()

38 if (spikes[t-1]>0){

39 for (j in 1:k){

40 # Update phase

41 mu_t_j[[t]][[j]]<-c(mu0[j],(mu_t_j[[t -1]][[j]]/tau_t_j[[t -1]][[j]]

42 +sum(X[[t-1]])/sigma ^2)/(1/tau_t_j[[t -1]][[j]]

43 +spikes[t-1]/sigma ^2))

44 tau_t_j[[t]][[j]]<-c(tau0[j],1/(1/tau_t_j[[t -1]][[j]]+ spikes[t-1]/sigma ^2))

45 cj<-rep(0,length(mu_t_j[[t -1]][[j]]))

46 for (i in 1: length(mu_t_j[[t -1]][[j]])){

47 integrand <- function(x) {a<-c(); for(r in 1: length(x)) {

48 a<-c(a,dnorm(x[r],mu_t_j[[t -1]][[j]][i],sqrt(tau_t_j[[t -1]][[j]][i]))

49 *dmvnorm(X[[t-1]],rep(x[r],spikes[t-1]),diag(sigma ,spikes[t-1])))}

50 ;return(a)}

51 cj[i]<-integrate(integrand , lower = -Inf , upper = Inf)[[1]]

52 }

53 c_t_j[[t]][[j]]<-cj

54 # Update rate

55 alpha_t_j[[t]][[j]]<-c(alpha[j],alpha_t_j[[t -1]][[j]]+ spikes[t-1])

56 beta_t_j[[t]][[j]]<-c(beta[j],beta_t_j[[t -1]][[j]]+1)

57 cj<-rep(0,length(alpha_t_j[[t -1]][[j]]))

58 for (i in 1: length(alpha_t_j[[t -1]][[j]])){

59 integrand <- function(la) {dgamma(la,alpha_t_j[[t -1]][[j]][i],

60 beta_t_j[[t -1]][[j]][i])*dpois(spikes[t-1],la)}

61 cj[i]<-integrate(integrand , lower = 0, upper = Inf)[[1]]

62 }

63 c_t_j[[t]][[j]]<-c_t_j[[t]][[j]]*cj

64 }

65 }

66 # Determine posterior weights

67 if (spikes[t -1]==0){

68 for (j in 1:k){

69 mu_t_j[[t]][[j]]<-c(mu_0[j],mu_t_j[[t -1]][[j]])

70 tau_t_j[[t]][[j]]<-c(tau_0[j],tau_t_j[[t -1]][[j]])

71 alpha_t_j[[t]][[j]]<-c(alpha[j],alpha_t_j[[t -1]][[j]]+ spikes[t-1])

72 beta_t_j[[t]][[j]]<-c(beta[j],beta_t_j[[t -1]][[j]]+1)

73 cj<-rep(0,length(alpha_t_j[[t -1]][[j]]))
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74 for (i in 1: length(alpha_t_j[[t -1]][[j]])){

75 integrand <- function(la) {dgamma(la,alpha_t_j[[t -1]][[j]][i],

76 beta_t_j[[t -1]][[j]][i])*dpois(spikes[t-1],la)}

77 cj[i]<-integrate(integrand , lower = 0, upper = Inf)[[1]]

78 }

79 c_t_j[[t]][[j]]<-cj

80 }

81 }

82 w_t_j[[t]]<-as.list(rep(1/k,k))

83 for (i in 1:(t-1)){

84 wc_i<-sum(sapply(c_t_j[[t]], "[", i)*sapply(w_t_j[[t-1]], "[", i))

85 for (j in 1:k){

86 w_t_j[[t]][[j]]<-c(w_t_j[[t]][[j]],c_t_j[[t]][[j]][i]

87 *w_t_j[[t -1]][[j]][i]/wc_i)

88 }

89 }

90 }

91 return(w_t_j)

92 }

Listing 5: Determine the weights of a mixture distribution (Section 4.4) for each cycle k and
each possible runlength. The BOCD in case of a mixture distribution can be obtained by
adjusting the update process of Function 3.

1 BOCD_discrete_rate_plus_phase <-function(X,lam ,phi ,a0,b0,sigma ,weights){

2 # Input:

3 # X... List of spike times: Each element of the list is a vector.

4 # Element k corresponds to spike times of cycle k.

5 # lam... Vector of rate parameters.

6 # phi... Vector of phase parameters.

7 # a0... First shape parameter of the beta prior distr. for cp-probability.

8 # b0... Second shape parameter of the beta prior distr. for cp -probability.

9 # sigma ... Standard deviation of the spike times.

10 # weights ... Prior probabilities of each stimulus

11 # Output:

12 # cp_pos... Detected changepoint positions.

13 T<-length(X)

14 spikes <-unlist(lapply(X,length))

15 runandX <-list() # P(r_t=i | X_(1:t))

16 runandX [[1]] <-1

17 rundandXandat <-list() # P(r_t=i , a_t=j | X_(1:t))

18 rundandXandat [[1]] <-matrix (1,1,1)

19 k<-length(phi) # number of stimuli

20 w_t<-list() # update of probabilities of each stimulus

21 w_t[[1]] <-matrix(weights ,nrow = 1)

22 for (t in 2:T){

23 # Update of the posterior weights

24 w_t[[t]]<-matrix(0,nrow=t,ncol=k)

25 w_t[[t]][1,] <-rep(1/k,k)

26 for (r in 2:t){

27 if (spikes[t-1]>0){

28 w<-w_t[[t-1]][r-1,]

29 *dnorm(mean(X[[t -1]]),mean = phi ,sd = sigma/sqrt(spikes[t-1]))

30 *dpois(spikes[t-1], lambda = lam)

31 }

32 if (spikes[t -1]==0){

33 w<-w_t[[t-1]][r-1,]*dpois(spikes[t-1], lambda = lam)

34 }

35 w_t[[t]][r,]<-w/sum(w)

36 }

37 # Calculate changepoint probability

38 rtat <-matrix(0,nrow=t,ncol=t)

39 if (spikes[t]>0){

40 rtat[1,]<-c(0,colSums(rundandXandat [[t -1]])

41 *sum(dnorm(mean(X[[t]]),mean = phi ,sd = sigma/sqrt(spikes[t]))
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42 *dpois(spikes[t],lambda = lam))/k*(seq(2,t,1) -1+a0 -1)/(t+a0+b0 -2))

43 }

44 if (spikes[t]==0){

45 rtat[1,]<-c(0,colSums(rundandXandat [[t -1]])*sum(dpois(0,lambda = lam))/k

46 *(seq(2,t,1) -1+a0 -1)/(t+a0+b0 -2))

47 }

48 # Calculate growth probabilities

49 if (spikes[t]>0){

50 rtat [2:t,-t]<-rundandXandat [[t-1]]*(matrix(t-seq(2,t,1)+b0 ,nrow=t-1,ncol=t-1,

51 byrow=T))/(t+a0+b0 -2)*matrix(w_t[[t]][-1,]

52 %*%(dnorm(mean(X[[t]]),mean = phi ,sd = sigma/sqrt(spikes[t]))

53 *dpois(spikes[t],lambda = lam)),nrow=t-1,ncol=t-1,byrow=F)

54 }

55 if (spikes[t]==0){

56 rtat [2:t,-t]<-rundandXandat [[t-1]]

57 *(matrix(t-seq(2,t,1)+b0,nrow=t-1,ncol=t-1,byrow=T))/(t+a0+b0 -2)

58 *matrix(w_t[[t]][-1,]%*%dpois(spikes[t],lambda = lam),

59 nrow=t-1,ncol=t-1,byrow=F)

60 }

61 # Scaling for a robust calculation

62 rundandXandat [[t]]<-rtat/sum(rtat)

63 }

64 rundandX <-lapply(rundandXandat ,function(x){rowSums(x)})

65 rundandX <-lapply(rundandX ,unlist)

66 # Determine changepoints (take the most likely runlength at the last cycle)

67 cp_pos <-c()

68 rt<-max(which(rundandX [[T]]== max(rundandX [[T]])))

69 cp_pos <-c(T-rt+1,cp_pos)

70 t<-T-rt

71 while (t>0){

72 rt<-max(which(rundandX [[t]]== max(rundandX [[t]])))

73 cp_pos <-c(t-rt+1,cp_pos)

74 t<-t-rt

75 }

76 cp_pos <-cp_pos[-1]

77 return(cp_pos)

78 }

Listing 6: BOCD for a discrete stimuli setting (as used in Section 5), assuming a change in
rate and phase simultaneously. Analog to Function 4 we can create an online version of the
algorithm.
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German Summary

In unserem Gehirn übertragen Neurone Information, indem sie elektrischen Entladungen,
genannt Spikes, emittieren. Die Zeitpunkte, an denen Spikes auftreten, werden über die Zeit
gemessen und als Spike Train bezeichnet (Figur 1 A, rote Striche). Von zentraler Bedeutung
ist dabei die Identifikation und Bewertung verschiedener Signalkomponenten. Eine Möglichkeit
Information zu kodieren besteht in der Variation der Anzahl emittierter Spikes, im Folgenden
mit Rate bezeichnet, womit sich im Rahmen einer großen Neuronenpopulation Information
genau übertragen lässt (Softky and Koch, 1993; Shadlen and Newsome, 1998; Pouget et al.,
2000). Eine weitere Möglichkeit besteht in der zeitlich exakten Platzierung von Spikes, nachfol-
gend als genaue Phase bezeichnet, womit sich Information zusätzlich zur Rate übertragen lässt
und die Robustheit gegenüber Fehlerrauschen erhöhen lässt (Nelken et al., 2005; Montemurro
et al., 2008; Kayser et al., 2009; Cattani et al., 2015; Bieler et al., 2017).
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Abbildung 1: Schematische Darstellung eines CCH. A. Theoretische Spike Zeiten (rot) trans-
formiert in eine diskrete Zeitreihe mit Auflösung ∆. B. Auftretende Spike Abstände bis zu
einem maximalen Abstand von D = 2∆. C. Das resultierende CCH von Neuron 1 und Neuron
2 in B.

In vielen Fällen weisen neuronale Feuermuster jedoch große Variabilität auf. Dadurch lassen
sich Phasen nur über einen langen Beobachtungszeitraum genau messen. In dieser Arbeit liegt
der Fokus auf sogenannten ungenauen Phasen, die in synchronen Oszillationen von Neuronen-
populationen gemessen wurden. Üblicherweise wird dazu in der Praxis das Kreuzkorrelation
Histogramm (CCH) betrachtet. Da sich die Feueraktivität nur mit einer gewissen Auflösung ∆
messen lässt, liegt in der Praxis ein Spike Train in diskreter Form vor (Figur 1 A, 0 - 1). Für
zwei Spike Trains verschiedener Neurone bestimmt man für jedes Vielfache j ·∆, j ∈ Z, bis
zu einem maximalen Abstand D, wie viele Spikes von Neuron 1 genau den Abstand j ·∆ zu
einem Spike von Neuron 2 besitzen (Figur 1 B für D = 2). Die entsprechende Anzahl wird für
jeden Abstand in einem Histogramm eingetragen (Figur 1 C). Ein repräsentatives CCH für
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simulierte Daten, geglättet mit einem Gaussian Kernel, ist in Figur 2 A für zwei simulierte
Spike Trains mit einem Phasenunterschied von 2 ms gezeigt.
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Abbildung 2: Wir betrachten zwei Spike Trains mit jeweils 1000 Oszillationszyklen (≈ 25 s)
simuliert gemäß unseres GLO Models mit µB = 25, σB = 6 und einer Spike Präzision von
σ = 4. Neuron 1 hat eine höhere Rate von λ(1) = 4 erwarteten Spikes je Zyklus, Neuron 2
emittiert in Erwartung λ(2) = 2 Spikes. Die Phase von Neuron 1 ist ϕ(1) = 2, die Phase von
Neuron 2 ist ϕ(2) = 0. A. CCH mit einem maximalen Abstand von D = 80 ms geglättet mit
einem Gaussian Kernel, sd=1 ms. B. Hauptpeak des CCH : In grau die Rohwerte, in blau die
Anzahlen geglättet mit einem Gaussian Kernel. Der vorherrschende Phasenabstand von 2 ms
lässt sich mittels des vollständigen Spike Trains (25 s) genau messen, grün gestrichelte Linie.
C. Ein Abschnitt von 100 ms der simulierten Spike Trains.

Welche Rolle ungenaue Phasen in der Informationsverarbeitung wahrnehmen, ist noch eine
offene Frage. Einerseits wurden diese als Phänomen betrachtet, resultierend aus der unge-
nauen Arretierung der Feueraktivität an den Oszillationszyklus (Buzsáki and Chrobak, 1995;
Roelfsema et al., 1997), und sie lassen sich auch nicht in kleinen Zeitfenstern, wie einem
einzigen Oszillationszyklus identifizieren (Schneider and Nikolić, 2006) (vgl. Figur 2 C für vier
Zyklen). Andererseits lassen sich ungenaue Phasen, die in akkumulierten Daten mit hoher
Präzision gemessen werden können (vgl. Figur 2 B für einen Zoom in das CCH), nicht durch
Zufall erklären (Schneider et al., 2006) und auch nicht, dass sich diese systematisch mit dem
Stimulus ändern (Havenith et al., 2011). Daher bleibt unklar, ob und wie viel Information
zusätzlich zur Rate durch ungenaue Phasen übertragen werden können. Die Fragestellung ist
von besonderem Interesse, wenn man miteinbezieht, dass die Informationsverarbeitung im
Gehirn sehr schnell abläuft und nur einzelne oder wenige Oszillationszyklen zur Verfügung
stehen (Osram et al., 1999; Gautrais and Thorpe, 1998; Abeles, 1994).

Um dieser Fragestellung nachgehen zu können, betrachten wir eine modifizierte Version eines
doppelt-stochastischen Spike Train Models, das die zeitlichen Feuermuster empirischer Spike
Trains sowohl einzeln (Bingmer et al., 2011; Schiemann et al., 2012) als auch in Interaktion
(Schneider and Nikolić, 2008) sehr gut erfassen konnte.

Das ’Gaussian Locking to a free Oscillator’ (GLO) Model nimmt an, dass alle M Neurone
denselben oszillatorischen Hintergrundrhythmus B teilen, der als stationäre Irrfahrt (Bi)i∈Z
mit einer Zuwachsverteilung N (µB, σB) repräsentiert wird (vgl. Figur 3 für M = 2 Neurone).
An jedem Beat wird für jedes Neuron m ∈ {1, . . . ,M} unabhängig eine Poisson-verteilte

Anzahl Spikes N
(m)
s mit Rate λ

(m)
s ≥ 0 gewählt, wobei der Index s anzeigt, dass die Neurone

auf Stimulus s ∈ {1, . . . , S} reagieren. Anschließend werden unabhängige Normal-verteilte

Spike Zeiten X
(m)
is , i = 1, . . . , N

(m)
s mit Erwartungswert ϕ

(m)
s ∈ R und Varianz σ2 ≥ 0 gezogen
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und um den Beat platziert. Wir nehmen also an, dass die Präzision σ für alle Stimuli und
Neurone gleich ist. Um einen Beat lässt sich damit die neu entstehende Feueraktivität eines

B0 B1 B2 B3 (µB, σB)


λs

(1), ϕs
(1), σ




λs

(2), ϕs
(2), σ


ϕ
Pois (λ)

Abbildung 3: GLO Model für M = 2 Neurone, die auf Stimulus s reagieren. In grün bzw. blau
ist die Feueraktivität von Neuron 1 bzw. Neuron 2 dargestellt.

Neuron m als inhomogener Poisson Prozess mit Intensität (Bingmer, 2012)

ρ(m)
s (t) =

λ
(m)
s√
2π

exp

(
−(ϕ

(m)
s − t)2

2

)
, s ∈ {1, . . . , S},

beschreiben. Um die Bedeutung ungenauer Phasen zu erforschen, betrachten wir zwei konkrete
Aufgaben in der Informationsverarbeitung: Erstens, können ungenaue Phasen helfen, den
richtigen Stimulus s ∈ {1, . . . , S} zu erkennen, falls nur einer oder wenige Zyklen beobachtbar
sind? Zweitens, können ungenaue Phasen helfen Änderungen im Stimulus zu detektieren,
insbesondere wenn gefordert ist, schnell zu entscheiden? Dabei betrachten wir die Parameter-
bereiche, die in empirischen Spike Trains beobachtet wurden, welche λ ∈ [0, 4] und ϕ ∈ [0, 0.75]
für σ = 1 sind (Havenith et al., 2011; Schneider, 2008; Schneider and Nikolić, 2006).

Stimulus korrekt erkennen (Kapitel 2)
Die Aufgabenstellung für einen Zyklus und S = 2 Stimuli ist in Figur 4 A für M = 1 Neuron
und in B für M = 2 Neurone illustriert: Für jedes Neuron m kennen wir die Ratenparameter

λ(m) = (λ
(m)
1 , . . . , λ

(m)
S ) und Phasenparameter ϕ(m) = (ϕ

(m)
1 , . . . , ϕ

(m)
S ) und müssen auf Basis

der Spike Zeiten in einem Zyklus entscheiden, welcher Stimulus s den Neuronen präsentiert
wurde. Wir nehmen dabei an, dass jeder Stimulus mit gleicher Wahrscheinlichkeit präsentiert
wird und dass uns der Startpunkt des Zyklus bekannt ist. Als Entscheidungsregel verwenden
wir die ’Bayesian Decision Rule’ und wählen den Stimulus, der für die beobachtete Realisierung
am Wahrscheinlichsten ist. Hierbei sind die Anzahl an Spikes n und die mittlere Spike Zeit x̄
suffizient für Rate und Phase. Damit wird für ein Neuron der Beobachtungsraum N× R in S
Akzeptanzregionen A1, . . . , AS eingeteilt, vgl. Figur 5 A für S = 2 Stimuli. Im Falle von S = 2
Stimuli lässt sich dieser angeben als

A1 :=

{
(n, x̄)

∣∣∣∣n log
λ1

λ2
−
√
n

σ
(ϕ2 − ϕ1)

(
x̄− ϕ1

σ/
√
n

+

√
n

σ

ϕ1 − ϕ2

2

)
> λ1 − λ2

}
.

Um die Bedeutung der Phase zu bewerten, betrachten wir die Detektionswahrscheinlichkeit pD,
die mittlere Wahrscheinlichkeit, dass für Stimulus s auch (Ns, X̄s) in seinen Akzeptanzbereich
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B

Abbildung 4: Entscheidungsaufgabe für einen Zyklus und S = 2 Stimuli und M = 1 Neuron
(A) oder M = 2 Neurone (B).

As fällt. In Lemma 2.1.3 ist zu finden, wie sich pD numerisch für ein Neuron berechnen lässt.
Für zwei Neurone bestimmen wir pD mittels Simulation (Lemma 2.2.2). Um die Bedeutung der
Phase anhand von pD quantifizieren zu können, bestimmen wir in Abhängigkeit der maximalen
Rate λM und maximalen Phase ϕM zuerst optimale Ratenparameter, die pD im Falle von
identischen Phasen maximieren, und optimale Phasenparameter, für identische Raten, und
vergleichen anschließend den Zuwachs in pD für die optimale Kombination von Rate und
Phase.
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Abbildung 5: Akzeptanzregionen für zwei Stimuli im Falle von Raten- und Phasencodierung (A)
und reiner Ratencodierung (B). C. Optimale Ratenparameter verglichen mit der asymptotischen
Lösung. D. Optimale Ratenparameter für den Fall S ≥ λM (S = 3 Stimuli und λM = 2.5).

Im Falle reiner Ratencodierung vereinfachen sich die Akzeptanzregionen (siehe Figur 5 B),
wodurch sich zum einen mittels dynamischer Programmierung die optimalen Raten numerisch
bestimmen lassen (Figur 5 C, schwarze Stufenfunktion) und zum anderen die asymptotische
(λM →∞) Relation (rote Linien)

λs =
( s
S

)2
λM , s = 1, . . . , S,

zeigen lässt. Für kleine Raten λM ≤ S sind die optimalen Ratenparameter besonders leicht
zu bestimmen, da an der Stelle k ∈ Z die Pois(k)-Verteilung maximal unter allen Poisson-
verteilungen ist, vgl. Figur 5 D. Im Falle von reiner Phasencodierung ist die äquidistante
Platzierung der Phasenparameter von 0 bis ϕM auf Grund der Annahme gleicher Präzision σ
und der Symmetrie der Normalverteilung optimal.
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Komplizierter ist der Fall einer gleichzeitigen Codierung mit Rate und Phase. Hier bestimmen
wir die optimalen Parameter numerisch. Die grundsätzliche Struktur der optimalen Parameter
kann in Figur 6 A für S = 2 Stimuli beobachtet werden: Ist ϕM klein, codieren wir ausschließlich
mit der Rate; für wachsendes ϕM wird mehr Information von der Rate auf die Phase übertragen,
bis schließlich für ϕM ≈ 0.6 eine reine Phasencodierung gewählt wird und keine Information
mehr über die Rate übertragen wird. In Figur 6 B lässt sich erkennen, dass für ϕM = 0.75
durch die Hinzunahme der Phase (grün) nennenswert mehr Information übertragen lässt, als
mit einer reinen Ratencodierung (rot). Dies gilt aber nicht mehr für M = 2 Neurone und
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Abbildung 6: A. Optimale Rate λ1, die pD maximiert, für λM = 4 als Funktion von ϕM . B.
Maximale pD für λM = 4, S = 2 Stimuli und M = 1 Neuron, auf Basis von λ und ϕ (grün)
in Vergleich zu einem reinen Ratencode (rot) und einem reinen Phasencode (blau). C (D)
Maximale pD für λM = 2, S = 2 (S = 4) Stimuli und M = 2 Neurone, auf Basis von λ und ϕ
und zwei Neurone (blau), ein Neuron λM = 4 (grün) im Vergleich zu einem reinen Ratencode
(rot) für zwei Neurone.

S = 2 Stimuli, siehe Figur 6 C blaue versus rote Linie. Der Grund liegt darin, dass allein mit
der Rate Information Binär sehr stabil codiert werden kann: Bei einem Stimulus feuert nur
Neuron 1, bei dem anderen nur Neuron 2 und bei einem dritten feuern beide. Deshalb werden
mindestens S ≥ 2M Stimuli benötigt, um einen deutlichen Anstieg in pD im Vergleich zur
Ratencodierung beobachten zu können, siehe Figur 6 D für S = 4 Stimuli. Festzuhalten ist,
dass sich mit zwei Neuronen (jeweils maximal λM mögliche Spikes) deutlich mehr Information
übertragen lässt als mit einem Neuron (maximal 2λM mögliche Spikes).
Grundsätzlich bleiben die Ergebnisse auch für zwei Oszillationszyklen bestehen. Jedoch
benötigen wir hier genauere Phasen, um denselben Anstieg in pD, verglichen zu einer reinen
Ratencodierung, zu beobachten. Dies ist der zusätzlichen Unsicherheit geschuldet, dass nicht
vorgeben ist, welchem Oszillationszyklus jeder einzelne Spike zuzuordnen ist.
Weiterhin sind die Akzeptanzbereiche stabil gegenüber der gewählten Klassifizierung-Technik
Dazu haben wir unsere Ergebnisse basierend auf der ’Bayesian Decision Rule’ mit der ’Linearen
Diskriminanzanalyse’ verglichen.
Auch untersuchen wir ein alternatives Maß zu pD, nämlich den globalen Detektionsfehler eD,
der die Beziehung der Stimuli untereinander miteinbezieht. Dies erhöht deutlich den Rechen-
aufwand, resultiert aber in leichter identifizierbaren optimalen Raten und Phasenparametern,
da keine Stimuli mit gleichzeitig mittlerem Raten- und mittlerem Phasenparameter als optimal
auftreten.

Stimulusänderungen korrekt detektieren (Kapitel 4)
Um die Fragestellung zu untersuchen, ob ungenaue Phasen helfen können Änderungen im
Stimulus zu detektieren, betrachten wir folgendes Change Point Modell (illustriert in Figur
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7), dass die Feueraktivität aus dem GLO Modell verwendet. Erstens nehmen wir an, dass
Change Points unabhängig und mit gleicher Wahrscheinlichkeit η in jedem Zyklus auftreten.
Dazu sei Y1, Y2, . . . eine Folge unabhängiger Bernoulli Zufallsvariablen, wobei Yk angibt, ob
zwischen Zyklus k − 1 und k ein Change Point ist. Zweitens, sei Λ0,Λ1, . . . eine Folge von
u.i.v. Ratenparametern mit Prior Verteilung πλ(·) und λ0, λ1, . . . eine zufällige Realisierung.
Analog sei Φ0,Φ1, . . . eine Folge u.i.v. Phasenparametern mit Prior Verteilung πϕ(·) und
ϕ0, ϕ1, . . . eine zufällige Realisierung. An jedem Change Point wird eine neue Realisierung
von Λ,Φ gezogen, wir nehmen also an, dass Change Points stets simultan in Rate und Phase
auftreten. Bezeichne dazu Ak :=

∑k
i=1 Yi die Anzahl Change Points bis zur Zeit k, wobei

wir A0 := 0 setzen. Dann werden in Zyklus k insgesamt Nk ∼ Pois(λAk) Spikes gewählt
und unabhängig gemäß einer N (ϕAk , σ

2)-Verteilung platziert, wobei wir annehmen, dass die
Präzision σ der Spike Zeiten fest und bekannt ist. Wieder sei σ = 1 und wir skalieren die
Phasenparameter entsprechend.
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Abbildung 7: Change Point Modell. In einem Zyklus folgt die Feuerintensität einem inhomoge-
nen Poisson Prozess mit Rate λ und Phase ϕ wie im GLO Modell.

Zur Detektion von Change Points verwenden wir einen Bayesian Online Change Point Al-
gorithmus (BOCD) (Adams and MacKay, 2007), welcher die Schätzung der Change Point
Wahrscheinlichkeit η beinhaltet (Wilson et al., 2010). Der Algorithmus kann die Modellannah-
men exakt erfassen und bestimmt, gegeben die Annahmen, die Wahrscheinlichkeit für einen
Change Point zu jedem Zeitpunkt k exakt. Er bezieht Informationen über neurophysiologisch
relevante Parameterbereiche und Verteilungsannahmen mit ein. Dadurch kann der BOCD auf
kurze Zeitreihen angewandt werden und ermöglicht eine Untersuchung von Rate und Phase
auf Basis von wenigen Zyklen, im Gegensatz zu asymptotischen Verfahren.

Kernidee des BOCD ist die Betrachtung der Verteilung der Runlänge, welche die Zeit bis zum
letzten Change Point angibt, formal definiert als

Rk :=

{
min(i ≥ 0 : Ak −Ak−1−i = 1), falls Ak > 0,

k, sonst.

Mittels des Satzes von Bayes und der Annahmen des Change Point Modells, lässt sich
P(Rk = rk |X0:k = x0:k) ∀ rk ∈ 0, . . . , k, wobei x0:k die Beobachtungen in Zyklen 0 bis k
bezeichnen, rekursiv bestimmen, vgl. Figur 8 A mit verschiedenen Grautönen codierte Punkte.
Um die Predictive Wahrscheinlichkeit eines Change Points berechnen zu können, nehmen wir
an, dass auch diese uniform aus [0, 1] gezogen wird, vgl. Figur 8 B. Zur Detektion von Change
Points betrachten wir bei einer gegebenen Zeitreihe der Länge K die Verteilung der Runlänge
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Abbildung 8: A. Eine Beispielfolge von normalverteilten Zufallsvariablen mit zwei Change
Points im Erwartungswert und die geschätzte Runlängenverteilung für jeden Zyklus k, illus-
triert mit einem Graucode. In grün die geschätzten Change Points mit maximaler Posterior
Wahrscheinlichkeit zur Zeit K = 50. B. Illustration der Predictive Change Point Wahrschein-
lichkeit cpprob = P(Yk = 1 |Ak−1 = ak−1) für den Change Point Pfad geschätzt in A. C. BOCD
mit online Entscheidung, Verzögerung d = 3. D. Beispielfolge von Zyklen mit einem Change
Point in der Mitte (grün) und den mit dem BOCD detektierten Change Points in rot separat
für die drei Analysearten.

RK und wählen die Runlänge rK mit maximaler Wahrscheinlichkeit und fahren analog fort
rückwärts in der Zeit. Da die Detektion von Change Points nicht als online angesehen werden
kann, sondern nur das Updaten der Verteilung der Runlänge, betrachten wir außerdem einen
modifizierten Algorithmus (BOCD mit online Entscheidung), der annähernd sofort mit einer
kurzen Verzögerung entscheidet (Figur 8 C).

Um die Bedeutung von Rate und Phase in der Detektion von Change Points zu bewerten,
wenden wir erstens den BOCD nur auf die Anzahl Spikes an (nur Rate, rot), oder zweitens
nur auf die Spikezeiten (nur Phase, blau) oder drittens gleichzeitig auf Anzahl und Zeitpunkte
(Rate und Phase, grün). Dabei konzentrieren wir uns auf Zeitreihen mit einem Change Point
genau in der Mitte, an dem wir Sprünge in Rate und Phase betrachten, die plausibel für den
gegebenen Parameterbereich sind, für ein Beispiel siehe (Figur 8 D).

Grundsätzlich hat sich ergeben, dass nur die Phase deutlich weniger Change Points korrekt
(der wahre Change Point ist höchstens drei Zyklen entfernt) detektieren kann als nur die Rate
mit und ohne online Entscheidung (Figur 9 A und C). Nur die Rate hingegen detektiert sehr
viele Change Points, die gar nicht vorhanden sind (Figur 9 B und D). Betrachtet man Rate
und Phase gemeinsam, lassen sich mehr Change Points korrekt detektieren und die Anzahl
falsch detektierter Change Points wird deutlich reduziert. Das ist insbesondere interessant für
den BOCD mit online Entscheidung, da hier die Hinzunahme von ungenauen Phasen es erst
ermöglichen, schnell und fehlerfrei (mit knapp über fünf Zyklen Verzögerung) Änderungen im
Stimulus zu detektieren.

In der vorangegangenen Betrachtung verwenden wir konjugierte Prior Verteilungen, die im
relevanten Parameterbereich alle Raten und Phasen möglichst gleich gewichten. Möglicherweise
haben wir bzw. unser Gehirn in manchen Situationen spezielle Information, wie z.B. zwei
Typen von Ratenparametern oder kleine Raten treten nur mit kleinen Phasen auf. Durch
Konvexkombination von konjugierten Verteilungen lässt sich derartige Information effizient
berücksichtigen. Es zeigt sich, dass auch in diesem Fall mittels der Phase zusätzlich Information
übertragen werden kann und die Phase sogar auf gleicher Augenhöhe mit der Rate agieren
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Abbildung 9: Anwendung des BOCD (A und B) und des BOCD mit online Entscheidung (C
und D) für Zeitreihen mit einem Change Point in der Mitte. Die Phase springt von 0 auf 0.5,
die Rate von 1 auf 2. Mittlere Anzahl korrekt detektierter Change Points (A,C) und mittlere
Anzahl falsch detektierter Change Points (B,D) für Folgen von Zyklen der Länge K = 10 bis
K = 100 (BOCD) bzw. der Länge K = 100 (BOCD mit online Entscheidung).

kann, da die Genauigkeit der Prior Information eine bessere Unterscheidung ermöglicht, auch
von kleinen Phasenunterschieden.

Weiterhin sind wir davon ausgegangen, dass die Präzision σ bekannt und fest ist. Ändert
sich diese, aber wir nehmen diese fälschlicherweise als konstant hat, beobachten wir eine
systematische Überschätzung an Change Points in der Phase. Dies lässt sich verhindern, indem
wir auch die Präzision als unbekannt und zufällig modellieren. Auch in diesem Fall können
ungenaue Phasen die Anzahl korrekt detektierter Change Point erhöhen und gleichzeitig die
falschen Detektionen reduzieren.

Empirische Neurone (Kapitel 5)
Zum Abschluss geben wir noch einen Ausblick, wie sich unser Modellierung eignet, verborgene
Kodierungsmechanismen in Daten ausfindig zu machen. Dazu betrachten wir empirische
Neurone aus Havenith et al. (2011). Die Autoren haben das Antwortverhalten von acht
Neuronen auf 12 Stimuli - sich bewegende Balken, wobei sich deren Bewegungsrichtung um
30◦ Schritte unterscheidet, vgl. Figur 10 A - gemessen.

Wir konnten beobachten, dass man im Sinne der Detektionswahrscheinlichkeit auch in empi-
rischen Neuronen annähernd optimale Parameterkombinationen beobachten kann (Neurone
einzeln betrachtet für einen Oszillationszyklus). Etwa die Hälfte der Neurone zeigt jedoch sehr
kleine Raten innerhalb eines Zyklus, weshalb ein Zugewinn in pD durch Hinzunahme der Phase
nicht möglich ist. Es lässt sich aber beobachten, dass die Fähigkeit Change Points (Änderungen
in der Orientierung der Balken) korrekt detektieren zu können, durch Hinzunahme der Phase
wächst, insbesondere wenn man mehrere Neurone mit denselben Raten- und Phasenparametern
annimmt.

Betrachtet man alle Neurone gleichzeitig kann kaum eine Erhöhung der Detektionswahrschein-
lichkeit (0.54 zu 0.56) beobachtet werden, was zum einen an der geringen Anzahl Stimuli im
Verhältnis zu der Anzahl Neurone liegt und zum anderen durch die niedrigen Ratenparameter
verstärkt wird. Betrachtet man insbesondere genau die auftretenden Fehlentscheidungen, stellt
man fest, dass dies größtenteils direkt benachbarte Stimuli betrifft (Figur 10 B). Bereits
nach einem Zyklus lässt sich mit den gemessenen Neuronen mit hoher Wahrscheinlichkeit
die Orientierung des Balken mit einer Genauigkeit von ±30◦ bestimmen. Dieses Phänomen
überträgt sich auf die Detektion von Change Points: Auch hier ist es besonders schwierig kleine
Änderungen in der Orientierung (±30◦) zu detektieren, wobei Änderungen von mindesten
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Abbildung 10: Detektionswahrscheinlichkeit und Change Point Detektion in Abhängigkeit
des Stimulusabstandes. A. Illustration des Abstandes für die zwölf gemessenen Stimuli. B.
Mittlere Wahrscheinlichkeit Stimuli mit dem Abstand δ zu verwechseln. C-D. Ergebnisse des
BOCD mit online Entscheidung und einer fixen Verzögerung von d = 5 für Spike Trains der
Länge K = 100 mit einem Change Point in der Mitte bei K/2 = 50. C. (D.). Mittlere Anzahl
von korrekt (falsch) detektierten Change Points in Abhängigkeit des Abstandes des Stimulus
vor und nach dem Change Point.

90◦ fast immer erkannt werden (Figur 10 C). Die Phase ermöglicht dabei gerade bei sehr
ähnlichen Stimuli eine verbesserte Detektion und reduziert insgesamt die Anzahl an falschen
Detektionen (Figur 10 D).
Zusammenfassend können wir festhalten, dass die einfache und direkte Beschreibung der Rate
und Phase in dem stochastischen Modell ergeben hat, dass die Verwendung von ungenauen
Phasen nicht nur die Wahrscheinlichkeit erhöhen kann, den korrekten Stimulus zu detektieren,
sondern auch die Anzahl korrekt detektierter Änderungen im Stimulus erhöht. Außerdem wird
die Robustheit erhöht, bzw. die Häufigkeit von Fehlmeldungen hinsichtlich von Änderungen
reduziert. Ferner lassen sich mit unserem Modell Kodierungsprinzipien in empirischen Auf-
zeichnungen erforschen. Beispielsweise in empirischen Parametern, gewonnen aus Havenith
et al. (2011), konnten wir feststellen, dass für deutlich unterschiedliche Stimuli bereits ein
Oszillationszyklus ausreichend ist, um diese sehr sicher zu unterscheiden, sogar allein mit
der Rate. Änderungen zwischen sehr ähnlichen Stimuli lassen sich hingegen besser durch
Hinzunahme der Phase erkennen. Diese Ergebnisse suggerieren, dass kleine bzw. ungenaue
Phasen zur Informationsverarbeitung beitragen können, indem sie die Wahrscheinlichkeit und
Präzision in der korrekten Stimulusdetektion erhöhen und gleichzeitig eine robuste Detektion
von Änderungen ermöglichen.
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