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Supplementary Figure 1. Fabrication of contacts. First,
a protective Pt-based layer was deposited on top of the
Mo/Si multilayer (a) by focused ion beam-induced deposi-
tion (FIBID). Next, a stair-like groove was milled by focused
ion beam (FIB) under normal beam incidence and then, the
sample was tilted by 52◦ (b). The redeposited layer of Mo-
Si-Ga on the side wall of the milled groove was removed by
FIB milling (“cleaning cross-section”) so that the Mo/Si mul-
tilayer structure was uncovered (c). Finally, a conducting
Pt-FIBID layer was deposited at the side wall, covering the
whole area from the top protective layer down to the substrate
(d).

Supplementary Figure 2. Scanning electron microscopy im-
ages after contact fabrication steps (c) and (d) in Supplemen-
tary Figure 1. The scale bars correspond to 20µm in panel
(a) and 2µm in panel (b). Panel (b) is a false-color image.
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Supplementary Note 1. Vortex lattice configu-
rations at matching fields

The commensurability effect in anisotropic layered su-
perconductors was considered theoretically by Bulaevskij
and Clem (BC)5 on the basis of the discrete Lawrence-
Doniach approach and by Ivlev, Kopnin, and Pokrovsky
(IKP) in the framework of the continuous Ginzburg-
Landau model6. BC predicted a sequence of first-order
phase transitions between vortex lattices with different
matching orders at strong, parallel magnetic fields5. The
transitions occur at Hn,n−1 expressed through the char-
acteristic field H0 = Φ0/γs

2 at which the overlap of the
Josephson cores of vortices is essential. Here, Φ0 is the
magnetic flux quantum, s is the multilayer period, and
γ = (M/m)1/2 ≈ 5.22 is the anisotropy parameter. It is
deduced from the critical field slopes near the supercon-
ducting transition temperature Tc, as detailed in the next
section. In the expression for γ, M is the effective mass of
the Cooper pairs perpendicular to the layer planes while
m is the in-plane mass. For our sample H0 = 15.8 T such
that a transition between commensurate phases with the
vortex lattice period Z0 = s and Z0 = 2s should occur
in the field H2,1 ≈ H0/3 = 5.27 T. Another transition
between the phases with Z0 = 2s and Z0 = 3s is ex-
pected at H3,2 ≈ H0/8 = 1.975 T. While the field values
calculated within the BC model corresponded well to the
fields of resistance minima in superlattices with the same
dMo = 22 Å but a larger dSi = 34 Å with ηJ ≈ 0.74,7, the
R(H‖b) curve of our sample has no minima at the BC
matching fields. We attribute this to a larger interlayer
coupling in our sample and proceed to a comparison of
the data with the continuous IKP model.

IKP showed that when the intrinsic pinning energy
exceeds the elastic energy of a vortex lattice shear de-
formation, the vortices cannot cross the layers6. In this
case the vortex lattice is always commensurate with the
layered structure period s, and the vortex lattice period
Z0 is determined by the initial conditions under which
the lattice was formed. Accordingly, Z0 = Ns, where N
is an integer, is independent of the external field, while
the vortex lattice unit cell area varies with the field only
due to vortex displacements along the layers. It was
shown that the free energy of the rhombic lattice in the
commensurate state as a function of H has two minima
corresponding to the different orientations of the unit
cell vectors with respect to the layer planes. According
to IKP, the conditions of stability, which correspond to

the free energy minima, are 2N2s2γ
√

3H
(1)
N = Φ0 and

2N2s2γH
(2)
N =

√
3Φ0, where the stable states of the

commensurate lattices correspond to a rhombic lattice
with the apex angles ϕ(1) = 2π/3 and ϕ(2) = π/3 in the
direction of motion. In the instability region there are
many metastable states corresponding to different dis-
placements of the vortex rows relative to each other in
the neighboring interlayers. These states can be dynam-
ically accessible under the H variation8.

The IKP matching fields in the data range are

H
(1)
N=1 = 4.2 T and H

(2)
N=2 = 3.15 T, in perfect agreement

with the field values at which the resistance minima
are observed in Fig. 3(c). Accordingly, our analysis
of the resistance minima suggests that we deal with a
lattice of Abrikosov rather than Josepshon vortices. At
the same time, we can not rule out a crossover from
Abrikosov to Josephson vortices with further decrease
of the temperature, as such a crossover is known in
layered systems when the Abrikosov vortex with a
suppressed order parameter in its core turns into a
Josephson phase vortex once its core completely fits into
the insulating layer9. Further support in favor of dealing
with Abrikosov vortices is provided by the I-V curves
allowing for a universal scaling in the flux-flow regime,
which would be impossible due to a sudden dissipation
reduction at the crossover from Abrikosov to Josephson
vortices9.

Supplementary Note 2. Superconductivity di-
mensionality crossover in the Mo/Si superlattice

The evolution of the matching minimum in the R(T )
curve at T = 3.6 K to the zero-resistance state at T =
1.8 K can be understood with the aid of the dimen-
sional crossover in the Mo/Si, as inferred from the H-
T phase diagram shown in Fig. 5(a). In Fig. 5(a),
the temperature dependence of the upper critical field
Hc2(T ) is plotted for the in-plane and out-of-plane field
directions. The Hc2(T ) data were deduced from the
R(T ) curves by the 90% resistance criterion. Near Tc,
for both directions Hc2 ∝ (1 − T/Tc) with slopes of

|dH
‖c
c2

dT |Tc = 1.9 T/K and |dH
‖b
c2

dT |Tc = 10.9 T/K, yielding
an anisotropy parameter γ = 5.72. The out-of-plane
upper critical field extrapolated to zero temperature

H
‖c
c2 (0) = 7.4 T yields ξab = [Φ0/2πH

‖c
c2 (0)]1/2 = 67 Å

and, hence, ξc(0) = ξab(0)/γ = 12 Å. At lower temper-

atures H
‖b
c2 ∝ (Tc − T )1/2, pointing to a transition at

T ∗ ≈ 3.6 K from the 3D regime of weak layering with
ξc(T ) > 70 Å near Tc to the 2D regime of strong layering
at lower temperatures10.

The increase of the size of the vortex core with increas-
ing temperature ' 2ξc(T ) is illustrated in Fig. 5(b) in
comparison with the thickness of the Si layer dSi and the
multilayer period s. A semi-quantitative relation of the
vortex core size to the Si layer thickness and the mul-
tilayer period is sketched on the top of the spectra in
Fig. 2. In particular, at 1.8 K, being the lowest tem-
perature accessible in our experiment, the vortex core
2ξc(1.8 K) ≈ dSi = 28 Å largely fits into the insulating
layers, thereby allowing the Mo layers to remain super-
conducting up to very high fields11,12. At 3 K the vor-
tex core 2ξc(3 K) ≈ s ≈ 50 Å becomes comparable with
the multilayer period. Even though some part of the
vortices penetrates into the Mo layers, there are field
ranges where the intrinsic pinning energy Ep is larger
than the elastic energy of a vortex lattice shear deforma-
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tion Eel, which explains the presence of a rather broad
resistance minimum in the vicinity of the matching fields.
At 3.6 K the vortex cores become appreciably larger than
the multilayer period, namely 2ξc(3.6 K) > 70 Å, such
that the intrinsic confinement potential is smoothed out
as the vortex core extends over more than one multi-
layer period. In this case the superlattice is no longer
felt by a vortex as a layered structure, but rather the
motion of vortices occurs in some effective continuous
medium. Accordingly, the matching minimum at 3.15 T
becomes shallow at 3.6 K while the minimum at 4.2 T
disappears altogether as this field value is too close to

H
‖b
c2 (3.6 K) = 5.2 T and it gets smeared by the transition

to the normal state.

Supplementary Note 3. Lock-in transition

For the in-plane field geometry in layered super-
conductors there is a lock-in transition which lifts the
restriction for the external magnetic field H to be
aligned perfectly parallel to the layer planes in our
measurements1,2. Namely, Feinberg and Villard have
shown that in the general case when H is applied at a
finite angle Θ out of planes, there is a finite lock-in angle
Θc, such that when Θ < Θc the flux lines run strictly
parallel to the planes, remaining locked in between the
layers1. Previous experiments have revealed that in
our system Θc ≈ 1◦ at T = 0.9Tc, and it increases to
Θc ' 2◦ − 3◦ with decrease of temperature3. A further
fingerprint for the field tilt angle Θ to be smaller that
Θc is the positions of the resistance minima which do
not shift with Θ variation4. This has been proven to be
the case in our measurements as Θ was varied between
−1◦ and +1◦. No changes in the emission spectra have
been observed at such Θ variation.
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