Computational design of a molecular triple photoswitch for

wavelength-selective control

Chong Yang^a), Shavdar Slavov,^b) Hermann A. Wegner,^c) Josef Wachtveitl^b) and Andreas Dreuw^a)*

 a) Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205A, 69120 Heidelberg, Germany
b) Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany

c) Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany

Supporting Information

Figure S1: Simulated absorption spectra of single-branch substituted MTAs, which are all substituted at the 2' position, at the theoretical level of TDDFT/CAM-B3LYP. For the simulation of the spectra a full-width-at-half maximum of 10 nm has been used.

Figure S2: Simulated absorption spectra of single-branch substituted MTAs, which are all substituted at the 3' position, at the theoretical level of TDDFT/CAM-B3LYP. For the simulation of the spectra a full-width-at-half maximum of 10 nm has been used.

Figure S3: Simulated absorption spectra of single-branch substituted MTAs, which are all substituted at the 4' position, at the theoretical level of TDDFT/CAM-B3LYP. For the simulation of the spectra a full-width-at-half maximum of 10 nm has been used.

Figure S4: Simulated absorption spectra of single-branch substituted MTAs with two substituents at one terminal phenyl ring at the theoretical level of TDDFT/CAM-B3LYP. For the simulation of the spectra a full-width-at-half maximum of 10 nm has been used.

Figure S5: Simulated absorption spectra of single-branch substituted MTAs with multiple substituents at one terminal phenyl ring at the theoretical level of TDDFT/CAM-B3LYP. For the simulation of the spectra a full-width-at-half maximum of 10 nm has been used.

Figure S6: Relaxed scans of the potential energy surfaces along the isomerization pathway of the 4"-SH substituted AB branch of (2',4',6'-tri-CN-4"-SH)-MTA after unconstrained relaxation of S₆. Initially, the excited S₆ $\pi\pi^*$ state decays into the S₁ $n\pi^*$ now localized at the 4"-SH substituted AB branch, which undergoes barrierless isomerization along the CNNC dihedral angle rotation.

Figure S7: Relaxed scans of the potential energy surfaces along the isomerization pathway of the 2',4',6'-tri-CN substituted AB branch of (2',4',6'-tri-CN-4"-SH)-MTA after unconstrained relaxation of S₅. Initially, the excited S₅ $\pi\pi^*$ state decays into the S₁ $n\pi^*$ state localized at the 2',4',6'-tri-CN substituted AB branch, which undergoes barrierless isomerization along the CNNC dihedral angle rotation.