sFig. 1

Α

CHP-212

В

NLF

SH-EP <u>2 hrs</u> <u>4 hrs</u> <u>8 hrs</u> <u>24 hrs</u> UT TM TG UT TM TG UT TM TG UT TM TG GRP78 -78 kD PERK -140 kD Vinculin -116 kD

CHP-212

sFig. 4

С

В

Primer	Sequence (5´- 3´)
h28S_forward	ttgaaaatccggggggagag
h28S_reverse	acattgttccaacatgccag
hCHOP_forward	aaggcactgagcgtatcatgt
hCHOP_reverse	tgaagatacacttccttcttgaacac
hDPAGT1_forward	ttccccttcctgaactgct
hDPAGT1_reverse	cacctatcagggccacaaat
hGRP78_forward	cagcctggcgacaagagt
hGRP78_reverse	ccttgggcagtattggattc
hXBP1_forward	ttacgagagaaaactcatggcc
hXBP1_reverse	gggtccaagttgtccagaatgc

Lectin	Organism	Common name	Туре	Print in	Specificity
AIA, Jacalin	Artocarpus integrifolia	Jack fruit lectin	Plant	Gal	Gal (sialylation tolerant)
RPbAI	Robinia pseudoacacia	Black locust lectin	Plant	Gal	Gal, GalNAc
SNA-II	Sambucus nigra	Sambucus lectin-II	Plant	Gal	Gal/GalNAc
SJA	Sophora japonica	Pagoda tree lectin	Plant	Gal	β-GalNAc
DBA	Dolichos biflorus	Horse gram lectin	Plant	Gal	GalNAc
GHA	Glechoma hederacea	Ground ivy lectin	Plant	Gal	GalNAc
SBA	Glycine max	Soy bean lectin	Plant	Gal	GalNAc
VVA	Vicia villosa	Hairy vetch lectin	Plant	Gal	GalNAc
BPA	Bauhinia purpurea	Camel's foot tree lectin	Plant	Gal	GalNAc/Gal
WFA	Wisteria floribunda	Japanese wisteria lectin	Plant	Gal	GalNAc/sulfated GalNAc
HPA	Helix pomatia	Garden snail lectin	Animal	Gal	α-GalNAc
GSL-I-A4	Griffonia simplicifolia	Griffonia lectin-I A4	Plant	Gal	GalNAc
ACA	Amaranthus caudatus	Amaranthin	Plant	Lac	Sialylated/Gal-β-(1,3)-GalNAc
ABL	Agaricus bisporus	Edible mushroom lectin	Fungus	Lac	Gal-β-(1,3)-GalNAc, GlcNAc
PNA	Arachis hypogaea	Peanut lectin	Plant	Gal	Gal-β-(1,3)-GalNAc
GSL-II	Griffonia simplicifolia	Griffonia/Bandeiraea lectin-	Plant	GIcNAc	GICNAC
			Diant		
SWGA	Thicum vuigans		Plant	GICINAC	GICNAC
DSA	Datura stramonium	Jimson weed lectin	Plant	GICNAC	
	Solanum tuberosum	Polalo leclin	Plant	GICINAC	
	Lycopersicum eculentum	l omato lectin	Plant	GICNAC	GICNAC-B-(1,4)-GICNAC
Caisepa	Calystegia sepium	Binaweed lectin	Plant	Man	Man/Maltose
NPA	pseudonarcissus	Daffodil lectin	Plant	Man	α-(1,6)-Man
GNA	Galanthus nivalis	Snowdrop lectin	Plant	Man	Man-α(1,3)-
ННА	Hippeastrum hybrid	Amaryllis agglutinin	Plant	Man	Man-α(1,3)-Man-α(1,6)-
ConA	Canavalia ensiformis	Jack bean lectin	Plant	Man	Man, Glc, GlcNAc
Lch-B	Lens culinaris	Lentil isolectin B	Plant	Man	Man, fucose dependent
Lch-A	Lens culinaris	Lentil isolectin A	Plant	Man	Man, fucose dependent
PSA	Pisum sativum	Pea lectin	Plant	Man	Man, fucose dependent
TJA-I	Trichosanthes japonica	TJA One	Plant	Lac	Sialic acid-α-(2,6)-Gal(NAc)
WGA	Triticum vulgaris	Wheat germ agglutinin	Plant	GlcNAc	NeuAc/GlcNAc
MAA	Maackia amurensis	Maackia agglutinin	Plant	Lac	Sialic acid-α-(2,3)-Gal(NAc)
SNA-I	Sambucus nigra	Sambucus lectin-l	Plant	Lac	Sialic acid-α-(2,6)-Gal(NAc)
CCA	Cancer antennarius	California crab	Animal	Lac	9-O-acetyl-sialic acid
PHA-L	Phaseolus vulgaris	Kidney bean leukoagglutinin	Plant	Lac	tri-/tetra-antennary β-Gal/Gal-β-(1,4)-GlcNAc
PHA-E	Phaseolus vulgaris	Kidney bean erythroagglutinin	Plant	Gal	biantennary, bisecting GlcNAc,β-Gal/Gal-β-(1,4-)GlcNAc
RCA-I/120	Ricinus communis	Castor bean lectin I	Plant	Gal	Gal-β-(1,4)-GlcNAc
АМА	Arum maculatum	Lords and Ladies agglutinin	Plant	Lac	Gal-β-(1,4)-GlcNAc
СРА	Cicer arietinum	Chickpea lectin	Plant	Lac	Complex glycopeptides
CAA	Caragana arborescens	Pea tree lectin	Plant	Lac	Gal-β-(1,4)-GlcNAc
ECA	Erythrina cristagalli	Cocks comb/coral tree lectin	Plant	Lac	Gal-β-(1,4)-GlcNAc oligomers
TJA-II	Trichosanthes japonica	TJA Two	Plant	Gal	Fuc-α(1,2)Gal(NAc)-β(1,4)
AAL	Aleuria aurantia	Orange peel fungus lectin	Fungus	Fuc	α-(1,6)-linked Fuc
LTA	Lotus tetragonolobus	Lotus lectin	Plant	Fuc	α-(1,3)-linked Fuc
UEA-I	Ulex europaeus	Gorse lectin-I	Plant	Fuc	α-(1,2)-linked Fuc
PA-I	Pseudomonas aeruginosa	Pseudomonas lectin	Bacteria	Gal	Gal, Gal derivatives
EEA	Euonymous europaeus	Spindle tree lectin	Plant	Gal	α-Gal
GSL-I-B4	Griffonia simplicifolia	Griffonia/Bandeiraea lectin- I	Plant	Gal	α-Gal
MPA	Maclura pomifera	Osage orange lectin	Plant	Gal	α-Gal
VRA	Vigna radiata	Mung Bean Lectin	Plant	Gal	α-Gal
MOA	Marasmius oreades	Fairy ring mushroom lectin	Fungus	Gal	α-Gal
PBS	N/A	N/A	N/A	NS	N/A
BSA	N/A	N/A	Animal	NS	N/A

Supplemental Figure legends

Suppl. Figure 1. BV6 inhibits TM-induced caspase activation and caspasedependent apoptosis in neuroblastoma cells.

(A) NLF and CHP-212 cells were treated for indicated times with TM (NLF: 0.1 μ g/ml; CHP-212: 0.2 μ g/ml) and/or 5 μ M BV6. Caspase activation was analyzed by Western blotting, cleavage fragments are indicated by arrows.

(B) NLF and CHP-212 cells were treated for 72 hours with TM (NLF: 0.1 μ g/ml; CHP-212: 0.2 μ g/ml) and/or 5 μ M BV6 in the presence or absence of 20 μ M zVAD.fmk. Apoptosis was determined by flow cytometric analysis of DNA fragmentation of PI-stained nuclei. Mean+SEM of three independent experiments performed in triplicate are shown; **P<0.01.

Suppl. Figure 2. Effect of TM and TG on the UPR and ER stress.

SH-EP cells were left untreated (UT) or were treated for indicated times with 0.4 μ g/ml TM and/or 2.5 μ M TG. Expression of GRP78 and phospho-PERK (indicated by upward band shift) was analyzed by Western blotting; Vinculin served as loading control.

Suppl. Figure 3. BV6 resolves TM-induced UPR.

NLF and CHP-212 neuroblastoma cells were treated for indicated times with TM (NLF: 0.1 μ g/ml; CHP-212: 0.2 μ g/ml) and/or 5 μ M BV6. Expression levels of CHOP and GRP78 were evaluated by Western blotting. Expression of β -actin served as loading control.

Suppl. Figure 4. Involvement of NF-κB signaling.

(A) SH-EP cells were treated for six hours with 0.4 μg/ml TM and/or 4 μM BV6. Expression of NIK was analyzed by Western blotting, GAPDH served as loading control.

(B) SH-EP cells were transiently transfected with siRNAs against cIAP1 and cIAP2 or with control siRNA and were treated with 0.4 μ g/ml TM. Expression of NIK was analyzed by Western blotting, GAPDH served as loading control.

(C) SH-EP cells stably expressing $I\kappa B\alpha$ -SR or empty vector (EV) were treated with 10 ng/ml TNF α for one hour. Expression of $I\kappa B\alpha$, $I\kappa B\alpha$ -SR and phospho- $I\kappa B\alpha$ was assessed by Western blotting, GAPDH served as loading control.

(D) SH-EP cells stably expressing $I\kappa B\alpha$ -SR or vector control were treated for 72 hours with 0.4 µg/ml TM and/or 4 µM BV6. Cell viability was assessed by MTT assay and is expressed as the percentage of untreated controls. Mean + SEM of three independent experiments performed in triplicate are shown; *P<0.05; **P<0.001.

Suppl. Table 1. Primer sequences.

Suppl. Table 2. Lectin microarray list.