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Recent progress in the synaptic pathophysiology of brain

diseases is reviewed. To emphasize the emergence of common

motifs in synapse dysfunctions across neurodevelopmental,

psychiatric and neurological disorders, conventional clinical

boundaries are disregarded and a decidedly trans-diagnostic,

potentially unifying view of altered synapse function is

promoted. Based on the overlapping genetic architecture of

brain disorders, which often converges on genes related to

synaptic functions, disease-related changes in basic pre-

synaptic and post-synaptic communication, neuromodulation-

gated changes in Hebbian plasticity, dynamic interactions

between Hebbian and homeostatic plasticity, and changes in

synaptic maintenance by autophagy and glial-mediated

phagocytosis are highlighted.
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All diseases of the brain impair — one way or another —

its core function to generate adaptive behavior in a world

of complex and ever changing environments and social

interactions. In addition to maintaining this most complex

biological system characterized by functional circuits

on many levels [1], in itself an enormous homeostatic

challenge [2], the brain must also constantly change to

update its predictions about the world [3,4]. The brain

circuits update by monitoring prediction errors and use

them as teaching signals to drive changes in synaptic

connectivity and structure [4]. Thus, by its very nature,
1 My dear, here we must run as fast as we can, just to stay in place. And if y

Alice in Wonderland).
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the brain — navigating through a developmental

sequence of risky and disease-prone critical phases

[5] — is a moving target and never finished (‘brain devel-

opment is a life-long process’ [6�]). This notion implies

that the rules of homeostasis are not sufficient and might

be widened to a concept of homeodynamics [7] — main-

taining stability in the presence of constant change — a

truly heroic, even somewhat paradoxical task.1

Brain diseases are very diverse and our mechanistic

understanding is still limited. Depending on the respec-

tive age of onset — from neurodevelopmental disorders

[5] to neurodegenerative diseases of old age [8] — and the

functional domains affected, brain diseases have been

classified into major categories and channeled into dis-

tinct clinical fields and traditions [7]. However, there is

growing consensus that many brain diseases affect some

of its synaptic core functions. This implies that in partic-

ular neurodevelopmental, psychiatric and neurological

disorders such as cognitive impairment, autism, epilepsy

and schizophrenia share substantial parts of their synaptic

and circuit pathophysiology, despite manifesting within

different target circuits across distinct periods of brain

development, maturation and maintenance.

The current literature, highlighted in this short review,

suggests a number of interacting converge points in brain

diseases that are associated with the homeodynamic

nature of its core synaptic processes: firstly, neuromodu-

lator-gated synaptic function and Hebbian plasticity

[9,10�] interacting with, secondly, homeostatic plasticity

mechanisms [2] and thirdly, being embedded in global

cellular maintenance and quality control programs [11].

Dysfunction across these domains results in unbalancing

between excitation, inhibition and neuromodulation

(MEI balance) within microcircuits and disturbances in

frequency-band specific synchrony and coherence for

long-range communication between distinct brain areas

[12,13].

The dynamic synaptic proteome
Recent studies started to define the deep complexity of

the synaptic core machinery. Studying pharmacologi-

cally-induced homeostatic scaling of glutamatergic neu-

rotransmission in hippocampal neurons, Schanzenbacher
ou wish to go anywhere you must run twice as fast as that (Lewis Carroll;
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et al. identified �300 newly synthetized, predominantly

neuronal (>90%) proteins that were significantly altered

with homeostatic synaptic up- or downscaling [14��].
These include subunits of the ionotropic glutamate and

GABA receptors as well as proteins engaged in calcium

signaling and presynaptic functions. The fact that about

150 proteins of this dynamically translated pool are known

to be dysregulated in brain diseases, ranging from neuro-

developmental disorders like autism and schizophrenia to

Alzheimer and Parkinson Disease (AD, PD), strongly

suggests activity-dependent dynamic control of synaptic

protein turnover to be one point of convergence for many

brain diseases. Additional evidence for a common synaptic

protein core for brain diseases comes from extensive

genetic studies [15��], transcriptome analysis of human

iPSC-cells [16�] and human hippocampus [17��] as well as

primate brain development [18].

This progress is matched by elegant functional studies,

which by utilizing novel optogenetic tools, demonstrated

the — long suspected, but only now directly demon-

strated — causal role in structural synaptic spine plastic-

ity for key brain functions like learning and memory. In a

technical tour-de-force, Hayashi-Takagi et al. showed by

selectively tagging recently potentiated spines of pyra-

midal layer II/III neurons in motor cortex with a photo-

activatable GTPase (RAC1), which upon light-stimula-

tion induced spine shrinkage and LTP reversal, that

spine-potentiation (at an estimated population size of

ca. 300 000) was necessary for motor learning [19�]. This

optic erasure of memory traces on defined populations of

individual potentiated spines was matched by important

studies at the level of neuronal ensembles [20]. In partic-

ular, Roy et al. [21�], who optogenetically tagged engram

cells in hippocampus and demonstrated light-mediated

retrieval of memory traces in both control and AD mouse

models. Furthermore, both Pascoli et al. [22�] and Zhu

et al. [23] used projection-specific and input-specific

optogenetically-driven depotentiation of disease-related

synaptic plasticity in the context of cocaine and morphine

dependence to demonstrate its causal role in drug-seek-

ing behavior.

Disease-related plasticity at the glutamatergic
synapse
Given these advances and the already strong focus on

glutamatergic neurotransmission, is it not surprising that

many novel insights in brain disease mechanisms were

made in relation to this particular synapse type and its

forms of plasticity. Apart from generic glutamatergic

synapses studied in cultural systems, glutamatergic syn-

apses in striatal medium spiny neurons (MSN), which

mediate converging inputs from mainly cortical and tha-

lamic inputs constitute one focus of attention, given their

relevance for many neurodevelopmental, neurological

and psychiatric diseases. The corticostriatal glutamatergic

synapses on either D1R-expressing direct pathway MSN
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(dMSN) or D2R-expressing indirect MSN (iMSN) are of

particular interest as their plasticity is controlled via

important neuromodulators such as dopamine or acetyl-

choline [24,25]. Both are dramatically altered in brain

disorders such as PD or Huntington Disease (HD). In

particular, the consequences of both chronic dopamine

depletion and therapeutic substitution by dopamimetics

on corticostriatal synapses have been intensively studied.

Recent work further highlighted the crucial role of neu-

romodulators in glutamatergic plasticity. Shen et al.
defined the role of postsynaptic muscarinic type IV

(M4R) receptors on dMSN, where they operate to antag-

onize D1R-mediated LTP [26�]. They demonstrated that

M4R-signaling act downstream via RGS4 and mGLUR5-

mediated endocannabinoid signaling. Their findings

open the path to new and attractive treatment option

of L-dopa induced dyskinesia, which is driven by aberrant

plasticity in the D1R-dMSN pathway. Indeed, they

demonstrated the clinical potential of a positive allosteric

modulator for M4R in both rodent and non-human pri-

mate models. Importantly, Parker et al. showed that the

plasticity of glutamatergic inputs to MSN from centro-

median-parafascicular (CM/Pf) thalamic nuclei was also

affected by chronic dopamine depletion in a circuit-

specific manner. Using a chronic unilateral 6-hydroxydo-

pamine (6-OHDA) rodent model, they identified a LTD-

like loss of AMPA-receptors selectively from thalamo-

striatal synapses on D1-containing dMSN neurons and

elegantly demonstrated its behavioral relevance with

projection-specific chemo-genetic and opto-genetic

approaches [27]. Because of its successful targeting in

deep brain stimulation-based treatment of movement

disorders like PD, the subthalamic nucleus (STN) is

one of the most clinically-relevant downstream nuclei

in the indirect basal ganglia pathway. However, the

underlying synaptic processes that contribute to the dra-

matic pattern change of in vivo STN activity are not yet

well understood. Here, Chu et al. shed new light by

revealing the heterosynaptic and homeostatic interactions

of cortical glutamatergic and globus pallidus (GP)

GABAergic inputs in STN neurons. Again, utilizing a

chronic 6-OHDA DA-depletion model, they identified

the coupling between homosynaptic NMDAR-driven

cortico-subthalamic LTP and NO-dependent heterosy-

naptic GABA-LTP [28��]. This is a conceptionally

important study illustrating how disease-driven aberrant

plasticity at a single synapse type might propagate

throughout an entire circuit by recruiting —maladaptive

mechanisms for homeostatic synaptic balance. Therefore,

it might serve as an example of homeodynamic network

dysfunction.

Another pressing need in the field is to relate the complex

and overlapping genetic landscape of brain diseases

to synaptic and circuit dysfunctions. This might also

address the puzzling questions why different mutations

in the same gene — such as in SHANK3, coding for a
www.sciencedirect.com
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postsynaptic density scaffold protein enriched in the

striatum — lead to different clinical phenotypes with

distinct ages of onset. Here, Zhou et al. carried out a

rigorous comparison of two different missense mutations

in exon 21 inducing premature stop codons in SHANK3

[29�]. They found that — due to differences in mRNA

stability of the two distinct missense mutants — only the

ASD-related SHANK3 mutant led to complete absence

of SHANK3 protein and early dysfunction in striatal

glutamatergic transmission with ASD-associated behav-

ioral impairments. In contrast, in adult medial prefrontal

cortex (mPFC), the partial protein function of the schizo-

phrenia-related SHANK3 mutant apparently prevented

full compensatory expression of SHANK1 and SHANK2,

as was the case with the ASD-related SHANK3 mutant.

This failure of compensatory expression resulted in adult-

onset synaptic defects in mPFC. This study emphasizes

the need and value for detailed celltype-specific func-

tional analysis of disease-related mutants at defined times

of brain development and maturation.

Presynaptic impairments
While one strong focus still remains on the dynamics of

postsynaptic aspects of glutamatergic transmission, pre-

synaptic key functions, novel and important synapse-type

specific players such as CNTNAP4 for GABAergic and

dopaminergic neurotransmission were also discovered

[30]. Cao et al.’s investigation of LoF-mutations in syn-

paptojanin1 (SJ1), which are associated with early-onset

PD, revealed that the resulting deficit in PIP2-dephos-

phorylation and in turn shedding of vesicle-associated

endocytosis mediators led to an accumulation of clathrin-

coated vesicles. Interestingly, analysis of a mutant SJ1

knock-in mouse model revealed — apart from the

expected dysfunction of the nigrostriatal dopamine sys-

tem — a pronounced impairment of inhibitory compared

to excitatory synapses with a resulting shift in E/I balance

leading to a severe epileptic phenotype [31]. The pre-

synaptic core machinery of activity-dependent and cal-

cium-dependent neurotransmitter vesicle release is also

under powerful control of presynaptic neurotransmitter

receptors that - in analogy to the postsynaptic side — are

important targets of brain diseases and relevant for both

the generation or buffering of clinical phenotypes. In an

elegant study monitoring disease-related changes in pre-

synaptic neurotransmitter release directly, Borgkvist et al.
showed that as a response to 6-OHDA-mediated dopa-

mine depletion in a PD rodent model and in turn reduced

stimulation of D1Rs on GABAergic striatonigral term-

inals, the tonic function of presynaptic GABA-B receptors

was suppressed [32], again likely to be a result of homeo-

static plasticity. This partial compensation of the presyn-

aptic D1R-GABA-B receptor balance on striatonigral

terminals reduced some of the dysfunction resulting from

DA depletion, but at the same time sensitized the system

to dopamimetic therapy. This work illustrates well how

new homeostatic setpoints in response to brain diseases
www.sciencedirect.com 
might come with a price of reduced stability and altered

response to therapeutic interventions. Homeostatic con-

trol to balance between two neurotransmitters (E/I Bal-

ance) is also operative for axo-axonal synapses as recently

demonstrated for presynaptic GABAergic terminals on

glutamatergic Ia afferents in the spinal cord by Mende

et al. [33]. They demonstrated that glutamate release from

Ia terminals controls the synthesis of both GAD65 and

GAD67, key enzymes for producing the neurotransmitter

GABA, in axo-axonal GABAergic terminals via different

signaling pathways including presynaptic mGLUR type

1 receptors and BNDF signaling.

Translational control in synapses
In addition to pinpointing individual signaling processes

(low-level players), brain disease-genes also code for

regulatory hub proteins involved in maintenance and

quality control of larger families of downstream proteins.

Apart from controlling metabolic pathways or epigenetic

DNA modifications, local control of synthesis, delivery

and turnover of synaptic proteins is another essential

feature. In particular, mRNA-binding proteins such as

FMRP exerting essential multi-gene translational control

of synapse function have received sustained attention due

to their key role in brain diseases like fragile X syndrome

[34–36]. While the role in tuning mGluR-dependent

synaptic depression has been elucidated, recent studies

identified novel and important FMRP-interaction part-

ners and intervention strategies [37,38]. Here, Pasciuto

et al. identified enhanced expression and function of the

alpha-secretase ADAM10 upon loss of FMRP in a fragile

X mouse model [6�]. They found that ADAM10-depen-

dent elevated APP-processing was driving enhanced but

immature spinogenesis and synaptic dysfunction.

Macroautophagy and glial-mediated
phagocytosis in synapses
Moreover, recent studies highlighted the importance of

neuronal autophagy as well as astroglial and microglial-

mediated phagocytosis in particular for synaptic turnover

(synapse formation and pruning) during critical phases of

brain development, adult maintenance as well as aging

[39]. Tang et al. identified a deficit in cortical synaptic

pruning during adolescence in brain of ASD patients,

which was associated with indicators for reduced activity

of macroautophagy and elevated mTOR signaling [40�].
Indeed, they demonstrated that mice with genetically

reduced autophagy activity (ATG7 KO) displayed typical

behavioral features of ASD. Soukup et al. demonstrated

that phosphorylation of endophilinA by LRKK2, which is

a major PD disease gene, controls presynaptic macroau-

tophagy. The perturbation of endophilinA phosphoryla-

tion in both directions leads to neurodegeneration in

model systems [41].

In particular, dysregulation of complement-driven

(C1q-C3) phagocytosis has entered a central stage in
Current Opinion in Neurobiology 2018, 48:45–51
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brain diseases inducing the loss of synaptic communica-

tion. This pathway, most active during early develop-

mental waves of synaptic circuit refinement, showed also

enhanced later activity in a mouse model of Rett Syn-

drome [42] or in response to viral encephalitis [43]. In

addition, genetic risk variants of the complement gene

C4A (MHC class III gene) have been identified for

schizophrenia, leading to enhanced expression and likely

to higher rates of synaptic pruning [44��]. Finally, oligo-

meric A-beta also re-activated the complement C1q-

mediated synaptic pruning pathway at an early pre-pla-

que stage of a genetic AD mouse model [45].

In conclusion, recent progress in defining the synaptic

pathophysiology of brain diseases might help to outline a

general framework (Figure 1) that integrates research data

into a coherent context. The emerging overlapping

genetic architecture of brain diseases provides a strong

emphasis to study glutamatergic synapse function on

multiple levels. Even for central core functions — such

as the composition of AMPA-R protein complexes [46] —

new discoveries are still made and the protein machinery

and detailed regulation of their biogenesis are just begin-

ning to be understood [47]. These synaptic core functions

are embedded in multiple, interactive layers, which

together determine the dynamic turnover of neurotrans-

mitter receptors as well as entire synapses. For the inner
Figure 1
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shell, which orchestrates Hebbian and homeostatic plas-

ticity of the synapse, the first comprehensive analysis of

locally synthetized proteins revealed a complex but at the

same time highly disease-relevant cast of about 150 pro-

teins. It will take a major research effort to move from this

list of players to an understanding of the rules of dynamic

interactions among them. In any cases, the in depth-

studies of neuromodulation-gated synaptic plasticity con-

tinue to be a fertile ground to better define brain diseases

and identify new treatment options. The outer layer

contains more global cellular maintenance and quality

control processes like autophagy and glial-mediated

phagocytosis of synapses, which also appear to be dysre-

gulated across many different brain diseases. Outside this

converging point of synaptic dysfunction in brain diseases,

where the role of disease-related genetic variants can be

directly evaluated, another major challenge in understand-

ing brain diseases looms: How dysfunctions of individual

synapses scale up to impairments on the respective levels

of cellular integration [48��], microcircuit function includ-

ing E/I balance [49�,50], of long-range communication

using frequency-selective coherence [12] and — eventu-

ally — on the behavioral level, which determines the

diversity of clinical phenotypes. However, the increasing

definition of circuit-level dysfunctions in brain diseases,

beyond the scope of this review, provides an increa-

singly rich substrate for future scale-crossing studies to
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based learning 
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pse dysfunction, which scale to higher level impairments ranging from

Nature Neuroscience 17:773–81).
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eventually bridge the multiple gaps between genes,

synapses, cells, circuits and clinical phenotypes.
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