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Zusammenfassung

Theoretische und experimentelle Implikationen eines moglichen Quark-Gluon-Plasmas
(QGP) werden seit den 1970er Jahren diskutiert. Der Versuch, dieses Plasma aus freien
Quarks und Gluonen, den Grundbausteinen der Materie, und den Phaseniibergang zu
diesem Plasma zu lokalisieren, indem die Fluktuationen eines heiften, dichten Feuerballs,
der durch eine Schwerionenkollision (HIC) erzeugt wird, zu untersuchen, ist ebenfalls keine
neue Idee. Das Problem ist jedoch, dass die Kopplungskonstante der zugrunde liegende
Theorie, der Quantenchromodynamik (QCD), fiir kleine Werte des Impulsiibetrages Q2 ins
Unendliche geht. Die einzige Moglichkeit, die QCD zu l6sen, bieten direkte numerische Sim-
ulationen wie die Gitter-QCD. Diese Gitterrechnungen benétigen riesige Rechenressourcen.
Ein weiteres Problem ist das sogenannte “Fermion-Sign-Problem”, welches die Analyse dy-
namischer Observablen einschréankt und Rechnungen auf verschwindende baryochemische
Potentiale einschrankt. Unter diesen Umsténden besteht eine praktikable Losung darin,
einen effektiven Lagrangian der QCD aufzustellen. Dieser beinhaltet einige grundlegende
Eigenschaften der QCD. Die Modelle, die diese effektiven Lagrangian verwenden, werden
treffend als “Effektive Modelle” bezeichnet.

Das 3-Flavor SU(3) chiral Parity Quark-Hadron-Modell (QxP) ist ein solches Modell (Stein-
heimer, Schramm, and Stocker, 2011b), dass erweitert wurde, um einen De-confinement-
Ubergang zu einem Gas von Quarks und Gluonen zu beschreiben. Die Berechnungen
werden unter Verwendung eines skalaren Meson-Selbstwechselwirkungs-Potentials durchge-
fiihrt, das mehrere wichtige Eigenschaften der QCD enthélt. Ein Nachteil dieses speziellen
Modells ist, dass die Korrekturen der Eigenvolumen der Hadronen zu unrealistischen
Werten der Inkompressibilitidt von Kernmaterie fiithrten, die viel hher waren als die ex-
perimentell beobachtete obere Grenze.

In der vorliegenden Arbeit wurde das oben genannte Modell modifiziert, indem das mesonis-
che Selbstwechselwirkungspotential nach Motohiro, Kim, and Harada, 2015 veréndert wurde,
was die Uberarbeitung sowohl physikalischer als auch numerischer Parameter erforderlich
machte. Der resultierende neue (Un)Kompressibilitdtswert von 267 MeV liegt innerhalb
der phdnomenologischen Grenzen von 200 — 280 MeV.

Hinsichtlich der experimentellen Nachweisbarkeit dieser Modifikationen ist es allgemein
akzeptiert, dass die Materie, die in einer Schwerionen-Kollision (HIC) erzeugt wurde, sich
lokal in einem thermodynamischen Gleichgewicht befindet. Daher konnen thermische sowie
kritische Fluktuationen verwendet werden, um die Anwesenheit eines Phaseniibergangs
nachzuweisen und die Eigenschaften des QGP zu ermitteln. Bevor man grofse Geldsum-
men in solche Experimente investiert, ist eine theoretische/numerische Vorhersage notig,
um den Erfolg solcher Experimente zu ermoglichen. Einige der iiblicherweise verwendeten
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F1GURE 1: Abhéngigkeit der Suszeptibilitdtsverhéltnisse von der Strahlen-

ergie (oberere Abbildung) und von den thermodynamischen Grofen Temper-
atur und chemisches Potential (untere Abbildung).

Observablen sind die lokalen Fluktuationen von global erhaltenen QQuantenzahlen. Diese
kann man mit den theoretisch berechneten Kumulanten, auch Suszeptibilitidten, der er-
haltenen Ladungen des Systems, in Verbindung bringen. Die Fluktuationen, die wahrend
des Ubergangs des Systems von einer gebrochenen chiralen Symmetrie zu einer wieder-
hergestellten entstehen, konnen méglicherweise durch alle Zwischenzustédnde des Systems
tiberleben. Folglich werden die Suszeptibilitdtsverhéltnisse, welche in Fig. 5.1 (obere Figur)
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gezeigt werden, von ihrem reinen Hadron-Gas-Wert (=1) abweichen. Sie kénnen daher ver-
wendet werden, um die Existenz dieses Ubergangs experimentell zu verifizieren.

In der vorliegenden Arbeit wurde auch gezeigt, dass durch die relative Nahe der bei-
den Uberginge, Kern-Fliissig-Gas und Chiraler /Deconfinement Ubergang, viele Komp-
likationen hervorgehen. Dabei kommt es zu einem Wechselspiel der Suszeptibilitdten in
der Region zwischen den beiden Ubergiingen und damit zu starken Anderungen eben
dieser. Dariiber hinaus wurde ein starker Einfluss des Verlaufs der Ausfrierkurve im QCD-
Phaseniibergang auf die Energieabhéngigkeit der Suszeptibilidtsverhéltnisse gezeigt.

Die Abhéngigkeit der Phasenstruktur vom seltsamen chemischen Potential wurde durch
die Variation des Seltsamkeitgehalts des Mediums untersucht. Es wurde beobachtet, dass
sich, bei grofsem seltsamen chemischen Potential, der Phaseniibergang des Quark-Hadron-
Deconfinements zu einem “reinen” Crossover abschwéchte, und zwar in der gesamten T-
pu-Ebene. Ein solches Szenario, mit nicht-verschwindener lokaler Seltsamkeitsdichte kann
auch in HIC-Experimenten erwartet werden (Steinheimer et al., 2009). Aufgrund der
kurzen Zeitskalen der Evolution einer Schwerionenkollision, konnen die erzeugten Hypero-
nen nicht tiber den schwachen Zerfall in nicht-seltsame Hadronen zerfallen (Schaffner et al.,
1993; Schulze et al., 1998; Nakamura and Group, 2010; Yao and Group, 2006; Beringer and
Group, 2012). Uber die Messung der Teilchenmultiplizititen und ihre Fluktuationen kann
der vermutete Einfluss der Seltsamkeit auf die Evolution des Systems bestétigt werden.
Der kritische Endpunkt im QyP-Modell tritt jedoch bei sehr niedrigen Temperaturen auf,
was es schwierig macht, einen solchen Effekt direkt mit Ionenkollisionen zu beobachten.
Wenn man bedenkt, dass die aus der experimentellen Datenanalyse gewonnenen Werte fiir
das chemische Potential bei etwa 20 — 25% des Wertes des baryochemischen Potentials
liegen (cf. Braun-Munzinger, Redlich, and Stachel, 2011; Kovéacs and Szép, 2008; Becat-
tini, Gazdzicki, and Sollfrank, 1998; Braun-Munzinger, Heppe, and Stachel, 1999), miissen
diese Anderungen, die bei niedrigen Temperaturen im Phasendiagramm induziert werden,
beriicksichtigt werden.

Im Folgenden wurde die Zustandsgleichung von kalter und heifier, hoch dichter, Isospin-
assymmetrischer Materie, wie in Neutronensternen und deren Kollisionen erwartet wird,
untersucht. Es wurde gezeigt, dass die Werte der Symmetrieenergie und deren Dichteab-
héngigkeit auflergewohnlich gut mit den von astrophysikalischen Messungen aufgestellten
Einschrankungen iibereinstimmen. Das resultierende Masse-Radius-Diagramm von Neu-
tronensternen, das durch Losen der Tolman-Oppenheimer-Volkoff-Gleichungen mit der zu-
vor erzeugten EoS berechnet wurde, zeigt eine maximale Mdgliche Neutronensternmasse
von 2 Mg bei einem 10,25 km Radius, in Ubereinstimmung mit den jiingsten Beobach-
tungen. Es wurde auch gezeigt, dass der von der QxP EoS erzeugte Maximalmassenstern
sehr kompakt ist und dass daher der hadronischen direkten Urca-Prozess unterdriickt wird.
Das verhalten der EoS bei sehr hohen chemischen Potentialen stimmt gut mit vorhandenen
storungstheoretischen QCD-Rechnungen iiberein. Somit kann dieses effektive Modell nun
Sterne mit einer hadronischen und einer Quarkphase effizient beschreiben; mit einer hy-
briden EoS, die zu kompakteren Sternen fiithrt und immer noch einen grofen Quarkanteil
erlaubt, wihrend das Auftreten von Hyperonen nicht explizit verhindert wird wird.

Eine einfache Art, die Eigenschaften einer EoS mit der maximal erreichbaren Kompression
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einer relativistischen Kollision zu verbinden, ist die Verwendung der Rankine-Hugoniot-
Taub-Adiabatengleichung. Da relativistische Kollisionen nicht nur in HIC-Experimenten,
sondern auch in Neutronensternkollisionen stattfinden, wurde die Kollisions-Energie Ab-
héngigkeit der Netto-Baryon-Dichte und der Temperaturen fiir diese zwei verschiedenen
Szenarien untersucht. Es zeigte sich, dass die Dichtekompression nehezu unabhéngig vom
Isospin-Gehalt und der chemischen Zusammensetzung des Systems ist und dass die QP
EoS eine konsistente und realistische temperaturabhéngige EoS zur Beschreibung der NS-
Materie und Kollisionen ist.

Das QxP-Modell ermoglicht es thermodynamische Grofen im grofskanonischen Limes zu
berechnen. Dies erschwert einen direkten Vergleich mit Daten aus Schwerionenkollisionen.
Das System in relatistischen Kollisionen von schweren Ionen ist vergleichweise klein und
expandiert sehr schnell, thermodynamischen Grofen éndern sich daher sehr schnell. Es ist
folglich nétig die dynamische Evolution eines solchen Systems mit zu beriicksichtigen.
Um die Entwicklung eines von einer Schwerionenkollision erzeugten Systems zu beschreiben
wurde die aktuelle effektive EoS in ein dynamisches Modell implementiert, dem relativis-
tischen 3-+1 dimensionalen Fluid-dynamik SHASTA code. Dieser ist geeignet, die Entwick-
lung eines von einem HIC erzeugten Feuerballs zu untersuchen. Alternativ wurde der rela-
tivistische Transportansatz des UrQMD Modells verwendet um nicht-Gleichgewichtsphano-
mene im zusammenhang mit Teilchenzahlfluktuationen zu Untersuchen. Die zwei Teilar-
beiten sind folgendermafen zu beschreiben:

Zum Ersten wurde die Behauptung, dass der nukleare Fliissig-Gas Ubergang und das Wech-
selspiel mit dem Chiralen/Deconfinement-Ubergang einen betrichtlichen Einfluss auf die
Fluktuationen des Systems hat, durch die Einfithrung nuklearer Wechselwirkungspotentiale
in UrQMD-Simulationen von Schwerionenkollisionen am GSI-Beschleuniger SIS18 {iber-
priift. Es zeigte sich, dass nukleare Wechselwirkungen einen signifikanten Einfluss auf die
Kumulantenverhéltnisse der Multiplizitatsverteilung der Netto-Baryon-Zahl in Schwerio-
nenkollisionen bei SIS18-Strahlenergien haben. Dies wurde fiir die Kumulantenverhéltnisse
sowohl im Orts- als auch im Impulsraum beobachtet. Dariiber hinaus wurde gezeigt, dass
in der frithen Phase der Kollision die repulsive Wechselwirkung dominiert und alle Kumu-
lantenverhéltnisse verringert werden. Eine signifikante Erhohung der gemessenen Kumu-
lantenverhéltnisse ist nach dem Ausfrieren, und im Impulsraum, nur fiir ein kleines Akzep-
tanzfenster sichtbar. Die Kumulantenverhéltnisse in grofseren Akzeptanzintervallen werden
vom Einfluss der Baryon-Zahl-Erhaltung dominiert. Zuséatzlich wurde gezeigt, dass der Ef-
fekt der verstarkten Fluktuationen verringert wird, wenn nur die Nettoprotonen gemessen
werden. Dies ist versténdlich, da der Isospin durch inelastische Streuprozesse zuféllig unter
den Baryonen verteilt wird. Obwohl der qualitative Effekt der nuklearen Wechselwirkun-
gen in Ubereinstimmung mit Vorhersagen von grofkanonischen Modellen (Vovchenko et
al., 2015; Mukherjee, Steinheimer, and Schramm, 2017) war, ist das quantitative Signal
aufgrund mehrerer Faktoren, signifikant kleiner. Daher ist es schwer zwischen Korrelatio-
nen aus nuklearen Wechselwirkungen oder kritischem Verhalten, durch die Messung der
Kumulanten der Protonenzahl in Schwerionenkollisionen, zu unterscheiden.
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Zum Zeiten wurden die Ergebnisse von Fluid-dynamik-Simulationen von HICs mit zwei
verschiedenen QyP-EoS, in Zusammenarbeit mit der Gruppe von Prof. Tetyana Galatyuk,
mit der Di-Lepton-Produktion des HADES-Experiments verglichen. Dies sollte zeigen, dass
der QCD-Phaseniibergang messbare Auswirkungen auf die friithe Raum-Zeit-Entwicklung
eines HIC-Systems hat. Photonen und Di-Leptonen, die nur an elektromagnetische Wech-
selwirkungen koppeln, eignen sich als effektive Sonden fiir die friithe Entwicklung des
stark wechselwirkenden Systems mit kurzer Lebensdauer, da sie nach der Produktion im
Wesentlichen vom System abgekoppelt werden. Die erste der verwendeten Zustandsgle-
ichungen hatte einen kritischen Endpunkt unter 50 MeV Temperatur und kann als ein
“reiner” ‘Crossover Ubergang’ angesehen werden. Die zweite der beiden hatte einen nicht-
physikalischen erster-ordnung Phaseniibergang fiir alle baryochemischen Potentiale. Dieser
wurde als Referenz verwendet, um in Zukunft festzustellen, ob es merkliche Anderungen
des invarianten Massenspektrums der Di-Leptonen gibt, wenn das System einen Ubergang
erster Ordnung von einem QGP zu Hadronen durchliuft. Die Emissivitdt des Systems;
definiert durch die Strahlungsrate virtueller Photonen (Di-Leptonen) aus einer Zelle mit
stark wechselwirkender Materie pro Zeiteinheit und Vierimpuls; ist erforderlich, um die
Di-Lepton-Emission eines Mediums zu berechnen. Die Emissivitat in einem thermisch
equilibrierten System héngt von seinen intensiven Eigenschaften ab; wie der Temperatur,
dem Druck und der chemische Zusammensetzung. Sie kann daher als ein Raum-Zeit-
Integral dieser Grofen iiber das gesamte Reaktionsvolumen und die Lebenszeit berechnet
werden. Diese Grofsen wurden durch Ausfithren der Fluid-Dynamischen Simulationen rela-
tivistischer HICs und der Strahlenergie des HADES-Experiments erzeugt. Die gewichteten
Mittelwerte der Temperatur, Baryonenzahldichte und des relativen Quarkanteils wurden
berechnet bevor die Simulationsergebnisse der HADES-Gruppe an GSI iibergeben wurden.
Dies konnen nun verwendet werden um die Emissivitdt und die Di-Lepton-Ausbeute zu
berechnen. Die Simulationen zeigten eine erhebliche Abhéngigkeit der Mittelwerte dieser
Grofken von der Zustandsgleichung. Die EoS erster Ordnung fiihrte zu einer fast 150% igen
Erh6hung der Baryonenzahldichte und einer fast 1000% igen (oder zehnfachen) Erhéhung
des Quark Anteils im Vergleich zum Crossover durch die starkere Kompression. Diese Ab-
héngigkeiten beeinflussen das gemessene invariante Massenspektrum der Di-Leptonen und
demonstrieren ihren Wert als Variablen, die verwendet werden, um die Zustandsgleichung
in heifser, dichter, stark wechselwirkender Materie zu untersuchen.

Insgesamt zeigt diese Arbeit, wie wichtig es ist, die Auswirkungen nuklearer Wechsel-
wirkungen und Verdnderungen, die sich aus der sich schnell entwickelnden chemischen
Zusammensetzung eines Systems ergeben, konsistent, im Rahmen eines einzigen effektiven
Lagrange-Chiral-Mean-Field-Modells, zu berticksichtigen.

Solche Untersuchungen, sowohl isospinsymmetrischer als auch isospinasymmetrischer, heiffer
und dichter Kernmaterie in Schwerionenkollisionen sowie Neutronensternkollisionen sind
essentiell fiir die Interpretation experimenteller Daten die aus eben diesen Kollisionen
erzeugt werden.
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Chapter 1

Introduction

The study of dense and hot hadronic matter is a central topic of nuclear physics. It is
directly linked to the search for the phase transition to chirally restored and deconfined
matter in ultra-relativistic heavy-ion collisions as well as to the study of extremely dense
but rather cold matter inside compact stars.

In spite of several decades of experimental and theoretical research the phase structure
of strongly interacting matter remains uncertain with the exception of the regime around
cold saturated nuclear matter and, to some extent the transition behaviour at vanishing
chemical potential, where lattice gauge calculations indicate a cross-over transition to chi-
rally restored and deconfined matter, at a temperature currently determined to be around
150 to 160 MeV (Borsanyi et al., 2010b; Bazavov and Petreczky, 2010).

At finite chemical potential (ug), the phase structure of QCD is even less clear. While
early extensions of lattice studies to finite 5 proposed the existence of a critical endpoint
at rather small chemical potential (Fodor and Katz, 2002; Fodor and Katz, 2004), other
lattice investigations cannot confirm evidence of its existence (Forcrand and Philipsen,
2008; Endrodi et al., 2011).

A central point of these investigations is the understanding of the phase transition in
the hadronic and quark-hadron matter. Recent lattice calculations and their analysis in
terms of a hadron resonance gas hint to the importance of hadronic degrees of matter
in driving the phase transition to a quark-gluon plasma (Bazavov and Petreczky, 2010;
Huovinen and Petreczky, 2010; Huovinen and Petreczky, 2011). Furthermore, the low
temperature of the chiral transition (Aoki et al., 2009; Bazavov and Petreczky, 2010),
the good agreement (Borsanyi et al., 2010a) with chiral perturbation theory below T.
and the apparent sensitivity on the hadron properties (Bazavov and Petreczky, 2010)
(caused by lattice discretisation effects) supports the idea that the chiral transition could
be explained with hadronic interactions. Therefore, a study of purely hadronic models and
their properties, especially the restoration of chiral symmetry is also important. One main
benchmark for any useful comprehensive model of that kind is a reasonable description of
saturated nuclear matter.

In order to have a realistic description of highly excited matter, strange hadrons have to
be included in the model description. In a simple linear sigma-model, it is not possible
to have stable bound nuclear matter. Therefore a number of extended approaches adding
vector and dilaton fields were discussed (Boguta, 1983; Glendenning, 1986; Mishustin,
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Bondorf, and Rho, 1993; Heide, Rudaz, and Ellis, 1994), including extensions to flavour
SU(3) (Papazoglou et al., 1998; Papazoglou et al., 1999; Tsubakihara et al., 2010).

In order to better understand the circumstances regarding the aforementioned approaches,
and introduce a new model in Chap. 2, a brief summary of QCD is in order.

1.1 A brief summary of QCD

In Quantum Chromodynamics, the Lagrangian is:
1 o vo . " : —
L= 1 ZFWF“ +ZZ%7“(D,L)@-]-¢; - qu@qupqi (1.1)
(0% q q

where in the first (gluons-only) term, a = 1 to 8 indicates the colour indices of gluons, and
the field tensor,
F, = 0,A% — 0,A% + go f*" AL A (1.2)

contains the eight 4-vector potentials, Af, of the gluon field, with g; being the colour charge
and f*%7 being the SU(3) structure constant. The last term in Eqn. (1.2) represents the
self-interaction of gluons due to their non-zero colour charge (unlike photons in QED, since
photons carry no electromagnetic charge). The second term in the Lagrangian describes
the interaction of quarks with gluons, where each of the @E; are four-component Dirac
spinors of the quark fields with colour ¢ and flavour ¢, and the covariant derivative,

'gs a Ao
(Dy)ij = 010+ ) XA, (1.3)

where the \;;’s are 3x3 matrices and SU(3) group representations. The third and last term
in the Lagrangian describes the self-interaction of quarks. Finally, the effective coupling
strength of QCD can be written as:

B 4
 Boln(Q?/A?)

In Eqn. (1.4), A is a scale constant, Sy = 11 — %nf, where ny denotes the number of light
quarks. Typically, a is calculated at the mass of the Z° boson and a;(m z0) = 0.11840.002,
giving A = 217133, For large values of 2, perturbative methods can be used in calcula-
tions. However; because the value of a; is large at small Q?, and goes to infinity if Q% = A?;
in the perturbative approximation, the calculations do not always converge. Thus, more
complex numerical methods are required. Lattice QCD methodology, introduced in 1974
(Wilson, 1974), is one such example. In lattice QCD, different actions; all identical to QCD
in the limit of infinitely fine lattices; are evaluated with Monte Carlo sampling methods on
a numerical grid. Though promising, lattice calculations are incredibly demanding on com-
puter power and the results are very dependent on the computational power available. At
the moment lattice calculations are still restricted on observables in non-dynamic systems

of QCD.

s (Q%) (1 + higher logarithmic terms) (1.4)
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Since it is much more complex to describe systems of hadrons from the quark level, one
usually begins with models that already includes hadronic degrees of freedom. This is
reasonable as we know that many hadronic states exist and that they are somehow created
through the interactions of QCD. Using this method one formulates an effective Lagrangian
that reproduces some fundamental features and symmetries of the QCD Lagrangian but
is formulated in a hadronic language. Omne has to be careful, as such an approach is
usually only valid in a certain applicability region of QCD, but often proves valuable in
understanding some fundamental features of QCD. Such models are usually referred to as
“Effective Models” of quantum chromodynamics (cf. Sec. 1.3).

1.2 Chiral symmetry

The QCD Lagrangian possesses the symmetries of the strong interaction. One of them is
the invariance under a U(1) transformation,

U(z) — exp (i0)V(x), (1.5)

which results in the conservation of the baryon number current U#W¥ and the conservation
of the baryon number:

B = %/d%qﬁw (1.6)

Chirality is the property of an object or system that says that it cannot be brought into
congruence with its mirror image by a rotation around the mirror axis. The wave-function
of a fermion for example can be divided into two pieces which can interchange through a
parity transformation. The associate quantum mechanical quantity is called chirality.
One can define a vectorial,

Y — Y = exp(—iO7 G )Y = (1 —iOLG,)Y (1.7)

and axial transformation.

P — ) = exp(—is0%G.)Y = (1 — i730%G ). (1.8)

where 1 is the wave-function of a defined quark flavour. © is the transformation pa-
rameter. s = yY17273 (7, are the Dirac matrices) and the G, are the generators of
the corresponding symmetry group. If the QCD Lagrangian is symmetric with respect to
these transformations it has a chiral symmetry. The conserved currents associated with
this symmetry are the vector currents:

_ )\a
Ve =Ty (1.9

and the axial-vector currents: \
Al = s S (1.10)
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Chiral symmetry breaking

The above is only true in the case of zero quark masses. Introducing a quark mass in the
Lagrangian adds terms of the form:

Ly, = mi), (1.11)

where m; are the current quark masses. From experiment these are (Tanabashi et al.,
2018):
my, = 1.8 — 2.7 MeV, my =4.4—5.2MeV, m, =92 — 104 MeV. (1.12)

The mass term breaks the chiral symmetry of the QCD Lagrangian explicitly. But, since
the masses of the light flavours are very small, this symmetry breaking is only very weak
and one often speaks of an approximate chiral symmetry.

If chiral symmetry was an exact (or approximate) symmetry of QCD, this would lead to a
degeneracy between states of different parity. In the vacuum, this is not the case. In fact,
we observe a wide range of hadronic states with a mass hierarchy.

Thus, the chiral symmetry of QCD is most likely spontaneously broken in the vacuum.
This means that while the Lagrangian of QCD is still symmetric with respect to the chiral
transformation, the energetically most favourable state in the vacuum is not. The masses
of the baryons are large due to the spontaneous breaking of chiral symmetry and the pions
are massive Goldstone bosons because chiral symmetry is also broken explicitly.

This fundamental knowledge about the symmetries of QCD led to the development of
numerous effective models. These models are based on an effective Lagrangian which has
some or many of the symmetries of QCD and therefore should be able to capture certain
physical aspects of the theory. An introduction to some basic models is presented in Sec.
1.3, adapted mainly from Steinheimer-Froschauer, 2011.

1.3 Effective chiral models

Here we introduce two very instructive examples of effective (phenomenological) models
for QCD: the linear o model and the non-linear o model.

1.3.1 The linear sigma model

The linear SU(2) x SU(2) o model (Schwinger, 1957; Gell-Mann and Levy, 1960); despite
being a rather simple model; contains many properties of QCD. The linear sigma model is
a hadronic model. In this sense it is a low energy model for QCD and in the following ¥
will denote the nucleon wave-function .

The model Lagrangian reads:

— 1 1 —
gLSM = \Ifzau’yu\lf + Eé?uﬁ@“ﬁ + §8M06M0' - g\IJ(a + 27:'7?’)/5)\11 — VSSB
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where Vsgp is a potential term which spontaneously breaks the chiral symmetry of the
Lagrangian:

2 A

Vasp = V(o® +7%) = =2 (0> +7°) + 5 (0" + 7°)? (1.13)

This potential is also called the Mexican-Hat potential. It is radially symmetric in the

coordinates o and m = 7 and the energetically favourable states are on the outside of the

hat. The term of the form (02+7?) is called chiral invariant because a chiral transformation

would not change the length of a vector in ¢ and 7 but rather rotate it which does not

change the value of the potential. The parameter 2 has to be larger than 0 for spontaneous

breaking of chiral symmetry to occur. The degenerate ground states then are defined by:
112

o+ =v® with v= Y (1.14)

One can now choose the vacuum expectation values to take the following values:

(0] 0) = 0, (0]o]0) = 'u;:v (1.15)

In this case, fluctuations of the pionic fields do not require any energy, therefore the pions
are the Goldstone modes of the model. On the other hand the sigma and nucleons are rather
massive even though the Lagrangian is still fully symmetric under a chiral transformation.
The nucleon mass in this model is then generated through coupling to the scalar field
and its finite ground state expectation value. It is in agreement with QCD properties, as
the explicit chiral symmetry breaking term in the QCD Lagrangian should be small. A
corresponding term could also be included in the linear sigma model:

Lesb = m72rf7r0 (116)

It gives the correct pion mass, as the potential now has a distinct minimum and breaks
the symmetry with respect to the axial current.

1.3.2 The non-linear sigma model

Despite being very successful in describing several aspects of QCD, the linear sigma model
has some shortcomings. One main problem of the model is the direct coupling of the pion
field to the nucleons which leads to problems with the description of direct pion nucleon
scattering data. In addition heavy particles do not exist in chiral multiplets.

To cure these problems, a “non-linear representation” of the sigma model is used where
one usually rewrites the chiral fields. As the chiral invariant corresponds to a radius in the
chiral circle it is appropriate to use polar coordinates (Weinberg, 1967; Weinberg, 1968;
for other advantages and a detailed introduction see Papazoglou et al., 1999):

Lasw = N@EDA" — A"y — g(v+ S))N

| s 2 A 4
+ 3 Mp@“p+§8uSa“S—?( +5) —Z(U-f-S) (1.17)
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where N = N + Np = &Wr + £V (€ = exp (iTy5p/2v)) is the transformed nucleon
wave-function and D, = 9, — %(6@5 + £0,£") is the modified derivative operator. The
term (v + .5) is defined by the transformation:

o+iTt = (v+S) exp (iTy:p/v) = v+ TP (1.18)
(c*+7%) = (v+9)? (1.19)

v = 0y is the expectation value of the scalar field, S and p are the fluctuations of the o-
and 7-field.

In the NLSM the nucleons transform vectorially and thus, heavy particles can be included
without spoiling the invariance under chiral transformation.

1.4 Experimental considerations

As seen above, some interesting new physics can be expected if one is able to produce a
medium that is either very hot or very dense. In both cases, one can expect the chiral
condensate (<E@/J>), which is responsible for the spontaneous breaking of chiral symmetry,
to melt; thereby leading to a restoration of chiral symmetry and a drastic change in the
properties of the particles in the matter created. In addition one expects at some point to
reach a temperature/density at which deconfinement can be realized and even a quasi-free
gas of quarks and gluons can be formed, better known as the quark-gluon plasma (QGP).
Experimentally such a system is not easy to produce. High energy heavy-ion collisions
(HIC) aim at creating a system hot and dense enough simply by smashing gold or lead ions
at very large energies against each other. In this process the kinetic energy is transformed
into compressional energy and heat and, if the collision lasts long enough, a fireball of very
hot QCD matter can be created. By changing the beam energy, and therefore the energy
available for heating, and the system size one hopes to explore wide regions of the phase
diagram of QCD especially the existence of a QGP (Harris and Miiller, 1996; Bass et al.,
1999).

1.4.1 Signatures of the quark-gluon plasma

Nucleus-nucleus collisions, A + A; as mentioned above; result in a hot and dense system of
nuclear matter, with a time span of ~ 10 fm/c, thereby producing conditions conducive to
the experimental investigation of QCD - especially, its phase diagram. The collisions have
three main stages of evolution:

e Beginning at the point of collision, ¢ = 0, a very hot, very energy-dense region is
created.

e Next, the produced partons may interact to achieve local chemical and thermal equi-
librium. This stage is characterised by a rapid expansion and cooling of the locally
statistically-equilibrated system to the critical temperature, T,. Direct photons are
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produced and the development of collective flow begins at this stage. The QGP has
an expected lifetime of between 1 to 10 fm/c and a size of at most a few femtome-
tres in diameter. Local equilibration of the QGP allows for further evolution to be
calculable, using relativistic fluid dynamics.

e Finally hadronisation occurs which is followed by chemical and kinetic freeze-out. In
the subsequent hot hadronic gas phase following hadronisation, global observables
must be interpreted to determine, a posteriori, the conditions of the fireball. Util-
ising observables, the signals of the QGP must be distinguished from the hadron
background. Even these signals are modified by final-state interactions in the hadron
background. Some signatures are briefly described below.

A basic feature of the QGP is an enhancement of strangeness content compared to p + p
collisions. Typically, in hadronic interactions, the production of strangeness is suppressed
due to higher mass of the strange quark as compared to the up and down quarks. However,
in the QGP environment, not only are quarks and gluons produced in abundance, but also
the energy density and temperature are high (of the order of the strange-quark mass
ms = 10173] MeV).

Another feature is that, in presence of a QGP, the bound state of c¢, the J/¢, may be
suppressed with increasing temperature due to a weakening of the heavy-quark effective
potential (Matsui and Satz, 1986).

The bulk behaviour of the produced particles in a nucleus-nucleus collision can also relay
information regarding the early stages of evolution and the production of a QGP. Particu-
larly, when there is a non-central collision, the partons in the overlap region are subject to
spatial anisotropy due to the random population of nucleons in the nucleus and the random
orientation and magnitude of the impact parameter. The resulting anisotropic flow pattern
may be used to determine the microscopic transport properties of the produced QGP.

1.4.2 Cumulants

In HIC’s, we encounter fluctuations and correlations related to the initial state of the sys-
tem, fluctuations reflecting the subsequent evolution of the system and trivial fluctuations,
induced by the experimental measurement process. Initial state fluctuations are inhomo-
geneities in the initial energy and baryon number deposition. These fluctuations are quite
substantial, and are reflected in higher harmonics of the radial flow field (Braun-Munzinger
et al., 2016). If the system thermalises, and is described by fluid dynamics, then we expect
that fluctuations in the subsequent evolution are mostly thermal. Thermal fluctuations
are typically small, suppressed by 1/4/N; where N is the average number of particles in
the volume considered. However, thermal fluctuations can become large in the vicinity
of a second-order phase transition. This is the phenomenon of critical opalescence. Fi-
nally, fluctuations related to detectors need to be understood, controlled, and subtracted,
in order to access the dynamical fluctuations; which tell us about properties of the system.
Experimentally, fluctuations are most effectively studied by measuring so-called event-by-
event fluctuations; where a given observable is measured on an event-by-event basis, and
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its fluctuations studied for the ensemble of events. Alternatively, one may analyse the
appropriate multi-particle correlations measured over the same region.

Thermal fluctuations

There is good evidence that the system created in an ultra-relativistic HIC is, to a very
good approximation, in or close to local thermal equilibrium. Therefore, we focus on the
thermal fluctuations. These are characterised by the appropriate cumulants of the partition
function or, equivalently, by equal-time correlation functions, which in turn correspond to
the space-like (static) responses of the system.

In the current work, we concentrate on fluctuations or cumulants of conserved charges,
such as baryon number and electric charge. Therefore, we will work within the grand-
canonical ensemble, where the system is in contact with an energy and “charge” reservoir.
Consequently, the energy and the various charges are only conserved on the average, with
their mean values being controlled by the temperature and the various chemical potentials.
As far as heavy ion reactions are concerned, the grand-canonical ensemble appears to be
a good choice, as long as one only considers a sufficiently small subsystem of the entire
final state, and the final state hadron yields are properly described by a grand-canonical
thermal system of hadrons.

Fluctuations of conserved charges are characterised by the cumulants, or susceptibilities,
of that charge. For a given partition function of the system with conserved charges @);

2oy () wm

the susceptibilities are defined as the derivatives with respect to the appropriate chemical
potentials. In case of three flavour QCD, the conserved charges are the baryon number,
strangeness and electric charge, (B, S, & @ respectively), and we have:

B.S.0 1 a"s ons a"e

Xnasne = VT 5l T 0y T g TV (20

The above susceptibilities may also be expressed in terms of derivatives of pressure P =

Tz g
(Bse o o o (i) (1.22)
rnenta s O(up/T)" (s /T)"s O(pe/T)"e \T*
Consequently, these susceptibilities also control the pressure at small values of the various
chemical potentials. E.g., at small baryo-chemical potential, ug/T < 1, the pressure can
be Taylor expanded as:

f)CT7 /LB) P(T, U = 0)

ZEE i + 3 B up/T)" (1.23)
where the expansion coefficients are given by the baryon-number susceptibilities as:
B
B = Xn (1.24)

n!
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Due to the fermion sign problem, at present, lattice calculations can only be reliably
carried out at vanishing chemical potentials. Therefore, the above Taylor expansion for
the pressure is also employed in order to determine the QCD equation of state for small
chemical potentials.
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Chapter 2

The QxP Model

An elegant description of a transition to chirally restored matter can be obtained from
the “quark-hadron chiral parity-doublet (QxP)” model. In this approach an explicit mass
term for baryons is possible, where the signature for chiral symmetry restoration is the
degeneracy of the baryons and their respective parity partners. There were several SU(2)
studies of nuclear matter adopting this approach showing that it is possible to generate
saturated matter in the parity doublet approach (DeTar and Kunihiro, 1989; Zschiesche
et al., 2007; Dexheimer, Schramm, and Zschiesche, 2008; Dexheimer et al., 2008; Gallas,
Giacosa, and Rischke, 2010; Sasaki and Mishustin, 2010). An SU(3) parity-doublet de-
scription of hadronic matter was still missing. In Nemoto et al., 1998, hyperonic decays in
vacuum have been studied in such an approach.

2.1 A basic introduction

In the following, we outline the basic SU(3) parity model and with this ansatz, we study
nuclear matter saturation; in order to fulfil one of the benchmarks for a useful model
as mentioned above. Subsequently we calculate the phase diagram of isospin-symmetric
matter, by varying the baryonic chemical potential and temperature of the system.

In a parity doublet model, positive and negative parity states of the baryons are grouped
in doublets. The two components of the fields defining the parity partners, ¢, and ¢_,
have an opposite way of transforming under chiral transformations:

Wip=Roir ¥ =Loir
¢ p=Lo-r oL =Ro_p, (2.1)

where L and R are rotations in the left- and right-handed sub-spaces. This allows for a
chirally invariant mass term in the Lagrangian of the general form:

Mo(P_Y504+ — P1Y50—) =
Mo(P—LP+rR — P—RP+L — P+LP—-R + P+RP-L), (2.2)

where m represents a mass parameter.
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ko kq ko
(242.61 Me\/)2 4.818 -23.357
ke € 93—’1
(0.276)6 MeV 2 (75.98 MeV)4 -8.239296
9" o, INw
-0.936200 2.435059 5.45

TABLE 2.1: Model parameters: the F, D, and S-type couplings o., g;’l and
1,8 . . .
go determine the couplings of the various baryons.

The general SU(3) extension of the approach using the non-linear representation of the
fields is quite straightforward as shown in Nemoto et al., 1998.

As outlined in Papazoglou et al., 1998, one constructs SU(3)-invariant terms in the La-
grangian including the meson-baryon and meson-meson self-interaction terms; assuming a
non-linear realization of chiral symmetry. The part of the Lagrangian coupling the baryon
and the mesonic fields relevant in a mean-field approximation reads as:

Ly Tr(:'@ )—l—mOTr((E’yg,TgE) DWTH(Z{%,E})
DTr(E[2,5]) + SHOT(2) Tr(EE)
DT R (5.2) ¢ KU ER(2)

D) Tr(E73E) + Dy Tr(Ey, {V", =})

LV ED + S, (VAT (29,2) . (2.3)

+ o+ + 4

—_
—
._4

F Tr(

Here = is the baryon octet whereby each field is a doublet consisting of the baryon and its
negative parity partner. 3 and V# are the multiplets of the scalar and vector mesons. The
Pauli matrices 7; act on the doublets. In general the various sets D®, F® S® correspond
to the D-type, F-type and singlet SU(3) invariant baryon-meson couphngs. Note that the
parity doublet models allow for two different scalar coupling terms ¢ = 1,2. In order not
to be overwhelmed by coupling constants we will restrict the set of non-zero couplings
in the actual calculations. As the term proportional to my mixes the upper and lower
components of the parity doublets, one diagonalizes the matrix by introducing new fields
B with a diagonal mass matrix.

Taking along only the diagonal meson contributions, the scalar and vector condensates in
the mean field approximation, the resulting Lagrangian £p then reads

Ly = Z(BZ@B +Z (B;m;B)

+ Z By (g + gpip" + 9i#*)Bi) . (2.4)
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The effective masses of the baryons (assuming isospin symmetric matter) read

i = [+ 920 + (mo + nom 7] o0 % 40 (2.5)

where the various coupling constants g(j ) are given as combinations of the original param-
eters DY FU) SU) in Eqn. (2.3) and further adding an SU(3) breaking mass term that
generates an explicit mass corresponding to the strangeness n, of the baryon.

The scalar meson interaction driving the spontaneous breaking of chiral symmetry can be
written in terms of SU(3) invariants Iy = Tr(X?) = (62 4(?) , I = Tr(X*) = —(c*/2+¢*)
and Is = Tr(X3%) = (0% + 4¢°) as:

1
V — ‘/() + 5k0]2 - ]{?1[22 - 1{3214 + k’ﬁ[ﬁ (26)

where V; is fixed by demanding a vanishing potential in the vacuum.

In this work the last term, kglg, has been introduced, following Motohiro, Kim, and Harada,
2015, resulting in an improvement of the nuclear matter compressibility value well within
the observed range (cf. Sec. 2.2.2).

The explicit symmetry breaking term that generates the correct pion and kaon masses with
their corresponding decay constants can be written as

b =m2fro+ (V20 fi — Hm2 ) ¢,
(2.7)

The set of scalar coupling constants are fitted in order to reproduce the vacuum masses
of the nucleon, and the A, ¥, and = hyperons, whereas the vector couplings are chosen
to reproduce reasonable values for nuclear ground state properties. The resulting /p as
function of density (p) is shown in Fig. 2.3.

One candidate for the parity partner of the nucleon is the N(1535) resonance. However,
this assignment is unclear, the state might also be a broad structure, so essentially the
mass of the particle (assuming its existence) is not determined. The parameters used in
this study, which lead to an N* mass of 1535.00 MeV, are shown in Table 2.1.

An SU(3) description, in addition to enhancing the number of degrees of freedom, also
necessarily increases the number of parameters. In order not to be overwhelmed by too
many new parameters, for simplicity we assume that the splitting of the various baryon
species and their res ective parity Fartners is of the same value for all baryons, which is
achieved by setting gaZ = ¢® and g¢i = 0. This should be sufficient for a first investigation
of the model approach. This assumption agrees quite well with the even less certain
assignments of the parity partners of the hyperons.

Obvious candidates are the A(1670) and ¥(1750), whose masses roughly follow the equal
splitting approximation, assuming the nucleonic parity partner to be the N(1535). In the
case of the =*, the data are unclear.



14 Chapter 2. The QxP Model

The hyperonic vector interactions were tuned to generated reasonable optical potentials
of the hyperons in ground state nuclear matter, with Uy (p,) = —28 MeV and Uz(p,) =
—18 MeV. The mass difference due to the strange quark was fixed at m, = 150 MeV. The
numbers used are summarized in Table 2.1.

Mesons and quarks

It is well known that at some temperature QCD exhibits a transition to a deconfined phase
at which the quarks become the dominant degrees of freedom. When this deconfinement
will appear and what the order parameter for this transition might be is still under heavy
debate (Aoki et al., 2006; Bazavov and Petreczky, 2011). Assuredly one can only say
that it occurs in a temperature region of Ty, ~ 160 — 400 MeV. Nevertheless at some
point the hadronic parity doublet model will not be the appropriate effective description
of QCD and one needs to introduce a deconfinement mechanism in the model. In this
work we will apply a mechanism that has been introduced in Steinheimer, Schramm, and
Stocker, 2011a to add a deconfinement transition in a chiral hadronic model. This is
done by adding an effective quark and gluon contribution as done in the PNJL approach
(Fukushima, 2004; Ratti, Thaler, and Weise, 2006). This model uses the Polyakov loop
® as the order parameter for deconfinement. & is defined via ® = %Tr[exp (i [ drAy)],
where A; = iAq is the temporal component of the SU(3) gauge field, distinguishing @,
and its conjugate ®* at finite baryon densities (Fukushima and Hidaka, 2007; Allton et al.,
2002; Dumitru, Pisarski, and Zschiesche, 2005). A more detailed description of the model
is provided in Appendix A. In recent years, the PNJL model has been widely used and
extended to include non-local interactions as well as an imaginary chemical potential (see
also Ratti and Weise, 2004; Rofner, Ratti, and Weise, 2007; Sasaki, Friman, and Redlich,
2007b; Ratti, Roessner, and Weise, 2007; Roessner et al., 2008; Ciminale et al., 2008;
Schaefer, Pawlowski, and Wambach, 2007; Fu, Zhang, and Liu, 2008; Hell et al., 2009;
Abuki et al., 2008a; Fukushima, 2008b; Fukushima, 2008a; Costa et al., 2009b; Costa et
al., 2009a; Hansen et al., 2007; Mukherjee, Mustafa, and Ray, 2007; Abuki et al., 2008b;
Abuki et al., 2008¢; Fukushima, 2009; Mao, Jin, and Huang, 2010; Schaefer, Wagner, and
Wambach, 2010; Hell et al., 2010; Contrera, Dumm, and Scoccola, 2010; Radzhabov et
al., 2011; Contrera, Orsaria, and Scoccola, 2010; Herbst, Pawlowski, and Schaefer, 2011;
Pagura, Gomez Dumm, and Scoccola, 2012; Kashiwa, Hell, and Weise, 2011; Weise, 2010;
Blaschke et al., 2010).

The effective masses of the quarks are generated by the scalar mesons except for a small
explicit mass term (dmy, = 5 MeV and dmg = 150 MeV for the strange quark) and my:

my = oo + 0my + Moy,
mg = gscC + 0ms + Mog, (2.8)
with values of g, = gsc = 4.0. As in the case of the baryons we also introduced a mass

parameter mg, = 165 MeV for the quarks. Again this additional mass term can be due
to a coupling of the quarks to the dilaton field (gluon condensate). For this mass term
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the quarks do not appear in the nuclear ground state which would be a physically invalid
result. This allows to set the vector type repulsive interaction strength of the quarks to
zero. A non-zero vector interaction strength would lead to a massive deviation of the quark
number susceptibilities to lattice data as has been indicated in different mean field studies
(Kunihiro, 1991; Ferroni and Koch, 2011; Steinheimer and Schramm, 2011).

A coupling of the quarks to the Polyakov loop is introduced in the thermal energy of the
quarks. Their thermal contribution to the grand-canonical potential {2, can be written as:

*_

i B —
Qg=-T) @) /d?’kln <1+<I>exp = ) (2.9)

1€Q

and

0 = —TZ (21’)3 /d3k1n (1 + & exp 2 ; ”Z> (2.10)
1€Q
The sums run over all quark flavours, where ~; is the corresponding degeneracy factor,
m}% + p? the energy and p the chemical potential of the quark.

All thermodynamic quantities, energy density e, entropy density s as well as the densities of
the different particle species p;, are derived from the grand-canonical potential. It includes
the effective potential U(®,P*, T'), which controls the dynamics of the Polyakov-loop. In
our approach we adopt the ansatz proposed in Ratti, Thaler, and Weise, 2006:

1
U = —5a(T)p*

+ H(T)In[1 - 60" + 4(P°D*) — 3(dP*)?] (2.11)

with a(T) = agT* + a1 TyT? + aoTET?, b(T) = b3 TST.

The parameters ag, ai,as and bs are initially fixed, as in Ratti, Thaler, and Weise, 20006,
by demanding a first order phase transition in the pure gauge sector at Ty = 270 MeV, and
that the Stefan-Boltzmann limit of a gas of gluons is reached for T" — oco. In general of
course the presence of quarks may have a significant influence on the Polyakov potential
(Schaefer, Pawlowski, and Wambach, 2007) and in order to obtain a crossover transition
at up = 0 we change Tj to 200 MeV.

In the following we introduce excluded volumes for the hadrons in the system. As a con-
sequence the hadronic contributions from the equation of state at high temperatures and
densities will be suppressed. Including effects of finite-volume particles in a thermody-
namic model for hadronic matter, was proposed long ago (Hagedorn and Rafelski, 1980;
Baacke, 1977; Gorenstein, Petrov, and Zinovev, 1981; Hagedorn, 1983; Rischke et al., 1991;
Cleymans et al., 1993; Kapusta and Olive, 1983; Bugaev et al., 2000; Bugaev, 2008; Sa-
tarov, Dmitriev, and Mishustin, 2009). In recent publications (Steinheimer, Schramm, and
Stocker, 2011a; Steinheimer and Schramm, 2011) we adopted this ansatz to successfully
describe a smooth transition from a hadronic to a quark dominated system (see also Sakai
et al., 2012).
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In particular we introduce the quantity v; which is the volume excluded of a particle
of species 7 where we only distinguish between hadronic baryons, mesons and quarks.
Consequently v; can assume three values:

UQuark — 0
UBaryon — U
UMeson — U / a

Where a is a number larger than one. In our calculations we choose a value of a = 8,
which assumes that the radius r of a meson is half of the radius of a baryon. Note that
at this point we neglect any possible density-dependent and Lorentz contraction effects on
the excluded volumes as introduced in refs. Bugaev et al., 2000; Bugaev, 2008.

The modified chemical potential ji;, which is connected to the real chemical potential p; of
the i-th particle species, is obtained by the following relation:

where P is the sum over all partial pressures. To be thermodynamically consistent, all
densities (€;, p; and s;) have to be multiplied by a volume correction factor f, which is the
ratio of the total volume V' and the reduced volume V', not being occupied:

f= % =1+ vip)™! (2.13)

e=Zfé:~ pi=Ip s=> 15 (2.14)

As a consequence, the chemical potentials of the hadrons are decreased by the quarks, but
not vice versa. In other words as the quarks start appearing they effectively suppress the
hadrons by changing their chemical potential, while the quarks are only affected through
the volume correction factor f.

2.2 Results for isospin-symmetric, non-strange nuclear
matter

A new parametrisation of the model was used with the objective of improving the descrip-
tion of nuclear matter ground state properties; in particular - the (in)compressibility, as
measured by experiment. However, a comparison with data obtained from lattice QCD
(LQCD) calculations is necessary in order to first benchmark the model results and their
modifications.
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FIGURE 2.1: Interaction measure, as obtained from QxP (at up = 0) and
from lattice data, as a function of temperature.

2.2.1 Comparison with lattice QCD

In order to perform the aforementioned comparison, we first determine the interaction
measure, I, defined as:

_e—3P
==
with e, P and T as the energy density, pressure and temperature, respectively. The model
results for I at up = 0 as function of temperature, in comparison to available lattice data
(Borsanyi et al., 2014), is shown in Fig. 2.1.

We observe that, indeed, the model gives a good description of LQCD thermodynamics
below the pseudo-critical temperature T,.. But, although the shapes obtained from both
sets of data are similar, the peak value of the interaction measure is much higher in case
of the QxP model than that obtained from LQCD. This is likely a result of our use of the
standard Polyakov loop potential for the description of the quark and gluon deconfinement.
For future investigations, it is therefore interesting to implement an improved version of
the Polyakov potential which better describes the thermodynamics at up = 0. In this
study, however, instead of constraining our model parameters by a fit to LQCD results
at up = 0, we constrain them by actual observables at large baryon-number densities
and low temperatures, e.g., nuclear ground-state properties and neutron star observations.
Starting from these parameters, we then extend the model to low densities where the
remaining free parameters (mainly those of the Polyakov loop) are subsequently used,
to get at least a reasonable description of low—pup lattice results. It should be noted,
however, that an excellent agreement between the QxP and LQCD interaction measures

I (2.15)
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FIGURE 2.2: Mass of the (ground state) nucleon N* and its parity partner
N~, normalised to the Nt mass, as functions of normalised temperature for
pup = 0, and isospin symmetric, matter. For comparison, we also include

QxP results (green, dashed line), where N~ is normalised by the LQCD
nucleon mass, which in the cited study is still non-physically large.

is possible, via modifications to the Polyakov potential and quarks-to-chiral fields coupling
parameters; without affecting the concurrences with nuclear ground-state properties, as
shown by Motornenko et al., 2018.

To further put the QxP model in the context of recent LQCD calculations, we show, in
Fig. 2.2, a comparison of the mass of the nucleon and its parity partner with LQCD data
(Aarts et al., 2017); as a function of temperature, at up = 0. Even though the vacuum
mass of the nucleons in the LQCD calculations is still off its physical value, the temperature
dependence shows a remarkable similarity with our results. This result indeed supports a
basic assumption of the QxP model, where chiral symmetry restoration is observed in a
mass degeneracy for hadrons and their parity partner but, not in a complete absence of
mass.

2.2.2 Compressibility

The (in)compressibility of nuclear matter K (p) as a function of density p is defined as:

82
K(p) =9 E| (2.16)
Ip pP=p0
where ¢ is the energy density and py is the density value at which €/p is minimum. This

formula effectively translates to:
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FIGURE 2.3: Binding energy variation with nuclear matter density for isospin
symmetric matter.

2

k() =0 (2.17)

p=p0

where E is the energy and A is the mass number. The variation of €/p with density is
shown in Fig. 2.3. As seen from the figure, the binding energy, /A, reaches a minimum
value of approximately —16 MeV, at a saturation density of py ~ 0.142 fm~—3.
Using a five-point formula, the second derivative in Eqn. (2.16) is numerically calculated to
obtain a compressibility value of 267.12 MeV, which falls nicely within the phenomeno-
logical range of 200 — 280 MeV.
In contrast to previous attempts, this calculation - for the first time - achieves a reasonably
low value for the compressibility; within the bounds of a parity doublet approach. It is
noteworthy, that this value has been obtained even after the incorporation of the excluded-
volume correction, which tends to stiffen the Equation of State (cf. Motohiro, Kim, and
Harada, 2015).

2.2.3 Susceptibilities

Before generating the phase structure of QCD, a brief description of said structure is in
order. The QCD phase diagram, drawn on a temperature (7") and baryochemical potential
(up) plane, consists primarily of three parts:

1. the high pp region (extending over the whole range of temperatures), containing the
quark-gluon plasma (QGP),
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2. the low pp region (predominantly, at lower temperatures), containing stable nuclei;
and

3. a region in between, made up of hadronic gas.

The transition from hadronic to quark matter is, for lower temperatures, a first-order,
chiral, deconfinement phase transition; which switches to a continuous transition at a
point known as the Critical End Point (7.), characterised by a fixed value of T" and pup.
At values of upg lower than that at the critical point, the transition is called a ‘Crossover’.
The transition from a resonating gas of hadrons to bound hadrons inside a nucleus is
also a first-order phase transition, generally called a liquid-gas phase transition due to its
similarity to a first-order phase transition of a gaseous phase to a liquid phase.

As discussed in Sec. 1.4.2) the thermodynamics of QCD at small values of pp/T can be
obtained by a Taylor expansion of lattice results at up = 0, in terms of baryochemical
potential. The pressure P = —Q = 1102 ig expressed with the coefficients cZ, which can

%
be related to the baryon number susceptibilities as:

Xo _ By 0" (T, pp)/TY)
INpup/T)"
The behaviour of these coefficients, and hence the susceptibilities, in and around the phase
transitions can be revealing. But before calculating the susceptibilities, it is prudent to
clearly identify the ‘Crossover’ and ‘First Order Phase Transition’ lines of the QCD phase
diagram, subject to the specific parametrisation of the model.

For the nuclear liquid-gas transition we define the first-order transition line as the maximum
of the derivative of the net-baryon density with respect to the baryochemical potential.
Similarly, for the chiral transition, we define it as the maximum of the derivative of the o
field (chiral condensate) with respect to the baryochemical potential (or the temperature,
for baryochemical potential values of ug < 400 MeV, i.e. beyond the merger of the two
transition lines, cf. Fig. 2.4). Note that both criteria can be used equivalently for either
transition, as the net-baryon density and value of the sigma field are intimately related
(cf. Walecka, 1974; Bender, Heenen, and Reinhard, 2003; Cohen, Furnstahl, and Griegel,
1992 and references therein). This means that when we observe a rapid change in the net
baryon number density, we will also observe a rapid change in the chiral condensate and
vice-versa. Thus, both criteria can be used to identify the crossover lines of the chiral
and LG transition. Note that, if there was an additional separation of the chiral and
deconfinement line (e.g., as discussed in Ferreira et al., 2014), the situation we try to
describe would be even more complicated.

In the region where both first-order transitions switch to crossovers, we fit a double-
Gaussian function to the derivative of the net-baryon density with respect to the bary-
ochemical potential, assigning each peak to one transition line. One should, of course,
note that the two transitions show clear differences. Even though the value of the chiral
condensate changes slightly at the liquid gas transition, chiral symmetry is restored much
later; after the chiral transition; where the chiral condensate, essentially, drops to zero.

(2.18)
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FIGURE 2.4: The liquid-gas and chiral phase transitions, along with their

respective crossover regions & critical end-points (7¢), on a temperature &

baryochemical potential plane. The blue lines represent the isentropes for
S/A values 4, 10, 28 and 121, from left to right, respectively.

Fig. 2.4 shows the phase diagram with the ‘Liquid-Gas Phase Transition” and the ‘QGP-
Hadron Phase Transition’ lines for the parameter values mentioned in Table 2.1. We
observe that both critical end-points occur at a very low temperatures. We also observe
that the associated crossover lines, while first separated, merge at an intermediate chemical
potential pp &~ 400 MeV. The figure also shows lines of constant entropy-per-baryon (isen-
tropes) for various values of entropy-per-baryon. The isentropes show a distinct structure,
a bending over at the crossover, as the dominant degrees of freedom change from hadrons
to quarks. At the junction of the liquid-gas and chiral crossover transitions, the isentropes
signal a sharpening of the transition generated by the interplay of the two crossovers.

To calculate the experimentally relevant susceptibility ratios, x2/xZ and x?/x¥ the equa-
tions of motion, following from Eqns. (2.4, 2.6 & 2.7), are solved self-consistently in
mean field approximation by minimising the grand-canonical potential as a function of
the baryochemical potential and temperature. Then, the second-, third- and fourth-order
derivatives of Eqn. (2.18) are numerically calculated using the five-point formula for the
numerical calculation of derivatives. For all temperatures ranging from 15 MeV to 180
MeV, and all baryochemical potential values ranging from 0 MeV to 1200 MeV, the afore-
mentioned ratios result in the phase diagrams shown in Fig. 5.1.

The figure illustrates the effect of the two kinds of phase transitions on the susceptibility
values. Before the first-order QGP-Hadron phase transition, the susceptibilities take values
smaller than 1, while in the region after the LG phase transition (at values of p g lower than
600 MeV), they consistently stick to 1, since the system is composed of bound hadrons and



22 Chapter 2. The QxP Model

~ = -l T =120

== = Crossover
e 15t Order

0 200 400 600 800 1000 1200

by [MeV]
1751
150 A
1254 L
>"100
z ]
— 754
504 ——I: T = 165
1= - -I:T =120
FO
2519 ... Crossover
0- e 15t Order

0 200 400 600 800 1000 1200
Hs MeV]

F1GURE 2.5: QCD Phase Diagrams with Susceptibility Ratios on a temper-
ature & baryochemical potential plane.



2.2. Results for isospin-symmetric, non-strange nuclear matter 23

a value of 1 for the cumulants of conserved charges is logically expected. For the region in
between the Crossover transitions from liquid (bound hadrons) to gas (resonating hadrons)
and from a hadronic gas to the QGP, an interplay between the two phase transitions can
be observed. This results in the cumulants sometimes taking values below 1 - even nega-
tive values, and sometimes taking values greater than 1; in the interplay region. Further
investigation into these interesting characteristics of the phase diagram have been done
with the use of ‘Freeze-out Curves’ explained below.

Freeze-out curves

In order to give a rough estimate of the susceptibility ratios that could be expected from
experiment, one has to define the point in the phase diagram at which the fluctuations are,
essentially, frozen out. This point will be different for each beam energy and system size,
and in general, is not trivially defined.

However, it has been found that the measured mean multiplicities of stable hadrons can
be nicely described by a thermal fit, with a single value of T" and up, for a specific beam
energy. For different beam energies, different 7' & pp values are obtained, thus producing
the so-called ‘Freeze-out Curve’ (Andronic, Braun-Munzinger, and Stachel, 2009). By
fitting experimental data, the equation of a freeze-out line can be obtained as:

1
T = Tim , (2.19)
1+ exp (2.60 —1In < SNN(GeV)) /0.45>
where pp and syn are related as:
1303
pp (MeV) = (2.20)

1+ 0.2864/snn(GeV)

with /syn being the beam energy in GeV.

One must keep in mind that Eqns. (2.19) and (2.20) represent a mere approximation,
and the true freeze-out process is much more complicated than is assumed in this study
(Steinheimer et al., 2016). Nevertheless, it is worthwhile to study the behaviour of the
normalised cumulants along different possible freeze-out lines.

In this study, two freeze-out lines are obtained for two different values of the parameter
Tiim (165 MeV and 120 MeV); shown as the green lines in Fig. 5.1. Here, the higher value
corresponds to the expected latest point of chemical equilibrium while the lower value is
closer to the kinetic freeze-out point. For an ideal, Boltzmann gas, the susceptibility ratio
x5 /x8 along these freeze-out lines has been shown to be equal to 1.

The extracted values of the normalised cumulants are displayed in Figs. 2.6 and 2.7, as
functions of the beam energy /sxn. In the case of the low freeze-out temperature, the
measured cumulants essentially resemble those of an ideal HRG, down to beam energies
Vvsnn < 10 GeV. Below that energy, the measured susceptibilities actually probe the critical
behaviour of the nuclear liquid-gas transition and not that of the QCD chiral transition,
as already found in Fukushima, 2015; Vovchenko et al., 2015; Vovchenko, Gorenstein,
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FIGURE 2.6: Susceptibility ratios as functions of beam energy along the
freeze-out line with Tj;, = 120 MeV.

and Stoecker, 2017. If, however, the higher freeze-out temperature is realised, one can
observe a different dependence of the measured cumulants on the beam energy. A peak
in the susceptibility ratio is then observed, at a beam energy of /syn ~ 20 GeV, due
to the steepening of the chiral crossover with respect to chemical potential, at finite ug
(Note: not due to the appearance of a critical point). At lower beam energies, the critical
behaviour of the nuclear liquid-gas transition can be observed again.

In Fig. 2.7 we also compare our results with the value of x? /x¥ which has been extracted
from LQCD calculations at ug = 0 and 7" ~ 150 MeV (Borsanyi et al., 2013). One can
already see, that the lattice data slightly below Tpe still has a significant uncertainty, and
a quantitative comparison with our results is difficult for low temperatures.

At this point, one could be tempted to directly compare our susceptibility ratios with
experimental data. As has been shown in, e.g., Luo and Xu, 2017; the values of the
cumulant ratios extracted from experiment depend strongly on the selected acceptance,
as well as the centrality. Furthermore, experiments only measure net-protons; not net-
baryons. It is, therefore, not clear what we should compare our grand canonical values
to. One should also keep in mind, that a direct comparison of our grand canonical results
with experimental data is not possible due to the many effects discussed in Bzdak and
Koch, 2012; Bzdak, Holzmann, and Koch, 2016; Kitazawa, 2016; Feckova et al., 2015;
Begun et al., 2004; Bzdak, Koch, and Skokov, 2013; Gorenstein et al., 2009; Gorenstein
and Gazdzicki, 2011; Sangaline, 2015; Spieles et al., 1996; Kitazawa and Asakawa, 2012;
Asakawa, Heinz, and Muller, 2000; Jeon and Koch, 2000; Steinheimer et al., 2016. The
point of this thesis is, rather, to discuss the effects of including realistic nuclear matter; in
a model with hadron-quark phase transition; on the baryon-number susceptibilities. The
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FIGURE 2.7: Same as Fig. 2.6 for T}y, = 165 MeV; with the value of Xf/XQB
at up ~ 0, obtained from lattice data at T" = 150 MeV (Borsanyi et al.,
2013), represented by the thick, red bar.

eventual comparison of the cumulants to experimental observables has to be determined in
a dynamical approach to heavy-ion collisions, which may use our model EoS as an input.

The critical end-point and the universality argument

It was pointed out in Chen et al., 2017 that, given a critical point of a particular univer-
sality class (and only one critical point!), the dependence of the normalised cumulants, as
functions of one another, should show a particular universal banana-type shape.

Figs. 2.8 and 2.9 show the shapes obtained from the QxP model calculations. Due to the
fact that this model actually has two separate transitions, which are difficult to disentangle,
the resulting shapes do not resemble a banana, but are more complicated. In general, when
there is an interplay between two phase transitions, the relationship between the skewness
and the kurtosis is affected by the remnants of the crossover regions related to both the
LG and the chiral transitions, as shown in Fig. 2.9. Even for the T}, = 120 MeV freeze-
out line (cf. Fig. 5.1), the aforementioned interactions, for \/sxy > 2 GeV, give results
considerably different from those which are obtained using universality arguments (cf. Fig.
2.8), as only the liquid-gas transition is observed.

2.2.4 Pressure and quark fraction

Further investigation of the system may be conducted by observing the pressure of the
system, along the transition lines, as a function of temperature.
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FIGURE 2.10: Pressure, as a function of temperature, along the transition
lines.

Pressure

The model results for the pressure along the transition and crossover lines, are shown in
Fig. 2.10, where the baryochemical potential increases with decreasing temperature along
both lines (cf. Fig. 2.4).

The behaviour of the pressure along the transition line for the liquid-gas transition is
as expected. Since the baryon density along the liquid-gas transition does not change
considerably with increasing temperature, the change in the pressure is driven, primarily,
by the increase in the entropy caused by the increasing temperature. Such a behaviour
can be observed when the specific entropy in the gas phase is larger than that in the liquid
phase, as derived from the Clapeyron equation (Hempel et al., 2013).

For the chiral transition, the change of the pressure along the transition line is more compli-
cated. At large temperatures and small chemical potentials, the pressure essentially follows
the trend of the nuclear liquid-gas transition, as the meson-dominated system transitions
smoothly into a system dominated by quark and gluons. As the chemical potential in-
creases, however, the change in degrees of freedom is manifested more strongly in a change
of net baryon number, as the system transitions from heavy baryons to light baryons. Con-
sequently, the change in net baryon number dominates the change of pressure and thus, the
pressure along the transition line shows a behaviour opposite to that observed during the
liquid-gas transition. As the transition line goes to even lower temperatures, the behaviour
of the pressure changes direction again. This time, however, it is a result of the change in
curvature of the transition line in the T'— up diagram (cf. Fig. 2.4). This is, most likely,
an artefact of the Polyakov model, which is not very reliable at low values of temperature
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and large values of baryochemical potential.

In any case, it is important to note that the pressure at zero temperature for the deconfine-
ment transition takes a finite value, which is an important property of a “realistic” model
for the QCD EoS.

Quark fraction

In order to illustrate the change in degrees of freedom at the transition lines, one can
determine the so-called quark fraction gf, defined as:

€Quark 1 EPolyak
4 = Quar olyakov : (221)
€Baryon + EMeson EPolyakov

with €qQuark, EBaryon, EMeson aNd Epolyakov denoting the energy density contributions from the
quarks, baryons (including quarks), mesons and the Polyakov loop contribution from the
gluons, respectively. The variation in this quantity, as a function of temperature, is shown
in Fig. 2.11 along both transition lines.

Along the LG transition line, the quark fraction is essentially zero for temperatures below
100 MeV (where the interplay between the two crossover transitions is negligible). Above
this value it gradually rises (cf. Fig. 2.11) as the LG crossover line approaches the decon-
finement crossover (cf. Fig. 2.4), thereby introducing an increasing number of quarks in
the system.

For the chiral transition, the quark fraction starts to increase, quite sharply, at around 100
MeV (cf. Fig. 2.11). Below that temperature, the transition is, apparently, a dominantly
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chiral one, with only a slow change in degrees of freedom. At very low temperatures,
however, a slow change in the quark fraction is observed once again. This is because, at
these temperatures, quarks can be introduced into the system due to the large chemical
potential, coupled with the fact that the quark-suppressing effect of the Polyakov potential
disappears at low temperatures.

This chapter has showcased the strong dependence of the range of values for the cumulant
ratios, at large beam energies, on the choice of the freeze-out point. Since both transitions
can have an impact on the observed cumulant ratios, it is therefore important to understand
the point of origin, during the system’s evolution, of the measured fluctuations, a problem
which cannot be solved within the bounds of the present model, as it requires a dynamical
description of the nuclear collisions, including the propagation of critical fluctuations.

2.3 Strangeness effects

In Sec. 2.2, model results were obtained for thermal fluctuations, using cumulants of
conserved charges, for a range of temperatures and baryochemical potentials, at zero
strangeness- (pg) and isospin-chemical potential (pr).

However, recent LQCD calculations and Hadron Resonance Gas (HRG) model (compara-
tive) studies (cf. Bazavov, 2012a; Toublan and Kogut, 2005; Bhattacharyya et al., 2014;
Borsanyi et al., 2012; Bellwied et al., 2015; and references therein) have established that
for heavy-ion collisions, the effects of a non-zero g on the QCD phase-diagram, and the
fluctuations, are non-trivial and often yield interesting results. On the other hand, the in-
fluence of uy on the chiral phase transition can, in principle, be experimentally tested; and
has been studied using both effective model and LQCD approaches (cf. Klein, Toublan,
and Verbaarschot, 2003; Toublan and Kogut, 2003; Nishida, 2004; Barducci et al., 2003;
Toublan, Klein, and Verbaarschot, 2005; Alford, Kapustin, and Wilczek, 1999).

In experiments, ug has been observed to have a value of ~ 25% — 30% of up, while u;
hovers around 2% — 5% of up (cf. Braun-Munzinger, Redlich, and Stachel, 2011; Kovécs
and Szép, 2008; Becattini, Gazdzicki, and Sollfrank, 1998; Braun-Munzinger, Heppe, and
Stachel, 1999). Thus, the strangeness- and isospin-chemical potentials, though small, are
not entirely negligible and it’s worthwhile, even from an empirical standpoint, to study the
QCD phase diagram with non-zero isospin-, strangeness- and baryochemical potentials.
This includes potential fluctuations in the fireball produced by the collision, creating areas
with positive and negative net-strangeness and net-isospin, respectively.

Motivated by the aforementioned factors, in this chapter, we focus on the strangeness
aspect of a system at high-to-moderate temperatures and high densities.

2.3.1 The strangeness-chemical potential

In many-body systems, like those resulting from HICs, a chemical potential can be associ-
ated with each of the conserved charges of the system. In an HIC’s case, the corresponding
charges are the baryon-number, isospin and strangeness (Bass, Danielewicz, and Pratt,
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2000; Karsch and Redlich, 2011b; Bazavov et al., 2012b), because of the short time elapsed
between the formation of the fireball and the chemical, and kinetic, freeze-outs, assum-
ing strangeness equilibration. During this time, only strong interactions play an important
role, while electroweak interactions are practically negligible. As first argued in Ref. Rafel-
ski and Muller, 1982, strangeness might be abundantly produced in the deconfined phase
through gluon-gluon fusion, during the early stages of the system’s evolution. The strange
quarks are later rapidly redistributed in the hadronic phase, via multi-mesonic interactions,
when the system is close to the transition (Greiner and Leupold, 2001).

Although the total strangeness of the entire system (fireball) remains zero throughout its
formation and evolution, local distributions of non-zero strangeness (and anti-strangeness)
regions could be formed as a result of fluctuations, resulting in a non-uniform distribution
of strangeness within the system (Torrieri, 2006; Greiner et al., 1988; Schaffner-Bielich
et al., 1997b; Schaffner-Bielich et al., 1997a). These local sub-systems can be considered
as being in thermal equilibrium with the rest of the system; since they are considerably
smaller in size compared to the entire system. Thus, they can be adequately described by
a grand-canonical ensemble.

The pressure (P) for such a thermalised system can be written as:

P=—-FEF+TH+ Z (Bj,qu + Sj,USj + Ij,u[j) , (222)
J

with £, T', H, p, B;, S; and I; representing the energy, temperature, entropy, chemical
potential, baryon-number, strangeness and isospin, respectively, of the different particle
species; and the relative sign between B and S being always negative. In the quark phase,
strange-quarks (or anti-quarks) carry a baryon number of 1/3 (or —1/3).
For the purpose of this chapter isospin effects are not considered and Eqn. (2.22) reduces
to:

P=-E+TH+Y (Bjus, + Sius,) - (2.23)
J
With this basic understanding of the grand-canonical ensemble; with a non-zero pug; in
mind, we can move on to the slight changes that were made to the parametrisation of the
model, to make it appropriately applicable to the system.

2.3.2 Tweaking the parameters of QyP

For the calculations done in this, and the following, section; the parametrisation is kept
similar to that used earlier, the only difference being the omission of the baryon decuplet
and other higher resonances from the particle mixture. This is a logical approximation
because, with an increase in the magnitude of the strangeness-chemical potential, the
system becomes increasingly stacked with hyperons and strange-quarks. Under this model
approximation, the higher resonances do not couple directly to the fields, and hence, they do
not have any direct contribution to driving the transitions. They do have an indirect effect
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FI1GURE 2.12: T — pp phase diagram, showing the LG and chiral transitions
at ug = 0 and —200 MeV.

on the transitions, though, when present in considerable numbers, through the excluded-
volume corrections. But in an environment filled with heavy hyperons and strange-quarks,
even the full baryon octet remains unfilled. Thus, to simplify the discussion; without
major quantitative changes; the higher resonances are excluded, as they can be considered
non-existent for all practical purposes, under the current circumstances.

2.4 Results for isospin-symmetric, strange nuclear mat-
ter

In this section, an investigation into the effects of a non-zero pg on the QCD phase-diagram
is conducted and the results are discussed at length.

2.4.1 Effects on the phase boundary

As can be seen from Eqn. (2.23), due to a non-zero ug, depending on the sign, hyperon
thresholds are lowered to values below, or close to, the masses of the non-strange baryons.
Thus, the hyperonic particles appear in the system at smaller values of g, as compared
to the case of ug = 0. The hyperons produced have two non-zero quantum numbers (B;
and S;) and chemical potentials (pp, and pg;). These changes naturally drive the first-
order, nuclear Liquid-Gas (LG) transition to lower values of up, as shown in Fig. 2.12. At
s = —200 MeV, not only is the LG transition line shifted to the left, but also its critical
end-point (Tcgp,/tBogp) 1s lowered along the T'—axis; from 15 MeV (for pg = 0 MeV) to 8
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FIGURE 2.13: Normalised chiral condensate, as a function of upg, for different
values of ug, at T'= 0.

MeV (for pus = —200 MeV), weakening the phase boundary to a crossover, earlier than that
with a vanishing pg. It is also evident from the figure that the chiral first-order transition
weakens with larger negative values of pg and disappears completely below pug = —200
MeV, giving way to a smooth crossover transition, for the full range of temperatures.

In Fig. 2.13 the normalised scalar field (0/0g) is plotted as a function of ug at T'= 0
MeV. One can observe that the chiral first-order transition actually vanishes at g = —175
MeV. As can be seen in Figs. 2.14, 2.15, 2.16 and 2.17, the chiral condensate is intimately
related to the net-baryon density, and hence, the change in either variable can be used to
define the transition (Mukherjee, Steinheimer, and Schramm, 2017; Walecka, 1974; Bender,
Heenen, and Reinhard, 2003; Cohen, Furnstahl, and Griegel, 1992). From the figures,
one arrives at the immediate conclusion that, with increasing |us|, these quantities exhibit
progressively shallower jumps near the transition, pointing to a weakening of the first-order
phase transition. The increase of higher-mass hyperons in the hadronic phase reduces the
relative abundance of the lower-mass, non-strange baryons (Figs. 2.14 and 2.15). Fig. 2.16
shows that the strange-quark degrees-of-freedom, already present in the system before the
transition (in the hadronic phase), increase, with an increase in |ug|; causing the relative
contribution of the lighter, non-strange quark degrees-of-freedom to decrease (Fig. 2.17).
By significant couplings to the much stiffer strange-quark condensate (, the hyperons
gradually push the chiral transition to higher values of 5. Since the transition is signalled
by an abrupt decrease in o, to which the nucleons exhibit a stronger coupling, a lower
concentration of these non-strange baryons at moderate pp causes the hadronic phase to
survive much longer than that for a vanishing ps. Moreover, this suppression of the non-
strange baryons causes a smoothing of the transition, even at lower values of |ug|, as seen
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FIGURE 2.18: Strangeness fraction, as a function of up, for different values
of T, at ug = —200 MeV.

in Fig. 2.13. When the concentration of strange-quarks in the hadronic phase increases
further, with higher values of |ug| (Fig. 2.16), the degrees-of-freedom do not change as
drastically across the chiral transition, resulting in a smooth crossover, instead of a sharp
first-order, for all strangeness-chemical potentials < —175 MeV and temperatures > 0
MeV.

2.4.2 Fraction of strangeness and the particle cocktail

In Figs. 2.18 and 2.19, the strangeness fraction (fg); defined as:

Ph
fs =" (2.24)
PB
is plotted against up, at different temperatures, for ug = —200 MeV and 0 MeV, re-

spectively. The baryon number density p7 includes contributions from both quarks and
baryons. In Figs. 2.20 and 2.21, the relative abundances of the strange-quarks and hy-
perons are plotted, while in Figs. 2.22 and 2.23, the normalised particle-number-densities;
for all quarks and baryons, at different temperatures; are plotted against ug, for constant
values of pg (—200 MeV and 0 MeV, respectively).

As is amply evident from Fig. 2.19, for ug = 0, the system lacks the rich structure, at
lower temperatures, visible in Fig. 2.18. Moreover, the curve for T'= 0 MeV in this figure
is buried beneath the T"= 20 MeV curve. So there is no evidence of any structure between
the temperatures 0 and 20 MeV; as corroborated by Fig. 2.21.
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In Fig. 2.18, the T" = 0 MeV curve begins exactly after the first-order LG transition, at
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FIGURE 2.23: Same as Fig. 2.20, at ug = 0 MeV.

g ~ 920 MeV. This sudden appearance of strangeness can be attributed to the introduc-
tion of the A and = hyperons to the system - along with other baryons - as can be seen in
Fig. 2.20, thereby making both p3 and pp non-zero. The shoulder-like dip at pup ~ 940
MeV is the result of the early onset of the up- and down-quarks, as seen in Fig. 2.22.

For the T" = 12 and 20 MeV curves in Fig. 2.18, fs decreases drastically after the LG
transition. This is because, right after the transition, there is a sudden rise in pg, while
the strange-particle contribution p3, does not rise as much, due to the higher masses of
the hyperons, which change relatively less strongly across the transition. This drives down
the fraction of strangeness in the system, which is slowly revived as the hyperons start
increasing in abundance with increasing up, as is evident from the gradual rise of p%, for
T =12 and 20 MeV, in Fig. 2.20. With the appearance of the up- and down-quarks (Fig.
2.22), at around pp ~ 1000 MeV, fs again experiences a slight dip in value. The third
and final dips, observed at pug ~ 1140 MeV, are caused by the chiral first-order transition
(Fig. 2.12), which is not as sharp compared to the nuclear LG transition. As seen in Figs.
2.20 and 2.22, the quarks start dominating the composition of the system, as up increases,
from this point onward.

The kink in the 7" = 60 MeV curve (Fig. 2.18) is caused by the chiral crossover transition,
as evident from Figs. 2.12, 2.20 and 2.22. Expectedly, after the transition into the quark
sector, the relative abundance of baryons decreases w.r.t. quarks; only in this case, the
decrement is much smoother, and smaller, as compared to a first-order transition.

For T" = 100 and 175 MeV, the respective chiral crossover transitions occur at pug ~
840 and 0 MeV (cf. Fig. 2.12). As expected, the corresponding fs curves in Fig. 2.18
are monotonously increasing functions of pp, for the range of values (850—1200 MeV)
considered.
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The figures, in addition to showing the disappearance of the chiral first-order transition at
higher pg values, showcase the effect that pg has on the system as a whole. The fraction of
strangeness in the system, driven by the growing relative abundance of the hyperons and
strange-quarks, increases rapidly with pp in Figs. 2.18, 2.20 and 2.22. They also grow to
much higher values, as compared to what they attained with a zero strangeness-chemical
potential, for similar values of pup (Figs. 2.21 and 2.23). A non-zero ug also results in
an early onset of the aforementioned strange-particles, as evidenced by the shifting of the
kink; corresponding to the chiral transition; in Fig. 2.18, to progressively lower values of
1, with an increase in temperature.

In the case of ug = 0 MeV, the strangeness-fraction is observed to be either monotonously
increasing, or remaining fairly constant, with ppg; for all temperatures in Fig. 2.19. This
is to be expected, however, since from Figs. 2.21 and 2.23, it is clear that the transitions
are primarily driven by the changes in the relative abundances of the non-strange quarks
and baryons. But, even in this case, with an increase in temperature, strange-particles
with baryon numbers do start to come in due to strange-mesons, and in particular, the
kaons. This explains the existence of a non-zero fg, which increases with an increase in
temperature of the system, for a zero strangeness-chemical potential. The slight dip in fs,
at T' = 60 MeV, is again caused by a sudden increase in pp across the chiral transition
(Fig. 2.12), with p% not being able to change as rapidly.
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FIGURE 2.24: Critical end-point temperature, for the chiral transition, as a
function of ug.

In Fig. 2.24, the critical end-point temperature is plotted as a function of ug. As expected,
a considerable, gradual decrease in Tcgp is observed, with an increase in the magnitude of
is. This re-emphasises the fact that the strangeness-chemical potential directly affects the
LG and chiral transitions. The hadronic phase is dominated by hyperons, as pg increases
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in magnitude, suppressing other baryons and resulting in an early onset of both light (u—
and d—) and strange quarks; which go on to become a quark state at high densities.

This model investigation of quark-hadron systems shows that the QCD phase diagram can
be significantly affected by a non-zero strangeness-chemical potential, changing the chiral
transition from a first-order to a smooth crossover. The critical end-point in this model
appears at low temperatures, which makes such an effect difficult to be directly observed
in heavy-ion collisions, but it could have an impact in the higher-temperature smooth
transition region as well. Another strangeness-enriched situation is the beta-equilibrated
matter in a neutron star, which is investigated in the next chapter, following Mukherjee
et al., 2017.



41

Chapter 3

Neutron Stars

We explored the properties of isospin-symmetric nuclear matter, with the QxP model, in
the previous chapters. In this chapter, we intend to apply the model to neutron stars. But
before we do that, a brief introduction to neutron stars; adapted from Dexheimer, 2009; is
in order.

3.1 A brief introduction

The matter inside neutron stars is isospin-asymmetric, i.e., it has many more neutrons
than protons. This asymmetry is controlled by the isovector mesons § and p which are
crucial to neutron star calculations. Neutron stars are also charge neutral:

where pp is the number density and ) the electric charge of the different baryonic and
leptonic species 7. The number density is given by:

PB;, = /del = / (27rh)3f1d3k ) (32)

where:

dei _ g
3k (27h)3
with ¢ being the number of states of a particle with momentum £, f being the distribution
function, and (27h)3 being the unit volume of a cell in phase space.
The distribution function is defined as:

fis (3.3)

fi= ! (3.4)

F )T

where Ef (k) = \/k? + m}? is the energy and (1} = p; — giww — gip® — GipT3p is the chemical
potential of the different species modified by the medium and kp is the Boltzmann constant.
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The chemical equilibrium conditions determine the particle composition at each layer of the
star; and due to the strangeness S being unconstrained as a consequence of the large time-
scales associated with a neutron star’s evolution; the only remaining conserved charges are
the baryon-number, ) . B, = B = constant, and the electric charge, ), Q; = 0. Therefore,
the total chemical potential, for any particle, can be written as:

i = Bipg + Qipg ; (3.5)

where pp is the baryochemical potential and p is the charge- (a.k.a. electron-) chemical
potential.

Contrary to isospin symmetric nuclear matter in HIC’s, neutron stars are massive objects;
where the influence of gravity on the evolution and composition of the system can not be
ignored. For stable, non-rotating neutron stars, the stability is ensured by the hydrostatic
equilibrium between the inward gravitational pull and the outward neutron degeneracy
pressure, expressed mathematically as:

dFg = dFp , (3.6)
where Fp is related to the pressure P as dFp = dPdA; with A being the surface area; and
F is related to the mass M as dFg = —MT%M . The mass of the star is given by:

M = / pdV = / pdmr 2dr’ (3.7)
0 0

where p is the density and r is the radius of the star. Combining Eqns. (3.6) and (3.7);
and using the expressions for dV = r2dr sin ¢d¢df and dA = r? sin ¢pd¢pdf in spherical polar
coordinates; we can write:

dpP  Mp

_7F 3.8
dr 72 (3.8)

which, when relativistic effects are taken into account, yields the Tolman-Oppenheimer-
Volkoff (TOV) equations (Oppenheimer and Volkoff, 1939; Tolman, 1939):

dpP Mp P Amr3 P oM\ !

where ¢ is the energy density. We use the QxP model EoS, in conjunction with these TOV
equations, to produce the results in Sec. 3.3.

3.2 Modifying the QP

A slight modification to the model is required in order for it to be applicable to isospin-
asymmetric matter in a way that produces an EoS which, consequently, gives a reasonable
value for the symmetry energy. As has been pointed out in Horowitz and Piekarewicz,
2002; Dexheimer, Negreiros, and Schramm, 2015 (and references therein) and discussed
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in general in Schramm, 2003, a coupling term between the w and p mesons leads to a
reduced value of the slope parameter of the symmetry energy. Without this coupling, the
slope parameter is close to a value of 100 MeV, which is rather large compared to current
estimates. We introduce such a term in the model as:

pr - 6&)202 . (310)
ko k1 ko
(242.61 MeV)2 4.818 -23.357
ke € g;’l

(0.276)6 MeV~2 | (75.98 MeV)* | -8.239296

INp omy omsg

4.55 6 150

95" % INw

-0.936200 2.435059 5.45
Yqo gs¢ ﬁ

2.5 2.5 900

TABLE 3.1: Modified model parameters: the SU(3) couplings g;’l, gi-’g and

(1) (1)

al determine the baryonic coupling strengths g,; and 9¢

et al., 1999.

as in Papazoglou

For the sake of simplicity, we did not add this term in an SU(3) invariant way, although it is
possible to do so in principle. This is reasonable because the strange-vector field necessary
for the invariance, ¢, is effectively zero, as no hyperons occur in the system at relevant
densities. The modified parameters are summarised in Table 3.1.

3.3 Results for isospin-asymmetric, strange nuclear mat-
ter

In this section, in order to investigate neutron stars, i.e., highly isospin-asymmetric mat-
ter, we first determine the basic isospin-dependent coefficients around the nuclear matter
saturation density (po).

3.3.1 Isospin-asymmetric matter

To that end, we calculate the value of the isospin-asymmetry energy S, given by:
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FI1GURE 3.1: Binding energies for symmetric and asymmetric nuclear matter,
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matter saturation density po.

1 [(/05)
Sy = 3 {W} _— ) (3.11)

where ¢ is the energy density, pp the baryon-number density, I3 the isospin 3-component,
and B the net baryon-number. The density dependence of S, is usually parametrized by
the slope parameter:

dps

Using our model, we obtain S, = 30.02 MeV and L = 56.86 MeV; which are in agreement
with ranges of L and S, obtained from various experiments and analyses (Lattimer and
Lim, 2013).

The binding energy per baryon of asymmetric star matter is shown in Fig. 3.1. In this case,
the energy is determined self-consistently by the imposition of electric charge neutrality
and chemical equilibrium, including free, charged leptons. In addition, we show the square
of the speed of sound for star matter in Fig. 3.2. It is calculated from our equation of
state as:

L =3pg {ﬁ] : (3.12)
PB=PO

2 = dP/de|,_, , (3.13)

where P is the pressure and ¢ the energy density. The sharp decrease in the speed of
sound around pp ~ 3py signals the appearance of the parity partner, N*°, of the neutron,
as it starts to be populated. The smaller sharp decrease in the speed of sound just before
pB =~ 2pp signals the appearance of the down quarks, although only a few quarks contribute
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FIGURE 3.2: Speed of sound squared as a function of normalised baryon-
number density (on a logarithmic scale), with the dashed, black line repre-
senting the kinetic-theory-bound on ¢? (cf. Moustakidis et al., 2017).

1.0 foee- S S S .

0.0 — T
500 1000 1500 2000 2500 3000 3500

Chemical potential p, [MeV]

FiGURE 3.3: Comparison between the pressure, normalised to the Stefan-
Boltzmann pressure, P/ Psp obtained from QxP (Mukherjee et al., 2017) and
PQCD calculations (Fraga, Kurkela, and Vuorinen, 2014).
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to the particle cocktail at low density. Fig. 3.2 also shows that, in our model, the speed of
sound never crosses the boundary established by kinetic theory (Moustakidis et al., 2017):

2
G _e=Pj3 (3.14)
c e+ P

In addition, for very large densities, our speed of sound remains around \/1/_3, as expected.
The pressure of star matter, divided by the Stefan-Boltzmann pressure (ideal-gas limit),
as a function of baryo-chemical potential is shown in Fig. 3.3. We compare our results
with star-matter, perturbative-QCD (PQCD) calculations at zero temperature from Fraga,
Kurkela, and Vuorinen, 2014, which can be considered a constraint on the high density
QCD equation of state (cf. Kurkela et al., 2014). Our EoS falls inside the band in Fig.
3.3, which represents their uncertainty estimates. One should note, however, that the
agreement of our model with the PQCD result gets worse for very large values of chemical
potential. This is because we have assumed the quark mass parameter (mg, in Eqn. (2.8))
to remain constant for all densities. In reality, we expect that, as the dilaton field melts
slowly at large values of chemical potential, the quark mass also slowly approaches the
current quark mass value, i.e., the quark mass parameter should vanish. Thus, for high
values of the chemical potential, our model shows a rise in pressure that is too slow near
the Stefan-Boltzmann limit.

In order to better understand the chemical composition of our asymmetric EoS, we de-
termined the corresponding particle populations. Fig. 3.4 shows the number densities of
various particle species normalised to the total baryon-number, where quark number densi-
ties are divided by 3. At low densities, as expected, we only observe neutrons. An increase
in density is followed by the appearance of protons, leptons and, soon after, down-quarks.
Later, the up-quarks start appearing, followed by the chiral partner of the neutrons. The
latter appears rather suddenly and causes the rapid decrease of the speed of sound men-
tioned earlier (cf. Fig. 3.2). Finally, the chiral partner for the protons, and afterwards
the strange quarks, appear. Although the hyperons are included in the model, they are
completely absent from the particle cocktail shown in Fig. 3.4. The chiral partners of
the nucleons have lower masses than the hyperons and owing to the crossover formalism,
quarks can also appear very early. In addition, the hyperons are suppressed by the appear-
ance of the other light quark states through the excluded volume formalism. Eventually
the strange quarks appear in the cocktail, however, only at much higher densities.

As we have already mentioned, the isospin asymmetry of charge neutral and chemically
equilibrated matter is self-consistently determined. In this case, we show in Fig. 3.5 how
the pressure to energy density ratio P/e changes as a function of isospin per baryon, which

is defined as: ; (1)
3 3)iPi
== —_— 3.15
-y e (3.15)
and the normalised baryon density. The colours in the figure show regions where the

pressure is positive (red) and negative (blue). All the unstable and meta-stable states of
the nuclear liquid-gas transition fall into the blue region at small baryon-number densities.
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We also observe small regions, both at large and small values of isospin-per-baryon, where
the pressure decreases as function of density, or in other words, where the speed of sound
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becomes imaginary and matter becomes mechanically unstable. This region corresponds
to the spinodal region of a first-order phase transition, which appears only for large isospin
asymmetries. The bold, black line corresponds to the EoS of neutron star matter, where
the isospin per baryon is fixed by condition of beta-equilibrium.

3.3.2 The M-R diagram, rotating NS’s and compactness

In order to describe neutron stars we make use of a Maxwell construction around the
first-order phase transition to avoid thermodynamic instabilities, i.e., we guarantee that
the pressure increases as a function of energy density in our EoS. We also add a standard
result for the crust to our EoS, originally calculated by Baym, Pethick, and Sutherland,
1971. The mass-radius diagram for the resulting compact stars, as shown in Fig. 3.6, is
determined using TOV equations for a range of central pressures. The most massive star
of the family has a mass of 1.98 My (Mg = the solar mass) and a radius of 10.25 km.
The canonical 1.4 Mg, star has a radius of 11.10 km. This radius value, which is small for
models of hybrid or other exotic matter, is in agreement with a number of observational
studies, particularly of low-mass X-ray binaries that point to small neutron star radii in
the range of about 9 km to 11 km (Guillot et al., 2013; Guillot, Rutledge, and Brown, 2011,
Ozel and Freire, 2016; Ozel and Psaltis, 2015). Since most of the stellar cores we reproduce
contain some amount of quarks, we choose to mark the stars from the family that contain
20%, 25%, and 30% of baryon mass coming from quarks (blue dots in Fig. 3.6). For the
most massive star of the family 35% of its baryon mass is generated by quark matter.
When we include rotation effects, Fig. 3.8 shows how the stellar maximum mass increases
as a function of rotational frequency in two cases, keeping a fixed central pressure or the
number of baryons in the star. In the second case, we describe the evolution of an isolated
star, as the frequency of rotation decreases over time, which has a Kepler frequency of
1606 Hz. Here, we considered monopole and quadrupole corrections to the metric due to
the rotation, as was derived in Glendenning and Weber, 1994. The higher the rotational
frequency, the more massive and larger the stars become. The increase in mass of the most
massive star of the family is about 5% for a star with fixed baryon-number rotating at its
Kepler frequency (compared to a non-rotating star). This kind of calculation differs by
about 1% from full general relativity results from Stergioulas and Friedman, 1995.
Usually, the effect of rotation in hybrid stars is to suppress their quark phase (cf. Wei et al.,
2017 for a recent discussion on the topic). A phase transition to deconfined matter can only
take place when heavy stars spin down and their central densities increase. In our case,
the situation is different because the quarks occupy a fraction of almost all stars, heavy
and light, that rotate with any allowed frequency and only the quark fraction (compared
to hadrons) increases as the stars spin down.
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FiGURE 3.6: Mass-radius diagram. The blue dots indicate stars with a
fraction of 20%, 25%, and 30% of the baryon mass coming from quarks.
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FIGURE 3.7: Compactness (stellar mass vs. central density) of the most
massive star generated by the QxP EoS.
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FIGURE 3.8: Mass of the most massive star of the family as a function of
rotational frequency. The two cases correspond to a fixed central pressure
(bold, black) and a fixed number of baryons (dotted, red) in the star.

The term “compactness” refers to how packed together matter is in a star. Our QxP equa-
tion of state is shown in Fig. 3.7 together with other equations of state calculated using
non-relativistic models, relativistic models, models containing quarks, and models contain-
ing strange hadrons. It is interesting to see that the star we generate is very compact,
and is more compact than all the massive exotic stars shown in the figure. Naturally, the
maximum-mass star we reproduce is between the line that represent EoS with constant
speeds-of-sound, equal to \/1/_3 or 1.

Concerning star cooling, our EoS does not allow the hadronic direct Urca process. This
is the case because, although a large fraction of the star core contains nucleons and their
parity partners, there are not enough electrons to complete the reactions. For a more
detailed study of the role of chiral partners in neutron star cooling, see Lattimer, 2012. For
quarks, we assumed that all flavours are paired and as such the quark direct Urca process
is heavily suppressed (Blaschke, Voskresensky, and Grigorian, 2006; Page, Geppert, and
Weber, 2006; Alford et al., 2005; Negreiros, Dexheimer, and Schramm, 2012). The absence
of the direct Urca process is a large advantage of our EoS, as it prevents the enhanced
cooling of heavy stars, as discussed in Page et al., 2004; Negreiros, Schramm, and Weber,
2013.

An important outcome of this section is that we have at hand a single model for the
description of hybrid stars with a hadronic and a quark phase. The properties of the EoS
are different from most simpler models, which usually incorporate the phase transition
from a hadronic to a quark phase through an artificial construction. However, we present
a hybrid EoS that leads to more compact stars and still allows for a large quark fraction,
while not forbidding the appearance of hyperons.
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The application of the QxP EoS to dynamic simulations for HIC can be used to study
observables for the QCD phase transition in isospin symmetric matter. At the same time,
numerical studies of neutron-star mergers can be conducted with the same model EoS in a
consistent manner. This enables us to study nuclear matter in very different environments
and in systems of vastly different scales using a single EoS; as shown in Sec. 3.4.

3.4 NS mergers and the Taub adiabat

As seen in the previous sections, the properties of elementary matter at high temperatures
(T =~ 100 MeV) and densities (p = 3pg) can be studied in two different physical scenarios: in
high energy heavy ion collision experiments; where we try do determine the phase structure
of the isospin-symmetric QCD EoS, and in computer simulations of binary neutron star
mergers; where the knowledge of the isospin-asymmetric QCD EoS is required. These
two different fields of physics, viz. elementary particle physics and astrophysics, combine
when two neutron stars collide. It is therefore possible to study the properties of dense
QCD for systems of different size, time-scales and chemical composition. By studying the
properties of this QCD matter in a single, consistent approach; we can address one of the
most relevant challenges of high-energy nuclear theory: the determination of the properties
and phase structure of QCD at large densities and temperature. But, before attempting
to do that, a short recapitulation of neutron star mergers, black hole mergers and recent
LIGO detector results are in order.

3.4.1 The set-up

Gravitational waves (GW’s) have been recently observed from a pair of merging black
holes (BH’s) by the LIGO detectors (Abbott et al., 2016b; Abbott et al., 2016a) and from
merging neutron star binaries in the GW170817 event. The main difference between the
GW’s originating from a merger of two BH’s and those originating from a merger of two
NS’s, is the possibility of an existence of a post-merger phase after the collisions of the
two objects: it can only be present in the case of NS mergers. Depending on a variety of
parameters, e.g. the initial mass of the two stars, the product right after the merger could
be a prompt collapse to a BH, a meta-stable hyper-massive NS or a stable supra-massive
NS. The GW’s produced by a merger of NS’s are by far more interesting than the GW'’s
resulting from a BH-merger, as, in the case of the existence of a post-merger phase, the EoS
of elementary matter might be deduced by a frequency analysis of the GW (Rezzolla and
Takami, 2016; Takami, Rezzolla, and Baiotti, 2015; Takami, Rezzolla, and Baiotti, 2014).
This is insofar interesting, as the EoS until now is mainly understood by high energy heavy
ion collisions and only coarse constraints are available from astrophysical observations, like
the current observational constraint on the observed maximum mass in neutron stars, i.e.,
2.01 +0.04 M, (Antoniadis et al., 2013). In the subsequent section, following Hanauske
et al., 2017, we compare the results of numerical simulations of merging NS binaries with
simulations of high energy heavy ion collisions. In the cited study, we also discuss how
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FIGURE 3.9: Largest net-baryon density (solid lines) and temperatures

(dashed lines) achieved in collisions of heavy ions and compact stars at a

given centre of mass beam energy /sNN = 2 - Yem. - mpy. To calculate the

densities and temperatures, we used the Taub Adiabat with the QxP EoS.

Due to the different properties of the EoS as function of isospin, the temper-

atures in heavy ion collisions are larger and densities slightly smaller, at the
same relative velocities.

one can create a similar state of hot and dense nuclear matter in two seemingly different
“experimental” set-ups.

3.4.2 Results from the Taub adiabat

As seen in Hanauske et al., 2017, the densities created in the mergers of compact stars can
exceed several times the nuclear ground state density. Furthermore, we have shown that
in the early time of the merger, high temperatures (7' < 100 MeV) are obtained. We know
that similar densities and temperatures can be created in the relativistic collisions of heavy
nuclei at different particle accelerators.

The properties of the QCD EoS are the links connecting the neutron star mergers and
relativistic nuclear collisions. Consequently, the goal of such studies has to be to find a
description for the EoS that is able to describe neutron star merger and nuclear collision
observables and therefore establish the connection. It is, thus, very important to employ
a model that produces an EoS that entails a realistic set of degrees of freedom, as well as
interactions. The QxP model is highly qualified for studying said properties since, within
the same parameter set we can use this model to calculate the EoS and chemical properties
of QCD matter, as evident from the earlier chapters. A straightforward way of connecting
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FIGURE 3.10: Number densities of different hadronic and free quark species

(re-scaled for visibility) as functions of the isospin per baryon at a fixed tem-

perature T=80 MeV and net-baryon density p = 3pg. The lines correspond to

matter with conserved net strangeness, as expected for heavy-ion collisions,

while the symbols represent results where the matter is in S-equilibrium (as
expected for neutron star matter).

the features of the EoS with the maximally achievable compression of a relativistic collision
is by employing the so called Rankine-Hugoniot-Taub Adiabat (Taub, 1948; cf. Appendix
B for more details).

The Taub adiabat is essentially a shock wave solution for two colliding infinite slabs of
matter. If the EoS, i.e. the connection between pressure, energy density and baryon density
is known (as p(e, p)), then one can calculate the maximum compression in a collision by
solving the following Taub-equation:

(po - X0)* = (p- X)* = (po —p)(Xo + X) =0 (3.16)
where X = (e + p)/p?, is the generalised volume. For simplicity we assume py = 0.
One can furthermore connect the centre of mass gamma factor .., of the colliding slabs
to the densities created using:

Vom. = (ﬂ>2 (3.17)

P €o
The resulting beam energy dependence of the net-baryon density and temperatures reached
is shown in Fig. 3.9 for two different scenarios:

1. the EoS for heavy ion collisions, with conserved strangeness and no beta-equilibrium
and
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2. the EoS for compact stars, in beta-equilibrium.

We observe that the densities and temperatures achieved in this consistent approach to
be similar to those discussed earlier. We also observe, from Fig. 3.10, that the maximum
density compression is independent of the chemical composition of the system. Another
important observation is that the density compression is independent of the isospin content,
i.e., it is very similar in isospin-symmetric matter and NS matter, but the actual temper-
ature is quite different. This difference is a result of the additional degrees of freedom:;
viz. the leptons in beta equilibrium and the non-conserved strangeness; which decrease the
temperature at a given compression. It also highlights the importance of employing a con-
sistent and realistic temperature-dependent EoS for the description of NS matter; an EoS
that can be used in full 3++1D fluid dynamical simulations of heavy ion collisions (cf. Chap.
4). The ultimate goal of these calculations is to find observables for a (non-equilibrium)
first-order phase transition in dense QQCD matter (Steinheimer and Randrup, 2012).
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Chapter 4

Relativistic Heavy-ion Collisions

Through the study of the beam energy dependence of various observables in a heavy-
ion collision (HIC), one hopes to find unambiguous signals for the appearance of a phase
transformation of hadrons to their quark and gluon constituents. It is very important to
ascertain the order of the phase transition at large densities experimentally. To this end,
a focus has been put on possible observables for a phase transition and the associated
critical end-point: the fluctuations of conserved charges (Gupta et al., 2011; Luo and Xu,
2017; Herold et al., 2016; Wang and Yang, 2012; Karsch and Redlich, 2011a; Schaefer and
Wagner, 2012; Chen et al., 2011; Fu, Liu, and Wu, 2010; Cheng et al., 2009). As explained
earlier, in a grand canonical thermodynamic ensemble, the cumulants of the net-charge
distribution functions should diverge at the critical point of the phase transition, due to
the divergence of the correlation length. It was therefore suggested, that the measurement
of the net-proton-number fluctuations; as a proxy for the net-baryon-number fluctuations;
in a fixed rapidity interval could reveal the onset of deconfinement and/or the critical
endpoint of QCD. The measured rapidity interval has to be much smaller than the total
systems rapidity width and larger than the correlation length (Jeon and Koch, 2000; Koch,
2010). However, the system created in heavy-ion collisions can hardly be treated as a grand
canonical system in thermal equilibrium, thus the measured cumulants are also affected
by other aspects of the dynamical evolution, many of which have been discussed in recent
literature (Bzdak and Koch, 2012; Bzdak, Holzmann, and Koch, 2016; Kitazawa, 2016;
Feckova et al., 2015; Begun et al., 2004; Bzdak, Koch, and Skokov, 2013; Gorenstein et al.,
2009; Gorenstein and Gazdzicki, 2011; Sangaline, 2015; Tarnowsky and Westfall, 2013; Xu,
2014; Adamezyk, 2014a; Adamczyk, 2014b). The systems created in these nuclear collisions
are very small, rapidly expanding and therefore a detailed understanding and interpretation
of the measured moments is difficult due to uncertainties in the centrality determination,
efficiency corrections and acceptance cuts. To address these experimental uncertainties one
employs models to simulate the dynamical expansion of the system created in the heavy
ion collision.

There are two main approaches: a fluid dynamical (or interchangeably, hydrodynamical)
description and/or a microscopic transport description. The fluid dynamical description
has the advantage that any equation of state can be easily introduced and effects of spin-
odal decomposition due to a phase transition can be described in a controlled manner
(Steinheimer and Randrup, 2012; Chomaz, Colonna, and Randrup, 2004; Randrup, 2004;



56 Chapter 4. Relativistic Heavy-ion Collisions

Sasaki, Friman, and Redlich, 2007a). On the other hand, thermal fluctuations, which are
an important ingredient for the formation of critical fluctuations near the critical endpoint
(Stephanov, Rajagopal, and Shuryak, 1998; Stephanov, 2009; Koch, 2010), as well as the
production of discrete particles from the fluid (Steinheimer and Koch, 2017) cannot be
easily introduced.

Alternatively, one can use a microscopic transport model, which naturally includes thermal
fluctuations and usually describes the evolution of discrete particles. On the downside, it
is very challenging to introduce the dynamics of a phase transition and critical point in
such a transport approach. Especially a change of the effective degrees of freedom, as
expected at the deconfinement transition, is not easily introduced in a consistent manner.
Brief introductions to both ideal hydrodynamics (adapted from Jaiswal and Roy, 2016;
Romatschke and Romatschke, 2017 and references therein) and basic microscopic transport
models (adapted from Steinheimer-Froschauer, 2011) are provided in the following sections.

4.1 A brief introduction to hydrodynamics

In order to handle the rapid temporal evolution of a system of strongly-interacting matter
formed in high-energy heavy-ion collisions; close to equilibrium; a formulation of hydrody-
namics, based on the special theory of relativity is required. This formulation is called the
ideal relativistic fluid dynamics. It is a macroscopic description of an ideal fluid, where it is
assumed that the microscopic variables fluctuate so rapidly with space-time, that only their
average values are relevant at a macroscopic scale. The conserved quantities, however, vary
much more slowly and play an important role in the effective description of the system; at
the long-wavelength and low-frequency limit of its underlying microscopic dynamics.

An ideal fluid is defined as a continuous system of infinitesimal volume elements, each of
which are assumed to be very close to thermodynamic equilibrium. Thus, in the neighbour-
hood of each point in space, these infinitesimal volumes - called fluid elements - are defined
with the matter in them assumed to be homogeneous i.e., without any spatial gradients,
and consequently, can be described by thermodynamic variables. Mathematically, for each
space-time coordinate of the fluid, x = z#; a temperature 7'(z), a chemical potential p(z)
and a collective four-velocity field u*(x) = da*/dr can be assigned to the fluid element;
where the proper time 7 is defined as:

(d7)* = gudatda” = (dt)*[1 — (v)?], (4.1)

with v = dx/dt and ¢g"” being the metric tensor:

1 0 0 0
g = 8 _01 _01 8 = diag(1, —-1,—1,—1) . (4.2)
00 0 -1

The state of such an ideal fluid can be completely specified by the densities and currents
associated with the conserved quantities: energy, momentum and net particle-number. In
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the relativistic case, the energy-momentum tensor 7" and the net particle four-current N*
become the state variables. In the local rest-frame (LRF), with v=0 = u* = (1,0),
they can be written as:

TS?{F =€ TﬁjﬁF = 0P )
Ngp=n , Npprp=0,
Strr =5 » Strr=0, (4.3)

with 0% being the Kronecker delta, s being the entropy, € being the energy density and P
being the pressure.
The state variables are built out of the hydrodynamic tensor degrees-of-freedom: u* and

14

g, Since, for an ideal (or, zeroth-order) fluid, T(‘é) needs to be symmetric and transform

as a tensor, while NV (‘6) and Séf) need to transform as vectors under Lorentz transformations,
one can write, in the most general form:

T(‘(‘)l)’ = aufu” + asg"” N(%) = azu” and Sét)) = aqu” . (4.4)

Combining Eqns. (4.3) and (4.4), the coefficients turn out to be:
a1=¢+P,a,=—P,a3=nandas=s. (4.5)

For the dynamics of an ideal fluid, the conservation laws can be used; in the absence of
sources:

VuT(‘(‘)')j =0, aﬂN(‘f)) =0; (4.6)
where V, is the covariant derivative; along with the short-hand notations:

D=4V, , A" =g —u'u” | 0% = A"V, , (4.7)
and Eqns. (4.3) - (4.5) to give the equations of motion:

De+ (e+ P)o,u" = 0,
(e + P)Du® + 0% = 0,

Dn+nou” = 0; (4.8)
where
ei(e) =/ 2219 (49)
Oe

also known as the speed of sound; is a zeroth-order transport coefficient.
With the four fields - ¢ , P ,n and u* - corresponding to six degrees-of-freedom, and the
conservation laws providing only five equations of motion, another equation is required
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to close this set of equations and determine the value of the transport coefficient. That
equation, relating the pressure of the fluid to other thermodynamic quantities P = P(n,¢),
is called the Equation of State (EoS) and is derived, as a parametric relationship, from the
underlying microscopic theory of strong interactions. The numerical scheme used to solve
Eqns. (4.8) is the SHASTA algorithm (Rischke, Bernard, and Maruhn, 1995; Rischke,
Pursun, and Maruhn, 1995; Petersen et al., 2008), which is part of the UrQMD algorithm,
based on the UrQMD hybrid model, explained below.

4.2 A brief description of the UrQMD hybrid model

A relativistic HIC can be generally split into three, relatively distinct, phases:

1. An initial pre-equilibrium phase:

Beginning in the immediate aftermath of the collision between the projectile and
target nuclei, this phase can be described by binary collisions of two nucleons. The
kinetic energy of these collisions is then transferred to the produced particles and
fields; both of the partonic (quark) and hadronic type. Following this, the produced
particles and fields start interacting with the reaction products of other constituent
collisions, thereby producing more particles and resulting in a system with high
enough energy and particle density for the second phase to set in.

2. An equilibrium expansion phase:
After the initial product particles scatter multiple times, the system reaches a lo-
cal thermal equilibrium, such that it exhibits collective behaviour and can be char-
acterised by intensive quantities like pressure, energy density and particle-number
density. This phase can therefore be modelled in a hydrodynamic/fluid-dynamic, or
microscopic transport, approach.

3. A final decoupling phase:
Following the hydrodynamic expansion, the system dilutes to an extent that local
or chemical equilibrium conditions are no longer fulfilled. The hadrons are formed
at these stage, and having decoupled from the system, they start flying into the
detectors to be measured.

Barring the intermediate equilibrium expansion phase — which can be described with hy-
drodynamics, the system’s evolution is governed by non-equilibrium dynamics. Therefore,
a relativistic, microscopic transport approach, based on the Boltzmann equations is used
to describe the initial and final, non-equilibrium phases( Molnar and Huovinen, 2004;
Burau et al., 2004; Xu and Greiner, 2004). However, a model that aims to describe a
heavy-ion collision should be able to reproduce all the three aforementioned phases. This
requires a physically consistent model that incorporates a hydrodynamic description of
the intermediate phase with the transport description of the initial and final phases. The
ultra-relativistic quantum molecular dynamics (UrQMD) is one such model (Bass, 1998;
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Bleicher, 1999). The UrQMD starts with an effective solution of the relatvistic Boltzmann
equation:

P oufi(a”,p”) = Ci; (4.10)

where f; are the distribution functions of particle species i, the time-evolution of which
are described by this equation. The term on the right-hand side of the equation is the
full collision term. The presence of an external potential results in an additional term on
the left-hand side. Hadrons and strings, excited in high-energy binary collisions, form the
underlying degrees-of-freedom and the projectile, and target, nuclei are initialised with a
Woods-Saxon profile in coordinate space, with Fermi momenta being randomly assigned
to each nucleon in the rest-frame of its corresponding nucleus. The collision criterion is as
follows:

dirans < do = \/ % y Otot = 0 (\/57 type) ) (411)

where dy,.ns is the covariant relative distance and dj is the critical distance given by the
corresponding total cross-section, oy, of the collision. Although each collision process is
calculated in the rest-frame of the binary collision; the nucleus-nucleus equal-speed system
is used as a reference frame for time ordering the collisions.

Over 50 different baryon and 40 different meson species, with their ground-states and higher
resonances with masses up to 2.25 GeV, are included in the UrQMD. Additionally, full
particle-antiparticle symmetry is applied, isospin-symmetry is assumed and only flavour-
SU(3) states are considered. The principle of detailed balance, or the additive quark model,
or fitting to available experimental data is used to calculate the elementary cross-sections.
The resonance excitations and decays are handled using the Breit-Wigner formalism.
There are two stages during the evolution of the system where the non-equilibrium descrip-
tions need to couple to the equilibrium (hydrodynamic) description of the system. The first
of these couplings happens when the two Lorentz-contracted nuclei have passed through
each other, i.e., all the initial collisions have proceeded and the baryon currents have de-
coupled from each other to an extent where the system has achieved local thermodynamic
equilibrium or thermalisation. The ‘point-like’ hadrons are consistently and numerically
stably mapped from their transport descriptions to the 3D hydrodynamic spatial grid via
corresponding Gaussian representations of finite width, i.e., each particle is described by a
Gaussian distribution of the total energy, momentum and baryon-number density carried
by the particle.

The second coupling takes place at a stage called the freeze-out; where the dilution of the
system leads to a decoupling of the particles. At this point, a hypersurface needs to be
found where all the existing fluid elements can be transformed back to known hadrons,
which are then propagated via the hadronic cascade of UrQMD. A necessary condition
for freeze-out is that both the fluid-dynamic and transport approaches be valid in this
transition region. A standard procedure is to use the Cooper-Frye prescription (Cooper
and Frye, 1974) to map the fluid-dynamic fields to the hadrons:
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dN
B = / f(@, p)pdo (4.12)

where f(z,p) denote the boosted Fermi, or Bose, distributions of the respective particle
species and do, is a vector normal to the hypersurface. On the predefined transition
hypersurface, a Monte Carlo sampling of Eqn. (4.12) is carried out to produce the hadronic
particles post freeze-out. However, in the context of this work, the freeze-out stage is
skipped, since; as will be apparent in the next section; the plan is to compare di-lepton
yields from the UrQMD hybrid model simulations to those from actual experimental data
obtained by the HADES collaboration.

4.3 Di-leptons & the HADES

As a result of a heavy-ion collision, the system evolves into a fireball up until the freeze-out,
when the outgoing particles decouple from the system and move towards the detectors. The
hadronic particles; their yield and transverse momentum spectra; are used to describe the
system near chemical and kinetic freeze-out. But, photons and di-leptons are also emitted
from this rapidly evolving and strongly interacting system (cf. Rapp and Hees, 2016b; Rapp
and Hees, 2016a and references therein). These, however, only undergo electromagnetic
(EM) interactions, and given the evolution timescale of a strongly interacting system,
get essentially decoupled from the system pretty early in its evolution (Galatyuk et al.,
2016). As a result, their phase space distributions can provide valuable insights into the
temperature, collectivity and spectral structure of the medium during these early stages.
Given the emissivity (¢) of the matter over the full reaction volume:

dNee
€= ——7—;
dVdtd*q
which denotes the radiation rate of virtual photons from a cell of strongly interacting
matter per unit time and 4-momentum; the invariant mass spectra of the di-leptons can

be obtained by integrating ¢ over space-time. In thermal equilibrium (Gale and Kapusta,
1991; Pisarski, 1982; McLerran and Toimela, 1985):

. — KfB(QO7T)pEM )
M? ’
where K is a constant, pgy is the EM spectral function, f2 is the thermal Bose distribution
and M is the invariant di-lepton mass.
Some experimental data, from HIC’s at the Scherionensynchroton (SIS) 18 of the Gesellschaft
fiir Schwerionenforschung (GSI), has already been made available as part of the HADES
(High Acceptance Di-electron Spectrometer) collaboration results. Theoretical conclusions,
drawn from simulations of HIC’s, about modifications to the properties of hadrons in a
QCD system and their deconfinement /chiral parity restoration can be tested against the
available di-lepton yield data. To that end; in collaboration with Dr. Tetyana Galatyuk’s

(4.13)

(4.14)
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FIGURE 4.1: Two different equations of state generated by the QxP. The
left pane denotes the reasonable EoS, with T, < 50 MeV, while the right
pane denotes the non-physical, full first-order EoS.

HADES group at GSI; the UrQMD hybrid (v3.4) algorithm is used, with two EoS’s from
the QxP as input (cf. Fig. 4.1), to simulate Au-Au (gold-on-gold) collisions at a beam
energy Fi,p = 1.23 AGeV, for three different impact parameters (b) of 2 fm, 4 fm and 7 fm.
Using the speed-of-sound, defined previously as 1/0P(¢)/0e, on a temperature—baryon-
number density (7' — pp) plane, Fig. 4.1 illustrates the equations of state with and without
the first-order chiral/deconfinement phase transition. In order to facilitate comparison
with HADES data, results below T'= 50 MeV were not considered, and although the first
(left panel) EoS has a first-order transition, its 7, is below 50 MeV, and it can therefore
be considered as representing a system with a “full” or “pure” crossover phase boundary.
As a control to check whether the phase transition has any effect on the system’s di-lepton
production, the second (right panel) EoS; representing an unrealistic system with a “pure”
first-order phase boundary; is used. It is obtained by modifying the strength of the quark
couplings to the chiral fields (g, = —5.2 and g, = —4.2); and by decreasing the Polyakov
loop parameter (7p) from 200 MeV to 120 MeV.

The HIC simulations run with the aforementioned EoS’s, under the aforementioned con-
ditions, produce data for T and pp as functions of space (x) and time (t), which are then
used in Eqn. 4.14 to calculate the emissivity, from which the invariant-mass spectrum of
the di-leptons is obtained.

Figs. 4.2, 4.3 and 4.4 show the simulation results, obtained with the two different equations
of state and the three different impact parameters, for the weighted averages of tempera-
ture, baryon-number density and quark fraction as functions of time; while Fig. 4.5 shows
the average temperature as a function of average baryon-number density. The averages are
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FIGURE 4.2: Average temperature as a function of time for two different
HIC simulations with different equations of state and impact parameters.
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density for two different HIC simulations with different equations of state
and impact parameters.

where A is the quantity to be averaged and (pg);, the baryon-number density of each
cell, is the weighting function for the 3D 200x200x200 grid over which the simulation is
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performed.

The figures clearly demonstrate the effects of a first-order transition on the averaged quan-
tities. In Fig. 4.2, the bold curves exhibit a saddle-like feature in the 20—25 fm/c time-
range; which denotes the first-order transition; and this feature is consequently absent in
the dotted curves. In Fig. 4.3, it can be observed that the average densities increase by
almost 150% in the “pure” first-order case and the knee-like shape to the right of the bold
curves results from the transition occurring during that time. The same can be said about
the quark fraction curves in Fig. 4.4, with the transition resulting in an almost 1000%
(or, tenfold) increase in the average quantity of quarks in the system. The phase-space
distribution in Fig. 4.5 amply illustrates the effects of a first-order chiral/deconfinement
transition on the system; effects that are conjectured to be supported by experimental data
on di-lepton yields, on comparison.

The figures also illustrate the expected influence of an increase in the impact parameter,
with peak temperatures, baryon-number densities and quark fractions increasing as the
collision is changed from a grazing collision to one where its almost head-on. The marked
difference observed in the quark fractions and baryon-number densities in the two different
cases is, however, the most important outcome of this part of the project; an outcome
that is likely to be confirmed by a noticeable difference in the di-lepton yields obtained
in the two different scenarios. Dr. Galatyuk’s HADES group is currently hard at work,
calculating the di-lepton yields from the simulation results and comparing them to available
experimental data.

4.4 Nuclear interactions and the UrQMD

In Section 2.2.3, with grand canonical models of dense QCD, it was observed that the
interactions of nucleons can have a significant impact on the measured net-proton cumu-
lants at low (y/snn < 20 GeV) beam energies (Fukushima, 2015; Vovchenko et al., 2015;
Vovchenko, Gorenstein, and Stoecker, 2017; Mukherjee, Steinheimer, and Schramm, 2017).
In the following, we will investigate how important the effect of the nuclear interactions
on the measured proton-number fluctuations really is, within a microscopic transport ap-
proach. A similar study, but at a higher beam energy (\/sxw = 5 GeV) came to the
conclusion that no effect of the nuclear interactions could be found (He et al., 2016). We
will study this effect for fixed target experiments at a beam energy of E,;, = 1.23 AGeV
which corresponds to the current SIS18 HADES experiment. Here the effect of nuclear
interactions should be much stronger and therefore is more likely to be observed.

4.4.1 Adding nuclear potentials

Nuclear interactions have been introduced to the UrQQMD model some time ago (Bass, 1998;
Li et al., 2006). In the case where nuclear interactions are taken into account, each hadron
is represented by Gaussian wave packet with the width parameter L in phase space (Bass,
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1998). The Wigner distribution function f; of the hadron i reads

1 _rr@? _p-piwi?2r

(7rh)3€ 2L e R (4.16)

fi(r7p7t) =

where L = 2 fm? is usually chosen for simulating collision with heavy nuclei like Au. r; and
p; are the centroids of coordinate and momentum of hadron 7, respectively. The equations
of motion for r; and p, read as:

r; = 85112{) and p; = —aéf?. (4.17)
Here, (H) is the total Hamiltonian function of the system, it comprises the kinetic energy
and the effective interaction potential energy. The importance of the mean field potential
for describing HICs has been extensively studied (Stoecker and Greiner, 1986; Bertsch and
Das Gupta, 1988). For studying HICs at intermediate energies, the following density and
momentum dependent potential has been widely used in QMD-like models (Aichelin, 1991;
Hartnack et al., 1998; Li et al., 2006),

U = alp/po) + B(p/po)”
+ tna0?[1 + ama(p; — p;)*Ip/ po- (4.18)

Here a—-393 MeV, =320 MeV, v=1.14, t,,q—1.57 MeV, and a,,q = 500 GeV~2 are cho-
sen, which yields the (in)compressibility £o=200 MeV for isospin-symmetric nuclear matter.
This set of parameters does give a good description of the azimuthal correlations of charged
particles (the so called v,,) at SIS18 beam energy range (Hillmann, Steinheimer, and Ble-
icher, 2018). In recent years, in order to follow present progress on determining the nuclear
symmetry energy and better describe the recent experimental data for HICs at SIS ener-
gies, the surface and surface asymmetry terms, as well as the bulk symmetry energy term
obtained from the Skyrme potential energy density functional have been further considered
in the present version. Details about these terms can be found in Wang et al., 2014a; Wang
et al., 2015. Since they are expected to be less important for bulk properties of HICs, the
chosen of those parameters will not significantly influence our results. Besides the nuclear
potential, the Coulomb potential for all charged particles is also taken into account. It
has been further found that with an appropriate choice of the in-medium elastic nucleon-
nucleon cross-section, some recent published experimental data, especially the collective
flows of light clusters, can be reproduced reasonably well. See Refs. Wang et al., 2014a;
Wang et al., 2014b; Wang et al., 2015 for more details.

4.4.2 Method

In the following, results for head-on (b=0 fm) Au+Au collisions at a fixed target beam
energy of Fj,, = 1.23A GeV, with the UrQMD model, will be presented. In particular we
will compare results where the model is used in its cascade mode with results where the
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long range nuclear interactions are explicitly taken into account. Note that we will treat
all baryons as free baryons, i.e. they are not bound in nuclear clusters. In general this
is not true and one usually applies an afterburner to calculate the cluster abundances on
an event-by-event basis (Li et al., 2016a; Li et al., 2016b). Using such an afterburner it
would be very interesting to study the effect of nuclear clustering on the baryon number
fluctuations in more detail (Feckova et al., 2015). However in this paper we will focus only
on the effect of potential interactions and leave the cluster study to future publications.
The importance of taking into account the nuclear interactions can already be observed
from the time evolution of the baryon number density. Fig. 4.6 shows the average net-
baryon number density in a box, centered around the collision point z = y = 2z = 0 with
a given length [, at two different times ¢. The times are chosen to correspond to the time
of largest compression ¢ ~ 15 fm/c and the time at which inelastic processes cease t ~ 30
fm/c. Note that we have chosen to treat baryons as point like particles to calculate the
average density in the box as there should only be integer numbers of baryon in a given
volume for a single event. We have also neglected the effect that baryons may coalesce
and form nuclei at a late time which will influence the extracted cumulants (Feckova et al.,
2015). This effect will be studied in a forthcoming paper in more detail.

It can be clearly observed that the compression in the case of the cascade version is larger
than in the case where nuclear potentials are taken into account. This is mainly due to
the repulsive nature of the nuclear interaction at high density.

In addition, Fig. 4.7 shows the total fraction of baryons within the described box. Since
the total number of baryons is conserved to be 394 this fraction must be between 0 and 1.
At early times it varies between 0% and 80%, while at late times at most 10% of all the
baryons are in the box of length 10 fm. This ratio will become important later on, in the
discussion of baryon number fluctuations as effects of global baryon conservation laws are
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important. These effects should depend on the fraction of the total baryon number in a
given acceptance,/box.

In order to quantify a possible enhancement of fluctuations one usually studies ratios of
cumulants of the multiplicity distributions. This is done, because the cumulants C,, depend
explicitely on the volume and therefore effects of the total volume cancel when the ratio
is taken. Furthermore, for a Poisson distribution all cumulant ratios will be unity and the
cumulant ratios for a Binomial distribution are also well known. The cumulants in the
following will be defined as:

C; = M=(N)

Cy = o°=((0N)?)

C3 = So°= <(5N)3>

Cy = rot = ((6N)*) = 3((6N)?)” (4.19)
where 0N = N — (N) with N being the net-proton or net-baryon number in a given accep-
tance for a single event and the brackets denote an event average. Here M is the Mean, o2

the variance, S the Skewness and x the Kurtosis of the underlying multiplicity distribution.
Usually one takes the following appropriate ratios of these cumulants:

Cy/C, = o*/M (4.20)
Cg/CQ = So (421)
Cy/Cy = ko? (4.22)

The statistical errors in our simulations are estimated according to the delta-theorem (Luo,
2012). The errors of the cumulant ratios then are:

error(C,./Cy) o< 0" 2 /\/n (4.23)
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where n is the number of events and o2 = C, the variance of the observable.

For reference we also cite the corresponding cumulant ratios for a Binomial distribution,
which would be the correct description of uncorrelated baryons where the total baryon
number is conserved globally.

Cg/olBinomial - 1— D
03/02Binomial — 1 _ 2p
Cy/CyPmoma — 1 —6p(1 — p) (4.24)

where p is the fraction of the total baryon number within a given acceptance/box.

4.4.3 Results in co-ordinate space

Fluctuations and correlations due to a phase transition and critical behaviour usually are
manifested in coordinate space. For example the spinodal decomposition creates clumps of
matter in coordinate space and at the critical endpoint, correlations can extend over large
spatial distances. To verify that indeed fluctuations are affected by nuclear interactions,
we first have to study the cumulant ratios for a fixed spatial volume, during the dynamical
evolution of the system. Figs. 4.8 and 4.9 show the cumulant ratios, for the net-baryon
number, calculated as a function of the box length as defined in the previous section. Again
two different times, t = 15 fm/c and ¢ = 30 fm/c, are shown. At the early time one can
clearly observe a suppression of all cumulant ratios in the case where nuclear potential
interactions are taken into account. The suppression is strongest for the fourth order
cumulant, as expected. As the density at this early time is still large, the suppression is
due to the short range repulsive force between nucleons and therefore only occurs for boxes
of length smaller than 2 fm. For larger boxes the effect of baryon number conservation
begin to dominate and all cumulant ratios decrease.

At the later time the suppression of the cumulant ratios, in coordinate space, is all but
gone. This can be understood as a result of the much lower density (sub-saturation density)
at the late time. One should kepp in mind that at such a late time, most baryons are not
within this small box anymore, mayn of them have already decoupled from the system.
The cumulant ratios of the baryons at a late time therefore should be defined over their
freeze-out hypersurface or, as is done by experiments, within a finite acceptance window
in momentum space.

4.4.4 Results in momentum space

Heavy ion experiments cannot measure coordinate space distributions of baryons during the
time evolution of the fireball. They measure momentum space distributions of protons after
the final kinetic freeze-out of all particles. Furthermore it is not clear that the coordinate
space correlations which appear due to the nuclear interactions (or critical phenomena)
will translate into momentum space correlation at the end of the systems evolution.
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In the following we will therefore present results of our simulations for baryons and protons
in the HADES transverse momentum acceptance (0.4 < pr < 1.6 GeV) (Agakishiev, 2009)
and for a given interval in rapidity, around the centre of mass rapidity. The results for the
cumulant rations will again be for head on (b = 0 fm) collisions, to avoid strong contribu-
tions from volume fluctuations. Fig. 4.11 shows the average net-baryon number rapidity
distributions for most central Au+Au events. Here we compare cascade mode results with
simulations that include nuclear potentials. One can see that the average rapidity distri-
butions are very similar for the two cases, even though the maximum compression varies
quite significantly as was shown in Fig. 4.6.

Finally, Fig. 4.10 shows the results of the net-baryon and net-proton cumulant ratios as
function of the rapidity interval Ay. Here several interesting observations can be made.

1. The cumulant ratios for net-baryons are enhanced, in the case where nuclear inter-
actions are enabled, for a small rapidity window Ay < 0.3.

2. For larger rapidity windows all cumulant ratios are suppressed due to the effect of
conservation laws, especially baryon number conservation.

3. The effect of the enhancement is much smaller for net-protons, as compared to net-
baryons, due to the random exchange of isospin with neutrons and pions, which are
produced abundantly already at this beam energy (Reisdorf, 2010).

4. The cascade mode (black lines with squares) agrees rather well with a simple binomial
distribution for the net-baryons. As an input p for the binomial cumulant ratios in
equations (4.24) we simply use the fraction of total baryons in the given rapidity
interval.
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FIGURE 4.11: Final rapidity distribution of baryons in most central collisions

(b < 3.4 fm). Compared are the results for the calculation with and without

nuclear potentials. Only a small difference in the mean rapidity distribution
is observed.

4.4.5 Discussion

We have shown that nuclear interactions can have a significant effect on the net-baryon
number cumulant ratios in heavy ion collisions at SIS18 beam energies. This is true for
the cumulant ratios in coordinate and momentum space. At early times the repulsive
interaction dominates and all cumulant ratios are suppressed. Furthermore, it was shown
that an enhancement of the final cumulant ratios, after freeze out and in momentum space,
is only observed for a small acceptance window and that larger windows are dominated
by conservation laws. Finally, we have also shown that the effect is diminished if only
net-protons are measured, due to the fact that isospin is randomly distributed amongst
the baryons.

Even though the qualitative effect of the nuclear interactions is in agreement with predic-
tions from grand canonical models (Vovchenko et al., 2015; Mukherjee, Steinheimer, and
Schramm, 2017), the quantitative signal is significantly smaller. This can be explained by
the following factors:

1. The system in heavy ion collisions is small and short lived. Therefore the correlation
length is limited not only by the system size but also the short time period the system
spends in a dense phase.

2. Coordinate space correlations # Momentum space correlations. The increase/decrease
of the cumulants usually originates from correlations in coordinate space induced by
attractive and repulsive interactions. It is not clear that these coordinate correlations
completely translate to momentum space correlations which can be measured.
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3. Calculations in a grand canonical ensemble do not take into account the conservation
of the net baryon number as it occurs in nuclear collisions. In a microscopic transport
model this is taken into account.

In conclusion, it was shown that the above discussed factors make it much harder for long
range correlations from nuclear interactions or critical behaviour to be measured through
the proton-number cumulants in heavy ion collisions.
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Chapter 5

Summary

Theoretical implications of the quark-gluon plasma (QGP) have been around since the
1970’s. Trying to locate said plasma, or the phase transition to it, by identifying the
fluctuations of a hot, dense fireball produced by a heavy-ion collision (HIC), is also not
a new idea. The problem, however, is that the theory used to describe systems that are
so hot and dense, viz., quantum chromodynamics (QCD) has a coupling constant that
goes to infinity for small values of Q?; thereby requiring numerical analysis methods, like
lattice QCD, to be predominant. But, the fact that lattice calculations require humongous
computational resources; and that they are plagued by the familiar fermion sign problem:;
prevents them from analysing dynamic observables and progressing beyond the scope of
vanishing baryochemical potentials. Under such circumstances, the only viable solution
is to formulate an effective Lagrangian - which has some properties of QCD - and use it
to delve into the fundamentals of the QCD theory. The models that use these effective
Lagrangians are aptly called “Effective Models”.

The flavour SU(3) quark-hadron chiral parity-doublet model (QxP) is one such model (Stein-
heimer, Schramm, and Stocker, 2011b), which was later extended to include a deconfine-
ment transition to a gas of quarks and gluons. The calculations were done using a scalar
meson self-interaction potential which incorporated several important properties of QCD.
A drawback of this particular model was that the excluded-volume corrections led to nu-
clear matter (in)compressibility values much higher than the experimentally observed upper
bounds.

In the present work, the aforementioned model was modified by changing the mesonic self-
interaction potential; following Motohiro, Kim, and Harada, 2015; and by revising both
physical and numerical parametrisations. The resulting new (in)compressibility value of
267 MeV - calculated by imbibing the excluded-volume corrections - was found to be well
within the phenomenological range of 200—280 MeV.

Regarding the experimental impact of these modifications, it is generally accepted that the
matter produced in the aftermath of the initial pre-equilibrium stage of an HIC is in a state
of thermodynamic equilibrium, and as such, thermal fluctuations can be utilised to detect
the presence and ascertain the properties, of the QGP. But, before devoting large sums of
money in conducting experiments to that effect, a theoretical /numerical calculation; in-
volving a medium in local thermal equilibrium at moderate-to-high temperatures and high
densities; is necessary to enable the success of such experiments. Some of the commonly
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FIGURE 5.1: The dependence of the susceptibility ratios on nuclear interac-
tions.

used quantities; born out of the aforementioned fluctuations in model simulations; that can
be transformed into measurable experimental observables are the cumulants, also called
the susceptibilities, of the conserved charges of the system. The fluctuations caused during
the transition of the system from a broken chiral symmetry to a restored one may survive
through all the intermediate states of the system. Consequently, the susceptibility ratios;
which are shown in Fig. 5.1 (upper panel); were observed straying away from their pure-
hadron-gas value in the vicinity of the phase transitions (both first-order and crossover)
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and may, therefore, be used to experimentally verify the existence of said transition.

In the present work, it was also shown; from the variation of the susceptibility ratios
observed in the phase diagram Fig. 5.1 (lower panel); that plenty of complications can
be unearthed from the region in-between the two transitions — nuclear liquid-gas and
chiral /deconfinement, where an interplay of their crossover regions results in significant
changes to the fluctuations of the conserved charges in the system. Moreover, a strong
influence of the position of the freeze-out line in the QCD phase diagram (which is effec-
tively the temperature at which the freeze-out occurs) on the energy dependence of the
susceptibility ratios was illustrated.

By changing the overall strangeness content of the medium, it was observed that the
phase diagram depends heavily on the strangeness-chemical potential. Consequently, the
entire phase boundary of the quark-hadron deconfinement transition weakened from a
combination of first-order and crossover to a “pure” crossover. It is not outlandish to expect
such a situation arising in HIC experiments, where the temperature and density provide
conditions ripe for the spontaneous production of strangeness via the formation of small,
non-zero strangeness (and anti-strangeness) sub-systems (Steinheimer et al., 2009). Due
to the short timescales associated with the evolution of the system, the hyperons formed
in these sub-systems are not expected to decay into non-strange hadrons (Schaffner et al.,
1993; Schulze et al., 1998; Nakamura and Group, 2010; Yao and Group, 2006; Beringer
and Group, 2012) and can, therefore, affect the particle output detected from the collision.
Tracing the particle-number distributions, and their fluctuations, back to the initial stages
of the system, the conjectured influence of the strangeness, on the evolution of the system,
can be confirmed. However, the critical end-point in the QyP model appears at low
temperatures, which makes such an effect difficult to be directly observed in heavy-ion
collisions, but it could have an impact in the higher-temperature, smooth transition region
as well. Given that the strangeness-chemical potential values obtained from experimental
data analysis come out to about 20—25% of the baryochemical potential (Braun-Munzinger,
Redlich, and Stachel, 2011; Kovécs and Szép, 2008; Becattini, Gazdzicki, and Sollfrank,
1998; Braun-Munzinger, Heppe, and Stachel, 1999), the modifications induced to the phase
diagram at low temperatures need to be considered when constructing facilities capable of
performing beam-energy scans at progressively lower energies.

In the context of very slowly evolving, isospin-asymmetric, hot and dense systems, as
found in neutron stars (NS’s), the assumptions behind the QyP model become relatively
more accurate and hence, these systems were studied using the equation of state (EoS)
generated by the model. It was observed that the symmetry energy and slope parameter
values agree exceptionally well with the experimental constraints put on astrophysical data,
and the resultant mass-radius diagram obtained from solving the Tolman-Oppenheimer-
Volkoff (TOV) equations with the aforementioned EoS leads to a 1.98 M, neutron star with
a radius of 10.25 km, in accordance with recent observations. It was also observed that the
maximum-mass star generated by the QxP EoS is very compact and that, the EoS does not
support the hadronic direct Urca process. Extending the EoS to high chemical potentials,
it was observed to meet the band of values produced by perturbative QCD calculations.
Thus, this effective model can now efficiently describe stars with both a hadronic and a
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quark phase; with a hybrid EoS that leads to more compact stars and still allows for a
large quark fraction, while not forbidding the appearance of hyperons.

A straightforward way of connecting the features of an EoS with the maximally achievable
compression of a relativistic collision is by employing the Rankine-Hugoniot-Taub-Adiabat.
Since collisions of this type are commonplace not only in HIC experiments, but also in
neutron star mergers, the beam-energy dependence of the net-baryon-number density and
temperature was studied for these two different scenarios. It was revealed that the density
compression is independent of the isospin content, and the chemical composition, of the
system and that the QyP EoS is a consistent and realistic temperature-dependent EoS for
describing NS matter, as observed before.

It is important to keep in mind that the QxP model is based on some basic assumptions that
make a direct comparison with experimental HIC data difficult: the sub-system considered
is so small w.r.t. the entire system that it can be reasonably assumed to be in thermal
equilibrium, it is essentially static and it freezes out in an instant. Therefore, in order to
implement the current effective EoS in a dynamical model suited for studying the evolution
of a fireball created by an HIC, the SHASTA fluid-dynamic model; in conjunction with
the ultra-relativistic quantum molecular dynamics (UrQMD) algorithm was used. A two-
pronged approach was employed to determine whether the conclusions drawn from the
QxP model were valid in case of an actual relativistic HIC.

First, the claim that the nuclear liquid-gas transition, and its interplay with the chi-
ral /deconfinement transition, has a considerable effect on the fluctuations of the system was
checked by introducing nuclear interaction potentials to UrQMD simulations of HIC’s at
the GSI’s SIS18 accelerator and observing the measurable net-proton-number fluctuations.
It was revealed that nuclear interactions can have a significant effect on the net-baryon-
number cumulant ratios in heavy-ion collisions at SIS18 beam-energies. This was observed
to be true for the cumulant ratios in both the co-ordinate and the momentum spaces.
Moreover, it was observed that at early times, the repulsive interaction dominates and all
the cumulant ratios are suppressed. Furthermore, it was shown that an enhancement of
the final cumulant ratios, after freeze-out and in momentum space, is only visible for a
small acceptance window and that larger windows are dominated by conservation laws.
Additionally, it was shown that the effect got diminished when only the net-protons were
measured, due to the fact that isospin is randomly distributed amongst the baryons. Even
though the qualitative effect of the nuclear interactions was found to be in agreement with
predictions from grand canonical models (Vovchenko et al., 2015; Mukherjee, Steinheimer,
and Schramm, 2017), the quantitative signal was significantly smaller due to multiple fac-
tors making it difficult for the long-range correlations; born out of nuclear interactions,
or critical behaviour; from getting measured through the proton-number cumulants in
heavy-ion collisions.

Second, the results produced by UrQMD simulations of HIC’s with two different QP
EoS’s were to be compared, in collaboration with Dr. Tetyana Galatyuk’s group at GSI, to
the di-lepton yield obtained from the HADES experiment at the aforementioned facility,
to check whether the chiral/deconfinement phase transition has any effect on the early
evolution of an HIC system. Photons and di-leptons, by responding exclusively to the
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long-timescale electromagnetic and electroweak interactions, lend themselves as effective
probes for the early evolution of the short-timescale, strongly interacting system; since they
become essentially decoupled from the system after being produced. The first of the EoS’s
used had a critical end-point below 50 MeV temperature and; for the purpose of comparison
to HADES data, which are obtained at temperatures of approximately 100—150 MeV; could
be considered as representing a “pure” crossover system. The second of the two had a non-
physical critical end-point at a baryochemical potential of 0 MeV and hence represented a
“pure” first-order system. This was used as a control to ascertain whether there are any
noticeable changes to the invariant-mass spectrum of the di-leptons, when the system is
undergoing a first-order transition from QGP to hadrons, and/or from chirally symmetric
to chirally asymmetric matter. A knowledge of the emissivity of the system; defined as
the radiation rate of virtual photons from a cell of strongly interacting matter per unit
time and four-momentum; is required to calculate the di-lepton yield of a medium. The
emissivity, in a thermally equilibrated system, depends on intensive properties; like the
temperature, the pressure and the chemical composition; of said system and can therefore
be obtained as a space-time integral of these quantities over the total reaction-volume.
These quantities were produced by running the UrQMD simulations of relativistic HIC’s
under the operational conditions of the HADES experiment and the weighted averages of
temperature, baryon-number density and quark fraction were calculated, before handing
over the simulation results to the HADES group at GSI, where the emissivity and di-
lepton yield are to be calculated. The simulations revealed a considerable dependence of
the averaged quantities on the phase transition; with the “pure” first-order EoS leading
to an almost 150% increase in baryon-number density and an almost 1000% (or, tenfold)
increase in quark fraction, when compared to the “pure” crossover case. These dependencies
are likely to influence the invariant mass-spectrum of the di-leptons and cement its place
amongst the variables used to probe critical behaviour in hot, dense, strongly interacting
systems.

Overall, this work highlights the importance of consistently including the effects of nuclear
interactions and modifications arising from the rapidly evolving chemical composition of
a strongly interacting system; within the framework of a single effective-Lagrangian, chi-
ral, mean-field model; in the study of both isospin-symmetric and isospin-asymmetric,
hot and dense nuclear matter, and of reliably accounting for these influences during the
interpretation of experimental data from relativistic heavy-ion collision experiments and
observational data from neutron stars; and their mergers.
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Appendix A

The PNJL Model

The PNJL model was introduced by Fukushima, 2004; Ratti, Thaler, and Weise, 2006
as an effective chiral quasi-quark model that incorporates a mean field like coupling to a
colour background field. It has often been shown to reproduce many general features of
lattice results at up = 0 (Roessner, Ratti, and Weise, 2007; Ghosh et al., 2006; cf. Chapter
2 for other references).

The thermodynamic potential for the model reads:

Q=U(®,0*T)+0*/2Gs — w?/2Gy — Q, , (A1)
with

d3 * >k *
Q, = 2N / DD P [1 4 30 B /T 4 3t 2B )Ty 3B/ T]

(2m)?
+ Tln [1 + 3% e Eptug)/T | 3@e—2(Eptug)/T | efS(Eeru?;)/T}
+ 3AEON -7}, (A.2)

where ® is the traced Polyakov loop after averaging, written as:

®=1/3 Tr (L) =1/3 Tr /T (A.3)

The Wilson line, (L), is a 3 X 3 matrix in the fundamental representation in colour space,
defined as:

L(F) = P exp <@ /O ’ A4dx4) | (A1)

The dynamical mass of the quarks m = mg — 0 = my — Gy <@\IJ> is the same as in the
NJL model and the vector coupling induces an effective chemical potential for the quarks
Py = g +w = pig + Gy <\IIT\I/> The two auxiliary fields ¢ and w are controlled by the
potential terms and the last term includes the difference AE, between the quasi particle
energy and the energy of free quarks. The NJL part of the model has 4 parameters, the bare
quark mass for the u- and d-quarks (assuming isospin symmetry), the three-momentum
cut-off of the quark-loop integration A and the coupling strengths Gg and Gy, .
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The thermodynamics of ® (and ®*) are controlled by the effective potential U (P, ®*, T')
(Ratti et al., 2007):

U= —%a(T)(I)CI)* +b(T) In[1 — 60D 4 4(P*P*) — 3(PD*)?] (A.5)

where a(T) = agT* + a; ToyT? + axTgT?, b(T) = b3TST.

This choice of effective potential satisfies the Z(3) centre symmetry of the pure gauge
Lagrangian. In the confined phase, U has a minimum at ® = 0, while above the critical
Temperature Ty its minimum is shifted to finite values of ®. The logarithmic term appears
from the Haar measure of the group integration with respect to the SU(3) Polyakov loop
matrix. The parameters ag, a1, as and bs are fixed, as in Ratti et al., 2007, by demanding
a first order phase transition in the pure gauge sector at T, = 270 MeV, and that the
Stefan-Boltzmann limit is reached for 7' — oo. Self consistent solutions are obtained by
minimizing the thermodynamic potential with respect to the fields o, w, ® and ¢*.
PNJL-type models have been used recently to successfully describe lattice results on bulk
properties of a strongly interacting matter (Fukushima, 2004; Ratti, Thaler, and Weise,
2006). These constituent quark models seem to have the correct degrees of freedom in the
asymptotic regime of free quarks and gluons, but lack the rich hadronic spectrum.
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The Taub Adiabat

Following derivations that can be found in Rischke, Bernard, and Maruhn, 1995; Rischke,
1998; Rau, 2013 ete, the relativistic shock adiabat; also called the Rankine-Hugoniot-Taub
adiabat; is derived here.

Consider a gas which gets perturbed by a moving shock wave. In the rest frame of the
shock front, there is a flux of matter along the x-axis from the fully unperturbed region
1 into the perturbed region 2. Fig. B.1 illustrates this situation with the thermodynamic
variables used in the following. On the discontinuity surface, the conservation equations
for energy density, pressure and particle flux as given by the energy-momentum tensor,
[T*] = (e + p) utu” — pgh”, are valid:

[7°%] = [(e + p)yu] =0, (B.1)
[T**] = [(e + p)u™u” +p] =0, (B.2)
[nu”] =0 ; (B.3)

with the conserved particle/baryon number n and x = 1[1]3. Here, the square brackets
denote the difference of the specific quantities on the discontinuity [O] = O; — Os.

By using the definition of the enthalpy w = e + p and the four velocity u = (1, v) the
above equations can be written in the form:

Wi} = wave)s (B.4)
wlv%'yf +p = wgvgﬁ + pa (B.5)

J = N1v17Y1 = N2

with the Lorentz gamma factor v = (1 — 112)71/2.
From Eqn. (B.6), the relation:

.j2 2 2
I 2 B.7
Rt (B.7)

can be derived. This, together with the conservation of the pressure flux (B.5) and the
definition z; = w;/n? leads to:
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U1 U9

€1, P1, ™1 €2, P2, P2

FIGURE B.1: Properties of the matter on both sides of a shock front as seen

in the rest frame of the shock front. In this representation, unperturbed

quantities carry the index 1 and all variables perturbed by the shock are

denoted by index 2. In this illustration the medium is characterised by the

energy density e, the density p, and the pressure p. Instead of the density,

the conserved baryon, or particle, number n can also be used (figure adapted
from Rau, 2013).

2 P2—DN
j =
1 — X9

; (B.8)

which, using the particle flux (B.6) can be transformed into:

(%02’72)2 - <%U1%)2 = (p1 —p2) (21 +22) (B.9)

2 1

Furthermore, using the particle flux (B.6) again, the conservation equation for the energy
(B.4) can be rewritten in the form:

2 2
(w272> _ (wﬂl) —0 (B.lO)
%) sl

By subtracting (B.10) - (B.9), one obtains the final expression for the relativistic shock
adiabat, also called the Taub adiabat:

2 2
(1 Wo wy | W2

_ [ == _ 1+ 2} =0 B.11
(nl) (”2) + (P pl)(”?Jr”%) ’ ( )

using the relation v? — v2y? = 1.

The Taub adiabatic describes the behaviour of a shock wave using the thermodynamic
quantities on both sides of the shock front. The full dynamics of the shock wave are
defined by the initial quantities e; 2,112 and p; o; although the pressure itself is not a free
variable, but is defined by the other parameters via the underlying EoS p(e, n).

In the non-relativistic limiting case which assumes e ~ mn and e > p, the Taub adiabat
goes over into its classical counterpart, the Rankine-Hugoniot equation:
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FiGURE B.2: Flow velocities of the unperturbed and perturbed medium, v

and vy respectively, from the relativistic Taub adiabat in the rest frame of

the shock front (cf. Fig. B.1). The velocities are given as functions of the

ratio of the energy densities on both sides of the shock front using an ideal

gas EoS (p = e/3). The relative velocity between the two systems is denoted
by vl (figure adapted from Rau, 2013).

2(11]1 — W2

1

) + (P2 — p1) (n— + i) =0 (B.12)

1

U

Using the conservation equation for the energy flux (B.1), the velocities on both sides of the
shock front can be derived from the Taub adiabat. In the rest frame of the discontinuity,

the flow velocity in the unperturbed region is given by:

V1 =

and in the perturbed region behind

Vo =

[(p2 — 1) (€2 +p1) |
| (e2 — €1) (€1 + p2) |

[ (p2 — p1) (€1 +p2) ]

| (e2 — €1)(€1+ 1) |

1/2

; (B.13)

the shock front, the velocity is:

1/2

(B.14)

When changing the reference frame, from the resting shock front into the unperturbed
medium 2, the shock front moves with a velocity vy, = v; towards the observer. This is
due to the fact that, the relative velocity only changes sign when changing the reference

frame.

Adding both velocities v; and vy relativistically yields the relative velocity of the flow

between the two regions as:
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(pz - p1)(€2 - 61) V2

(€2 +p1)(e1 + p2)
Fig. B.2 shows the velocities v, v9 and v, for an ultra-relativistic ideal gas with pressure
defined by p = €/3. In the limit of a vanishing intensity of the shock front (e; — ¢;),
one has v; = vy = ¢, = /1/3; which is the smallest possible shock velocity corresponding
to the velocity of sound in the medium. Strictly speaking, such a small perturbation is
not a shock wave but, a sound wave and contrastingly, in this specific case, there is no
discontinuity in any quantities at the position of the medium perturbation. With very
strong perturbations of the medium, (i.e.; e — 00), v; increases to approach 1 and vy
approaches 1/3.

(B.15)

Urel =
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