We often only realize how important health is when diseases manifest themselves through their symptoms and, ultimately, in a diagnosis. Over time, we suffer from many diseases starting with the first childhood disease to colds to gastrointestinal infections. Most diseases pass harmlessly and symptoms fade away. However, not all diseases are so harmless. Alzheimer’s disease, breast cancer, Parkinson’s disease, and colorectal cancer usually cause severe illness with high mortality rates. In pharmaceutical research, efforts are therefore being made to determine the molecular basis of them in order to provide patients with potential relief and, at best, healing. A special group of regulators, involved in the previously mentioned diseases, are voltage-gated proton channels. Thus, the understanding of their structure, function, and potential drug interaction is of great importance for humanity. Voltage-gated proton channels are localized in the cell membrane. As their name indicates, they are controlled by voltage changes. Depolarization of the cell membrane induces conformational changes that open these channels allowing protons to pass through. Here, the transfer is based on a passive process driven by a concentration gradient between two individual compartments separated by the cell membrane. Voltage-gated proton channels are highly selective for protons and show a temperature- and pH-dependent gating behavior. However, little is known about their channeling mechanism. Previous experimental results are insufficient for understanding the key features of proton channeling. In this thesis, for the first time, the cell-free production of voltage-sensing domains (VSD) of human voltage-gated proton channels (hHV1) and zebrafish voltage-sensing phosphatases (DrVSP) is described. Utilizing the cell-free approach, parameters concerning protein stability, folding and labeling can be easily addressed. Furthermore, the provision of a membrane mimetic in form of detergent micelles, nanodiscs, or liposomes for cotranslational incorporations of these membrane proteins is simple and efficient. Both VSDs were successfully produced up to 3 mg/ml. Furthermore, the cell-free synthesis enabled for the first time studies of lipid-dependent co-translational VSD insertions into nanodiscs and liposomes. Cell-free-produced VSDs were shown to be active, and to exist mainly as dimers. In addition, also their activation was stated to be lipid-dependent, which has not been described so far. Solution-state NMR experiments were performed with fully and selectively labeled cell-free produced VSDs. With respect to the development of potential drug candidates, I could demonstrate the inhibition of the VSDs by 2-guanidinobenzimidazole (2GBI). Determined KD-values were comparable to literature data for the human construct. For the first time, a low affinity for 2GBI of the zebrafish VSD could be described. In future, the combination of a fast, easy and cheap cell-free production of fully or selectively labeled VSDs and their analysis by solution-state NMR will enable structure determinations as well as inhibitor binding studies and protein dynamic investigations of those proteins. The results of these investigations will serve as a basis for example for the development of new drugs. In addition, a detailed description of the lipid-dependent activity might be helpful in controlling the function of voltage-gated proton channels in cancer cells and thereby reducing their growth or disturbing their cell homeostasis in general.