In times of a growing world population and the associated demand for high crop yield, the understanding and improvement of plant reproduction is of central importance. One key step of plant reproduction is the development of the male gametophyte, which is better known as pollen. In addition, the development of pollen was shown to be very sensitive to abiotic stresses, such as heat, which can cause crop damage and yield loss. To obtain new insights in the development and heat stress response of pollen, a combined transcriptome and proteome analysis was performed for three pollen developmental stages of non- and heat-stressed tomato plants. The analysis of the transcriptomes of non-stressed pollen developmental stages enabled the determination of mRNAs accumulated in certain developmental stages. The functional analysis of these mRNAs led to the identification of protein families and functional processes that are important at different times of pollen development. A subsequent comparison of the transcriptomes of non- and heat-stressed pollen revealed a core set of 49 mRNAs, which are upregulated in all three developmental stages. The encoded proteins include among other things different heat stress transcription factors and heat shock proteins, which are known key players of the plant heat stress response. Furthermore, 793 potential miRNAs could be identified in the transcriptome of non- and heat-stressed pollen. Interestingly, 38 out of the 793 miRNAs have already been identified in plants. For more than half of these miRNAs potential target mRNAs were identified and the interactions between miRNAs and mRNAs linked to the development and heat stress response of pollen. In total, 207 developmentally relevant interactions could be determined, out of which 34 have an effect on transcriptional-networks. In addition, 24 of the interactions contribute the heat stress response of pollen, whereby this mainly affects post-meiotic pollen. An initial correlation of the proteome and transcriptome of the developmental stages revealed that transcriptome analyses are not sufficient to draw exact conclusions about the state of the proteome. A closer look on the relationship of the transcriptome and proteome during pollen development revealed two translational modes that are active during the development of pollen. One mode leads to a direct translation of mRNAs, while the second mode leads a delayed translation at a later point in time. Regarding the delayed translation, it could be shown that this is likely due to a short-term storage of mRNAs in so-called EPPs. The comparison of the proteome and transcriptome response to heat stress revealed that the proteome reacts much stronger and that the reaction is mainly independent from the transcriptome. Finally, the comparison of the proteome of non- and heat-stressed pollen provided first indications for changes in the ribosome composition in response to heat stress, as 57 ribosomal proteins are differentially regulated in at least one developmental stage.