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Abstract. We study tetraquark resonances with lattice QCD potentials computed for two
static quarks and two dynamical quarks, the Born-Oppenheimer approximation and the
emergent wave method of scattering theory. As a proof of concept we focus on systems
with isospin I = 0, but consider different relative angular momenta l of the heavy b
quarks. We compute the phase shifts and search for S and T matrix poles in the second
Riemann sheet. We predict a new tetraquark resonance for l = 1, decaying into two B
mesons, with quantum numbers I(JP) = 0(1−), mass m = 10576+4

−4 MeV and decay width
Γ = 112+90

−103 MeV.

1 Introduction

A long standing problem in QCD is to understand exotic hadrons. In this work we specialize in
tetraquark systems with two heavy antiquarks b̄b̄ and two lighter quarks qq, where q ∈ {u, d, s, c}.
The existence of bound states has been extensively investigated in the recent past by combining static
lattice QCD potentials and the Born-Oppenheimer approximation. A stable udb̄b̄ tetraquark with
quantum numbers I(JP) = 0(1+) has been predicted [1–9] and been confirmed by similar computations
using four quarks of finite mass [10]. Here we extend our investigation by including a new technique
from scattering theory, the emergent wave method [11], and search for possibly existing tetraquark
resonances (cf. also [12] for more details).

2 Lattice QCD potentials of two static antiquarks Q̄Q̄ in the presence of
two lighter quarks qq

In a first step we have computed potentials V(r) of two static antiquarks Q̄Q̄ in the presence of two
lighter quarks qq, where q ∈ {u, d, s, c}, using lattice QCD [2, 4]. There are both attractive and
repulsive channels. Most promising with respect to the existence of stable tetraquarks or tetraquark
resonances are light quarks q ∈ {u, d} together with (I = 0, j = 0) or (I = 1, j = 1), where I denotes
isospin and j light total angular momentum. The corresponding potentials are not only attractive, but
also rather wide and deep [7].
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Figure 1. (a) At small separations the static antiquarks Q̄Q̄ interact by perturbative one-gluon exchange. (b) At
large separations the light quarks qq screen the interaction and the four quarks form two rather weakly interacting
B mesons.

I j α d in fm

0 0 0.34+0.03
−0.03 0.45+0.12

−0.10

1 1 0.29+0.05
−0.06 0.16+0.05

−0.02

Table 1. Parameters α and d of the potential of Eq. (1) for two static antiquarks Q̄Q̄, in the presence of two light
quarks qq with quantum numbers I and j.

The lattice QCD results for the potentials can be parametrized by a screened Coulomb potential,

V(r) = −α
r

e−r2/d2
(1)

inspired by one-gluon exchange at small Q̄Q̄ separations r and a screening of the Coulomb potential
by the two B mesons at large r (cf. Figure 1). Clearly, the (I = 0, j = 0) potential is more attractive
than the (I = 1, j = 1) potential as can be seen in Figure 2. Numerical results for the parameters α
and d are collected in Table 1. The potential parametrization is then used in the Schrödinger equation
for the relative coordinate of the heavy antiquarks b̄b̄ ≡ Q̄Q̄ to search for either for bound states (cf.
[5, 7–9]) or for resonances (cf. sections 3 and 4 ).

3 The emergent wave method

In this section, we summarize the emergent wave method, which is suited to compute phase shifts and
resonances. More details can be found in Ref. [11].

3.1 Emergent and incident wavefunctions

We consider the Schrödinger equation used for studying bound states:
(
H0 + V(r)

)
Ψ = EΨ . (2)

The first step in the emergent wave method is to split the wave function of the Schrödinger Eq.
into two parts,

Ψ = Ψ0 + X , (3)
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Figure 2. (left) (I = 0, j = 0) potential. (right) (I = 1, j = 1) potential.

where Ψ0 is the incident wave, a solution of the free Schrödinger equation, H0Ψ0 = EΨ0, and X is the
emergent wave. Inserting this in Eq. (2), we obtain:

(
H0 + V(r) − E

)
X = −V(r)Ψ0 . (4)

For any energy E we calculate the emergent wave X by providing the corresponding Ψ0 and fixing
the appropriate boundary conditions. From the asymptotic behaviour of the emergent wave X we then
determine the phase shifts δl , the S matrix and the T matrix. Continuing to complex energies E ∈ C
we find the poles of the S matrix and the T matrix in the complex plane. We identify a resonance with
a pole of S in the second Riemann sheet at m− iΓ/2, where m is the mass and Γ is the resonance decay
width.

3.2 Partial wave decomposition

The two heavy antiquarks b̄b̄ at zero total angular momentum are described by the Hamiltonian:

H = H0 + V(r) = − �
2

2µ
� + V(r) (5)

with reduced mass µ = M/2, where M = 5 280 MeV is the mass of the B meson from the PDG [13].
For simplicity we omit the additive constant 2M in Eq. (5), i.e. all resulting energy eigenvalues are
energy differences with respect to 2M.

We consider an incident plane wave Ψ0 = eik·r, which can be expressed as a sum of spherical
waves,

Ψ0 = eik·r =
∑

l

(2l + 1)il jl(kr)Pl(k̂ · r̂) , (6)

where jl are spherical Bessel functions, Pl are Legendre polynomials and the relation between energy
and momentum is �k =

√
2µE. For a spherically symmetric potential V(r) as in Eq. (1) and an incident

wave Ψ0 = eik·r, the emergent wave X can also be expanded in terms of Legendre polynomials Pl,

X =
∑

l

(2l + 1)il
χl(r)

kr
Pl(k̂ · r̂) . (7)

Inserting Eq. (6) and Eq. (7) into Eq. (4) leads to a set of ordinary differential equations for χl:
(
− �

2

2µ
d2

dr2 +
l(l + 1)
2µr2 + V(r) − E

)
χl(r) = −V(r)kr jl(kr) . (8)
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Figure 3. Results for the phase shift δl as a function of the energy E for different angular momenta l = 0, 1, 2, 3, 4
for the (I = 0, j = 0) potential (α = 0.34, d = 0.45 fm).

3.3 Solving the differential equations for the emergent wave

The potentials V(r), Eq. (1), are exponentially screened, i.e. V(r) ≈ 0 for r ≥ R, where R � d. For
large separations r ≥ R the emergent wave is, hence, a superposition of outgoing spherical waves, i.e.

χl(r)
kr
= i tlh

(1)
l (kr), (9)

where h(1)
l are the spherical Hankel functions of first kind.

Our aim is now to compute the complex prefactors tl, which will eventually lead to the phase shifts.
To this end we solve the ordinary differential equation (8). The corresponding boundary conditions
are the following:

• At r = 0: χl(r) ∝ rl+1.

• For r ≥ R: Eq. (9).

The boundary condition for r ≥ R fixes tl as a function of E.
We solve it numerically, with two different numerical techniques approaches:

(1) a fine uniform discretization of the interval [0,R], which reduces the differential equation to a
large set of linear equations, which can be solved rather efficiently, since the corresponding matrix
is tridiagonal;

(2) a standard 4-th order Runge-Kutta shooting method.

3.4 Phase shifts and S and T matrix poles

The quantity tl is a T matrix eigenvalue (c.f. a standard textbook on quantum mechanics, e.g. [14]).
For instance, at large distances r ≥ R, the radial wavefunction is

kr[ jl(kr) + i tlh
(1)
l (kr)] = (kr/2)[h(2)

l (kr) + e2iδl h(1)
l (kr)] . (10)
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Figure 4. Results for the phase shift δ1 as a function of the energy E for different parameters α for the
(I = 0, j = 0) potential (d = 0.45 fm).

From tl we can calculate the phase shift δl and also read off the corresponding S matrix eigenvalue sl,

sl ≡ 1 + 2itl = e2iδl . (11)

Moreover, note that both the S matrix and the T matrix are analytical in the complex plane. They
are well-defined for complex energies E ∈ C. Thus, our numerical method can as well be applied to
solve the differential Eq. (8) for complex E ∈ C. We find the S and T matrix poles by scanning the
complex plane (Re(E), Im(E)) and applying Newton’s method to find the roots of 1/tl(E). The poles
of the S and the T matrix correspond to complex energies of resonances. Note the resonance poles
must be in the second Riemann sheet with a negative imaginary part both for the energy E and the
momentum k.

4 Results for phase shifts, S matrix and T matrix poles and resonances

4.1 Phase shifts

We first consider the udb̄b̄ potential corresponding to isospin I = 0 and light spin j = 0 (cf. Section
3), since this potential is most attractive. We compute tl and via Eq. (11) the phase shift δl for real
energy E and angular momenta l = 0, 1, 2, . . .. We do not find a fast increase of the phase shift δl as a
function of the energy E which would clearly indicate a resonance (cf. Figure 3).

Thus, we must search more thoroughly for possibly existing resonances. Starting with angular
momentum l = 1 we first search for clear resonance signals by making the potential more attractive,
i.e. we increase the parameter α. We keep the parameter d = 0.45 fm fixed here to preserve the scale
of the potential. The corresponding results for the phase shift δ1 are shown in Figure 4. Indeed, for
α ≈ 0.65 we find clear resonances. For α = 0.72, we find a bound state, since the phase shift δ1 starts
at π and decreases monotonically to 0, when increasing the energy E. However, it is not clear from
this observation, for which values of α a resonance exists or not.
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Figure 5. T matrix eigenvalue t1 as a function of the complex energy E . The vertical axis shows the norm |t1|,
the colours represent the phase arg(tl). A pole in the complex plane of E ∈ C is clearly visible.

4.2 Resonances as poles of the S and T matrices

To clearly identify a resonance, we search directly for poles of the T matrix eigenvalues tl. With this
technique we clearly find a pole for angular momentum l = 1 and physical values of the parameters,
α = 0.34 and d = 0.45 fm. We show this pole in Figure 5 by plotting t1 as a function of the complex
energy E. To understand the dependence of the resonance pole on the shape of the potential, we
again scan different values of the parameter α and determine each time the pole of the eigenvalue t1
of the T matrix. We show the trajectory of the pole corresponding to a variation of α in the complex
plane (Re(E), Im(E)) in Figure 6. Indeed, starting with α = 0.21 we find a pole. This confirms our
prediction of a resonance for angular momentum l = 1 and physical values of the parameters, α = 0.34
and d = 0.45 fm. In what concerns angular momenta l � 1, we find no clear signal for a resonance
pole (except for the bound state pole for l = 0). We also find no poles for any l in the less attractive
case of (I = 1, j = 1).

4.3 Statistical and systematic error analysis

Finally we perform a detailed statistical and systematic error analysis of the pole of t1 and the corre-
sponding values (Re(E), Im(E)) for angular momentum l = 1. We use the same analysis method as
for our previous study of the bound state for l = 0, cf. [7]. To parametrize the lattice QCD data for the
potentials, V lat(r), discussed in Section 3, we perform uncorrelated χ2 minimizing fits with the ansatz
of Eq. (1). To this end we minimize the expression

χ2 =
∑

r=rmin,...,rmax

(
V(r) − V lat(r)
∆V lat(r)

)2
(12)

with respect to the parameters α, d and V0 defined in Eq. (1) and in Refs. [2, 4, 15]. In Eq. (12),
∆V lat(r) denotes the corresponding statistical errors. To quantify systematic errors, we perform a large
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Figure 6. Trajectory of the pole of the eigenvalue t1 of the T matrix in the complex plane (Re(E), Im(E)),
corresponding to a variation of parameter α. We also illustrate with a cloud of diamond points the systematic
error [7] .

number of fits. We vary the range of temporal separations tmin ≤ t ≤ tmax of the correlation function
where V lat(r) is read off as well as the range of spatial b̄b̄ separations rmin ≤ r ≤ rmax considered in
the χ2 minimizing fits to determine the parameters α, d and V0.

To also include statistical errors, we compute the jackknife errors of the medians of Re(E) and
Im(E) and add them in quadrature to the corresponding systematic uncertainties.

With our combined statistical and systematic error analysis we find a resonance energy Re(E) =
17+4
−4 MeV and a decay width Γ = −2Im(E) = 112+90

−103 MeV. Using the Pauli principle and considering
the symmetry of the quarks with respect to colour, flavour, spin and their spatial wave function one
can determine the quantum numbers of the resonance, which are I(JP) = 0(1−). The resonance will
decay into two B mesons and, hence, its mass is m = 2M + Re(E) = 10 576+4

−4 MeV.

5 Summary and outlook

We utilized lattice QCD potentials computed for two static antiquarks in the presence of two light
quarks, the Born-Oppenheimer approximation and the emergent wave method to search for udb̄b̄
resonances. First we computed the scattering phase shifts of a BB meson pair. Then we performed
the analytic continuation of the S matrix and the T matrix to the second Riemann sheet, where we
have searched for poles ∈ C. From these results we have predicted a novel resonance with quantum
numbers I(JP) = 0(1−). Performing a careful statistical and systematic error analysis, we found a
resonance mass m = 10 576+4

−4 MeV and a decay width Γ = 112+90
−103 MeV. For more details, please see

our recent publication [12].
In the future we plan to address the experimentally observed quarkonia tetraquarks, including bb̄

or cc̄ heavy quarks [15], with our method.
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