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Abstract  

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common 

neurodevelopmental disorders with significant and often lifelong effects on social, emotional, 

and cognitive functioning. Influential neurocognitive models of ADHD link behavioral 

symptoms to altered connections between and within functional brain networks. Here, we 

investigate whether network-based theories of ADHD can be generalized to understanding 

variations in ADHD-related behaviors within the normal (i.e., clinically unaffected) adult 

population. In a large and representative sample, self-rated presence of ADHD symptoms 

varied widely; only eight out of 291 participants scored in the clinical range. Subject-specific 

brain-network graphs were modeled from functional MRI resting-state data and revealed 

significant associations between (non-clinical) ADHD symptoms and region-specific profiles 

of between-module and within-module connectivity. Effects were located in brain regions 

associated with multiple neuronal systems including the default-mode network, the salience 

network, and the central executive system. Our results are consistent with network 

perspectives of ADHD and provide further evidence for the relevance of an appropriate 

information transfer between task-negative (default-mode) and task-positive brain regions. 

More generally, our findings support a dimensional conceptualization of ADHD and 

contribute to a growing understanding of cognition as an emerging property of functional 

brain networks. 
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Author Summary  

Neurocognitive models of ADHD link behavioral symptoms to altered connections between 

and within functional brain networks. We investigate whether these network-based theories of 

ADHD can be generalized to ADHD-related behaviors within the normal adult population. 

Subject-specific brain graphs were modeled from functional MRI resting-state data of a large 

and representative sample (N = 291). Significant associations between ADHD-related 

behaviors and region-specific profiles of between-module and within-module connectivity 

were observed in brain regions associated with multiple functional systems including the 

default-mode network, the salience network, and the central executive system. Our results 

support a dimensional conceptualization of ADHD and enforce network-based models of 

ADHD by providing further evidence for the relevance of an appropriate information transfer 

between task-negative (default-mode) and task-positive brain regions. 
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Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is one of the most commonly diagnosed 

neurodevelopmental disorders with a world-wide prevalence of ~ 5.3% (Polanczyk et al., 

2007). Affected patients suffer from symptoms of inattention, impulsivity, and hyperactivity. 

Although symptoms typically start in childhood, ~ 30-50% of patients are also affected during 

adult life (Balint et al., 2008), showing persistent problems in social functioning, lower 

academic success, and higher risk for psychiatric problems (Bussing et al., 2010; Fischer et 

al., 1990). ADHD has long been treated as categorical concept ignoring considerable 

symptom variability across (Mostert et al., 2015) and within persons over time (Biederman et 

al., 2000). In line with a more dimensional conceptualization of ADHD (Marcus et al., 2012), 

recent research however demonstrates that even non-clinical variations in ADHD symptoms 

significantly impact cognitive functioning and psychological wellbeing (Brown & Casey, 

2016; Groen et al., 2018).  

 

Neuroimaging studies identified associations between ADHD and a wide range of variations 

in brain structure and function. Reductions in gray matter volume are frequent and most 

consistently found in prefrontal regions, basal ganglia, and cerebellum (Frodl & Skokauskas, 

2012; Konrad et al., 2018). ADHD-related reductions in structural brain connections were 

observed in cortico-striato-thalamico-cortical loops (Cortese et al., 2013; Konrad et al., 2010), 

corpus callosum (Pastura et al., 2016; van Ewijk et al., 2014), and the cerebellar peduncles 

(Ashtari et al., 2005; Nagel et al., 2011). Functional neuroimaging (see Cortese et al., 2012; 

McCarthy et al., 2014; Norman et al., 2016 for meta-analyses) additionally indicates altered 

patterns of neural activation during different cognitive tasks, most prominently reduced 

activation in task-positive regions (executive control network, ventral attention/salience 

network, striatum; Seeley et al., 2007) and lower levels of task-related deactivation in task-

negative regions (default-mode network; Raichle et al., 2001). Investigations of task-free (i.e., 

resting-state) fMRI have demonstrated disturbed functional connectivity patterns (Rubia, 
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2018; Konrad et al., 2018), which have been proposed as an intrinsic neural characteristic of 

ADHD (Castellanos & Aoki, 2016).  

 

Current neurocognitive models of ADHD focus on altered connectivity patterns between 

functional brain networks: The default-mode interference hypothesis (Sonuga-Barke & 

Castellanos, 2007) postulates that ADHD-related fluctuations and variability in attention and 

cognition (Castellanos et al., 2005) result from an inadequate regulation of the default-mode 

network by task-positive networks – which according to this model increases the likelihood of 

spontaneous and distracting intrusions of introspective thought into ongoing cognitive 

processes. Empirical support comes from studies reporting increased interactions (decreased 

anti-correlations) between the default-mode and task-positive networks (Sun et al., 2012; 

Mills et al., 2018; Mowinckel et al., 2017) as well as systematic hyperactivation in default-

mode regions during cognitive tasks (Cortese et al., 2012; see also the systems-neuroscience 

model of ADHD proposed by these authors). Recent studies broadened the focus towards 

three-network models of ADHD, proposing that stronger interactions between salience and 

default-mode network relative to weaker interactions between salience and central executive 

network reflect a deficient ability of the salience network to adaptively switch between central 

executive and default-mode network in response to current task demands (Choi et al., 2013).  

 

Graph-theoretical network analysis has emerged as a valuable method for studying network 

properties of the human brain (Sporns, 2011a,b). Brain networks can be partitioned into sub-

networks (communities/modules) that share topological properties and supposedly fulfill 

specific cognitive or behavioral functions (Sporns & Betzel, 2016). Taking into account this 

modular structure of the human brain makes it possible to examine region-specific 

interactions between and within different networks in a quantifiable manner – and to test 

neurocognitive models of ADHD. First graph-theoretical investigations of ADHD-related 

network organization (Lin et al., 2014; Barttfeld et al., 2014), however, studied modularity 
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only at a whole-brain level, i.e., as global property of the entire brain. Accordingly, this work 

cannot inform about altered connection patterns between or within different 

networks/modules as postulated by neurocognitive theories of ADHD. Here, we aim at 

relating graph-theoretical network analysis more directly to network models of ADHD by 

analyzing two local graph-theoretical measures that provide complementary information 

about a brain region’s connections within and between different modules.  

 

Finally, it is noteworthy that empirical support for network models of ADHD so far primarily 

comes from categorical studies of ADHD, i.e., group-level comparisons between patients and 

controls (Sun et al., 2012; Choi et al., 2013). As outlined above, this approach ignores recent 

advances towards a more dimensional understanding of ADHD (Marcus et al., 2012). As of 

now, it accordingly remains unclear whether network models of ADHD are valid only for 

clinically affected persons or whether they may also inform more generally about mechanisms 

linking between-person variation in brain network organization to variation in cognition. To 

address this question, we applied graph-theoretical modularity analyses to a large and 

representative sample of N = 291 adults. 

 

Methods  

The current study was conducted with data acquired at the Nathan S. Kline Institute for 

Psychiatric Research and online distributed as part of the 1000 Functional Connectomes 

Project INDI (Enhanced NKI Rockland Sample, Nooner et al., 2012, 

http://fcon_1000.projects.nitrc.org/indi/enhanced/). Experimental procedures were approved 

by the Nathan S. Kline Institute Institutional Review Board (#239708), and informed written 

consent was obtained from all participants. Note that data acquisition, preprocessing, and 

graph-theoretical analyses are to a large degree identical with a previous publication from our 

research group, which however focused on a different outcome measure (Hilger et al., 2017b). 
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The code used in the current study has been deposited on github at https://github.com/ 

KirstenHilger/ADHD-Modularity (https://doi.org/10.5281/zenodo.2574588). 

 

Participants 

301 participants with complete phenotypical and neuroimaging data were selected from the 

Enhanced NKI Rockland sample. Two participants were excluded due to medication with 

methylphenidate, which can alter neural activation related to ADHD symptoms (e.g., Shafritz 

et al., 2004); eight participants were excluded due to high in-scanner motion, i.e., mean 

framewise displacement (FD) > 0.2 mm. Thus, our final sample comprises 291 participants 

(18-60 years, M =  39.34, SD = 13.80; 189 females; handedness: 251 right, 21 left, 19 

ambidextrous). ADHD symptoms were assessed with the Conners’ Adult ADHD Rating 

Scales (Conners et al., 1999; Self Report, Short Version/CAARS-S:S), from which four 

subscale scores (Inattention/Memory Problems, Hyperactivity/Restlessness, 

Impulsivity/Emotional Lability, and Problems with Self-Concept) as well as the total Index of 

ADHD symptoms were computed. The ADHD Index was used as variable of interest in all 

graph analyses. Potential differences in brain network organization due to different levels of 

intelligence (e.g., Hilger et al., 2017a; van den Heuvel et al., 2009) were controlled by using 

the Full Scale Intelligence Quotient (FSIQ; Wechsler Abbreviated Scale of Intelligence, 

WASI, Wechsler, 1999; range 68 to 135, M = 99.22, SD =12.50) as covariate of no interest. 

 

fMRI Data Acquisition 

Resting-state fMRI data were acquired on a 3 Tesla whole-body MRI scanner (MAGNETOM 

Trio Tim, Siemens, Erlangen, Germany). A T2*-weighted BOLD-sensitive gradient-echo EPI 

sequence was measured with the following parameter: 38 transversal axial slices of 3mm 

thickness, 120 volumes, field of view [FOV] 216x216mm, repetition time [TR] 2500ms, echo 

time [TE] 30ms, flip angle 80°, voxel size 3x3x3mm, acquisition time 5.05min. Further, 

three-dimensional high-resolution anatomical scans were obtained for coregistration with a 

sagittal T1-weighted, Magnetization Prepared-Rapid Gradient Echo sequence (176 sagittal 
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slices, FOV 250x50mm, TR 1900ms, TE 2.5ms; flip angle 9°, voxel size 1x1x1mm, 

acquisition time 4.18min). 

 

fMRI Data Preprocessing 

Preprocessing of neuroimaging data was conducted using the freely available software 

packages AFNI (http://afni.nimh.nih.gov/afni) and FSL (http://www.fmrib.ox.ac.uk/fsl/). The 

first four EPI volumes were discarded to allow for signal equilibration. Next steps comprised 

slice-time correction, three-dimensional motion correction, time-series despiking, and spatial 

smoothing (6mm FWHM Gaussian kernel). Four-dimensional mean-based intensity 

normalization was performed and data were temporally filtered with a bandpass filter of 

0.005–0.1Hz. Linear and quadratic trends were removed and all individual EPI volumes were 

normalized to the MNI152 template (3x3x3mm resolution) using nonlinear transformations 

and each individual’s anatomical scan. Finally, nine nuisance signals were regressed out, i.e., 

six motion parameters (rigid body transformation) as well as regressors for cerebrospinal fluid 

(intra-axial), white matter, and global mean signal that were calculated by averaging (AFNI, 

3dmaskave) voxel-wise BOLD time series within subject-specific masks resulting from FSL’s 

automatic segmentation (FAST) of the anatomical image. Framewise displacement (FD) was 

calculated on the basis of the six motion parameters indicating translation/rotation in three 

directions between two consecutive volumes, FDi = |Δdix|+|Δdiy|+|Δdiz|+|Δαi|+|Δβi|+|Δγi| 

(Power et al., 2012); subjects with mean FD > 0.2 mm were excluded (N = 8; see above). In-

scanner motion (mean FD) was not significantly related to the variable of interest, i.e., ADHD 

Index (r = -.05, p = .409). Nevertheless, to further minimize potential remaining influences of 

head motion on the observed effects, we added mean FD as control variable in all individual 

difference analyses. For subsequent graph analyses, data were downsampled by factor two, 

resulting in individual maps of 6x6x6mm resolution. The preprocessing scripts used in the 

current study were released by the 1000 Functional Connectomes Project and are available for 

download at http://www.nitrc.org/projects/fcon_1000. 
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Graph-theoretical Analyses of Intrinsic Connectivity                                               

Individual brain graphs were constructed on the base of all 5,411 gray matter voxels in the 

brain, which served as nodes for the respective graphs. Network edges were modeled between 

nodes showing high positive correlations of BOLD signal time series. Edges between 

physically close nodes (< 20 mm) were excluded, as they may result from motion artifacts 

and spuriously high correlations induced by shared nonbiological signals (Power et al, 2011). 

Community detection and the subsequent graph metrics were calculated for five separate 

graphs defined by five proportional thresholds (representing the top 10%, 15%, 20%, 25%, 

and 30% of strongest edges, i.e., highest correlations), which also excluded all negative 

network edges (Murphy et al., 2009). The subject-specific averages of graph metrics across 

these five thresholds were used in all following analyses (see also Hilger et al., 2017b). 

Finally, all graphs were binarized (as recommended for individual difference analyses; van 

Wijk et al., 2010).  

 

Global Modularity 

To study the modular organization of intrinsic brain networks, each individual network graph 

was parcellated into several functionally distant communities or modules. To this end, we 

applied the standard Louvain algorithm (Blondel et al., 2008), which finds the optimal 

modular partition in an iterative procedure by maximizing the global modularity Q (Newman 

& Girwan, 2004):  
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Here, m represents the number of modules, lin s is the number of edges inside module s, L 

reflects the total number of edges in the network, and ks represents the total degree of the 

nodes in module s. Thus, the first term of formula (1) represents the actual fraction of within-
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module edges relative to all edges in the network, whereas the second term represents the 

expected fraction of within-module edges. When the first term (actual within-module edges) 

is much higher than the second term (expected within-module edges), many more edges are 

present inside module s than expected by chance. In this case, the global modularity Q, which 

results from summing up these differences over all modules m in the network, increases. 

Usually, modularity values above 0.3 are taken as indicator of a network’s modular 

organization (Fortunato & Barthélemy, 2007). In addition to global modularity Q, we 

calculated three further whole-brain measures of modular network organization for the final 

module partition of each participant, i.e., number of modules, average module size, and 

variability in module size. 

 

Node-specific modularity measures 

Node-specific analyses of network modularity were conducted using participation coefficient 

pi and within-module degree zi. The participation coefficient pi assesses the diversity of each 

node’s connections across all modules in the brain (Bertolero et al., 2017) and is defined as:  

   

   (2)      𝑝6 = 1 −	# 			,-'(1)
-'

/
.

1:;
 

 

Here, ki is the degree of node i and thus represents the number of edges directly attached to 

node i. ki(m) refers to the subset of edges linking node i to other nodes within the same 

module m (Rubinov & Sporns, 2010; Guimerà & Amaral, 2005). The participation coefficient 

pi is 1 when a node is equally connected to all modules within the network, while it is 0 when 

all of its connections are to one single module (Bertolero et al., 2015, 2017, 2018; Sporns & 

Betzel, 2016). Within-module degree zi, in contrast, represents within-module connectivity 

and is defined as:  
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Here, mi is the module of node i. ki (mi) represents the number of connections within the 

node’s own module (i.e., the within-module degree of node i), and k̅  (mi ) and s k(mi)	are the 

mean and standard deviation of the within-module degree distribution of module mi  (Guimerà 

& Amaral, 2005). Nodes that are highly connected to nodes within their own module receive 

positive values of within-module degree zi, whereas nodes with low levels of connectivity 

within their own module are characterized by negative values (Sporns & Betzel, 2016). All 

graph-theoretical network analyses were conducted in python using the open-source software 

network-tools (Ekman & Linssen, 2015).  

 

Node-type analysis 

Functional cartography (Guimerà & Amaral, 2005) relies on the above-described node-

specific metrics (i.e., participation coefficient pi, within-module degree zi) and can be used to 

assign each network node into one of seven different classes, which are in turn characteristic 

for the node’s role in within- and between-module communication (see Figure 1C). As 

suggested in the original work of Guimerà and Amaral (2005) and used in previous studies 

(e.g., Sporns et al., 2011), nodes with within-module degree zi  ≥ 1 were classified as hubs 

(17,86% of all nodes) and nodes with zi  < 1 were classified as non-hubs. On the basis of the 

participation coefficient pi, non-hubs were further classified as ultra-peripheral (pi  ≤ 0.05), 

peripheral (0.05 < pi ≤ 0.62), non-hub connector (0.62 < pi ≤ 0.80), or non-hub kinless nodes 

(pi > 0.80), whereas hubs were classified as provincial (pi. ≤ 0.30), connector (0.30 < pi. ≤ 

0.75), or kinless hubs (pi  > 0.75). 

 

ADHD symptoms and differences in modular network organization                                      

The primary aim of the present study was to examine whether or not individual differences in 
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the strength of ADHD-related behavior, in a non-clinical sample, are associated with 

individual differences in modular brain network organization. To this end, partial correlations 

were calculated between the Conners’ ADHD Index and global measures of modular brain 

organization, i.e., global modularity Q, number of modules, average module size, and 

variability in module size, as well as whole-brain proportions of the seven node types. In these 

analyses, we controlled for effects of age, sex, handedness, FSIQ, and mean FD, and excluded 

outliers, i.e., subjects with values > 3 SD above/below the mean of the respective variable of 

interest. Statistical significance was accepted at p < .05, however correcting for multiple 

comparisons using Bonferroni correction, resulting in p-thresholds of .013 for global 

modularity measures (4 analyses) and .007 for node-type proportions (7 analyses). To 

quantify the evidence in favor of the null hypothesis (i.e., absence of an association) for non-

significant correlation results, we calculated Bayes Factors (BF01; Jeffreys, 1961; Wetzels & 

Wagenmakers, 2012) using Bayesian linear regression and the default prior (Rouder & 

Morey, 2012) as implemented in JASP (Version 0.8.6; https://jasp-stats.org). Substantial 

evidence for the null was accepted at BF01 > 3 (Jeffreys, 1961).  

  

Finally, associations between Conners’ ADHD Index and node-specific (i.e., voxel-wise) 

measures of modular network organization (i.e., within-module degree zi, participation 

coefficient pi) were examined using regression models in the Statistic Parametric Mapping 

software (Welcome Department of Imaging Neuroscience, London, UK), again controlling 

for age, sex, handedness, intelligence (FSIQ), and mean FD. The resultant p-values were 

FWE-corrected for multiple comparisons with Monte Carlo-based cluster-level thresholding 

as implemented in AFNI (Forman et al., 1995), whereby an overall threshold of p < .05 was 

achieved by combining a voxel threshold of p < .005 with a cluster-based extent threshold of 

k > 26 voxels (3dClustSim; AFNI version August 2016; voxel size 3x3x3mm; 10,000 

permutations; Ward, 2000).  
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Results  

ADHD-related behavior 

A descriptive characterization of the distribution of self-rated ADHD symptoms as assessed 

with the Conners’ Adult ADHD Rating Scale (CAARS) is presented in Figure 1A,B (see also 

Table 1A). As expected for a representative adult sample, the distribution is positively (i.e., 

right) skewed and the majority of participants exhibited ADHD Index values clearly below 

the threshold for ADHD diagnosis, i.e., t-scores < 65 (Conners et al., 1999). Nevertheless, we 

observed considerable variation between participants in the global ADHD Index (Figure 1A) 

and its four subscales, i.e., inattention, impulsivity, hyperactivity, problems with self-concept 

(Figure 1B), suggesting that the CAARS is well suited for describing non-clinical between-

person variations in ADHD-related behavior. Note that although eight participants reported a 

clinical diagnosis of ADHD, only one of them fulfilled the CAARS’ ADHD criteria. 

Nevertheless, all participants with clinical diagnosis fell within the upper half of the 

distribution (Figure 1A).  

 

Table 1. Descriptive statistics of the CAARS scales and global modularity measures 
 

 

 

M  

 

SD 

 

Median 

 

Min 

 

Max 

 
ADHD symptoms  

     

     ADHD Index 8.36 5.13 8.00   0  28 
          inattention 3.82 3.83  4.00  0  13 
          hyperactivity 4.42 2.65 4.00  0  12 
          impulsivity 3.07 2.32 2.00  0  12 
          self-concept problems 4.24 3.22 4.00 0  15 
 
Whole-brain modularity measures 

     

     global modularity  .37  .03   .30  .48 
     number of modules  3.54   0.33   2.80   4.80 
     average module size 1572.35  137.98   1149.01   2073.07 
     variability in module size  371.04  161.55  94.49  1105.95 
      

 

M, mean; SD, standard deviation; Min, minimum value observed across all participants; Max, maximum value 
observed across all participants. Statistics for the whole-brain modularity measures refer to subject-specific 
values after averaging across all graph-defining thresholds, i.e., 10%, 15%, 20%, 25%, 30%. The variables 
average module size and variability in module size were measures in nodes. 
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Modular brain network organization 

Table 1B reports descriptive statistics for global characteristics of modular network 

organization, i.e., global modularity Q, number of modules, average module size, and 

variability in module size. Mean values for global modularity Q were all greater than .3, 

indicating a clear modular organization in all participants (Fortunato & Barthélemy, 2007). 

The proportions of functionally different node types (Figure 1C,D) are likely to influence the 

global information flow (van den Heuvel & Spons, 2013), and are thus also considered as 

global properties of modular network organization. As we would assume for a network whose 

overall organization is characterized by substantial modularity and small-worldness (Gallos et 

al., 2012; Sporns & Betzel, 2016), only a minority of nodes were characterized as hubs (i.e., 

connector, provincial, or kinless hubs; in total 17.86%) and the most common node types 

were peripheral nodes and non-hub connector nodes.  

 

For most participants, the anatomical distribution of node types matched observations of 

previous studies (see e.g., Meunier et al., 2010): For example, connector hubs were localized 

along the midline and on the borders between anatomically segregated cortices, whereas less 

important nodes were observed in more peripheral and functionally specialized regions. 

Figure 1E visualizes this anatomical distribution for one randomly selected participant (see 

also Hilger et al., 2017b). 

 

The group-average spatial distribution of the two nodal measures, participation coefficient pi 

and within-module degree zi, matched nearly perfectly the distribution we recently published 

for a slightly larger sub-sample from the same dataset (see Figure 1 in Hilger et al., 2017b), 

and is therefore not visualized again. Network nodes with high values of participation 

coefficient pi were located in medial prefrontal (i.e., anterior and mid-cingulate) cortex, 

anterior insula, inferior frontal gyrus, superior temporal gyrus, medial temporal structures 
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(amygdala, hippocampus), inferior parietal lobule, posterior cingulate cortex/precuneus, and 

in the thalamus. Nodes with high within-module degree zi were observed in large parts of 

medial prefrontal cortex (again including anterior and mid-cingulate cortex), supplementary 

motor area, lateral superior and middle frontal gyri, anterior insula, postcentral gyrus, 

temporo-parietal junction, posterior cingulate cortex/precuneus, middle occipital/lingual 

gyrus, and in the cuneus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Frequency plots of CAARS subscales and illustration of node-type analysis. (A) Frequency histogram 
of Conners’ ADHD Index t-scores. Values > 65 describe the 95-98th percentile, are interpreted as “much above 
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average”, and suggest the presence of ADHD (Conners et al., 1999). The respective area is depicted in light red. 
Subjects with clinical ADHD diagnosis are illustrated as small black diamonds in the histogram. (B) Frequency 
histograms of t-scores of CAARS subscales. (C) Seven node types defined as a function of their profile of 
between-module and within-module connectivity, i.e., participation coefficient pi and within-module degree zi. 
Adapted from Guimerà and Amaral (2005; functional cartography; see Methods). (D) Proportions of node types 
within the whole brain and across all subjects. The proportions of node types were calculated for each subject 
separately and averaged across all participants afterwards. (E) Anatomical distribution of node types within the 
whole brain, depicted here for exemplary purposes for one subject. Hubs (zi > 1) are illustrated in warm colors 
(yellow to red), non-hub nodes (zi ≤ 1) are illustrated in cool colors (green to blue). Subject-specific values of 
participation coefficient pi and within-module degree zi as well as the respective proportions of node types within 
the whole brain were calculated for proportionally thresholded and binarized graphs (five different cut-offs, i.e., 
the top 10%, 15%, 20%, 25%, or 30% of strongest edges were used to model the graph). Individual node-type 
proportions were calculated by averaging across the five thresholds and averaged across all subjects afterwards. 
The x- and z-coordinates represent coordinates of the Montreal Neurological Institute template brain (MNI152). 
 

Local but not global measures of modular brain network organization are associated 

with ADHD symptoms 

Neither global measures of modular organization (global modularity Q, number of modules, 

average module size, and variability in module size) nor the whole-brain proportions of node 

types were significantly associated with Conners’ ADHD Index (Table 2). Bayes Factors 

exceeded 3 in only two out of 11 analyses, indicating that despite the relatively large sample 

of almost 300 participants, further evidence would be needed to achieve robust support 

against an association between ADHD symptoms and global modularity measures. 

 
Table 2. ADHD symptoms and global modularity measures 

 

 

 

rpart. 

 

ppart. 

 

BF01-Reg. 

 
Whole-brain modularity measures 

   

     global modularity  .11  .056 0.62 
     number of modules  -.09  .150 1.36 
     average module size  .08  .213 1.95 
     variability in module size  -.02  .781 3.47 
    
Whole-brain proportions of node types    
     ultra-peripheral nodes  .01  .813 3.78 
     peripheral nodes  .06  .363 2.29 
     non-hub connector nodes  -.07  .229 2.30 
     non-hub kinless nodes  -.10  .103 0.98 
     provincial hubs  .09  .148 1.33 
     connector hubs  -.07  .252 2.56 
     kinless hubs  -.07  .255 2.58 
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rpart., Pearson’s correlation coefficient for the partial correlation controlling for effects of age, sex, handedness, 
and FSIQ; ppart., p-value of significance for the partial-correlation; BF01-Reg., Bayes Factor in favor of the null 
hypothesis (i.e., absence of correlation). Bayes Factors were calculated for linear regression models predicting 
ADHD Index values by the respective whole-brain measure of modular network organization or whole-brain 
proportions of node types, respectively, while effects of age, sex, handedness, mean FD, and FSIQ were 
controlled.  
 
 
However, we observed significant associations between Conners’ ADHD Index and node-

specific characteristics (Tables 3-5; Figures 2,3). Thus, although individual variation in 

ADHD-related behaviors did not relate to global properties of modularity, there was a 

systematic association with the embedding of specific brain regions into the communication 

between and within different modules. Positive associations between ADHD Index and 

participation coefficient pi were observed in five clusters, i.e., in left and right posterior insula 

(extending laterally into the superior temporal gyri), anterior cingulate cortex, posterior-

medial superior frontal gyrus (supplementary motor area), as well as in the left inferior 

parietal lobe (primarily supramarginal gyrus). Negative associations were observed in eight 

clusters, including anterior cingulate gyrus, right lateral middle frontal gyrus, left 

supplementary motor area, left posterior fusiform gyrus, right intraparietal sulcus, right 

posterior cingulate cortex/precuneus, posterior middle temporal gyrus adjacent to the occipital 

cortex, and in the right inferior parietal lobe (Table 3, Figure 2).  

 

Concerning within-module connectivity, ADHD Index was positively associated with within-

module degree zi  in six clusters of nodes (see Table 4, Figure 3). Two extensive temporal 

clusters were observed bilaterally, comprising not only lateral temporal cortices but also the 

amygdalae, hippocampi, and anterior fusiform gyri. Further, two large central clusters were 

identified that extended across central and postcentral sulci, from precentral and postcentral 

gyri to the supramarginal gyri and anterior parts of intraparietal sulci. Smaller clusters were 

observed in supplementary motor area and superior portions of left post- and precentral gyri 

(paracentral lobule). 
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Figure 2. Significant associations between Conners’ ADHD Index and participation coefficient (see also Table 
3). Participation coefficient pi (see Methods for details) was calculated for binarized and proportionally 
thresholded graphs using five thresholds (graphs were defined by the top 10%, 15%, 20%, 25%, or 30% of 
strongest edges). Input for analyses were the individual mean maps for participation coefficient pi , which were 
calculated by averaging across these five thresholds for each participant separately. Statistic parametric maps of 
participation coefficient pi  are shown at a voxel-level threshold of p < .005 (uncorrected) combined with a 
cluster-level threshold of k > 26 voxels, corresponding to an overall family-wise error corrected threshold of 
p < .05 (see Methods). Clusters with effects in both (between-module and within-module connectivity, i.e., pi and 
zi) are marked with an asterisk (see also Table 5). (A) Slice view, the x-, y-, and z-coordinates represent 
coordinates of the Montreal Neurological Institute template brain (MNI152). (B) Render view, projection to the 
surface of the brain, search depth 12 voxels. PI, posterior insula; IPL, inferior parietal lobe; IPS, intraparietal 
sulcus; ACC, anterior cingulate cortex; MFG, middle frontal gyrus; SMA, supplementary motor area; pFusi, 
posterior fusiform gyrus; PCC, posterior cingulate cortex; MTG, middle temporal gyrus; smFG, superior medial 
frontal gyrus. 
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Table 3. ADHD symptoms and participation coefficient 
 

Brain Region 

 

BA 

 

Hem 

 

x 

 

y 

 

z tmax 

 

k 

 

     positive association        
            posterior inula* 13 L -33 -9 9 3.78 325 
            posterior inula, putamen* 13 R 33 18 0 3.48 207 
            anterior cingulate cortex 24 L -6 18 24 3.26 44 
            superior medial frontal gyrus* 6 L -18 -3 69 3.27 38 
            inferior parietal lobe* 40 L -57 -36 21 4.91 250 

     negative association        
            anterior cingulate cortex 32, 9 L -9 36 30 3.27 37 
            middle frontal gyrus 6 R 33 -12 45 3.22 53 
            supplementary motor area 8, 6 L -6 18 57 3.65 49 
            posterior fusiform gyrus 20, 36 L -51 -36 -27 4.08 49 
            intraparietal sulcus* 40 R 33 -36 48 3.33 90 
            posterior cingulate cortex  R 12 -39 9 3.71 26 
            middle temporal gyrus       37, 19 R 57 -63 0 3.77 91 
            inferior parietal lobe 40 R 57 -39 51 3.08 36 
        

BA, approximate Brodmann’s area; Hem, hemisphere; L, left; R, right; regions with significant effects in both 
measures (between-module and within-module connectivity) are marked with an asterisk and separately listed in 
Table 5; coordinates refer to the Montreal Neurological Institute template brain (MNI); tmax, maximum t statistic 
in the cluster; k, cluster size in voxels of size 3 x 3 x 3 mm. 

 

Negative associations between ADHD Index and within-module degree zi were observed in 

13 node clusters. Four of those clusters were located medially, in inferior parts of medial 

frontal gyrus (border to rostral anterior cingulate cortex), in superior parts of postero-medial 

frontal gyrus, dorsal anterior cingulate cortex, and the precuneus. More laterally located 

clusters comprised nearly the entire bilateral insulae and reached laterally into the inferior 

frontal, superior temporal, and inferior parietal lobes (supramarginal gyri), as well as medially 

into the putamen. Further negatively associated node clusters were observed in right middle 

and inferior temporal gyri, bilateral thalami, bilateral posterior fusiform gyri, left posterior 

cingulate cortex, and right inferior occipital cortex. In general, the spatial distribution of 

significantly associated network nodes showed a surprisingly high degree of inter-

hemispheric symmetry for both measures.   
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Figure 3. Significant associations between Conners’ ADHD Index and within-module degree (see also Table 4). 
Within-module degree zi (see Methods for details) was calculated for binarized and proportionally thresholded 
graphs using five thresholds (graphs were defined by the top 10%, 15%, 20%, 25%, or 30% of strongest edges). 
Input for analyses were the individual mean maps for within-module degree zi, which were calculated by 
averaging across these five thresholds for each participant separately. Statistic parametric maps of within-module 
degree zi  are shown at a voxel-level threshold of p < .005 (uncorrected) combined with a cluster-level threshold 
of k > 26 voxels, corresponding to an overall family-wise error corrected threshold of p < .05 (see Methods). 
Clusters with effects in both (between-module and within-module connectivity, i.e., pi and zi) are marked with an 
asterisk (see also Table 5). (A) Slice view, the x-, y-, and z-coordinates represent coordinates of the Montreal 
Neurological Institute template brain (MNI152). (B) Render view, projection to the surface of the brain, search 
depth 12 voxel. TC, temporal cluster comprising also amygdala, hippocampus, and parts of fusiform gyrus; Cen, 
central cluster spreading across central and postcentral sulci from precentral gyri and postcentral gyri to the 
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inferior parietal lobes (comprising supramarginal gyri and anterior parts of intraparietal sulci); PCL, paracentral 
lobule; mFG, medial frontal gyrus; Ins, insular cluster comprising also parts of putamen, superior temporal 
gyrus, inferior frontal gyrus and inferior parietal lobe; MTG, middle temporal gyrus; pFusi, posterior fusiform 
gyrus; Pre, precuneus; IOG, inferior occipital gyrus; smFG, superior medial frontal gyrus; Thal, Thalamus; 
SMA, supplementary motor area. 

 

Table 4. ADHD symptoms and within-module degree 
 

Brain Region 

 

BA 

 

Hem 

 

x 

 

y 

 

z tmax 

 

k 

 
     positive association        

            supplementary motor area 8, 6 R/L 0 30 60 3.50 49 
            temporal cortex, amygdala, 
mmmmmmhippocampus, fusiform gyrus 

38, 20, 28 R 27 6 -33 5.31 577 

            temporal cortex, amygdala, 
mmmmmmhippocampus, fusiform gyrus 

20, 38 L -33 -21 -33 4.63 606 

            precentral gyrus, postcentral gyrus,     
mmmmmminferior parietal lobe* 

3, 40 R 42 -33 51 6.28 619 

            precentral gyrus, postcentral gyrus,     
mmmmmminferior parietal lobe 

3, 40 L -45 -33 51 5.22 397 

            paracentral lobule 6, 4 L -12 -42 72 3.73 171 
 
     negative association 

       

            medial frontal gyrus 11, 32, 25 R 3 30 -15 3.96 119 
            anterior cingulate cortex 24 R 9 18 24 3.70 27 
            insula, putamen, superior temporal 
mmmmmmmgyrus, inferior frontal gyrus, 
mmmmmmminferior parietal lobule* 

13, 22, 40 L -48 9 -3 5.23 862 

            insula, putamen, superior temporal 
mmmmmmmgyrus, inferior frontal gyrus, 
mmmmmmminferior parietal lobule* 

13, 47, 22 R 33 0 15 5.54 606 

            superior medial frontal gyrus* 6, 32, 24 L -12 -3 63 5.37 497 
            midde temporal gyrus 21, 20 R 63 -6 -21 3.93 43 
            thalamus  R 15 -18 9 4.02 29 
            thalamus  L -28 -24 6 3.44 30 
            posterior fusiform gyrus 37, 19 L -36 -48 -12 4.38 187 
            posterior fusiform gyrus  R 36 -57 -6 3.27 33 
            posterior cingulate cortex 30 L -24 -66 21 3.70 47 
            precuneus 19, 7, 31 R/L 6 -78 33 3.79 57 
            inferior occipital gyrus 18 R 27 -84 -12 4.09 79 
        

BA, approximate Brodmann’s area; Hem, hemisphere; L, left; R, right; regions with significant effects in both 
measures (between-module and within-module connectivity) are marked with an asterisk and separately listed in 
Table 5; coordinates refer to the Montreal Neurological Institute template brain (MNI); tmax, maximum t statistic 
in the cluster; k, cluster size in voxels of size 3 x 3 x 3 mm. 

 
In several brain regions, self-rated ADHD-related behaviors were associated with both, i.e., 

participation coefficient and within-module degree. These involve nine of the above-

described clusters (marked with an asterisk in Figures 2,3; cf. also Table 5). In participants 
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with higher ADHD Index, posterior insulae, left postero-medial superior frontal gyrus, and 

left inferior parietal lobe showed higher participation coefficient along with relatively lower 

within-module degree. The opposite pattern, i.e., lower participation coefficient and higher 

within-module degree was observed in the right intraparietal sulcus.  

 

Table 5. ADHD symptoms and effects in both participation coefficient and within-module degree 
 

Brain Region 
 

BA 

 

Hem 

 

x 

 

y 

 

z 

 

k 

     
positive association with pi and negative association with zi 

 

            posterior insula, superior temporal    
ddddddddddgyrus, putamen 

13, 22 L -57 0 9 237 

            posterior insula, putamen 13 R 27 -15 9 137 
            superior medial frontal gyrus 6 L -21 -6 69 29 
            inferior parietal lobe 40 L -69 -39 24 67 
     
positive association with zi and negative association with pi 

 

            intraparietal sulcus 40 R 27 -36 45 79 
       

BA, approximate Brodmann’s area; Hem, hemisphere; L, left; R, right; coordinates refer to the Montreal 
Neurological Institute template brain (MNI); tmax, maximum t statistic in the cluster; k, cluster size in voxels of 
size 3 x 3 x 3 mm. 
 

Similar effects were observed for the four subscales of the CAARS (see Supplementary 

Tables S1 and S2 for associations with global measures).  

 

Post-hoc analyses 

One of the few studies that so far investigated the association between ADHD and graph-

theoretical brain network characteristics observed higher global modularity in patients with 

ADHD (Lin et al., 2014) – which is not consistent with our results. In order to understand if 

choices of analysis strategies (here: group comparison vs. correlative approach) may have 

caused this difference, we compared in a post-hoc analysis the 20 subjects with the highest 

ADHD Index with those 20 participants exhibiting the lowest score, in our sample. Also here, 

we found no significant differences in global modularity Q (t = 1.46; p = .15) or any of the 
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other global measures reported above (number of modules: t = .71, p = .48; average module 

size: t = .60, p = .54; variability in module size: t = .67,  p = .50).  

 

To explore the possibility that alterations in global modularity may be restricted to clinically 

affected subjects (as observed, e.g., for autism: Rudie et al., 2013, or Alzheimer’s disease: De 

Haan et al., 2012), we conducted a further post-hoc analysis on the current data and compared 

global modularity Q values of the eight subjects with a clinical ADHD diagnosis with those 

of all other subjects. Also here, we did not observe a significant difference (Mann-Whitney U 

Test, one-tailed, z = .62, p = .27). However, this test relies on a comparison of 283 healthy 

subjects with only eight affected patients. Thus, we finally compared also the eight subjects 

with ADHD diagnosis with the 20 subjects of the first post-hoc analysis (20 persons with 

lowest ADHD Index). Also here, there was no significant difference (Mann-Whitney U Test, 

one-tailed, z = .08, p = .47). Similar results were obtained for all other global network 

measures (number of modules: z = 1.16., p = .12; average module size: z = .62, p = .27; 

variability in module size: z = .53, p = .58).  

 

For comparability with studies that investigated the relationship between ADHD and 

functional connectivity strength within or between standard (i.e., group-average) brain 

networks (e.g., Sidlauskaite et al., 2016), we applied a canonical 400-node parcellation 

(Schaefer et al., 2018) to each individual’s functional MR scan and then assigned each node 

to one of seven well-established functional brain networks, i.e., visual, somato-motor, dorsal 

attention, ventral attention, limbic, frontoparietal, or default-mode network (Yeo et al., 2011). 

Examining the relationship of connectivity strength between/within these networks and 

ADHD-related behaviors, we observed no significant effects (Pearson correlation controlled 

for effects of age, sex, handedness, FSIQ, and mean FD; all r < .11, p > .056; Bonferroni 

corrected threshold: p = .0018; see Supplementary Table S3).  
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To assess the possibility that our estimates of functional connectivity (and thus also our 

graph-theoretical measures) may have been affected by distance-dependent motion artifacts 

which could remain in the data even after motion correction (Power et al., 2012; Ciric et al., 

2017), we calculated for each edge the correlation between a) the association of its functional 

connectivity strength with mean framewise displacement, and b) the Euclidean distance 

between the two nodes of this respective edge (Ciric et al., 2018; note that for computational 

reasons this analysis is also based on the 400-node parcellation of Schaefer et al., 2018; see 

also above). As illustrated in Supplementary Figure S1, we observed no indications of 

distance-dependent artefacts. As further post-hoc control analysis addressing potential 

influences of head-motion, we tested whether there is a relationship between the ADHD index 

and the number of low-motion frames (FD<.2mm) in our sample. This was not the case 

(r=.01; p=.93). Nevertheless, we repeated all our analyses with the number of low-motion 

frames as covariate of no interest (rather than mean framewise displacement) and observed 

that the graph-theoretical results were almost unchanged, i.e., only slight changes were 

observed in respect to pi and zi (see Supplementary Table S5-7 and Supplementary Figure 

S2,3). Thus, these control analyses provide no evidence for influences of residual, distance-

dependent motion artifacts on our results. 

 

Lastly, to further characterize the functional role of the areas significantly associated with 

ADHD, i.e., we examined whether a) ADHD-related brain regions have generally higher 

participation coefficient  than other regions of the brain (which would make them important 

as inter-module connectors in the sense of, e.g., the so-called diverse club; Bertolero et al., 

2017) and b) whether ADHD-related brain regions have generally higher within-module 

degree than other regions of the brain, which would indicate a function as local hubs within 

their own modules. To this end, we extracted mean (group-average) values of participation 

coefficient pi and within-module degree zi from all significant clusters (Table 3,4) and 

determined their rank position within the whole-brain (group-average) distributions. In 
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respect to participation coefficient all ADHD-associated regions scored around the center 

(rank positions between 20 and 80%), i.e., not in the extremes of the whole-brain pi-

distribution (see Supplementary Table S4). Although most ADHD-related brain regions were 

also located around the center of the zi-distribution, we observed very high zi values (rank 

position > 80%) in middle frontal gyrus, anterior cingulate cortex, precuneus, and in both 

central clusters, and very low zi values (rank position < 20%) in posterior cingulate cortex, left 

posterior fusiform gyrus, and in both temporal clusters.  

 

Discussion  

The current study investigated whether ADHD-related behaviors are associated with one of 

the key determinants of human brain function, i.e., brain network modularity. In contrast to 

previous studies that relied on ADHD vs. control group comparisons, we here applied a 

correlative approach investigating the appearance of ADHD symptoms across a broad range 

of variation. These ADHD-related behaviors correlated with region-specific but not global 

aspects of modularity, consistent with neurocognitive models of ADHD relating intrinsic 

connectivity between functional brain networks to ADHD. Our results extend these models to 

the non-clinical range of attention and executive functions.  

 

No association between ADHD symptoms and global modularity  

The default-mode interference hypothesis (Sonuga-Barke & Castellanos, 2007) postulates 

stronger connectivity between the default-mode network and task-positive regions, i.e., a shift 

towards more integration and less segregation between these networks. This assumption was 

recently supported by two group-comparison studies that observed higher connectivity 

between default-mode network and task-positive regions in ADHD patients during cognitive 

tasks (Mills et al., 2018; Mowinckel et al., 2017). We found no direct support for this 

assumption in our non-clinical sample (post-hoc analysis; functional connectivity between 

standard networks). The graph-theoretical measure of global modularity considers 
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simultaneously all connections within the entire network and indicates the general level of 

network segregation. Changes in global modularity can therefore occur in the presence of 

stronger or weaker connectivity between particular networks. Lin and colleagues (2014) 

reported higher global modularity of intrinsic functional brain networks in ADHD. This 

result, however, could not be replicated by Barttfeld and colleagues (2014), and further 

evidence from clinical ADHD samples is currently lacking. In our study focusing on 

behavioral variation across a broad non-clinical range, we also did not find support for an 

association with global modularity. However, despite the relatively large sample size, our 

data cannot be considered as strong evidence (in terms of Bayes Factors) against the presence 

of such associations.  

 

While previous studies reported significant alterations in global modularity in patients with 

psychiatric conditions (Rudie et al., 2013; De Haan et al., 2012), it is still unclear whether 

global modularity relate to individual differences in cognitive abilities in the unimpaired brain 

(Stevens et al., 2012; Liang et al., 2016). We therefore speculated previously (Hilger et al., 

2017b) that differences in modular network organization might become pronounced at a 

global level only in persons with severe neurological or psychiatric diseases. However, a post-

hoc analysis on the current data (albeit underpowered) suggests that the eight ADHD-

diagnosed subjects in the present sample did not differ in terms of global modularity from 

subjects without diagnosis.  

 

Region-specific connectivity profiles are associated with ADHD symptoms 

In general, modular brain networks are organized in a way that balances functional integration 

and functional segregation (Gallos et al., 2012). Whereas the coordination and integration of 

different cognitive processes has been suggested to rely on exchange of information between 

different modules (high participation coefficient), the effectiveness of specific cognitive 

functions may be supported by less diverse, more focused processing of information within 
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only one or between only few circumscribed modules (low participation coefficient; Bertolero 

et al., 2015, 2017; Gratton et al., 2012; Warren et al., 2014).  

 

High within-module connectivity reflects that a node or brain region has strong influence on 

(or is highly influenced by) other nodes within the same functional module, and is therefore 

thought to facilitate more segregated specific cognitive functions (Warren et al., 2014; 

Gratton et al., 2012). In contrast, low values reflect less influence and more flexible (or 

independent) coupling to nodes within their modules. We observed region-specific patterns of 

positive and negative associations between non-clinical ADHD symptoms and within-module 

degree, suggesting that not only between-module interactions but also the quality of 

information flow within specific modules may be relevant for ADHD. Recent empirical 

evidence suggests further that both higher and lower levels of integration or segregation are 

important for cognitive performance (Cohen & D’Esposito, 2016; Hilger et al., 2017b). Our 

results support this and provide converging evidence from the domain of ADHD-associated 

behaviors. However, our outcome measure spans a wide range of behaviors and cognitive 

attitudes from impulsivity to self-esteem, and thus lacks the specificity needed to relate 

specific cognitive sub-functions to specific patterns of connectivity.  

 

Nine mostly bilaterally located brain regions demonstrated significant effects in both 

participation coefficient and within-module degree. Interestingly, these associations were of 

opposite directions in all cases, i.e., high pi/low zi, or vice versa. This may indicate that in 

persons with higher ADHD Index the connectivity profile of these regions may be biased 

towards one type of information flow (distributed across modules or focused within modules). 

ADHD-associated regions, however, do not seem to have particular node-properties (post-hoc 

analysis). The mechanisms linking individual variations in modular brain network 

organization and subclinical variations in attention and executive functioning are thus not 
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localized to particularly integrative (members of the diverse club; Bertolero et al., 2017) or 

particularly locally central regions.  

 

Partial support for network models of ADHD 

ADHD is a complex phenomenon, involving atypical neural activation in distributed brain 

regions (Cortese et al., 2012; Dickstein et al., 2006), dysfunction of specific neural networks 

(Sidlauskaite et al., 2016; Konrad & Eickhoff, 2010), and fundamental alterations in intrinsic 

connectivity (Zhang et al., 2016; Di Martinos et al., 2013). To reiterate, both two- and three-

network theories specifically suggest altered connectivity between the default-mode and task-

positive brain networks (Sonuga-Barke & Castellanos, 2007; Cortese at al., 2012). At the 

most general level, our results support these network-based models by demonstrating 

significant and systematic relationships between functional brain network organization and 

variations in ADHD-related behaviors. General support for existing models also comes from 

our observation of localized rather than global effects, which is consistent with the focus on 

specific inter-module connection patterns in the current literature (Sripada et al., 2014; Choi 

et al., 2013). Although we did not observe associations of between-module connectivity 

strength with ADHD when using a standard network partition (post-hoc analysis), in our main 

analyses (based on individual partitions) we found lower within-module connectivity in 

circumscribed clusters adjacent to classical default-mode networks in persons with higher 

ADHD Index. This is in line with previous studies with ADHD samples (e.g., Kessler et al., 

2014; Castellanos et al., 2008; Sripada et al., 2014) and suggests that altered DMN 

connectivity profiles might also exist in subjects with non-clinical difficulties in attention and 

executive function. It is plausible to assume that this association is less pronounced within the 

healthy range, and the use of individualized network partitions might have helped to detect 

such covariations within our non-clinical sample. Future research will be required to clarify 

how this alteration of within-module connectivity may relate to the diminished suppression of 
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DMN activation that was suggested as cause of distracting intrusions and attentional lapses in 

ADHD (Sonuga-Barke & Castellanos, 2007). 

 

Our results can also be related to recent three-network theories of ADHD, which propose 

stronger interactions between salience network and default-mode network, relative to weaker 

interactions between salience network and central executive network (Choi et al., 2013, for 

review see Castellanos & Aoki, 2016). As we observed significant associations in regions 

associated with the default-mode, salience, and central executive networks, in general our 

results support three-network theories. Nonetheless, both metrics studied here allow no 

conclusions about directionality of these connections, e.g., to which brain regions the salience 

network is connected more strongly. 

 

Importantly, the associations reported in the current study were observed across a broad and 

continuous range of non-clinical behavioral variations. They may thus represent more general 

mechanisms linking intrinsic network organization to variations in behaviors that in ‘extreme’ 

expressions are associated with ADHD. This supports continuous conceptualizations of 

ADHD (Marcus et al., 2012) and suggests that ADHD is not only the extreme end in terms of 

behavioral variations (Levy et al., 1997) but also in terms of biological variations.  

 

Limitations 

The CAARS ADHD Index has a high validity (Kooij et al., 2008; Erhardt et al., 1999). 

Nevertheless, there was no perfect match between those participants with highest ADHD 

Index and those reporting a clinical diagnosis. Further, it has been demonstrated that different 

ADHD measures can lead to slightly different results (Kooij et al., 2008), so that the 

dependency on the predictor measure may be addressed by future research. A second 

limitation is the rather short duration of the resting-state scan. While similar scan lengths are 

common in current functional connectivity research and while it has been shown that even 
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less than 2min of fMRI can be used to build robust individual connectotypes (Miranda-

Dominguez et al., 2014), it has recently been demonstrated that short scan durations can lead 

to systematic biases in graph-theoretical measures, e.g., reduced global modularity estimates 

(Gordon et al., 2017). Our rather large dataset may compensate for this problem to a certain 

degree, but future work will have to replicate the present results in datasets with longer scan 

durations. Finally, even though resting-state connectivity supposedly reflects fundamental 

organizational principles of the human brain (Biswal et al., 1995), and functional connectivity 

during cognitive demands may rely on these intrinsic properties (Cole et al., 2014, 2016), we 

consider it an important issue for future research to investigate whether the same associations 

persist in the presence of cognitive tasks. 

  

Conclusion 

We demonstrate that non-clinical variations in ADHD symptoms relate significantly to the 

modular organization of human functional brain networks. Even though ADHD-related 

behaviors seem to vary independent of global modularity differences, region-specific profiles 

of between-module and within-module connectivity covary with the self-rated presence of 

(non-clinical) ADHD symptoms. Our results support a network perspective of ADHD and 

suggest that intrinsic functional connections between and within neuronal systems are 

relevant for a comprehensive understanding of individual variations in ADHD-related 

cognition and behavior.  
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