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Abstract

Behavior is characterized by sequences of goal oriented conducts, such as food uptake,

socializing and resting. Classically, one would define for each task a corresponding satisfac-

tion level, with the agent engaging, at a given time, in the activity having the lowest satisfac-

tion level. Alternatively, one may consider that the agent follows the overarching objective

to generate sequences of distinct activities. To achieve a balanced distribution of activities

would then be the primary goal, and not to master a specific task. In this setting the agent

would show two types of behaviors, task-oriented and task-searching phases, with the latter

interseeding the former. We study the emergence of autonomous task switching for the

case of a simulated robot arm. Grasping one of several moving objects corresponds in this

setting to a specific activity. Overall, the arm should follow a given object temporarily and

then move away, in order to search for a new target and reengage. We show that this behav-

ior can be generated robustly when modeling the arm as an adaptive dynamical system.

The dissipation function is in this approach time dependent. The arm is in a dissipative state

when searching for a nearby object, dissipating energy on approach. Once close, the dissi-

pation function starts to increase, with the eventual sign change implying that the arm will

take up energy and wander off. The resulting explorative state ends when the dissipation

function becomes again negative and the arm selects a new target. We believe that our

approach may be generalized to generate self-organized sequences of activities in general.

Introduction

Besides their industrial and practical applications, real and simulated robots are used increas-

ingly to study the principles underlying embodied cognition [1] and locomotion [2], together

with the self organization of critical sensorimotor states [3] and motor primitives [4]. Simu-

lated robots may be considered in addition as proxies for cognitive and information processing

agents [5].

It is well known that gaits and other regular muscle contractions, like breathing [6], are

induced in many cases by central pattern generators [7, 8], even though it is currently
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controversial whether this is the case for biped locomotion [9], viz for human walking.

Abstracting from animal models, one may ask conversely to which extent compliant locomo-

tion may be generated via self-organizing principles [10], that is in the absence of top-down

control in the form of a central pattern generator. One talks in this context of ‘embodiment’

[11], when part of the computation generating locomotion is carried out by the elasto-

mechanical properties of the constituting body [12]. For quadruped robots with legs that are

independently controlled by single non-linear phase oscillators [13], it has been shown that

the limb-specific sensorimotor feedback derived form pressure sensors leads to self-orga-

nized interlimb communications, with emerging gaits that correspond to walking, trotting

and galloping [14].

Self-organizing principles may be implemented within the sensorimotor loop [10], which

is comprised of environment, body, actuator and sensory readings, with the latter being

restricted in the pure case to propiosensation, viz to the internal state of the robot. The attrac-

tors self-stabilizing in the sensorimotor loop may then give rise to complex patterns of regular

and of chaotic motion primitives [15], which can be selected in a second step using ‘kick con-

trol’ [16]. From a general perspective, kick control is an instance of a higher-level control

mechanism exploiting the reduction in control complexity provided by morphologically com-

puting robots [17, 18]. These approaches are hence different from other works where closed-

loop policies are applied on the top of open-loop gait cycles [19, 20]. Alternatively, sequential

switching between self-organizing behaviors in the combined phase space of the controller,

body and environment can also be generated via self-exploration of the attractor landscape

using an adaptive repelling potential [21].

Motor primitives and their generating guidelines are part of the basic constituents of a cog-

nitive system [22]. Here we investigate whether self-organizing principles may be used also on

a higher level. As a background we consider a setting where an agent has to follow a certain

number of goals successively, with a typical example being that of an animal needing to forage,

to watch out for predators, to rest and to socialize [23]. The agent is hence confronted with

tasks that can be tackled only sequentially, a problem that may be cast into the framework of

multi objective optimization [24], an approach which is however not taken in the present

study. We examine instead to which extend a self-organized dynamical system may solve the

time allocation problem implicitly.

As a basic protocol we consider an agent having to solve a series of indistinguishable

tasks, with the agent being given by a simulated two-dimensional robot arm, as depicted

in Fig 1. Within the reach of the arm there are a number of slowly moving objects the

end actuator needs to reach and follow. Upon success, the self-organized dynamics of

the arm should become ‘bored’ of the object, move away and search for a new one. We con-

sider this protocol as a proxy for an agent showing a non-trivial sequence of behaviors gen-

erated not by top-down commands, but that emerges from underlying self-organizing

principles.

Materials and methods

The simulated robot arm sketched in Fig 1 has two degrees of freedom, the angles α and β,

with the position r = (r1, r2) of the end effector, the hand, being given by

r1 ¼ l1 cos ðaÞ � l2 cos ðb � aÞ ð1Þ

r2 ¼ l1 sin ðaÞ þ l2 sin ðb � aÞ ; ð2Þ
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where l1 and l2 are the respective arm lengths. We define a generalized potential U as

U ¼ Um

Y

i

T2ðRiÞ; Ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr � miÞ
2

q

; ð3Þ

where Ri is the Euclidean distance between the position mi of the ith target object and r = r(α,

β). In (3) we used a squashing function T,

T zð Þ ¼ kz tanh z=szð Þ;
@T
@y
¼
kz

sz
1 �

T2

k2
z

� �
@z
@y

; ð4Þ

which is characterized by a maximal value κz and a scale sz. We use T(z) throughout this study

for the renormalization of several dynamical quantities, with the purpose to avoid exceedingly

large forces or velocities. For the case of the distance we select a maximum value κR! 1, such

that we have T(Ri) = tanh(Ri/sR), as entering (3). Um is then the maximal value for the potential

U = U(α, β).

Robot arm dynamics

The dynamics of the angle α is controlled by

_a ¼ TðvaÞ; _va ¼ f ðUÞTðvaÞ � ra Uða; bÞ ; ð5Þ

where the objective function U(α, β) has the form of a mechanical potential, withrα denoting

the gradient with respect to α. Equivalent equations govern the time evolution of β. Eq (5) cor-

responds to a mechanical system with a potential U and a dissipation function f(U), for which

the velocity vα has been renormalized by T(z).

Mechanical systems with dissipation functions f(U) depending exclusively on the potential

U, as in (5), can be considered on a general level as versatile prototype dynamical systems

which exhibit, beside other, complex bifurcation cascades [25]. Several forms may be selected

for the dissipation function f(U), as proposed further below. The system is adaptive [26], dis-

persing and taking up energy respectively for f< 0 and f> 0.

Fig 1. The simulated robot arm. The two angles α and β are actuated, with (5) governing the evolution of α. An

equivalent dynamical system is in place for β. The arm has the task to catch one of the slowly moving objects mi, to

follow it for a while, with r�mi, and to switch autonomously to a distinct object.

https://doi.org/10.1371/journal.pone.0217004.g001
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• In the dissipative stage, when f(U)< 0, the arm will follow a damped trajectory towards the

next minimum of the potential U = U(R), that is towards the next object mi.

• For a dynamical dissipation function f(U), that is for a f = f(U) which depends functionally

but not necessarily explicitly on the potential U, one can achieve that the state r�mi

becomes progressively unstable, such that the arm eventually moves away from the object

upon taking up energy after f(U) becomes positive.

The mechanical potential in (5) treats all targets mi on an equal footing, the setup studied here.

Dissipation function dynamics

The generic principle for selecting the dissipation function f(U) is that the system needs to be

dissipative when far away from all objects mi, with the configuration r�mi becoming unstable

once a specific target has been reached and followed for a certain time. Distinct ways to imple-

ment this principle are conceivable, here we study three possibilities.

• Exponentially damped (ED). One may presume that the dissipation should become small

far away from the objects, viz for large potentials U, as expressed by the ansatz

f ðUÞ ¼ f0 expð� mUÞ; tf
_f 0 ¼ Et � U : ð6Þ

The prefactor f0 changes sign when the potential U stays below the reference energy Et for a

period comparable to τf, viz when the end effector remains close to an object. Once f0 turns

positive, the arm will start to move away from the current object mi.

• Trailing potential (TP). In this setup the dissipation function is explicitly time dependent,

with the evolution equation being determined by the trailing potential UT = UT(t),

tf
_f ¼ Et � UT; tT

_UT ¼ U � UT ; ð7Þ

where the integration time scales are regulated by τf and τT. The system is dissipative when

UT is large, taking up energy once it falls below the reference energy Et.

• Adapting threshold (AT). One postulates that f(U) becomes positive when the potential U
falls below a time dependent threshold Uθ = Uθ(t):

f ðUÞ ¼ f0 ðUy � UÞ expð� mUÞ; ty
_U y ¼ Et � U ; ð8Þ

where Et is a reference energy. The overall scale for f(U) is regulated by f0, with τθ determin-

ing the time needed for starting to take up energy, after the target has been reached

dissipatively.

Further below we will present comparative results for the above three types of dissipation

function dynamics, with in-detail investigations of robustness and other dynamical properties

concentrating on ED.

Moving objects

For the dynamics of the moving objects, the robot arm has to grab, we used two closely related

algorithms.

• Polar representation of the velocity (M-PV). In the first case the absolute velocity |vi| of

an object mi is drawn from an uniform distribution in [0, a], with the angle φi being drawn

from [0, 2π].

When the goal is to generate a series of activities
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• Cartesian representation of the velocity (M-CV). In the second approach the Cartesian xy-

components of vi are drawn independently from an uniform distribution in [−b, b].

The resulting velocity vi is applied in both cases for a time span ti which is drawn uniformly

from [0, tmax]. The diffusion of the object is restricted in addition to a circular area of radius

rarea, reflecting at the boundary. We generally selected rarea to coincide with the reach of the

robot arm. For the other parameters we took a = b = 0.001 and tmax = 10.

As the simulation results for M-PV and M-CV are very similar, we show in the following

the ones for M-PV.

Parameters

The overall length L = l1 + l2 of the arm is set to L = 2, with the lengths of the two segments

being identical, l1 = l2 = 1. The parameters for the squashing function (4) for the distance are

κR = 1 and sR ¼
ffiffiffiffiffiffiffiffi
3=n

p
L=2. For n = 3 moving objects we have hence sR = L/2 = 1.

For the maximum of the potential Um and for the reference energy Et we used Um = 17 and

Et = 0.05Um, respectively, with all other parameters being listed in Table 1. For the simulation

a time step of dt = 0.01 has been used.

Results

For the parameters given in Table 1 we find transients in which the arm tends to stay close to a

target it has approached. The flow in phase space is laminar when the arm is close to a target,

accelerating however considerably once the dissipation function f(U) turns positive, compare

(5) together with (6), (7) and (8). For a first understanding we present in Fig 2 the probability

ρ(Ri) to observe the distance Ri between the end effector and a given target i, see (3). With all

n = 3 targets being equivalent, one has ρ(Ri) = ρ(Rj), for all i, j 2 [1, n].

Following vs. explorative phase

The distribution of the distance Ri presented in Fig 2 shows that the motion of the arm can be

subdivided into a phase of small Ri and a phase of medium to large distances of all sizes, mod-

ulo fine details. That this is the case for three different types of dissipation function dynamics

proves that the underlying generating principles is both robust and versatile. For the three

variants considered here, (6), (7) and (8), the arm will start to take up energy whenever it did

hover for a certain time close to a target, dissipating on the other side energy when far away.

The evolution of key variables as a function of simulation time is presented in Fig 3. Shown

are, for the ED dissipation function dynamics, the velocities vα, vβ and varm, of the actuators

and respectively of the arm, together with the evolution of the dissipation function f, of the

potential U, and of the distances Ri between the hand of the arm and the individual objects.

One can distinguish in Fig 3 laminar ‘following phases’ and highly irregular ‘explorative

phases’. Particularly evident is the driving role of the dissipation function, which remains

Table 1. Simulation parameters. The parameters κv and sv entering the renormalization of the velocity of the mechan-

ical system (5) have been adapted slightly for the three different dissipation function dynamics, ED, TP and AT. Listed

are furthermore all parameters entering the respective defining Eqs (6), (7) and (8). Note that μ is given in units of 1/

Um.

κv sv μUm τf τT τθ f0
ED 2.8 1 25 1.2 • • •

TP 4.3 3 • 6.0 4.0 • •

AT 4.0 2 34 • • 1 0.5

https://doi.org/10.1371/journal.pone.0217004.t001

When the goal is to generate a series of activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0217004 June 19, 2019 5 / 15

https://doi.org/10.1371/journal.pone.0217004.t001
https://doi.org/10.1371/journal.pone.0217004


negative for most of the smooth following phase. Visible is also a certain time lag between the

crossing of f from negative to positive values, which results from the time the system needs to

take up enough energy for the angular velocities vα and vβ, and the potential U to become

visible.

Robustness with respect to parameter changes

For a criterion that determines whether the end effector follows a given target we use

U < Et; f ðUÞ < 0; jvarmj < vmax
tar ; ð9Þ

which demands that the potential U is small with respect to the threshold energy Et and that

the system is momentarily dissipative, viz that the dissipation function f(U) is negative. The

last term in (9) rules out coincidental crossings at high velocities, which occur when magni-

tude of the velocity varm of the end effector is larger than the maximal velocity vmax
tar of the

targets. With the dynamics of the targets being generated, as described, vmax
tar is known. For

practical applications it would be in any case sufficient to use an empirical estimate for vmax
tar .

Using the criterion (9), one can define a probability Pclose that measures the relative fraction

of time the arm follows a target, with following and the exploration being the two dominant

states of the system, as evident from Fig 3.

In Fig 4 we present for the ED dissipation function dynamics the numerical result for Pclose.
Starting from the reference set of parameters Um = 17, sR = L/2 = 1, κv = 2.8 and sv = 1, com-

pare also Table 1, the parameters have been modified one by one and the probability for the

arm to follow a target evaluated. Also included in Fig 4 is the probability Pnew, namely that two

targets approached successively differ.

Fig 2. Distance statistics. The probability distribution ρ(Ri) for he distance Ri between the end effector and a selected

object i, as averaged over time. The targets are indistinguishable, which implies that ρ(Ri) = ρ(Rj) for all i, j 2 [1, n],

where n = 3 is the number of moving objects. Shown are the results for three different dissipation functions dynamics,

ED (top, click for animation or see S1 Video), TP (middle, click for animation or see S2 Video), and AT (bottom, click

for animation or see S3 Video), as defined respectively by (6), (7) and (8). The parameters are listed in Table 1.

https://doi.org/10.1371/journal.pone.0217004.g002
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• The probability Pclose for the arm to be in the following phase increases monotonically with

the strength Um of the potential, an intuitive result. Pnew decreases conversely, with the rea-

son being that a larger Um makes it more difficult to escape the local potential well.

• Increasing the characteristic length sR for the distance between the arm and a target, which

enters the squashing function (4), decreases Pclose dramatically. This is because the local

potential wells attracting the end actuator to a target in first place tend to disappear for large

sR. Pnew increases on the other side.

• The squashing parameters κv and sv for the velocity of the actuators can be changed consid-

erable without affecting either Pclose or Pnew, implying that the system is robust with respect

to both κv and sv.

The data shown in Fig 4 describes the influence of global parameters. In Fig 5 we present

for completeness the effect of changing the parameters Et, μ and τf of the ED dissipation

Fig 3. Time series for three moving objects. As a function of simulation time t, the evolution of key variables for the

ED dissipation-function dynamics, compare (6). (top) The angular velocities vα and vβ. (second from top) The

modulus |varm| of velocity varm of the end effector. (second from bottom) The dissipation function f and the potential

U, see (3), with the shading indicating that the criterion (9) is fulfilled. The separation of time scales characterizing the

dynamics of f, for which a fast drop to negative values is followed by a slow recovery, drives the distinction between

irregular searching phases and the laminar flow observed when the end-effector is close to a specific target. (bottom)

The distances Ri to the n = 3 moving objects.

https://doi.org/10.1371/journal.pone.0217004.g003
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function dynamics, see (6). We find the generating principle to be robust, viz that the depen-

dency of Pclose and Pnew on Et, μ and τf is moderate.

Also included in Fig 5 are the values of Pclose and Pnew obtained upon changing the number

n of targets. One observes that the relative fraction of time Pclose the arm spends close to a target

remains flat. For n = 1 the probability to change targets vanishes, as it must, becoming on the

other side substantial for large numbers of targets n.

Fig 4. Parameter sweep. For the ED dissipation function dynamics, the probability Pclose for the arm to be close to one

of the n = 3 targets (red circles), as defined by (9), and Pnew, which measures the chance that two targets approached

one after the another are different (green triangles). With respect to the reference values Um = 17, sR = L/2 = 1, κv = 2.8

and sv = 1, the values of the parameters have been changed individually.

https://doi.org/10.1371/journal.pone.0217004.g004

Fig 5. Robustness of the dissipation function dynamics. For the ED dissipation function dynamics, the probability

Pclose for the arm to be close to a target (red circles), as defined by (9), and Pnew, which measures the chance that two

targets approached one after the another are different (green triangles). With respect to the reference values Et =

0.05Um = 0.85, μ = 25/Um = 1.47 τf = 1.2, the values of the parameters have been changed individually for n = 3. Also

included are the values of Pclose and Pnew upon changing the number n of targets. Here sR ¼
ffiffiffiffiffiffiffiffi
3=n

p
L=2.

https://doi.org/10.1371/journal.pone.0217004.g005
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The here presented sequential task-switching behavior, generated by the prototype dynam-

ical system (5) does not rely on the particular choice of the generalized dissipation function

dynamics. As demonstrated by Fig 2, similar distance distributions ρ(Ri) may result from very

different dissipation function implementations. This is also reflected by the fraction of time

spent with following and the probability of switching targets, Pclose = 0.44/0.69/0.44 and Pnew =

0.17/0.07/0.14, when comparing the dissipation functions ED/TP/AT see Eqs (6), (7) and (8)

respectively, for the parameters given in Table 1.

Robustness with respect to target properties

It is clear that the arm would not be able to follow a target if the maximal velocity vmax
tar is too

large. We find, however, that the here proposed generating principle works for a substantial

range of vmax
tar . For the ED dissipation function dynamics we present in Fig 6 the time series of

the dissipation function and of the potential both for the case of vmax
tar ¼ 0:1, as used hitherto,

and for vmax
tar ¼ 0:5. We find that only details of the overall dynamics change. This holds also

when increasing the number of moving objects from n = 3 to n = 8.

A single non-moving target

From the dynamical system perspective it is of interest to investigate the case of a single sta-

tionary target. With noise being absent, the system is deterministic.

Fig 6. Variable object characteristics. As a function of simulation time t, the evolution of the dissipation function f
(red) and of the potential U (blue) for the ED dissipation-function dynamics. The shaded regions indicate that the

criterion (9) for the arm to be in the following phase is fulfilled. (top) For n = 3 objects for which the maximal velocity

is 0.5, viz five times larger than in Fig 3 (click for animation or see S4 Video). (middle) For n = 8 objects with a

maximal velocity 0.1 (click for animation or see S5 Video). (bottom) For n = 8 objects with a maximal velocity 0.5

(click for animation or see S6 Video).

https://doi.org/10.1371/journal.pone.0217004.g006
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• Fixpoints. In case of a purely dissipative dynamics, with f(U) = f0 < 0, the system disposes of

two stable fixpoints, defined by vanshing angular velocities vα, vβ! 0, that correspond to a

right- and respectively to a left bend.

• Limit cycle attractors. With the dynamical dissipation function ED, it is evident that the

robot arm settles into a limit cycle in which the destabilized fixpoints are revisited, see Fig 7.

There exist, hence, multiple symmetry related limit cycles even for a single resting target

(only one of them is shown).

Therefore, in the presence of multiple fixed targets, several different activity sequences may

be generated, even for the same starting position r(0) of the arm, viz for different initial condi-

tions of the internal variables.

Discussion

Action switching in embodied agents may be guided by fitness considerations, f.i. when the

task is to collect a series of different food sources [27]. Typically, the action selected at a given

Fig 7. A single non-moving object. As a function of simulation time t, the evolution of key variables for the ED

dissipation-function dynamics, as for Fig 3, but here for a single non-moving object located at (3/8, 3/8)L. The system

is fully deterministic, with the robot arm settling into a limit cycle. The criterion (9) for the arm to be close to the

object is not applicable, as vmax
tar ¼ 0.

https://doi.org/10.1371/journal.pone.0217004.g007
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time will be then the one with the most pressing need. We have followed here a different

approach, examining an overarching generation principle and not the generation of action

sequences driven by an utility optimization that is local in time.

The stationarity principle

The question how to decide in which action to engage has been termed the motivational prob-

lem [28]. The utility of many activities, like foraging, socializing and resting, that are regularly

repeated, address distinct needs, which implies that they cannot be lumped together into an

overarching utility function. In terms of multi-objective optimization [24] the agent must ded-

icate time to a range of activities, with the constraint that the resulting distribution of utilities

remains within a given range. This constraint may be expressed as a stationarity principle,

namely that the statistical properties of the time series of activities should become stationary

for extended time spans.

The result presented here for the self-organized robot arm can be viewed as an implementa-

tion of the stationarity principle. With the dynamics being irregular, viz chaotic, in the explor-

ative phase, the exact sequence of objects followed is not pre-determined. The long term

statistics, such as the distance distribution presented in Fig 2, is however stationary.

The stationarity principle is a guiding principle that can be used in various settings. Statisti-

cal learning, e.g. of receptive fields [29], is characterized by statistically stationary sensory

inputs, with learning continuing until the statistics of the output activity becomes also station-

ary [30]. It has been shown, that one can use the Fisher information of the neural firing rate to

encode the stationarity principle [31] and that one obtains Hebbian learning when minimizing

the Fisher information, viz when the stationarity condition is enforced.

Transient-state dynamics

With the agent being formulated in term of a mechanical system, see Eq (5), one can abstract

from the behavioral level and describe the robot arm within dynamical system theory [26].

The striking alternation of dynamical states, as visible in Fig 3, can be interpreted in this con-

text as an example of transient-state dynamics [32]. The following phase corresponds on a

dynamical level to a transient attractor that becomes unstable on an extended time scale,

namely when the dissipation function turns positive.

The here discussed mechanism, the coupling of an attracting state to a slow variable, is the

core route for generating transient-state dynamics in general [33], with the flow being laminar

during the transient dynamics, and irregular during the transition periods. We note that tran-

sient-state dynamics may be viewed as a form of metastability, which may arise either from the

brain dynamics as such [34], or from sensorimotor couplings in response to tasks demanding

behavioral flexibility [35].

Distinguishable vs. non-distinguishable targets

It would be possible to introduce a bias bi = bi(t) that allows to differentiate between distinct

objects. In this case one would work with the generalized Euclidean distance

Ri !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
i þ b2

i

p
: ð10Þ

instead of (3), for which the bias bi encodes the depth of the potential, and with this indirectly

also the relative importance of the respective object. For an appropriate evolution equation for

bi(t), the respective target would become repelling once the end effector of the robot has
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reached it. Two routes on how the dynamical system (5) induces an autonomously generated

sequence of behaviors are hence possible.

• Distinguishable targets. One works with a constant dissipation function, f(U)! f0, with

every object being characterized by a time-dependent attribute, namely bi = bi(t).

• Indistinguishable targets. When all bi� 0 there is no variable distinguishing the individual

objects. The sequence of behaviors is then a consequence of dynamical instabilities resulting

from the dynamics of the dissipation function.

In this study we concentrate on the second case as the basic generative mechanism, noting that

the resulting residence times, viz when r�mi, could be fine-tuned in a second step by allow-

ing the bi to be weakly time dependent. This protocol is left for future studies.

Conclusion

One of the biggest challenges in the design of controllers for autonomous agents is the combina-

tion of different goal oriented behaviors into a series of self-organized activities [36]. Here, we

investigated how such a higher order controller may be constructed within a dynamical systems

framework, by adapting a recently introduced versatile prototype system [25] to the problem of

an object-following arm. By introducing a model with a dynamically changing generalized dissi-

pation function we provide a proof of concept demonstration of how target following can be

turned into a sequential task switching behavior in terms of transient-state dynamics [32].

Within this framework the goal oriented activities are represented by a target-following

behavior of a simulated arm, while the switching dynamics between targets corresponds to an

explorative phase upon getting bored of the respective task.

Such a self-organized behavior can be generated both at the level of motion primitives, in

case of robotic locomotion [10], and on the level of action selection [27], as demonstrated

here. The resulting behavior is robust within a wide range of parameters, as it does not require

precise fine tuning, which simplifies the selection of an adequate parameter set with, e.g.,

machine learning techniques. Being based on self-organized attractors in the overarching

phase space of agent and environment, the sensorimotor loop, our approach is resistant to

external noise, retaining at the same time the flexibility to adapt to the environment or to inter-

act with other agents [15].

The proposed framework can be generalized to produce series of activities with a well-

defined order or a given multi-modal probability distribution by modulating the Euclidean

distance as a function of the actual importance of the respective task – a research direction left

for future studies.

Supporting information

S1 Video. Video for ED dissipation dynamics. Illustrating video for Fig 2. For n = 3 moving

objects, a maximal object velocity of 0.1 and the ED dissipation dynamics, as defined by (6).

(MP4)

S2 Video. Video for TP dissipation dynamics. Illustrating video for Fig 2. For n = 3 moving

objects, a maximal object velocity of 0.1 and the TP dissipation dynamics, as defined by (7).

(MP4)

S3 Video. Video for AT dissipation dynamics. Illustrating video for Fig 2. For n = 3 moving

objects, a maximal object velocity of 0.1 and the AT dissipation dynamics, as defined by (8).

(MP4)
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S4 Video. Video for ED dissipation dynamics. Illustrating video for Fig 6. For n = 3 moving

objects, a maximal object velocity of 0.5 and the ED dissipation dynamics, as defined by (6).

(MP4)

S5 Video. Video for ED dissipation dynamics. Illustrating video for Fig 6. For n = 8 moving

objects, a maximal object velocity of 0.1 and the ED dissipation dynamics, as defined by (6).

(MP4)

S6 Video. Video for ED dissipation dynamics. Illustrating video for Fig 6. For n = 8 moving

objects, a maximal object velocity of 0.5 and the ED dissipation dynamics, as defined by (6).

(MP4)
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Software: Tim Koglin, Bulcsú Sándor.
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